]> Git Repo - linux.git/blame - net/core/dev.c
net: unexport a handful of dev_* functions
[linux.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <[email protected]>
8 * Mark Evans, <[email protected]>
9 *
10 * Additional Authors:
11 * Florian la Roche <[email protected]>
12 * Alan Cox <[email protected]>
13 * David Hinds <[email protected]>
14 * Alexey Kuznetsov <[email protected]>
15 * Adam Sulmicki <[email protected]>
16 * Pekka Riikonen <[email protected]>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
70713ddd 134#include <trace/events/qdisc.h>
caeda9b9 135#include <linux/inetdevice.h>
c445477d 136#include <linux/cpu_rmap.h>
c5905afb 137#include <linux/static_key.h>
af12fa6e 138#include <linux/hashtable.h>
60877a32 139#include <linux/vmalloc.h>
529d0489 140#include <linux/if_macvlan.h>
e7fd2885 141#include <linux/errqueue.h>
3b47d303 142#include <linux/hrtimer.h>
7463acfb 143#include <linux/netfilter_netdev.h>
40e4e713 144#include <linux/crash_dump.h>
b72b5bf6 145#include <linux/sctp.h>
ae847f40 146#include <net/udp_tunnel.h>
6621dd29 147#include <linux/net_namespace.h>
aaa5d90b 148#include <linux/indirect_call_wrapper.h>
af3836df 149#include <net/devlink.h>
bd869245 150#include <linux/pm_runtime.h>
3744741a 151#include <linux/prandom.h>
127d7355 152#include <linux/once_lite.h>
1da177e4 153
342709ef
PE
154#include "net-sysfs.h"
155
5d38a079 156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
900ff8c6
CW
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 160
ae78dbfa 161static int netif_rx_internal(struct sk_buff *skb);
54951194 162static int call_netdevice_notifiers_info(unsigned long val,
54951194 163 struct netdev_notifier_info *info);
26372605
PM
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
11d6011c 199static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e722db8d
SAS
219static inline void rps_lock_irqsave(struct softnet_data *sd,
220 unsigned long *flags)
152102c7 221{
e722db8d
SAS
222 if (IS_ENABLED(CONFIG_RPS))
223 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 local_irq_save(*flags);
152102c7
CG
226}
227
e722db8d 228static inline void rps_lock_irq_disable(struct softnet_data *sd)
152102c7 229{
e722db8d
SAS
230 if (IS_ENABLED(CONFIG_RPS))
231 spin_lock_irq(&sd->input_pkt_queue.lock);
232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 local_irq_disable();
234}
235
236static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 unsigned long *flags)
238{
239 if (IS_ENABLED(CONFIG_RPS))
240 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_irq_restore(*flags);
243}
244
245static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246{
247 if (IS_ENABLED(CONFIG_RPS))
248 spin_unlock_irq(&sd->input_pkt_queue.lock);
249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 local_irq_enable();
152102c7
CG
251}
252
ff927412
JP
253static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 const char *name)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 if (!name_node)
260 return NULL;
261 INIT_HLIST_NODE(&name_node->hlist);
262 name_node->dev = dev;
263 name_node->name = name;
264 return name_node;
265}
266
267static struct netdev_name_node *
268netdev_name_node_head_alloc(struct net_device *dev)
269{
36fbf1e5
JP
270 struct netdev_name_node *name_node;
271
272 name_node = netdev_name_node_alloc(dev, dev->name);
273 if (!name_node)
274 return NULL;
275 INIT_LIST_HEAD(&name_node->list);
276 return name_node;
ff927412
JP
277}
278
279static void netdev_name_node_free(struct netdev_name_node *name_node)
280{
281 kfree(name_node);
282}
283
284static void netdev_name_node_add(struct net *net,
285 struct netdev_name_node *name_node)
286{
287 hlist_add_head_rcu(&name_node->hlist,
288 dev_name_hash(net, name_node->name));
289}
290
291static void netdev_name_node_del(struct netdev_name_node *name_node)
292{
293 hlist_del_rcu(&name_node->hlist);
294}
295
296static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 const char *name)
298{
299 struct hlist_head *head = dev_name_hash(net, name);
300 struct netdev_name_node *name_node;
301
302 hlist_for_each_entry(name_node, head, hlist)
303 if (!strcmp(name_node->name, name))
304 return name_node;
305 return NULL;
306}
307
308static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 const char *name)
310{
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry_rcu(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318}
319
75ea27d0
AT
320bool netdev_name_in_use(struct net *net, const char *name)
321{
322 return netdev_name_node_lookup(net, name);
323}
324EXPORT_SYMBOL(netdev_name_in_use);
325
36fbf1e5
JP
326int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (name_node)
333 return -EEXIST;
334 name_node = netdev_name_node_alloc(dev, name);
335 if (!name_node)
336 return -ENOMEM;
337 netdev_name_node_add(net, name_node);
338 /* The node that holds dev->name acts as a head of per-device list. */
339 list_add_tail(&name_node->list, &dev->name_node->list);
340
341 return 0;
342}
36fbf1e5
JP
343
344static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345{
346 list_del(&name_node->list);
347 netdev_name_node_del(name_node);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350}
351
352int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353{
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
e08ad805
ED
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
36fbf1e5
JP
366 __netdev_name_node_alt_destroy(name_node);
367
368 return 0;
369}
36fbf1e5
JP
370
371static void netdev_name_node_alt_flush(struct net_device *dev)
372{
373 struct netdev_name_node *name_node, *tmp;
374
375 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
376 __netdev_name_node_alt_destroy(name_node);
377}
378
ce286d32 379/* Device list insertion */
53759be9 380static void list_netdevice(struct net_device *dev)
ce286d32 381{
c346dca1 382 struct net *net = dev_net(dev);
ce286d32
EB
383
384 ASSERT_RTNL();
385
fd888e85 386 write_lock(&dev_base_lock);
c6d14c84 387 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 388 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
389 hlist_add_head_rcu(&dev->index_hlist,
390 dev_index_hash(net, dev->ifindex));
fd888e85 391 write_unlock(&dev_base_lock);
4e985ada
TG
392
393 dev_base_seq_inc(net);
ce286d32
EB
394}
395
fb699dfd
ED
396/* Device list removal
397 * caller must respect a RCU grace period before freeing/reusing dev
398 */
ce286d32
EB
399static void unlist_netdevice(struct net_device *dev)
400{
401 ASSERT_RTNL();
402
403 /* Unlink dev from the device chain */
fd888e85 404 write_lock(&dev_base_lock);
c6d14c84 405 list_del_rcu(&dev->dev_list);
ff927412 406 netdev_name_node_del(dev->name_node);
fb699dfd 407 hlist_del_rcu(&dev->index_hlist);
fd888e85 408 write_unlock(&dev_base_lock);
4e985ada
TG
409
410 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
411}
412
1da177e4
LT
413/*
414 * Our notifier list
415 */
416
f07d5b94 417static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
418
419/*
420 * Device drivers call our routines to queue packets here. We empty the
421 * queue in the local softnet handler.
