]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <[email protected]> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
62 | ||
4732efbe | 63 | #include <asm/futex.h> |
1da177e4 | 64 | |
c87e2837 IM |
65 | #include "rtmutex_common.h" |
66 | ||
a0c1e907 TG |
67 | int __read_mostly futex_cmpxchg_enabled; |
68 | ||
1da177e4 LT |
69 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
70 | ||
b41277dc DH |
71 | /* |
72 | * Futex flags used to encode options to functions and preserve them across | |
73 | * restarts. | |
74 | */ | |
75 | #define FLAGS_SHARED 0x01 | |
76 | #define FLAGS_CLOCKRT 0x02 | |
77 | #define FLAGS_HAS_TIMEOUT 0x04 | |
78 | ||
c87e2837 IM |
79 | /* |
80 | * Priority Inheritance state: | |
81 | */ | |
82 | struct futex_pi_state { | |
83 | /* | |
84 | * list of 'owned' pi_state instances - these have to be | |
85 | * cleaned up in do_exit() if the task exits prematurely: | |
86 | */ | |
87 | struct list_head list; | |
88 | ||
89 | /* | |
90 | * The PI object: | |
91 | */ | |
92 | struct rt_mutex pi_mutex; | |
93 | ||
94 | struct task_struct *owner; | |
95 | atomic_t refcount; | |
96 | ||
97 | union futex_key key; | |
98 | }; | |
99 | ||
d8d88fbb DH |
100 | /** |
101 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 102 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
103 | * @task: the task waiting on the futex |
104 | * @lock_ptr: the hash bucket lock | |
105 | * @key: the key the futex is hashed on | |
106 | * @pi_state: optional priority inheritance state | |
107 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
108 | * @requeue_pi_key: the requeue_pi target futex key | |
109 | * @bitset: bitset for the optional bitmasked wakeup | |
110 | * | |
111 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
112 | * we can wake only the relevant ones (hashed queues may be shared). |
113 | * | |
114 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 115 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 116 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
117 | * the second. |
118 | * | |
119 | * PI futexes are typically woken before they are removed from the hash list via | |
120 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
121 | */ |
122 | struct futex_q { | |
ec92d082 | 123 | struct plist_node list; |
1da177e4 | 124 | |
d8d88fbb | 125 | struct task_struct *task; |
1da177e4 | 126 | spinlock_t *lock_ptr; |
1da177e4 | 127 | union futex_key key; |
c87e2837 | 128 | struct futex_pi_state *pi_state; |
52400ba9 | 129 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 130 | union futex_key *requeue_pi_key; |
cd689985 | 131 | u32 bitset; |
1da177e4 LT |
132 | }; |
133 | ||
5bdb05f9 DH |
134 | static const struct futex_q futex_q_init = { |
135 | /* list gets initialized in queue_me()*/ | |
136 | .key = FUTEX_KEY_INIT, | |
137 | .bitset = FUTEX_BITSET_MATCH_ANY | |
138 | }; | |
139 | ||
1da177e4 | 140 | /* |
b2d0994b DH |
141 | * Hash buckets are shared by all the futex_keys that hash to the same |
142 | * location. Each key may have multiple futex_q structures, one for each task | |
143 | * waiting on a futex. | |
1da177e4 LT |
144 | */ |
145 | struct futex_hash_bucket { | |
ec92d082 PP |
146 | spinlock_t lock; |
147 | struct plist_head chain; | |
1da177e4 LT |
148 | }; |
149 | ||
150 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
151 | ||
1da177e4 LT |
152 | /* |
153 | * We hash on the keys returned from get_futex_key (see below). | |
154 | */ | |
155 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
156 | { | |
157 | u32 hash = jhash2((u32*)&key->both.word, | |
158 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
159 | key->both.offset); | |
160 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
161 | } | |
162 | ||
163 | /* | |
164 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
165 | */ | |
166 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
167 | { | |
2bc87203 DH |
168 | return (key1 && key2 |
169 | && key1->both.word == key2->both.word | |
1da177e4 LT |
170 | && key1->both.ptr == key2->both.ptr |
171 | && key1->both.offset == key2->both.offset); | |
172 | } | |
173 | ||
38d47c1b PZ |
174 | /* |
175 | * Take a reference to the resource addressed by a key. | |
176 | * Can be called while holding spinlocks. | |
177 | * | |
178 | */ | |
179 | static void get_futex_key_refs(union futex_key *key) | |
180 | { | |
181 | if (!key->both.ptr) | |
182 | return; | |
183 | ||
184 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
185 | case FUT_OFF_INODE: | |
7de9c6ee | 186 | ihold(key->shared.inode); |
38d47c1b PZ |
187 | break; |
188 | case FUT_OFF_MMSHARED: | |
189 | atomic_inc(&key->private.mm->mm_count); | |
190 | break; | |
191 | } | |
192 | } | |
193 | ||
194 | /* | |
195 | * Drop a reference to the resource addressed by a key. | |
196 | * The hash bucket spinlock must not be held. | |
197 | */ | |
198 | static void drop_futex_key_refs(union futex_key *key) | |
199 | { | |
90621c40 DH |
200 | if (!key->both.ptr) { |
201 | /* If we're here then we tried to put a key we failed to get */ | |
202 | WARN_ON_ONCE(1); | |
38d47c1b | 203 | return; |
90621c40 | 204 | } |
38d47c1b PZ |
205 | |
206 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
207 | case FUT_OFF_INODE: | |
208 | iput(key->shared.inode); | |
209 | break; | |
210 | case FUT_OFF_MMSHARED: | |
211 | mmdrop(key->private.mm); | |
212 | break; | |
213 | } | |
214 | } | |
215 | ||
34f01cc1 | 216 | /** |
d96ee56c DH |
217 | * get_futex_key() - Get parameters which are the keys for a futex |
218 | * @uaddr: virtual address of the futex | |
219 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
220 | * @key: address where result is stored. | |
9ea71503 SB |
221 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
222 | * VERIFY_WRITE) | |
34f01cc1 ED |
223 | * |
224 | * Returns a negative error code or 0 | |
225 | * The key words are stored in *key on success. | |
1da177e4 | 226 | * |
f3a43f3f | 227 | * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
1da177e4 LT |
228 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
229 | * We can usually work out the index without swapping in the page. | |
230 | * | |
b2d0994b | 231 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 232 | */ |
64d1304a | 233 | static int |
9ea71503 | 234 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 235 | { |
e2970f2f | 236 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 237 | struct mm_struct *mm = current->mm; |
a5b338f2 | 238 | struct page *page, *page_head; |
9ea71503 | 239 | int err, ro = 0; |
1da177e4 LT |
240 | |
241 | /* | |
242 | * The futex address must be "naturally" aligned. | |
243 | */ | |
e2970f2f | 244 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 245 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 246 | return -EINVAL; |
e2970f2f | 247 | address -= key->both.offset; |
1da177e4 | 248 | |
34f01cc1 ED |
249 | /* |
250 | * PROCESS_PRIVATE futexes are fast. | |
251 | * As the mm cannot disappear under us and the 'key' only needs | |
252 | * virtual address, we dont even have to find the underlying vma. | |
253 | * Note : We do have to check 'uaddr' is a valid user address, | |
254 | * but access_ok() should be faster than find_vma() | |
255 | */ | |
256 | if (!fshared) { | |
7485d0d3 | 257 | if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) |
34f01cc1 ED |
258 | return -EFAULT; |
259 | key->private.mm = mm; | |
260 | key->private.address = address; | |
42569c39 | 261 | get_futex_key_refs(key); |
34f01cc1 ED |
262 | return 0; |
263 | } | |
1da177e4 | 264 | |
38d47c1b | 265 | again: |
7485d0d3 | 266 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
267 | /* |
268 | * If write access is not required (eg. FUTEX_WAIT), try | |
269 | * and get read-only access. | |
270 | */ | |
271 | if (err == -EFAULT && rw == VERIFY_READ) { | |
272 | err = get_user_pages_fast(address, 1, 0, &page); | |
273 | ro = 1; | |
274 | } | |
38d47c1b PZ |
275 | if (err < 0) |
276 | return err; | |
9ea71503 SB |
277 | else |
278 | err = 0; | |
38d47c1b | 279 | |
a5b338f2 AA |
280 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
281 | page_head = page; | |
282 | if (unlikely(PageTail(page))) { | |
38d47c1b | 283 | put_page(page); |
a5b338f2 AA |
284 | /* serialize against __split_huge_page_splitting() */ |
285 | local_irq_disable(); | |
286 | if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) { | |
287 | page_head = compound_head(page); | |
288 | /* | |
289 | * page_head is valid pointer but we must pin | |
290 | * it before taking the PG_lock and/or | |
291 | * PG_compound_lock. The moment we re-enable | |
292 | * irqs __split_huge_page_splitting() can | |
293 | * return and the head page can be freed from | |
294 | * under us. We can't take the PG_lock and/or | |
295 | * PG_compound_lock on a page that could be | |
296 | * freed from under us. | |
297 | */ | |
298 | if (page != page_head) { | |
299 | get_page(page_head); | |
300 | put_page(page); | |
301 | } | |
302 | local_irq_enable(); | |
303 | } else { | |
304 | local_irq_enable(); | |
305 | goto again; | |
306 | } | |
307 | } | |
308 | #else | |
309 | page_head = compound_head(page); | |
310 | if (page != page_head) { | |
311 | get_page(page_head); | |
312 | put_page(page); | |
313 | } | |
314 | #endif | |
315 | ||
316 | lock_page(page_head); | |
317 | if (!page_head->mapping) { | |
318 | unlock_page(page_head); | |
319 | put_page(page_head); | |
9ea71503 SB |
320 | /* |
321 | * ZERO_PAGE pages don't have a mapping. Avoid a busy loop | |
322 | * trying to find one. RW mapping would have COW'd (and thus | |
323 | * have a mapping) so this page is RO and won't ever change. | |
324 | */ | |
325 | if ((page_head == ZERO_PAGE(address))) | |
326 | return -EFAULT; | |
38d47c1b PZ |
327 | goto again; |
328 | } | |
1da177e4 LT |
329 | |
330 | /* | |
331 | * Private mappings are handled in a simple way. | |
332 | * | |
333 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
334 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 335 | * the object not the particular process. |
1da177e4 | 336 | */ |
a5b338f2 | 337 | if (PageAnon(page_head)) { |
9ea71503 SB |
338 | /* |
339 | * A RO anonymous page will never change and thus doesn't make | |
340 | * sense for futex operations. | |
341 | */ | |
342 | if (ro) { | |
343 | err = -EFAULT; | |
344 | goto out; | |
345 | } | |
346 | ||
38d47c1b | 347 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 348 | key->private.mm = mm; |
e2970f2f | 349 | key->private.address = address; |
38d47c1b PZ |
350 | } else { |
351 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | |
a5b338f2 AA |
352 | key->shared.inode = page_head->mapping->host; |
353 | key->shared.pgoff = page_head->index; | |
1da177e4 LT |
354 | } |
355 | ||
38d47c1b | 356 | get_futex_key_refs(key); |
1da177e4 | 357 | |
9ea71503 | 358 | out: |
a5b338f2 AA |
359 | unlock_page(page_head); |
360 | put_page(page_head); | |
9ea71503 | 361 | return err; |
1da177e4 LT |
362 | } |
363 | ||
ae791a2d | 364 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 365 | { |
38d47c1b | 366 | drop_futex_key_refs(key); |
1da177e4 LT |
367 | } |
368 | ||
d96ee56c DH |
369 | /** |
370 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
371 | * @uaddr: pointer to faulting user space address |
372 | * | |
373 | * Slow path to fixup the fault we just took in the atomic write | |
374 | * access to @uaddr. | |
375 | * | |
fb62db2b | 376 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
377 | * user address. We know that we faulted in the atomic pagefault |
378 | * disabled section so we can as well avoid the #PF overhead by | |
379 | * calling get_user_pages() right away. | |
380 | */ | |
381 | static int fault_in_user_writeable(u32 __user *uaddr) | |
382 | { | |
722d0172 AK |
383 | struct mm_struct *mm = current->mm; |
384 | int ret; | |
385 | ||
386 | down_read(&mm->mmap_sem); | |
2efaca92 BH |
387 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
388 | FAULT_FLAG_WRITE); | |
722d0172 AK |
389 | up_read(&mm->mmap_sem); |
390 | ||
d0725992 TG |
391 | return ret < 0 ? ret : 0; |
392 | } | |
393 | ||
4b1c486b DH |
394 | /** |
395 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
396 | * @hb: the hash bucket the futex_q's reside in |
397 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
398 | * |
