]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
fc0abb14 | 71 | * The global cache-chain is protected by the mutex 'cache_chain_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
1da177e4 LT |
120 | #include <asm/cacheflush.h> |
121 | #include <asm/tlbflush.h> | |
122 | #include <asm/page.h> | |
123 | ||
124 | /* | |
50953fe9 | 125 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
126 | * 0 for faster, smaller code (especially in the critical paths). |
127 | * | |
128 | * STATS - 1 to collect stats for /proc/slabinfo. | |
129 | * 0 for faster, smaller code (especially in the critical paths). | |
130 | * | |
131 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
132 | */ | |
133 | ||
134 | #ifdef CONFIG_DEBUG_SLAB | |
135 | #define DEBUG 1 | |
136 | #define STATS 1 | |
137 | #define FORCED_DEBUG 1 | |
138 | #else | |
139 | #define DEBUG 0 | |
140 | #define STATS 0 | |
141 | #define FORCED_DEBUG 0 | |
142 | #endif | |
143 | ||
1da177e4 LT |
144 | /* Shouldn't this be in a header file somewhere? */ |
145 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 146 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 147 | |
1da177e4 LT |
148 | #ifndef ARCH_KMALLOC_FLAGS |
149 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
150 | #endif | |
151 | ||
152 | /* Legal flag mask for kmem_cache_create(). */ | |
153 | #if DEBUG | |
50953fe9 | 154 | # define CREATE_MASK (SLAB_RED_ZONE | \ |
1da177e4 | 155 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ |
ac2b898c | 156 | SLAB_CACHE_DMA | \ |
5af60839 | 157 | SLAB_STORE_USER | \ |
1da177e4 | 158 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 159 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 160 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 | 161 | #else |
ac2b898c | 162 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ |
5af60839 | 163 | SLAB_CACHE_DMA | \ |
1da177e4 | 164 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 165 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 166 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 LT |
167 | #endif |
168 | ||
169 | /* | |
170 | * kmem_bufctl_t: | |
171 | * | |
172 | * Bufctl's are used for linking objs within a slab | |
173 | * linked offsets. | |
174 | * | |
175 | * This implementation relies on "struct page" for locating the cache & | |
176 | * slab an object belongs to. | |
177 | * This allows the bufctl structure to be small (one int), but limits | |
178 | * the number of objects a slab (not a cache) can contain when off-slab | |
179 | * bufctls are used. The limit is the size of the largest general cache | |
180 | * that does not use off-slab slabs. | |
181 | * For 32bit archs with 4 kB pages, is this 56. | |
182 | * This is not serious, as it is only for large objects, when it is unwise | |
183 | * to have too many per slab. | |
184 | * Note: This limit can be raised by introducing a general cache whose size | |
185 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
186 | */ | |
187 | ||
fa5b08d5 | 188 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
189 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
190 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
191 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
192 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 193 | |
1da177e4 LT |
194 | /* |
195 | * struct slab_rcu | |
196 | * | |
197 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
198 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
199 | * we need to approach a kernel structure obliquely, from its address | |
200 | * obtained without the usual locking. We can lock the structure to | |
201 | * stabilize it and check it's still at the given address, only if we | |
202 | * can be sure that the memory has not been meanwhile reused for some | |
203 | * other kind of object (which our subsystem's lock might corrupt). | |
204 | * | |
205 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
206 | * taking the spinlock within the structure expected at that address. | |
1da177e4 LT |
207 | */ |
208 | struct slab_rcu { | |
b28a02de | 209 | struct rcu_head head; |
343e0d7a | 210 | struct kmem_cache *cachep; |
b28a02de | 211 | void *addr; |
1da177e4 LT |
212 | }; |
213 | ||
5bfe53a7 LJ |
214 | /* |
215 | * struct slab | |
216 | * | |
217 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
218 | * for a slab, or allocated from an general cache. | |
219 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
220 | */ | |
221 | struct slab { | |
222 | union { | |
223 | struct { | |
224 | struct list_head list; | |
225 | unsigned long colouroff; | |
226 | void *s_mem; /* including colour offset */ | |
227 | unsigned int inuse; /* num of objs active in slab */ | |
228 | kmem_bufctl_t free; | |
229 | unsigned short nodeid; | |
230 | }; | |
231 | struct slab_rcu __slab_cover_slab_rcu; | |
232 | }; | |
233 | }; | |
234 | ||
1da177e4 LT |
235 | /* |
236 | * struct array_cache | |
237 | * | |
1da177e4 LT |
238 | * Purpose: |
239 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
240 | * - reduce the number of linked list operations | |
241 | * - reduce spinlock operations | |
242 | * | |
243 | * The limit is stored in the per-cpu structure to reduce the data cache | |
244 | * footprint. | |
245 | * | |
246 | */ | |
247 | struct array_cache { | |
248 | unsigned int avail; | |
249 | unsigned int limit; | |
250 | unsigned int batchcount; | |
251 | unsigned int touched; | |
e498be7d | 252 | spinlock_t lock; |
bda5b655 | 253 | void *entry[]; /* |
a737b3e2 AM |
254 | * Must have this definition in here for the proper |
255 | * alignment of array_cache. Also simplifies accessing | |
256 | * the entries. | |
a737b3e2 | 257 | */ |
1da177e4 LT |
258 | }; |
259 | ||
a737b3e2 AM |
260 | /* |
261 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
262 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
263 | */ |
264 | #define BOOT_CPUCACHE_ENTRIES 1 | |
265 | struct arraycache_init { | |
266 | struct array_cache cache; | |
b28a02de | 267 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
268 | }; |
269 | ||
270 | /* | |
e498be7d | 271 | * The slab lists for all objects. |
1da177e4 LT |
272 | */ |
273 | struct kmem_list3 { | |
b28a02de PE |
274 | struct list_head slabs_partial; /* partial list first, better asm code */ |
275 | struct list_head slabs_full; | |
276 | struct list_head slabs_free; | |
277 | unsigned long free_objects; | |
b28a02de | 278 | unsigned int free_limit; |
2e1217cf | 279 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
280 | spinlock_t list_lock; |
281 | struct array_cache *shared; /* shared per node */ | |
282 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
283 | unsigned long next_reap; /* updated without locking */ |
284 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
285 | }; |
286 | ||
e498be7d CL |
287 | /* |
288 | * Need this for bootstrapping a per node allocator. | |
289 | */ | |
556a169d | 290 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
68a1b195 | 291 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
e498be7d | 292 | #define CACHE_CACHE 0 |
556a169d PE |
293 | #define SIZE_AC MAX_NUMNODES |
294 | #define SIZE_L3 (2 * MAX_NUMNODES) | |
e498be7d | 295 | |
ed11d9eb CL |
296 | static int drain_freelist(struct kmem_cache *cache, |
297 | struct kmem_list3 *l3, int tofree); | |
298 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
299 | int node); | |
83b519e8 | 300 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 301 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 302 | |
e498be7d | 303 | /* |
a737b3e2 AM |
304 | * This function must be completely optimized away if a constant is passed to |
305 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 306 | */ |
7243cc05 | 307 | static __always_inline int index_of(const size_t size) |
e498be7d | 308 | { |
5ec8a847 SR |
309 | extern void __bad_size(void); |
310 | ||
e498be7d CL |
311 | if (__builtin_constant_p(size)) { |
312 | int i = 0; | |
313 | ||
314 | #define CACHE(x) \ | |
315 | if (size <=x) \ | |
316 | return i; \ | |
317 | else \ | |
318 | i++; | |
1c61fc40 | 319 | #include <linux/kmalloc_sizes.h> |
e498be7d | 320 | #undef CACHE |
5ec8a847 | 321 | __bad_size(); |
7243cc05 | 322 | } else |
5ec8a847 | 323 | __bad_size(); |
e498be7d CL |
324 | return 0; |
325 | } | |
326 | ||
e0a42726 IM |
327 | static int slab_early_init = 1; |
328 | ||
e498be7d CL |
329 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
330 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 331 | |
5295a74c | 332 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
333 | { |
334 | INIT_LIST_HEAD(&parent->slabs_full); | |
335 | INIT_LIST_HEAD(&parent->slabs_partial); | |
336 | INIT_LIST_HEAD(&parent->slabs_free); | |
337 | parent->shared = NULL; | |
338 | parent->alien = NULL; | |
2e1217cf | 339 | parent->colour_next = 0; |
e498be7d CL |
340 | spin_lock_init(&parent->list_lock); |
341 | parent->free_objects = 0; | |
342 | parent->free_touched = 0; | |
343 | } | |
344 | ||
a737b3e2 AM |
345 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
346 | do { \ | |
347 | INIT_LIST_HEAD(listp); \ | |
348 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
349 | } while (0) |
350 | ||
a737b3e2 AM |
351 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
352 | do { \ | |
e498be7d CL |
353 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
354 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
355 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
356 | } while (0) | |
1da177e4 | 357 | |
1da177e4 LT |
358 | #define CFLGS_OFF_SLAB (0x80000000UL) |
359 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
360 | ||
361 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
362 | /* |
363 | * Optimization question: fewer reaps means less probability for unnessary | |
364 | * cpucache drain/refill cycles. | |
1da177e4 | 365 | * |
dc6f3f27 | 366 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
367 | * which could lock up otherwise freeable slabs. |
368 | */ | |
369 | #define REAPTIMEOUT_CPUC (2*HZ) | |
370 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
371 | ||
372 | #if STATS | |
373 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
374 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
375 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
376 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 377 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
378 | #define STATS_SET_HIGH(x) \ |
379 | do { \ | |
380 | if ((x)->num_active > (x)->high_mark) \ | |
381 | (x)->high_mark = (x)->num_active; \ | |
382 | } while (0) | |
1da177e4 LT |
383 | #define STATS_INC_ERR(x) ((x)->errors++) |
384 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 385 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 386 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
387 | #define STATS_SET_FREEABLE(x, i) \ |
388 | do { \ | |
389 | if ((x)->max_freeable < i) \ | |
390 | (x)->max_freeable = i; \ | |
391 | } while (0) | |
1da177e4 LT |
392 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
393 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
394 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
395 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
396 | #else | |
397 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
398 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
399 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
400 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 401 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
402 | #define STATS_SET_HIGH(x) do { } while (0) |
403 | #define STATS_INC_ERR(x) do { } while (0) | |
404 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 405 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 406 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 407 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
408 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
409 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
410 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
411 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
412 | #endif | |
413 | ||
414 | #if DEBUG | |
1da177e4 | 415 | |
a737b3e2 AM |
416 | /* |
417 | * memory layout of objects: | |
1da177e4 | 418 | * 0 : objp |
3dafccf2 | 419 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
420 | * the end of an object is aligned with the end of the real |
421 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 422 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 423 | * redzone word. |
3dafccf2 MS |
424 | * cachep->obj_offset: The real object. |
425 | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
a737b3e2 AM |
426 | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address |
427 | * [BYTES_PER_WORD long] | |
1da177e4 | 428 | */ |
343e0d7a | 429 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 430 | { |
3dafccf2 | 431 | return cachep->obj_offset; |
1da177e4 LT |
432 | } |
433 | ||
343e0d7a | 434 | static int obj_size(struct kmem_cache *cachep) |
1da177e4 | 435 | { |
3dafccf2 | 436 | return cachep->obj_size; |
1da177e4 LT |
437 | } |
438 | ||
b46b8f19 | 439 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
440 | { |
441 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
442 | return (unsigned long long*) (objp + obj_offset(cachep) - |
443 | sizeof(unsigned long long)); | |
1da177e4 LT |
444 | } |
445 | ||
b46b8f19 | 446 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
447 | { |
448 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
449 | if (cachep->flags & SLAB_STORE_USER) | |
b46b8f19 DW |
450 | return (unsigned long long *)(objp + cachep->buffer_size - |
451 | sizeof(unsigned long long) - | |
87a927c7 | 452 | REDZONE_ALIGN); |
b46b8f19 DW |
453 | return (unsigned long long *) (objp + cachep->buffer_size - |
454 | sizeof(unsigned long long)); | |
1da177e4 LT |
455 | } |
456 | ||
343e0d7a | 457 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
458 | { |
459 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3dafccf2 | 460 | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); |
1da177e4 LT |
461 | } |
462 | ||
463 | #else | |
464 | ||
3dafccf2 MS |
465 | #define obj_offset(x) 0 |
466 | #define obj_size(cachep) (cachep->buffer_size) | |
b46b8f19 DW |
467 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
468 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
469 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
470 | ||
471 | #endif | |
472 | ||
0f24f128 | 473 | #ifdef CONFIG_TRACING |
36555751 EGM |
474 | size_t slab_buffer_size(struct kmem_cache *cachep) |
475 | { | |
476 | return cachep->buffer_size; | |
477 | } | |
478 | EXPORT_SYMBOL(slab_buffer_size); | |
479 | #endif | |
480 | ||
1da177e4 LT |
481 | /* |
482 | * Do not go above this order unless 0 objects fit into the slab. | |
483 | */ | |
484 | #define BREAK_GFP_ORDER_HI 1 | |
485 | #define BREAK_GFP_ORDER_LO 0 | |
486 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | |
487 | ||
a737b3e2 AM |
488 | /* |
489 | * Functions for storing/retrieving the cachep and or slab from the page | |
490 | * allocator. These are used to find the slab an obj belongs to. With kfree(), | |
491 | * these are used to find the cache which an obj belongs to. | |
1da177e4 | 492 | */ |
065d41cb PE |
493 | static inline void page_set_cache(struct page *page, struct kmem_cache *cache) |
494 | { | |
495 | page->lru.next = (struct list_head *)cache; | |
496 | } | |
497 | ||
498 | static inline struct kmem_cache *page_get_cache(struct page *page) | |
499 | { | |
d85f3385 | 500 | page = compound_head(page); |
ddc2e812 | 501 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
502 | return (struct kmem_cache *)page->lru.next; |
503 | } | |
504 | ||
505 | static inline void page_set_slab(struct page *page, struct slab *slab) | |
506 | { | |
507 | page->lru.prev = (struct list_head *)slab; | |
508 | } | |
509 | ||
510 | static inline struct slab *page_get_slab(struct page *page) | |
511 | { | |
ddc2e812 | 512 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
513 | return (struct slab *)page->lru.prev; |
514 | } | |
1da177e4 | 515 | |
6ed5eb22 PE |
516 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
517 | { | |
b49af68f | 518 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
519 | return page_get_cache(page); |
520 | } | |
521 | ||
522 | static inline struct slab *virt_to_slab(const void *obj) | |
523 | { | |
b49af68f | 524 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
525 | return page_get_slab(page); |
526 | } | |
527 | ||
8fea4e96 PE |
528 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
529 | unsigned int idx) | |
530 | { | |
531 | return slab->s_mem + cache->buffer_size * idx; | |
532 | } | |
533 | ||
6a2d7a95 ED |
534 | /* |
535 | * We want to avoid an expensive divide : (offset / cache->buffer_size) | |
536 | * Using the fact that buffer_size is a constant for a particular cache, | |
537 | * we can replace (offset / cache->buffer_size) by | |
538 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) | |
539 | */ | |
540 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
541 | const struct slab *slab, void *obj) | |
8fea4e96 | 542 | { |
6a2d7a95 ED |
543 | u32 offset = (obj - slab->s_mem); |
544 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
545 | } |
546 | ||
a737b3e2 AM |
547 | /* |
548 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
549 | */ | |
1da177e4 LT |
550 | struct cache_sizes malloc_sizes[] = { |
551 | #define CACHE(x) { .cs_size = (x) }, | |
552 | #include <linux/kmalloc_sizes.h> | |
553 | CACHE(ULONG_MAX) | |
554 | #undef CACHE | |
555 | }; | |
556 | EXPORT_SYMBOL(malloc_sizes); | |
557 | ||
558 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
559 | struct cache_names { | |
560 | char *name; | |
561 | char *name_dma; | |
562 | }; | |
563 | ||
564 | static struct cache_names __initdata cache_names[] = { | |
565 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
566 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 567 | {NULL,} |
1da177e4 LT |
568 | #undef CACHE |
569 | }; | |
570 | ||
571 | static struct arraycache_init initarray_cache __initdata = | |
b28a02de | 572 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 | 573 | static struct arraycache_init initarray_generic = |
b28a02de | 574 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
575 | |
576 | /* internal cache of cache description objs */ | |
b56efcf0 | 577 | static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; |
343e0d7a | 578 | static struct kmem_cache cache_cache = { |
b56efcf0 | 579 | .nodelists = cache_cache_nodelists, |
b28a02de PE |
580 | .batchcount = 1, |
581 | .limit = BOOT_CPUCACHE_ENTRIES, | |
582 | .shared = 1, | |
343e0d7a | 583 | .buffer_size = sizeof(struct kmem_cache), |
b28a02de | 584 | .name = "kmem_cache", |
1da177e4 LT |
585 | }; |
586 | ||
056c6241 RT |
587 | #define BAD_ALIEN_MAGIC 0x01020304ul |
588 | ||
ce79ddc8 PE |
589 | /* |
590 | * chicken and egg problem: delay the per-cpu array allocation | |
591 | * until the general caches are up. | |
592 | */ | |
593 | static enum { | |
594 | NONE, | |
595 | PARTIAL_AC, | |
596 | PARTIAL_L3, | |
597 | EARLY, | |
52cef189 | 598 | LATE, |
ce79ddc8 PE |
599 | FULL |
600 | } g_cpucache_up; | |
601 | ||
602 | /* | |
603 | * used by boot code to determine if it can use slab based allocator | |
604 | */ | |
605 | int slab_is_available(void) | |
606 | { | |
607 | return g_cpucache_up >= EARLY; | |
608 | } | |
609 | ||
f1aaee53 AV |
610 | #ifdef CONFIG_LOCKDEP |
611 | ||
612 | /* | |
613 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
614 | * for other slabs "off slab". | |
615 | * The locking for this is tricky in that it nests within the locks | |
616 | * of all other slabs in a few places; to deal with this special | |
617 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
618 | * |
619 | * We set lock class for alien array caches which are up during init. | |
620 | * The lock annotation will be lost if all cpus of a node goes down and | |
621 | * then comes back up during hotplug | |
f1aaee53 | 622 | */ |
056c6241 RT |
623 | static struct lock_class_key on_slab_l3_key; |
624 | static struct lock_class_key on_slab_alc_key; | |
625 | ||
83835b3d PZ |
626 | static struct lock_class_key debugobj_l3_key; |
627 | static struct lock_class_key debugobj_alc_key; | |
628 | ||
629 | static void slab_set_lock_classes(struct kmem_cache *cachep, | |
630 | struct lock_class_key *l3_key, struct lock_class_key *alc_key, | |
631 | int q) | |
632 | { | |
633 | struct array_cache **alc; | |
634 | struct kmem_list3 *l3; | |
635 | int r; | |
636 | ||
637 | l3 = cachep->nodelists[q]; | |
638 | if (!l3) | |
639 | return; | |
640 | ||
641 | lockdep_set_class(&l3->list_lock, l3_key); | |
642 | alc = l3->alien; | |
643 | /* | |
644 | * FIXME: This check for BAD_ALIEN_MAGIC | |
645 | * should go away when common slab code is taught to | |
646 | * work even without alien caches. | |
647 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
648 | * for alloc_alien_cache, | |
649 | */ | |