422 */
bea3348e 423
9958da05 424DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 425EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 426
1a33e10e
CW
427#ifdef CONFIG_LOCKDEP
428/*
429 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
430 * according to dev->type
431 */
432static const unsigned short netdev_lock_type[] = {
433 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
434 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
435 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
436 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
437 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
438 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
439 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
440 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
441 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
442 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
443 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
444 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
445 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
446 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
447 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
448
449static const char *const netdev_lock_name[] = {
450 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
451 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
452 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
453 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
454 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
455 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
456 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
457 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
458 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
459 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
460 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
461 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
462 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
463 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
464 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
465
466static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 467static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
468
469static inline unsigned short netdev_lock_pos(unsigned short dev_type)
470{
471 int i;
472
473 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
474 if (netdev_lock_type[i] == dev_type)
475 return i;
476 /* the last key is used by default */
477 return ARRAY_SIZE(netdev_lock_type) - 1;
478}
479
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483 int i;
484
485 i = netdev_lock_pos(dev_type);
486 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
487 netdev_lock_name[i]);
488}
845e0ebb
CW
489
490static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
491{
492 int i;
493
494 i = netdev_lock_pos(dev->type);
495 lockdep_set_class_and_name(&dev->addr_list_lock,
496 &netdev_addr_lock_key[i],
497 netdev_lock_name[i]);
498}
1a33e10e
CW
499#else
500static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 unsigned short dev_type)
502{
503}
845e0ebb
CW
504
505static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
506{
507}
1a33e10e
CW
508#endif
509
1da177e4 510/*******************************************************************************
eb13da1a 511 *
512 * Protocol management and registration routines
513 *
514 *******************************************************************************/
1da177e4 515
1da177e4 516
1da177e4
LT
517/*
518 * Add a protocol ID to the list. Now that the input handler is
519 * smarter we can dispense with all the messy stuff that used to be
520 * here.
521 *
522 * BEWARE!!! Protocol handlers, mangling input packets,
523 * MUST BE last in hash buckets and checking protocol handlers
524 * MUST start from promiscuous ptype_all chain in net_bh.
525 * It is true now, do not change it.
526 * Explanation follows: if protocol handler, mangling packet, will
527 * be the first on list, it is not able to sense, that packet
528 * is cloned and should be copied-on-write, so that it will
529 * change it and subsequent readers will get broken packet.
530 * --ANK (980803)
531 */
532
c07b68e8
ED
533static inline struct list_head *ptype_head(const struct packet_type *pt)
534{
535 if (pt->type == htons(ETH_P_ALL))
7866a621 536 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 537 else
7866a621
SN
538 return pt->dev ? &pt->dev->ptype_specific :
539 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
540}
541
1da177e4
LT
542/**
543 * dev_add_pack - add packet handler
544 * @pt: packet type declaration
545 *
546 * Add a protocol handler to the networking stack. The passed &packet_type
547 * is linked into kernel lists and may not be freed until it has been
548 * removed from the kernel lists.
549 *
4ec93edb 550 * This call does not sleep therefore it can not
1da177e4
LT
551 * guarantee all CPU's that are in middle of receiving packets
552 * will see the new packet type (until the next received packet).
553 */
554
555void dev_add_pack(struct packet_type *pt)
556{
c07b68e8 557 struct list_head *head = ptype_head(pt);
1da177e4 558
c07b68e8
ED
559 spin_lock(&ptype_lock);
560 list_add_rcu(&pt->list, head);
561 spin_unlock(&ptype_lock);
1da177e4 562}
d1b19dff 563EXPORT_SYMBOL(dev_add_pack);
1da177e4 564
1da177e4
LT
565/**
566 * __dev_remove_pack - remove packet handler
567 * @pt: packet type declaration
568 *
569 * Remove a protocol handler that was previously added to the kernel
570 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
571 * from the kernel lists and can be freed or reused once this function
4ec93edb 572 * returns.
1da177e4
LT
573 *
574 * The packet type might still be in use by receivers
575 * and must not be freed until after all the CPU's have gone
576 * through a quiescent state.
577 */
578void __dev_remove_pack(struct packet_type *pt)
579{
c07b68e8 580 struct list_head *head = ptype_head(pt);
1da177e4
LT
581 struct packet_type *pt1;
582
c07b68e8 583 spin_lock(&ptype_lock);
1da177e4
LT
584
585 list_for_each_entry(pt1, head, list) {
586 if (pt == pt1) {
587 list_del_rcu(&pt->list);
588 goto out;
589 }
590 }
591
7b6cd1ce 592 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 593out:
c07b68e8 594 spin_unlock(&ptype_lock);
1da177e4 595}
d1b19dff
ED
596EXPORT_SYMBOL(__dev_remove_pack);
597
1da177e4
LT
598/**
599 * dev_remove_pack - remove packet handler
600 * @pt: packet type declaration
601 *
602 * Remove a protocol handler that was previously added to the kernel
603 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
604 * from the kernel lists and can be freed or reused once this function
605 * returns.
606 *
607 * This call sleeps to guarantee that no CPU is looking at the packet
608 * type after return.
609 */
610void dev_remove_pack(struct packet_type *pt)
611{
612 __dev_remove_pack(pt);
4ec93edb 613
1da177e4
LT
614 synchronize_net();
615}
d1b19dff 616EXPORT_SYMBOL(dev_remove_pack);
1da177e4 617
62532da9 618
1da177e4 619/*******************************************************************************
eb13da1a 620 *
621 * Device Interface Subroutines
622 *
623 *******************************************************************************/
1da177e4 624
a54acb3a
ND
625/**
626 * dev_get_iflink - get 'iflink' value of a interface
627 * @dev: targeted interface
628 *
629 * Indicates the ifindex the interface is linked to.
630 * Physical interfaces have the same 'ifindex' and 'iflink' values.
631 */
632
633int dev_get_iflink(const struct net_device *dev)
634{
635 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
636 return dev->netdev_ops->ndo_get_iflink(dev);
637
7a66bbc9 638 return dev->ifindex;
a54acb3a
ND
639}
640EXPORT_SYMBOL(dev_get_iflink);
641
fc4099f1
PS
642/**
643 * dev_fill_metadata_dst - Retrieve tunnel egress information.
644 * @dev: targeted interface
645 * @skb: The packet.
646 *
647 * For better visibility of tunnel traffic OVS needs to retrieve
648 * egress tunnel information for a packet. Following API allows
649 * user to get this info.
