]> Git Repo - linux.git/blame - mm/shmem.c
mm/shmem: fix shmem_swapin() race with swapoff
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
ea3271f7 117 bool full_inums;
0b5071dd
AV
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
ea3271f7 123#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
124};
125
b76db735 126#ifdef CONFIG_TMPFS
680d794b
AM
127static unsigned long shmem_default_max_blocks(void)
128{
ca79b0c2 129 return totalram_pages() / 2;
680d794b
AM
130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
ca79b0c2
AK
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 137}
b76db735 138#endif
680d794b 139
bde05d1c
HD
140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
68da9f05 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp,
cfda0526 149 gfp_t gfp, struct vm_area_struct *vma,
2b740303 150 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 151
f3f0e1d2 152int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 153 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
154{
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 157}
1da177e4 158
1da177e4
LT
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161 return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 return (flags & VM_NORESERVE) ?
191c5424 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
0b0a0806 178 if (!(flags & VM_NORESERVE))
1da177e4
LT
179 vm_unacct_memory(VM_ACCT(size));
180}
181
77142517
KK
182static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184{
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193}
194
1da177e4
LT
195/*
196 * ... whereas tmpfs objects are accounted incrementally as
75edd345 197 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
800d8c63 201static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 202{
800d8c63
KS
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
09cbfeaf 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
214}
215
0f079694
MR
216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217{
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236}
237
238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239{
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246}
247
759b9775 248static const struct super_operations shmem_ops;
30e6a51d 249const struct address_space_operations shmem_aops;
15ad7cdc 250static const struct file_operations shmem_file_operations;
92e1d5be
AV
251static const struct inode_operations shmem_inode_operations;
252static const struct inode_operations shmem_dir_inode_operations;
253static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 254static const struct vm_operations_struct shmem_vm_ops;
779750d2 255static struct file_system_type shmem_fs_type;
1da177e4 256
b0506e48
MR
257bool vma_is_shmem(struct vm_area_struct *vma)
258{
259 return vma->vm_ops == &shmem_vm_ops;
260}
261
1da177e4 262static LIST_HEAD(shmem_swaplist);
cb5f7b9a 263static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 264
e809d5f0
CD
265/*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274#define SHMEM_INO_BATCH 1024
275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
276{
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689 281 spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
5b04c689 288 }
e809d5f0
CD
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
ea3271f7
CD
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
e809d5f0
CD
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
ea3271f7
CD
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
e809d5f0
CD
304 }
305 *inop = ino;
306 }
5b04c689 307 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
ea3271f7
CD
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
e809d5f0
CD
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
5b04c689 335 }
e809d5f0 336
5b04c689
PE
337 return 0;
338}
339
340static void shmem_free_inode(struct super_block *sb)
341{
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348}
349
46711810 350/**
41ffe5d5 351 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362static void shmem_recalc_inode(struct inode *inode)
363{
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
54af6042 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 371 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
372 }
373}
374
800d8c63
KS
375bool shmem_charge(struct inode *inode, long pages)
376{
377 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 378 unsigned long flags;
800d8c63 379
0f079694 380 if (!shmem_inode_acct_block(inode, pages))
800d8c63 381 return false;
b1cc94ab 382
aaa52e34
HD
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
4595ef88 386 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
4595ef88 390 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 391
800d8c63
KS
392 return true;
393}
394
395void shmem_uncharge(struct inode *inode, long pages)
396{
397 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 398 unsigned long flags;
800d8c63 399
aaa52e34
HD
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
4595ef88 402 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
4595ef88 406 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 407
0f079694 408 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
409}
410
7a5d0fbb 411/*
62f945b6 412 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 413 */
62f945b6 414static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
415 pgoff_t index, void *expected, void *replacement)
416{
62f945b6 417 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 418 void *item;
7a5d0fbb
HD
419
420 VM_BUG_ON(!expected);
6dbaf22c 421 VM_BUG_ON(!replacement);
62f945b6 422 item = xas_load(&xas);
7a5d0fbb
HD
423 if (item != expected)
424 return -ENOENT;
62f945b6 425 xas_store(&xas, replacement);
7a5d0fbb
HD
426 return 0;
427}
428
d1899228
HD
429/*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438{
a12831bf 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
440}
441
5a6e75f8
KS
442/*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456#define SHMEM_HUGE_NEVER 0
457#define SHMEM_HUGE_ALWAYS 1
458#define SHMEM_HUGE_WITHIN_SIZE 2
459#define SHMEM_HUGE_ADVISE 3
460
461/*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471#define SHMEM_HUGE_DENY (-1)
472#define SHMEM_HUGE_FORCE (-2)
473
396bcc52 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
475/* ifdef here to avoid bloating shmem.o when not necessary */
476
5b9c98f3 477static int shmem_huge __read_mostly;
5a6e75f8 478
e5f2249a 479#if defined(CONFIG_SYSFS)
5a6e75f8
KS
480static int shmem_parse_huge(const char *str)
481{
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495}
e5f2249a 496#endif
5a6e75f8 497
e5f2249a 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
499static const char *shmem_format_huge(int huge)
500{
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518}
f1f5929c 519#endif
5a6e75f8 520
779750d2
KS
521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523{
524 LIST_HEAD(list), *pos, *next;
253fd0f0 525 LIST_HEAD(to_remove);
779750d2
KS
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 552 list_move(&info->shrinklist, &to_remove);
779750d2 553 removed++;
779750d2
KS
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
253fd0f0
KS
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
779750d2
KS
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
b3cd54b2
KS
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
779750d2 579
b3cd54b2 580 page = find_get_page(inode->i_mapping,
779750d2
KS
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
b3cd54b2 585 /* No huge page at the end of the file: nothing to split */
779750d2 586 if (!PageTransHuge(page)) {
779750d2
KS
587 put_page(page);
588 goto drop;
589 }
590
b3cd54b2
KS
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
779750d2
KS
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
b3cd54b2
KS
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
779750d2
KS
610
611 split++;
612drop:
613 list_del_init(&info->shrinklist);
614 removed++;
b3cd54b2 615leave:
779750d2
KS
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625}
626
627static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629{
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636}
637
638static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640{
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643}
396bcc52 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
645
646#define shmem_huge SHMEM_HUGE_DENY
647
779750d2
KS
648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650{
651 return 0;
652}
396bcc52 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 654
89fdcd26
YS
655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656{
396bcc52 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662}
663
46f65ec1
HD
664/*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
3fea5a49
JW
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
46f65ec1 671{
552446a4
MW
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
d8c6546b 674 unsigned long nr = compound_nr(page);
3fea5a49 675 int error;
46f65ec1 676
800d8c63
KS
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 681 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 682
800d8c63 683 page_ref_add(page, nr);
b065b432
HD
684 page->mapping = mapping;
685 page->index = index;
686
4c6355b2 687 if (!PageSwapCache(page)) {
d9eb1ea2 688 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
3fea5a49 695 }
3fea5a49
JW
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
552446a4
MW
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708next:
4101196b 709 xas_store(&xas, page);
552446a4
MW
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
800d8c63 713 }
552446a4 714 if (PageTransHuge(page)) {
800d8c63 715 count_vm_event(THP_FILE_ALLOC);
57b2847d 716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 717 }
800d8c63 718 mapping->nrpages += nr;
0d1c2072
JW
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
721unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
3fea5a49
JW
726 error = xas_error(&xas);
727 goto error;
46f65ec1 728 }
552446a4
MW
729
730 return 0;
3fea5a49
JW
731error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
46f65ec1
HD
735}
736
6922c0c7
HD
737/*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741{
742 struct address_space *mapping = page->mapping;
743 int error;
744
800d8c63
KS
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
b93b0163 747 xa_lock_irq(&mapping->i_pages);
62f945b6 748 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
749 page->mapping = NULL;
750 mapping->nrpages--;
0d1c2072
JW
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 753 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 754 put_page(page);
6922c0c7
HD
755 BUG_ON(error);
756}
757
7a5d0fbb 758/*
c121d3bb 759 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
760 */
761static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763{
6dbaf22c 764 void *old;
7a5d0fbb 765
55f3f7ea 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
7a5d0fbb
HD
771}
772
6a15a370
VB
773/*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 775 * given offsets are swapped out.
6a15a370 776 *
b93b0163 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
48131e03
VB
780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
6a15a370 782{
7ae3424f 783 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 784 struct page *page;
48131e03 785 unsigned long swapped = 0;
6a15a370
VB
786
787 rcu_read_lock();
7ae3424f
MW
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
2cf938aa 790 continue;
3159f943 791 if (xa_is_value(page))
6a15a370
VB
792 swapped++;
793
794 if (need_resched()) {
7ae3424f 795 xas_pause(&xas);
6a15a370 796 cond_resched_rcu();
6a15a370
VB
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803}
804
48131e03
VB
805/*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
b93b0163 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813{
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837}
838
24513264
HD
839/*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842void shmem_unlock_mapping(struct address_space *mapping)
843{
844 struct pagevec pvec;
24513264
HD
845 pgoff_t index = 0;
846
86679820 847 pagevec_init(&pvec);
24513264
HD
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
96888e0a 852 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 853 break;
64e3d12f 854 check_move_unevictable_pages(&pvec);
24513264
HD
855 pagevec_release(&pvec);
856 cond_resched();
857 }
7a5d0fbb
HD
858}
859
71725ed1
HD
860/*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873{
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884}
885
7a5d0fbb 886/*
7f4446ee 887 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 889 */
1635f6a7
HD
890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
1da177e4 892{
285b2c4f 893 struct address_space *mapping = inode->i_mapping;
1da177e4 894 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 899 struct pagevec pvec;
7a5d0fbb
HD
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
285b2c4f 902 pgoff_t index;
bda97eab
HD
903 int i;
904
83e4fa9c
HD
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
bda97eab 907
86679820 908 pagevec_init(&pvec);
bda97eab 909 index = start;
5c211ba2
MWO
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
bda97eab
HD
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
7a5d0fbb 915 index = indices[i];
bda97eab 916
3159f943 917 if (xa_is_value(page)) {
1635f6a7
HD
918 if (unfalloc)
919 continue;
7a5d0fbb
HD
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
bda97eab 922 continue;
7a5d0fbb 923 }
5c211ba2 924 index += thp_nr_pages(page) - 1;
7a5d0fbb 925
5c211ba2
MWO
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
bda97eab
HD
928 unlock_page(page);
929 }
0cd6144a 930 pagevec_remove_exceptionals(&pvec);
24513264 931 pagevec_release(&pvec);
bda97eab
HD
932 cond_resched();
933 index++;
934 }
1da177e4 935
83e4fa9c 936 if (partial_start) {
bda97eab 937 struct page *page = NULL;
9e18eb29 938 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 939 if (page) {
09cbfeaf 940 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
09cbfeaf 948 put_page(page);
83e4fa9c
HD
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
9e18eb29 953 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
bda97eab
HD
956 set_page_dirty(page);
957 unlock_page(page);
09cbfeaf 958 put_page(page);
bda97eab
HD
959 }
960 }
83e4fa9c
HD
961 if (start >= end)
962 return;
bda97eab
HD
963
964 index = start;
b1a36650 965 while (index < end) {
bda97eab 966 cond_resched();
0cd6144a 967
cf2039af
MWO
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
b1a36650
HD
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
bda97eab 972 break;
b1a36650 973 /* But if truncating, restart to make sure all gone */
bda97eab
HD
974 index = start;
975 continue;
976 }
bda97eab
HD
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
7a5d0fbb 980 index = indices[i];
3159f943 981 if (xa_is_value(page)) {
1635f6a7
HD
982 if (unfalloc)
983 continue;
b1a36650
HD
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
7a5d0fbb
HD
990 continue;
991 }
992
bda97eab 993 lock_page(page);
800d8c63 994
1635f6a7 995 if (!unfalloc || !PageUptodate(page)) {
71725ed1 996 if (page_mapping(page) != mapping) {
b1a36650
HD
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1635f6a7 1001 }
71725ed1
HD
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
0783ac95 1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
7a5d0fbb 1014 }
bda97eab
HD
1015 unlock_page(page);
1016 }
0cd6144a 1017 pagevec_remove_exceptionals(&pvec);
24513264 1018 pagevec_release(&pvec);
bda97eab
HD
1019 index++;
1020 }
94c1e62d 1021
4595ef88 1022 spin_lock_irq(&info->lock);
7a5d0fbb 1023 info->swapped -= nr_swaps_freed;
1da177e4 1024 shmem_recalc_inode(inode);
4595ef88 1025 spin_unlock_irq(&info->lock);
1635f6a7 1026}
1da177e4 1027
1635f6a7
HD
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030 shmem_undo_range(inode, lstart, lend, false);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1032}
94c1e62d 1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1034
549c7297
CB
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
a528d35e 1037 u32 request_mask, unsigned int query_flags)
44a30220 1038{
a528d35e 1039 struct inode *inode = path->dentry->d_inode;
44a30220 1040 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1042