650 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
651 | return; | |
652 | for_each_node(r) { | |
653 | if (alc[r]) | |
654 | lockdep_set_class(&alc[r]->lock, alc_key); | |
655 | } | |
656 | } | |
657 | ||
658 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
659 | { | |
660 | slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | |
661 | } | |
662 | ||
663 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
664 | { | |
665 | int node; | |
666 | ||
667 | for_each_online_node(node) | |
668 | slab_set_debugobj_lock_classes_node(cachep, node); | |
669 | } | |
670 | ||
ce79ddc8 | 671 | static void init_node_lock_keys(int q) |
f1aaee53 | 672 | { |
056c6241 RT |
673 | struct cache_sizes *s = malloc_sizes; |
674 | ||
52cef189 | 675 | if (g_cpucache_up < LATE) |
ce79ddc8 PE |
676 | return; |
677 | ||
678 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | |
ce79ddc8 | 679 | struct kmem_list3 *l3; |
ce79ddc8 PE |
680 | |
681 | l3 = s->cs_cachep->nodelists[q]; | |
682 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
00afa758 | 683 | continue; |
83835b3d PZ |
684 | |
685 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | |
686 | &on_slab_alc_key, q); | |
f1aaee53 AV |
687 | } |
688 | } | |
ce79ddc8 PE |
689 | |
690 | static inline void init_lock_keys(void) | |
691 | { | |
692 | int node; | |
693 | ||
694 | for_each_node(node) | |
695 | init_node_lock_keys(node); | |
696 | } | |
f1aaee53 | 697 | #else |
ce79ddc8 PE |
698 | static void init_node_lock_keys(int q) |
699 | { | |
700 | } | |
701 | ||
056c6241 | 702 | static inline void init_lock_keys(void) |
f1aaee53 AV |
703 | { |
704 | } | |
83835b3d PZ |
705 | |
706 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
707 | { | |
708 | } | |
709 | ||
710 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
711 | { | |
712 | } | |
f1aaee53 AV |
713 | #endif |
714 | ||
8f5be20b | 715 | /* |
95402b38 | 716 | * Guard access to the cache-chain. |
8f5be20b | 717 | */ |
fc0abb14 | 718 | static DEFINE_MUTEX(cache_chain_mutex); |
1da177e4 LT |
719 | static struct list_head cache_chain; |
720 | ||
1871e52c | 721 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 722 | |
343e0d7a | 723 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
724 | { |
725 | return cachep->array[smp_processor_id()]; | |
726 | } | |
727 | ||
a737b3e2 AM |
728 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
729 | gfp_t gfpflags) | |
1da177e4 LT |
730 | { |
731 | struct cache_sizes *csizep = malloc_sizes; | |
732 | ||
733 | #if DEBUG | |
734 | /* This happens if someone tries to call | |
b28a02de PE |
735 | * kmem_cache_create(), or __kmalloc(), before |
736 | * the generic caches are initialized. | |
737 | */ | |
c7e43c78 | 738 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 | 739 | #endif |
6cb8f913 CL |
740 | if (!size) |
741 | return ZERO_SIZE_PTR; | |
742 | ||
1da177e4 LT |
743 | while (size > csizep->cs_size) |
744 | csizep++; | |
745 | ||
746 | /* | |
0abf40c1 | 747 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
748 | * has cs_{dma,}cachep==NULL. Thus no special case |
749 | * for large kmalloc calls required. | |
750 | */ | |
4b51d669 | 751 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
752 | if (unlikely(gfpflags & GFP_DMA)) |
753 | return csizep->cs_dmacachep; | |
4b51d669 | 754 | #endif |
1da177e4 LT |
755 | return csizep->cs_cachep; |
756 | } | |
757 | ||
b221385b | 758 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
759 | { |
760 | return __find_general_cachep(size, gfpflags); | |
761 | } | |
97e2bde4 | 762 | |
fbaccacf | 763 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 764 | { |
fbaccacf SR |
765 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
766 | } | |
1da177e4 | 767 | |
a737b3e2 AM |
768 | /* |
769 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
770 | */ | |
fbaccacf SR |
771 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
772 | size_t align, int flags, size_t *left_over, | |
773 | unsigned int *num) | |
774 | { | |
775 | int nr_objs; | |
776 | size_t mgmt_size; | |
777 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 778 | |
fbaccacf SR |
779 | /* |
780 | * The slab management structure can be either off the slab or | |
781 | * on it. For the latter case, the memory allocated for a | |
782 | * slab is used for: | |
783 | * | |
784 | * - The struct slab | |
785 | * - One kmem_bufctl_t for each object | |
786 | * - Padding to respect alignment of @align | |
787 | * - @buffer_size bytes for each object | |
788 | * | |
789 | * If the slab management structure is off the slab, then the | |
790 | * alignment will already be calculated into the size. Because | |
791 | * the slabs are all pages aligned, the objects will be at the | |
792 | * correct alignment when allocated. | |
793 | */ | |
794 | if (flags & CFLGS_OFF_SLAB) { | |
795 | mgmt_size = 0; | |
796 | nr_objs = slab_size / buffer_size; | |
797 | ||
798 | if (nr_objs > SLAB_LIMIT) | |
799 | nr_objs = SLAB_LIMIT; | |
800 | } else { | |
801 | /* | |
802 | * Ignore padding for the initial guess. The padding | |
803 | * is at most @align-1 bytes, and @buffer_size is at | |
804 | * least @align. In the worst case, this result will | |
805 | * be one greater than the number of objects that fit | |
806 | * into the memory allocation when taking the padding | |
807 | * into account. | |
808 | */ | |
809 | nr_objs = (slab_size - sizeof(struct slab)) / | |
810 | (buffer_size + sizeof(kmem_bufctl_t)); | |
811 | ||
812 | /* | |
813 | * This calculated number will be either the right | |
814 | * amount, or one greater than what we want. | |
815 | */ | |
816 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
817 | > slab_size) | |
818 | nr_objs--; | |
819 | ||
820 | if (nr_objs > SLAB_LIMIT) | |
821 | nr_objs = SLAB_LIMIT; | |
822 | ||
823 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
824 | } | |
825 | *num = nr_objs; | |
826 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
827 | } |
828 | ||
d40cee24 | 829 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 830 | |
a737b3e2 AM |
831 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
832 | char *msg) | |
1da177e4 LT |
833 | { |
834 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 835 | function, cachep->name, msg); |
1da177e4 LT |
836 | dump_stack(); |
837 | } | |
838 | ||
3395ee05 PM |
839 | /* |
840 | * By default on NUMA we use alien caches to stage the freeing of | |
841 | * objects allocated from other nodes. This causes massive memory | |
842 | * inefficiencies when using fake NUMA setup to split memory into a | |
843 | * large number of small nodes, so it can be disabled on the command | |
844 | * line | |
845 | */ | |
846 | ||
847 | static int use_alien_caches __read_mostly = 1; | |
848 | static int __init noaliencache_setup(char *s) | |
849 | { | |
850 | use_alien_caches = 0; | |
851 | return 1; | |
852 | } | |
853 | __setup("noaliencache", noaliencache_setup); | |
854 | ||
8fce4d8e CL |
855 | #ifdef CONFIG_NUMA |
856 | /* | |
857 | * Special reaping functions for NUMA systems called from cache_reap(). | |
858 | * These take care of doing round robin flushing of alien caches (containing | |
859 | * objects freed on different nodes from which they were allocated) and the | |
860 | * flushing of remote pcps by calling drain_node_pages. | |
861 | */ | |
1871e52c | 862 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
863 | |
864 | static void init_reap_node(int cpu) | |
865 | { | |
866 | int node; | |
867 | ||
7d6e6d09 | 868 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 869 | if (node == MAX_NUMNODES) |
442295c9 | 870 | node = first_node(node_online_map); |
8fce4d8e | 871 | |
1871e52c | 872 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
873 | } |
874 | ||
875 | static void next_reap_node(void) | |
876 | { | |
909ea964 | 877 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 878 | |
8fce4d8e CL |
879 | node = next_node(node, node_online_map); |
880 | if (unlikely(node >= MAX_NUMNODES)) | |
881 | node = first_node(node_online_map); | |
909ea964 | 882 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
883 | } |
884 | ||
885 | #else | |
886 | #define init_reap_node(cpu) do { } while (0) | |
887 | #define next_reap_node(void) do { } while (0) | |
888 | #endif | |
889 | ||
1da177e4 LT |
890 | /* |
891 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
892 | * via the workqueue/eventd. | |
893 | * Add the CPU number into the expiration time to minimize the possibility of | |
894 | * the CPUs getting into lockstep and contending for the global cache chain | |
895 | * lock. | |
896 | */ | |
897e679b | 897 | static void __cpuinit start_cpu_timer(int cpu) |
1da177e4 | 898 | { |
1871e52c | 899 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
900 | |
901 | /* | |
902 | * When this gets called from do_initcalls via cpucache_init(), | |
903 | * init_workqueues() has already run, so keventd will be setup | |
904 | * at that time. | |
905 | */ | |
52bad64d | 906 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 907 | init_reap_node(cpu); |
78b43536 | 908 | INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); |
2b284214 AV |
909 | schedule_delayed_work_on(cpu, reap_work, |
910 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
911 | } |
912 | } | |
913 | ||
e498be7d | 914 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 915 | int batchcount, gfp_t gfp) |
1da177e4 | 916 | { |
b28a02de | 917 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
918 | struct array_cache *nc = NULL; |
919 | ||
83b519e8 | 920 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
921 | /* |
922 | * The array_cache structures contain pointers to free object. | |
25985edc | 923 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
924 | * cache the pointers are not cleared and they could be counted as |
925 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
926 | * not scan such objects. | |
927 | */ | |
928 | kmemleak_no_scan(nc); | |
1da177e4 LT |
929 | if (nc) { |
930 | nc->avail = 0; | |
931 | nc->limit = entries; | |
932 | nc->batchcount = batchcount; | |
933 | nc->touched = 0; | |
e498be7d | 934 | spin_lock_init(&nc->lock); |
1da177e4 LT |
935 | } |
936 | return nc; | |
937 | } | |
938 | ||
3ded175a CL |
939 | /* |
940 | * Transfer objects in one arraycache to another. | |
941 | * Locking must be handled by the caller. | |
942 | * | |
943 | * Return the number of entries transferred. | |
944 | */ | |
945 | static int transfer_objects(struct array_cache *to, | |
946 | struct array_cache *from, unsigned int max) | |
947 | { | |
948 | /* Figure out how many entries to transfer */ | |
732eacc0 | 949 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
950 | |
951 | if (!nr) | |
952 | return 0; | |
953 | ||
954 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
955 | sizeof(void *) *nr); | |
956 | ||
957 | from->avail -= nr; | |
958 | to->avail += nr; | |
3ded175a CL |
959 | return nr; |
960 | } | |
961 | ||
765c4507 CL |
962 | #ifndef CONFIG_NUMA |
963 | ||
964 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
965 | #define reap_alien(cachep, l3) do { } while (0) | |
966 | ||
83b519e8 | 967 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
968 | { |
969 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
970 | } | |
971 | ||
972 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
973 | { | |
974 | } | |
975 | ||
976 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
977 | { | |
978 | return 0; | |
979 | } | |
980 | ||
981 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
982 | gfp_t flags) | |
983 | { | |
984 | return NULL; | |
985 | } | |
986 | ||
8b98c169 | 987 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
988 | gfp_t flags, int nodeid) |
989 | { | |
990 | return NULL; | |
991 | } | |
992 | ||
993 | #else /* CONFIG_NUMA */ | |
994 | ||
8b98c169 | 995 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 996 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 997 | |
83b519e8 | 998 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
999 | { |
1000 | struct array_cache **ac_ptr; | |
8ef82866 | 1001 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
1002 | int i; |
1003 | ||
1004 | if (limit > 1) | |
1005 | limit = 12; | |
f3186a9c | 1006 | ac_ptr = kzalloc_node(memsize, gfp, node); |
e498be7d CL |
1007 | if (ac_ptr) { |
1008 | for_each_node(i) { | |
f3186a9c | 1009 | if (i == node || !node_online(i)) |
e498be7d | 1010 | continue; |
83b519e8 | 1011 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 1012 | if (!ac_ptr[i]) { |
cc550def | 1013 | for (i--; i >= 0; i--) |
e498be7d CL |
1014 | kfree(ac_ptr[i]); |
1015 | kfree(ac_ptr); | |
1016 | return NULL; | |
1017 | } | |
1018 | } | |
1019 | } | |
1020 | return ac_ptr; | |
1021 | } | |
1022 | ||
5295a74c | 1023 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
1024 | { |
1025 | int i; | |
1026 | ||
1027 | if (!ac_ptr) | |
1028 | return; | |
e498be7d | 1029 | for_each_node(i) |
b28a02de | 1030 | kfree(ac_ptr[i]); |
e498be7d CL |
1031 | kfree(ac_ptr); |
1032 | } | |
1033 | ||
343e0d7a | 1034 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 1035 | struct array_cache *ac, int node) |
e498be7d CL |
1036 | { |
1037 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1038 | ||
1039 | if (ac->avail) { | |
1040 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1041 | /* |
1042 | * Stuff objects into the remote nodes shared array first. | |
1043 | * That way we could avoid the overhead of putting the objects | |
1044 | * into the free lists and getting them back later. | |
1045 | */ | |
693f7d36 JS |
1046 | if (rl3->shared) |
1047 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1048 | |
ff69416e | 1049 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1050 | ac->avail = 0; |
1051 | spin_unlock(&rl3->list_lock); | |
1052 | } | |
1053 | } | |
1054 | ||
8fce4d8e CL |
1055 | /* |
1056 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1057 | */ | |
1058 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1059 | { | |
909ea964 | 1060 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e CL |
1061 | |
1062 | if (l3->alien) { | |
1063 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1064 | |
1065 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1066 | __drain_alien_cache(cachep, ac, node); |
1067 | spin_unlock_irq(&ac->lock); | |
1068 | } | |
1069 | } | |
1070 | } | |
1071 | ||
a737b3e2 AM |
1072 | static void drain_alien_cache(struct kmem_cache *cachep, |
1073 | struct array_cache **alien) | |
e498be7d | 1074 | { |
b28a02de | 1075 | int i = 0; |
e498be7d CL |
1076 | struct array_cache *ac; |
1077 | unsigned long flags; | |
1078 | ||
1079 | for_each_online_node(i) { | |
4484ebf1 | 1080 | ac = alien[i]; |
e498be7d CL |
1081 | if (ac) { |
1082 | spin_lock_irqsave(&ac->lock, flags); | |
1083 | __drain_alien_cache(cachep, ac, i); | |
1084 | spin_unlock_irqrestore(&ac->lock, flags); | |
1085 | } | |
1086 | } | |
1087 | } | |
729bd0b7 | 1088 | |
873623df | 1089 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1090 | { |
1091 | struct slab *slabp = virt_to_slab(objp); | |
1092 | int nodeid = slabp->nodeid; | |
1093 | struct kmem_list3 *l3; | |
1094 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1095 | int node; |
1096 | ||
7d6e6d09 | 1097 | node = numa_mem_id(); |
729bd0b7 PE |
1098 | |
1099 | /* | |
1100 | * Make sure we are not freeing a object from another node to the array | |
1101 | * cache on this cpu. | |
1102 | */ | |
62918a03 | 1103 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1104 | return 0; |
1105 | ||
1ca4cb24 | 1106 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1107 | STATS_INC_NODEFREES(cachep); |
1108 | if (l3->alien && l3->alien[nodeid]) { | |
1109 | alien = l3->alien[nodeid]; | |
873623df | 1110 | spin_lock(&alien->lock); |
729bd0b7 PE |
1111 | if (unlikely(alien->avail == alien->limit)) { |
1112 | STATS_INC_ACOVERFLOW(cachep); | |
1113 | __drain_alien_cache(cachep, alien, nodeid); | |
1114 | } | |
1115 | alien->entry[alien->avail++] = objp; | |
1116 | spin_unlock(&alien->lock); | |
1117 | } else { | |
1118 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1119 | free_block(cachep, &objp, 1, nodeid); | |
1120 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1121 | } | |
1122 | return 1; | |
1123 | } | |
e498be7d CL |
1124 | #endif |
1125 | ||
8f9f8d9e DR |
1126 | /* |
1127 | * Allocates and initializes nodelists for a node on each slab cache, used for | |
1128 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | |
1129 | * will be allocated off-node since memory is not yet online for the new node. | |
1130 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | |
1131 | * already in use. | |
1132 | * | |
1133 | * Must hold cache_chain_mutex. | |
1134 | */ | |
1135 | static int init_cache_nodelists_node(int node) | |
1136 | { | |
1137 | struct kmem_cache *cachep; | |
1138 | struct kmem_list3 *l3; | |
1139 | const int memsize = sizeof(struct kmem_list3); | |
1140 | ||
1141 | list_for_each_entry(cachep, &cache_chain, next) { | |
1142 | /* | |
1143 | * Set up the size64 kmemlist for cpu before we can | |
1144 | * begin anything. Make sure some other cpu on this | |
1145 | * node has not already allocated this | |
1146 | */ | |
1147 | if (!cachep->nodelists[node]) { | |
1148 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | |
1149 | if (!l3) | |
1150 | return -ENOMEM; | |
1151 | kmem_list3_init(l3); | |
1152 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
1153 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1154 | ||
1155 | /* | |
1156 | * The l3s don't come and go as CPUs come and | |
1157 | * go. cache_chain_mutex is sufficient | |
1158 | * protection here. | |
1159 | */ | |
1160 | cachep->nodelists[node] = l3; | |
1161 | } | |
1162 | ||
1163 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | |
1164 | cachep->nodelists[node]->free_limit = | |
1165 | (1 + nr_cpus_node(node)) * | |
1166 | cachep->batchcount + cachep->num; | |
1167 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
1168 | } | |
1169 | return 0; | |
1170 | } | |
1171 | ||
fbf1e473 AM |
1172 | static void __cpuinit cpuup_canceled(long cpu) |
1173 | { | |
1174 | struct kmem_cache *cachep; | |
1175 | struct kmem_list3 *l3 = NULL; | |
7d6e6d09 | 1176 | int node = cpu_to_mem(cpu); |
a70f7302 | 1177 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 AM |
1178 | |
1179 | list_for_each_entry(cachep, &cache_chain, next) { | |
1180 | struct array_cache *nc; | |
1181 | struct array_cache *shared; | |
1182 | struct array_cache **alien; | |
fbf1e473 | 1183 | |
fbf1e473 AM |
1184 | /* cpu is dead; no one can alloc from it. */ |
1185 | nc = cachep->array[cpu]; | |
1186 | cachep->array[cpu] = NULL; | |
1187 | l3 = cachep->nodelists[node]; | |
1188 | ||
1189 | if (!l3) | |
1190 | goto free_array_cache; | |
1191 | ||
1192 | spin_lock_irq(&l3->list_lock); | |
1193 | ||
1194 | /* Free limit for this kmem_list3 */ | |
1195 | l3->free_limit -= cachep->batchcount; | |
1196 | if (nc) | |
1197 | free_block(cachep, nc->entry, nc->avail, node); | |
1198 | ||
58463c1f | 1199 | if (!cpumask_empty(mask)) { |
fbf1e473 AM |
1200 | spin_unlock_irq(&l3->list_lock); |
1201 | goto free_array_cache; | |
1202 | } | |
1203 | ||
1204 | shared = l3->shared; | |
1205 | if (shared) { | |
1206 | free_block(cachep, shared->entry, | |
1207 | shared->avail, node); | |
1208 | l3->shared = NULL; | |
1209 | } | |
1210 | ||
1211 | alien = l3->alien; | |
1212 | l3->alien = NULL; | |
1213 | ||
1214 | spin_unlock_irq(&l3->list_lock); | |
1215 | ||
1216 | kfree(shared); | |
1217 | if (alien) { | |
1218 | drain_alien_cache(cachep, alien); | |
1219 | free_alien_cache(alien); | |
1220 | } | |
1221 | free_array_cache: | |
1222 | kfree(nc); | |
1223 | } | |
1224 | /* | |
1225 | * In the previous loop, all the objects were freed to | |
1226 | * the respective cache's slabs, now we can go ahead and | |
1227 | * shrink each nodelist to its limit. | |
1228 | */ | |
1229 | list_for_each_entry(cachep, &cache_chain, next) { | |
1230 | l3 = cachep->nodelists[node]; | |
1231 | if (!l3) | |
1232 | continue; | |
1233 | drain_freelist(cachep, l3, l3->free_objects); | |
1234 | } | |
1235 | } | |
1236 | ||
1237 | static int __cpuinit cpuup_prepare(long cpu) | |
1da177e4 | 1238 | { |
343e0d7a | 1239 | struct kmem_cache *cachep; |
e498be7d | 1240 | struct kmem_list3 *l3 = NULL; |
7d6e6d09 | 1241 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1242 | int err; |
1da177e4 | 1243 | |
fbf1e473 AM |
1244 | /* |
1245 | * We need to do this right in the beginning since | |
1246 | * alloc_arraycache's are going to use this list. | |
1247 | * kmalloc_node allows us to add the slab to the right | |
1248 | * kmem_list3 and not this cpu's kmem_list3 | |
1249 | */ | |
8f9f8d9e DR |
1250 | err = init_cache_nodelists_node(node); |
1251 | if (err < 0) | |
1252 | goto bad; | |
fbf1e473 AM |
1253 | |
1254 | /* | |
1255 | * Now we can go ahead with allocating the shared arrays and | |
1256 | * array caches | |
1257 | */ | |
1258 | list_for_each_entry(cachep, &cache_chain, next) { | |
1259 | struct array_cache *nc; | |
1260 | struct array_cache *shared = NULL; | |