399 | * Must be called with the hb lock held. | |
400 | */ | |
401 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
402 | union futex_key *key) | |
403 | { | |
404 | struct futex_q *this; | |
405 | ||
406 | plist_for_each_entry(this, &hb->chain, list) { | |
407 | if (match_futex(&this->key, key)) | |
408 | return this; | |
409 | } | |
410 | return NULL; | |
411 | } | |
412 | ||
37a9d912 ML |
413 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
414 | u32 uval, u32 newval) | |
36cf3b5c | 415 | { |
37a9d912 | 416 | int ret; |
36cf3b5c TG |
417 | |
418 | pagefault_disable(); | |
37a9d912 | 419 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
420 | pagefault_enable(); |
421 | ||
37a9d912 | 422 | return ret; |
36cf3b5c TG |
423 | } |
424 | ||
425 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
426 | { |
427 | int ret; | |
428 | ||
a866374a | 429 | pagefault_disable(); |
e2970f2f | 430 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 431 | pagefault_enable(); |
1da177e4 LT |
432 | |
433 | return ret ? -EFAULT : 0; | |
434 | } | |
435 | ||
c87e2837 IM |
436 | |
437 | /* | |
438 | * PI code: | |
439 | */ | |
440 | static int refill_pi_state_cache(void) | |
441 | { | |
442 | struct futex_pi_state *pi_state; | |
443 | ||
444 | if (likely(current->pi_state_cache)) | |
445 | return 0; | |
446 | ||
4668edc3 | 447 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
448 | |
449 | if (!pi_state) | |
450 | return -ENOMEM; | |
451 | ||
c87e2837 IM |
452 | INIT_LIST_HEAD(&pi_state->list); |
453 | /* pi_mutex gets initialized later */ | |
454 | pi_state->owner = NULL; | |
455 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 456 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
457 | |
458 | current->pi_state_cache = pi_state; | |
459 | ||
460 | return 0; | |
461 | } | |
462 | ||
463 | static struct futex_pi_state * alloc_pi_state(void) | |
464 | { | |
465 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
466 | ||
467 | WARN_ON(!pi_state); | |
468 | current->pi_state_cache = NULL; | |
469 | ||
470 | return pi_state; | |
471 | } | |
472 | ||
473 | static void free_pi_state(struct futex_pi_state *pi_state) | |
474 | { | |
475 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
476 | return; | |
477 | ||
478 | /* | |
479 | * If pi_state->owner is NULL, the owner is most probably dying | |
480 | * and has cleaned up the pi_state already | |
481 | */ | |
482 | if (pi_state->owner) { | |
1d615482 | 483 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 484 | list_del_init(&pi_state->list); |
1d615482 | 485 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
486 | |
487 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
488 | } | |
489 | ||
490 | if (current->pi_state_cache) | |
491 | kfree(pi_state); | |
492 | else { | |
493 | /* | |
494 | * pi_state->list is already empty. | |
495 | * clear pi_state->owner. | |
496 | * refcount is at 0 - put it back to 1. | |
497 | */ | |
498 | pi_state->owner = NULL; | |
499 | atomic_set(&pi_state->refcount, 1); | |
500 | current->pi_state_cache = pi_state; | |
501 | } | |
502 | } | |
503 | ||
504 | /* | |
505 | * Look up the task based on what TID userspace gave us. | |
506 | * We dont trust it. | |
507 | */ | |
508 | static struct task_struct * futex_find_get_task(pid_t pid) | |
509 | { | |
510 | struct task_struct *p; | |
511 | ||
d359b549 | 512 | rcu_read_lock(); |
228ebcbe | 513 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
514 | if (p) |
515 | get_task_struct(p); | |
a06381fe | 516 | |
d359b549 | 517 | rcu_read_unlock(); |
c87e2837 IM |
518 | |
519 | return p; | |
520 | } | |
521 | ||
522 | /* | |
523 | * This task is holding PI mutexes at exit time => bad. | |
524 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
525 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
526 | */ | |
527 | void exit_pi_state_list(struct task_struct *curr) | |
528 | { | |
c87e2837 IM |
529 | struct list_head *next, *head = &curr->pi_state_list; |
530 | struct futex_pi_state *pi_state; | |
627371d7 | 531 | struct futex_hash_bucket *hb; |
38d47c1b | 532 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 533 | |
a0c1e907 TG |
534 | if (!futex_cmpxchg_enabled) |
535 | return; | |
c87e2837 IM |
536 | /* |
537 | * We are a ZOMBIE and nobody can enqueue itself on | |
538 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 539 | * versus waiters unqueueing themselves: |
c87e2837 | 540 | */ |
1d615482 | 541 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
542 | while (!list_empty(head)) { |
543 | ||
544 | next = head->next; | |
545 | pi_state = list_entry(next, struct futex_pi_state, list); | |
546 | key = pi_state->key; | |
627371d7 | 547 | hb = hash_futex(&key); |
1d615482 | 548 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 549 | |
c87e2837 IM |
550 | spin_lock(&hb->lock); |
551 | ||
1d615482 | 552 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
553 | /* |
554 | * We dropped the pi-lock, so re-check whether this | |
555 | * task still owns the PI-state: | |
556 | */ | |
c87e2837 IM |
557 | if (head->next != next) { |
558 | spin_unlock(&hb->lock); | |
559 | continue; | |
560 | } | |
561 | ||
c87e2837 | 562 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
563 | WARN_ON(list_empty(&pi_state->list)); |
564 | list_del_init(&pi_state->list); | |
c87e2837 | 565 | pi_state->owner = NULL; |
1d615482 | 566 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
567 | |
568 | rt_mutex_unlock(&pi_state->pi_mutex); | |
569 | ||
570 | spin_unlock(&hb->lock); | |
571 | ||
1d615482 | 572 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 573 | } |
1d615482 | 574 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
575 | } |
576 | ||
577 | static int | |
d0aa7a70 PP |
578 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
579 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
580 | { |
581 | struct futex_pi_state *pi_state = NULL; | |
582 | struct futex_q *this, *next; | |
ec92d082 | 583 | struct plist_head *head; |
c87e2837 | 584 | struct task_struct *p; |
778e9a9c | 585 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 IM |
586 | |
587 | head = &hb->chain; | |
588 | ||
ec92d082 | 589 | plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70 | 590 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
591 | /* |
592 | * Another waiter already exists - bump up | |
593 | * the refcount and return its pi_state: | |
594 | */ | |
595 | pi_state = this->pi_state; | |
06a9ec29 | 596 | /* |
fb62db2b | 597 | * Userspace might have messed up non-PI and PI futexes |
06a9ec29 TG |
598 | */ |
599 | if (unlikely(!pi_state)) | |
600 | return -EINVAL; | |
601 | ||
627371d7 | 602 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a TG |
603 | |
604 | /* | |
605 | * When pi_state->owner is NULL then the owner died | |
606 | * and another waiter is on the fly. pi_state->owner | |
607 | * is fixed up by the task which acquires | |
608 | * pi_state->rt_mutex. | |
609 | * | |
610 | * We do not check for pid == 0 which can happen when | |
611 | * the owner died and robust_list_exit() cleared the | |
612 | * TID. | |
613 | */ | |
614 | if (pid && pi_state->owner) { | |
615 | /* | |
616 | * Bail out if user space manipulated the | |
617 | * futex value. | |
618 | */ | |
619 | if (pid != task_pid_vnr(pi_state->owner)) | |
620 | return -EINVAL; | |
621 | } | |
627371d7 | 622 | |
c87e2837 | 623 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 624 | *ps = pi_state; |
c87e2837 IM |
625 | |
626 | return 0; | |
627 | } | |
628 | } | |
629 | ||
630 | /* | |
e3f2ddea | 631 | * We are the first waiter - try to look up the real owner and attach |
778e9a9c | 632 | * the new pi_state to it, but bail out when TID = 0 |
c87e2837 | 633 | */ |
778e9a9c | 634 | if (!pid) |
e3f2ddea | 635 | return -ESRCH; |
c87e2837 | 636 | p = futex_find_get_task(pid); |
7a0ea09a MH |
637 | if (!p) |
638 | return -ESRCH; | |
778e9a9c AK |
639 | |
640 | /* | |
641 | * We need to look at the task state flags to figure out, | |
642 | * whether the task is exiting. To protect against the do_exit | |
643 | * change of the task flags, we do this protected by | |
644 | * p->pi_lock: | |
645 | */ | |
1d615482 | 646 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
647 | if (unlikely(p->flags & PF_EXITING)) { |
648 | /* | |
649 | * The task is on the way out. When PF_EXITPIDONE is | |
650 | * set, we know that the task has finished the | |
651 | * cleanup: | |
652 | */ | |
653 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
654 | ||
1d615482 | 655 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
656 | put_task_struct(p); |
657 | return ret; | |
658 | } | |
c87e2837 IM |
659 | |
660 | pi_state = alloc_pi_state(); | |
661 | ||
662 | /* | |
663 | * Initialize the pi_mutex in locked state and make 'p' | |
664 | * the owner of it: | |
665 | */ | |
666 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
667 | ||
668 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 669 | pi_state->key = *key; |
c87e2837 | 670 | |
627371d7 | 671 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
672 | list_add(&pi_state->list, &p->pi_state_list); |
673 | pi_state->owner = p; | |
1d615482 | 674 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
675 | |
676 | put_task_struct(p); | |
677 | ||
d0aa7a70 | 678 | *ps = pi_state; |
c87e2837 IM |
679 | |
680 | return 0; | |
681 | } | |
682 | ||
1a52084d | 683 | /** |
d96ee56c | 684 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
685 | * @uaddr: the pi futex user address |
686 | * @hb: the pi futex hash bucket | |
687 | * @key: the futex key associated with uaddr and hb | |
688 | * @ps: the pi_state pointer where we store the result of the | |
689 | * lookup | |
690 | * @task: the task to perform the atomic lock work for. This will | |
691 | * be "current" except in the case of requeue pi. | |
692 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d DH |
693 | * |
694 | * Returns: | |
695 | * 0 - ready to wait | |
696 | * 1 - acquired the lock | |
697 | * <0 - error | |
698 | * | |
699 | * The hb->lock and futex_key refs shall be held by the caller. | |
700 | */ | |
701 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
702 | union futex_key *key, | |
703 | struct futex_pi_state **ps, | |
bab5bc9e | 704 | struct task_struct *task, int set_waiters) |
1a52084d DH |
705 | { |
706 | int lock_taken, ret, ownerdied = 0; | |
c0c9ed15 | 707 | u32 uval, newval, curval, vpid = task_pid_vnr(task); |
1a52084d DH |
708 | |
709 | retry: | |
710 | ret = lock_taken = 0; | |
711 | ||
712 | /* | |
713 | * To avoid races, we attempt to take the lock here again | |
714 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
715 | * the locks. It will most likely not succeed. | |
716 | */ | |
c0c9ed15 | 717 | newval = vpid; |
bab5bc9e DH |
718 | if (set_waiters) |
719 | newval |= FUTEX_WAITERS; | |
1a52084d | 720 | |
37a9d912 | 721 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval))) |
1a52084d DH |
722 | return -EFAULT; |
723 | ||
724 | /* | |
725 | * Detect deadlocks. | |
726 | */ | |
c0c9ed15 | 727 | if ((unlikely((curval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
728 | return -EDEADLK; |
729 | ||
730 | /* | |
731 | * Surprise - we got the lock. Just return to userspace: | |
732 | */ | |
733 | if (unlikely(!curval)) | |
734 | return 1; | |
735 | ||
736 | uval = curval; | |
737 | ||
738 | /* | |
739 | * Set the FUTEX_WAITERS flag, so the owner will know it has someone | |
740 | * to wake at the next unlock. | |
741 | */ | |
742 | newval = curval | FUTEX_WAITERS; | |
743 | ||
744 | /* | |
745 | * There are two cases, where a futex might have no owner (the | |
746 | * owner TID is 0): OWNER_DIED. We take over the futex in this | |
747 | * case. We also do an unconditional take over, when the owner | |
748 | * of the futex died. | |
749 | * | |
750 | * This is safe as we are protected by the hash bucket lock ! | |
751 | */ | |
752 | if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) { | |
753 | /* Keep the OWNER_DIED bit */ | |
c0c9ed15 | 754 | newval = (curval & ~FUTEX_TID_MASK) | vpid; |
1a52084d DH |
755 | ownerdied = 0; |
756 | lock_taken = 1; | |
757 | } | |
758 | ||
37a9d912 | 759 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1a52084d DH |
760 | return -EFAULT; |
761 | if (unlikely(curval != uval)) | |
762 | goto retry; | |