650 */
651int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
652{
653 struct ip_tunnel_info *info;
654
655 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
656 return -EINVAL;
657
658 info = skb_tunnel_info_unclone(skb);
659 if (!info)
660 return -ENOMEM;
661 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
662 return -EINVAL;
663
664 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
665}
666EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
667
ddb94eaf
PNA
668static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
669{
670 int k = stack->num_paths++;
671
672 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
673 return NULL;
674
675 return &stack->path[k];
676}
677
678int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
679 struct net_device_path_stack *stack)
680{
681 const struct net_device *last_dev;
682 struct net_device_path_ctx ctx = {
683 .dev = dev,
684 .daddr = daddr,
685 };
686 struct net_device_path *path;
687 int ret = 0;
688
689 stack->num_paths = 0;
690 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
691 last_dev = ctx.dev;
692 path = dev_fwd_path(stack);
693 if (!path)
694 return -1;
695
696 memset(path, 0, sizeof(struct net_device_path));
697 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
698 if (ret < 0)
699 return -1;
700
701 if (WARN_ON_ONCE(last_dev == ctx.dev))
702 return -1;
703 }
a333215e
FF
704
705 if (!ctx.dev)
706 return ret;
707
ddb94eaf
PNA
708 path = dev_fwd_path(stack);
709 if (!path)
710 return -1;
711 path->type = DEV_PATH_ETHERNET;
712 path->dev = ctx.dev;
713
714 return ret;
715}
716EXPORT_SYMBOL_GPL(dev_fill_forward_path);
717
1da177e4
LT
718/**
719 * __dev_get_by_name - find a device by its name
c4ea43c5 720 * @net: the applicable net namespace
1da177e4
LT
721 * @name: name to find
722 *
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
728 */
729
881d966b 730struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 731{
ff927412 732 struct netdev_name_node *node_name;
1da177e4 733
ff927412
JP
734 node_name = netdev_name_node_lookup(net, name);
735 return node_name ? node_name->dev : NULL;
1da177e4 736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b 739/**
722c9a0c 740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
ff927412 753 struct netdev_name_node *node_name;
72c9528b 754
ff927412
JP
755 node_name = netdev_name_node_lookup_rcu(net, name);
756 return node_name ? node_name->dev : NULL;
72c9528b
ED
757}
758EXPORT_SYMBOL(dev_get_by_name_rcu);
759
1da177e4
LT
760/**
761 * dev_get_by_name - find a device by its name
c4ea43c5 762 * @net: the applicable net namespace
1da177e4
LT
763 * @name: name to find
764 *
765 * Find an interface by name. This can be called from any
766 * context and does its own locking. The returned handle has
767 * the usage count incremented and the caller must use dev_put() to
768 * release it when it is no longer needed. %NULL is returned if no
769 * matching device is found.
770 */
771
881d966b 772struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
773{
774 struct net_device *dev;
775
72c9528b
ED
776 rcu_read_lock();
777 dev = dev_get_by_name_rcu(net, name);
1160dfa1 778 dev_hold(dev);
72c9528b 779 rcu_read_unlock();
1da177e4
LT
780 return dev;
781}
d1b19dff 782EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
783
784/**
785 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 786 * @net: the applicable net namespace
1da177e4
LT
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold either the RTNL semaphore
793 * or @dev_base_lock.
794 */
795
881d966b 796struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 797{
0bd8d536
ED
798 struct net_device *dev;
799 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 800
b67bfe0d 801 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
802 if (dev->ifindex == ifindex)
803 return dev;
0bd8d536 804
1da177e4
LT
805 return NULL;
806}
d1b19dff 807EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 808
fb699dfd
ED
809/**
810 * dev_get_by_index_rcu - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns %NULL if the device
815 * is not found or a pointer to the device. The device has not
816 * had its reference counter increased so the caller must be careful
817 * about locking. The caller must hold RCU lock.
818 */
819
820struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
821{
fb699dfd
ED
822 struct net_device *dev;
823 struct hlist_head *head = dev_index_hash(net, ifindex);
824
b67bfe0d 825 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
826 if (dev->ifindex == ifindex)
827 return dev;
828
829 return NULL;
830}
831EXPORT_SYMBOL(dev_get_by_index_rcu);
832
1da177e4
LT
833
834/**
835 * dev_get_by_index - find a device by its ifindex
c4ea43c5 836 * @net: the applicable net namespace
1da177e4
LT
837 * @ifindex: index of device
838 *
839 * Search for an interface by index. Returns NULL if the device
840 * is not found or a pointer to the device. The device returned has
841 * had a reference added and the pointer is safe until the user calls
842 * dev_put to indicate they have finished with it.
843 */
844
881d966b 845struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
846{
847 struct net_device *dev;
848
fb699dfd
ED
849 rcu_read_lock();
850 dev = dev_get_by_index_rcu(net, ifindex);
1160dfa1 851 dev_hold(dev);
fb699dfd 852 rcu_read_unlock();
1da177e4
LT
853 return dev;
854}
d1b19dff 855EXPORT_SYMBOL(dev_get_by_index);
1da177e4 856
90b602f8
ML
857/**
858 * dev_get_by_napi_id - find a device by napi_id
859 * @napi_id: ID of the NAPI struct
860 *
861 * Search for an interface by NAPI ID. Returns %NULL if the device
862 * is not found or a pointer to the device. The device has not had
863 * its reference counter increased so the caller must be careful
864 * about locking. The caller must hold RCU lock.
865 */
866
867struct net_device *dev_get_by_napi_id(unsigned int napi_id)
868{
869 struct napi_struct *napi;
870
871 WARN_ON_ONCE(!rcu_read_lock_held());
872
873 if (napi_id < MIN_NAPI_ID)
874 return NULL;
875
876 napi = napi_by_id(napi_id);
877
878 return napi ? napi->dev : NULL;
879}
880EXPORT_SYMBOL(dev_get_by_napi_id);
881
5dbe7c17
NS
882/**
883 * netdev_get_name - get a netdevice name, knowing its ifindex.
884 * @net: network namespace
885 * @name: a pointer to the buffer where the name will be stored.
886 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
887 */
888int netdev_get_name(struct net *net, char *name, int ifindex)
889{
890 struct net_device *dev;
11d6011c 891 int ret;
5dbe7c17 892
11d6011c 893 down_read(&devnet_rename_sem);
5dbe7c17 894 rcu_read_lock();
11d6011c 895
5dbe7c17
NS
896 dev = dev_get_by_index_rcu(net, ifindex);
897 if (!dev) {
11d6011c
AD
898 ret = -ENODEV;
899 goto out;
5dbe7c17
NS
900 }
901
902 strcpy(name, dev->name);
5dbe7c17 903
11d6011c
AD
904 ret = 0;
905out:
906 rcu_read_unlock();
907 up_read(&devnet_rename_sem);
908 return ret;
5dbe7c17
NS
909}
910
1da177e4 911/**
941666c2 912 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 913 * @net: the applicable net namespace
1da177e4
LT
914 * @type: media type of device
915 * @ha: hardware address
916 *
917 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
918 * is not found or a pointer to the device.