1261 | struct array_cache **alien = NULL; | |
1262 | ||
1263 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1264 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1265 | if (!nc) |
1266 | goto bad; | |
1267 | if (cachep->shared) { | |
1268 | shared = alloc_arraycache(node, | |
1269 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1270 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1271 | if (!shared) { |
1272 | kfree(nc); | |
1da177e4 | 1273 | goto bad; |
12d00f6a | 1274 | } |
fbf1e473 AM |
1275 | } |
1276 | if (use_alien_caches) { | |
83b519e8 | 1277 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1278 | if (!alien) { |
1279 | kfree(shared); | |
1280 | kfree(nc); | |
fbf1e473 | 1281 | goto bad; |
12d00f6a | 1282 | } |
fbf1e473 AM |
1283 | } |
1284 | cachep->array[cpu] = nc; | |
1285 | l3 = cachep->nodelists[node]; | |
1286 | BUG_ON(!l3); | |
1287 | ||
1288 | spin_lock_irq(&l3->list_lock); | |
1289 | if (!l3->shared) { | |
1290 | /* | |
1291 | * We are serialised from CPU_DEAD or | |
1292 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1293 | */ | |
1294 | l3->shared = shared; | |
1295 | shared = NULL; | |
1296 | } | |
4484ebf1 | 1297 | #ifdef CONFIG_NUMA |
fbf1e473 AM |
1298 | if (!l3->alien) { |
1299 | l3->alien = alien; | |
1300 | alien = NULL; | |
1da177e4 | 1301 | } |
fbf1e473 AM |
1302 | #endif |
1303 | spin_unlock_irq(&l3->list_lock); | |
1304 | kfree(shared); | |
1305 | free_alien_cache(alien); | |
83835b3d PZ |
1306 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
1307 | slab_set_debugobj_lock_classes_node(cachep, node); | |
fbf1e473 | 1308 | } |
ce79ddc8 PE |
1309 | init_node_lock_keys(node); |
1310 | ||
fbf1e473 AM |
1311 | return 0; |
1312 | bad: | |
12d00f6a | 1313 | cpuup_canceled(cpu); |
fbf1e473 AM |
1314 | return -ENOMEM; |
1315 | } | |
1316 | ||
1317 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |
1318 | unsigned long action, void *hcpu) | |
1319 | { | |
1320 | long cpu = (long)hcpu; | |
1321 | int err = 0; | |
1322 | ||
1323 | switch (action) { | |
fbf1e473 AM |
1324 | case CPU_UP_PREPARE: |
1325 | case CPU_UP_PREPARE_FROZEN: | |
95402b38 | 1326 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1327 | err = cpuup_prepare(cpu); |
95402b38 | 1328 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
1329 | break; |
1330 | case CPU_ONLINE: | |
8bb78442 | 1331 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1332 | start_cpu_timer(cpu); |
1333 | break; | |
1334 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1335 | case CPU_DOWN_PREPARE: |
8bb78442 | 1336 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 CL |
1337 | /* |
1338 | * Shutdown cache reaper. Note that the cache_chain_mutex is | |
1339 | * held so that if cache_reap() is invoked it cannot do | |
1340 | * anything expensive but will only modify reap_work | |
1341 | * and reschedule the timer. | |
1342 | */ | |
afe2c511 | 1343 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1344 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1345 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1346 | break; |
1347 | case CPU_DOWN_FAILED: | |
8bb78442 | 1348 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1349 | start_cpu_timer(cpu); |
1350 | break; | |
1da177e4 | 1351 | case CPU_DEAD: |
8bb78442 | 1352 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1353 | /* |
1354 | * Even if all the cpus of a node are down, we don't free the | |
1355 | * kmem_list3 of any cache. This to avoid a race between | |
1356 | * cpu_down, and a kmalloc allocation from another cpu for | |
1357 | * memory from the node of the cpu going down. The list3 | |
1358 | * structure is usually allocated from kmem_cache_create() and | |
1359 | * gets destroyed at kmem_cache_destroy(). | |
1360 | */ | |
183ff22b | 1361 | /* fall through */ |
8f5be20b | 1362 | #endif |
1da177e4 | 1363 | case CPU_UP_CANCELED: |
8bb78442 | 1364 | case CPU_UP_CANCELED_FROZEN: |
95402b38 | 1365 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1366 | cpuup_canceled(cpu); |
fc0abb14 | 1367 | mutex_unlock(&cache_chain_mutex); |
1da177e4 | 1368 | break; |
1da177e4 | 1369 | } |
eac40680 | 1370 | return notifier_from_errno(err); |
1da177e4 LT |
1371 | } |
1372 | ||
74b85f37 CS |
1373 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1374 | &cpuup_callback, NULL, 0 | |
1375 | }; | |
1da177e4 | 1376 | |
8f9f8d9e DR |
1377 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1378 | /* | |
1379 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1380 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1381 | * removed. | |
1382 | * | |
1383 | * Must hold cache_chain_mutex. | |
1384 | */ | |
1385 | static int __meminit drain_cache_nodelists_node(int node) | |
1386 | { | |
1387 | struct kmem_cache *cachep; | |
1388 | int ret = 0; | |
1389 | ||
1390 | list_for_each_entry(cachep, &cache_chain, next) { | |
1391 | struct kmem_list3 *l3; | |
1392 | ||
1393 | l3 = cachep->nodelists[node]; | |
1394 | if (!l3) | |
1395 | continue; | |
1396 | ||
1397 | drain_freelist(cachep, l3, l3->free_objects); | |
1398 | ||
1399 | if (!list_empty(&l3->slabs_full) || | |
1400 | !list_empty(&l3->slabs_partial)) { | |
1401 | ret = -EBUSY; | |
1402 | break; | |
1403 | } | |
1404 | } | |
1405 | return ret; | |
1406 | } | |
1407 | ||
1408 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1409 | unsigned long action, void *arg) | |
1410 | { | |
1411 | struct memory_notify *mnb = arg; | |
1412 | int ret = 0; | |
1413 | int nid; | |
1414 | ||
1415 | nid = mnb->status_change_nid; | |
1416 | if (nid < 0) | |
1417 | goto out; | |
1418 | ||
1419 | switch (action) { | |
1420 | case MEM_GOING_ONLINE: | |
1421 | mutex_lock(&cache_chain_mutex); | |
1422 | ret = init_cache_nodelists_node(nid); | |
1423 | mutex_unlock(&cache_chain_mutex); | |
1424 | break; | |
1425 | case MEM_GOING_OFFLINE: | |
1426 | mutex_lock(&cache_chain_mutex); | |
1427 | ret = drain_cache_nodelists_node(nid); | |
1428 | mutex_unlock(&cache_chain_mutex); | |
1429 | break; | |
1430 | case MEM_ONLINE: | |
1431 | case MEM_OFFLINE: | |
1432 | case MEM_CANCEL_ONLINE: | |
1433 | case MEM_CANCEL_OFFLINE: | |
1434 | break; | |
1435 | } | |
1436 | out: | |
5fda1bd5 | 1437 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1438 | } |
1439 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1440 | ||
e498be7d CL |
1441 | /* |
1442 | * swap the static kmem_list3 with kmalloced memory | |
1443 | */ | |
8f9f8d9e DR |
1444 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1445 | int nodeid) | |
e498be7d CL |
1446 | { |
1447 | struct kmem_list3 *ptr; | |
1448 | ||
83b519e8 | 1449 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); |
e498be7d CL |
1450 | BUG_ON(!ptr); |
1451 | ||
e498be7d | 1452 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
2b2d5493 IM |
1453 | /* |
1454 | * Do not assume that spinlocks can be initialized via memcpy: | |
1455 | */ | |
1456 | spin_lock_init(&ptr->list_lock); | |
1457 | ||
e498be7d CL |
1458 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1459 | cachep->nodelists[nodeid] = ptr; | |
e498be7d CL |
1460 | } |
1461 | ||
556a169d PE |
1462 | /* |
1463 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1464 | * size of kmem_list3. | |
1465 | */ | |
1466 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |
1467 | { | |
1468 | int node; | |
1469 | ||
1470 | for_each_online_node(node) { | |
1471 | cachep->nodelists[node] = &initkmem_list3[index + node]; | |
1472 | cachep->nodelists[node]->next_reap = jiffies + | |
1473 | REAPTIMEOUT_LIST3 + | |
1474 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1475 | } | |
1476 | } | |
1477 | ||
a737b3e2 AM |
1478 | /* |
1479 | * Initialisation. Called after the page allocator have been initialised and | |
1480 | * before smp_init(). | |
1da177e4 LT |
1481 | */ |
1482 | void __init kmem_cache_init(void) | |
1483 | { | |
1484 | size_t left_over; | |
1485 | struct cache_sizes *sizes; | |
1486 | struct cache_names *names; | |
e498be7d | 1487 | int i; |
07ed76b2 | 1488 | int order; |
1ca4cb24 | 1489 | int node; |
e498be7d | 1490 | |
b6e68bc1 | 1491 | if (num_possible_nodes() == 1) |
62918a03 SS |
1492 | use_alien_caches = 0; |
1493 | ||
e498be7d CL |
1494 | for (i = 0; i < NUM_INIT_LISTS; i++) { |
1495 | kmem_list3_init(&initkmem_list3[i]); | |
1496 | if (i < MAX_NUMNODES) | |
1497 | cache_cache.nodelists[i] = NULL; | |
1498 | } | |
556a169d | 1499 | set_up_list3s(&cache_cache, CACHE_CACHE); |
1da177e4 LT |
1500 | |
1501 | /* | |
1502 | * Fragmentation resistance on low memory - only use bigger | |
1503 | * page orders on machines with more than 32MB of memory. | |
1504 | */ | |
4481374c | 1505 | if (totalram_pages > (32 << 20) >> PAGE_SHIFT) |
1da177e4 LT |
1506 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; |
1507 | ||
1da177e4 LT |
1508 | /* Bootstrap is tricky, because several objects are allocated |
1509 | * from caches that do not exist yet: | |
a737b3e2 AM |
1510 | * 1) initialize the cache_cache cache: it contains the struct |
1511 | * kmem_cache structures of all caches, except cache_cache itself: | |
1512 | * cache_cache is statically allocated. | |
e498be7d CL |
1513 | * Initially an __init data area is used for the head array and the |
1514 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1515 | * array at the end of the bootstrap. | |
1da177e4 | 1516 | * 2) Create the first kmalloc cache. |
343e0d7a | 1517 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1518 | * An __init data area is used for the head array. |
1519 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1520 | * head arrays. | |
1da177e4 LT |
1521 | * 4) Replace the __init data head arrays for cache_cache and the first |
1522 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1523 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1524 | * the other cache's with kmalloc allocated memory. | |
1525 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1526 | */ |
1527 | ||
7d6e6d09 | 1528 | node = numa_mem_id(); |
1ca4cb24 | 1529 | |
1da177e4 | 1530 | /* 1) create the cache_cache */ |
1da177e4 LT |
1531 | INIT_LIST_HEAD(&cache_chain); |
1532 | list_add(&cache_cache.next, &cache_chain); | |
1533 | cache_cache.colour_off = cache_line_size(); | |
1534 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
ec1f5eee | 1535 | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; |
1da177e4 | 1536 | |
8da3430d | 1537 | /* |
b56efcf0 | 1538 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1539 | */ |
b56efcf0 ED |
1540 | cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + |
1541 | nr_node_ids * sizeof(struct kmem_list3 *); | |
8da3430d ED |
1542 | #if DEBUG |
1543 | cache_cache.obj_size = cache_cache.buffer_size; | |
1544 | #endif | |
a737b3e2 AM |
1545 | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, |
1546 | cache_line_size()); | |
6a2d7a95 ED |
1547 | cache_cache.reciprocal_buffer_size = |
1548 | reciprocal_value(cache_cache.buffer_size); | |
1da177e4 | 1549 | |
07ed76b2 JS |
1550 | for (order = 0; order < MAX_ORDER; order++) { |
1551 | cache_estimate(order, cache_cache.buffer_size, | |
1552 | cache_line_size(), 0, &left_over, &cache_cache.num); | |
1553 | if (cache_cache.num) | |
1554 | break; | |
1555 | } | |
40094fa6 | 1556 | BUG_ON(!cache_cache.num); |
07ed76b2 | 1557 | cache_cache.gfporder = order; |
b28a02de | 1558 | cache_cache.colour = left_over / cache_cache.colour_off; |
b28a02de PE |
1559 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1560 | sizeof(struct slab), cache_line_size()); | |
1da177e4 LT |
1561 | |
1562 | /* 2+3) create the kmalloc caches */ | |
1563 | sizes = malloc_sizes; | |
1564 | names = cache_names; | |
1565 | ||
a737b3e2 AM |
1566 | /* |
1567 | * Initialize the caches that provide memory for the array cache and the | |
1568 | * kmem_list3 structures first. Without this, further allocations will | |
1569 | * bug. | |
e498be7d CL |
1570 | */ |
1571 | ||
1572 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
a737b3e2 AM |
1573 | sizes[INDEX_AC].cs_size, |
1574 | ARCH_KMALLOC_MINALIGN, | |
1575 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1576 | NULL); |
e498be7d | 1577 | |
a737b3e2 | 1578 | if (INDEX_AC != INDEX_L3) { |
e498be7d | 1579 | sizes[INDEX_L3].cs_cachep = |
a737b3e2 AM |
1580 | kmem_cache_create(names[INDEX_L3].name, |
1581 | sizes[INDEX_L3].cs_size, | |
1582 | ARCH_KMALLOC_MINALIGN, | |
1583 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1584 | NULL); |
a737b3e2 | 1585 | } |
e498be7d | 1586 | |
e0a42726 IM |
1587 | slab_early_init = 0; |
1588 | ||
1da177e4 | 1589 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1590 | /* |
1591 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1592 | * This should be particularly beneficial on SMP boxes, as it |
1593 | * eliminates "false sharing". | |
1594 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1595 | * allow tighter packing of the smaller caches. |
1596 | */ | |
a737b3e2 | 1597 | if (!sizes->cs_cachep) { |
e498be7d | 1598 | sizes->cs_cachep = kmem_cache_create(names->name, |
a737b3e2 AM |
1599 | sizes->cs_size, |
1600 | ARCH_KMALLOC_MINALIGN, | |
1601 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1602 | NULL); |
a737b3e2 | 1603 | } |
4b51d669 CL |
1604 | #ifdef CONFIG_ZONE_DMA |
1605 | sizes->cs_dmacachep = kmem_cache_create( | |
1606 | names->name_dma, | |
a737b3e2 AM |
1607 | sizes->cs_size, |
1608 | ARCH_KMALLOC_MINALIGN, | |
1609 | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | |
1610 | SLAB_PANIC, | |
20c2df83 | 1611 | NULL); |
4b51d669 | 1612 | #endif |
1da177e4 LT |
1613 | sizes++; |
1614 | names++; | |
1615 | } | |
1616 | /* 4) Replace the bootstrap head arrays */ | |
1617 | { | |
2b2d5493 | 1618 | struct array_cache *ptr; |
e498be7d | 1619 | |
83b519e8 | 1620 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1621 | |
9a2dba4b PE |
1622 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1623 | memcpy(ptr, cpu_cache_get(&cache_cache), | |
b28a02de | 1624 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1625 | /* |
1626 | * Do not assume that spinlocks can be initialized via memcpy: | |
1627 | */ | |
1628 | spin_lock_init(&ptr->lock); | |
1629 | ||
1da177e4 | 1630 | cache_cache.array[smp_processor_id()] = ptr; |
e498be7d | 1631 | |
83b519e8 | 1632 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1633 | |
9a2dba4b | 1634 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1635 | != &initarray_generic.cache); |
9a2dba4b | 1636 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1637 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1638 | /* |
1639 | * Do not assume that spinlocks can be initialized via memcpy: | |
1640 | */ | |
1641 | spin_lock_init(&ptr->lock); | |
1642 | ||
e498be7d | 1643 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1644 | ptr; |
1da177e4 | 1645 | } |
e498be7d CL |
1646 | /* 5) Replace the bootstrap kmem_list3's */ |
1647 | { | |
1ca4cb24 PE |
1648 | int nid; |
1649 | ||
9c09a95c | 1650 | for_each_online_node(nid) { |
ec1f5eee | 1651 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); |
556a169d | 1652 | |
e498be7d | 1653 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1654 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1655 | |
1656 | if (INDEX_AC != INDEX_L3) { | |
1657 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1658 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1659 | } |
1660 | } | |
1661 | } | |
1da177e4 | 1662 | |
8429db5c | 1663 | g_cpucache_up = EARLY; |
8429db5c PE |
1664 | } |
1665 | ||
1666 | void __init kmem_cache_init_late(void) | |
1667 | { | |
1668 | struct kmem_cache *cachep; | |
1669 | ||
52cef189 PZ |
1670 | g_cpucache_up = LATE; |
1671 | ||
30765b92 PZ |
1672 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1673 | init_lock_keys(); | |
1674 | ||
8429db5c PE |
1675 | /* 6) resize the head arrays to their final sizes */ |
1676 | mutex_lock(&cache_chain_mutex); | |
1677 | list_for_each_entry(cachep, &cache_chain, next) | |
1678 | if (enable_cpucache(cachep, GFP_NOWAIT)) | |
1679 | BUG(); | |
1680 | mutex_unlock(&cache_chain_mutex); | |
056c6241 | 1681 | |
1da177e4 LT |
1682 | /* Done! */ |
1683 | g_cpucache_up = FULL; | |
1684 | ||
a737b3e2 AM |
1685 | /* |
1686 | * Register a cpu startup notifier callback that initializes | |
1687 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1688 | */ |
1689 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1690 | |
8f9f8d9e DR |
1691 | #ifdef CONFIG_NUMA |
1692 | /* | |
1693 | * Register a memory hotplug callback that initializes and frees | |
1694 | * nodelists. | |
1695 | */ | |
1696 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1697 | #endif | |
1698 | ||
a737b3e2 AM |
1699 | /* |
1700 | * The reap timers are started later, with a module init call: That part | |
1701 | * of the kernel is not yet operational. | |
1da177e4 LT |
1702 | */ |
1703 | } | |
1704 | ||
1705 | static int __init cpucache_init(void) | |
1706 | { | |
1707 | int cpu; | |
1708 | ||
a737b3e2 AM |
1709 | /* |
1710 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1711 | */ |
e498be7d | 1712 | for_each_online_cpu(cpu) |
a737b3e2 | 1713 | start_cpu_timer(cpu); |
1da177e4 LT |
1714 | return 0; |
1715 | } | |
1da177e4 LT |
1716 | __initcall(cpucache_init); |
1717 | ||
1718 | /* | |
1719 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1720 | * | |
1721 | * If we requested dmaable memory, we will get it. Even if we | |
1722 | * did not request dmaable memory, we might get it, but that | |
1723 | * would be relatively rare and ignorable. | |
1724 | */ | |
343e0d7a | 1725 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1726 | { |
1727 | struct page *page; | |
e1b6aa6f | 1728 | int nr_pages; |
1da177e4 LT |
1729 | int i; |
1730 | ||
d6fef9da | 1731 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1732 | /* |
1733 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1734 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1735 | */ |
e1b6aa6f | 1736 | flags |= __GFP_COMP; |
d6fef9da | 1737 | #endif |
765c4507 | 1738 | |
3c517a61 | 1739 | flags |= cachep->gfpflags; |
e12ba74d MG |
1740 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1741 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1742 | |
517d0869 | 1743 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
1da177e4 LT |
1744 | if (!page) |
1745 | return NULL; | |
1da177e4 | 1746 | |
e1b6aa6f | 1747 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1748 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1749 | add_zone_page_state(page_zone(page), |
1750 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1751 | else | |
1752 | add_zone_page_state(page_zone(page), | |
1753 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
e1b6aa6f CH |
1754 | for (i = 0; i < nr_pages; i++) |
1755 | __SetPageSlab(page + i); | |
c175eea4 | 1756 | |
b1eeab67 VN |
1757 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1758 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1759 | ||
1760 | if (cachep->ctor) | |
1761 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1762 | else | |
1763 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1764 | } | |
c175eea4 | 1765 | |
e1b6aa6f | 1766 | return page_address(page); |
1da177e4 LT |
1767 | } |
1768 | ||
1769 | /* | |
1770 | * Interface to system's page release. | |
1771 | */ | |
343e0d7a | 1772 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1773 | { |
b28a02de | 1774 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1775 | struct page *page = virt_to_page(addr); |
1776 | const unsigned long nr_freed = i; | |
1777 | ||
b1eeab67 | 1778 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1779 | |
972d1a7b CL |
1780 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1781 | sub_zone_page_state(page_zone(page), | |
1782 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1783 | else | |
1784 | sub_zone_page_state(page_zone(page), | |
1785 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1786 | while (i--) { |
f205b2fe NP |
1787 | BUG_ON(!PageSlab(page)); |
1788 | __ClearPageSlab(page); | |
1da177e4 LT |
1789 | page++; |
1790 | } | |
1da177e4 LT |
1791 | if (current->reclaim_state) |
1792 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1793 | free_pages((unsigned long)addr, cachep->gfporder); | |
1da177e4 LT |
1794 | } |
1795 | ||
1796 | static void kmem_rcu_free(struct rcu_head *head) | |
1797 | { | |
b28a02de | 1798 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1799 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1800 | |
1801 | kmem_freepages(cachep, slab_rcu->addr); | |
1802 | if (OFF_SLAB(cachep)) | |
1803 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1804 | } | |
1805 | ||
1806 | #if DEBUG | |
1807 | ||
1808 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1809 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1810 | unsigned long caller) |
1da177e4 | 1811 | { |
3dafccf2 | 1812 | int size = obj_size(cachep); |
1da177e4 | 1813 | |
3dafccf2 | 1814 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1815 | |
b28a02de | 1816 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1817 | return; |
1818 | ||