763 | ||
764 | /* | |
765 | * We took the lock due to owner died take over. | |
766 | */ | |
767 | if (unlikely(lock_taken)) | |
768 | return 1; | |
769 | ||
770 | /* | |
771 | * We dont have the lock. Look up the PI state (or create it if | |
772 | * we are the first waiter): | |
773 | */ | |
774 | ret = lookup_pi_state(uval, hb, key, ps); | |
775 | ||
776 | if (unlikely(ret)) { | |
777 | switch (ret) { | |
778 | case -ESRCH: | |
779 | /* | |
780 | * No owner found for this futex. Check if the | |
781 | * OWNER_DIED bit is set to figure out whether | |
782 | * this is a robust futex or not. | |
783 | */ | |
784 | if (get_futex_value_locked(&curval, uaddr)) | |
785 | return -EFAULT; | |
786 | ||
787 | /* | |
788 | * We simply start over in case of a robust | |
789 | * futex. The code above will take the futex | |
790 | * and return happy. | |
791 | */ | |
792 | if (curval & FUTEX_OWNER_DIED) { | |
793 | ownerdied = 1; | |
794 | goto retry; | |
795 | } | |
796 | default: | |
797 | break; | |
798 | } | |
799 | } | |
800 | ||
801 | return ret; | |
802 | } | |
803 | ||
2e12978a LJ |
804 | /** |
805 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
806 | * @q: The futex_q to unqueue | |
807 | * | |
808 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
809 | */ | |
810 | static void __unqueue_futex(struct futex_q *q) | |
811 | { | |
812 | struct futex_hash_bucket *hb; | |
813 | ||
29096202 SR |
814 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
815 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
816 | return; |
817 | ||
818 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
819 | plist_del(&q->list, &hb->chain); | |
820 | } | |
821 | ||
1da177e4 LT |
822 | /* |
823 | * The hash bucket lock must be held when this is called. | |
824 | * Afterwards, the futex_q must not be accessed. | |
825 | */ | |
826 | static void wake_futex(struct futex_q *q) | |
827 | { | |
f1a11e05 TG |
828 | struct task_struct *p = q->task; |
829 | ||
1da177e4 | 830 | /* |
f1a11e05 | 831 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2b RD |
832 | * a non-futex wake up happens on another CPU then the task |
833 | * might exit and p would dereference a non-existing task | |
f1a11e05 TG |
834 | * struct. Prevent this by holding a reference on p across the |
835 | * wake up. | |
1da177e4 | 836 | */ |
f1a11e05 TG |
837 | get_task_struct(p); |
838 | ||
2e12978a | 839 | __unqueue_futex(q); |
1da177e4 | 840 | /* |
f1a11e05 TG |
841 | * The waiting task can free the futex_q as soon as |
842 | * q->lock_ptr = NULL is written, without taking any locks. A | |
843 | * memory barrier is required here to prevent the following | |
844 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 845 | */ |
ccdea2f8 | 846 | smp_wmb(); |
1da177e4 | 847 | q->lock_ptr = NULL; |
f1a11e05 TG |
848 | |
849 | wake_up_state(p, TASK_NORMAL); | |
850 | put_task_struct(p); | |
1da177e4 LT |
851 | } |
852 | ||
c87e2837 IM |
853 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
854 | { | |
855 | struct task_struct *new_owner; | |
856 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 857 | u32 uninitialized_var(curval), newval; |
c87e2837 IM |
858 | |
859 | if (!pi_state) | |
860 | return -EINVAL; | |
861 | ||
51246bfd TG |
862 | /* |
863 | * If current does not own the pi_state then the futex is | |
864 | * inconsistent and user space fiddled with the futex value. | |
865 | */ | |
866 | if (pi_state->owner != current) | |
867 | return -EINVAL; | |
868 | ||
d209d74d | 869 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
870 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
871 | ||
872 | /* | |
f123c98e SR |
873 | * It is possible that the next waiter (the one that brought |
874 | * this owner to the kernel) timed out and is no longer | |
875 | * waiting on the lock. | |
c87e2837 IM |
876 | */ |
877 | if (!new_owner) | |
878 | new_owner = this->task; | |
879 | ||
880 | /* | |
881 | * We pass it to the next owner. (The WAITERS bit is always | |
882 | * kept enabled while there is PI state around. We must also | |
883 | * preserve the owner died bit.) | |
884 | */ | |
e3f2ddea | 885 | if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c AK |
886 | int ret = 0; |
887 | ||
b488893a | 888 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 889 | |
37a9d912 | 890 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
778e9a9c | 891 | ret = -EFAULT; |
cde898fa | 892 | else if (curval != uval) |
778e9a9c AK |
893 | ret = -EINVAL; |
894 | if (ret) { | |
d209d74d | 895 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
778e9a9c AK |
896 | return ret; |
897 | } | |
e3f2ddea | 898 | } |
c87e2837 | 899 | |
1d615482 | 900 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d7 IM |
901 | WARN_ON(list_empty(&pi_state->list)); |
902 | list_del_init(&pi_state->list); | |
1d615482 | 903 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d7 | 904 | |
1d615482 | 905 | raw_spin_lock_irq(&new_owner->pi_lock); |
627371d7 | 906 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
907 | list_add(&pi_state->list, &new_owner->pi_state_list); |
908 | pi_state->owner = new_owner; | |
1d615482 | 909 | raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d7 | 910 | |
d209d74d | 911 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
912 | rt_mutex_unlock(&pi_state->pi_mutex); |
913 | ||
914 | return 0; | |
915 | } | |
916 | ||
917 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
918 | { | |
7cfdaf38 | 919 | u32 uninitialized_var(oldval); |
c87e2837 IM |
920 | |
921 | /* | |
922 | * There is no waiter, so we unlock the futex. The owner died | |
923 | * bit has not to be preserved here. We are the owner: | |
924 | */ | |
37a9d912 ML |
925 | if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0)) |
926 | return -EFAULT; | |
c87e2837 IM |
927 | if (oldval != uval) |
928 | return -EAGAIN; | |
929 | ||
930 | return 0; | |
931 | } | |
932 | ||
8b8f319f IM |
933 | /* |
934 | * Express the locking dependencies for lockdep: | |
935 | */ | |
936 | static inline void | |
937 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
938 | { | |
939 | if (hb1 <= hb2) { | |
940 | spin_lock(&hb1->lock); | |
941 | if (hb1 < hb2) | |
942 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
943 | } else { /* hb1 > hb2 */ | |
944 | spin_lock(&hb2->lock); | |
945 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
946 | } | |
947 | } | |
948 | ||
5eb3dc62 DH |
949 | static inline void |
950 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
951 | { | |
f061d351 | 952 | spin_unlock(&hb1->lock); |
88f502fe IM |
953 | if (hb1 != hb2) |
954 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
955 | } |
956 | ||
1da177e4 | 957 | /* |
b2d0994b | 958 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 959 | */ |
b41277dc DH |
960 | static int |
961 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 962 | { |
e2970f2f | 963 | struct futex_hash_bucket *hb; |
1da177e4 | 964 | struct futex_q *this, *next; |
ec92d082 | 965 | struct plist_head *head; |
38d47c1b | 966 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 LT |
967 | int ret; |
968 | ||
cd689985 TG |
969 | if (!bitset) |
970 | return -EINVAL; | |
971 | ||
9ea71503 | 972 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
973 | if (unlikely(ret != 0)) |
974 | goto out; | |
975 | ||
e2970f2f IM |
976 | hb = hash_futex(&key); |
977 | spin_lock(&hb->lock); | |
978 | head = &hb->chain; | |
1da177e4 | 979 | |
ec92d082 | 980 | plist_for_each_entry_safe(this, next, head, list) { |
1da177e4 | 981 | if (match_futex (&this->key, &key)) { |
52400ba9 | 982 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
983 | ret = -EINVAL; |
984 | break; | |
985 | } | |
cd689985 TG |
986 | |
987 | /* Check if one of the bits is set in both bitsets */ | |
988 | if (!(this->bitset & bitset)) | |
989 | continue; | |
990 | ||
1da177e4 LT |
991 | wake_futex(this); |
992 | if (++ret >= nr_wake) | |
993 | break; | |
994 | } | |
995 | } | |
996 | ||
e2970f2f | 997 | spin_unlock(&hb->lock); |
ae791a2d | 998 | put_futex_key(&key); |
42d35d48 | 999 | out: |
1da177e4 LT |
1000 | return ret; |
1001 | } | |
1002 | ||
4732efbe JJ |
1003 | /* |
1004 | * Wake up all waiters hashed on the physical page that is mapped | |
1005 | * to this virtual address: | |
1006 | */ | |
e2970f2f | 1007 | static int |
b41277dc | 1008 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1009 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1010 | { |
38d47c1b | 1011 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1012 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1013 | struct plist_head *head; |
4732efbe | 1014 | struct futex_q *this, *next; |
e4dc5b7a | 1015 | int ret, op_ret; |
4732efbe | 1016 | |
e4dc5b7a | 1017 | retry: |
9ea71503 | 1018 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1019 | if (unlikely(ret != 0)) |
1020 | goto out; | |
9ea71503 | 1021 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1022 | if (unlikely(ret != 0)) |
42d35d48 | 1023 | goto out_put_key1; |
4732efbe | 1024 | |
e2970f2f IM |
1025 | hb1 = hash_futex(&key1); |
1026 | hb2 = hash_futex(&key2); | |
4732efbe | 1027 | |
e4dc5b7a | 1028 | retry_private: |
eaaea803 | 1029 | double_lock_hb(hb1, hb2); |
e2970f2f | 1030 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1031 | if (unlikely(op_ret < 0)) { |
4732efbe | 1032 | |
5eb3dc62 | 1033 | double_unlock_hb(hb1, hb2); |
4732efbe | 1034 | |
7ee1dd3f | 1035 | #ifndef CONFIG_MMU |
e2970f2f IM |
1036 | /* |
1037 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1038 | * but we might get them from range checking | |
1039 | */ | |
7ee1dd3f | 1040 | ret = op_ret; |
42d35d48 | 1041 | goto out_put_keys; |
7ee1dd3f DH |
1042 | #endif |
1043 | ||
796f8d9b DG |
1044 | if (unlikely(op_ret != -EFAULT)) { |
1045 | ret = op_ret; | |
42d35d48 | 1046 | goto out_put_keys; |
796f8d9b DG |
1047 | } |
1048 | ||
d0725992 | 1049 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1050 | if (ret) |
de87fcc1 | 1051 | goto out_put_keys; |
4732efbe | 1052 | |
b41277dc | 1053 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1054 | goto retry_private; |
1055 | ||
ae791a2d TG |
1056 | put_futex_key(&key2); |
1057 | put_futex_key(&key1); | |
e4dc5b7a | 1058 | goto retry; |
4732efbe JJ |
1059 | } |
1060 | ||
e2970f2f | 1061 | head = &hb1->chain; |
4732efbe | 1062 | |
ec92d082 | 1063 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1064 | if (match_futex (&this->key, &key1)) { |
1065 | wake_futex(this); | |
1066 | if (++ret >= nr_wake) | |
1067 | break; | |
1068 | } | |
1069 | } | |
1070 | ||
1071 | if (op_ret > 0) { | |
e2970f2f | 1072 | head = &hb2->chain; |
4732efbe JJ |
1073 | |
1074 | op_ret = 0; | |
ec92d082 | 1075 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1076 | if (match_futex (&this->key, &key2)) { |
1077 | wake_futex(this); | |
1078 | if (++op_ret >= nr_wake2) | |
1079 | break; | |
1080 | } | |
1081 | } | |
1082 | ret += op_ret; | |
1083 | } | |
1084 | ||
5eb3dc62 | 1085 | double_unlock_hb(hb1, hb2); |
42d35d48 | 1086 | out_put_keys: |
ae791a2d | 1087 | put_futex_key(&key2); |
42d35d48 | 1088 | out_put_key1: |
ae791a2d | 1089 | put_futex_key(&key1); |
42d35d48 | 1090 | out: |
4732efbe JJ |
1091 | return ret; |
1092 | } | |
1093 | ||
9121e478 DH |
1094 | /** |
1095 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1096 | * @q: the futex_q to requeue | |
1097 | * @hb1: the source hash_bucket | |
1098 | * @hb2: the target hash_bucket | |
1099 | * @key2: the new key for the requeued futex_q | |
1100 | */ | |
1101 | static inline | |
1102 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1103 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1104 | { | |
1105 | ||
1106 | /* | |
1107 | * If key1 and key2 hash to the same bucket, no need to | |
1108 | * requeue. | |
1109 | */ | |
1110 | if (likely(&hb1->chain != &hb2->chain)) { | |
1111 | plist_del(&q->list, &hb1->chain); | |
1112 | plist_add(&q->list, &hb2->chain); | |
1113 | q->lock_ptr = &hb2->lock; | |
9121e478 DH |
1114 | } |
1115 | get_futex_key_refs(key2); | |
1116 | q->key = *key2; | |
1117 | } | |
1118 | ||
52400ba9 DH |
1119 | /** |
1120 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1121 | * @q: the futex_q |
1122 | * @key: the key of the requeue target futex | |
1123 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1124 | * |