919 * The caller must hold RCU or RTNL.
941666c2 920 * The returned device has not had its ref count increased
1da177e4
LT
921 * and the caller must therefore be careful about locking
922 *
1da177e4
LT
923 */
924
941666c2
ED
925struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
926 const char *ha)
1da177e4
LT
927{
928 struct net_device *dev;
929
941666c2 930 for_each_netdev_rcu(net, dev)
1da177e4
LT
931 if (dev->type == type &&
932 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
933 return dev;
934
935 return NULL;
1da177e4 936}
941666c2 937EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
4250b75b 989 * allow sysfs to work. We also disallow any kind of
c7fa9d18 990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
a9d48205 996 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
93809105
RV
1033 if (!dev_valid_name(name))
1034 return -EINVAL;
1035
51f299dd 1036 p = strchr(name, '%');
1da177e4
LT
1037 if (p) {
1038 /*
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1041 * characters.
1042 */
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1044 return -EINVAL;
1045
1046 /* Use one page as a bit array of possible slots */
cfcabdcc 1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1048 if (!inuse)
1049 return -ENOMEM;
1050
881d966b 1051 for_each_netdev(net, d) {
6c015a22
JB
1052 struct netdev_name_node *name_node;
1053 list_for_each_entry(name_node, &d->name_node->list, list) {
1054 if (!sscanf(name_node->name, name, &i))
1055 continue;
1056 if (i < 0 || i >= max_netdevices)
1057 continue;
1058
1059 /* avoid cases where sscanf is not exact inverse of printf */
1060 snprintf(buf, IFNAMSIZ, name, i);
1061 if (!strncmp(buf, name_node->name, IFNAMSIZ))
25ee1660 1062 __set_bit(i, inuse);
6c015a22 1063 }
1da177e4
LT
1064 if (!sscanf(d->name, name, &i))
1065 continue;
1066 if (i < 0 || i >= max_netdevices)
1067 continue;
1068
1069 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1070 snprintf(buf, IFNAMSIZ, name, i);
1da177e4 1071 if (!strncmp(buf, d->name, IFNAMSIZ))
25ee1660 1072 __set_bit(i, inuse);
1da177e4
LT
1073 }
1074
1075 i = find_first_zero_bit(inuse, max_netdevices);
1076 free_page((unsigned long) inuse);
1077 }
1078
6224abda 1079 snprintf(buf, IFNAMSIZ, name, i);
75ea27d0 1080 if (!netdev_name_in_use(net, buf))
1da177e4 1081 return i;
1da177e4
LT
1082
1083 /* It is possible to run out of possible slots
1084 * when the name is long and there isn't enough space left
1085 * for the digits, or if all bits are used.
1086 */
029b6d14 1087 return -ENFILE;
1da177e4
LT
1088}
1089
2c88b855
RV
1090static int dev_alloc_name_ns(struct net *net,
1091 struct net_device *dev,
1092 const char *name)
1093{
1094 char buf[IFNAMSIZ];
1095 int ret;
1096
c46d7642 1097 BUG_ON(!net);
2c88b855
RV
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1da177e4
LT
1102}
1103
b267b179
EB
1104/**
1105 * dev_alloc_name - allocate a name for a device
1106 * @dev: device
1107 * @name: name format string
1108 *
1109 * Passed a format string - eg "lt%d" it will try and find a suitable
1110 * id. It scans list of devices to build up a free map, then chooses
1111 * the first empty slot. The caller must hold the dev_base or rtnl lock
1112 * while allocating the name and adding the device in order to avoid
1113 * duplicates.
1114 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1115 * Returns the number of the unit assigned or a negative errno code.
1116 */
1117
1118int dev_alloc_name(struct net_device *dev, const char *name)
1119{
c46d7642 1120 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1121}
d1b19dff 1122EXPORT_SYMBOL(dev_alloc_name);
b267b179 1123
bacb7e18
ED
1124static int dev_get_valid_name(struct net *net, struct net_device *dev,
1125 const char *name)
828de4f6 1126{
55a5ec9b
DM
1127 BUG_ON(!net);
1128
1129 if (!dev_valid_name(name))
1130 return -EINVAL;
1131
1132 if (strchr(name, '%'))
1133 return dev_alloc_name_ns(net, dev, name);
75ea27d0 1134 else if (netdev_name_in_use(net, name))
55a5ec9b
DM
1135 return -EEXIST;
1136 else if (dev->name != name)
1137 strlcpy(dev->name, name, IFNAMSIZ);
1138
1139 return 0;
d9031024 1140}
1da177e4
LT
1141
1142/**
1143 * dev_change_name - change name of a device
1144 * @dev: device
1145 * @newname: name (or format string) must be at least IFNAMSIZ
1146 *
1147 * Change name of a device, can pass format strings "eth%d".
1148 * for wildcarding.
1149 */
cf04a4c7 1150int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1151{
238fa362 1152 unsigned char old_assign_type;
fcc5a03a 1153 char oldname[IFNAMSIZ];
1da177e4 1154 int err = 0;
fcc5a03a 1155 int ret;
881d966b 1156 struct net *net;
1da177e4
LT
1157
1158 ASSERT_RTNL();
c346dca1 1159 BUG_ON(!dev_net(dev));
1da177e4 1160
c346dca1 1161 net = dev_net(dev);
8065a779
SWL
1162
1163 /* Some auto-enslaved devices e.g. failover slaves are
1164 * special, as userspace might rename the device after
1165 * the interface had been brought up and running since
1166 * the point kernel initiated auto-enslavement. Allow
1167 * live name change even when these slave devices are
1168 * up and running.
1169 *
1170 * Typically, users of these auto-enslaving devices
1171 * don't actually care about slave name change, as
1172 * they are supposed to operate on master interface
1173 * directly.