b28a02de PE |
1819 | *addr++ = 0x12345678; |
1820 | *addr++ = caller; | |
1821 | *addr++ = smp_processor_id(); | |
1822 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1823 | { |
1824 | unsigned long *sptr = &caller; | |
1825 | unsigned long svalue; | |
1826 | ||
1827 | while (!kstack_end(sptr)) { | |
1828 | svalue = *sptr++; | |
1829 | if (kernel_text_address(svalue)) { | |
b28a02de | 1830 | *addr++ = svalue; |
1da177e4 LT |
1831 | size -= sizeof(unsigned long); |
1832 | if (size <= sizeof(unsigned long)) | |
1833 | break; | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | } | |
b28a02de | 1838 | *addr++ = 0x87654321; |
1da177e4 LT |
1839 | } |
1840 | #endif | |
1841 | ||
343e0d7a | 1842 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1843 | { |
3dafccf2 MS |
1844 | int size = obj_size(cachep); |
1845 | addr = &((char *)addr)[obj_offset(cachep)]; | |
1da177e4 LT |
1846 | |
1847 | memset(addr, val, size); | |
b28a02de | 1848 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1849 | } |
1850 | ||
1851 | static void dump_line(char *data, int offset, int limit) | |
1852 | { | |
1853 | int i; | |
aa83aa40 DJ |
1854 | unsigned char error = 0; |
1855 | int bad_count = 0; | |
1856 | ||
fdde6abb | 1857 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
1858 | for (i = 0; i < limit; i++) { |
1859 | if (data[offset + i] != POISON_FREE) { | |
1860 | error = data[offset + i]; | |
1861 | bad_count++; | |
1862 | } | |
aa83aa40 | 1863 | } |
fdde6abb SAS |
1864 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1865 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1866 | |
1867 | if (bad_count == 1) { | |
1868 | error ^= POISON_FREE; | |
1869 | if (!(error & (error - 1))) { | |
1870 | printk(KERN_ERR "Single bit error detected. Probably " | |
1871 | "bad RAM.\n"); | |
1872 | #ifdef CONFIG_X86 | |
1873 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1874 | "test tool.\n"); | |
1875 | #else | |
1876 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1877 | #endif | |
1878 | } | |
1879 | } | |
1da177e4 LT |
1880 | } |
1881 | #endif | |
1882 | ||
1883 | #if DEBUG | |
1884 | ||
343e0d7a | 1885 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1886 | { |
1887 | int i, size; | |
1888 | char *realobj; | |
1889 | ||
1890 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1891 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1892 | *dbg_redzone1(cachep, objp), |
1893 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1894 | } |
1895 | ||
1896 | if (cachep->flags & SLAB_STORE_USER) { | |
1897 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 1898 | *dbg_userword(cachep, objp)); |
1da177e4 | 1899 | print_symbol("(%s)", |
a737b3e2 | 1900 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
1901 | printk("\n"); |
1902 | } | |
3dafccf2 MS |
1903 | realobj = (char *)objp + obj_offset(cachep); |
1904 | size = obj_size(cachep); | |
b28a02de | 1905 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1906 | int limit; |
1907 | limit = 16; | |
b28a02de PE |
1908 | if (i + limit > size) |
1909 | limit = size - i; | |
1da177e4 LT |
1910 | dump_line(realobj, i, limit); |
1911 | } | |
1912 | } | |
1913 | ||
343e0d7a | 1914 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1915 | { |
1916 | char *realobj; | |
1917 | int size, i; | |
1918 | int lines = 0; | |
1919 | ||
3dafccf2 MS |
1920 | realobj = (char *)objp + obj_offset(cachep); |
1921 | size = obj_size(cachep); | |
1da177e4 | 1922 | |
b28a02de | 1923 | for (i = 0; i < size; i++) { |
1da177e4 | 1924 | char exp = POISON_FREE; |
b28a02de | 1925 | if (i == size - 1) |
1da177e4 LT |
1926 | exp = POISON_END; |
1927 | if (realobj[i] != exp) { | |
1928 | int limit; | |
1929 | /* Mismatch ! */ | |
1930 | /* Print header */ | |
1931 | if (lines == 0) { | |
b28a02de | 1932 | printk(KERN_ERR |
e94a40c5 DH |
1933 | "Slab corruption: %s start=%p, len=%d\n", |
1934 | cachep->name, realobj, size); | |
1da177e4 LT |
1935 | print_objinfo(cachep, objp, 0); |
1936 | } | |
1937 | /* Hexdump the affected line */ | |
b28a02de | 1938 | i = (i / 16) * 16; |
1da177e4 | 1939 | limit = 16; |
b28a02de PE |
1940 | if (i + limit > size) |
1941 | limit = size - i; | |
1da177e4 LT |
1942 | dump_line(realobj, i, limit); |
1943 | i += 16; | |
1944 | lines++; | |
1945 | /* Limit to 5 lines */ | |
1946 | if (lines > 5) | |
1947 | break; | |
1948 | } | |
1949 | } | |
1950 | if (lines != 0) { | |
1951 | /* Print some data about the neighboring objects, if they | |
1952 | * exist: | |
1953 | */ | |
6ed5eb22 | 1954 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 1955 | unsigned int objnr; |
1da177e4 | 1956 | |
8fea4e96 | 1957 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 1958 | if (objnr) { |
8fea4e96 | 1959 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 1960 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1961 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1962 | realobj, size); |
1da177e4 LT |
1963 | print_objinfo(cachep, objp, 2); |
1964 | } | |
b28a02de | 1965 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 1966 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 1967 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1968 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1969 | realobj, size); |
1da177e4 LT |
1970 | print_objinfo(cachep, objp, 2); |
1971 | } | |
1972 | } | |
1973 | } | |
1974 | #endif | |
1975 | ||
12dd36fa | 1976 | #if DEBUG |
e79aec29 | 1977 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 1978 | { |
1da177e4 LT |
1979 | int i; |
1980 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 1981 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
1982 | |
1983 | if (cachep->flags & SLAB_POISON) { | |
1984 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 AM |
1985 | if (cachep->buffer_size % PAGE_SIZE == 0 && |
1986 | OFF_SLAB(cachep)) | |
b28a02de | 1987 | kernel_map_pages(virt_to_page(objp), |
a737b3e2 | 1988 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
1989 | else |
1990 | check_poison_obj(cachep, objp); | |
1991 | #else | |
1992 | check_poison_obj(cachep, objp); | |
1993 | #endif | |
1994 | } | |
1995 | if (cachep->flags & SLAB_RED_ZONE) { | |
1996 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1997 | slab_error(cachep, "start of a freed object " | |
b28a02de | 1998 | "was overwritten"); |
1da177e4 LT |
1999 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
2000 | slab_error(cachep, "end of a freed object " | |
b28a02de | 2001 | "was overwritten"); |
1da177e4 | 2002 | } |
1da177e4 | 2003 | } |
12dd36fa | 2004 | } |
1da177e4 | 2005 | #else |
e79aec29 | 2006 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 2007 | { |
12dd36fa | 2008 | } |
1da177e4 LT |
2009 | #endif |
2010 | ||
911851e6 RD |
2011 | /** |
2012 | * slab_destroy - destroy and release all objects in a slab | |
2013 | * @cachep: cache pointer being destroyed | |
2014 | * @slabp: slab pointer being destroyed | |
2015 | * | |
12dd36fa | 2016 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
2017 | * Before calling the slab must have been unlinked from the cache. The |
2018 | * cache-lock is not held/needed. | |
12dd36fa | 2019 | */ |
343e0d7a | 2020 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
2021 | { |
2022 | void *addr = slabp->s_mem - slabp->colouroff; | |
2023 | ||
e79aec29 | 2024 | slab_destroy_debugcheck(cachep, slabp); |
1da177e4 LT |
2025 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
2026 | struct slab_rcu *slab_rcu; | |
2027 | ||
b28a02de | 2028 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
2029 | slab_rcu->cachep = cachep; |
2030 | slab_rcu->addr = addr; | |
2031 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
2032 | } else { | |
2033 | kmem_freepages(cachep, addr); | |
873623df IM |
2034 | if (OFF_SLAB(cachep)) |
2035 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
2036 | } |
2037 | } | |
2038 | ||
117f6eb1 CL |
2039 | static void __kmem_cache_destroy(struct kmem_cache *cachep) |
2040 | { | |
2041 | int i; | |
2042 | struct kmem_list3 *l3; | |
2043 | ||
2044 | for_each_online_cpu(i) | |
2045 | kfree(cachep->array[i]); | |
2046 | ||
2047 | /* NUMA: free the list3 structures */ | |
2048 | for_each_online_node(i) { | |
2049 | l3 = cachep->nodelists[i]; | |
2050 | if (l3) { | |
2051 | kfree(l3->shared); | |
2052 | free_alien_cache(l3->alien); | |
2053 | kfree(l3); | |
2054 | } | |
2055 | } | |
2056 | kmem_cache_free(&cache_cache, cachep); | |
2057 | } | |
2058 | ||
2059 | ||
4d268eba | 2060 | /** |
a70773dd RD |
2061 | * calculate_slab_order - calculate size (page order) of slabs |
2062 | * @cachep: pointer to the cache that is being created | |
2063 | * @size: size of objects to be created in this cache. | |
2064 | * @align: required alignment for the objects. | |
2065 | * @flags: slab allocation flags | |
2066 | * | |
2067 | * Also calculates the number of objects per slab. | |
4d268eba PE |
2068 | * |
2069 | * This could be made much more intelligent. For now, try to avoid using | |
2070 | * high order pages for slabs. When the gfp() functions are more friendly | |
2071 | * towards high-order requests, this should be changed. | |
2072 | */ | |
a737b3e2 | 2073 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 2074 | size_t size, size_t align, unsigned long flags) |
4d268eba | 2075 | { |
b1ab41c4 | 2076 | unsigned long offslab_limit; |
4d268eba | 2077 | size_t left_over = 0; |
9888e6fa | 2078 | int gfporder; |
4d268eba | 2079 | |
0aa817f0 | 2080 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
2081 | unsigned int num; |
2082 | size_t remainder; | |
2083 | ||
9888e6fa | 2084 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
2085 | if (!num) |
2086 | continue; | |
9888e6fa | 2087 | |
b1ab41c4 IM |
2088 | if (flags & CFLGS_OFF_SLAB) { |
2089 | /* | |
2090 | * Max number of objs-per-slab for caches which | |
2091 | * use off-slab slabs. Needed to avoid a possible | |
2092 | * looping condition in cache_grow(). | |
2093 | */ | |
2094 | offslab_limit = size - sizeof(struct slab); | |
2095 | offslab_limit /= sizeof(kmem_bufctl_t); | |
2096 | ||
2097 | if (num > offslab_limit) | |
2098 | break; | |
2099 | } | |
4d268eba | 2100 | |
9888e6fa | 2101 | /* Found something acceptable - save it away */ |
4d268eba | 2102 | cachep->num = num; |
9888e6fa | 2103 | cachep->gfporder = gfporder; |
4d268eba PE |
2104 | left_over = remainder; |
2105 | ||
f78bb8ad LT |
2106 | /* |
2107 | * A VFS-reclaimable slab tends to have most allocations | |
2108 | * as GFP_NOFS and we really don't want to have to be allocating | |
2109 | * higher-order pages when we are unable to shrink dcache. | |
2110 | */ | |
2111 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2112 | break; | |
2113 | ||
4d268eba PE |
2114 | /* |
2115 | * Large number of objects is good, but very large slabs are | |
2116 | * currently bad for the gfp()s. | |
2117 | */ | |
9888e6fa | 2118 | if (gfporder >= slab_break_gfp_order) |
4d268eba PE |
2119 | break; |
2120 | ||
9888e6fa LT |
2121 | /* |
2122 | * Acceptable internal fragmentation? | |
2123 | */ | |
a737b3e2 | 2124 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2125 | break; |
2126 | } | |
2127 | return left_over; | |
2128 | } | |
2129 | ||
83b519e8 | 2130 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2131 | { |
2ed3a4ef | 2132 | if (g_cpucache_up == FULL) |
83b519e8 | 2133 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2134 | |
f30cf7d1 PE |
2135 | if (g_cpucache_up == NONE) { |
2136 | /* | |
2137 | * Note: the first kmem_cache_create must create the cache | |
2138 | * that's used by kmalloc(24), otherwise the creation of | |
2139 | * further caches will BUG(). | |
2140 | */ | |
2141 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2142 | ||
2143 | /* | |
2144 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2145 | * the first cache, then we need to set up all its list3s, | |
2146 | * otherwise the creation of further caches will BUG(). | |
2147 | */ | |
2148 | set_up_list3s(cachep, SIZE_AC); | |
2149 | if (INDEX_AC == INDEX_L3) | |
2150 | g_cpucache_up = PARTIAL_L3; | |
2151 | else | |
2152 | g_cpucache_up = PARTIAL_AC; | |
2153 | } else { | |
2154 | cachep->array[smp_processor_id()] = | |
83b519e8 | 2155 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 PE |
2156 | |
2157 | if (g_cpucache_up == PARTIAL_AC) { | |
2158 | set_up_list3s(cachep, SIZE_L3); | |
2159 | g_cpucache_up = PARTIAL_L3; | |
2160 | } else { | |
2161 | int node; | |
556a169d | 2162 | for_each_online_node(node) { |
f30cf7d1 PE |
2163 | cachep->nodelists[node] = |
2164 | kmalloc_node(sizeof(struct kmem_list3), | |
eb91f1d0 | 2165 | gfp, node); |
f30cf7d1 PE |
2166 | BUG_ON(!cachep->nodelists[node]); |
2167 | kmem_list3_init(cachep->nodelists[node]); | |
2168 | } | |
2169 | } | |
2170 | } | |
7d6e6d09 | 2171 | cachep->nodelists[numa_mem_id()]->next_reap = |
f30cf7d1 PE |
2172 | jiffies + REAPTIMEOUT_LIST3 + |
2173 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2174 | ||
2175 | cpu_cache_get(cachep)->avail = 0; | |
2176 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2177 | cpu_cache_get(cachep)->batchcount = 1; | |
2178 | cpu_cache_get(cachep)->touched = 0; | |
2179 | cachep->batchcount = 1; | |
2180 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2181 | return 0; |
f30cf7d1 PE |
2182 | } |
2183 | ||
1da177e4 LT |
2184 | /** |
2185 | * kmem_cache_create - Create a cache. | |
2186 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
2187 | * @size: The size of objects to be created in this cache. | |
2188 | * @align: The required alignment for the objects. | |
2189 | * @flags: SLAB flags | |
2190 | * @ctor: A constructor for the objects. | |
1da177e4 LT |
2191 | * |
2192 | * Returns a ptr to the cache on success, NULL on failure. | |
2193 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2194 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 LT |
2195 | * |
2196 | * @name must be valid until the cache is destroyed. This implies that | |
a737b3e2 AM |
2197 | * the module calling this has to destroy the cache before getting unloaded. |
2198 | * | |
1da177e4 LT |
2199 | * The flags are |
2200 | * | |
2201 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2202 | * to catch references to uninitialised memory. | |
2203 | * | |
2204 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2205 | * for buffer overruns. | |
2206 | * | |
1da177e4 LT |
2207 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2208 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2209 | * as davem. | |
2210 | */ | |
343e0d7a | 2211 | struct kmem_cache * |
1da177e4 | 2212 | kmem_cache_create (const char *name, size_t size, size_t align, |
51cc5068 | 2213 | unsigned long flags, void (*ctor)(void *)) |
1da177e4 LT |
2214 | { |
2215 | size_t left_over, slab_size, ralign; | |
7a7c381d | 2216 | struct kmem_cache *cachep = NULL, *pc; |
83b519e8 | 2217 | gfp_t gfp; |
1da177e4 LT |
2218 | |
2219 | /* | |
2220 | * Sanity checks... these are all serious usage bugs. | |
2221 | */ | |
a737b3e2 | 2222 | if (!name || in_interrupt() || (size < BYTES_PER_WORD) || |
20c2df83 | 2223 | size > KMALLOC_MAX_SIZE) { |
d40cee24 | 2224 | printk(KERN_ERR "%s: Early error in slab %s\n", __func__, |
a737b3e2 | 2225 | name); |
b28a02de PE |
2226 | BUG(); |
2227 | } | |
1da177e4 | 2228 | |
f0188f47 | 2229 | /* |
8f5be20b | 2230 | * We use cache_chain_mutex to ensure a consistent view of |
174596a0 | 2231 | * cpu_online_mask as well. Please see cpuup_callback |
f0188f47 | 2232 | */ |
83b519e8 PE |
2233 | if (slab_is_available()) { |
2234 | get_online_cpus(); | |
2235 | mutex_lock(&cache_chain_mutex); | |
2236 | } | |
4f12bb4f | 2237 | |
7a7c381d | 2238 | list_for_each_entry(pc, &cache_chain, next) { |
4f12bb4f AM |
2239 | char tmp; |
2240 | int res; | |
2241 | ||
2242 | /* | |
2243 | * This happens when the module gets unloaded and doesn't | |
2244 | * destroy its slab cache and no-one else reuses the vmalloc | |
2245 | * area of the module. Print a warning. | |
2246 | */ | |
138ae663 | 2247 | res = probe_kernel_address(pc->name, tmp); |
4f12bb4f | 2248 | if (res) { |
b4169525 | 2249 | printk(KERN_ERR |
2250 | "SLAB: cache with size %d has lost its name\n", | |
3dafccf2 | 2251 | pc->buffer_size); |
4f12bb4f AM |
2252 | continue; |
2253 | } | |
2254 | ||
b28a02de | 2255 | if (!strcmp(pc->name, name)) { |
b4169525 | 2256 | printk(KERN_ERR |
2257 | "kmem_cache_create: duplicate cache %s\n", name); | |
4f12bb4f AM |
2258 | dump_stack(); |
2259 | goto oops; | |
2260 | } | |
2261 | } | |
2262 | ||
1da177e4 LT |
2263 | #if DEBUG |
2264 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
1da177e4 LT |
2265 | #if FORCED_DEBUG |
2266 | /* | |
2267 | * Enable redzoning and last user accounting, except for caches with | |
2268 | * large objects, if the increased size would increase the object size | |
2269 | * above the next power of two: caches with object sizes just above a | |
2270 | * power of two have a significant amount of internal fragmentation. | |
2271 | */ | |
87a927c7 DW |
2272 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2273 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2274 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2275 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2276 | flags |= SLAB_POISON; | |
2277 | #endif | |
2278 | if (flags & SLAB_DESTROY_BY_RCU) | |
2279 | BUG_ON(flags & SLAB_POISON); | |
2280 | #endif | |
1da177e4 | 2281 | /* |
a737b3e2 AM |
2282 | * Always checks flags, a caller might be expecting debug support which |
2283 | * isn't available. | |
1da177e4 | 2284 | */ |
40094fa6 | 2285 | BUG_ON(flags & ~CREATE_MASK); |
1da177e4 | 2286 | |
a737b3e2 AM |
2287 | /* |
2288 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2289 | * unaligned accesses for some archs when redzoning is used, and makes |
2290 | * sure any on-slab bufctl's are also correctly aligned. | |
2291 | */ | |
b28a02de PE |
2292 | if (size & (BYTES_PER_WORD - 1)) { |
2293 | size += (BYTES_PER_WORD - 1); | |
2294 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2295 | } |
2296 | ||
a737b3e2 AM |
2297 | /* calculate the final buffer alignment: */ |
2298 | ||
1da177e4 LT |
2299 | /* 1) arch recommendation: can be overridden for debug */ |
2300 | if (flags & SLAB_HWCACHE_ALIGN) { | |
a737b3e2 AM |
2301 | /* |
2302 | * Default alignment: as specified by the arch code. Except if | |
2303 | * an object is really small, then squeeze multiple objects into | |
2304 | * one cacheline. | |
1da177e4 LT |
2305 | */ |
2306 | ralign = cache_line_size(); | |
b28a02de | 2307 | while (size <= ralign / 2) |
1da177e4 LT |
2308 | ralign /= 2; |
2309 | } else { | |
2310 | ralign = BYTES_PER_WORD; | |
2311 | } | |
ca5f9703 PE |
2312 | |
2313 | /* | |
87a927c7 DW |
2314 | * Redzoning and user store require word alignment or possibly larger. |
2315 | * Note this will be overridden by architecture or caller mandated | |
2316 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2317 | */ |
87a927c7 DW |
2318 | if (flags & SLAB_STORE_USER) |
2319 | ralign = BYTES_PER_WORD; | |
2320 | ||
2321 | if (flags & SLAB_RED_ZONE) { | |
2322 | ralign = REDZONE_ALIGN; | |
2323 | /* If redzoning, ensure that the second redzone is suitably | |
2324 | * aligned, by adjusting the object size accordingly. */ | |
2325 | size += REDZONE_ALIGN - 1; | |
2326 | size &= ~(REDZONE_ALIGN - 1); | |
2327 | } | |
ca5f9703 | 2328 | |
a44b56d3 | 2329 | /* 2) arch mandated alignment */ |
1da177e4 LT |
2330 | if (ralign < ARCH_SLAB_MINALIGN) { |
2331 | ralign = ARCH_SLAB_MINALIGN; | |
1da177e4 | 2332 | } |
a44b56d3 | 2333 | /* 3) caller mandated alignment */ |
1da177e4 LT |
2334 | if (ralign < align) { |
2335 | ralign = align; | |
1da177e4 | 2336 | } |
3ff84a7f PE |
2337 | /* disable debug if necessary */ |
2338 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2339 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2340 | /* |
ca5f9703 | 2341 | * 4) Store it. |
1da177e4 LT |
2342 | */ |
2343 | align = ralign; | |
2344 | ||
83b519e8 PE |
2345 | if (slab_is_available()) |
2346 | gfp = GFP_KERNEL; | |
2347 | else | |
2348 | gfp = GFP_NOWAIT; | |
2349 | ||
1da177e4 | 2350 | /* Get cache's description obj. */ |
83b519e8 | 2351 | cachep = kmem_cache_zalloc(&cache_cache, gfp); |
1da177e4 | 2352 | if (!cachep) |
4f12bb4f | 2353 | goto oops; |
1da177e4 | 2354 | |
b56efcf0 | 2355 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; |
1da177e4 | 2356 | #if DEBUG |
3dafccf2 | 2357 | cachep->obj_size = size; |
1da177e4 | 2358 | |
ca5f9703 PE |
2359 | /* |
2360 | * Both debugging options require word-alignment which is calculated | |
2361 | * into align above. | |
2362 | */ | |
1da177e4 | 2363 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2364 | /* add space for red zone words */ |
3ff84a7f PE |
2365 | cachep->obj_offset += sizeof(unsigned long long); |
2366 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2367 | } |
2368 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2369 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2370 | * the real object. But if the second red zone needs to be |
2371 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2372 | */ |