1125 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1126 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1127 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1128 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1129 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1130 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1131 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1132 | */ |
1133 | static inline | |
beda2c7e DH |
1134 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1135 | struct futex_hash_bucket *hb) | |
52400ba9 | 1136 | { |
52400ba9 DH |
1137 | get_futex_key_refs(key); |
1138 | q->key = *key; | |
1139 | ||
2e12978a | 1140 | __unqueue_futex(q); |
52400ba9 DH |
1141 | |
1142 | WARN_ON(!q->rt_waiter); | |
1143 | q->rt_waiter = NULL; | |
1144 | ||
beda2c7e | 1145 | q->lock_ptr = &hb->lock; |
beda2c7e | 1146 | |
f1a11e05 | 1147 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1148 | } |
1149 | ||
1150 | /** | |
1151 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1152 | * @pifutex: the user address of the to futex |
1153 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1154 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1155 | * @key1: the from futex key | |
1156 | * @key2: the to futex key | |
1157 | * @ps: address to store the pi_state pointer | |
1158 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1159 | * |
1160 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1161 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1162 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1163 | * hb1 and hb2 must be held by the caller. | |
52400ba9 DH |
1164 | * |
1165 | * Returns: | |
1166 | * 0 - failed to acquire the lock atomicly | |
1167 | * 1 - acquired the lock | |
1168 | * <0 - error | |
1169 | */ | |
1170 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1171 | struct futex_hash_bucket *hb1, | |
1172 | struct futex_hash_bucket *hb2, | |
1173 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1174 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1175 | { |
bab5bc9e | 1176 | struct futex_q *top_waiter = NULL; |
52400ba9 DH |
1177 | u32 curval; |
1178 | int ret; | |
1179 | ||
1180 | if (get_futex_value_locked(&curval, pifutex)) | |
1181 | return -EFAULT; | |
1182 | ||
bab5bc9e DH |
1183 | /* |
1184 | * Find the top_waiter and determine if there are additional waiters. | |
1185 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1186 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1187 | * as we have means to handle the possible fault. If not, don't set | |
1188 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1189 | * the kernel. | |
1190 | */ | |
52400ba9 DH |
1191 | top_waiter = futex_top_waiter(hb1, key1); |
1192 | ||
1193 | /* There are no waiters, nothing for us to do. */ | |
1194 | if (!top_waiter) | |
1195 | return 0; | |
1196 | ||
84bc4af5 DH |
1197 | /* Ensure we requeue to the expected futex. */ |
1198 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1199 | return -EINVAL; | |
1200 | ||
52400ba9 | 1201 | /* |
bab5bc9e DH |
1202 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1203 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1204 | * in ps in contended cases. | |
52400ba9 | 1205 | */ |
bab5bc9e DH |
1206 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1207 | set_waiters); | |
52400ba9 | 1208 | if (ret == 1) |
beda2c7e | 1209 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
52400ba9 DH |
1210 | |
1211 | return ret; | |
1212 | } | |
1213 | ||
1214 | /** | |
1215 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1216 | * @uaddr1: source futex user address |
b41277dc | 1217 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1218 | * @uaddr2: target futex user address |
1219 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1220 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1221 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1222 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1223 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1224 | * |
1225 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1226 | * uaddr2 atomically on behalf of the top waiter. | |
1227 | * | |
1228 | * Returns: | |
1229 | * >=0 - on success, the number of tasks requeued or woken | |
1230 | * <0 - on error | |
1da177e4 | 1231 | */ |
b41277dc DH |
1232 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1233 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1234 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1235 | { |
38d47c1b | 1236 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1237 | int drop_count = 0, task_count = 0, ret; |
1238 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1239 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1240 | struct plist_head *head1; |
1da177e4 | 1241 | struct futex_q *this, *next; |
52400ba9 DH |
1242 | u32 curval2; |
1243 | ||
1244 | if (requeue_pi) { | |
1245 | /* | |
1246 | * requeue_pi requires a pi_state, try to allocate it now | |
1247 | * without any locks in case it fails. | |
1248 | */ | |
1249 | if (refill_pi_state_cache()) | |
1250 | return -ENOMEM; | |
1251 | /* | |
1252 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1253 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1254 | * returning to userspace, so as to not leave the rt_mutex with | |
1255 | * waiters and no owner. However, second and third wake-ups | |
1256 | * cannot be predicted as they involve race conditions with the | |
1257 | * first wake and a fault while looking up the pi_state. Both | |
1258 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1259 | * use nr_wake=1. | |
1260 | */ | |
1261 | if (nr_wake != 1) | |
1262 | return -EINVAL; | |
1263 | } | |
1da177e4 | 1264 | |
42d35d48 | 1265 | retry: |
52400ba9 DH |
1266 | if (pi_state != NULL) { |
1267 | /* | |
1268 | * We will have to lookup the pi_state again, so free this one | |
1269 | * to keep the accounting correct. | |
1270 | */ | |
1271 | free_pi_state(pi_state); | |
1272 | pi_state = NULL; | |
1273 | } | |
1274 | ||
9ea71503 | 1275 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1276 | if (unlikely(ret != 0)) |
1277 | goto out; | |
9ea71503 SB |
1278 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1279 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1280 | if (unlikely(ret != 0)) |
42d35d48 | 1281 | goto out_put_key1; |
1da177e4 | 1282 | |
e2970f2f IM |
1283 | hb1 = hash_futex(&key1); |
1284 | hb2 = hash_futex(&key2); | |
1da177e4 | 1285 | |
e4dc5b7a | 1286 | retry_private: |
8b8f319f | 1287 | double_lock_hb(hb1, hb2); |
1da177e4 | 1288 | |
e2970f2f IM |
1289 | if (likely(cmpval != NULL)) { |
1290 | u32 curval; | |
1da177e4 | 1291 | |
e2970f2f | 1292 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1293 | |
1294 | if (unlikely(ret)) { | |
5eb3dc62 | 1295 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1296 | |
e2970f2f | 1297 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1298 | if (ret) |
1299 | goto out_put_keys; | |
1da177e4 | 1300 | |
b41277dc | 1301 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1302 | goto retry_private; |
1da177e4 | 1303 | |
ae791a2d TG |
1304 | put_futex_key(&key2); |
1305 | put_futex_key(&key1); | |
e4dc5b7a | 1306 | goto retry; |
1da177e4 | 1307 | } |
e2970f2f | 1308 | if (curval != *cmpval) { |
1da177e4 LT |
1309 | ret = -EAGAIN; |
1310 | goto out_unlock; | |
1311 | } | |
1312 | } | |
1313 | ||
52400ba9 | 1314 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1315 | /* |
1316 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1317 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1318 | * bit. We force this here where we are able to easily handle | |
1319 | * faults rather in the requeue loop below. | |
1320 | */ | |
52400ba9 | 1321 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1322 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1323 | |
1324 | /* | |
1325 | * At this point the top_waiter has either taken uaddr2 or is | |
1326 | * waiting on it. If the former, then the pi_state will not | |
1327 | * exist yet, look it up one more time to ensure we have a | |
1328 | * reference to it. | |
1329 | */ | |
1330 | if (ret == 1) { | |
1331 | WARN_ON(pi_state); | |
89061d3d | 1332 | drop_count++; |
52400ba9 DH |
1333 | task_count++; |
1334 | ret = get_futex_value_locked(&curval2, uaddr2); | |
1335 | if (!ret) | |
1336 | ret = lookup_pi_state(curval2, hb2, &key2, | |
1337 | &pi_state); | |
1338 | } | |
1339 | ||
1340 | switch (ret) { | |
1341 | case 0: | |
1342 | break; | |
1343 | case -EFAULT: | |
1344 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1345 | put_futex_key(&key2); |
1346 | put_futex_key(&key1); | |
d0725992 | 1347 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1348 | if (!ret) |
1349 | goto retry; | |
1350 | goto out; | |
1351 | case -EAGAIN: | |
1352 | /* The owner was exiting, try again. */ | |
1353 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1354 | put_futex_key(&key2); |
1355 | put_futex_key(&key1); | |
52400ba9 DH |
1356 | cond_resched(); |
1357 | goto retry; | |
1358 | default: | |
1359 | goto out_unlock; | |
1360 | } | |
1361 | } | |
1362 | ||
e2970f2f | 1363 | head1 = &hb1->chain; |
ec92d082 | 1364 | plist_for_each_entry_safe(this, next, head1, list) { |
52400ba9 DH |
1365 | if (task_count - nr_wake >= nr_requeue) |
1366 | break; | |
1367 | ||
1368 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1369 | continue; |
52400ba9 | 1370 | |
392741e0 DH |
1371 | /* |
1372 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1373 | * be paired with each other and no other futex ops. | |
1374 | */ | |
1375 | if ((requeue_pi && !this->rt_waiter) || | |
1376 | (!requeue_pi && this->rt_waiter)) { | |
1377 | ret = -EINVAL; | |
1378 | break; | |
1379 | } | |
52400ba9 DH |
1380 | |
1381 | /* | |
1382 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1383 | * lock, we already woke the top_waiter. If not, it will be | |
1384 | * woken by futex_unlock_pi(). | |
1385 | */ | |
1386 | if (++task_count <= nr_wake && !requeue_pi) { | |
1da177e4 | 1387 | wake_futex(this); |
52400ba9 DH |
1388 | continue; |
1389 | } | |
1da177e4 | 1390 | |
84bc4af5 DH |
1391 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1392 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1393 | ret = -EINVAL; | |
1394 | break; | |
1395 | } | |
1396 | ||
52400ba9 DH |
1397 | /* |
1398 | * Requeue nr_requeue waiters and possibly one more in the case | |
1399 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1400 | */ | |
1401 | if (requeue_pi) { | |
1402 | /* Prepare the waiter to take the rt_mutex. */ | |
1403 | atomic_inc(&pi_state->refcount); | |
1404 | this->pi_state = pi_state; | |
1405 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1406 | this->rt_waiter, | |
1407 | this->task, 1); | |
1408 | if (ret == 1) { | |
1409 | /* We got the lock. */ | |
beda2c7e | 1410 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1411 | drop_count++; |
52400ba9 DH |
1412 | continue; |
1413 | } else if (ret) { | |
1414 | /* -EDEADLK */ | |
1415 | this->pi_state = NULL; | |
1416 | free_pi_state(pi_state); | |
1417 | goto out_unlock; | |
1418 | } | |
1da177e4 | 1419 | } |
52400ba9 DH |
1420 | requeue_futex(this, hb1, hb2, &key2); |
1421 | drop_count++; | |
1da177e4 LT |
1422 | } |
1423 | ||
1424 | out_unlock: | |
5eb3dc62 | 1425 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1426 | |
cd84a42f DH |
1427 | /* |
1428 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1429 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1430 | * one at key2 and updated their key pointer. We no longer need to | |
1431 | * hold the references to key1. | |
1432 | */ | |
1da177e4 | 1433 | while (--drop_count >= 0) |
9adef58b | 1434 | drop_futex_key_refs(&key1); |
1da177e4 | 1435 | |
42d35d48 | 1436 | out_put_keys: |
ae791a2d | 1437 | put_futex_key(&key2); |
42d35d48 | 1438 | out_put_key1: |
ae791a2d | 1439 | put_futex_key(&key1); |
42d35d48 | 1440 | out: |
52400ba9 DH |
1441 | if (pi_state != NULL) |
1442 | free_pi_state(pi_state); | |
1443 | return ret ? ret : task_count; | |
1da177e4 LT |
1444 | } |
1445 | ||
1446 | /* The key must be already stored in q->key. */ | |
82af7aca | 1447 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1448 | __acquires(&hb->lock) |
1da177e4 | 1449 | { |