1174 */
1175 if (dev->flags & IFF_UP &&
1176 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1177 return -EBUSY;
1178
11d6011c 1179 down_write(&devnet_rename_sem);
c91f6df2
BH
1180
1181 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1182 up_write(&devnet_rename_sem);
c8d90dca 1183 return 0;
c91f6df2 1184 }
c8d90dca 1185
fcc5a03a
HX
1186 memcpy(oldname, dev->name, IFNAMSIZ);
1187
828de4f6 1188 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1189 if (err < 0) {
11d6011c 1190 up_write(&devnet_rename_sem);
d9031024 1191 return err;
c91f6df2 1192 }
1da177e4 1193
6fe82a39
VF
1194 if (oldname[0] && !strchr(oldname, '%'))
1195 netdev_info(dev, "renamed from %s\n", oldname);
1196
238fa362
TG
1197 old_assign_type = dev->name_assign_type;
1198 dev->name_assign_type = NET_NAME_RENAMED;
1199
fcc5a03a 1200rollback:
a1b3f594
EB
1201 ret = device_rename(&dev->dev, dev->name);
1202 if (ret) {
1203 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1204 dev->name_assign_type = old_assign_type;
11d6011c 1205 up_write(&devnet_rename_sem);
a1b3f594 1206 return ret;
dcc99773 1207 }
7f988eab 1208
11d6011c 1209 up_write(&devnet_rename_sem);
c91f6df2 1210
5bb025fa
VF
1211 netdev_adjacent_rename_links(dev, oldname);
1212
fd888e85 1213 write_lock(&dev_base_lock);
ff927412 1214 netdev_name_node_del(dev->name_node);
fd888e85 1215 write_unlock(&dev_base_lock);
72c9528b
ED
1216
1217 synchronize_rcu();
1218
fd888e85 1219 write_lock(&dev_base_lock);
ff927412 1220 netdev_name_node_add(net, dev->name_node);
fd888e85 1221 write_unlock(&dev_base_lock);
7f988eab 1222
056925ab 1223 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1224 ret = notifier_to_errno(ret);
1225
1226 if (ret) {
91e9c07b
ED
1227 /* err >= 0 after dev_alloc_name() or stores the first errno */
1228 if (err >= 0) {
fcc5a03a 1229 err = ret;
11d6011c 1230 down_write(&devnet_rename_sem);
fcc5a03a 1231 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1232 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1233 dev->name_assign_type = old_assign_type;
1234 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1235 goto rollback;
91e9c07b 1236 } else {
5b92be64
JB
1237 netdev_err(dev, "name change rollback failed: %d\n",
1238 ret);
fcc5a03a
HX
1239 }
1240 }
1da177e4
LT
1241
1242 return err;
1243}
1244
0b815a1a
SH
1245/**
1246 * dev_set_alias - change ifalias of a device
1247 * @dev: device
1248 * @alias: name up to IFALIASZ
f0db275a 1249 * @len: limit of bytes to copy from info
0b815a1a
SH
1250 *
1251 * Set ifalias for a device,
1252 */
1253int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1254{
6c557001 1255 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1256
1257 if (len >= IFALIASZ)
1258 return -EINVAL;
1259
6c557001
FW
1260 if (len) {
1261 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1262 if (!new_alias)
1263 return -ENOMEM;
1264
1265 memcpy(new_alias->ifalias, alias, len);
1266 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1267 }
1268
6c557001 1269 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1270 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1271 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1272 mutex_unlock(&ifalias_mutex);
1273
1274 if (new_alias)
1275 kfree_rcu(new_alias, rcuhead);
0b815a1a 1276
0b815a1a
SH
1277 return len;
1278}
0fe554a4 1279EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1280
6c557001
FW
1281/**
1282 * dev_get_alias - get ifalias of a device
1283 * @dev: device
20e88320 1284 * @name: buffer to store name of ifalias
6c557001
FW
1285 * @len: size of buffer
1286 *
1287 * get ifalias for a device. Caller must make sure dev cannot go
1288 * away, e.g. rcu read lock or own a reference count to device.
1289 */
1290int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1291{
1292 const struct dev_ifalias *alias;
1293 int ret = 0;
1294
1295 rcu_read_lock();
1296 alias = rcu_dereference(dev->ifalias);
1297 if (alias)
1298 ret = snprintf(name, len, "%s", alias->ifalias);
1299 rcu_read_unlock();
1300
1301 return ret;
1302}
0b815a1a 1303
d8a33ac4 1304/**
3041a069 1305 * netdev_features_change - device changes features
d8a33ac4
SH
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed features.
1309 */
1310void netdev_features_change(struct net_device *dev)
1311{
056925ab 1312 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1313}
1314EXPORT_SYMBOL(netdev_features_change);
1315
1da177e4
LT
1316/**
1317 * netdev_state_change - device changes state
1318 * @dev: device to cause notification
1319 *
1320 * Called to indicate a device has changed state. This function calls
1321 * the notifier chains for netdev_chain and sends a NEWLINK message
1322 * to the routing socket.
1323 */
1324void netdev_state_change(struct net_device *dev)
1325{
1326 if (dev->flags & IFF_UP) {
51d0c047
DA
1327 struct netdev_notifier_change_info change_info = {
1328 .info.dev = dev,
1329 };
54951194 1330
51d0c047 1331 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1332 &change_info.info);
7f294054 1333 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1334 }
1335}
d1b19dff 1336EXPORT_SYMBOL(netdev_state_change);
1da177e4 1337
7061eb8c
LP
1338/**
1339 * __netdev_notify_peers - notify network peers about existence of @dev,
1340 * to be called when rtnl lock is already held.
1341 * @dev: network device
1342 *
1343 * Generate traffic such that interested network peers are aware of
1344 * @dev, such as by generating a gratuitous ARP. This may be used when
1345 * a device wants to inform the rest of the network about some sort of
1346 * reconfiguration such as a failover event or virtual machine
1347 * migration.
1348 */
1349void __netdev_notify_peers(struct net_device *dev)
1350{
1351 ASSERT_RTNL();
1352 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1353 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1354}
1355EXPORT_SYMBOL(__netdev_notify_peers);
1356
ee89bab1 1357/**
722c9a0c 1358 * netdev_notify_peers - notify network peers about existence of @dev
1359 * @dev: network device
ee89bab1
AW
1360 *
1361 * Generate traffic such that interested network peers are aware of
1362 * @dev, such as by generating a gratuitous ARP. This may be used when
1363 * a device wants to inform the rest of the network about some sort of
1364 * reconfiguration such as a failover event or virtual machine
1365 * migration.
1366 */
1367void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1368{
ee89bab1 1369 rtnl_lock();
7061eb8c 1370 __netdev_notify_peers(dev);
ee89bab1 1371 rtnl_unlock();
c1da4ac7 1372}
ee89bab1 1373EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1374
29863d41
WW
1375static int napi_threaded_poll(void *data);
1376
1377static int napi_kthread_create(struct napi_struct *n)
1378{
1379 int err = 0;
1380
1381 /* Create and wake up the kthread once to put it in
1382 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1383 * warning and work with loadavg.
1384 */
1385 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1386 n->dev->name, n->napi_id);
1387 if (IS_ERR(n->thread)) {
1388 err = PTR_ERR(n->thread);
1389 pr_err("kthread_run failed with err %d\n", err);
1390 n->thread = NULL;
1391 }
1392
1393 return err;
1394}
1395
40c900aa 1396static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1397{
d314774c 1398 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1399 int ret;
1da177e4 1400
e46b66bc 1401 ASSERT_RTNL();
d07b26f5 1402 dev_addr_check(dev);
e46b66bc 1403
bd869245
HK
1404 if (!netif_device_present(dev)) {
1405 /* may be detached because parent is runtime-suspended */
1406 if (dev->dev.parent)
1407 pm_runtime_resume(dev->dev.parent);
1408 if (!netif_device_present(dev))
1409 return -ENODEV;
1410 }
1da177e4 1411
ca99ca14
NH
1412 /* Block netpoll from trying to do any rx path servicing.