87a927c7 DW |
2373 | if (flags & SLAB_RED_ZONE) |
2374 | size += REDZONE_ALIGN; | |
2375 | else | |
2376 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2377 | } |
2378 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2379 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
1ab335d8 CO |
2380 | && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { |
2381 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); | |
1da177e4 LT |
2382 | size = PAGE_SIZE; |
2383 | } | |
2384 | #endif | |
2385 | #endif | |
2386 | ||
e0a42726 IM |
2387 | /* |
2388 | * Determine if the slab management is 'on' or 'off' slab. | |
2389 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2390 | * it too early on. Always use on-slab management when |
2391 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2392 | */ |
e7cb55b9 CM |
2393 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && |
2394 | !(flags & SLAB_NOLEAKTRACE)) | |
1da177e4 LT |
2395 | /* |
2396 | * Size is large, assume best to place the slab management obj | |
2397 | * off-slab (should allow better packing of objs). | |
2398 | */ | |
2399 | flags |= CFLGS_OFF_SLAB; | |
2400 | ||
2401 | size = ALIGN(size, align); | |
2402 | ||
f78bb8ad | 2403 | left_over = calculate_slab_order(cachep, size, align, flags); |
1da177e4 LT |
2404 | |
2405 | if (!cachep->num) { | |
b4169525 | 2406 | printk(KERN_ERR |
2407 | "kmem_cache_create: couldn't create cache %s.\n", name); | |
1da177e4 LT |
2408 | kmem_cache_free(&cache_cache, cachep); |
2409 | cachep = NULL; | |
4f12bb4f | 2410 | goto oops; |
1da177e4 | 2411 | } |
b28a02de PE |
2412 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
2413 | + sizeof(struct slab), align); | |
1da177e4 LT |
2414 | |
2415 | /* | |
2416 | * If the slab has been placed off-slab, and we have enough space then | |
2417 | * move it on-slab. This is at the expense of any extra colouring. | |
2418 | */ | |
2419 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2420 | flags &= ~CFLGS_OFF_SLAB; | |
2421 | left_over -= slab_size; | |
2422 | } | |
2423 | ||
2424 | if (flags & CFLGS_OFF_SLAB) { | |
2425 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2426 | slab_size = |
2427 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
67461365 RL |
2428 | |
2429 | #ifdef CONFIG_PAGE_POISONING | |
2430 | /* If we're going to use the generic kernel_map_pages() | |
2431 | * poisoning, then it's going to smash the contents of | |
2432 | * the redzone and userword anyhow, so switch them off. | |
2433 | */ | |
2434 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2435 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2436 | #endif | |
1da177e4 LT |
2437 | } |
2438 | ||
2439 | cachep->colour_off = cache_line_size(); | |
2440 | /* Offset must be a multiple of the alignment. */ | |
2441 | if (cachep->colour_off < align) | |
2442 | cachep->colour_off = align; | |
b28a02de | 2443 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2444 | cachep->slab_size = slab_size; |
2445 | cachep->flags = flags; | |
2446 | cachep->gfpflags = 0; | |
4b51d669 | 2447 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
1da177e4 | 2448 | cachep->gfpflags |= GFP_DMA; |
3dafccf2 | 2449 | cachep->buffer_size = size; |
6a2d7a95 | 2450 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2451 | |
e5ac9c5a | 2452 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2453 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2454 | /* |
2455 | * This is a possibility for one of the malloc_sizes caches. | |
2456 | * But since we go off slab only for object size greater than | |
2457 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2458 | * this should not happen at all. | |
2459 | * But leave a BUG_ON for some lucky dude. | |
2460 | */ | |
6cb8f913 | 2461 | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); |
e5ac9c5a | 2462 | } |
1da177e4 | 2463 | cachep->ctor = ctor; |
1da177e4 LT |
2464 | cachep->name = name; |
2465 | ||
83b519e8 | 2466 | if (setup_cpu_cache(cachep, gfp)) { |
2ed3a4ef CL |
2467 | __kmem_cache_destroy(cachep); |
2468 | cachep = NULL; | |
2469 | goto oops; | |
2470 | } | |
1da177e4 | 2471 | |
83835b3d PZ |
2472 | if (flags & SLAB_DEBUG_OBJECTS) { |
2473 | /* | |
2474 | * Would deadlock through slab_destroy()->call_rcu()-> | |
2475 | * debug_object_activate()->kmem_cache_alloc(). | |
2476 | */ | |
2477 | WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | |
2478 | ||
2479 | slab_set_debugobj_lock_classes(cachep); | |
2480 | } | |
2481 | ||
1da177e4 LT |
2482 | /* cache setup completed, link it into the list */ |
2483 | list_add(&cachep->next, &cache_chain); | |
a737b3e2 | 2484 | oops: |
1da177e4 LT |
2485 | if (!cachep && (flags & SLAB_PANIC)) |
2486 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
b28a02de | 2487 | name); |
83b519e8 PE |
2488 | if (slab_is_available()) { |
2489 | mutex_unlock(&cache_chain_mutex); | |
2490 | put_online_cpus(); | |
2491 | } | |
1da177e4 LT |
2492 | return cachep; |
2493 | } | |
2494 | EXPORT_SYMBOL(kmem_cache_create); | |
2495 | ||
2496 | #if DEBUG | |
2497 | static void check_irq_off(void) | |
2498 | { | |
2499 | BUG_ON(!irqs_disabled()); | |
2500 | } | |
2501 | ||
2502 | static void check_irq_on(void) | |
2503 | { | |
2504 | BUG_ON(irqs_disabled()); | |
2505 | } | |
2506 | ||
343e0d7a | 2507 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2508 | { |
2509 | #ifdef CONFIG_SMP | |
2510 | check_irq_off(); | |
7d6e6d09 | 2511 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); |
1da177e4 LT |
2512 | #endif |
2513 | } | |
e498be7d | 2514 | |
343e0d7a | 2515 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2516 | { |
2517 | #ifdef CONFIG_SMP | |
2518 | check_irq_off(); | |
2519 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2520 | #endif | |
2521 | } | |
2522 | ||
1da177e4 LT |
2523 | #else |
2524 | #define check_irq_off() do { } while(0) | |
2525 | #define check_irq_on() do { } while(0) | |
2526 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2527 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2528 | #endif |
2529 | ||
aab2207c CL |
2530 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2531 | struct array_cache *ac, | |
2532 | int force, int node); | |
2533 | ||
1da177e4 LT |
2534 | static void do_drain(void *arg) |
2535 | { | |
a737b3e2 | 2536 | struct kmem_cache *cachep = arg; |
1da177e4 | 2537 | struct array_cache *ac; |
7d6e6d09 | 2538 | int node = numa_mem_id(); |
1da177e4 LT |
2539 | |
2540 | check_irq_off(); | |
9a2dba4b | 2541 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2542 | spin_lock(&cachep->nodelists[node]->list_lock); |
2543 | free_block(cachep, ac->entry, ac->avail, node); | |
2544 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2545 | ac->avail = 0; |
2546 | } | |
2547 | ||
343e0d7a | 2548 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2549 | { |
e498be7d CL |
2550 | struct kmem_list3 *l3; |
2551 | int node; | |
2552 | ||
15c8b6c1 | 2553 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2554 | check_irq_on(); |
b28a02de | 2555 | for_each_online_node(node) { |
e498be7d | 2556 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2557 | if (l3 && l3->alien) |
2558 | drain_alien_cache(cachep, l3->alien); | |
2559 | } | |
2560 | ||
2561 | for_each_online_node(node) { | |
2562 | l3 = cachep->nodelists[node]; | |
2563 | if (l3) | |
aab2207c | 2564 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2565 | } |
1da177e4 LT |
2566 | } |
2567 | ||
ed11d9eb CL |
2568 | /* |
2569 | * Remove slabs from the list of free slabs. | |
2570 | * Specify the number of slabs to drain in tofree. | |
2571 | * | |
2572 | * Returns the actual number of slabs released. | |
2573 | */ | |
2574 | static int drain_freelist(struct kmem_cache *cache, | |
2575 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2576 | { |
ed11d9eb CL |
2577 | struct list_head *p; |
2578 | int nr_freed; | |
1da177e4 | 2579 | struct slab *slabp; |
1da177e4 | 2580 | |
ed11d9eb CL |
2581 | nr_freed = 0; |
2582 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2583 | |
ed11d9eb | 2584 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2585 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2586 | if (p == &l3->slabs_free) { |
2587 | spin_unlock_irq(&l3->list_lock); | |
2588 | goto out; | |
2589 | } | |
1da177e4 | 2590 | |
ed11d9eb | 2591 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2592 | #if DEBUG |
40094fa6 | 2593 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2594 | #endif |
2595 | list_del(&slabp->list); | |
ed11d9eb CL |
2596 | /* |
2597 | * Safe to drop the lock. The slab is no longer linked | |
2598 | * to the cache. | |
2599 | */ | |
2600 | l3->free_objects -= cache->num; | |
e498be7d | 2601 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2602 | slab_destroy(cache, slabp); |
2603 | nr_freed++; | |
1da177e4 | 2604 | } |
ed11d9eb CL |
2605 | out: |
2606 | return nr_freed; | |
1da177e4 LT |
2607 | } |
2608 | ||
8f5be20b | 2609 | /* Called with cache_chain_mutex held to protect against cpu hotplug */ |
343e0d7a | 2610 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2611 | { |
2612 | int ret = 0, i = 0; | |
2613 | struct kmem_list3 *l3; | |
2614 | ||
2615 | drain_cpu_caches(cachep); | |
2616 | ||
2617 | check_irq_on(); | |
2618 | for_each_online_node(i) { | |
2619 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2620 | if (!l3) |
2621 | continue; | |
2622 | ||
2623 | drain_freelist(cachep, l3, l3->free_objects); | |
2624 | ||
2625 | ret += !list_empty(&l3->slabs_full) || | |
2626 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2627 | } |
2628 | return (ret ? 1 : 0); | |
2629 | } | |
2630 | ||
1da177e4 LT |
2631 | /** |
2632 | * kmem_cache_shrink - Shrink a cache. | |
2633 | * @cachep: The cache to shrink. | |
2634 | * | |
2635 | * Releases as many slabs as possible for a cache. | |
2636 | * To help debugging, a zero exit status indicates all slabs were released. | |
2637 | */ | |
343e0d7a | 2638 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2639 | { |
8f5be20b | 2640 | int ret; |
40094fa6 | 2641 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2642 | |
95402b38 | 2643 | get_online_cpus(); |
8f5be20b RT |
2644 | mutex_lock(&cache_chain_mutex); |
2645 | ret = __cache_shrink(cachep); | |
2646 | mutex_unlock(&cache_chain_mutex); | |
95402b38 | 2647 | put_online_cpus(); |
8f5be20b | 2648 | return ret; |
1da177e4 LT |
2649 | } |
2650 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2651 | ||
2652 | /** | |
2653 | * kmem_cache_destroy - delete a cache | |
2654 | * @cachep: the cache to destroy | |
2655 | * | |
72fd4a35 | 2656 | * Remove a &struct kmem_cache object from the slab cache. |
1da177e4 LT |
2657 | * |
2658 | * It is expected this function will be called by a module when it is | |
2659 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
2660 | * cache being allocated each time a module is loaded and unloaded, if the | |
2661 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
2662 | * | |
2663 | * The cache must be empty before calling this function. | |
2664 | * | |
25985edc | 2665 | * The caller must guarantee that no one will allocate memory from the cache |
1da177e4 LT |
2666 | * during the kmem_cache_destroy(). |
2667 | */ | |
133d205a | 2668 | void kmem_cache_destroy(struct kmem_cache *cachep) |
1da177e4 | 2669 | { |
40094fa6 | 2670 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2671 | |
1da177e4 | 2672 | /* Find the cache in the chain of caches. */ |
95402b38 | 2673 | get_online_cpus(); |
fc0abb14 | 2674 | mutex_lock(&cache_chain_mutex); |
1da177e4 LT |
2675 | /* |
2676 | * the chain is never empty, cache_cache is never destroyed | |
2677 | */ | |
2678 | list_del(&cachep->next); | |
1da177e4 LT |
2679 | if (__cache_shrink(cachep)) { |
2680 | slab_error(cachep, "Can't free all objects"); | |
b28a02de | 2681 | list_add(&cachep->next, &cache_chain); |
fc0abb14 | 2682 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2683 | put_online_cpus(); |
133d205a | 2684 | return; |
1da177e4 LT |
2685 | } |
2686 | ||
2687 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
7ed9f7e5 | 2688 | rcu_barrier(); |
1da177e4 | 2689 | |
117f6eb1 | 2690 | __kmem_cache_destroy(cachep); |
8f5be20b | 2691 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2692 | put_online_cpus(); |
1da177e4 LT |
2693 | } |
2694 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2695 | ||
e5ac9c5a RT |
2696 | /* |
2697 | * Get the memory for a slab management obj. | |
2698 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2699 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2700 | * come from the same cache which is getting created because, | |
2701 | * when we are searching for an appropriate cache for these | |
2702 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2703 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2704 | * kmem_find_general_cachep till the initialization is complete. | |
2705 | * Hence we cannot have slabp_cache same as the original cache. | |
2706 | */ | |
343e0d7a | 2707 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2708 | int colour_off, gfp_t local_flags, |
2709 | int nodeid) | |
1da177e4 LT |
2710 | { |
2711 | struct slab *slabp; | |
b28a02de | 2712 | |
1da177e4 LT |
2713 | if (OFF_SLAB(cachep)) { |
2714 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2715 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
8759ec50 | 2716 | local_flags, nodeid); |
d5cff635 CM |
2717 | /* |
2718 | * If the first object in the slab is leaked (it's allocated | |
2719 | * but no one has a reference to it), we want to make sure | |
2720 | * kmemleak does not treat the ->s_mem pointer as a reference | |
2721 | * to the object. Otherwise we will not report the leak. | |
2722 | */ | |
c017b4be CM |
2723 | kmemleak_scan_area(&slabp->list, sizeof(struct list_head), |
2724 | local_flags); | |
1da177e4 LT |
2725 | if (!slabp) |
2726 | return NULL; | |
2727 | } else { | |
b28a02de | 2728 | slabp = objp + colour_off; |
1da177e4 LT |
2729 | colour_off += cachep->slab_size; |
2730 | } | |
2731 | slabp->inuse = 0; | |
2732 | slabp->colouroff = colour_off; | |
b28a02de | 2733 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2734 | slabp->nodeid = nodeid; |
e51bfd0a | 2735 | slabp->free = 0; |
1da177e4 LT |
2736 | return slabp; |
2737 | } | |
2738 | ||
2739 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2740 | { | |
b28a02de | 2741 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2742 | } |
2743 | ||
343e0d7a | 2744 | static void cache_init_objs(struct kmem_cache *cachep, |
a35afb83 | 2745 | struct slab *slabp) |
1da177e4 LT |
2746 | { |
2747 | int i; | |
2748 | ||
2749 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2750 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2751 | #if DEBUG |
2752 | /* need to poison the objs? */ | |
2753 | if (cachep->flags & SLAB_POISON) | |
2754 | poison_obj(cachep, objp, POISON_FREE); | |
2755 | if (cachep->flags & SLAB_STORE_USER) | |
2756 | *dbg_userword(cachep, objp) = NULL; | |
2757 | ||
2758 | if (cachep->flags & SLAB_RED_ZONE) { | |
2759 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2760 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2761 | } | |
2762 | /* | |
a737b3e2 AM |
2763 | * Constructors are not allowed to allocate memory from the same |
2764 | * cache which they are a constructor for. Otherwise, deadlock. | |
2765 | * They must also be threaded. | |
1da177e4 LT |
2766 | */ |
2767 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2768 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2769 | |
2770 | if (cachep->flags & SLAB_RED_ZONE) { | |
2771 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2772 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2773 | " end of an object"); |
1da177e4 LT |
2774 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2775 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2776 | " start of an object"); |
1da177e4 | 2777 | } |
a737b3e2 AM |
2778 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && |
2779 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
b28a02de | 2780 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2781 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2782 | #else |
2783 | if (cachep->ctor) | |
51cc5068 | 2784 | cachep->ctor(objp); |
1da177e4 | 2785 | #endif |
b28a02de | 2786 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2787 | } |
b28a02de | 2788 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2789 | } |
2790 | ||
343e0d7a | 2791 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2792 | { |
4b51d669 CL |
2793 | if (CONFIG_ZONE_DMA_FLAG) { |
2794 | if (flags & GFP_DMA) | |
2795 | BUG_ON(!(cachep->gfpflags & GFP_DMA)); | |
2796 | else | |
2797 | BUG_ON(cachep->gfpflags & GFP_DMA); | |
2798 | } | |
1da177e4 LT |
2799 | } |
2800 | ||
a737b3e2 AM |
2801 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2802 | int nodeid) | |
78d382d7 | 2803 | { |
8fea4e96 | 2804 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2805 | kmem_bufctl_t next; |
2806 | ||
2807 | slabp->inuse++; | |
2808 | next = slab_bufctl(slabp)[slabp->free]; | |
2809 | #if DEBUG | |
2810 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2811 | WARN_ON(slabp->nodeid != nodeid); | |
2812 | #endif | |
2813 | slabp->free = next; | |
2814 | ||
2815 | return objp; | |
2816 | } | |
2817 | ||
a737b3e2 AM |
2818 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2819 | void *objp, int nodeid) | |
78d382d7 | 2820 | { |
8fea4e96 | 2821 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2822 | |
2823 | #if DEBUG | |
2824 | /* Verify that the slab belongs to the intended node */ | |
2825 | WARN_ON(slabp->nodeid != nodeid); | |
2826 | ||
871751e2 | 2827 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2828 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2829 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2830 | BUG(); |
2831 | } | |
2832 | #endif | |
2833 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2834 | slabp->free = objnr; | |
2835 | slabp->inuse--; | |
2836 | } | |
2837 | ||
4776874f PE |
2838 | /* |
2839 | * Map pages beginning at addr to the given cache and slab. This is required | |
2840 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2841 | * virtual address for kfree, ksize, and slab debugging. |
4776874f PE |
2842 | */ |
2843 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2844 | void *addr) | |
1da177e4 | 2845 | { |
4776874f | 2846 | int nr_pages; |
1da177e4 LT |
2847 | struct page *page; |
2848 | ||
4776874f | 2849 | page = virt_to_page(addr); |
84097518 | 2850 | |
4776874f | 2851 | nr_pages = 1; |
84097518 | 2852 | if (likely(!PageCompound(page))) |
4776874f PE |
2853 | nr_pages <<= cache->gfporder; |
2854 | ||
1da177e4 | 2855 | do { |
4776874f PE |
2856 | page_set_cache(page, cache); |
2857 | page_set_slab(page, slab); | |
1da177e4 | 2858 | page++; |
4776874f | 2859 | } while (--nr_pages); |
1da177e4 LT |
2860 | } |
2861 | ||
2862 | /* | |
2863 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2864 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2865 | */ | |
3c517a61 CL |
2866 | static int cache_grow(struct kmem_cache *cachep, |
2867 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2868 | { |
b28a02de | 2869 | struct slab *slabp; |
b28a02de PE |
2870 | size_t offset; |
2871 | gfp_t local_flags; | |
e498be7d | 2872 | struct kmem_list3 *l3; |
1da177e4 | 2873 | |
a737b3e2 AM |
2874 | /* |
2875 | * Be lazy and only check for valid flags here, keeping it out of the | |
2876 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2877 | */ |
6cb06229 CL |
2878 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2879 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2880 | |
2e1217cf | 2881 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2882 | check_irq_off(); |
2e1217cf RT |
2883 | l3 = cachep->nodelists[nodeid]; |
2884 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2885 | |
2886 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2887 | offset = l3->colour_next; |
2888 | l3->colour_next++; | |
2889 | if (l3->colour_next >= cachep->colour) | |
2890 | l3->colour_next = 0; | |
2891 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2892 | |
2e1217cf | 2893 | offset *= cachep->colour_off; |
1da177e4 LT |
2894 | |
2895 | if (local_flags & __GFP_WAIT) | |
2896 | local_irq_enable(); | |
2897 | ||
2898 | /* | |
2899 | * The test for missing atomic flag is performed here, rather than | |
2900 | * the more obvious place, simply to reduce the critical path length | |
2901 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2902 | * will eventually be caught here (where it matters). | |
2903 | */ | |
2904 | kmem_flagcheck(cachep, flags); | |
2905 | ||
a737b3e2 AM |
2906 | /* |
2907 | * Get mem for the objs. Attempt to allocate a physical page from | |
2908 | * 'nodeid'. | |
e498be7d | 2909 | */ |
3c517a61 | 2910 | if (!objp) |
b8c1c5da | 2911 | objp = kmem_getpages(cachep, local_flags, nodeid); |
a737b3e2 | 2912 | if (!objp) |
1da177e4 LT |
2913 | goto failed; |
2914 | ||
2915 | /* Get slab management. */ | |