d0424c42 1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1044 spin_lock_irq(&info->lock);
d0424c42 1045 shmem_recalc_inode(inode);
4595ef88 1046 spin_unlock_irq(&info->lock);
d0424c42 1047 }
0d56a451 1048 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26
YS
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
44a30220
YZ
1053 return 0;
1054}
1055
549c7297
CB
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1da177e4 1058{
75c3cfa8 1059 struct inode *inode = d_inode(dentry);
40e041a2 1060 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1062 int error;
1063
2f221d6f 1064 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1065 if (error)
1066 return error;
1067
94c1e62d
HD
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
3889e6e7 1071
40e041a2
DR
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
94c1e62d 1077 if (newsize != oldsize) {
77142517
KK
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
94c1e62d 1082 i_size_write(inode, newsize);
078cd827 1083 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1084 }
afa2db2f 1085 if (newsize <= oldsize) {
94c1e62d 1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
94c1e62d 1093 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
779750d2
KS
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
396bcc52 1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1103 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
94c1e62d 1115 }
1da177e4
LT
1116 }
1117
2f221d6f 1118 setattr_copy(&init_user_ns, inode, attr);
db78b877 1119 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1121 return error;
1122}
1123
1f895f75 1124static void shmem_evict_inode(struct inode *inode)
1da177e4 1125{
1da177e4 1126 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1128
30e6a51d 1129 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
3889e6e7 1132 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
af53d3e9
HD
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
cb5f7b9a 1145 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
cb5f7b9a 1149 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1150 }
3ed47db3 1151 }
b09e0fa4 1152
38f38657 1153 simple_xattrs_free(&info->xattrs);
0f3c42f5 1154 WARN_ON(inode->i_blocks);
5b04c689 1155 shmem_free_inode(inode->i_sb);
dbd5768f 1156 clear_inode(inode);
1da177e4
LT
1157}
1158
b56a2d8a
VRP
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
87039546 1164 unsigned int type, bool frontswap)
478922e2 1165{
b56a2d8a
VRP
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
87039546 1168 swp_entry_t entry;
b56a2d8a
VRP
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
478922e2
MW
1173
1174 rcu_read_lock();
b56a2d8a
VRP
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
5b9c98f3 1177 continue;
b56a2d8a
VRP
1178
1179 if (!xa_is_value(page))
478922e2 1180 continue;
b56a2d8a 1181
87039546
HD
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
b56a2d8a
VRP
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
478922e2 1198 }
478922e2 1199 rcu_read_unlock();
e21a2955 1200
b56a2d8a 1201 return ret;
478922e2
MW
1202}
1203
46f65ec1 1204/*
b56a2d8a
VRP
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
46f65ec1 1207 */
b56a2d8a
VRP
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1da177e4 1210{
b56a2d8a
VRP
1211 int i = 0;
1212 int ret = 0;
bde05d1c 1213 int error = 0;
b56a2d8a 1214 struct address_space *mapping = inode->i_mapping;
1da177e4 1215
b56a2d8a
VRP
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
2e0e26c7 1218
b56a2d8a
VRP
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
bde05d1c 1233 }
b56a2d8a
VRP
1234 return error ? error : ret;
1235}
bde05d1c 1236
b56a2d8a
VRP
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
87039546 1259 type, frontswap);
b56a2d8a
VRP
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
46f65ec1 1263 }
b56a2d8a
VRP
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1da177e4
LT
1281}
1282
1283/*
b56a2d8a
VRP
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1da177e4 1287 */
b56a2d8a
VRP
1288int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1da177e4 1290{
b56a2d8a 1291 struct shmem_inode_info *info, *next;
bde05d1c
HD
1292 int error = 0;
1293
b56a2d8a
VRP
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
6922c0c7 1300 list_del_init(&info->swaplist);
b56a2d8a
VRP
1301 continue;
1302 }
af53d3e9
HD
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
b56a2d8a 1310 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1311
af53d3e9 1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1313 fs_pages_to_unuse);
cb5f7b9a 1314 cond_resched();
b56a2d8a
VRP
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
af53d3e9
HD
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
b56a2d8a 1322 if (error)
778dd893 1323 break;
1da177e4 1324 }
cb5f7b9a 1325 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1326
778dd893 1327 return error;
1da177e4
LT
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335 struct shmem_inode_info *info;
1da177e4 1336 struct address_space *mapping;
1da177e4 1337 struct inode *inode;
6922c0c7
HD
1338 swp_entry_t swap;
1339 pgoff_t index;
1da177e4 1340
800d8c63 1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1342 BUG_ON(!PageLocked(page));
1da177e4
LT
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
d9fe526a 1349 if (!total_swap_pages)
1da177e4
LT
1350 goto redirty;
1351
d9fe526a 1352 /*
97b713ba
CH
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
d9fe526a 1358 */
48f170fb
HD
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1635f6a7
HD
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1374 */
1375 if (!PageUptodate(page)) {
1aac1400
HD
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
8e205f77 1381 !shmem_falloc->waitq &&
1aac1400
HD
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1635f6a7
HD
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
38d8b4e6 1396 swap = get_swap_page(page);
48f170fb
HD
1397 if (!swap.val)
1398 goto redirty;
d9fe526a 1399
b1dea800
HD
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
b1dea800 1404 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1407 */
48f170fb
HD
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
b56a2d8a 1410 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1411
4afab1cd 1412 if (add_to_swap_cache(page, swap,
3852f676
JK
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
4595ef88 1415 spin_lock_irq(&info->lock);
6922c0c7 1416 shmem_recalc_inode(inode);
267a4c76 1417 info->swapped++;
4595ef88 1418 spin_unlock_irq(&info->lock);
6922c0c7 1419
267a4c76
HD
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
6922c0c7 1423 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1424 BUG_ON(page_mapped(page));
9fab5619 1425 swap_writepage(page, wbc);
1da177e4
LT
1426 return 0;
1427 }
1428
6922c0c7 1429 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1430 put_swap_page(page, swap);
1da177e4
LT
1431redirty:
1432 set_page_dirty(page);
d9fe526a
HD
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1da177e4
LT
1437}
1438
75edd345 1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1441{
095f1fc4 1442 char buffer[64];
680d794b 1443
71fe804b 1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1445 return; /* show nothing */
680d794b 1446
a7a88b23 1447 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1450}
71fe804b
LS
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462}
75edd345
HD
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469 return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
680d794b 1475
800d8c63
KS
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478{
1479 /* Create a pseudo vma that just contains the policy */
2c4541e2 1480 vma_init(vma, NULL);
800d8c63
KS
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490}
1491
41ffe5d5
HD
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1494{
1da177e4 1495 struct vm_area_struct pvma;
18a2f371 1496 struct page *page;
8c63ca5b
WD
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
52cd3b07 1500
800d8c63 1501 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1502 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1503 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1504
800d8c63
KS
1505 return page;
1506}
1507
78cc8cdc
RR
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
78cc8cdc
RR
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530}
1531
800d8c63
KS
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534{
1535 struct vm_area_struct pvma;
7b8d046f
MW
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
800d8c63
KS
1538 struct page *page;
1539
4620a06e 1540 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
800d8c63 1543 return NULL;
18a2f371 1544
800d8c63 1545 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
800d8c63
KS
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
dcdf11ee
DR
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1553 return page;
1da177e4
LT
1554}
1555
02098fea 1556static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1557 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1558{
1559 struct vm_area_struct pvma;
18a2f371 1560 struct page *page;
1da177e4 1561
800d8c63
KS
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1570 struct inode *inode,
800d8c63
KS
1571 pgoff_t index, bool huge)
1572{
0f079694 1573 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
52cd3b07 1577
396bcc52 1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
0f079694 1582 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1583 goto failed;
800d8c63
KS
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
800d8c63 1592 return page;
75edd345 1593 }
18a2f371 1594
800d8c63 1595 err = -ENOMEM;
0f079694 1596 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1597failed:
1598 return ERR_PTR(err);
1da177e4 1599}
71fe804b 1600
bde05d1c
HD
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615 return page_zonenum(page) > gfp_zone(gfp);
1616}
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620{
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
c1cb20d4 1623 swp_entry_t entry;
bde05d1c
HD
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
c1cb20d4
YZ
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
bde05d1c
HD
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
bde05d1c 1640
09cbfeaf 1641 get_page(newpage);
bde05d1c 1642 copy_highpage(newpage, oldpage);
0142ef6c 1643 flush_dcache_page(newpage);
bde05d1c 1644
9956edf3
HD
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
bde05d1c 1647 SetPageUptodate(newpage);
c1cb20d4 1648 set_page_private(newpage, entry.val);
bde05d1c
HD
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
b93b0163 1655 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1657 if (!error) {
0d1c2072
JW
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1661 }
b93b0163 1662 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1663
0142ef6c
HD
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
6058eaec 1672 lru_cache_add(newpage);
0142ef6c
HD
1673 *pagep = newpage;
1674 }
bde05d1c
HD
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
09cbfeaf
KS
1680 put_page(oldpage);
1681 put_page(oldpage);
0142ef6c 1682 return error;
bde05d1c
HD
1683}
1684
c5bf121e
VRP
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1689 * error code and NULL in *pagep.
c5bf121e
VRP
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695{
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
2efa33fc
ML
1699 struct swap_info_struct *si;
1700 struct page *page = NULL;
c5bf121e
VRP
1701 swp_entry_t swap;
1702 int error;
1703
1704 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 swap = radix_to_swp_entry(*pagep);
1706 *pagep = NULL;
1707
2efa33fc
ML
1708 /* Prevent swapoff from happening to us. */
1709 si = get_swap_device(swap);
1710 if (!si) {
1711 error = EINVAL;
1712 goto failed;
1713 }
c5bf121e
VRP
1714 /* Look it up and read it in.. */
1715 page = lookup_swap_cache(swap, NULL, 0);
1716 if (!page) {
1717 /* Or update major stats only when swapin succeeds?? */
1718 if (fault_type) {
1719 *fault_type |= VM_FAULT_MAJOR;
1720 count_vm_event(PGMAJFAULT);
1721 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 }
1723 /* Here we actually start the io */
1724 page = shmem_swapin(swap, gfp, info, index);
1725 if (!page) {
1726 error = -ENOMEM;
1727 goto failed;
1728 }
1729 }
1730
1731 /* We have to do this with page locked to prevent races */
1732 lock_page(page);
1733 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 !shmem_confirm_swap(mapping, index, swap)) {
1735 error = -EEXIST;
1736 goto unlock;
1737 }
1738 if (!PageUptodate(page)) {
1739 error = -EIO;
1740 goto failed;
1741 }
1742 wait_on_page_writeback(page);
1743
8a84802e
SP
1744 /*
1745 * Some architectures may have to restore extra metadata to the
1746 * physical page after reading from swap.
1747 */
1748 arch_swap_restore(swap, page);
1749
c5bf121e
VRP
1750 if (shmem_should_replace_page(page, gfp)) {
1751 error = shmem_replace_page(&page, gfp, info, index);
1752 if (error)
1753 goto failed;
1754 }
1755
14235ab3 1756 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1757 swp_to_radix_entry(swap), gfp,
1758 charge_mm);
1759 if (error)
14235ab3 1760 goto failed;
c5bf121e
VRP
1761
1762 spin_lock_irq(&info->lock);
1763 info->swapped--;
1764 shmem_recalc_inode(inode);
1765 spin_unlock_irq(&info->lock);
1766
1767 if (sgp == SGP_WRITE)
1768 mark_page_accessed(page);
1769
1770 delete_from_swap_cache(page);
1771 set_page_dirty(page);
1772 swap_free(swap);
1773
1774 *pagep = page;
2efa33fc
ML
1775 if (si)
1776 put_swap_device(si);
c5bf121e
VRP
1777 return 0;
1778failed:
1779 if (!shmem_confirm_swap(mapping, index, swap))
1780 error = -EEXIST;
1781unlock:
1782 if (page) {
1783 unlock_page(page);
1784 put_page(page);
1785 }
1786
2efa33fc
ML
1787 if (si)
1788 put_swap_device(si);
1789
c5bf121e
VRP
1790 return error;
1791}
1792
1da177e4 1793/*
68da9f05 1794 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1795 *
1796 * If we allocate a new one we do not mark it dirty. That's up to the
1797 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1798 * entry since a page cannot live in both the swap and page cache.
1799 *
28eb3c80 1800 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1801 * otherwise they are NULL.
1da177e4 1802 */
41ffe5d5 1803static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1804 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1805 struct vm_area_struct *vma, struct vm_fault *vmf,
1806 vm_fault_t *fault_type)
1da177e4
LT
1807{
1808 struct address_space *mapping = inode->i_mapping;
23f919d4 1809 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1810 struct shmem_sb_info *sbinfo;
9e18eb29 1811 struct mm_struct *charge_mm;
27ab7006 1812 struct page *page;
657e3038 1813 enum sgp_type sgp_huge = sgp;
800d8c63 1814 pgoff_t hindex = index;
164cc4fe 1815 gfp_t huge_gfp;
1da177e4 1816 int error;
54af6042 1817 int once = 0;
1635f6a7 1818 int alloced = 0;
1da177e4 1819
09cbfeaf 1820 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1821 return -EFBIG;
657e3038
KS
1822 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 sgp = SGP_CACHE;
1da177e4 1824repeat:
c5bf121e
VRP
1825 if (sgp <= SGP_CACHE &&
1826 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 return -EINVAL;
1828 }
1829
1830 sbinfo = SHMEM_SB(inode->i_sb);
1831 charge_mm = vma ? vma->vm_mm : current->mm;
1832
44835d20
MWO
1833 page = pagecache_get_page(mapping, index,
1834 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
3159f943 1835 if (xa_is_value(page)) {
c5bf121e
VRP
1836 error = shmem_swapin_page(inode, index, &page,
1837 sgp, gfp, vma, fault_type);
1838 if (error == -EEXIST)
1839 goto repeat;
54af6042 1840
c5bf121e
VRP
1841 *pagep = page;
1842 return error;
54af6042
HD
1843 }
1844
63ec1973
MWO
1845 if (page)
1846 hindex = page->index;
66d2f4d2
HD
1847 if (page && sgp == SGP_WRITE)
1848 mark_page_accessed(page);
1849
1635f6a7
HD
1850 /* fallocated page? */
1851 if (page && !PageUptodate(page)) {
1852 if (sgp != SGP_READ)
1853 goto clear;
1854 unlock_page(page);
09cbfeaf 1855 put_page(page);
1635f6a7 1856 page = NULL;
63ec1973 1857 hindex = index;
1635f6a7 1858 }
63ec1973
MWO
1859 if (page || sgp == SGP_READ)
1860 goto out;
27ab7006
HD
1861
1862 /*
54af6042
HD
1863 * Fast cache lookup did not find it:
1864 * bring it back from swap or allocate.