1413 * If we don't do this there is a chance ndo_poll_controller
1414 * or ndo_poll may be running while we open the device
1415 */
66b5552f 1416 netpoll_poll_disable(dev);
ca99ca14 1417
40c900aa 1418 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1419 ret = notifier_to_errno(ret);
1420 if (ret)
1421 return ret;
1422
1da177e4 1423 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1424
d314774c
SH
1425 if (ops->ndo_validate_addr)
1426 ret = ops->ndo_validate_addr(dev);
bada339b 1427
d314774c
SH
1428 if (!ret && ops->ndo_open)
1429 ret = ops->ndo_open(dev);
1da177e4 1430
66b5552f 1431 netpoll_poll_enable(dev);
ca99ca14 1432
bada339b
JG
1433 if (ret)
1434 clear_bit(__LINK_STATE_START, &dev->state);
1435 else {
1da177e4 1436 dev->flags |= IFF_UP;
4417da66 1437 dev_set_rx_mode(dev);
1da177e4 1438 dev_activate(dev);
7bf23575 1439 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1440 }
bada339b 1441
1da177e4
LT
1442 return ret;
1443}
1444
1445/**
bd380811 1446 * dev_open - prepare an interface for use.
00f54e68
PM
1447 * @dev: device to open
1448 * @extack: netlink extended ack
1da177e4 1449 *
bd380811
PM
1450 * Takes a device from down to up state. The device's private open
1451 * function is invoked and then the multicast lists are loaded. Finally
1452 * the device is moved into the up state and a %NETDEV_UP message is
1453 * sent to the netdev notifier chain.
1454 *
1455 * Calling this function on an active interface is a nop. On a failure
1456 * a negative errno code is returned.
1da177e4 1457 */
00f54e68 1458int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1459{
1460 int ret;
1461
bd380811
PM
1462 if (dev->flags & IFF_UP)
1463 return 0;
1464
40c900aa 1465 ret = __dev_open(dev, extack);
bd380811
PM
1466 if (ret < 0)
1467 return ret;
1468
7f294054 1469 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1470 call_netdevice_notifiers(NETDEV_UP, dev);
1471
1472 return ret;
1473}
1474EXPORT_SYMBOL(dev_open);
1475
7051b88a 1476static void __dev_close_many(struct list_head *head)
1da177e4 1477{
44345724 1478 struct net_device *dev;
e46b66bc 1479
bd380811 1480 ASSERT_RTNL();
9d5010db
DM
1481 might_sleep();
1482
5cde2829 1483 list_for_each_entry(dev, head, close_list) {
3f4df206 1484 /* Temporarily disable netpoll until the interface is down */
66b5552f 1485 netpoll_poll_disable(dev);
3f4df206 1486
44345724 1487 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1488
44345724 1489 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1490
44345724
OP
1491 /* Synchronize to scheduled poll. We cannot touch poll list, it
1492 * can be even on different cpu. So just clear netif_running().
1493 *
1494 * dev->stop() will invoke napi_disable() on all of it's
1495 * napi_struct instances on this device.
1496 */
4e857c58 1497 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1498 }
1da177e4 1499
44345724 1500 dev_deactivate_many(head);
d8b2a4d2 1501
5cde2829 1502 list_for_each_entry(dev, head, close_list) {
44345724 1503 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1504
44345724
OP
1505 /*
1506 * Call the device specific close. This cannot fail.
1507 * Only if device is UP
1508 *
1509 * We allow it to be called even after a DETACH hot-plug
1510 * event.
1511 */
1512 if (ops->ndo_stop)
1513 ops->ndo_stop(dev);
1514
44345724 1515 dev->flags &= ~IFF_UP;
66b5552f 1516 netpoll_poll_enable(dev);
44345724 1517 }
44345724
OP
1518}
1519
7051b88a 1520static void __dev_close(struct net_device *dev)
44345724
OP
1521{
1522 LIST_HEAD(single);
1523
5cde2829 1524 list_add(&dev->close_list, &single);
7051b88a 1525 __dev_close_many(&single);
f87e6f47 1526 list_del(&single);
44345724
OP
1527}
1528
7051b88a 1529void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1530{
1531 struct net_device *dev, *tmp;
1da177e4 1532
5cde2829
EB
1533 /* Remove the devices that don't need to be closed */
1534 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1535 if (!(dev->flags & IFF_UP))
5cde2829 1536 list_del_init(&dev->close_list);
44345724
OP
1537
1538 __dev_close_many(head);
1da177e4 1539
5cde2829 1540 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1541 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1542 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1543 if (unlink)
1544 list_del_init(&dev->close_list);
44345724 1545 }
bd380811 1546}
99c4a26a 1547EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1548
1549/**
1550 * dev_close - shutdown an interface.
1551 * @dev: device to shutdown
1552 *
1553 * This function moves an active device into down state. A
1554 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1555 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1556 * chain.
1557 */
7051b88a 1558void dev_close(struct net_device *dev)
bd380811 1559{
e14a5993
ED
1560 if (dev->flags & IFF_UP) {
1561 LIST_HEAD(single);
1da177e4 1562
5cde2829 1563 list_add(&dev->close_list, &single);
99c4a26a 1564 dev_close_many(&single, true);
e14a5993
ED
1565 list_del(&single);
1566 }
1da177e4 1567}
d1b19dff 1568EXPORT_SYMBOL(dev_close);
1da177e4
LT
1569
1570
0187bdfb
BH
1571/**
1572 * dev_disable_lro - disable Large Receive Offload on a device
1573 * @dev: device
1574 *
1575 * Disable Large Receive Offload (LRO) on a net device. Must be
1576 * called under RTNL. This is needed if received packets may be
1577 * forwarded to another interface.
1578 */
1579void dev_disable_lro(struct net_device *dev)
1580{
fbe168ba
MK
1581 struct net_device *lower_dev;
1582 struct list_head *iter;
529d0489 1583
bc5787c6
MM
1584 dev->wanted_features &= ~NETIF_F_LRO;
1585 netdev_update_features(dev);
27660515 1586
22d5969f
MM
1587 if (unlikely(dev->features & NETIF_F_LRO))
1588 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1589
1590 netdev_for_each_lower_dev(dev, lower_dev, iter)
1591 dev_disable_lro(lower_dev);
0187bdfb
BH
1592}
1593EXPORT_SYMBOL(dev_disable_lro);
1594
56f5aa77
MC
1595/**
1596 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1597 * @dev: device
1598 *
1599 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1600 * called under RTNL. This is needed if Generic XDP is installed on
1601 * the device.