3c517a61 | 2916 | slabp = alloc_slabmgmt(cachep, objp, offset, |
6cb06229 | 2917 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
a737b3e2 | 2918 | if (!slabp) |
1da177e4 LT |
2919 | goto opps1; |
2920 | ||
4776874f | 2921 | slab_map_pages(cachep, slabp, objp); |
1da177e4 | 2922 | |
a35afb83 | 2923 | cache_init_objs(cachep, slabp); |
1da177e4 LT |
2924 | |
2925 | if (local_flags & __GFP_WAIT) | |
2926 | local_irq_disable(); | |
2927 | check_irq_off(); | |
e498be7d | 2928 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2929 | |
2930 | /* Make slab active. */ | |
e498be7d | 2931 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2932 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2933 | l3->free_objects += cachep->num; |
2934 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2935 | return 1; |
a737b3e2 | 2936 | opps1: |
1da177e4 | 2937 | kmem_freepages(cachep, objp); |
a737b3e2 | 2938 | failed: |
1da177e4 LT |
2939 | if (local_flags & __GFP_WAIT) |
2940 | local_irq_disable(); | |
2941 | return 0; | |
2942 | } | |
2943 | ||
2944 | #if DEBUG | |
2945 | ||
2946 | /* | |
2947 | * Perform extra freeing checks: | |
2948 | * - detect bad pointers. | |
2949 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2950 | */ |
2951 | static void kfree_debugcheck(const void *objp) | |
2952 | { | |
1da177e4 LT |
2953 | if (!virt_addr_valid(objp)) { |
2954 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2955 | (unsigned long)objp); |
2956 | BUG(); | |
1da177e4 | 2957 | } |
1da177e4 LT |
2958 | } |
2959 | ||
58ce1fd5 PE |
2960 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2961 | { | |
b46b8f19 | 2962 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2963 | |
2964 | redzone1 = *dbg_redzone1(cache, obj); | |
2965 | redzone2 = *dbg_redzone2(cache, obj); | |
2966 | ||
2967 | /* | |
2968 | * Redzone is ok. | |
2969 | */ | |
2970 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2971 | return; | |
2972 | ||
2973 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2974 | slab_error(cache, "double free detected"); | |
2975 | else | |
2976 | slab_error(cache, "memory outside object was overwritten"); | |
2977 | ||
b46b8f19 | 2978 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2979 | obj, redzone1, redzone2); |
2980 | } | |
2981 | ||
343e0d7a | 2982 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
b28a02de | 2983 | void *caller) |
1da177e4 LT |
2984 | { |
2985 | struct page *page; | |
2986 | unsigned int objnr; | |
2987 | struct slab *slabp; | |
2988 | ||
80cbd911 MW |
2989 | BUG_ON(virt_to_cache(objp) != cachep); |
2990 | ||
3dafccf2 | 2991 | objp -= obj_offset(cachep); |
1da177e4 | 2992 | kfree_debugcheck(objp); |
b49af68f | 2993 | page = virt_to_head_page(objp); |
1da177e4 | 2994 | |
065d41cb | 2995 | slabp = page_get_slab(page); |
1da177e4 LT |
2996 | |
2997 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 2998 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2999 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
3000 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
3001 | } | |
3002 | if (cachep->flags & SLAB_STORE_USER) | |
3003 | *dbg_userword(cachep, objp) = caller; | |
3004 | ||
8fea4e96 | 3005 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
3006 | |
3007 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 3008 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 | 3009 | |
871751e2 AV |
3010 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3011 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
3012 | #endif | |
1da177e4 LT |
3013 | if (cachep->flags & SLAB_POISON) { |
3014 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 | 3015 | if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
1da177e4 | 3016 | store_stackinfo(cachep, objp, (unsigned long)caller); |
b28a02de | 3017 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3018 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
3019 | } else { |
3020 | poison_obj(cachep, objp, POISON_FREE); | |
3021 | } | |
3022 | #else | |
3023 | poison_obj(cachep, objp, POISON_FREE); | |
3024 | #endif | |
3025 | } | |
3026 | return objp; | |
3027 | } | |
3028 | ||
343e0d7a | 3029 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
3030 | { |
3031 | kmem_bufctl_t i; | |
3032 | int entries = 0; | |
b28a02de | 3033 | |
1da177e4 LT |
3034 | /* Check slab's freelist to see if this obj is there. */ |
3035 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
3036 | entries++; | |
3037 | if (entries > cachep->num || i >= cachep->num) | |
3038 | goto bad; | |
3039 | } | |
3040 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
3041 | bad: |
3042 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
3043 | "cache '%s'(%d), slabp %p(%d). Hexdump:\n", | |
3044 | cachep->name, cachep->num, slabp, slabp->inuse); | |
fdde6abb SAS |
3045 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, |
3046 | sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), | |
3047 | 1); | |
1da177e4 LT |
3048 | BUG(); |
3049 | } | |
3050 | } | |
3051 | #else | |
3052 | #define kfree_debugcheck(x) do { } while(0) | |
3053 | #define cache_free_debugcheck(x,objp,z) (objp) | |
3054 | #define check_slabp(x,y) do { } while(0) | |
3055 | #endif | |
3056 | ||
343e0d7a | 3057 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
3058 | { |
3059 | int batchcount; | |
3060 | struct kmem_list3 *l3; | |
3061 | struct array_cache *ac; | |
1ca4cb24 PE |
3062 | int node; |
3063 | ||
6d2144d3 | 3064 | retry: |
1da177e4 | 3065 | check_irq_off(); |
7d6e6d09 | 3066 | node = numa_mem_id(); |
9a2dba4b | 3067 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3068 | batchcount = ac->batchcount; |
3069 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
3070 | /* |
3071 | * If there was little recent activity on this cache, then | |
3072 | * perform only a partial refill. Otherwise we could generate | |
3073 | * refill bouncing. | |
1da177e4 LT |
3074 | */ |
3075 | batchcount = BATCHREFILL_LIMIT; | |
3076 | } | |
1ca4cb24 | 3077 | l3 = cachep->nodelists[node]; |
e498be7d CL |
3078 | |
3079 | BUG_ON(ac->avail > 0 || !l3); | |
3080 | spin_lock(&l3->list_lock); | |
1da177e4 | 3081 | |
3ded175a | 3082 | /* See if we can refill from the shared array */ |
44b57f1c NP |
3083 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { |
3084 | l3->shared->touched = 1; | |
3ded175a | 3085 | goto alloc_done; |
44b57f1c | 3086 | } |
3ded175a | 3087 | |
1da177e4 LT |
3088 | while (batchcount > 0) { |
3089 | struct list_head *entry; | |
3090 | struct slab *slabp; | |
3091 | /* Get slab alloc is to come from. */ | |
3092 | entry = l3->slabs_partial.next; | |
3093 | if (entry == &l3->slabs_partial) { | |
3094 | l3->free_touched = 1; | |
3095 | entry = l3->slabs_free.next; | |
3096 | if (entry == &l3->slabs_free) | |
3097 | goto must_grow; | |
3098 | } | |
3099 | ||
3100 | slabp = list_entry(entry, struct slab, list); | |
3101 | check_slabp(cachep, slabp); | |
3102 | check_spinlock_acquired(cachep); | |
714b8171 PE |
3103 | |
3104 | /* | |
3105 | * The slab was either on partial or free list so | |
3106 | * there must be at least one object available for | |
3107 | * allocation. | |
3108 | */ | |
249b9f33 | 3109 | BUG_ON(slabp->inuse >= cachep->num); |
714b8171 | 3110 | |
1da177e4 | 3111 | while (slabp->inuse < cachep->num && batchcount--) { |
1da177e4 LT |
3112 | STATS_INC_ALLOCED(cachep); |
3113 | STATS_INC_ACTIVE(cachep); | |
3114 | STATS_SET_HIGH(cachep); | |
3115 | ||
78d382d7 | 3116 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
1ca4cb24 | 3117 | node); |
1da177e4 LT |
3118 | } |
3119 | check_slabp(cachep, slabp); | |
3120 | ||
3121 | /* move slabp to correct slabp list: */ | |
3122 | list_del(&slabp->list); | |
3123 | if (slabp->free == BUFCTL_END) | |
3124 | list_add(&slabp->list, &l3->slabs_full); | |
3125 | else | |
3126 | list_add(&slabp->list, &l3->slabs_partial); | |
3127 | } | |
3128 | ||
a737b3e2 | 3129 | must_grow: |
1da177e4 | 3130 | l3->free_objects -= ac->avail; |
a737b3e2 | 3131 | alloc_done: |
e498be7d | 3132 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3133 | |
3134 | if (unlikely(!ac->avail)) { | |
3135 | int x; | |
3c517a61 | 3136 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3137 | |
a737b3e2 | 3138 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3139 | ac = cpu_cache_get(cachep); |
a737b3e2 | 3140 | if (!x && ac->avail == 0) /* no objects in sight? abort */ |
1da177e4 LT |
3141 | return NULL; |
3142 | ||
a737b3e2 | 3143 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3144 | goto retry; |
3145 | } | |
3146 | ac->touched = 1; | |
e498be7d | 3147 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3148 | } |
3149 | ||
a737b3e2 AM |
3150 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3151 | gfp_t flags) | |
1da177e4 LT |
3152 | { |
3153 | might_sleep_if(flags & __GFP_WAIT); | |
3154 | #if DEBUG | |
3155 | kmem_flagcheck(cachep, flags); | |
3156 | #endif | |
3157 | } | |
3158 | ||
3159 | #if DEBUG | |
a737b3e2 AM |
3160 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
3161 | gfp_t flags, void *objp, void *caller) | |
1da177e4 | 3162 | { |
b28a02de | 3163 | if (!objp) |
1da177e4 | 3164 | return objp; |
b28a02de | 3165 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3166 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3dafccf2 | 3167 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3168 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3169 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
3170 | else |
3171 | check_poison_obj(cachep, objp); | |
3172 | #else | |
3173 | check_poison_obj(cachep, objp); | |
3174 | #endif | |
3175 | poison_obj(cachep, objp, POISON_INUSE); | |
3176 | } | |
3177 | if (cachep->flags & SLAB_STORE_USER) | |
3178 | *dbg_userword(cachep, objp) = caller; | |
3179 | ||
3180 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3181 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3182 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3183 | slab_error(cachep, "double free, or memory outside" | |
3184 | " object was overwritten"); | |
b28a02de | 3185 | printk(KERN_ERR |
b46b8f19 | 3186 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
3187 | objp, *dbg_redzone1(cachep, objp), |
3188 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3189 | } |
3190 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3191 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3192 | } | |
871751e2 AV |
3193 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3194 | { | |
3195 | struct slab *slabp; | |
3196 | unsigned objnr; | |
3197 | ||
b49af68f | 3198 | slabp = page_get_slab(virt_to_head_page(objp)); |
871751e2 AV |
3199 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; |
3200 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; | |
3201 | } | |
3202 | #endif | |
3dafccf2 | 3203 | objp += obj_offset(cachep); |
4f104934 | 3204 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3205 | cachep->ctor(objp); |
7ea466f2 TH |
3206 | if (ARCH_SLAB_MINALIGN && |
3207 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 3208 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3209 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3210 | } |
1da177e4 LT |
3211 | return objp; |
3212 | } | |
3213 | #else | |
3214 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3215 | #endif | |
3216 | ||
773ff60e | 3217 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 AM |
3218 | { |
3219 | if (cachep == &cache_cache) | |
773ff60e | 3220 | return false; |
8a8b6502 | 3221 | |
4c13dd3b | 3222 | return should_failslab(obj_size(cachep), flags, cachep->flags); |
8a8b6502 AM |
3223 | } |
3224 | ||
343e0d7a | 3225 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3226 | { |
b28a02de | 3227 | void *objp; |
1da177e4 LT |
3228 | struct array_cache *ac; |
3229 | ||
5c382300 | 3230 | check_irq_off(); |
8a8b6502 | 3231 | |
9a2dba4b | 3232 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3233 | if (likely(ac->avail)) { |
3234 | STATS_INC_ALLOCHIT(cachep); | |
3235 | ac->touched = 1; | |
e498be7d | 3236 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
3237 | } else { |
3238 | STATS_INC_ALLOCMISS(cachep); | |
3239 | objp = cache_alloc_refill(cachep, flags); | |
ddbf2e83 O |
3240 | /* |
3241 | * the 'ac' may be updated by cache_alloc_refill(), | |
3242 | * and kmemleak_erase() requires its correct value. | |
3243 | */ | |
3244 | ac = cpu_cache_get(cachep); | |
1da177e4 | 3245 | } |
d5cff635 CM |
3246 | /* |
3247 | * To avoid a false negative, if an object that is in one of the | |
3248 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3249 | * treat the array pointers as a reference to the object. | |
3250 | */ | |
f3d8b53a O |
3251 | if (objp) |
3252 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3253 | return objp; |
3254 | } | |
3255 | ||
e498be7d | 3256 | #ifdef CONFIG_NUMA |
c61afb18 | 3257 | /* |
b2455396 | 3258 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3259 | * |
3260 | * If we are in_interrupt, then process context, including cpusets and | |
3261 | * mempolicy, may not apply and should not be used for allocation policy. | |
3262 | */ | |
3263 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3264 | { | |
3265 | int nid_alloc, nid_here; | |
3266 | ||
765c4507 | 3267 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3268 | return NULL; |
7d6e6d09 | 3269 | nid_alloc = nid_here = numa_mem_id(); |
c0ff7453 | 3270 | get_mems_allowed(); |
c61afb18 | 3271 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3272 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 PJ |
3273 | else if (current->mempolicy) |
3274 | nid_alloc = slab_node(current->mempolicy); | |
c0ff7453 | 3275 | put_mems_allowed(); |
c61afb18 | 3276 | if (nid_alloc != nid_here) |
8b98c169 | 3277 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3278 | return NULL; |
3279 | } | |
3280 | ||
765c4507 CL |
3281 | /* |
3282 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3283 | * certain node and fall back is permitted. First we scan all the |
3284 | * available nodelists for available objects. If that fails then we | |
3285 | * perform an allocation without specifying a node. This allows the page | |
3286 | * allocator to do its reclaim / fallback magic. We then insert the | |
3287 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3288 | */ |
8c8cc2c1 | 3289 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3290 | { |
8c8cc2c1 PE |
3291 | struct zonelist *zonelist; |
3292 | gfp_t local_flags; | |
dd1a239f | 3293 | struct zoneref *z; |
54a6eb5c MG |
3294 | struct zone *zone; |
3295 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3296 | void *obj = NULL; |
3c517a61 | 3297 | int nid; |
8c8cc2c1 PE |
3298 | |
3299 | if (flags & __GFP_THISNODE) | |
3300 | return NULL; | |
3301 | ||
c0ff7453 | 3302 | get_mems_allowed(); |
0e88460d | 3303 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
6cb06229 | 3304 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3305 | |
3c517a61 CL |
3306 | retry: |
3307 | /* | |
3308 | * Look through allowed nodes for objects available | |
3309 | * from existing per node queues. | |
3310 | */ | |
54a6eb5c MG |
3311 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3312 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3313 | |
54a6eb5c | 3314 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3c517a61 | 3315 | cache->nodelists[nid] && |
481c5346 | 3316 | cache->nodelists[nid]->free_objects) { |
3c517a61 CL |
3317 | obj = ____cache_alloc_node(cache, |
3318 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3319 | if (obj) |
3320 | break; | |
3321 | } | |
3c517a61 CL |
3322 | } |
3323 | ||
cfce6604 | 3324 | if (!obj) { |
3c517a61 CL |
3325 | /* |
3326 | * This allocation will be performed within the constraints | |
3327 | * of the current cpuset / memory policy requirements. | |
3328 | * We may trigger various forms of reclaim on the allowed | |
3329 | * set and go into memory reserves if necessary. | |
3330 | */ | |
dd47ea75 CL |
3331 | if (local_flags & __GFP_WAIT) |
3332 | local_irq_enable(); | |
3333 | kmem_flagcheck(cache, flags); | |
7d6e6d09 | 3334 | obj = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3335 | if (local_flags & __GFP_WAIT) |
3336 | local_irq_disable(); | |
3c517a61 CL |
3337 | if (obj) { |
3338 | /* | |
3339 | * Insert into the appropriate per node queues | |
3340 | */ | |
3341 | nid = page_to_nid(virt_to_page(obj)); | |
3342 | if (cache_grow(cache, flags, nid, obj)) { | |
3343 | obj = ____cache_alloc_node(cache, | |
3344 | flags | GFP_THISNODE, nid); | |
3345 | if (!obj) | |
3346 | /* | |
3347 | * Another processor may allocate the | |
3348 | * objects in the slab since we are | |
3349 | * not holding any locks. | |
3350 | */ | |
3351 | goto retry; | |
3352 | } else { | |
b6a60451 | 3353 | /* cache_grow already freed obj */ |
3c517a61 CL |
3354 | obj = NULL; |
3355 | } | |
3356 | } | |
aedb0eb1 | 3357 | } |
c0ff7453 | 3358 | put_mems_allowed(); |
765c4507 CL |
3359 | return obj; |
3360 | } | |
3361 | ||
e498be7d CL |
3362 | /* |
3363 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3364 | */ |
8b98c169 | 3365 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3366 | int nodeid) |
e498be7d CL |
3367 | { |
3368 | struct list_head *entry; | |
b28a02de PE |
3369 | struct slab *slabp; |
3370 | struct kmem_list3 *l3; | |
3371 | void *obj; | |
b28a02de PE |
3372 | int x; |
3373 | ||
3374 | l3 = cachep->nodelists[nodeid]; | |
3375 | BUG_ON(!l3); | |
3376 | ||
a737b3e2 | 3377 | retry: |
ca3b9b91 | 3378 | check_irq_off(); |
b28a02de PE |
3379 | spin_lock(&l3->list_lock); |
3380 | entry = l3->slabs_partial.next; | |
3381 | if (entry == &l3->slabs_partial) { | |
3382 | l3->free_touched = 1; | |
3383 | entry = l3->slabs_free.next; | |
3384 | if (entry == &l3->slabs_free) | |
3385 | goto must_grow; | |
3386 | } | |
3387 | ||
3388 | slabp = list_entry(entry, struct slab, list); | |
3389 | check_spinlock_acquired_node(cachep, nodeid); | |
3390 | check_slabp(cachep, slabp); | |
3391 | ||
3392 | STATS_INC_NODEALLOCS(cachep); | |
3393 | STATS_INC_ACTIVE(cachep); | |
3394 | STATS_SET_HIGH(cachep); | |
3395 | ||
3396 | BUG_ON(slabp->inuse == cachep->num); | |
3397 | ||
78d382d7 | 3398 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3399 | check_slabp(cachep, slabp); |
3400 | l3->free_objects--; | |
3401 | /* move slabp to correct slabp list: */ | |
3402 | list_del(&slabp->list); | |
3403 | ||
a737b3e2 | 3404 | if (slabp->free == BUFCTL_END) |
b28a02de | 3405 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3406 | else |
b28a02de | 3407 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3408 | |
b28a02de PE |
3409 | spin_unlock(&l3->list_lock); |
3410 | goto done; | |
e498be7d | 3411 | |
a737b3e2 | 3412 | must_grow: |
b28a02de | 3413 | spin_unlock(&l3->list_lock); |
3c517a61 | 3414 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3415 | if (x) |
3416 | goto retry; | |
1da177e4 | 3417 | |
8c8cc2c1 | 3418 | return fallback_alloc(cachep, flags); |
e498be7d | 3419 | |
a737b3e2 | 3420 | done: |
b28a02de | 3421 | return obj; |
e498be7d | 3422 | } |
8c8cc2c1 PE |
3423 | |
3424 | /** | |
3425 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3426 | * @cachep: The cache to allocate from. | |
3427 | * @flags: See kmalloc(). | |
3428 | * @nodeid: node number of the target node. | |
3429 | * @caller: return address of caller, used for debug information | |
3430 | * | |
3431 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3432 | * node, which can improve the performance for cpu bound structures. | |
3433 | * | |
3434 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3435 | */ | |
3436 | static __always_inline void * | |
3437 | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |
3438 | void *caller) | |
3439 | { | |
3440 | unsigned long save_flags; | |
3441 | void *ptr; | |
7d6e6d09 | 3442 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3443 | |
dcce284a | 3444 | flags &= gfp_allowed_mask; |
7e85ee0c | 3445 | |
cf40bd16 NP |
3446 | lockdep_trace_alloc(flags); |
3447 | ||
773ff60e | 3448 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3449 | return NULL; |
3450 | ||
8c8cc2c1 PE |
3451 | cache_alloc_debugcheck_before(cachep, flags); |
3452 | local_irq_save(save_flags); | |
3453 | ||
eacbbae3 | 3454 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3455 | nodeid = slab_node; |
8c8cc2c1 PE |
3456 | |
3457 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3458 | /* Node not bootstrapped yet */ | |
3459 | ptr = fallback_alloc(cachep, flags); | |
3460 | goto out; | |
3461 | } | |
3462 | ||
7d6e6d09 | 3463 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3464 | /* |
3465 | * Use the locally cached objects if possible. | |
3466 | * However ____cache_alloc does not allow fallback | |
3467 | * to other nodes. It may fail while we still have | |
3468 | * objects on other nodes available. | |
3469 | */ | |
3470 | ptr = ____cache_alloc(cachep, flags); | |
3471 | if (ptr) | |
3472 | goto out; | |
3473 | } | |
3474 | /* ___cache_alloc_node can fall back to other nodes */ | |