27ab7006 1865 */
54af6042 1866
c5bf121e
VRP
1867 if (vma && userfaultfd_missing(vma)) {
1868 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1869 return 0;
1870 }
cfda0526 1871
c5bf121e 1872 /* shmem_symlink() */
30e6a51d 1873 if (!shmem_mapping(mapping))
c5bf121e
VRP
1874 goto alloc_nohuge;
1875 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1876 goto alloc_nohuge;
1877 if (shmem_huge == SHMEM_HUGE_FORCE)
1878 goto alloc_huge;
1879 switch (sbinfo->huge) {
c5bf121e
VRP
1880 case SHMEM_HUGE_NEVER:
1881 goto alloc_nohuge;
27d80fa2
KC
1882 case SHMEM_HUGE_WITHIN_SIZE: {
1883 loff_t i_size;
1884 pgoff_t off;
1885
c5bf121e
VRP
1886 off = round_up(index, HPAGE_PMD_NR);
1887 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1888 if (i_size >= HPAGE_PMD_SIZE &&
1889 i_size >> PAGE_SHIFT >= off)
800d8c63 1890 goto alloc_huge;
27d80fa2
KC
1891
1892 fallthrough;
1893 }
c5bf121e
VRP
1894 case SHMEM_HUGE_ADVISE:
1895 if (sgp_huge == SGP_HUGE)
1896 goto alloc_huge;
1897 /* TODO: implement fadvise() hints */
1898 goto alloc_nohuge;
1899 }
1da177e4 1900
800d8c63 1901alloc_huge:
164cc4fe 1902 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1903 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1904 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1905 if (IS_ERR(page)) {
1906alloc_nohuge:
1907 page = shmem_alloc_and_acct_page(gfp, inode,
1908 index, false);
1909 }
1910 if (IS_ERR(page)) {
1911 int retry = 5;
800d8c63 1912
c5bf121e
VRP
1913 error = PTR_ERR(page);
1914 page = NULL;
1915 if (error != -ENOSPC)
1916 goto unlock;
1917 /*
1918 * Try to reclaim some space by splitting a huge page
1919 * beyond i_size on the filesystem.
1920 */
1921 while (retry--) {
1922 int ret;
66d2f4d2 1923
c5bf121e
VRP
1924 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 if (ret == SHRINK_STOP)
1926 break;
1927 if (ret)
1928 goto alloc_nohuge;
b065b432 1929 }
c5bf121e
VRP
1930 goto unlock;
1931 }
54af6042 1932
c5bf121e
VRP
1933 if (PageTransHuge(page))
1934 hindex = round_down(index, HPAGE_PMD_NR);
1935 else
1936 hindex = index;
54af6042 1937
c5bf121e
VRP
1938 if (sgp == SGP_WRITE)
1939 __SetPageReferenced(page);
1940
c5bf121e 1941 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1942 NULL, gfp & GFP_RECLAIM_MASK,
1943 charge_mm);
1944 if (error)
c5bf121e 1945 goto unacct;
6058eaec 1946 lru_cache_add(page);
779750d2 1947
c5bf121e 1948 spin_lock_irq(&info->lock);
d8c6546b 1949 info->alloced += compound_nr(page);
c5bf121e
VRP
1950 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1951 shmem_recalc_inode(inode);
1952 spin_unlock_irq(&info->lock);
1953 alloced = true;
1954
1955 if (PageTransHuge(page) &&
1956 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1957 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1958 /*
c5bf121e
VRP
1959 * Part of the huge page is beyond i_size: subject
1960 * to shrink under memory pressure.
1635f6a7 1961 */
c5bf121e 1962 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1963 /*
c5bf121e
VRP
1964 * _careful to defend against unlocked access to
1965 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1966 */
c5bf121e
VRP
1967 if (list_empty_careful(&info->shrinklist)) {
1968 list_add_tail(&info->shrinklist,
1969 &sbinfo->shrinklist);
1970 sbinfo->shrinklist_len++;
1971 }
1972 spin_unlock(&sbinfo->shrinklist_lock);
1973 }
800d8c63 1974
c5bf121e
VRP
1975 /*
1976 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1977 */
1978 if (sgp == SGP_FALLOC)
1979 sgp = SGP_WRITE;
1980clear:
1981 /*
1982 * Let SGP_WRITE caller clear ends if write does not fill page;
1983 * but SGP_FALLOC on a page fallocated earlier must initialize
1984 * it now, lest undo on failure cancel our earlier guarantee.
1985 */
1986 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1987 int i;
1988
63ec1973
MWO
1989 for (i = 0; i < compound_nr(page); i++) {
1990 clear_highpage(page + i);
1991 flush_dcache_page(page + i);
ec9516fb 1992 }
63ec1973 1993 SetPageUptodate(page);
1da177e4 1994 }
bde05d1c 1995
54af6042 1996 /* Perhaps the file has been truncated since we checked */
75edd345 1997 if (sgp <= SGP_CACHE &&
09cbfeaf 1998 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1999 if (alloced) {
2000 ClearPageDirty(page);
2001 delete_from_page_cache(page);
4595ef88 2002 spin_lock_irq(&info->lock);
267a4c76 2003 shmem_recalc_inode(inode);
4595ef88 2004 spin_unlock_irq(&info->lock);
267a4c76 2005 }
54af6042 2006 error = -EINVAL;
267a4c76 2007 goto unlock;
e83c32e8 2008 }
63ec1973 2009out:
800d8c63 2010 *pagep = page + index - hindex;
54af6042 2011 return 0;
1da177e4 2012
59a16ead 2013 /*
54af6042 2014 * Error recovery.
59a16ead 2015 */
54af6042 2016unacct:
d8c6546b 2017 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2018
2019 if (PageTransHuge(page)) {
2020 unlock_page(page);
2021 put_page(page);
2022 goto alloc_nohuge;
2023 }
d1899228 2024unlock:
27ab7006 2025 if (page) {
54af6042 2026 unlock_page(page);
09cbfeaf 2027 put_page(page);
54af6042
HD
2028 }
2029 if (error == -ENOSPC && !once++) {
4595ef88 2030 spin_lock_irq(&info->lock);
54af6042 2031 shmem_recalc_inode(inode);
4595ef88 2032 spin_unlock_irq(&info->lock);
27ab7006 2033 goto repeat;
ff36b801 2034 }
7f4446ee 2035 if (error == -EEXIST)
54af6042
HD
2036 goto repeat;
2037 return error;
1da177e4
LT
2038}
2039
10d20bd2
LT
2040/*
2041 * This is like autoremove_wake_function, but it removes the wait queue
2042 * entry unconditionally - even if something else had already woken the
2043 * target.
2044 */
ac6424b9 2045static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2046{
2047 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2048 list_del_init(&wait->entry);
10d20bd2
LT
2049 return ret;
2050}
2051
20acce67 2052static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2053{
11bac800 2054 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2055 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2056 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2057 enum sgp_type sgp;
20acce67
SJ
2058 int err;
2059 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2060
f00cdc6d
HD
2061 /*
2062 * Trinity finds that probing a hole which tmpfs is punching can
2063 * prevent the hole-punch from ever completing: which in turn
2064 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2065 * faulting pages into the hole while it's being punched. Although
2066 * shmem_undo_range() does remove the additions, it may be unable to
2067 * keep up, as each new page needs its own unmap_mapping_range() call,
2068 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2069 *
2070 * It does not matter if we sometimes reach this check just before the
2071 * hole-punch begins, so that one fault then races with the punch:
2072 * we just need to make racing faults a rare case.
2073 *
2074 * The implementation below would be much simpler if we just used a
2075 * standard mutex or completion: but we cannot take i_mutex in fault,
2076 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2077 */
2078 if (unlikely(inode->i_private)) {
2079 struct shmem_falloc *shmem_falloc;
2080
2081 spin_lock(&inode->i_lock);
2082 shmem_falloc = inode->i_private;
8e205f77
HD
2083 if (shmem_falloc &&
2084 shmem_falloc->waitq &&
2085 vmf->pgoff >= shmem_falloc->start &&
2086 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2087 struct file *fpin;
8e205f77 2088 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2089 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2090
2091 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2092 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2093 if (fpin)
8e205f77 2094 ret = VM_FAULT_RETRY;
8e205f77
HD
2095
2096 shmem_falloc_waitq = shmem_falloc->waitq;
2097 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2098 TASK_UNINTERRUPTIBLE);
2099 spin_unlock(&inode->i_lock);
2100 schedule();
2101
2102 /*
2103 * shmem_falloc_waitq points into the shmem_fallocate()
2104 * stack of the hole-punching task: shmem_falloc_waitq
2105 * is usually invalid by the time we reach here, but
2106 * finish_wait() does not dereference it in that case;
2107 * though i_lock needed lest racing with wake_up_all().
2108 */
2109 spin_lock(&inode->i_lock);
2110 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2111 spin_unlock(&inode->i_lock);
8897c1b1
KS
2112
2113 if (fpin)
2114 fput(fpin);
8e205f77 2115 return ret;
f00cdc6d 2116 }
8e205f77 2117 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2118 }
2119
657e3038 2120 sgp = SGP_CACHE;
18600332
MH
2121
2122 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2123 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2124 sgp = SGP_NOHUGE;
18600332
MH
2125 else if (vma->vm_flags & VM_HUGEPAGE)
2126 sgp = SGP_HUGE;
657e3038 2127
20acce67 2128 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2129 gfp, vma, vmf, &ret);
20acce67
SJ
2130 if (err)
2131 return vmf_error(err);
68da9f05 2132 return ret;
1da177e4
LT
2133}
2134
c01d5b30
HD
2135unsigned long shmem_get_unmapped_area(struct file *file,
2136 unsigned long uaddr, unsigned long len,
2137 unsigned long pgoff, unsigned long flags)
2138{
2139 unsigned long (*get_area)(struct file *,
2140 unsigned long, unsigned long, unsigned long, unsigned long);
2141 unsigned long addr;
2142 unsigned long offset;
2143 unsigned long inflated_len;
2144 unsigned long inflated_addr;
2145 unsigned long inflated_offset;
2146
2147 if (len > TASK_SIZE)
2148 return -ENOMEM;
2149
2150 get_area = current->mm->get_unmapped_area;
2151 addr = get_area(file, uaddr, len, pgoff, flags);
2152
396bcc52 2153 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2154 return addr;
2155 if (IS_ERR_VALUE(addr))
2156 return addr;
2157 if (addr & ~PAGE_MASK)
2158 return addr;
2159 if (addr > TASK_SIZE - len)
2160 return addr;
2161
2162 if (shmem_huge == SHMEM_HUGE_DENY)
2163 return addr;
2164 if (len < HPAGE_PMD_SIZE)
2165 return addr;
2166 if (flags & MAP_FIXED)
2167 return addr;
2168 /*
2169 * Our priority is to support MAP_SHARED mapped hugely;
2170 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2171 * But if caller specified an address hint and we allocated area there
2172 * successfully, respect that as before.
c01d5b30 2173 */
99158997 2174 if (uaddr == addr)
c01d5b30
HD
2175 return addr;
2176
2177 if (shmem_huge != SHMEM_HUGE_FORCE) {
2178 struct super_block *sb;
2179
2180 if (file) {
2181 VM_BUG_ON(file->f_op != &shmem_file_operations);
2182 sb = file_inode(file)->i_sb;
2183 } else {
2184 /*
2185 * Called directly from mm/mmap.c, or drivers/char/mem.c
2186 * for "/dev/zero", to create a shared anonymous object.
2187 */
2188 if (IS_ERR(shm_mnt))
2189 return addr;
2190 sb = shm_mnt->mnt_sb;
2191 }
3089bf61 2192 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2193 return addr;
2194 }
2195
2196 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2197 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2198 return addr;
2199 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2200 return addr;
2201
2202 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2203 if (inflated_len > TASK_SIZE)
2204 return addr;
2205 if (inflated_len < len)
2206 return addr;
2207
99158997 2208 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2209 if (IS_ERR_VALUE(inflated_addr))
2210 return addr;
2211 if (inflated_addr & ~PAGE_MASK)
2212 return addr;
2213
2214 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2215 inflated_addr += offset - inflated_offset;
2216 if (inflated_offset > offset)
2217 inflated_addr += HPAGE_PMD_SIZE;
2218
2219 if (inflated_addr > TASK_SIZE - len)
2220 return addr;
2221 return inflated_addr;
2222}
2223
1da177e4 2224#ifdef CONFIG_NUMA
41ffe5d5 2225static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2226{
496ad9aa 2227 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2228 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2229}
2230
d8dc74f2
AB
2231static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2232 unsigned long addr)
1da177e4 2233{
496ad9aa 2234 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2235 pgoff_t index;
1da177e4 2236
41ffe5d5
HD
2237 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2238 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2239}
2240#endif
2241
2242int shmem_lock(struct file *file, int lock, struct user_struct *user)
2243{
496ad9aa 2244 struct inode *inode = file_inode(file);
1da177e4
LT
2245 struct shmem_inode_info *info = SHMEM_I(inode);
2246 int retval = -ENOMEM;
2247
ea0dfeb4
HD
2248 /*
2249 * What serializes the accesses to info->flags?