e2970f2f | 1450 | struct futex_hash_bucket *hb; |
1da177e4 | 1451 | |
e2970f2f IM |
1452 | hb = hash_futex(&q->key); |
1453 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1454 | |
e2970f2f IM |
1455 | spin_lock(&hb->lock); |
1456 | return hb; | |
1da177e4 LT |
1457 | } |
1458 | ||
d40d65c8 DH |
1459 | static inline void |
1460 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | |
15e408cd | 1461 | __releases(&hb->lock) |
d40d65c8 DH |
1462 | { |
1463 | spin_unlock(&hb->lock); | |
d40d65c8 DH |
1464 | } |
1465 | ||
1466 | /** | |
1467 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
1468 | * @q: The futex_q to enqueue | |
1469 | * @hb: The destination hash bucket | |
1470 | * | |
1471 | * The hb->lock must be held by the caller, and is released here. A call to | |
1472 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
1473 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
1474 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
1475 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
1476 | * an example). | |
1477 | */ | |
82af7aca | 1478 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 1479 | __releases(&hb->lock) |
1da177e4 | 1480 | { |
ec92d082 PP |
1481 | int prio; |
1482 | ||
1483 | /* | |
1484 | * The priority used to register this element is | |
1485 | * - either the real thread-priority for the real-time threads | |
1486 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1487 | * - or MAX_RT_PRIO for non-RT threads. | |
1488 | * Thus, all RT-threads are woken first in priority order, and | |
1489 | * the others are woken last, in FIFO order. | |
1490 | */ | |
1491 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1492 | ||
1493 | plist_node_init(&q->list, prio); | |
ec92d082 | 1494 | plist_add(&q->list, &hb->chain); |
c87e2837 | 1495 | q->task = current; |
e2970f2f | 1496 | spin_unlock(&hb->lock); |
1da177e4 LT |
1497 | } |
1498 | ||
d40d65c8 DH |
1499 | /** |
1500 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
1501 | * @q: The futex_q to unqueue | |
1502 | * | |
1503 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
1504 | * be paired with exactly one earlier call to queue_me(). | |
1505 | * | |
1506 | * Returns: | |
1507 | * 1 - if the futex_q was still queued (and we removed unqueued it) | |
1508 | * 0 - if the futex_q was already removed by the waking thread | |
1da177e4 | 1509 | */ |
1da177e4 LT |
1510 | static int unqueue_me(struct futex_q *q) |
1511 | { | |
1da177e4 | 1512 | spinlock_t *lock_ptr; |
e2970f2f | 1513 | int ret = 0; |
1da177e4 LT |
1514 | |
1515 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 1516 | retry: |
1da177e4 | 1517 | lock_ptr = q->lock_ptr; |
e91467ec | 1518 | barrier(); |
c80544dc | 1519 | if (lock_ptr != NULL) { |
1da177e4 LT |
1520 | spin_lock(lock_ptr); |
1521 | /* | |
1522 | * q->lock_ptr can change between reading it and | |
1523 | * spin_lock(), causing us to take the wrong lock. This | |
1524 | * corrects the race condition. | |
1525 | * | |
1526 | * Reasoning goes like this: if we have the wrong lock, | |
1527 | * q->lock_ptr must have changed (maybe several times) | |
1528 | * between reading it and the spin_lock(). It can | |
1529 | * change again after the spin_lock() but only if it was | |
1530 | * already changed before the spin_lock(). It cannot, | |
1531 | * however, change back to the original value. Therefore | |
1532 | * we can detect whether we acquired the correct lock. | |
1533 | */ | |
1534 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1535 | spin_unlock(lock_ptr); | |
1536 | goto retry; | |
1537 | } | |
2e12978a | 1538 | __unqueue_futex(q); |
c87e2837 IM |
1539 | |
1540 | BUG_ON(q->pi_state); | |
1541 | ||
1da177e4 LT |
1542 | spin_unlock(lock_ptr); |
1543 | ret = 1; | |
1544 | } | |
1545 | ||
9adef58b | 1546 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1547 | return ret; |
1548 | } | |
1549 | ||
c87e2837 IM |
1550 | /* |
1551 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1552 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1553 | * and dropped here. | |
c87e2837 | 1554 | */ |
d0aa7a70 | 1555 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 1556 | __releases(q->lock_ptr) |
c87e2837 | 1557 | { |
2e12978a | 1558 | __unqueue_futex(q); |
c87e2837 IM |
1559 | |
1560 | BUG_ON(!q->pi_state); | |
1561 | free_pi_state(q->pi_state); | |
1562 | q->pi_state = NULL; | |
1563 | ||
d0aa7a70 | 1564 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
1565 | } |
1566 | ||
d0aa7a70 | 1567 | /* |
cdf71a10 | 1568 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1569 | * |
778e9a9c AK |
1570 | * Must be called with hash bucket lock held and mm->sem held for non |
1571 | * private futexes. | |
d0aa7a70 | 1572 | */ |
778e9a9c | 1573 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 1574 | struct task_struct *newowner) |
d0aa7a70 | 1575 | { |
cdf71a10 | 1576 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 1577 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 1578 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 1579 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 1580 | int ret; |
d0aa7a70 PP |
1581 | |
1582 | /* Owner died? */ | |
1b7558e4 TG |
1583 | if (!pi_state->owner) |
1584 | newtid |= FUTEX_OWNER_DIED; | |
1585 | ||
1586 | /* | |
1587 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
1588 | * previous highest priority waiter or we are the highest priority |
1589 | * waiter but failed to get the rtmutex the first time. | |
1590 | * We have to replace the newowner TID in the user space variable. | |
1591 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 1592 | * |
b2d0994b DH |
1593 | * Note: We write the user space value _before_ changing the pi_state |
1594 | * because we can fault here. Imagine swapped out pages or a fork | |
1595 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
1596 | * |
1597 | * Modifying pi_state _before_ the user space value would | |
1598 | * leave the pi_state in an inconsistent state when we fault | |
1599 | * here, because we need to drop the hash bucket lock to | |
1600 | * handle the fault. This might be observed in the PID check | |
1601 | * in lookup_pi_state. | |
1602 | */ | |
1603 | retry: | |
1604 | if (get_futex_value_locked(&uval, uaddr)) | |
1605 | goto handle_fault; | |
1606 | ||
1607 | while (1) { | |
1608 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1609 | ||
37a9d912 | 1610 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
1611 | goto handle_fault; |
1612 | if (curval == uval) | |
1613 | break; | |
1614 | uval = curval; | |
1615 | } | |
1616 | ||
1617 | /* | |
1618 | * We fixed up user space. Now we need to fix the pi_state | |
1619 | * itself. | |
1620 | */ | |
d0aa7a70 | 1621 | if (pi_state->owner != NULL) { |
1d615482 | 1622 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
1623 | WARN_ON(list_empty(&pi_state->list)); |
1624 | list_del_init(&pi_state->list); | |
1d615482 | 1625 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 1626 | } |
d0aa7a70 | 1627 | |
cdf71a10 | 1628 | pi_state->owner = newowner; |
d0aa7a70 | 1629 | |
1d615482 | 1630 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1631 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 1632 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 1633 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 1634 | return 0; |
d0aa7a70 | 1635 | |
d0aa7a70 | 1636 | /* |
1b7558e4 | 1637 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
1638 | * lock here. That gives the other task (either the highest priority |
1639 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
1640 | * chance to try the fixup of the pi_state. So once we are |
1641 | * back from handling the fault we need to check the pi_state | |
1642 | * after reacquiring the hash bucket lock and before trying to | |
1643 | * do another fixup. When the fixup has been done already we | |
1644 | * simply return. | |
d0aa7a70 | 1645 | */ |
1b7558e4 TG |
1646 | handle_fault: |
1647 | spin_unlock(q->lock_ptr); | |
778e9a9c | 1648 | |
d0725992 | 1649 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 1650 | |
1b7558e4 | 1651 | spin_lock(q->lock_ptr); |
778e9a9c | 1652 | |
1b7558e4 TG |
1653 | /* |
1654 | * Check if someone else fixed it for us: | |
1655 | */ | |
1656 | if (pi_state->owner != oldowner) | |
1657 | return 0; | |
1658 | ||
1659 | if (ret) | |
1660 | return ret; | |
1661 | ||
1662 | goto retry; | |
d0aa7a70 PP |
1663 | } |
1664 | ||
72c1bbf3 | 1665 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1666 | |
dd973998 DH |
1667 | /** |
1668 | * fixup_owner() - Post lock pi_state and corner case management | |
1669 | * @uaddr: user address of the futex | |
dd973998 DH |
1670 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
1671 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
1672 | * | |
1673 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
1674 | * the pi_state owner as well as handle race conditions that may allow us to | |
1675 | * acquire the lock. Must be called with the hb lock held. | |
1676 | * | |
1677 | * Returns: | |
1678 | * 1 - success, lock taken | |
1679 | * 0 - success, lock not taken | |
1680 | * <0 - on error (-EFAULT) | |
1681 | */ | |
ae791a2d | 1682 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
1683 | { |
1684 | struct task_struct *owner; | |
1685 | int ret = 0; | |
1686 | ||
1687 | if (locked) { | |
1688 | /* | |
1689 | * Got the lock. We might not be the anticipated owner if we | |
1690 | * did a lock-steal - fix up the PI-state in that case: | |
1691 | */ | |
1692 | if (q->pi_state->owner != current) | |
ae791a2d | 1693 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
1694 | goto out; |
1695 | } | |
1696 | ||
1697 | /* | |
1698 | * Catch the rare case, where the lock was released when we were on the | |
1699 | * way back before we locked the hash bucket. | |
1700 | */ | |
1701 | if (q->pi_state->owner == current) { | |
1702 | /* | |
1703 | * Try to get the rt_mutex now. This might fail as some other | |
1704 | * task acquired the rt_mutex after we removed ourself from the | |
1705 | * rt_mutex waiters list. | |
1706 | */ | |
1707 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
1708 | locked = 1; | |
1709 | goto out; | |
1710 | } | |
1711 | ||
1712 | /* | |
1713 | * pi_state is incorrect, some other task did a lock steal and | |
1714 | * we returned due to timeout or signal without taking the | |
8161239a | 1715 | * rt_mutex. Too late. |
dd973998 | 1716 | */ |
8161239a | 1717 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 1718 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
1719 | if (!owner) |
1720 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
1721 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); | |
ae791a2d | 1722 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
1723 | goto out; |
1724 | } | |
1725 | ||
1726 | /* | |
1727 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 1728 | * the owner of the rt_mutex. |
dd973998 DH |
1729 | */ |
1730 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
1731 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
1732 | "pi-state %p\n", ret, | |
1733 | q->pi_state->pi_mutex.owner, | |
1734 | q->pi_state->owner); | |
1735 | ||
1736 | out: | |
1737 | return ret ? ret : locked; | |
1738 | } | |
1739 | ||
ca5f9524 DH |
1740 | /** |
1741 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
1742 | * @hb: the futex hash bucket, must be locked by the caller | |
1743 | * @q: the futex_q to queue up on | |
1744 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
1745 | */ |
1746 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 1747 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 1748 | { |
9beba3c5 DH |
1749 | /* |
1750 | * The task state is guaranteed to be set before another task can | |
1751 | * wake it. set_current_state() is implemented using set_mb() and | |
1752 | * queue_me() calls spin_unlock() upon completion, both serializing | |
1753 | * access to the hash list and forcing another memory barrier. | |
1754 | */ | |
f1a11e05 | 1755 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 1756 | queue_me(q, hb); |
ca5f9524 DH |
1757 | |
1758 | /* Arm the timer */ | |
1759 | if (timeout) { | |
1760 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); | |
1761 | if (!hrtimer_active(&timeout->timer)) | |