3475 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3476 | out: | |
3477 | local_irq_restore(save_flags); | |
3478 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
d5cff635 CM |
3479 | kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, |
3480 | flags); | |
8c8cc2c1 | 3481 | |
c175eea4 PE |
3482 | if (likely(ptr)) |
3483 | kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); | |
3484 | ||
d07dbea4 CL |
3485 | if (unlikely((flags & __GFP_ZERO) && ptr)) |
3486 | memset(ptr, 0, obj_size(cachep)); | |
3487 | ||
8c8cc2c1 PE |
3488 | return ptr; |
3489 | } | |
3490 | ||
3491 | static __always_inline void * | |
3492 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3493 | { | |
3494 | void *objp; | |
3495 | ||
3496 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3497 | objp = alternate_node_alloc(cache, flags); | |
3498 | if (objp) | |
3499 | goto out; | |
3500 | } | |
3501 | objp = ____cache_alloc(cache, flags); | |
3502 | ||
3503 | /* | |
3504 | * We may just have run out of memory on the local node. | |
3505 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3506 | */ | |
7d6e6d09 LS |
3507 | if (!objp) |
3508 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3509 | |
3510 | out: | |
3511 | return objp; | |
3512 | } | |
3513 | #else | |
3514 | ||
3515 | static __always_inline void * | |
3516 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3517 | { | |
3518 | return ____cache_alloc(cachep, flags); | |
3519 | } | |
3520 | ||
3521 | #endif /* CONFIG_NUMA */ | |
3522 | ||
3523 | static __always_inline void * | |
3524 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |
3525 | { | |
3526 | unsigned long save_flags; | |
3527 | void *objp; | |
3528 | ||
dcce284a | 3529 | flags &= gfp_allowed_mask; |
7e85ee0c | 3530 | |
cf40bd16 NP |
3531 | lockdep_trace_alloc(flags); |
3532 | ||
773ff60e | 3533 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3534 | return NULL; |
3535 | ||
8c8cc2c1 PE |
3536 | cache_alloc_debugcheck_before(cachep, flags); |
3537 | local_irq_save(save_flags); | |
3538 | objp = __do_cache_alloc(cachep, flags); | |
3539 | local_irq_restore(save_flags); | |
3540 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
d5cff635 CM |
3541 | kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, |
3542 | flags); | |
8c8cc2c1 PE |
3543 | prefetchw(objp); |
3544 | ||
c175eea4 PE |
3545 | if (likely(objp)) |
3546 | kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); | |
3547 | ||
d07dbea4 CL |
3548 | if (unlikely((flags & __GFP_ZERO) && objp)) |
3549 | memset(objp, 0, obj_size(cachep)); | |
3550 | ||
8c8cc2c1 PE |
3551 | return objp; |
3552 | } | |
e498be7d CL |
3553 | |
3554 | /* | |
3555 | * Caller needs to acquire correct kmem_list's list_lock | |
3556 | */ | |
343e0d7a | 3557 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3558 | int node) |
1da177e4 LT |
3559 | { |
3560 | int i; | |
e498be7d | 3561 | struct kmem_list3 *l3; |
1da177e4 LT |
3562 | |
3563 | for (i = 0; i < nr_objects; i++) { | |
3564 | void *objp = objpp[i]; | |
3565 | struct slab *slabp; | |
1da177e4 | 3566 | |
6ed5eb22 | 3567 | slabp = virt_to_slab(objp); |
ff69416e | 3568 | l3 = cachep->nodelists[node]; |
1da177e4 | 3569 | list_del(&slabp->list); |
ff69416e | 3570 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3571 | check_slabp(cachep, slabp); |
78d382d7 | 3572 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3573 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3574 | l3->free_objects++; |
1da177e4 LT |
3575 | check_slabp(cachep, slabp); |
3576 | ||
3577 | /* fixup slab chains */ | |
3578 | if (slabp->inuse == 0) { | |
e498be7d CL |
3579 | if (l3->free_objects > l3->free_limit) { |
3580 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3581 | /* No need to drop any previously held |
3582 | * lock here, even if we have a off-slab slab | |
3583 | * descriptor it is guaranteed to come from | |
3584 | * a different cache, refer to comments before | |
3585 | * alloc_slabmgmt. | |
3586 | */ | |
1da177e4 LT |
3587 | slab_destroy(cachep, slabp); |
3588 | } else { | |
e498be7d | 3589 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3590 | } |
3591 | } else { | |
3592 | /* Unconditionally move a slab to the end of the | |
3593 | * partial list on free - maximum time for the | |
3594 | * other objects to be freed, too. | |
3595 | */ | |
e498be7d | 3596 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3597 | } |
3598 | } | |
3599 | } | |
3600 | ||
343e0d7a | 3601 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3602 | { |
3603 | int batchcount; | |
e498be7d | 3604 | struct kmem_list3 *l3; |
7d6e6d09 | 3605 | int node = numa_mem_id(); |
1da177e4 LT |
3606 | |
3607 | batchcount = ac->batchcount; | |
3608 | #if DEBUG | |
3609 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3610 | #endif | |
3611 | check_irq_off(); | |
ff69416e | 3612 | l3 = cachep->nodelists[node]; |
873623df | 3613 | spin_lock(&l3->list_lock); |
e498be7d CL |
3614 | if (l3->shared) { |
3615 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3616 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3617 | if (max) { |
3618 | if (batchcount > max) | |
3619 | batchcount = max; | |
e498be7d | 3620 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3621 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3622 | shared_array->avail += batchcount; |
3623 | goto free_done; | |
3624 | } | |
3625 | } | |
3626 | ||
ff69416e | 3627 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3628 | free_done: |
1da177e4 LT |
3629 | #if STATS |
3630 | { | |
3631 | int i = 0; | |
3632 | struct list_head *p; | |
3633 | ||
e498be7d CL |
3634 | p = l3->slabs_free.next; |
3635 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3636 | struct slab *slabp; |
3637 | ||
3638 | slabp = list_entry(p, struct slab, list); | |
3639 | BUG_ON(slabp->inuse); | |
3640 | ||
3641 | i++; | |
3642 | p = p->next; | |
3643 | } | |
3644 | STATS_SET_FREEABLE(cachep, i); | |
3645 | } | |
3646 | #endif | |
e498be7d | 3647 | spin_unlock(&l3->list_lock); |
1da177e4 | 3648 | ac->avail -= batchcount; |
a737b3e2 | 3649 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3650 | } |
3651 | ||
3652 | /* | |
a737b3e2 AM |
3653 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3654 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3655 | */ |
a947eb95 SS |
3656 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3657 | void *caller) | |
1da177e4 | 3658 | { |
9a2dba4b | 3659 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3660 | |
3661 | check_irq_off(); | |
d5cff635 | 3662 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3663 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3664 | |
c175eea4 PE |
3665 | kmemcheck_slab_free(cachep, objp, obj_size(cachep)); |
3666 | ||
1807a1aa SS |
3667 | /* |
3668 | * Skip calling cache_free_alien() when the platform is not numa. | |
3669 | * This will avoid cache misses that happen while accessing slabp (which | |
3670 | * is per page memory reference) to get nodeid. Instead use a global | |
3671 | * variable to skip the call, which is mostly likely to be present in | |
3672 | * the cache. | |
3673 | */ | |
b6e68bc1 | 3674 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3675 | return; |
3676 | ||
1da177e4 LT |
3677 | if (likely(ac->avail < ac->limit)) { |
3678 | STATS_INC_FREEHIT(cachep); | |
e498be7d | 3679 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3680 | return; |
3681 | } else { | |
3682 | STATS_INC_FREEMISS(cachep); | |
3683 | cache_flusharray(cachep, ac); | |
e498be7d | 3684 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3685 | } |
3686 | } | |
3687 | ||
3688 | /** | |
3689 | * kmem_cache_alloc - Allocate an object | |
3690 | * @cachep: The cache to allocate from. | |
3691 | * @flags: See kmalloc(). | |
3692 | * | |
3693 | * Allocate an object from this cache. The flags are only relevant | |
3694 | * if the cache has no available objects. | |
3695 | */ | |
343e0d7a | 3696 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3697 | { |
36555751 EGM |
3698 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3699 | ||
ca2b84cb EGM |
3700 | trace_kmem_cache_alloc(_RET_IP_, ret, |
3701 | obj_size(cachep), cachep->buffer_size, flags); | |
36555751 EGM |
3702 | |
3703 | return ret; | |
1da177e4 LT |
3704 | } |
3705 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3706 | ||
0f24f128 | 3707 | #ifdef CONFIG_TRACING |
85beb586 SR |
3708 | void * |
3709 | kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) | |
36555751 | 3710 | { |
85beb586 SR |
3711 | void *ret; |
3712 | ||
3713 | ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); | |
3714 | ||
3715 | trace_kmalloc(_RET_IP_, ret, | |
3716 | size, slab_buffer_size(cachep), flags); | |
3717 | return ret; | |
36555751 | 3718 | } |
85beb586 | 3719 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3720 | #endif |
3721 | ||
1da177e4 | 3722 | #ifdef CONFIG_NUMA |
8b98c169 CH |
3723 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3724 | { | |
36555751 EGM |
3725 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3726 | __builtin_return_address(0)); | |
3727 | ||
ca2b84cb EGM |
3728 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3729 | obj_size(cachep), cachep->buffer_size, | |
3730 | flags, nodeid); | |
36555751 EGM |
3731 | |
3732 | return ret; | |
8b98c169 | 3733 | } |
1da177e4 LT |
3734 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3735 | ||
0f24f128 | 3736 | #ifdef CONFIG_TRACING |
85beb586 SR |
3737 | void *kmem_cache_alloc_node_trace(size_t size, |
3738 | struct kmem_cache *cachep, | |
3739 | gfp_t flags, | |
3740 | int nodeid) | |
36555751 | 3741 | { |
85beb586 SR |
3742 | void *ret; |
3743 | ||
3744 | ret = __cache_alloc_node(cachep, flags, nodeid, | |
36555751 | 3745 | __builtin_return_address(0)); |
85beb586 SR |
3746 | trace_kmalloc_node(_RET_IP_, ret, |
3747 | size, slab_buffer_size(cachep), | |
3748 | flags, nodeid); | |
3749 | return ret; | |
36555751 | 3750 | } |
85beb586 | 3751 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3752 | #endif |
3753 | ||
8b98c169 CH |
3754 | static __always_inline void * |
3755 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | |
97e2bde4 | 3756 | { |
343e0d7a | 3757 | struct kmem_cache *cachep; |
97e2bde4 MS |
3758 | |
3759 | cachep = kmem_find_general_cachep(size, flags); | |
6cb8f913 CL |
3760 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3761 | return cachep; | |
85beb586 | 3762 | return kmem_cache_alloc_node_trace(size, cachep, flags, node); |
97e2bde4 | 3763 | } |
8b98c169 | 3764 | |
0bb38a5c | 3765 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
8b98c169 CH |
3766 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3767 | { | |
3768 | return __do_kmalloc_node(size, flags, node, | |
3769 | __builtin_return_address(0)); | |
3770 | } | |
dbe5e69d | 3771 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3772 | |
3773 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3774 | int node, unsigned long caller) |
8b98c169 | 3775 | { |
ce71e27c | 3776 | return __do_kmalloc_node(size, flags, node, (void *)caller); |
8b98c169 CH |
3777 | } |
3778 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3779 | #else | |
3780 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3781 | { | |
3782 | return __do_kmalloc_node(size, flags, node, NULL); | |
3783 | } | |
3784 | EXPORT_SYMBOL(__kmalloc_node); | |
0bb38a5c | 3785 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ |
8b98c169 | 3786 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3787 | |
3788 | /** | |
800590f5 | 3789 | * __do_kmalloc - allocate memory |
1da177e4 | 3790 | * @size: how many bytes of memory are required. |
800590f5 | 3791 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3792 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3793 | */ |
7fd6b141 PE |
3794 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3795 | void *caller) | |
1da177e4 | 3796 | { |
343e0d7a | 3797 | struct kmem_cache *cachep; |
36555751 | 3798 | void *ret; |
1da177e4 | 3799 | |
97e2bde4 MS |
3800 | /* If you want to save a few bytes .text space: replace |
3801 | * __ with kmem_. | |
3802 | * Then kmalloc uses the uninlined functions instead of the inline | |
3803 | * functions. | |
3804 | */ | |
3805 | cachep = __find_general_cachep(size, flags); | |
a5c96d8a LT |
3806 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3807 | return cachep; | |
36555751 EGM |
3808 | ret = __cache_alloc(cachep, flags, caller); |
3809 | ||
ca2b84cb EGM |
3810 | trace_kmalloc((unsigned long) caller, ret, |
3811 | size, cachep->buffer_size, flags); | |
36555751 EGM |
3812 | |
3813 | return ret; | |
7fd6b141 PE |
3814 | } |
3815 | ||
7fd6b141 | 3816 | |
0bb38a5c | 3817 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
7fd6b141 PE |
3818 | void *__kmalloc(size_t size, gfp_t flags) |
3819 | { | |
871751e2 | 3820 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
1da177e4 LT |
3821 | } |
3822 | EXPORT_SYMBOL(__kmalloc); | |
3823 | ||
ce71e27c | 3824 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3825 | { |
ce71e27c | 3826 | return __do_kmalloc(size, flags, (void *)caller); |
7fd6b141 PE |
3827 | } |
3828 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3829 | |
3830 | #else | |
3831 | void *__kmalloc(size_t size, gfp_t flags) | |
3832 | { | |
3833 | return __do_kmalloc(size, flags, NULL); | |
3834 | } | |
3835 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3836 | #endif |
3837 | ||
1da177e4 LT |
3838 | /** |
3839 | * kmem_cache_free - Deallocate an object | |
3840 | * @cachep: The cache the allocation was from. | |
3841 | * @objp: The previously allocated object. | |
3842 | * | |
3843 | * Free an object which was previously allocated from this | |
3844 | * cache. | |
3845 | */ | |
343e0d7a | 3846 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3847 | { |
3848 | unsigned long flags; | |
3849 | ||
3850 | local_irq_save(flags); | |
898552c9 | 3851 | debug_check_no_locks_freed(objp, obj_size(cachep)); |
3ac7fe5a TG |
3852 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
3853 | debug_check_no_obj_freed(objp, obj_size(cachep)); | |
a947eb95 | 3854 | __cache_free(cachep, objp, __builtin_return_address(0)); |
1da177e4 | 3855 | local_irq_restore(flags); |
36555751 | 3856 | |
ca2b84cb | 3857 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3858 | } |
3859 | EXPORT_SYMBOL(kmem_cache_free); | |
3860 | ||
1da177e4 LT |
3861 | /** |
3862 | * kfree - free previously allocated memory | |
3863 | * @objp: pointer returned by kmalloc. | |
3864 | * | |
80e93eff PE |
3865 | * If @objp is NULL, no operation is performed. |
3866 | * | |
1da177e4 LT |
3867 | * Don't free memory not originally allocated by kmalloc() |
3868 | * or you will run into trouble. | |
3869 | */ | |
3870 | void kfree(const void *objp) | |
3871 | { | |
343e0d7a | 3872 | struct kmem_cache *c; |
1da177e4 LT |
3873 | unsigned long flags; |
3874 | ||
2121db74 PE |
3875 | trace_kfree(_RET_IP_, objp); |
3876 | ||
6cb8f913 | 3877 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3878 | return; |
3879 | local_irq_save(flags); | |
3880 | kfree_debugcheck(objp); | |
6ed5eb22 | 3881 | c = virt_to_cache(objp); |
f9b8404c | 3882 | debug_check_no_locks_freed(objp, obj_size(c)); |
3ac7fe5a | 3883 | debug_check_no_obj_freed(objp, obj_size(c)); |
a947eb95 | 3884 | __cache_free(c, (void *)objp, __builtin_return_address(0)); |
1da177e4 LT |
3885 | local_irq_restore(flags); |
3886 | } | |
3887 | EXPORT_SYMBOL(kfree); | |
3888 | ||
343e0d7a | 3889 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
1da177e4 | 3890 | { |
3dafccf2 | 3891 | return obj_size(cachep); |
1da177e4 LT |
3892 | } |
3893 | EXPORT_SYMBOL(kmem_cache_size); | |
3894 | ||
e498be7d | 3895 | /* |
183ff22b | 3896 | * This initializes kmem_list3 or resizes various caches for all nodes. |
e498be7d | 3897 | */ |
83b519e8 | 3898 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3899 | { |
3900 | int node; | |
3901 | struct kmem_list3 *l3; | |
cafeb02e | 3902 | struct array_cache *new_shared; |
3395ee05 | 3903 | struct array_cache **new_alien = NULL; |
e498be7d | 3904 | |
9c09a95c | 3905 | for_each_online_node(node) { |
cafeb02e | 3906 | |
3395ee05 | 3907 | if (use_alien_caches) { |
83b519e8 | 3908 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3909 | if (!new_alien) |
3910 | goto fail; | |
3911 | } | |
cafeb02e | 3912 | |
63109846 ED |
3913 | new_shared = NULL; |
3914 | if (cachep->shared) { | |
3915 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3916 | cachep->shared*cachep->batchcount, |
83b519e8 | 3917 | 0xbaadf00d, gfp); |
63109846 ED |
3918 | if (!new_shared) { |
3919 | free_alien_cache(new_alien); | |
3920 | goto fail; | |
3921 | } | |
0718dc2a | 3922 | } |
cafeb02e | 3923 | |
a737b3e2 AM |
3924 | l3 = cachep->nodelists[node]; |
3925 | if (l3) { | |
cafeb02e CL |
3926 | struct array_cache *shared = l3->shared; |
3927 | ||
e498be7d CL |
3928 | spin_lock_irq(&l3->list_lock); |
3929 | ||
cafeb02e | 3930 | if (shared) |
0718dc2a CL |
3931 | free_block(cachep, shared->entry, |
3932 | shared->avail, node); | |
e498be7d | 3933 | |
cafeb02e CL |
3934 | l3->shared = new_shared; |
3935 | if (!l3->alien) { | |
e498be7d CL |
3936 | l3->alien = new_alien; |
3937 | new_alien = NULL; | |
3938 | } | |
b28a02de | 3939 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3940 | cachep->batchcount + cachep->num; |
e498be7d | 3941 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 3942 | kfree(shared); |
e498be7d CL |
3943 | free_alien_cache(new_alien); |
3944 | continue; | |
3945 | } | |
83b519e8 | 3946 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); |
0718dc2a CL |
3947 | if (!l3) { |
3948 | free_alien_cache(new_alien); | |
3949 | kfree(new_shared); | |
e498be7d | 3950 | goto fail; |
0718dc2a | 3951 | } |
e498be7d CL |
3952 | |
3953 | kmem_list3_init(l3); | |
3954 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 3955 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 3956 | l3->shared = new_shared; |
e498be7d | 3957 | l3->alien = new_alien; |
b28a02de | 3958 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3959 | cachep->batchcount + cachep->num; |
e498be7d CL |
3960 | cachep->nodelists[node] = l3; |
3961 | } | |
cafeb02e | 3962 | return 0; |
0718dc2a | 3963 | |
a737b3e2 | 3964 | fail: |
0718dc2a CL |
3965 | if (!cachep->next.next) { |
3966 | /* Cache is not active yet. Roll back what we did */ | |
3967 | node--; | |
3968 | while (node >= 0) { | |
3969 | if (cachep->nodelists[node]) { | |
3970 | l3 = cachep->nodelists[node]; | |
3971 | ||
3972 | kfree(l3->shared); | |
3973 | free_alien_cache(l3->alien); | |
3974 | kfree(l3); | |
3975 | cachep->nodelists[node] = NULL; | |
3976 | } | |
3977 | node--; | |
3978 | } | |
3979 | } | |
cafeb02e | 3980 | return -ENOMEM; |
e498be7d CL |
3981 | } |
3982 | ||
1da177e4 | 3983 | struct ccupdate_struct { |
343e0d7a | 3984 | struct kmem_cache *cachep; |
acfe7d74 | 3985 | struct array_cache *new[0]; |
1da177e4 LT |
3986 | }; |
3987 | ||
3988 | static void do_ccupdate_local(void *info) | |
3989 | { | |
a737b3e2 | 3990 | struct ccupdate_struct *new = info; |
1da177e4 LT |
3991 | struct array_cache *old; |
3992 | ||
3993 | check_irq_off(); | |
9a2dba4b | 3994 | old = cpu_cache_get(new->cachep); |
e498be7d | 3995 | |
1da177e4 LT |
3996 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3997 | new->new[smp_processor_id()] = old; | |
3998 | } | |
3999 | ||
b5d8ca7c | 4000 | /* Always called with the cache_chain_mutex held */ |
a737b3e2 | 4001 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 4002 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 4003 | { |
d2e7b7d0 | 4004 | struct ccupdate_struct *new; |
2ed3a4ef | 4005 | int i; |
1da177e4 | 4006 | |
acfe7d74 ED |
4007 | new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), |
4008 | gfp); | |
d2e7b7d0 SS |
4009 | if (!new) |
4010 | return -ENOMEM; | |
4011 | ||
e498be7d | 4012 | for_each_online_cpu(i) { |
7d6e6d09 | 4013 | new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, |
83b519e8 | 4014 | batchcount, gfp); |
d2e7b7d0 | 4015 | if (!new->new[i]) { |
b28a02de | 4016 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
4017 | kfree(new->new[i]); |
4018 | kfree(new); | |
e498be7d | 4019 | return -ENOMEM; |
1da177e4 LT |
4020 | } |
4021 | } | |
d2e7b7d0 | 4022 | new->cachep = cachep; |
1da177e4 | 4023 | |
15c8b6c1 | 4024 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 4025 | |
1da177e4 | 4026 | check_irq_on(); |
1da177e4 LT |
4027 | cachep->batchcount = batchcount; |
4028 | cachep->limit = limit; | |
e498be7d | 4029 | cachep->shared = shared; |
1da177e4 | 4030 | |
e498be7d | 4031 | for_each_online_cpu(i) { |
d2e7b7d0 | 4032 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
4033 | if (!ccold) |
4034 | continue; | |
7d6e6d09 LS |
4035 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); |
4036 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | |
4037 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | |
1da177e4 LT |
4038 | kfree(ccold); |
4039 | } | |
d2e7b7d0 | 4040 | kfree(new); |
83b519e8 | 4041 | return alloc_kmemlist(cachep, gfp); |
1da177e4 LT |
4042 | } |