2250 * ipc_lock_object() when called from shmctl_do_lock(),
2251 * no serialization needed when called from shm_destroy().
2252 */
1da177e4
LT
2253 if (lock && !(info->flags & VM_LOCKED)) {
2254 if (!user_shm_lock(inode->i_size, user))
2255 goto out_nomem;
2256 info->flags |= VM_LOCKED;
89e004ea 2257 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2258 }
2259 if (!lock && (info->flags & VM_LOCKED) && user) {
2260 user_shm_unlock(inode->i_size, user);
2261 info->flags &= ~VM_LOCKED;
89e004ea 2262 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2263 }
2264 retval = 0;
89e004ea 2265
1da177e4 2266out_nomem:
1da177e4
LT
2267 return retval;
2268}
2269
9b83a6a8 2270static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2271{
ab3948f5 2272 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2273 int ret;
ab3948f5 2274
22247efd
PX
2275 ret = seal_check_future_write(info->seals, vma);
2276 if (ret)
2277 return ret;
ab3948f5 2278
51b0bff2
CM
2279 /* arm64 - allow memory tagging on RAM-based files */
2280 vma->vm_flags |= VM_MTE_ALLOWED;
2281
1da177e4
LT
2282 file_accessed(file);
2283 vma->vm_ops = &shmem_vm_ops;
396bcc52 2284 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2285 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 (vma->vm_end & HPAGE_PMD_MASK)) {
2287 khugepaged_enter(vma, vma->vm_flags);
2288 }
1da177e4
LT
2289 return 0;
2290}
2291
454abafe 2292static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2293 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2294{
2295 struct inode *inode;
2296 struct shmem_inode_info *info;
2297 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2298 ino_t ino;
1da177e4 2299
e809d5f0 2300 if (shmem_reserve_inode(sb, &ino))
5b04c689 2301 return NULL;
1da177e4
LT
2302
2303 inode = new_inode(sb);
2304 if (inode) {
e809d5f0 2305 inode->i_ino = ino;
21cb47be 2306 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2307 inode->i_blocks = 0;
078cd827 2308 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2309 inode->i_generation = prandom_u32();
1da177e4
LT
2310 info = SHMEM_I(inode);
2311 memset(info, 0, (char *)inode - (char *)info);
2312 spin_lock_init(&info->lock);
af53d3e9 2313 atomic_set(&info->stop_eviction, 0);
40e041a2 2314 info->seals = F_SEAL_SEAL;
0b0a0806 2315 info->flags = flags & VM_NORESERVE;
779750d2 2316 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2317 INIT_LIST_HEAD(&info->swaplist);
38f38657 2318 simple_xattrs_init(&info->xattrs);
72c04902 2319 cache_no_acl(inode);
1da177e4
LT
2320
2321 switch (mode & S_IFMT) {
2322 default:
39f0247d 2323 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2324 init_special_inode(inode, mode, dev);
2325 break;
2326 case S_IFREG:
14fcc23f 2327 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2328 inode->i_op = &shmem_inode_operations;
2329 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2330 mpol_shared_policy_init(&info->policy,
2331 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2332 break;
2333 case S_IFDIR:
d8c76e6f 2334 inc_nlink(inode);
1da177e4
LT
2335 /* Some things misbehave if size == 0 on a directory */
2336 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 inode->i_op = &shmem_dir_inode_operations;
2338 inode->i_fop = &simple_dir_operations;
2339 break;
2340 case S_IFLNK:
2341 /*
2342 * Must not load anything in the rbtree,
2343 * mpol_free_shared_policy will not be called.
2344 */
71fe804b 2345 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2346 break;
2347 }
b45d71fb
JFG
2348
2349 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2350 } else
2351 shmem_free_inode(sb);
1da177e4
LT
2352 return inode;
2353}
2354
8d103963
MR
2355static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356 pmd_t *dst_pmd,
2357 struct vm_area_struct *dst_vma,
2358 unsigned long dst_addr,
2359 unsigned long src_addr,
2360 bool zeropage,
2361 struct page **pagep)
4c27fe4c
MR
2362{
2363 struct inode *inode = file_inode(dst_vma->vm_file);
2364 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2365 struct address_space *mapping = inode->i_mapping;
2366 gfp_t gfp = mapping_gfp_mask(mapping);
2367 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2368 spinlock_t *ptl;
2369 void *page_kaddr;
2370 struct page *page;
2371 pte_t _dst_pte, *dst_pte;
2372 int ret;
e2a50c1f 2373 pgoff_t offset, max_off;
4c27fe4c 2374
cb658a45 2375 ret = -ENOMEM;
7ed9d238
AR
2376 if (!shmem_inode_acct_block(inode, 1)) {
2377 /*
2378 * We may have got a page, returned -ENOENT triggering a retry,
2379 * and now we find ourselves with -ENOMEM. Release the page, to
2380 * avoid a BUG_ON in our caller.
2381 */
2382 if (unlikely(*pagep)) {
2383 put_page(*pagep);
2384 *pagep = NULL;
2385 }
cb658a45 2386 goto out;
7ed9d238 2387 }
4c27fe4c 2388
cb658a45 2389 if (!*pagep) {
4c27fe4c
MR
2390 page = shmem_alloc_page(gfp, info, pgoff);
2391 if (!page)
0f079694 2392 goto out_unacct_blocks;
4c27fe4c 2393
8d103963
MR
2394 if (!zeropage) { /* mcopy_atomic */
2395 page_kaddr = kmap_atomic(page);
2396 ret = copy_from_user(page_kaddr,
2397 (const void __user *)src_addr,
2398 PAGE_SIZE);
2399 kunmap_atomic(page_kaddr);
2400
c1e8d7c6 2401 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2402 if (unlikely(ret)) {
2403 *pagep = page;
2404 shmem_inode_unacct_blocks(inode, 1);
2405 /* don't free the page */
9e368259 2406 return -ENOENT;
8d103963
MR
2407 }
2408 } else { /* mfill_zeropage_atomic */
2409 clear_highpage(page);
4c27fe4c
MR
2410 }
2411 } else {
2412 page = *pagep;
2413 *pagep = NULL;
2414 }
2415
9cc90c66
AA
2416 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2417 __SetPageLocked(page);
2418 __SetPageSwapBacked(page);
a425d358 2419 __SetPageUptodate(page);
9cc90c66 2420
e2a50c1f
AA
2421 ret = -EFAULT;
2422 offset = linear_page_index(dst_vma, dst_addr);
2423 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2424 if (unlikely(offset >= max_off))
2425 goto out_release;
2426
552446a4 2427 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2428 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2429 if (ret)
3fea5a49 2430 goto out_release;
4c27fe4c
MR
2431
2432 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2433 if (dst_vma->vm_flags & VM_WRITE)
2434 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2435 else {
2436 /*
2437 * We don't set the pte dirty if the vma has no
2438 * VM_WRITE permission, so mark the page dirty or it
2439 * could be freed from under us. We could do it
2440 * unconditionally before unlock_page(), but doing it
2441 * only if VM_WRITE is not set is faster.
2442 */
2443 set_page_dirty(page);
2444 }
4c27fe4c 2445
4c27fe4c 2446 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2447
2448 ret = -EFAULT;
2449 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2450 if (unlikely(offset >= max_off))
3fea5a49 2451 goto out_release_unlock;
e2a50c1f
AA
2452
2453 ret = -EEXIST;
4c27fe4c 2454 if (!pte_none(*dst_pte))
3fea5a49 2455 goto out_release_unlock;
4c27fe4c 2456
6058eaec 2457 lru_cache_add(page);
4c27fe4c 2458
94b7cc01 2459 spin_lock_irq(&info->lock);
4c27fe4c
MR
2460 info->alloced++;
2461 inode->i_blocks += BLOCKS_PER_PAGE;
2462 shmem_recalc_inode(inode);
94b7cc01 2463 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2464
2465 inc_mm_counter(dst_mm, mm_counter_file(page));
2466 page_add_file_rmap(page, false);
2467 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2468
2469 /* No need to invalidate - it was non-present before */
2470 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2471 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2472 unlock_page(page);
4c27fe4c
MR
2473 ret = 0;
2474out:
2475 return ret;
3fea5a49 2476out_release_unlock:
4c27fe4c 2477 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2478 ClearPageDirty(page);
e2a50c1f 2479 delete_from_page_cache(page);
4c27fe4c 2480out_release:
9cc90c66 2481 unlock_page(page);
4c27fe4c 2482 put_page(page);
4c27fe4c 2483out_unacct_blocks:
0f079694 2484 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2485 goto out;
2486}
2487
8d103963
MR
2488int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2489 pmd_t *dst_pmd,
2490 struct vm_area_struct *dst_vma,
2491 unsigned long dst_addr,
2492 unsigned long src_addr,
2493 struct page **pagep)
2494{
2495 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2496 dst_addr, src_addr, false, pagep);
2497}
2498
2499int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2500 pmd_t *dst_pmd,
2501 struct vm_area_struct *dst_vma,
2502 unsigned long dst_addr)
2503{
2504 struct page *page = NULL;
2505
2506 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2507 dst_addr, 0, true, &page);
2508}
2509
1da177e4 2510#ifdef CONFIG_TMPFS
92e1d5be 2511static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2512static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2513
6d9d88d0
JS
2514#ifdef CONFIG_TMPFS_XATTR
2515static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2516#else
2517#define shmem_initxattrs NULL
2518#endif
2519
1da177e4 2520static int
800d15a5
NP
2521shmem_write_begin(struct file *file, struct address_space *mapping,
2522 loff_t pos, unsigned len, unsigned flags,
2523 struct page **pagep, void **fsdata)
1da177e4 2524{
800d15a5 2525 struct inode *inode = mapping->host;
40e041a2 2526 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2527 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2528
2529 /* i_mutex is held by caller */
ab3948f5
JFG
2530 if (unlikely(info->seals & (F_SEAL_GROW |
2531 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2532 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2533 return -EPERM;
2534 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2535 return -EPERM;
2536 }
2537
9e18eb29 2538 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2539}
2540
2541static int
2542shmem_write_end(struct file *file, struct address_space *mapping,
2543 loff_t pos, unsigned len, unsigned copied,
2544 struct page *page, void *fsdata)
2545{
2546 struct inode *inode = mapping->host;
2547
d3602444
HD
2548 if (pos + copied > inode->i_size)
2549 i_size_write(inode, pos + copied);
2550
ec9516fb 2551 if (!PageUptodate(page)) {
800d8c63
KS
2552 struct page *head = compound_head(page);
2553 if (PageTransCompound(page)) {
2554 int i;
2555
2556 for (i = 0; i < HPAGE_PMD_NR; i++) {
2557 if (head + i == page)
2558 continue;
2559 clear_highpage(head + i);
2560 flush_dcache_page(head + i);
2561 }
2562 }
09cbfeaf
KS
2563 if (copied < PAGE_SIZE) {
2564 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2565 zero_user_segments(page, 0, from,
09cbfeaf 2566 from + copied, PAGE_SIZE);
ec9516fb 2567 }
800d8c63 2568 SetPageUptodate(head);
ec9516fb 2569 }
800d15a5 2570 set_page_dirty(page);
6746aff7 2571 unlock_page(page);
09cbfeaf 2572 put_page(page);
800d15a5 2573
800d15a5 2574 return copied;
1da177e4
LT
2575}
2576
2ba5bbed 2577static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2578{
6e58e79d
AV
2579 struct file *file = iocb->ki_filp;
2580 struct inode *inode = file_inode(file);
1da177e4 2581 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2582 pgoff_t index;
2583 unsigned long offset;
a0ee5ec5 2584 enum sgp_type sgp = SGP_READ;
f7c1d074 2585 int error = 0;
cb66a7a1 2586 ssize_t retval = 0;
6e58e79d 2587 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2588
2589 /*
2590 * Might this read be for a stacking filesystem? Then when reading
2591 * holes of a sparse file, we actually need to allocate those pages,
2592 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2593 */
777eda2c 2594 if (!iter_is_iovec(to))
75edd345 2595 sgp = SGP_CACHE;
1da177e4 2596
09cbfeaf
KS
2597 index = *ppos >> PAGE_SHIFT;
2598 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2599
2600 for (;;) {
2601 struct page *page = NULL;
41ffe5d5
HD
2602 pgoff_t end_index;
2603 unsigned long nr, ret;
1da177e4
LT
2604 loff_t i_size = i_size_read(inode);
2605
09cbfeaf 2606 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2607 if (index > end_index)
2608 break;
2609 if (index == end_index) {
09cbfeaf 2610 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2611 if (nr <= offset)
2612 break;
2613 }
2614
9e18eb29 2615 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2616 if (error) {
2617 if (error == -EINVAL)
2618 error = 0;
1da177e4
LT
2619 break;
2620 }
75edd345
HD
2621 if (page) {
2622 if (sgp == SGP_CACHE)
2623 set_page_dirty(page);
d3602444 2624 unlock_page(page);
75edd345 2625 }
1da177e4
LT
2626
2627 /*
2628 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2629 * are called without i_mutex protection against truncate
1da177e4 2630 */
09cbfeaf 2631 nr = PAGE_SIZE;
1da177e4 2632 i_size = i_size_read(inode);
09cbfeaf 2633 end_index = i_size >> PAGE_SHIFT;
1da177e4 2634 if (index == end_index) {
09cbfeaf 2635 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2636 if (nr <= offset) {
2637 if (page)
09cbfeaf 2638 put_page(page);
1da177e4
LT
2639 break;
2640 }
2641 }
2642 nr -= offset;
2643
2644 if (page) {
2645 /*
2646 * If users can be writing to this page using arbitrary
2647 * virtual addresses, take care about potential aliasing
2648 * before reading the page on the kernel side.