1762 | timeout->task = NULL; | |
1763 | } | |
1764 | ||
1765 | /* | |
0729e196 DH |
1766 | * If we have been removed from the hash list, then another task |
1767 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
1768 | */ |
1769 | if (likely(!plist_node_empty(&q->list))) { | |
1770 | /* | |
1771 | * If the timer has already expired, current will already be | |
1772 | * flagged for rescheduling. Only call schedule if there | |
1773 | * is no timeout, or if it has yet to expire. | |
1774 | */ | |
1775 | if (!timeout || timeout->task) | |
1776 | schedule(); | |
1777 | } | |
1778 | __set_current_state(TASK_RUNNING); | |
1779 | } | |
1780 | ||
f801073f DH |
1781 | /** |
1782 | * futex_wait_setup() - Prepare to wait on a futex | |
1783 | * @uaddr: the futex userspace address | |
1784 | * @val: the expected value | |
b41277dc | 1785 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
1786 | * @q: the associated futex_q |
1787 | * @hb: storage for hash_bucket pointer to be returned to caller | |
1788 | * | |
1789 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
1790 | * compare it with the expected value. Handle atomic faults internally. | |
1791 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
1792 | * with no q.key reference on failure. | |
1793 | * | |
1794 | * Returns: | |
1795 | * 0 - uaddr contains val and hb has been locked | |
ca4a04cf | 1796 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 1797 | */ |
b41277dc | 1798 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 1799 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 1800 | { |
e2970f2f IM |
1801 | u32 uval; |
1802 | int ret; | |
1da177e4 | 1803 | |
1da177e4 | 1804 | /* |
b2d0994b | 1805 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
1806 | * Order is important: |
1807 | * | |
1808 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1809 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1810 | * | |
1811 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1812 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
1813 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
1814 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
1815 | * cond(var) false, which would violate the guarantee. |
1816 | * | |
8fe8f545 ML |
1817 | * On the other hand, we insert q and release the hash-bucket only |
1818 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
1819 | * absorb a wakeup if *uaddr does not match the desired values | |
1820 | * while the syscall executes. | |
1da177e4 | 1821 | */ |
f801073f | 1822 | retry: |
9ea71503 | 1823 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 1824 | if (unlikely(ret != 0)) |
a5a2a0c7 | 1825 | return ret; |
f801073f DH |
1826 | |
1827 | retry_private: | |
1828 | *hb = queue_lock(q); | |
1829 | ||
e2970f2f | 1830 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 1831 | |
f801073f DH |
1832 | if (ret) { |
1833 | queue_unlock(q, *hb); | |
1da177e4 | 1834 | |
e2970f2f | 1835 | ret = get_user(uval, uaddr); |
e4dc5b7a | 1836 | if (ret) |
f801073f | 1837 | goto out; |
1da177e4 | 1838 | |
b41277dc | 1839 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1840 | goto retry_private; |
1841 | ||
ae791a2d | 1842 | put_futex_key(&q->key); |
e4dc5b7a | 1843 | goto retry; |
1da177e4 | 1844 | } |
ca5f9524 | 1845 | |
f801073f DH |
1846 | if (uval != val) { |
1847 | queue_unlock(q, *hb); | |
1848 | ret = -EWOULDBLOCK; | |
2fff78c7 | 1849 | } |
1da177e4 | 1850 | |
f801073f DH |
1851 | out: |
1852 | if (ret) | |
ae791a2d | 1853 | put_futex_key(&q->key); |
f801073f DH |
1854 | return ret; |
1855 | } | |
1856 | ||
b41277dc DH |
1857 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
1858 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
1859 | { |
1860 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
1861 | struct restart_block *restart; |
1862 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 1863 | struct futex_q q = futex_q_init; |
f801073f DH |
1864 | int ret; |
1865 | ||
1866 | if (!bitset) | |
1867 | return -EINVAL; | |
f801073f DH |
1868 | q.bitset = bitset; |
1869 | ||
1870 | if (abs_time) { | |
1871 | to = &timeout; | |
1872 | ||
b41277dc DH |
1873 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
1874 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
1875 | HRTIMER_MODE_ABS); | |
f801073f DH |
1876 | hrtimer_init_sleeper(to, current); |
1877 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
1878 | current->timer_slack_ns); | |
1879 | } | |
1880 | ||
d58e6576 | 1881 | retry: |
7ada876a DH |
1882 | /* |
1883 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
1884 | * q.key refs. | |
1885 | */ | |
b41277dc | 1886 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
1887 | if (ret) |
1888 | goto out; | |
1889 | ||
ca5f9524 | 1890 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 1891 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
1892 | |
1893 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 1894 | ret = 0; |
7ada876a | 1895 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 1896 | if (!unqueue_me(&q)) |
7ada876a | 1897 | goto out; |
2fff78c7 | 1898 | ret = -ETIMEDOUT; |
ca5f9524 | 1899 | if (to && !to->task) |
7ada876a | 1900 | goto out; |
72c1bbf3 | 1901 | |
e2970f2f | 1902 | /* |
d58e6576 TG |
1903 | * We expect signal_pending(current), but we might be the |
1904 | * victim of a spurious wakeup as well. | |
e2970f2f | 1905 | */ |
7ada876a | 1906 | if (!signal_pending(current)) |
d58e6576 | 1907 | goto retry; |
d58e6576 | 1908 | |
2fff78c7 | 1909 | ret = -ERESTARTSYS; |
c19384b5 | 1910 | if (!abs_time) |
7ada876a | 1911 | goto out; |
1da177e4 | 1912 | |
2fff78c7 PZ |
1913 | restart = ¤t_thread_info()->restart_block; |
1914 | restart->fn = futex_wait_restart; | |
a3c74c52 | 1915 | restart->futex.uaddr = uaddr; |
2fff78c7 PZ |
1916 | restart->futex.val = val; |
1917 | restart->futex.time = abs_time->tv64; | |
1918 | restart->futex.bitset = bitset; | |
0cd9c649 | 1919 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 1920 | |
2fff78c7 PZ |
1921 | ret = -ERESTART_RESTARTBLOCK; |
1922 | ||
42d35d48 | 1923 | out: |
ca5f9524 DH |
1924 | if (to) { |
1925 | hrtimer_cancel(&to->timer); | |
1926 | destroy_hrtimer_on_stack(&to->timer); | |
1927 | } | |
c87e2837 IM |
1928 | return ret; |
1929 | } | |
1930 | ||
72c1bbf3 NP |
1931 | |
1932 | static long futex_wait_restart(struct restart_block *restart) | |
1933 | { | |
a3c74c52 | 1934 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 1935 | ktime_t t, *tp = NULL; |
72c1bbf3 | 1936 | |
a72188d8 DH |
1937 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
1938 | t.tv64 = restart->futex.time; | |
1939 | tp = &t; | |
1940 | } | |
72c1bbf3 | 1941 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
1942 | |
1943 | return (long)futex_wait(uaddr, restart->futex.flags, | |
1944 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
1945 | } |
1946 | ||
1947 | ||
c87e2837 IM |
1948 | /* |
1949 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1950 | * and failed. The kernel side here does the whole locking operation: | |
1951 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1952 | * races the kernel might see a 0 value of the futex too.) | |
1953 | */ | |
b41277dc DH |
1954 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
1955 | ktime_t *time, int trylock) | |
c87e2837 | 1956 | { |
c5780e97 | 1957 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 1958 | struct futex_hash_bucket *hb; |
5bdb05f9 | 1959 | struct futex_q q = futex_q_init; |
dd973998 | 1960 | int res, ret; |
c87e2837 IM |
1961 | |
1962 | if (refill_pi_state_cache()) | |
1963 | return -ENOMEM; | |
1964 | ||
c19384b5 | 1965 | if (time) { |
c5780e97 | 1966 | to = &timeout; |
237fc6e7 TG |
1967 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
1968 | HRTIMER_MODE_ABS); | |
c5780e97 | 1969 | hrtimer_init_sleeper(to, current); |
cc584b21 | 1970 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
1971 | } |
1972 | ||
42d35d48 | 1973 | retry: |
9ea71503 | 1974 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 1975 | if (unlikely(ret != 0)) |
42d35d48 | 1976 | goto out; |
c87e2837 | 1977 | |
e4dc5b7a | 1978 | retry_private: |
82af7aca | 1979 | hb = queue_lock(&q); |
c87e2837 | 1980 | |
bab5bc9e | 1981 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 1982 | if (unlikely(ret)) { |
778e9a9c | 1983 | switch (ret) { |
1a52084d DH |
1984 | case 1: |
1985 | /* We got the lock. */ | |
1986 | ret = 0; | |
1987 | goto out_unlock_put_key; | |
1988 | case -EFAULT: | |
1989 | goto uaddr_faulted; | |
778e9a9c AK |
1990 | case -EAGAIN: |
1991 | /* | |
1992 | * Task is exiting and we just wait for the | |
1993 | * exit to complete. | |
1994 | */ | |
1995 | queue_unlock(&q, hb); | |
ae791a2d | 1996 | put_futex_key(&q.key); |
778e9a9c AK |
1997 | cond_resched(); |
1998 | goto retry; | |
778e9a9c | 1999 | default: |
42d35d48 | 2000 | goto out_unlock_put_key; |
c87e2837 | 2001 | } |
c87e2837 IM |
2002 | } |
2003 | ||
2004 | /* | |
2005 | * Only actually queue now that the atomic ops are done: | |
2006 | */ | |
82af7aca | 2007 | queue_me(&q, hb); |
c87e2837 | 2008 | |
c87e2837 IM |
2009 | WARN_ON(!q.pi_state); |
2010 | /* | |
2011 | * Block on the PI mutex: | |
2012 | */ | |
2013 | if (!trylock) | |
2014 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
2015 | else { | |
2016 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
2017 | /* Fixup the trylock return value: */ | |
2018 | ret = ret ? 0 : -EWOULDBLOCK; | |
2019 | } | |
2020 | ||
a99e4e41 | 2021 | spin_lock(q.lock_ptr); |
dd973998 DH |
2022 | /* |
2023 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2024 | * haven't already. | |
2025 | */ | |
ae791a2d | 2026 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2027 | /* |
2028 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2029 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2030 | */ | |
2031 | if (res) | |
2032 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2033 | |
e8f6386c | 2034 | /* |
dd973998 DH |
2035 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2036 | * it and return the fault to userspace. | |
e8f6386c DH |
2037 | */ |
2038 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2039 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2040 | ||
778e9a9c AK |
2041 | /* Unqueue and drop the lock */ |
2042 | unqueue_me_pi(&q); | |
c87e2837 | 2043 | |
5ecb01cf | 2044 | goto out_put_key; |
c87e2837 | 2045 | |
42d35d48 | 2046 | out_unlock_put_key: |
c87e2837 IM |
2047 | queue_unlock(&q, hb); |
2048 | ||
42d35d48 | 2049 | out_put_key: |
ae791a2d | 2050 | put_futex_key(&q.key); |
42d35d48 | 2051 | out: |
237fc6e7 TG |
2052 | if (to) |
2053 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2054 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2055 | |
42d35d48 | 2056 | uaddr_faulted: |
778e9a9c AK |
2057 | queue_unlock(&q, hb); |
2058 | ||
d0725992 | 2059 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2060 | if (ret) |
2061 | goto out_put_key; | |
c87e2837 | 2062 | |
b41277dc | 2063 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2064 | goto retry_private; |
2065 | ||
ae791a2d | 2066 | put_futex_key(&q.key); |
e4dc5b7a | 2067 | goto retry; |
c87e2837 IM |
2068 | } |
2069 | ||
c87e2837 IM |
2070 | /* |
2071 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2072 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2073 | * and do the rt-mutex unlock. | |
2074 | */ | |
b41277dc | 2075 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 IM |
2076 | { |
2077 | struct futex_hash_bucket *hb; | |
2078 | struct futex_q *this, *next; | |
ec92d082 | 2079 | struct plist_head *head; |
38d47c1b | 2080 | union futex_key key = FUTEX_KEY_INIT; |
c0c9ed15 | 2081 | u32 uval, vpid = task_pid_vnr(current); |
e4dc5b7a | 2082 | int ret; |
c87e2837 IM |
2083 | |
2084 | retry: | |
2085 | if (get_user(uval, uaddr)) | |
2086 | return -EFAULT; | |
2087 | /* | |
2088 | * We release only a lock we actually own: | |
2089 | */ | |
c0c9ed15 | 2090 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2091 | return -EPERM; |
c87e2837 | 2092 | |
9ea71503 | 2093 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
c87e2837 IM |
2094 | if (unlikely(ret != 0)) |
2095 | goto out; | |
2096 | ||
2097 | hb = hash_futex(&key); | |
2098 | spin_lock(&hb->lock); | |
2099 | ||
c87e2837 IM |