1602 */
1603static void dev_disable_gro_hw(struct net_device *dev)
1604{
1605 dev->wanted_features &= ~NETIF_F_GRO_HW;
1606 netdev_update_features(dev);
1607
1608 if (unlikely(dev->features & NETIF_F_GRO_HW))
1609 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1610}
1611
ede2762d
KT
1612const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1613{
1614#define N(val) \
1615 case NETDEV_##val: \
1616 return "NETDEV_" __stringify(val);
1617 switch (cmd) {
1618 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1619 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1620 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1621 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1622 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1623 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1624 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1625 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1626 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
9309f97a
PM
1627 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1628 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
3f5ecd8a 1629 }
ede2762d
KT
1630#undef N
1631 return "UNKNOWN_NETDEV_EVENT";
1632}
1633EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1634
351638e7
JP
1635static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1636 struct net_device *dev)
1637{
51d0c047
DA
1638 struct netdev_notifier_info info = {
1639 .dev = dev,
1640 };
351638e7 1641
351638e7
JP
1642 return nb->notifier_call(nb, val, &info);
1643}
0187bdfb 1644
afa0df59
JP
1645static int call_netdevice_register_notifiers(struct notifier_block *nb,
1646 struct net_device *dev)
1647{
1648 int err;
1649
1650 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1651 err = notifier_to_errno(err);
1652 if (err)
1653 return err;
1654
1655 if (!(dev->flags & IFF_UP))
1656 return 0;
1657
1658 call_netdevice_notifier(nb, NETDEV_UP, dev);
1659 return 0;
1660}
1661
1662static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1663 struct net_device *dev)
1664{
1665 if (dev->flags & IFF_UP) {
1666 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1667 dev);
1668 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1669 }
1670 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1671}
1672
1673static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1674 struct net *net)
1675{
1676 struct net_device *dev;
1677 int err;
1678
1679 for_each_netdev(net, dev) {
1680 err = call_netdevice_register_notifiers(nb, dev);
1681 if (err)
1682 goto rollback;
1683 }
1684 return 0;
1685
1686rollback:
1687 for_each_netdev_continue_reverse(net, dev)
1688 call_netdevice_unregister_notifiers(nb, dev);
1689 return err;
1690}
1691
1692static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1693 struct net *net)
1694{
1695 struct net_device *dev;
1696
1697 for_each_netdev(net, dev)
1698 call_netdevice_unregister_notifiers(nb, dev);
1699}
1700
881d966b
EB
1701static int dev_boot_phase = 1;
1702
1da177e4 1703/**
722c9a0c 1704 * register_netdevice_notifier - register a network notifier block
1705 * @nb: notifier
1da177e4 1706 *
722c9a0c 1707 * Register a notifier to be called when network device events occur.
1708 * The notifier passed is linked into the kernel structures and must
1709 * not be reused until it has been unregistered. A negative errno code
1710 * is returned on a failure.
1da177e4 1711 *
722c9a0c 1712 * When registered all registration and up events are replayed
1713 * to the new notifier to allow device to have a race free
1714 * view of the network device list.
1da177e4
LT
1715 */
1716
1717int register_netdevice_notifier(struct notifier_block *nb)
1718{
881d966b 1719 struct net *net;
1da177e4
LT
1720 int err;
1721
328fbe74
KT
1722 /* Close race with setup_net() and cleanup_net() */
1723 down_write(&pernet_ops_rwsem);
1da177e4 1724 rtnl_lock();
f07d5b94 1725 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1726 if (err)
1727 goto unlock;
881d966b
EB
1728 if (dev_boot_phase)
1729 goto unlock;
1730 for_each_net(net) {
afa0df59
JP
1731 err = call_netdevice_register_net_notifiers(nb, net);
1732 if (err)
1733 goto rollback;
1da177e4 1734 }
fcc5a03a
HX
1735
1736unlock:
1da177e4 1737 rtnl_unlock();
328fbe74 1738 up_write(&pernet_ops_rwsem);
1da177e4 1739 return err;
fcc5a03a
HX
1740
1741rollback:
afa0df59
JP
1742 for_each_net_continue_reverse(net)
1743 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1744
1745 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1746 goto unlock;
1da177e4 1747}
d1b19dff 1748EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1749
1750/**
722c9a0c 1751 * unregister_netdevice_notifier - unregister a network notifier block
1752 * @nb: notifier
1da177e4 1753 *
722c9a0c 1754 * Unregister a notifier previously registered by
1755 * register_netdevice_notifier(). The notifier is unlinked into the
1756 * kernel structures and may then be reused. A negative errno code
1757 * is returned on a failure.
7d3d43da 1758 *
722c9a0c 1759 * After unregistering unregister and down device events are synthesized
1760 * for all devices on the device list to the removed notifier to remove
1761 * the need for special case cleanup code.
1da177e4
LT
1762 */
1763
1764int unregister_netdevice_notifier(struct notifier_block *nb)
1765{
7d3d43da 1766 struct net *net;
9f514950
HX
1767 int err;
1768
328fbe74
KT
1769 /* Close race with setup_net() and cleanup_net() */
1770 down_write(&pernet_ops_rwsem);
9f514950 1771 rtnl_lock();
f07d5b94 1772 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1773 if (err)
1774 goto unlock;
1775
48b3a137
JP
1776 for_each_net(net)
1777 call_netdevice_unregister_net_notifiers(nb, net);
1778
7d3d43da 1779unlock:
9f514950 1780 rtnl_unlock();
328fbe74 1781 up_write(&pernet_ops_rwsem);
9f514950 1782 return err;
1da177e4 1783}
d1b19dff 1784EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1785
1f637703
JP
1786static int __register_netdevice_notifier_net(struct net *net,
1787 struct notifier_block *nb,
1788 bool ignore_call_fail)
1789{
1790 int err;
1791
1792 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1793 if (err)
1794 return err;
1795 if (dev_boot_phase)
1796 return 0;
1797
1798 err = call_netdevice_register_net_notifiers(nb, net);
1799 if (err && !ignore_call_fail)
1800 goto chain_unregister;
1801
1802 return 0;
1803
1804chain_unregister:
1805 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1806 return err;
1807}
1808
1809static int __unregister_netdevice_notifier_net(struct net *net,
1810 struct notifier_block *nb)
1811{
1812 int err;
1813
1814 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1815 if (err)
1816 return err;
1817
1818 call_netdevice_unregister_net_notifiers(nb, net);
1819 return 0;
1820}
1821
a30c7b42
JP
1822/**
1823 * register_netdevice_notifier_net - register a per-netns network notifier block
1824 * @net: network namespace
1825 * @nb: notifier
1826 *
1827 * Register a notifier to be called when network device events occur.