2649 */
2650 if (mapping_writably_mapped(mapping))
2651 flush_dcache_page(page);
2652 /*
2653 * Mark the page accessed if we read the beginning.
2654 */
2655 if (!offset)
2656 mark_page_accessed(page);
b5810039 2657 } else {
1da177e4 2658 page = ZERO_PAGE(0);
09cbfeaf 2659 get_page(page);
b5810039 2660 }
1da177e4
LT
2661
2662 /*
2663 * Ok, we have the page, and it's up-to-date, so
2664 * now we can copy it to user space...
1da177e4 2665 */
2ba5bbed 2666 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2667 retval += ret;
1da177e4 2668 offset += ret;
09cbfeaf
KS
2669 index += offset >> PAGE_SHIFT;
2670 offset &= ~PAGE_MASK;
1da177e4 2671
09cbfeaf 2672 put_page(page);
2ba5bbed 2673 if (!iov_iter_count(to))
1da177e4 2674 break;
6e58e79d
AV
2675 if (ret < nr) {
2676 error = -EFAULT;
2677 break;
2678 }
1da177e4
LT
2679 cond_resched();
2680 }
2681
09cbfeaf 2682 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2683 file_accessed(file);
2684 return retval ? retval : error;
1da177e4
LT
2685}
2686
965c8e59 2687static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2688{
2689 struct address_space *mapping = file->f_mapping;
2690 struct inode *inode = mapping->host;
220f2ac9 2691
965c8e59
AM
2692 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2693 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2694 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2695 if (offset < 0)
2696 return -ENXIO;
2697
5955102c 2698 inode_lock(inode);
220f2ac9 2699 /* We're holding i_mutex so we can access i_size directly */
41139aa4 2700 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2701 if (offset >= 0)
2702 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2703 inode_unlock(inode);
220f2ac9
HD
2704 return offset;
2705}
2706
83e4fa9c
HD
2707static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2708 loff_t len)
2709{
496ad9aa 2710 struct inode *inode = file_inode(file);
e2d12e22 2711 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2712 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2713 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2714 pgoff_t start, index, end;
2715 int error;
83e4fa9c 2716
13ace4d0
HD
2717 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2718 return -EOPNOTSUPP;
2719
5955102c 2720 inode_lock(inode);
83e4fa9c
HD
2721
2722 if (mode & FALLOC_FL_PUNCH_HOLE) {
2723 struct address_space *mapping = file->f_mapping;
2724 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2725 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2727
40e041a2 2728 /* protected by i_mutex */
ab3948f5 2729 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2730 error = -EPERM;
2731 goto out;
2732 }
2733
8e205f77 2734 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2735 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2736 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2737 spin_lock(&inode->i_lock);
2738 inode->i_private = &shmem_falloc;
2739 spin_unlock(&inode->i_lock);
2740
83e4fa9c
HD
2741 if ((u64)unmap_end > (u64)unmap_start)
2742 unmap_mapping_range(mapping, unmap_start,
2743 1 + unmap_end - unmap_start, 0);
2744 shmem_truncate_range(inode, offset, offset + len - 1);
2745 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2746
2747 spin_lock(&inode->i_lock);
2748 inode->i_private = NULL;
2749 wake_up_all(&shmem_falloc_waitq);
2055da97 2750 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2751 spin_unlock(&inode->i_lock);
83e4fa9c 2752 error = 0;
8e205f77 2753 goto out;
e2d12e22
HD
2754 }
2755
2756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2757 error = inode_newsize_ok(inode, offset + len);
2758 if (error)
2759 goto out;
2760
40e041a2
DR
2761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2762 error = -EPERM;
2763 goto out;
2764 }
2765
09cbfeaf
KS
2766 start = offset >> PAGE_SHIFT;
2767 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2768 /* Try to avoid a swapstorm if len is impossible to satisfy */
2769 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2770 error = -ENOSPC;
2771 goto out;
83e4fa9c
HD
2772 }
2773
8e205f77 2774 shmem_falloc.waitq = NULL;
1aac1400
HD
2775 shmem_falloc.start = start;
2776 shmem_falloc.next = start;
2777 shmem_falloc.nr_falloced = 0;
2778 shmem_falloc.nr_unswapped = 0;
2779 spin_lock(&inode->i_lock);
2780 inode->i_private = &shmem_falloc;
2781 spin_unlock(&inode->i_lock);
2782
e2d12e22
HD
2783 for (index = start; index < end; index++) {
2784 struct page *page;
2785
2786 /*
2787 * Good, the fallocate(2) manpage permits EINTR: we may have
2788 * been interrupted because we are using up too much memory.
2789 */
2790 if (signal_pending(current))
2791 error = -EINTR;
1aac1400
HD
2792 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2793 error = -ENOMEM;
e2d12e22 2794 else
9e18eb29 2795 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2796 if (error) {
1635f6a7 2797 /* Remove the !PageUptodate pages we added */
7f556567
HD
2798 if (index > start) {
2799 shmem_undo_range(inode,
2800 (loff_t)start << PAGE_SHIFT,
2801 ((loff_t)index << PAGE_SHIFT) - 1, true);
2802 }
1aac1400 2803 goto undone;
e2d12e22
HD
2804 }
2805
1aac1400
HD
2806 /*
2807 * Inform shmem_writepage() how far we have reached.
2808 * No need for lock or barrier: we have the page lock.
2809 */
2810 shmem_falloc.next++;
2811 if (!PageUptodate(page))
2812 shmem_falloc.nr_falloced++;
2813
e2d12e22 2814 /*
1635f6a7
HD
2815 * If !PageUptodate, leave it that way so that freeable pages
2816 * can be recognized if we need to rollback on error later.
2817 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2818 * than free the pages we are allocating (and SGP_CACHE pages
2819 * might still be clean: we now need to mark those dirty too).
2820 */
2821 set_page_dirty(page);
2822 unlock_page(page);
09cbfeaf 2823 put_page(page);
e2d12e22
HD
2824 cond_resched();
2825 }
2826
2827 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2828 i_size_write(inode, offset + len);
078cd827 2829 inode->i_ctime = current_time(inode);
1aac1400
HD
2830undone:
2831 spin_lock(&inode->i_lock);
2832 inode->i_private = NULL;
2833 spin_unlock(&inode->i_lock);
e2d12e22 2834out:
5955102c 2835 inode_unlock(inode);
83e4fa9c
HD
2836 return error;
2837}
2838
726c3342 2839static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2840{
726c3342 2841 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2842
2843 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2844 buf->f_bsize = PAGE_SIZE;
1da177e4 2845 buf->f_namelen = NAME_MAX;
0edd73b3 2846 if (sbinfo->max_blocks) {
1da177e4 2847 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2848 buf->f_bavail =
2849 buf->f_bfree = sbinfo->max_blocks -
2850 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2851 }
2852 if (sbinfo->max_inodes) {
1da177e4
LT
2853 buf->f_files = sbinfo->max_inodes;
2854 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2855 }
2856 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2857
2858 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2859
1da177e4
LT
2860 return 0;
2861}
2862
2863/*
2864 * File creation. Allocate an inode, and we're done..
2865 */
2866static int
549c7297
CB
2867shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2868 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2869{
0b0a0806 2870 struct inode *inode;
1da177e4
LT
2871 int error = -ENOSPC;
2872
454abafe 2873 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2874 if (inode) {
feda821e
CH
2875 error = simple_acl_create(dir, inode);
2876 if (error)
2877 goto out_iput;
2a7dba39 2878 error = security_inode_init_security(inode, dir,
9d8f13ba 2879 &dentry->d_name,
6d9d88d0 2880 shmem_initxattrs, NULL);
feda821e
CH
2881 if (error && error != -EOPNOTSUPP)
2882 goto out_iput;
37ec43cd 2883
718deb6b 2884 error = 0;
1da177e4 2885 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2886 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2887 d_instantiate(dentry, inode);
2888 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2889 }
2890 return error;
feda821e
CH
2891out_iput:
2892 iput(inode);
2893 return error;
1da177e4
LT
2894}
2895
60545d0d 2896static int
549c7297
CB
2897shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2898 struct dentry *dentry, umode_t mode)
60545d0d
AV
2899{
2900 struct inode *inode;
2901 int error = -ENOSPC;
2902
2903 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2904 if (inode) {
2905 error = security_inode_init_security(inode, dir,
2906 NULL,
2907 shmem_initxattrs, NULL);
feda821e
CH
2908 if (error && error != -EOPNOTSUPP)
2909 goto out_iput;
2910 error = simple_acl_create(dir, inode);
2911 if (error)
2912 goto out_iput;
60545d0d
AV
2913 d_tmpfile(dentry, inode);
2914 }
2915 return error;
feda821e
CH
2916out_iput:
2917 iput(inode);
2918 return error;
60545d0d
AV
2919}
2920
549c7297
CB
2921static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2922 struct dentry *dentry, umode_t mode)
1da177e4
LT
2923{
2924 int error;
2925
549c7297
CB
2926 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2927 mode | S_IFDIR, 0)))
1da177e4 2928 return error;
d8c76e6f 2929 inc_nlink(dir);
1da177e4
LT
2930 return 0;
2931}
2932
549c7297
CB
2933static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2934 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2935{
549c7297 2936 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2937}
2938
2939/*
2940 * Link a file..
2941 */
2942static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2943{
75c3cfa8 2944 struct inode *inode = d_inode(old_dentry);
29b00e60 2945 int ret = 0;
1da177e4
LT
2946
2947 /*
2948 * No ordinary (disk based) filesystem counts links as inodes;
2949 * but each new link needs a new dentry, pinning lowmem, and
2950 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2951 * But if an O_TMPFILE file is linked into the tmpfs, the
2952 * first link must skip that, to get the accounting right.
1da177e4 2953 */
1062af92 2954 if (inode->i_nlink) {
e809d5f0 2955 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2956 if (ret)
2957 goto out;
2958 }
1da177e4
LT
2959
2960 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2961 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2962 inc_nlink(inode);
7de9c6ee 2963 ihold(inode); /* New dentry reference */
1da177e4
LT
2964 dget(dentry); /* Extra pinning count for the created dentry */
2965 d_instantiate(dentry, inode);
5b04c689
PE
2966out:
2967 return ret;
1da177e4
LT
2968}
2969
2970static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2971{
75c3cfa8 2972 struct inode *inode = d_inode(dentry);
1da177e4 2973
5b04c689
PE
2974 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2975 shmem_free_inode(inode->i_sb);
1da177e4
LT
2976
2977 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2978 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2979 drop_nlink(inode);
1da177e4
LT
2980 dput(dentry); /* Undo the count from "create" - this does all the work */
2981 return 0;
2982}
2983
2984static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2985{
2986 if (!simple_empty(dentry))
2987 return -ENOTEMPTY;
2988
75c3cfa8 2989 drop_nlink(d_inode(dentry));
9a53c3a7 2990 drop_nlink(dir);
1da177e4
LT
2991 return shmem_unlink(dir, dentry);
2992}
2993
37456771
MS
2994static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2995{
e36cb0b8
DH
2996 bool old_is_dir = d_is_dir(old_dentry);
2997 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2998
2999 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3000 if (old_is_dir) {
3001 drop_nlink(old_dir);
3002 inc_nlink(new_dir);
3003 } else {
3004 drop_nlink(new_dir);
3005 inc_nlink(old_dir);
3006 }
3007 }
3008 old_dir->i_ctime = old_dir->i_mtime =
3009 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3010 d_inode(old_dentry)->i_ctime =
078cd827 3011 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3012
3013 return 0;
3014}
3015
549c7297
CB
3016static int shmem_whiteout(struct user_namespace *mnt_userns,
3017 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
3018{
3019 struct dentry *whiteout;
3020 int error;
3021
3022 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3023 if (!whiteout)
3024 return -ENOMEM;
3025
549c7297 3026 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
3027 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3028 dput(whiteout);
3029 if (error)
3030 return error;
3031
3032 /*
3033 * Cheat and hash the whiteout while the old dentry is still in
3034 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3035 *
3036 * d_lookup() will consistently find one of them at this point,
3037 * not sure which one, but that isn't even important.
3038 */
3039 d_rehash(whiteout);
3040 return 0;
3041}
3042
1da177e4
LT
3043/*
3044 * The VFS layer already does all the dentry stuff for rename,
3045 * we just have to decrement the usage count for the target if
3046 * it exists so that the VFS layer correctly free's it when it
3047 * gets overwritten.