4043 | ||
b5d8ca7c | 4044 | /* Called with cache_chain_mutex held always */ |
83b519e8 | 4045 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
4046 | { |
4047 | int err; | |
4048 | int limit, shared; | |
4049 | ||
a737b3e2 AM |
4050 | /* |
4051 | * The head array serves three purposes: | |
1da177e4 LT |
4052 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
4053 | * - reduce the number of spinlock operations. | |
a737b3e2 | 4054 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
4055 | * bufctl chains: array operations are cheaper. |
4056 | * The numbers are guessed, we should auto-tune as described by | |
4057 | * Bonwick. | |
4058 | */ | |
3dafccf2 | 4059 | if (cachep->buffer_size > 131072) |
1da177e4 | 4060 | limit = 1; |
3dafccf2 | 4061 | else if (cachep->buffer_size > PAGE_SIZE) |
1da177e4 | 4062 | limit = 8; |
3dafccf2 | 4063 | else if (cachep->buffer_size > 1024) |
1da177e4 | 4064 | limit = 24; |
3dafccf2 | 4065 | else if (cachep->buffer_size > 256) |
1da177e4 LT |
4066 | limit = 54; |
4067 | else | |
4068 | limit = 120; | |
4069 | ||
a737b3e2 AM |
4070 | /* |
4071 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
4072 | * allocation behaviour: Most allocs on one cpu, most free operations |
4073 | * on another cpu. For these cases, an efficient object passing between | |
4074 | * cpus is necessary. This is provided by a shared array. The array | |
4075 | * replaces Bonwick's magazine layer. | |
4076 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
4077 | * to a larger limit. Thus disabled by default. | |
4078 | */ | |
4079 | shared = 0; | |
364fbb29 | 4080 | if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 4081 | shared = 8; |
1da177e4 LT |
4082 | |
4083 | #if DEBUG | |
a737b3e2 AM |
4084 | /* |
4085 | * With debugging enabled, large batchcount lead to excessively long | |
4086 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
4087 | */ |
4088 | if (limit > 32) | |
4089 | limit = 32; | |
4090 | #endif | |
83b519e8 | 4091 | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); |
1da177e4 LT |
4092 | if (err) |
4093 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 4094 | cachep->name, -err); |
2ed3a4ef | 4095 | return err; |
1da177e4 LT |
4096 | } |
4097 | ||
1b55253a CL |
4098 | /* |
4099 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4100 | * necessary. Note that the l3 listlock also protects the array_cache |
4101 | * if drain_array() is used on the shared array. | |
1b55253a | 4102 | */ |
68a1b195 | 4103 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
1b55253a | 4104 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
4105 | { |
4106 | int tofree; | |
4107 | ||
1b55253a CL |
4108 | if (!ac || !ac->avail) |
4109 | return; | |
1da177e4 LT |
4110 | if (ac->touched && !force) { |
4111 | ac->touched = 0; | |
b18e7e65 | 4112 | } else { |
1b55253a | 4113 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4114 | if (ac->avail) { |
4115 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4116 | if (tofree > ac->avail) | |
4117 | tofree = (ac->avail + 1) / 2; | |
4118 | free_block(cachep, ac->entry, tofree, node); | |
4119 | ac->avail -= tofree; | |
4120 | memmove(ac->entry, &(ac->entry[tofree]), | |
4121 | sizeof(void *) * ac->avail); | |
4122 | } | |
1b55253a | 4123 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4124 | } |
4125 | } | |
4126 | ||
4127 | /** | |
4128 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4129 | * @w: work descriptor |
1da177e4 LT |
4130 | * |
4131 | * Called from workqueue/eventd every few seconds. | |
4132 | * Purpose: | |
4133 | * - clear the per-cpu caches for this CPU. | |
4134 | * - return freeable pages to the main free memory pool. | |
4135 | * | |
a737b3e2 AM |
4136 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4137 | * again on the next iteration. | |
1da177e4 | 4138 | */ |
7c5cae36 | 4139 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4140 | { |
7a7c381d | 4141 | struct kmem_cache *searchp; |
e498be7d | 4142 | struct kmem_list3 *l3; |
7d6e6d09 | 4143 | int node = numa_mem_id(); |
bf6aede7 | 4144 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4145 | |
7c5cae36 | 4146 | if (!mutex_trylock(&cache_chain_mutex)) |
1da177e4 | 4147 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4148 | goto out; |
1da177e4 | 4149 | |
7a7c381d | 4150 | list_for_each_entry(searchp, &cache_chain, next) { |
1da177e4 LT |
4151 | check_irq_on(); |
4152 | ||
35386e3b CL |
4153 | /* |
4154 | * We only take the l3 lock if absolutely necessary and we | |
4155 | * have established with reasonable certainty that | |
4156 | * we can do some work if the lock was obtained. | |
4157 | */ | |
aab2207c | 4158 | l3 = searchp->nodelists[node]; |
35386e3b | 4159 | |
8fce4d8e | 4160 | reap_alien(searchp, l3); |
1da177e4 | 4161 | |
aab2207c | 4162 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4163 | |
35386e3b CL |
4164 | /* |
4165 | * These are racy checks but it does not matter | |
4166 | * if we skip one check or scan twice. | |
4167 | */ | |
e498be7d | 4168 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4169 | goto next; |
1da177e4 | 4170 | |
e498be7d | 4171 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4172 | |
aab2207c | 4173 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4174 | |
ed11d9eb | 4175 | if (l3->free_touched) |
e498be7d | 4176 | l3->free_touched = 0; |
ed11d9eb CL |
4177 | else { |
4178 | int freed; | |
1da177e4 | 4179 | |
ed11d9eb CL |
4180 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4181 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4182 | STATS_ADD_REAPED(searchp, freed); | |
4183 | } | |
35386e3b | 4184 | next: |
1da177e4 LT |
4185 | cond_resched(); |
4186 | } | |
4187 | check_irq_on(); | |
fc0abb14 | 4188 | mutex_unlock(&cache_chain_mutex); |
8fce4d8e | 4189 | next_reap_node(); |
7c5cae36 | 4190 | out: |
a737b3e2 | 4191 | /* Set up the next iteration */ |
7c5cae36 | 4192 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4193 | } |
4194 | ||
158a9624 | 4195 | #ifdef CONFIG_SLABINFO |
1da177e4 | 4196 | |
85289f98 | 4197 | static void print_slabinfo_header(struct seq_file *m) |
1da177e4 | 4198 | { |
85289f98 PE |
4199 | /* |
4200 | * Output format version, so at least we can change it | |
4201 | * without _too_ many complaints. | |
4202 | */ | |
1da177e4 | 4203 | #if STATS |
85289f98 | 4204 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
1da177e4 | 4205 | #else |
85289f98 | 4206 | seq_puts(m, "slabinfo - version: 2.1\n"); |
1da177e4 | 4207 | #endif |
85289f98 PE |
4208 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4209 | "<objperslab> <pagesperslab>"); | |
4210 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4211 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1da177e4 | 4212 | #if STATS |
85289f98 | 4213 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
fb7faf33 | 4214 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
85289f98 | 4215 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1da177e4 | 4216 | #endif |
85289f98 PE |
4217 | seq_putc(m, '\n'); |
4218 | } | |
4219 | ||
4220 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4221 | { | |
4222 | loff_t n = *pos; | |
85289f98 | 4223 | |
fc0abb14 | 4224 | mutex_lock(&cache_chain_mutex); |
85289f98 PE |
4225 | if (!n) |
4226 | print_slabinfo_header(m); | |
b92151ba PE |
4227 | |
4228 | return seq_list_start(&cache_chain, *pos); | |
1da177e4 LT |
4229 | } |
4230 | ||
4231 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4232 | { | |
b92151ba | 4233 | return seq_list_next(p, &cache_chain, pos); |
1da177e4 LT |
4234 | } |
4235 | ||
4236 | static void s_stop(struct seq_file *m, void *p) | |
4237 | { | |
fc0abb14 | 4238 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4239 | } |
4240 | ||
4241 | static int s_show(struct seq_file *m, void *p) | |
4242 | { | |
b92151ba | 4243 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
b28a02de PE |
4244 | struct slab *slabp; |
4245 | unsigned long active_objs; | |
4246 | unsigned long num_objs; | |
4247 | unsigned long active_slabs = 0; | |
4248 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4249 | const char *name; |
1da177e4 | 4250 | char *error = NULL; |
e498be7d CL |
4251 | int node; |
4252 | struct kmem_list3 *l3; | |
1da177e4 | 4253 | |
1da177e4 LT |
4254 | active_objs = 0; |
4255 | num_slabs = 0; | |
e498be7d CL |
4256 | for_each_online_node(node) { |
4257 | l3 = cachep->nodelists[node]; | |
4258 | if (!l3) | |
4259 | continue; | |
4260 | ||
ca3b9b91 RT |
4261 | check_irq_on(); |
4262 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4263 | |
7a7c381d | 4264 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4265 | if (slabp->inuse != cachep->num && !error) |
4266 | error = "slabs_full accounting error"; | |
4267 | active_objs += cachep->num; | |
4268 | active_slabs++; | |
4269 | } | |
7a7c381d | 4270 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4271 | if (slabp->inuse == cachep->num && !error) |
4272 | error = "slabs_partial inuse accounting error"; | |
4273 | if (!slabp->inuse && !error) | |
4274 | error = "slabs_partial/inuse accounting error"; | |
4275 | active_objs += slabp->inuse; | |
4276 | active_slabs++; | |
4277 | } | |
7a7c381d | 4278 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4279 | if (slabp->inuse && !error) |
4280 | error = "slabs_free/inuse accounting error"; | |
4281 | num_slabs++; | |
4282 | } | |
4283 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4284 | if (l3->shared) |
4285 | shared_avail += l3->shared->avail; | |
e498be7d | 4286 | |
ca3b9b91 | 4287 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4288 | } |
b28a02de PE |
4289 | num_slabs += active_slabs; |
4290 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4291 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4292 | error = "free_objects accounting error"; |
4293 | ||
b28a02de | 4294 | name = cachep->name; |
1da177e4 LT |
4295 | if (error) |
4296 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4297 | ||
4298 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3dafccf2 | 4299 | name, active_objs, num_objs, cachep->buffer_size, |
b28a02de | 4300 | cachep->num, (1 << cachep->gfporder)); |
1da177e4 | 4301 | seq_printf(m, " : tunables %4u %4u %4u", |
b28a02de | 4302 | cachep->limit, cachep->batchcount, cachep->shared); |
e498be7d | 4303 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
b28a02de | 4304 | active_slabs, num_slabs, shared_avail); |
1da177e4 | 4305 | #if STATS |
b28a02de | 4306 | { /* list3 stats */ |
1da177e4 LT |
4307 | unsigned long high = cachep->high_mark; |
4308 | unsigned long allocs = cachep->num_allocations; | |
4309 | unsigned long grown = cachep->grown; | |
4310 | unsigned long reaped = cachep->reaped; | |
4311 | unsigned long errors = cachep->errors; | |
4312 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4313 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4314 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4315 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4316 | |
e92dd4fd JP |
4317 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4318 | "%4lu %4lu %4lu %4lu %4lu", | |
4319 | allocs, high, grown, | |
4320 | reaped, errors, max_freeable, node_allocs, | |
4321 | node_frees, overflows); | |
1da177e4 LT |
4322 | } |
4323 | /* cpu stats */ | |
4324 | { | |
4325 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4326 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4327 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4328 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4329 | ||
4330 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4331 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4332 | } |
4333 | #endif | |
4334 | seq_putc(m, '\n'); | |
1da177e4 LT |
4335 | return 0; |
4336 | } | |
4337 | ||
4338 | /* | |
4339 | * slabinfo_op - iterator that generates /proc/slabinfo | |
4340 | * | |
4341 | * Output layout: | |
4342 | * cache-name | |
4343 | * num-active-objs | |
4344 | * total-objs | |
4345 | * object size | |
4346 | * num-active-slabs | |
4347 | * total-slabs | |
4348 | * num-pages-per-slab | |
4349 | * + further values on SMP and with statistics enabled | |
4350 | */ | |
4351 | ||
7b3c3a50 | 4352 | static const struct seq_operations slabinfo_op = { |
b28a02de PE |
4353 | .start = s_start, |
4354 | .next = s_next, | |
4355 | .stop = s_stop, | |
4356 | .show = s_show, | |
1da177e4 LT |
4357 | }; |
4358 | ||
4359 | #define MAX_SLABINFO_WRITE 128 | |
4360 | /** | |
4361 | * slabinfo_write - Tuning for the slab allocator | |
4362 | * @file: unused | |
4363 | * @buffer: user buffer | |
4364 | * @count: data length | |
4365 | * @ppos: unused | |
4366 | */ | |
68a1b195 | 4367 | static ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4368 | size_t count, loff_t *ppos) |
1da177e4 | 4369 | { |
b28a02de | 4370 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4371 | int limit, batchcount, shared, res; |
7a7c381d | 4372 | struct kmem_cache *cachep; |
b28a02de | 4373 | |
1da177e4 LT |
4374 | if (count > MAX_SLABINFO_WRITE) |
4375 | return -EINVAL; | |
4376 | if (copy_from_user(&kbuf, buffer, count)) | |
4377 | return -EFAULT; | |
b28a02de | 4378 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4379 | |
4380 | tmp = strchr(kbuf, ' '); | |
4381 | if (!tmp) | |
4382 | return -EINVAL; | |
4383 | *tmp = '\0'; | |
4384 | tmp++; | |
4385 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4386 | return -EINVAL; | |
4387 | ||
4388 | /* Find the cache in the chain of caches. */ | |
fc0abb14 | 4389 | mutex_lock(&cache_chain_mutex); |
1da177e4 | 4390 | res = -EINVAL; |
7a7c381d | 4391 | list_for_each_entry(cachep, &cache_chain, next) { |
1da177e4 | 4392 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4393 | if (limit < 1 || batchcount < 1 || |
4394 | batchcount > limit || shared < 0) { | |
e498be7d | 4395 | res = 0; |
1da177e4 | 4396 | } else { |
e498be7d | 4397 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4398 | batchcount, shared, |
4399 | GFP_KERNEL); | |
1da177e4 LT |
4400 | } |
4401 | break; | |
4402 | } | |
4403 | } | |
fc0abb14 | 4404 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4405 | if (res >= 0) |
4406 | res = count; | |
4407 | return res; | |
4408 | } | |
871751e2 | 4409 | |
7b3c3a50 AD |
4410 | static int slabinfo_open(struct inode *inode, struct file *file) |
4411 | { | |
4412 | return seq_open(file, &slabinfo_op); | |
4413 | } | |
4414 | ||
4415 | static const struct file_operations proc_slabinfo_operations = { | |
4416 | .open = slabinfo_open, | |
4417 | .read = seq_read, | |
4418 | .write = slabinfo_write, | |
4419 | .llseek = seq_lseek, | |
4420 | .release = seq_release, | |
4421 | }; | |
4422 | ||
871751e2 AV |
4423 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4424 | ||
4425 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4426 | { | |
871751e2 | 4427 | mutex_lock(&cache_chain_mutex); |
b92151ba | 4428 | return seq_list_start(&cache_chain, *pos); |
871751e2 AV |
4429 | } |
4430 | ||
4431 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4432 | { | |
4433 | unsigned long *p; | |
4434 | int l; | |
4435 | if (!v) | |
4436 | return 1; | |
4437 | l = n[1]; | |
4438 | p = n + 2; | |
4439 | while (l) { | |
4440 | int i = l/2; | |
4441 | unsigned long *q = p + 2 * i; | |
4442 | if (*q == v) { | |
4443 | q[1]++; | |
4444 | return 1; | |
4445 | } | |
4446 | if (*q > v) { | |
4447 | l = i; | |
4448 | } else { | |
4449 | p = q + 2; | |
4450 | l -= i + 1; | |
4451 | } | |
4452 | } | |
4453 | if (++n[1] == n[0]) | |
4454 | return 0; | |
4455 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4456 | p[0] = v; | |
4457 | p[1] = 1; | |
4458 | return 1; | |
4459 | } | |
4460 | ||
4461 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4462 | { | |
4463 | void *p; | |
4464 | int i; | |
4465 | if (n[0] == n[1]) | |
4466 | return; | |
4467 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { | |
4468 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) | |
4469 | continue; | |
4470 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4471 | return; | |
4472 | } | |
4473 | } | |
4474 | ||
4475 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4476 | { | |
4477 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4478 | unsigned long offset, size; |
9281acea | 4479 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4480 | |
a5c43dae | 4481 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4482 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4483 | if (modname[0]) |
871751e2 AV |
4484 | seq_printf(m, " [%s]", modname); |
4485 | return; | |
4486 | } | |
4487 | #endif | |
4488 | seq_printf(m, "%p", (void *)address); | |
4489 | } | |
4490 | ||
4491 | static int leaks_show(struct seq_file *m, void *p) | |
4492 | { | |
b92151ba | 4493 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
871751e2 AV |
4494 | struct slab *slabp; |
4495 | struct kmem_list3 *l3; | |
4496 | const char *name; | |
4497 | unsigned long *n = m->private; | |
4498 | int node; | |
4499 | int i; | |
4500 | ||
4501 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4502 | return 0; | |
4503 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4504 | return 0; | |
4505 | ||
4506 | /* OK, we can do it */ | |
4507 | ||
4508 | n[1] = 0; | |
4509 | ||
4510 | for_each_online_node(node) { | |
4511 | l3 = cachep->nodelists[node]; | |
4512 | if (!l3) | |
4513 | continue; | |
4514 | ||
4515 | check_irq_on(); | |
4516 | spin_lock_irq(&l3->list_lock); | |
4517 | ||
7a7c381d | 4518 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4519 | handle_slab(n, cachep, slabp); |
7a7c381d | 4520 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4521 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4522 | spin_unlock_irq(&l3->list_lock); |
4523 | } | |
4524 | name = cachep->name; | |
4525 | if (n[0] == n[1]) { | |
4526 | /* Increase the buffer size */ | |
4527 | mutex_unlock(&cache_chain_mutex); | |
4528 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | |
4529 | if (!m->private) { | |
4530 | /* Too bad, we are really out */ | |
4531 | m->private = n; | |
4532 | mutex_lock(&cache_chain_mutex); | |
4533 | return -ENOMEM; | |
4534 | } | |
4535 | *(unsigned long *)m->private = n[0] * 2; | |
4536 | kfree(n); | |
4537 | mutex_lock(&cache_chain_mutex); | |
4538 | /* Now make sure this entry will be retried */ | |
4539 | m->count = m->size; | |
4540 | return 0; | |
4541 | } | |
4542 | for (i = 0; i < n[1]; i++) { | |
4543 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4544 | show_symbol(m, n[2*i+2]); | |
4545 | seq_putc(m, '\n'); | |
4546 | } | |
d2e7b7d0 | 4547 | |
871751e2 AV |
4548 | return 0; |
4549 | } | |
4550 | ||
a0ec95a8 | 4551 | static const struct seq_operations slabstats_op = { |
871751e2 AV |
4552 | .start = leaks_start, |
4553 | .next = s_next, | |
4554 | .stop = s_stop, | |
4555 | .show = leaks_show, | |
4556 | }; | |
a0ec95a8 AD |
4557 | |
4558 | static int slabstats_open(struct inode *inode, struct file *file) | |
4559 | { | |
4560 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4561 | int ret = -ENOMEM; | |
4562 | if (n) { | |
4563 | ret = seq_open(file, &slabstats_op); | |
4564 | if (!ret) { | |
4565 | struct seq_file *m = file->private_data; | |
4566 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4567 | m->private = n; | |
4568 | n = NULL; | |
4569 | } | |
4570 | kfree(n); | |
4571 | } | |
4572 | return ret; | |
4573 | } | |
4574 | ||
4575 | static const struct file_operations proc_slabstats_operations = { | |
4576 | .open = slabstats_open, | |
4577 | .read = seq_read, | |
4578 | .llseek = seq_lseek, | |
4579 | .release = seq_release_private, | |
4580 | }; | |
4581 | #endif | |
4582 | ||
4583 | static int __init slab_proc_init(void) | |
4584 | { | |
ab067e99 | 4585 | proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations); |
a0ec95a8 AD |
4586 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4587 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4588 | #endif |
a0ec95a8 AD |
4589 | return 0; |
4590 | } | |
4591 | module_init(slab_proc_init); | |
1da177e4 LT |
4592 | #endif |
4593 | ||
00e145b6 MS |
4594 | /** |
4595 | * ksize - get the actual amount of memory allocated for a given object | |
4596 | * @objp: Pointer to the object | |
4597 | * | |
4598 | * kmalloc may internally round up allocations and return more memory | |
4599 | * than requested. ksize() can be used to determine the actual amount of | |
4600 | * memory allocated. The caller may use this additional memory, even though | |
4601 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4602 | * The caller must guarantee that objp points to a valid object previously | |
4603 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4604 | * must not be freed during the duration of the call. | |
4605 | */ | |
fd76bab2 | 4606 | size_t ksize(const void *objp) |
1da177e4 | 4607 | { |
ef8b4520 CL |
4608 | BUG_ON(!objp); |
4609 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4610 | return 0; |
1da177e4 | 4611 | |
6ed5eb22 | 4612 | return obj_size(virt_to_cache(objp)); |
1da177e4 | 4613 | } |
b1aabecd | 4614 | EXPORT_SYMBOL(ksize); |