2100 | /* |
2101 | * To avoid races, try to do the TID -> 0 atomic transition | |
2102 | * again. If it succeeds then we can return without waking | |
2103 | * anyone else up: | |
2104 | */ | |
37a9d912 ML |
2105 | if (!(uval & FUTEX_OWNER_DIED) && |
2106 | cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0)) | |
c87e2837 IM |
2107 | goto pi_faulted; |
2108 | /* | |
2109 | * Rare case: we managed to release the lock atomically, | |
2110 | * no need to wake anyone else up: | |
2111 | */ | |
c0c9ed15 | 2112 | if (unlikely(uval == vpid)) |
c87e2837 IM |
2113 | goto out_unlock; |
2114 | ||
2115 | /* | |
2116 | * Ok, other tasks may need to be woken up - check waiters | |
2117 | * and do the wakeup if necessary: | |
2118 | */ | |
2119 | head = &hb->chain; | |
2120 | ||
ec92d082 | 2121 | plist_for_each_entry_safe(this, next, head, list) { |
c87e2837 IM |
2122 | if (!match_futex (&this->key, &key)) |
2123 | continue; | |
2124 | ret = wake_futex_pi(uaddr, uval, this); | |
2125 | /* | |
2126 | * The atomic access to the futex value | |
2127 | * generated a pagefault, so retry the | |
2128 | * user-access and the wakeup: | |
2129 | */ | |
2130 | if (ret == -EFAULT) | |
2131 | goto pi_faulted; | |
2132 | goto out_unlock; | |
2133 | } | |
2134 | /* | |
2135 | * No waiters - kernel unlocks the futex: | |
2136 | */ | |
e3f2ddea IM |
2137 | if (!(uval & FUTEX_OWNER_DIED)) { |
2138 | ret = unlock_futex_pi(uaddr, uval); | |
2139 | if (ret == -EFAULT) | |
2140 | goto pi_faulted; | |
2141 | } | |
c87e2837 IM |
2142 | |
2143 | out_unlock: | |
2144 | spin_unlock(&hb->lock); | |
ae791a2d | 2145 | put_futex_key(&key); |
c87e2837 | 2146 | |
42d35d48 | 2147 | out: |
c87e2837 IM |
2148 | return ret; |
2149 | ||
2150 | pi_faulted: | |
778e9a9c | 2151 | spin_unlock(&hb->lock); |
ae791a2d | 2152 | put_futex_key(&key); |
c87e2837 | 2153 | |
d0725992 | 2154 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2155 | if (!ret) |
c87e2837 IM |
2156 | goto retry; |
2157 | ||
1da177e4 LT |
2158 | return ret; |
2159 | } | |
2160 | ||
52400ba9 DH |
2161 | /** |
2162 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2163 | * @hb: the hash_bucket futex_q was original enqueued on | |
2164 | * @q: the futex_q woken while waiting to be requeued | |
2165 | * @key2: the futex_key of the requeue target futex | |
2166 | * @timeout: the timeout associated with the wait (NULL if none) | |
2167 | * | |
2168 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2169 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2170 | * the wakeup and return the appropriate error code to the caller. Must be | |
2171 | * called with the hb lock held. | |
2172 | * | |
2173 | * Returns | |
2174 | * 0 - no early wakeup detected | |
1c840c14 | 2175 | * <0 - -ETIMEDOUT or -ERESTARTNOINTR |
52400ba9 DH |
2176 | */ |
2177 | static inline | |
2178 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2179 | struct futex_q *q, union futex_key *key2, | |
2180 | struct hrtimer_sleeper *timeout) | |
2181 | { | |
2182 | int ret = 0; | |
2183 | ||
2184 | /* | |
2185 | * With the hb lock held, we avoid races while we process the wakeup. | |
2186 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2187 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2188 | * It can't be requeued from uaddr2 to something else since we don't | |
2189 | * support a PI aware source futex for requeue. | |
2190 | */ | |
2191 | if (!match_futex(&q->key, key2)) { | |
2192 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2193 | /* | |
2194 | * We were woken prior to requeue by a timeout or a signal. | |
2195 | * Unqueue the futex_q and determine which it was. | |
2196 | */ | |
2e12978a | 2197 | plist_del(&q->list, &hb->chain); |
52400ba9 | 2198 | |
d58e6576 | 2199 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2200 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2201 | if (timeout && !timeout->task) |
2202 | ret = -ETIMEDOUT; | |
d58e6576 | 2203 | else if (signal_pending(current)) |
1c840c14 | 2204 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2205 | } |
2206 | return ret; | |
2207 | } | |
2208 | ||
2209 | /** | |
2210 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2211 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2212 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba9 DH |
2213 | * the same type, no requeueing from private to shared, etc. |
2214 | * @val: the expected value of uaddr | |
2215 | * @abs_time: absolute timeout | |
56ec1607 | 2216 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2217 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
2218 | * @uaddr2: the pi futex we will take prior to returning to user-space | |
2219 | * | |
2220 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
2221 | * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and | |
2222 | * complete the acquisition of the rt_mutex prior to returning to userspace. | |
2223 | * This ensures the rt_mutex maintains an owner when it has waiters; without | |
2224 | * one, the pi logic wouldn't know which task to boost/deboost, if there was a | |
2225 | * need to. | |
2226 | * | |
2227 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
2228 | * via the following: | |
2229 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() | |
cc6db4e6 DH |
2230 | * 2) wakeup on uaddr2 after a requeue |
2231 | * 3) signal | |
2232 | * 4) timeout | |
52400ba9 | 2233 | * |
cc6db4e6 | 2234 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2235 | * |
2236 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2237 | * 5) successful lock | |
2238 | * 6) signal | |
2239 | * 7) timeout | |
2240 | * 8) other lock acquisition failure | |
2241 | * | |
cc6db4e6 | 2242 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2243 | * |
2244 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2245 | * | |
2246 | * Returns: | |
2247 | * 0 - On success | |
2248 | * <0 - On error | |
2249 | */ | |
b41277dc | 2250 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2251 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2252 | u32 __user *uaddr2) |
52400ba9 DH |
2253 | { |
2254 | struct hrtimer_sleeper timeout, *to = NULL; | |
2255 | struct rt_mutex_waiter rt_waiter; | |
2256 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2257 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2258 | union futex_key key2 = FUTEX_KEY_INIT; |
2259 | struct futex_q q = futex_q_init; | |
52400ba9 | 2260 | int res, ret; |
52400ba9 DH |
2261 | |
2262 | if (!bitset) | |
2263 | return -EINVAL; | |
2264 | ||
2265 | if (abs_time) { | |
2266 | to = &timeout; | |
b41277dc DH |
2267 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2268 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2269 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2270 | hrtimer_init_sleeper(to, current); |
2271 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2272 | current->timer_slack_ns); | |
2273 | } | |
2274 | ||
2275 | /* | |
2276 | * The waiter is allocated on our stack, manipulated by the requeue | |
2277 | * code while we sleep on uaddr. | |
2278 | */ | |
2279 | debug_rt_mutex_init_waiter(&rt_waiter); | |
2280 | rt_waiter.task = NULL; | |
2281 | ||
9ea71503 | 2282 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2283 | if (unlikely(ret != 0)) |
2284 | goto out; | |
2285 | ||
84bc4af5 DH |
2286 | q.bitset = bitset; |
2287 | q.rt_waiter = &rt_waiter; | |
2288 | q.requeue_pi_key = &key2; | |
2289 | ||
7ada876a DH |
2290 | /* |
2291 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2292 | * count. | |
2293 | */ | |
b41277dc | 2294 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2295 | if (ret) |
2296 | goto out_key2; | |
52400ba9 DH |
2297 | |
2298 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ | |
f1a11e05 | 2299 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2300 | |
2301 | spin_lock(&hb->lock); | |
2302 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2303 | spin_unlock(&hb->lock); | |
2304 | if (ret) | |
2305 | goto out_put_keys; | |
2306 | ||
2307 | /* | |
2308 | * In order for us to be here, we know our q.key == key2, and since | |
2309 | * we took the hb->lock above, we also know that futex_requeue() has | |
2310 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2311 | * race with the atomic proxy lock acquisition by the requeue code. The |
2312 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2313 | * reference count. | |
52400ba9 DH |
2314 | */ |
2315 | ||
2316 | /* Check if the requeue code acquired the second futex for us. */ | |
2317 | if (!q.rt_waiter) { | |
2318 | /* | |
2319 | * Got the lock. We might not be the anticipated owner if we | |
2320 | * did a lock-steal - fix up the PI-state in that case. | |
2321 | */ | |
2322 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2323 | spin_lock(q.lock_ptr); | |
ae791a2d | 2324 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba9 DH |
2325 | spin_unlock(q.lock_ptr); |
2326 | } | |
2327 | } else { | |
2328 | /* | |
2329 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2330 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2331 | * the pi_state. | |
2332 | */ | |
2333 | WARN_ON(!&q.pi_state); | |
2334 | pi_mutex = &q.pi_state->pi_mutex; | |
2335 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1); | |
2336 | debug_rt_mutex_free_waiter(&rt_waiter); | |
2337 | ||
2338 | spin_lock(q.lock_ptr); | |
2339 | /* | |
2340 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2341 | * haven't already. | |
2342 | */ | |
ae791a2d | 2343 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2344 | /* |
2345 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2346 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2347 | */ |
2348 | if (res) | |
2349 | ret = (res < 0) ? res : 0; | |
2350 | ||
2351 | /* Unqueue and drop the lock. */ | |
2352 | unqueue_me_pi(&q); | |
2353 | } | |
2354 | ||
2355 | /* | |
2356 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2357 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2358 | */ | |
2359 | if (ret == -EFAULT) { | |
2360 | if (rt_mutex_owner(pi_mutex) == current) | |
2361 | rt_mutex_unlock(pi_mutex); | |
2362 | } else if (ret == -EINTR) { | |
52400ba9 | 2363 | /* |
cc6db4e6 DH |
2364 | * We've already been requeued, but cannot restart by calling |
2365 | * futex_lock_pi() directly. We could restart this syscall, but | |
2366 | * it would detect that the user space "val" changed and return | |
2367 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2368 | * -EWOULDBLOCK directly. | |
52400ba9 | 2369 | */ |
2070887f | 2370 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2371 | } |
2372 | ||
2373 | out_put_keys: | |
ae791a2d | 2374 | put_futex_key(&q.key); |
c8b15a70 | 2375 | out_key2: |
ae791a2d | 2376 | put_futex_key(&key2); |
52400ba9 DH |
2377 | |
2378 | out: | |
2379 | if (to) { | |
2380 | hrtimer_cancel(&to->timer); | |
2381 | destroy_hrtimer_on_stack(&to->timer); | |
2382 | } | |
2383 | return ret; | |
2384 | } | |
2385 | ||
0771dfef IM |
2386 | /* |
2387 | * Support for robust futexes: the kernel cleans up held futexes at | |
2388 | * thread exit time. | |
2389 | * | |
2390 | * Implementation: user-space maintains a per-thread list of locks it | |
2391 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2392 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2393 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2394 | * always manipulated with the lock held, so the list is private and |
2395 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2396 | * field, to allow the kernel to clean up if the thread dies after | |
2397 | * acquiring the lock, but just before it could have added itself to | |
2398 | * the list. There can only be one such pending lock. | |
2399 | */ | |
2400 | ||
2401 | /** | |
d96ee56c DH |
2402 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2403 | * @head: pointer to the list-head | |
2404 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2405 | */ |
836f92ad HC |
2406 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2407 | size_t, len) | |
0771dfef | 2408 | { |
a0c1e907 TG |
2409 | if (!futex_cmpxchg_enabled) |
2410 | return -ENOSYS; | |
0771dfef IM |
2411 | /* |
2412 | * The kernel knows only one size for now: | |
2413 | */ | |
2414 | if (unlikely(len != sizeof(*head))) | |
2415 | return -EINVAL; | |
2416 | ||