3048 */
549c7297
CB
3049static int shmem_rename2(struct user_namespace *mnt_userns,
3050 struct inode *old_dir, struct dentry *old_dentry,
3051 struct inode *new_dir, struct dentry *new_dentry,
3052 unsigned int flags)
1da177e4 3053{
75c3cfa8 3054 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3055 int they_are_dirs = S_ISDIR(inode->i_mode);
3056
46fdb794 3057 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3058 return -EINVAL;
3059
37456771
MS
3060 if (flags & RENAME_EXCHANGE)
3061 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062
1da177e4
LT
3063 if (!simple_empty(new_dentry))
3064 return -ENOTEMPTY;
3065
46fdb794
MS
3066 if (flags & RENAME_WHITEOUT) {
3067 int error;
3068
549c7297 3069 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3070 if (error)
3071 return error;
3072 }
3073
75c3cfa8 3074 if (d_really_is_positive(new_dentry)) {
1da177e4 3075 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3076 if (they_are_dirs) {
75c3cfa8 3077 drop_nlink(d_inode(new_dentry));
9a53c3a7 3078 drop_nlink(old_dir);
b928095b 3079 }
1da177e4 3080 } else if (they_are_dirs) {
9a53c3a7 3081 drop_nlink(old_dir);
d8c76e6f 3082 inc_nlink(new_dir);
1da177e4
LT
3083 }
3084
3085 old_dir->i_size -= BOGO_DIRENT_SIZE;
3086 new_dir->i_size += BOGO_DIRENT_SIZE;
3087 old_dir->i_ctime = old_dir->i_mtime =
3088 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3089 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3090 return 0;
3091}
3092
549c7297
CB
3093static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3094 struct dentry *dentry, const char *symname)
1da177e4
LT
3095{
3096 int error;
3097 int len;
3098 struct inode *inode;
9276aad6 3099 struct page *page;
1da177e4
LT
3100
3101 len = strlen(symname) + 1;
09cbfeaf 3102 if (len > PAGE_SIZE)
1da177e4
LT
3103 return -ENAMETOOLONG;
3104
0825a6f9
JP
3105 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3106 VM_NORESERVE);
1da177e4
LT
3107 if (!inode)
3108 return -ENOSPC;
3109
9d8f13ba 3110 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3111 shmem_initxattrs, NULL);
343c3d7f
MN
3112 if (error && error != -EOPNOTSUPP) {
3113 iput(inode);
3114 return error;
570bc1c2
SS
3115 }
3116
1da177e4 3117 inode->i_size = len-1;
69f07ec9 3118 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3119 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3120 if (!inode->i_link) {
69f07ec9
HD
3121 iput(inode);
3122 return -ENOMEM;
3123 }
3124 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3125 } else {
e8ecde25 3126 inode_nohighmem(inode);
9e18eb29 3127 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3128 if (error) {
3129 iput(inode);
3130 return error;
3131 }
14fcc23f 3132 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3133 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3134 memcpy(page_address(page), symname, len);
ec9516fb 3135 SetPageUptodate(page);
1da177e4 3136 set_page_dirty(page);
6746aff7 3137 unlock_page(page);
09cbfeaf 3138 put_page(page);
1da177e4 3139 }
1da177e4 3140 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3141 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3142 d_instantiate(dentry, inode);
3143 dget(dentry);
3144 return 0;
3145}
3146
fceef393 3147static void shmem_put_link(void *arg)
1da177e4 3148{
fceef393
AV
3149 mark_page_accessed(arg);
3150 put_page(arg);
1da177e4
LT
3151}
3152
6b255391 3153static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3154 struct inode *inode,
3155 struct delayed_call *done)
1da177e4 3156{
1da177e4 3157 struct page *page = NULL;
6b255391 3158 int error;
6a6c9904
AV
3159 if (!dentry) {
3160 page = find_get_page(inode->i_mapping, 0);
3161 if (!page)
3162 return ERR_PTR(-ECHILD);
3163 if (!PageUptodate(page)) {
3164 put_page(page);
3165 return ERR_PTR(-ECHILD);
3166 }
3167 } else {
9e18eb29 3168 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3169 if (error)
3170 return ERR_PTR(error);
3171 unlock_page(page);
3172 }
fceef393 3173 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3174 return page_address(page);
1da177e4
LT
3175}
3176
b09e0fa4 3177#ifdef CONFIG_TMPFS_XATTR
46711810 3178/*
b09e0fa4
EP
3179 * Superblocks without xattr inode operations may get some security.* xattr
3180 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3181 * like ACLs, we also need to implement the security.* handlers at
3182 * filesystem level, though.
3183 */
3184
6d9d88d0
JS
3185/*
3186 * Callback for security_inode_init_security() for acquiring xattrs.
3187 */
3188static int shmem_initxattrs(struct inode *inode,
3189 const struct xattr *xattr_array,
3190 void *fs_info)
3191{
3192 struct shmem_inode_info *info = SHMEM_I(inode);
3193 const struct xattr *xattr;
38f38657 3194 struct simple_xattr *new_xattr;
6d9d88d0
JS
3195 size_t len;
3196
3197 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3198 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3199 if (!new_xattr)
3200 return -ENOMEM;
3201
3202 len = strlen(xattr->name) + 1;
3203 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3204 GFP_KERNEL);
3205 if (!new_xattr->name) {
3bef735a 3206 kvfree(new_xattr);
6d9d88d0
JS
3207 return -ENOMEM;
3208 }
3209
3210 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3211 XATTR_SECURITY_PREFIX_LEN);
3212 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3213 xattr->name, len);
3214
38f38657 3215 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3216 }
3217
3218 return 0;
3219}
3220
aa7c5241 3221static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3222 struct dentry *unused, struct inode *inode,
3223 const char *name, void *buffer, size_t size)
b09e0fa4 3224{
b296821a 3225 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3226
aa7c5241 3227 name = xattr_full_name(handler, name);
38f38657 3228 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3229}
3230
aa7c5241 3231static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3232 struct user_namespace *mnt_userns,
59301226
AV
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, const void *value,
3235 size_t size, int flags)
b09e0fa4 3236{
59301226 3237 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3238
aa7c5241 3239 name = xattr_full_name(handler, name);
a46a2295 3240 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3241}
3242
aa7c5241
AG
3243static const struct xattr_handler shmem_security_xattr_handler = {
3244 .prefix = XATTR_SECURITY_PREFIX,
3245 .get = shmem_xattr_handler_get,
3246 .set = shmem_xattr_handler_set,
3247};
b09e0fa4 3248
aa7c5241
AG
3249static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 .prefix = XATTR_TRUSTED_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253};
b09e0fa4 3254
aa7c5241
AG
3255static const struct xattr_handler *shmem_xattr_handlers[] = {
3256#ifdef CONFIG_TMPFS_POSIX_ACL
3257 &posix_acl_access_xattr_handler,
3258 &posix_acl_default_xattr_handler,
3259#endif
3260 &shmem_security_xattr_handler,
3261 &shmem_trusted_xattr_handler,
3262 NULL
3263};
b09e0fa4
EP
3264
3265static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266{
75c3cfa8 3267 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3268 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3269}
3270#endif /* CONFIG_TMPFS_XATTR */
3271
69f07ec9 3272static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3273 .get_link = simple_get_link,
b09e0fa4 3274#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3275 .listxattr = shmem_listxattr,
b09e0fa4
EP
3276#endif
3277};
3278
3279static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3280 .get_link = shmem_get_link,
b09e0fa4 3281#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3282 .listxattr = shmem_listxattr,
39f0247d 3283#endif
b09e0fa4 3284};
39f0247d 3285
91828a40
DG
3286static struct dentry *shmem_get_parent(struct dentry *child)
3287{
3288 return ERR_PTR(-ESTALE);
3289}
3290
3291static int shmem_match(struct inode *ino, void *vfh)
3292{
3293 __u32 *fh = vfh;
3294 __u64 inum = fh[2];
3295 inum = (inum << 32) | fh[1];
3296 return ino->i_ino == inum && fh[0] == ino->i_generation;
3297}
3298
12ba780d
AG
3299/* Find any alias of inode, but prefer a hashed alias */
3300static struct dentry *shmem_find_alias(struct inode *inode)
3301{
3302 struct dentry *alias = d_find_alias(inode);
3303
3304 return alias ?: d_find_any_alias(inode);
3305}
3306
3307
480b116c
CH
3308static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 struct fid *fid, int fh_len, int fh_type)
91828a40 3310{
91828a40 3311 struct inode *inode;
480b116c 3312 struct dentry *dentry = NULL;
35c2a7f4 3313 u64 inum;
480b116c
CH
3314
3315 if (fh_len < 3)
3316 return NULL;
91828a40 3317
35c2a7f4
HD
3318 inum = fid->raw[2];
3319 inum = (inum << 32) | fid->raw[1];
3320
480b116c
CH
3321 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 shmem_match, fid->raw);
91828a40 3323 if (inode) {
12ba780d 3324 dentry = shmem_find_alias(inode);
91828a40
DG
3325 iput(inode);
3326 }
3327
480b116c 3328 return dentry;
91828a40
DG
3329}
3330
b0b0382b
AV
3331static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 struct inode *parent)
91828a40 3333{
5fe0c237
AK
3334 if (*len < 3) {
3335 *len = 3;
94e07a75 3336 return FILEID_INVALID;
5fe0c237 3337 }
91828a40 3338
1d3382cb 3339 if (inode_unhashed(inode)) {
91828a40
DG
3340 /* Unfortunately insert_inode_hash is not idempotent,
3341 * so as we hash inodes here rather than at creation
3342 * time, we need a lock to ensure we only try
3343 * to do it once
3344 */
3345 static DEFINE_SPINLOCK(lock);
3346 spin_lock(&lock);
1d3382cb 3347 if (inode_unhashed(inode))
91828a40
DG
3348 __insert_inode_hash(inode,
3349 inode->i_ino + inode->i_generation);
3350 spin_unlock(&lock);
3351 }
3352
3353 fh[0] = inode->i_generation;
3354 fh[1] = inode->i_ino;
3355 fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357 *len = 3;
3358 return 1;
3359}
3360
39655164 3361static const struct export_operations shmem_export_ops = {
91828a40 3362 .get_parent = shmem_get_parent,
91828a40 3363 .encode_fh = shmem_encode_fh,
480b116c 3364 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3365};
3366
626c3920
AV
3367enum shmem_param {
3368 Opt_gid,
3369 Opt_huge,
3370 Opt_mode,
3371 Opt_mpol,
3372 Opt_nr_blocks,
3373 Opt_nr_inodes,
3374 Opt_size,
3375 Opt_uid,
ea3271f7
CD
3376 Opt_inode32,
3377 Opt_inode64,
626c3920
AV
3378};
3379
5eede625 3380static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3381 {"never", SHMEM_HUGE_NEVER },
3382 {"always", SHMEM_HUGE_ALWAYS },
3383 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3384 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3385 {}
3386};
3387
d7167b14 3388const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3389 fsparam_u32 ("gid", Opt_gid),
2710c957 3390 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3391 fsparam_u32oct("mode", Opt_mode),
3392 fsparam_string("mpol", Opt_mpol),
3393 fsparam_string("nr_blocks", Opt_nr_blocks),
3394 fsparam_string("nr_inodes", Opt_nr_inodes),
3395 fsparam_string("size", Opt_size),
3396 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3397 fsparam_flag ("inode32", Opt_inode32),
3398 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3399 {}
3400};
3401
f3235626 3402static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3403{
f3235626 3404 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3405 struct fs_parse_result result;
3406 unsigned long long size;
e04dc423 3407 char *rest;
626c3920
AV
3408 int opt;
3409
d7167b14 3410 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3411 if (opt < 0)
626c3920 3412 return opt;
1da177e4 3413
626c3920
AV
3414 switch (opt) {
3415 case Opt_size:
3416 size = memparse(param->string, &rest);
e04dc423
AV
3417 if (*rest == '%') {
3418 size <<= PAGE_SHIFT;
3419 size *= totalram_pages();
3420 do_div(size, 100);
3421 rest++;
3422 }
3423 if (*rest)
626c3920 3424 goto bad_value;
e04dc423
AV
3425 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3426 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3427 break;
3428 case Opt_nr_blocks:
3429 ctx->blocks = memparse(param->string, &rest);
e04dc423 3430 if (*rest)
626c3920 3431 goto bad_value;
e04dc423 3432 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3433 break;
3434 case Opt_nr_inodes:
3435 ctx->inodes = memparse(param->string, &rest);
e04dc423 3436 if (*rest)
626c3920 3437 goto bad_value;
e04dc423 3438 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3439 break;
3440 case Opt_mode:
3441 ctx->mode = result.uint_32 & 07777;
3442 break;
3443 case Opt_uid:
3444 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3445 if (!uid_valid(ctx->uid))
626c3920
AV
3446 goto bad_value;
3447 break;
3448 case Opt_gid:
3449 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3450 if (!gid_valid(ctx->gid))
626c3920
AV
3451 goto bad_value;
3452 break;
3453 case Opt_huge:
3454 ctx->huge = result.uint_32;
3455 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3456 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3457 has_transparent_hugepage()))
3458 goto unsupported_parameter;
e04dc423 3459 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3460 break;
3461 case Opt_mpol:
3462 if (IS_ENABLED(CONFIG_NUMA)) {
3463 mpol_put(ctx->mpol);
3464 ctx->mpol = NULL;
3465 if (mpol_parse_str(param->string, &ctx->mpol))
3466 goto bad_value;
3467 break;
3468 }
3469 goto unsupported_parameter;
ea3271f7
CD
3470 case Opt_inode32:
3471 ctx->full_inums = false;
3472 ctx->seen |= SHMEM_SEEN_INUMS;
3473 break;
3474 case Opt_inode64:
3475 if (sizeof(ino_t) < 8) {
3476 return invalfc(fc,
3477 "Cannot use inode64 with <64bit inums in kernel\n");
3478 }
3479 ctx->full_inums = true;
3480 ctx->seen |= SHMEM_SEEN_INUMS;
3481 break;
e04dc423
AV
3482 }
3483 return 0;
3484
626c3920 3485unsupported_parameter:
f35aa2bc 3486 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3487bad_value:
f35aa2bc 3488 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3489}
3490
f3235626 3491static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3492{
f3235626
DH
3493 char *options = data;
3494
33f37c64
AV
3495 if (options) {
3496 int err = security_sb_eat_lsm_opts(options, &fc->security);
3497 if (err)
3498 return err;
3499 }
3500
b00dc3ad 3501 while (options != NULL) {
626c3920 3502 char *this_char = options;
b00dc3ad
HD
3503 for (;;) {
3504 /*
3505 * NUL-terminate this option: unfortunately,
3506 * mount options form a comma-separated list,
3507 * but mpol's nodelist may also contain commas.
3508 */
3509 options = strchr(options, ',');
3510 if (options == NULL)
3511 break;
3512 options++;
3513 if (!isdigit(*options)) {
3514 options[-1] = '\0';
3515 break;
3516 }
3517 }
626c3920 3518 if (*this_char) {
68d68ff6 3519 char *value = strchr(this_char, '=');
f3235626 3520 size_t len = 0;
626c3920
AV
3521 int err;
3522
3523 if (value) {
3524 *value++ = '\0';
f3235626 3525 len = strlen(value);
626c3920 3526 }
f3235626
DH
3527 err = vfs_parse_fs_string(fc, this_char, value, len);
3528 if (err < 0)
3529 return err;
1da177e4 3530 }
1da177e4
LT
3531 }
3532 return 0;
1da177e4
LT
3533}
3534
f3235626
DH
3535/*
3536 * Reconfigure a shmem filesystem.
3537 *
3538 * Note that we disallow change from limited->unlimited blocks/inodes while any
3539 * are in use; but we must separately disallow unlimited->limited, because in
3540 * that case we have no record of how much is already in use.
3541 */
3542static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3543{
f3235626
DH
3544 struct shmem_options *ctx = fc->fs_private;
3545 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3546 unsigned long inodes;
f3235626 3547 const char *err;
1da177e4 3548
0edd73b3 3549 spin_lock(&sbinfo->stat_lock);
0edd73b3 3550 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3551 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3552 if (!sbinfo->max_blocks) {
3553 err = "Cannot retroactively limit size";
0b5071dd 3554 goto out;
f3235626 3555 }
0b5071dd 3556 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3557 ctx->blocks) > 0) {
3558 err = "Too small a size for current use";
0b5071dd 3559 goto out;
f3235626 3560 }
0b5071dd 3561 }
f3235626
DH
3562 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3563 if (!sbinfo->max_inodes) {
3564 err = "Cannot retroactively limit inodes";
0b5071dd 3565 goto out;
f3235626
DH
3566 }
3567 if (ctx->inodes < inodes) {
3568 err = "Too few inodes for current use";
0b5071dd 3569 goto out;
f3235626 3570 }
0b5071dd 3571 }
0edd73b3 3572
ea3271f7
CD
3573 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3574 sbinfo->next_ino > UINT_MAX) {
3575 err = "Current inum too high to switch to 32-bit inums";
3576 goto out;
3577 }
3578
f3235626
DH
3579 if (ctx->seen & SHMEM_SEEN_HUGE)
3580 sbinfo->huge = ctx->huge;
ea3271f7
CD
3581 if (ctx->seen & SHMEM_SEEN_INUMS)
3582 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3583 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3584 sbinfo->max_blocks = ctx->blocks;
3585 if (ctx->seen & SHMEM_SEEN_INODES) {
3586 sbinfo->max_inodes = ctx->inodes;
3587 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3588 }
71fe804b 3589
5f00110f
GT
3590 /*
3591 * Preserve previous mempolicy unless mpol remount option was specified.
3592 */
f3235626 3593 if (ctx->mpol) {
5f00110f 3594 mpol_put(sbinfo->mpol);
f3235626
DH
3595 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3596 ctx->mpol = NULL;
5f00110f 3597 }
f3235626
DH
3598 spin_unlock(&sbinfo->stat_lock);
3599 return 0;
0edd73b3
HD
3600out:
3601 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3602 return invalfc(fc, "%s", err);
1da177e4 3603}
680d794b 3604
34c80b1d 3605static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3606{
34c80b1d 3607 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3608
3609 if (sbinfo->max_blocks != shmem_default_max_blocks())
3610 seq_printf(seq, ",size=%luk",
09cbfeaf 3611 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3612 if (sbinfo->max_inodes != shmem_default_max_inodes())
3613 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3614 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3615 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3616 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3617 seq_printf(seq, ",uid=%u",
3618 from_kuid_munged(&init_user_ns, sbinfo->uid));
3619 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3620 seq_printf(seq, ",gid=%u",
3621 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3622
3623 /*
3624 * Showing inode{64,32} might be useful even if it's the system default,
3625 * since then people don't have to resort to checking both here and
3626 * /proc/config.gz to confirm 64-bit inums were successfully applied
3627 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3628 *
3629 * We hide it when inode64 isn't the default and we are using 32-bit
3630 * inodes, since that probably just means the feature isn't even under
3631 * consideration.
3632 *
3633 * As such:
3634 *
3635 * +-----------------+-----------------+
3636 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3637 * +------------------+-----------------+-----------------+
3638 * | full_inums=true | show | show |
3639 * | full_inums=false | show | hide |
3640 * +------------------+-----------------+-----------------+
3641 *
3642 */
3643 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3644 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3645#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3646 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3647 if (sbinfo->huge)
3648 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3649#endif
71fe804b 3650 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3651 return 0;
3652}
9183df25 3653
680d794b 3654#endif /* CONFIG_TMPFS */
1da177e4
LT
3655
3656static void shmem_put_super(struct super_block *sb)
3657{
602586a8
HD
3658 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3659
e809d5f0 3660 free_percpu(sbinfo->ino_batch);
602586a8 3661 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3662 mpol_put(sbinfo->mpol);
602586a8 3663 kfree(sbinfo);
1da177e4
LT
3664 sb->s_fs_info = NULL;
3665}
3666
f3235626 3667static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3668{
f3235626 3669 struct shmem_options *ctx = fc->fs_private;
1da177e4 3670 struct inode *inode;
0edd73b3 3671 struct shmem_sb_info *sbinfo;
680d794b
AM
3672 int err = -ENOMEM;
3673
3674 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3675 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3676 L1_CACHE_BYTES), GFP_KERNEL);
3677 if (!sbinfo)
3678 return -ENOMEM;
3679
680d794b 3680 sb->s_fs_info = sbinfo;
1da177e4 3681
0edd73b3 3682#ifdef CONFIG_TMPFS
1da177e4
LT
3683 /*
3684 * Per default we only allow half of the physical ram per
3685 * tmpfs instance, limiting inodes to one per page of lowmem;
3686 * but the internal instance is left unlimited.
3687 */
1751e8a6 3688 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3689 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3690 ctx->blocks = shmem_default_max_blocks();
3691 if (!(ctx->seen & SHMEM_SEEN_INODES))
3692 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3693 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3694 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3695 } else {
1751e8a6 3696 sb->s_flags |= SB_NOUSER;
1da177e4 3697 }
91828a40 3698 sb->s_export_op = &shmem_export_ops;
1751e8a6 3699 sb->s_flags |= SB_NOSEC;
1da177e4 3700#else
1751e8a6 3701 sb->s_flags |= SB_NOUSER;
1da177e4 3702#endif
f3235626
DH
3703 sbinfo->max_blocks = ctx->blocks;
3704 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3705 if (sb->s_flags & SB_KERNMOUNT) {
3706 sbinfo->ino_batch = alloc_percpu(ino_t);
3707 if (!sbinfo->ino_batch)
3708 goto failed;
3709 }
f3235626
DH
3710 sbinfo->uid = ctx->uid;
3711 sbinfo->gid = ctx->gid;
ea3271f7 3712 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3713 sbinfo->mode = ctx->mode;
3714 sbinfo->huge = ctx->huge;
3715 sbinfo->mpol = ctx->mpol;
3716 ctx->mpol = NULL;
1da177e4 3717
0edd73b3 3718 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3719 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3720 goto failed;
779750d2
KS
3721 spin_lock_init(&sbinfo->shrinklist_lock);
3722 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3723
285b2c4f 3724 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3725 sb->s_blocksize = PAGE_SIZE;
3726 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3727 sb->s_magic = TMPFS_MAGIC;
3728 sb->s_op = &shmem_ops;
cfd95a9c 3729 sb->s_time_gran = 1;
b09e0fa4 3730#ifdef CONFIG_TMPFS_XATTR
39f0247d 3731 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3732#endif
3733#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3734 sb->s_flags |= SB_POSIXACL;
39f0247d 3735#endif
2b4db796 3736 uuid_gen(&sb->s_uuid);
0edd73b3 3737
454abafe 3738 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3739 if (!inode)
3740 goto failed;
680d794b
AM
3741 inode->i_uid = sbinfo->uid;
3742 inode->i_gid = sbinfo->gid;
318ceed0
AV
3743 sb->s_root = d_make_root(inode);
3744 if (!sb->s_root)
48fde701 3745 goto failed;
1da177e4
LT
3746 return 0;
3747
1da177e4
LT
3748failed:
3749 shmem_put_super(sb);
3750 return err;
3751}
3752
f3235626
DH
3753static int shmem_get_tree(struct fs_context *fc)
3754{
3755 return get_tree_nodev(fc, shmem_fill_super);
3756}
3757
3758static void shmem_free_fc(struct fs_context *fc)
3759{
3760 struct shmem_options *ctx = fc->fs_private;
3761
3762 if (ctx) {
3763 mpol_put(ctx->mpol);
3764 kfree(ctx);
3765 }
3766}
3767
3768static const struct fs_context_operations shmem_fs_context_ops = {
3769 .free = shmem_free_fc,
3770 .get_tree = shmem_get_tree,
3771#ifdef CONFIG_TMPFS
3772 .parse_monolithic = shmem_parse_options,
3773 .parse_param = shmem_parse_one,
3774 .reconfigure = shmem_reconfigure,
3775#endif
3776};
3777
fcc234f8 3778static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3779
3780static struct inode *shmem_alloc_inode(struct super_block *sb)
3781{
41ffe5d5
HD
3782 struct shmem_inode_info *info;
3783 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3784 if (!info)
1da177e4 3785 return NULL;
41ffe5d5 3786 return &info->vfs_inode;
1da177e4
LT
3787}
3788
74b1da56 3789static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3790{
84e710da
AV
3791 if (S_ISLNK(inode->i_mode))
3792 kfree(inode->i_link);
fa0d7e3d
NP
3793 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3794}
3795
1da177e4
LT
3796static void shmem_destroy_inode(struct inode *inode)
3797{
09208d15 3798 if (S_ISREG(inode->i_mode))
1da177e4 3799 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3800}
3801
41ffe5d5 3802static void shmem_init_inode(void *foo)
1da177e4 3803{
41ffe5d5
HD
3804 struct shmem_inode_info *info = foo;
3805 inode_init_once(&info->vfs_inode);
1da177e4
LT
3806}
3807
9a8ec03e 3808static void shmem_init_inodecache(void)
1da177e4
LT
3809{
3810 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3811 sizeof(struct shmem_inode_info),
5d097056 3812 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3813}
3814
41ffe5d5 3815static void shmem_destroy_inodecache(void)
1da177e4 3816{
1a1d92c1 3817 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3818}
3819
30e6a51d 3820const struct address_space_operations shmem_aops = {
1da177e4 3821 .writepage = shmem_writepage,
76719325 3822 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3823#ifdef CONFIG_TMPFS
800d15a5
NP
3824 .write_begin = shmem_write_begin,
3825 .write_end = shmem_write_end,
1da177e4 3826#endif
1c93923c 3827#ifdef CONFIG_MIGRATION
304dbdb7 3828 .migratepage = migrate_page,
1c93923c 3829#endif
aa261f54 3830 .error_remove_page = generic_error_remove_page,
1da177e4 3831};
30e6a51d 3832EXPORT_SYMBOL(shmem_aops);
1da177e4 3833
15ad7cdc 3834static const struct file_operations shmem_file_operations = {
1da177e4 3835 .mmap = shmem_mmap,
c01d5b30 3836 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3837#ifdef CONFIG_TMPFS
220f2ac9 3838 .llseek = shmem_file_llseek,
2ba5bbed 3839 .read_iter = shmem_file_read_iter,
8174202b 3840 .write_iter = generic_file_write_iter,
1b061d92 3841 .fsync = noop_fsync,
82c156f8 3842 .splice_read = generic_file_splice_read,
f6cb85d0 3843 .splice_write = iter_file_splice_write,
83e4fa9c 3844 .fallocate = shmem_fallocate,
1da177e4
LT
3845#endif
3846};
3847
92e1d5be 3848static const struct inode_operations shmem_inode_operations = {
44a30220 3849 .getattr = shmem_getattr,
94c1e62d 3850 .setattr = shmem_setattr,
b09e0fa4 3851#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3852 .listxattr = shmem_listxattr,
feda821e 3853 .set_acl = simple_set_acl,
b09e0fa4 3854#endif
1da177e4
LT
3855};
3856
92e1d5be 3857static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3858#ifdef CONFIG_TMPFS
3859 .create = shmem_create,
3860 .lookup = simple_lookup,
3861 .link = shmem_link,
3862 .unlink = shmem_unlink,
3863 .symlink = shmem_symlink,
3864 .mkdir = shmem_mkdir,
3865 .rmdir = shmem_rmdir,
3866 .mknod = shmem_mknod,
2773bf00 3867 .rename = shmem_rename2,
60545d0d 3868 .tmpfile = shmem_tmpfile,
1da177e4 3869#endif
b09e0fa4 3870#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3871 .listxattr = shmem_listxattr,
b09e0fa4 3872#endif
39f0247d 3873#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3874 .setattr = shmem_setattr,
feda821e 3875 .set_acl = simple_set_acl,
39f0247d
AG
3876#endif
3877};
3878
92e1d5be 3879static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3880#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3881 .listxattr = shmem_listxattr,
b09e0fa4 3882#endif
39f0247d 3883#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3884 .setattr = shmem_setattr,
feda821e 3885 .set_acl = simple_set_acl,
39f0247d 3886#endif
1da177e4
LT
3887};
3888