2417 | current->robust_list = head; | |
2418 | ||
2419 | return 0; | |
2420 | } | |
2421 | ||
2422 | /** | |
d96ee56c DH |
2423 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2424 | * @pid: pid of the process [zero for current task] | |
2425 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2426 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 2427 | */ |
836f92ad HC |
2428 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2429 | struct robust_list_head __user * __user *, head_ptr, | |
2430 | size_t __user *, len_ptr) | |
0771dfef | 2431 | { |
ba46df98 | 2432 | struct robust_list_head __user *head; |
0771dfef | 2433 | unsigned long ret; |
c69e8d9c | 2434 | const struct cred *cred = current_cred(), *pcred; |
0771dfef | 2435 | |
a0c1e907 TG |
2436 | if (!futex_cmpxchg_enabled) |
2437 | return -ENOSYS; | |
2438 | ||
0771dfef IM |
2439 | if (!pid) |
2440 | head = current->robust_list; | |
2441 | else { | |
2442 | struct task_struct *p; | |
2443 | ||
2444 | ret = -ESRCH; | |
aaa2a97e | 2445 | rcu_read_lock(); |
228ebcbe | 2446 | p = find_task_by_vpid(pid); |
0771dfef IM |
2447 | if (!p) |
2448 | goto err_unlock; | |
2449 | ret = -EPERM; | |
c69e8d9c | 2450 | pcred = __task_cred(p); |
b0e77598 SH |
2451 | /* If victim is in different user_ns, then uids are not |
2452 | comparable, so we must have CAP_SYS_PTRACE */ | |
2453 | if (cred->user->user_ns != pcred->user->user_ns) { | |
2454 | if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE)) | |
2455 | goto err_unlock; | |
2456 | goto ok; | |
2457 | } | |
2458 | /* If victim is in same user_ns, then uids are comparable */ | |
c69e8d9c DH |
2459 | if (cred->euid != pcred->euid && |
2460 | cred->euid != pcred->uid && | |
b0e77598 | 2461 | !ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE)) |
0771dfef | 2462 | goto err_unlock; |
b0e77598 | 2463 | ok: |
0771dfef | 2464 | head = p->robust_list; |
aaa2a97e | 2465 | rcu_read_unlock(); |
0771dfef IM |
2466 | } |
2467 | ||
2468 | if (put_user(sizeof(*head), len_ptr)) | |
2469 | return -EFAULT; | |
2470 | return put_user(head, head_ptr); | |
2471 | ||
2472 | err_unlock: | |
aaa2a97e | 2473 | rcu_read_unlock(); |
0771dfef IM |
2474 | |
2475 | return ret; | |
2476 | } | |
2477 | ||
2478 | /* | |
2479 | * Process a futex-list entry, check whether it's owned by the | |
2480 | * dying task, and do notification if so: | |
2481 | */ | |
e3f2ddea | 2482 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2483 | { |
7cfdaf38 | 2484 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 2485 | |
8f17d3a5 IM |
2486 | retry: |
2487 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2488 | return -1; |
2489 | ||
b488893a | 2490 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
2491 | /* |
2492 | * Ok, this dying thread is truly holding a futex | |
2493 | * of interest. Set the OWNER_DIED bit atomically | |
2494 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2495 | * set, wake up a waiter (if any). (We have to do a | |
2496 | * futex_wake() even if OWNER_DIED is already set - | |
2497 | * to handle the rare but possible case of recursive | |
2498 | * thread-death.) The rest of the cleanup is done in | |
2499 | * userspace. | |
2500 | */ | |
e3f2ddea | 2501 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
2502 | /* |
2503 | * We are not holding a lock here, but we want to have | |
2504 | * the pagefault_disable/enable() protection because | |
2505 | * we want to handle the fault gracefully. If the | |
2506 | * access fails we try to fault in the futex with R/W | |
2507 | * verification via get_user_pages. get_user() above | |
2508 | * does not guarantee R/W access. If that fails we | |
2509 | * give up and leave the futex locked. | |
2510 | */ | |
2511 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
2512 | if (fault_in_user_writeable(uaddr)) | |
2513 | return -1; | |
2514 | goto retry; | |
2515 | } | |
c87e2837 | 2516 | if (nval != uval) |
8f17d3a5 | 2517 | goto retry; |
0771dfef | 2518 | |
e3f2ddea IM |
2519 | /* |
2520 | * Wake robust non-PI futexes here. The wakeup of | |
2521 | * PI futexes happens in exit_pi_state(): | |
2522 | */ | |
36cf3b5c | 2523 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 2524 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
2525 | } |
2526 | return 0; | |
2527 | } | |
2528 | ||
e3f2ddea IM |
2529 | /* |
2530 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2531 | */ | |
2532 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 2533 | struct robust_list __user * __user *head, |
1dcc41bb | 2534 | unsigned int *pi) |
e3f2ddea IM |
2535 | { |
2536 | unsigned long uentry; | |
2537 | ||
ba46df98 | 2538 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2539 | return -EFAULT; |
2540 | ||
ba46df98 | 2541 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2542 | *pi = uentry & 1; |
2543 | ||
2544 | return 0; | |
2545 | } | |
2546 | ||
0771dfef IM |
2547 | /* |
2548 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2549 | * and mark any locks found there dead, and notify any waiters. | |
2550 | * | |
2551 | * We silently return on any sign of list-walking problem. | |
2552 | */ | |
2553 | void exit_robust_list(struct task_struct *curr) | |
2554 | { | |
2555 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 2556 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
2557 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
2558 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 2559 | unsigned long futex_offset; |
9f96cb1e | 2560 | int rc; |
0771dfef | 2561 | |
a0c1e907 TG |
2562 | if (!futex_cmpxchg_enabled) |
2563 | return; | |
2564 | ||
0771dfef IM |
2565 | /* |
2566 | * Fetch the list head (which was registered earlier, via | |
2567 | * sys_set_robust_list()): | |
2568 | */ | |
e3f2ddea | 2569 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2570 | return; |
2571 | /* | |
2572 | * Fetch the relative futex offset: | |
2573 | */ | |
2574 | if (get_user(futex_offset, &head->futex_offset)) | |
2575 | return; | |
2576 | /* | |
2577 | * Fetch any possibly pending lock-add first, and handle it | |
2578 | * if it exists: | |
2579 | */ | |
e3f2ddea | 2580 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2581 | return; |
e3f2ddea | 2582 | |
9f96cb1e | 2583 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2584 | while (entry != &head->list) { |
9f96cb1e MS |
2585 | /* |
2586 | * Fetch the next entry in the list before calling | |
2587 | * handle_futex_death: | |
2588 | */ | |
2589 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2590 | /* |
2591 | * A pending lock might already be on the list, so | |
c87e2837 | 2592 | * don't process it twice: |
0771dfef IM |
2593 | */ |
2594 | if (entry != pending) | |
ba46df98 | 2595 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2596 | curr, pi)) |
0771dfef | 2597 | return; |
9f96cb1e | 2598 | if (rc) |
0771dfef | 2599 | return; |
9f96cb1e MS |
2600 | entry = next_entry; |
2601 | pi = next_pi; | |
0771dfef IM |
2602 | /* |
2603 | * Avoid excessively long or circular lists: | |
2604 | */ | |
2605 | if (!--limit) | |
2606 | break; | |
2607 | ||
2608 | cond_resched(); | |
2609 | } | |
9f96cb1e MS |
2610 | |
2611 | if (pending) | |
2612 | handle_futex_death((void __user *)pending + futex_offset, | |
2613 | curr, pip); | |
0771dfef IM |
2614 | } |
2615 | ||
c19384b5 | 2616 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2617 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 2618 | { |
b41277dc DH |
2619 | int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK; |
2620 | unsigned int flags = 0; | |
34f01cc1 ED |
2621 | |
2622 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 2623 | flags |= FLAGS_SHARED; |
1da177e4 | 2624 | |
b41277dc DH |
2625 | if (op & FUTEX_CLOCK_REALTIME) { |
2626 | flags |= FLAGS_CLOCKRT; | |
2627 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) | |
2628 | return -ENOSYS; | |
2629 | } | |
1da177e4 | 2630 | |
34f01cc1 | 2631 | switch (cmd) { |
1da177e4 | 2632 | case FUTEX_WAIT: |
cd689985 TG |
2633 | val3 = FUTEX_BITSET_MATCH_ANY; |
2634 | case FUTEX_WAIT_BITSET: | |
b41277dc | 2635 | ret = futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 LT |
2636 | break; |
2637 | case FUTEX_WAKE: | |
cd689985 TG |
2638 | val3 = FUTEX_BITSET_MATCH_ANY; |
2639 | case FUTEX_WAKE_BITSET: | |
b41277dc | 2640 | ret = futex_wake(uaddr, flags, val, val3); |
1da177e4 | 2641 | break; |
1da177e4 | 2642 | case FUTEX_REQUEUE: |
b41277dc | 2643 | ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 LT |
2644 | break; |
2645 | case FUTEX_CMP_REQUEUE: | |
b41277dc | 2646 | ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
1da177e4 | 2647 | break; |
4732efbe | 2648 | case FUTEX_WAKE_OP: |
b41277dc | 2649 | ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
4732efbe | 2650 | break; |
c87e2837 | 2651 | case FUTEX_LOCK_PI: |
a0c1e907 | 2652 | if (futex_cmpxchg_enabled) |
b41277dc | 2653 | ret = futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837 IM |
2654 | break; |
2655 | case FUTEX_UNLOCK_PI: | |
a0c1e907 | 2656 | if (futex_cmpxchg_enabled) |
b41277dc | 2657 | ret = futex_unlock_pi(uaddr, flags); |
c87e2837 IM |
2658 | break; |
2659 | case FUTEX_TRYLOCK_PI: | |
a0c1e907 | 2660 | if (futex_cmpxchg_enabled) |
b41277dc | 2661 | ret = futex_lock_pi(uaddr, flags, 0, timeout, 1); |
c87e2837 | 2662 | break; |
52400ba9 DH |
2663 | case FUTEX_WAIT_REQUEUE_PI: |
2664 | val3 = FUTEX_BITSET_MATCH_ANY; | |
b41277dc DH |
2665 | ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
2666 | uaddr2); | |
52400ba9 | 2667 | break; |
52400ba9 | 2668 | case FUTEX_CMP_REQUEUE_PI: |
b41277dc | 2669 | ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
52400ba9 | 2670 | break; |
1da177e4 LT |
2671 | default: |
2672 | ret = -ENOSYS; | |
2673 | } | |
2674 | return ret; | |
2675 | } | |
2676 | ||
2677 | ||
17da2bd9 HC |
2678 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
2679 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
2680 | u32, val3) | |
1da177e4 | 2681 | { |
c19384b5 PP |
2682 | struct timespec ts; |
2683 | ktime_t t, *tp = NULL; | |
e2970f2f | 2684 | u32 val2 = 0; |
34f01cc1 | 2685 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2686 | |
cd689985 | 2687 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
2688 | cmd == FUTEX_WAIT_BITSET || |
2689 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
c19384b5 | 2690 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2691 | return -EFAULT; |
c19384b5 | 2692 | if (!timespec_valid(&ts)) |
9741ef96 | 2693 | return -EINVAL; |
c19384b5 PP |
2694 | |
2695 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2696 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 2697 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 2698 | tp = &t; |
1da177e4 LT |
2699 | } |
2700 | /* | |
52400ba9 | 2701 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 2702 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2703 | */ |
f54f0986 | 2704 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 2705 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 2706 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2707 | |
c19384b5 | 2708 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2709 | } |
2710 | ||
f6d107fb | 2711 | static int __init futex_init(void) |
1da177e4 | 2712 | { |
a0c1e907 | 2713 | u32 curval; |
3e4ab747 | 2714 | int i; |
95362fa9 | 2715 | |
a0c1e907 TG |
2716 | /* |
2717 | * This will fail and we want it. Some arch implementations do | |
2718 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
2719 | * functionality. We want to know that before we call in any | |
2720 | * of the complex code paths. Also we want to prevent | |
2721 | * registration of robust lists in that case. NULL is | |
2722 | * guaranteed to fault and we get -EFAULT on functional | |
fb62db2b | 2723 | * implementation, the non-functional ones will return |
a0c1e907 TG |
2724 | * -ENOSYS. |
2725 | */ | |
37a9d912 | 2726 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
a0c1e907 TG |
2727 | futex_cmpxchg_enabled = 1; |
2728 | ||
3e4ab747 | 2729 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
732375c6 | 2730 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
2731 | spin_lock_init(&futex_queues[i].lock); |
2732 | } | |
2733 | ||
1da177e4 LT |
2734 | return 0; |
2735 | } | |
f6d107fb | 2736 | __initcall(futex_init); |