759b9775 3889static const struct super_operations shmem_ops = {
1da177e4 3890 .alloc_inode = shmem_alloc_inode,
74b1da56 3891 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3892 .destroy_inode = shmem_destroy_inode,
3893#ifdef CONFIG_TMPFS
3894 .statfs = shmem_statfs,
680d794b 3895 .show_options = shmem_show_options,
1da177e4 3896#endif
1f895f75 3897 .evict_inode = shmem_evict_inode,
1da177e4
LT
3898 .drop_inode = generic_delete_inode,
3899 .put_super = shmem_put_super,
396bcc52 3900#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3901 .nr_cached_objects = shmem_unused_huge_count,
3902 .free_cached_objects = shmem_unused_huge_scan,
3903#endif
1da177e4
LT
3904};
3905
f0f37e2f 3906static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3907 .fault = shmem_fault,
d7c17551 3908 .map_pages = filemap_map_pages,
1da177e4
LT
3909#ifdef CONFIG_NUMA
3910 .set_policy = shmem_set_policy,
3911 .get_policy = shmem_get_policy,
3912#endif
3913};
3914
f3235626 3915int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3916{
f3235626
DH
3917 struct shmem_options *ctx;
3918
3919 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3920 if (!ctx)
3921 return -ENOMEM;
3922
3923 ctx->mode = 0777 | S_ISVTX;
3924 ctx->uid = current_fsuid();
3925 ctx->gid = current_fsgid();
3926
3927 fc->fs_private = ctx;
3928 fc->ops = &shmem_fs_context_ops;
3929 return 0;
1da177e4
LT
3930}
3931
41ffe5d5 3932static struct file_system_type shmem_fs_type = {
1da177e4
LT
3933 .owner = THIS_MODULE,
3934 .name = "tmpfs",
f3235626
DH
3935 .init_fs_context = shmem_init_fs_context,
3936#ifdef CONFIG_TMPFS
d7167b14 3937 .parameters = shmem_fs_parameters,
f3235626 3938#endif
1da177e4 3939 .kill_sb = kill_litter_super,
01c70267 3940 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3941};
1da177e4 3942
41ffe5d5 3943int __init shmem_init(void)
1da177e4
LT
3944{
3945 int error;
3946
9a8ec03e 3947 shmem_init_inodecache();
1da177e4 3948
41ffe5d5 3949 error = register_filesystem(&shmem_fs_type);
1da177e4 3950 if (error) {
1170532b 3951 pr_err("Could not register tmpfs\n");
1da177e4
LT
3952 goto out2;
3953 }
95dc112a 3954
ca4e0519 3955 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3956 if (IS_ERR(shm_mnt)) {
3957 error = PTR_ERR(shm_mnt);
1170532b 3958 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3959 goto out1;
3960 }
5a6e75f8 3961
396bcc52 3962#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3963 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3964 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3965 else
3966 shmem_huge = 0; /* just in case it was patched */
3967#endif
1da177e4
LT
3968 return 0;
3969
3970out1:
41ffe5d5 3971 unregister_filesystem(&shmem_fs_type);
1da177e4 3972out2:
41ffe5d5 3973 shmem_destroy_inodecache();
1da177e4
LT
3974 shm_mnt = ERR_PTR(error);
3975 return error;
3976}
853ac43a 3977
396bcc52 3978#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3979static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3980 struct kobj_attribute *attr, char *buf)
5a6e75f8 3981{
26083eb6 3982 static const int values[] = {
5a6e75f8
KS
3983 SHMEM_HUGE_ALWAYS,
3984 SHMEM_HUGE_WITHIN_SIZE,
3985 SHMEM_HUGE_ADVISE,
3986 SHMEM_HUGE_NEVER,
3987 SHMEM_HUGE_DENY,
3988 SHMEM_HUGE_FORCE,
3989 };
79d4d38a
JP
3990 int len = 0;
3991 int i;
5a6e75f8 3992
79d4d38a
JP
3993 for (i = 0; i < ARRAY_SIZE(values); i++) {
3994 len += sysfs_emit_at(buf, len,
3995 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3996 i ? " " : "",
3997 shmem_format_huge(values[i]));
5a6e75f8 3998 }
79d4d38a
JP
3999
4000 len += sysfs_emit_at(buf, len, "\n");
4001
4002 return len;
5a6e75f8
KS
4003}
4004
4005static ssize_t shmem_enabled_store(struct kobject *kobj,
4006 struct kobj_attribute *attr, const char *buf, size_t count)
4007{
4008 char tmp[16];
4009 int huge;
4010
4011 if (count + 1 > sizeof(tmp))
4012 return -EINVAL;
4013 memcpy(tmp, buf, count);
4014 tmp[count] = '\0';
4015 if (count && tmp[count - 1] == '\n')
4016 tmp[count - 1] = '\0';
4017
4018 huge = shmem_parse_huge(tmp);
4019 if (huge == -EINVAL)
4020 return -EINVAL;
4021 if (!has_transparent_hugepage() &&
4022 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4023 return -EINVAL;
4024
4025 shmem_huge = huge;
435c0b87 4026 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4027 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 return count;
4029}
4030
4031struct kobj_attribute shmem_enabled_attr =
4032 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4033#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4034
396bcc52 4035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
4036bool shmem_huge_enabled(struct vm_area_struct *vma)
4037{
4038 struct inode *inode = file_inode(vma->vm_file);
4039 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4040 loff_t i_size;
4041 pgoff_t off;
4042
c0630669
YS
4043 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4044 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4045 return false;
f3f0e1d2
KS
4046 if (shmem_huge == SHMEM_HUGE_FORCE)
4047 return true;
4048 if (shmem_huge == SHMEM_HUGE_DENY)
4049 return false;
4050 switch (sbinfo->huge) {
4051 case SHMEM_HUGE_NEVER:
4052 return false;
4053 case SHMEM_HUGE_ALWAYS:
4054 return true;
4055 case SHMEM_HUGE_WITHIN_SIZE:
4056 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4057 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4058 if (i_size >= HPAGE_PMD_SIZE &&
4059 i_size >> PAGE_SHIFT >= off)
4060 return true;
e4a9bc58 4061 fallthrough;
f3f0e1d2
KS
4062 case SHMEM_HUGE_ADVISE:
4063 /* TODO: implement fadvise() hints */
4064 return (vma->vm_flags & VM_HUGEPAGE);
4065 default:
4066 VM_BUG_ON(1);
4067 return false;
4068 }
4069}
396bcc52 4070#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4071
853ac43a
MM
4072#else /* !CONFIG_SHMEM */
4073
4074/*
4075 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4076 *
4077 * This is intended for small system where the benefits of the full
4078 * shmem code (swap-backed and resource-limited) are outweighed by
4079 * their complexity. On systems without swap this code should be
4080 * effectively equivalent, but much lighter weight.
4081 */
4082
41ffe5d5 4083static struct file_system_type shmem_fs_type = {
853ac43a 4084 .name = "tmpfs",
f3235626 4085 .init_fs_context = ramfs_init_fs_context,
d7167b14 4086 .parameters = ramfs_fs_parameters,
853ac43a 4087 .kill_sb = kill_litter_super,
2b8576cb 4088 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4089};
4090
41ffe5d5 4091int __init shmem_init(void)
853ac43a 4092{
41ffe5d5 4093 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4094
41ffe5d5 4095 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4096 BUG_ON(IS_ERR(shm_mnt));
4097
4098 return 0;
4099}
4100
b56a2d8a
VRP
4101int shmem_unuse(unsigned int type, bool frontswap,
4102 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4103{
4104 return 0;
4105}
4106
3f96b79a
HD
4107int shmem_lock(struct file *file, int lock, struct user_struct *user)
4108{
4109 return 0;
4110}
4111
24513264
HD
4112void shmem_unlock_mapping(struct address_space *mapping)
4113{
4114}
4115
c01d5b30
HD
4116#ifdef CONFIG_MMU
4117unsigned long shmem_get_unmapped_area(struct file *file,
4118 unsigned long addr, unsigned long len,
4119 unsigned long pgoff, unsigned long flags)
4120{
4121 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4122}
4123#endif
4124
41ffe5d5 4125void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4126{
41ffe5d5 4127 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4128}
4129EXPORT_SYMBOL_GPL(shmem_truncate_range);
4130
0b0a0806
HD
4131#define shmem_vm_ops generic_file_vm_ops
4132#define shmem_file_operations ramfs_file_operations
454abafe 4133#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4134#define shmem_acct_size(flags, size) 0
4135#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4136
4137#endif /* CONFIG_SHMEM */
4138
4139/* common code */
1da177e4 4140
703321b6 4141static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4142 unsigned long flags, unsigned int i_flags)
1da177e4 4143{
1da177e4 4144 struct inode *inode;
93dec2da 4145 struct file *res;
1da177e4 4146
703321b6
MA
4147 if (IS_ERR(mnt))
4148 return ERR_CAST(mnt);
1da177e4 4149
285b2c4f 4150 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4151 return ERR_PTR(-EINVAL);
4152
4153 if (shmem_acct_size(flags, size))
4154 return ERR_PTR(-ENOMEM);
4155
93dec2da
AV
4156 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4157 flags);
dac2d1f6
AV
4158 if (unlikely(!inode)) {
4159 shmem_unacct_size(flags, size);
4160 return ERR_PTR(-ENOSPC);
4161 }
c7277090 4162 inode->i_flags |= i_flags;
1da177e4 4163 inode->i_size = size;
6d6b77f1 4164 clear_nlink(inode); /* It is unlinked */
26567cdb 4165 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4166 if (!IS_ERR(res))
4167 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4168 &shmem_file_operations);
26567cdb 4169 if (IS_ERR(res))
93dec2da 4170 iput(inode);
6b4d0b27 4171 return res;
1da177e4 4172}
c7277090
EP
4173
4174/**
4175 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4176 * kernel internal. There will be NO LSM permission checks against the
4177 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4178 * higher layer. The users are the big_key and shm implementations. LSM
4179 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4180 * @name: name for dentry (to be seen in /proc/<pid>/maps
4181 * @size: size to be set for the file
4182 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183 */
4184struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4185{
703321b6 4186 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4187}
4188
4189/**
4190 * shmem_file_setup - get an unlinked file living in tmpfs
4191 * @name: name for dentry (to be seen in /proc/<pid>/maps
4192 * @size: size to be set for the file
4193 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4194 */
4195struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4196{
703321b6 4197 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4198}
395e0ddc 4199EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4200
703321b6
MA
4201/**
4202 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4203 * @mnt: the tmpfs mount where the file will be created
4204 * @name: name for dentry (to be seen in /proc/<pid>/maps
4205 * @size: size to be set for the file
4206 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4207 */
4208struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4209 loff_t size, unsigned long flags)
4210{
4211 return __shmem_file_setup(mnt, name, size, flags, 0);
4212}
4213EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4214
46711810 4215/**
1da177e4 4216 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4217 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4218 */
4219int shmem_zero_setup(struct vm_area_struct *vma)
4220{
4221 struct file *file;
4222 loff_t size = vma->vm_end - vma->vm_start;
4223
66fc1303 4224 /*
c1e8d7c6 4225 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4226 * between XFS directory reading and selinux: since this file is only
4227 * accessible to the user through its mapping, use S_PRIVATE flag to
4228 * bypass file security, in the same way as shmem_kernel_file_setup().
4229 */
703321b6 4230 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4231 if (IS_ERR(file))
4232 return PTR_ERR(file);
4233
4234 if (vma->vm_file)
4235 fput(vma->vm_file);
4236 vma->vm_file = file;
4237 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4238
396bcc52 4239 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4240 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4241 (vma->vm_end & HPAGE_PMD_MASK)) {
4242 khugepaged_enter(vma, vma->vm_flags);
4243 }
4244
1da177e4
LT
4245 return 0;
4246}
d9d90e5e
HD
4247
4248/**
4249 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4250 * @mapping: the page's address_space
4251 * @index: the page index
4252 * @gfp: the page allocator flags to use if allocating
4253 *
4254 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4255 * with any new page allocations done using the specified allocation flags.
4256 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4257 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4258 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4259 *
68da9f05
HD
4260 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4261 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4262 */
4263struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4264 pgoff_t index, gfp_t gfp)
4265{
68da9f05
HD
4266#ifdef CONFIG_SHMEM
4267 struct inode *inode = mapping->host;
9276aad6 4268 struct page *page;
68da9f05
HD
4269 int error;
4270
30e6a51d 4271 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4272 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4273 gfp, NULL, NULL, NULL);
68da9f05
HD
4274 if (error)
4275 page = ERR_PTR(error);
4276 else
4277 unlock_page(page);
4278 return page;
4279#else
4280 /*
4281 * The tiny !SHMEM case uses ramfs without swap
4282 */
d9d90e5e 4283 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4284#endif
d9d90e5e
HD
4285}
4286EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.229593 seconds and 4 git commands to generate.