1828 * The notifier passed is linked into the kernel structures and must
1829 * not be reused until it has been unregistered. A negative errno code
1830 * is returned on a failure.
1831 *
1832 * When registered all registration and up events are replayed
1833 * to the new notifier to allow device to have a race free
1834 * view of the network device list.
1835 */
1836
1837int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1838{
1839 int err;
1840
1841 rtnl_lock();
1f637703 1842 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1843 rtnl_unlock();
1844 return err;
a30c7b42
JP
1845}
1846EXPORT_SYMBOL(register_netdevice_notifier_net);
1847
1848/**
1849 * unregister_netdevice_notifier_net - unregister a per-netns
1850 * network notifier block
1851 * @net: network namespace
1852 * @nb: notifier
1853 *
1854 * Unregister a notifier previously registered by
1855 * register_netdevice_notifier(). The notifier is unlinked into the
1856 * kernel structures and may then be reused. A negative errno code
1857 * is returned on a failure.
1858 *
1859 * After unregistering unregister and down device events are synthesized
1860 * for all devices on the device list to the removed notifier to remove
1861 * the need for special case cleanup code.
1862 */
1863
1864int unregister_netdevice_notifier_net(struct net *net,
1865 struct notifier_block *nb)
1866{
1867 int err;
1868
1869 rtnl_lock();
1f637703 1870 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1871 rtnl_unlock();
1872 return err;
1873}
1874EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1875
93642e14
JP
1876int register_netdevice_notifier_dev_net(struct net_device *dev,
1877 struct notifier_block *nb,
1878 struct netdev_net_notifier *nn)
1879{
1880 int err;
a30c7b42 1881
93642e14
JP
1882 rtnl_lock();
1883 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1884 if (!err) {
1885 nn->nb = nb;
1886 list_add(&nn->list, &dev->net_notifier_list);
1887 }
a30c7b42
JP
1888 rtnl_unlock();
1889 return err;
1890}
93642e14
JP
1891EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1892
1893int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1894 struct notifier_block *nb,
1895 struct netdev_net_notifier *nn)
1896{
1897 int err;
1898
1899 rtnl_lock();
1900 list_del(&nn->list);
1901 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1902 rtnl_unlock();
1903 return err;
1904}
1905EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1906
1907static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1908 struct net *net)
1909{
1910 struct netdev_net_notifier *nn;
1911
1912 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1913 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1914 __register_netdevice_notifier_net(net, nn->nb, true);
1915 }
1916}
a30c7b42 1917
351638e7
JP
1918/**
1919 * call_netdevice_notifiers_info - call all network notifier blocks
1920 * @val: value passed unmodified to notifier function
351638e7
JP
1921 * @info: notifier information data
1922 *
1923 * Call all network notifier blocks. Parameters and return value
1924 * are as for raw_notifier_call_chain().
1925 */
1926
1d143d9f 1927static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1928 struct netdev_notifier_info *info)
351638e7 1929{
a30c7b42
JP
1930 struct net *net = dev_net(info->dev);
1931 int ret;
1932
351638e7 1933 ASSERT_RTNL();
a30c7b42
JP
1934
1935 /* Run per-netns notifier block chain first, then run the global one.
1936 * Hopefully, one day, the global one is going to be removed after
1937 * all notifier block registrators get converted to be per-netns.
1938 */
1939 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1940 if (ret & NOTIFY_STOP_MASK)
1941 return ret;
351638e7
JP
1942 return raw_notifier_call_chain(&netdev_chain, val, info);
1943}
351638e7 1944
9309f97a
PM
1945/**
1946 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1947 * for and rollback on error
1948 * @val_up: value passed unmodified to notifier function
1949 * @val_down: value passed unmodified to the notifier function when
1950 * recovering from an error on @val_up
1951 * @info: notifier information data
1952 *
1953 * Call all per-netns network notifier blocks, but not notifier blocks on
1954 * the global notifier chain. Parameters and return value are as for
1955 * raw_notifier_call_chain_robust().
1956 */
1957
1958static int
1959call_netdevice_notifiers_info_robust(unsigned long val_up,
1960 unsigned long val_down,
1961 struct netdev_notifier_info *info)
1962{
1963 struct net *net = dev_net(info->dev);
1964
1965 ASSERT_RTNL();
1966
1967 return raw_notifier_call_chain_robust(&net->netdev_chain,
1968 val_up, val_down, info);
1969}
1970
26372605
PM
1971static int call_netdevice_notifiers_extack(unsigned long val,
1972 struct net_device *dev,
1973 struct netlink_ext_ack *extack)
1974{
1975 struct netdev_notifier_info info = {
1976 .dev = dev,
1977 .extack = extack,
1978 };
1979
1980 return call_netdevice_notifiers_info(val, &info);
1981}
1982
1da177e4
LT
1983/**
1984 * call_netdevice_notifiers - call all network notifier blocks
1985 * @val: value passed unmodified to notifier function
c4ea43c5 1986 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1987 *
1988 * Call all network notifier blocks. Parameters and return value
f07d5b94 1989 * are as for raw_notifier_call_chain().
1da177e4
LT
1990 */
1991
ad7379d4 1992int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1993{
26372605 1994 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1995}
edf947f1 1996EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1997
af7d6cce
SD
1998/**
1999 * call_netdevice_notifiers_mtu - call all network notifier blocks
2000 * @val: value passed unmodified to notifier function
2001 * @dev: net_device pointer passed unmodified to notifier function
2002 * @arg: additional u32 argument passed to the notifier function
2003 *
2004 * Call all network notifier blocks. Parameters and return value
2005 * are as for raw_notifier_call_chain().
2006 */
2007static int call_netdevice_notifiers_mtu(unsigned long val,
2008 struct net_device *dev, u32 arg)
2009{
2010 struct netdev_notifier_info_ext info = {
2011 .info.dev = dev,
2012 .ext.mtu = arg,
2013 };
2014
2015 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2016
2017 return call_netdevice_notifiers_info(val, &info.info);
2018}
2019
1cf51900 2020#ifdef CONFIG_NET_INGRESS
aabf6772 2021static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2022
2023void net_inc_ingress_queue(void)
2024{
aabf6772 2025 static_branch_inc(&ingress_needed_key);
4577139b
DB
2026}
2027EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2028
2029void net_dec_ingress_queue(void)
2030{
aabf6772 2031 static_branch_dec(&ingress_needed_key);
4577139b
DB
2032}
2033EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2034#endif
2035
1f211a1b 2036#ifdef CONFIG_NET_EGRESS
aabf6772 2037static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2038
2039void net_inc_egress_queue(void)
2040{
aabf6772 2041 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2042}
2043EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2044
2045void net_dec_egress_queue(void)
2046{
aabf6772 2047 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2048}
2049EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2050#endif
2051
27942a15
MKL
2052DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2053EXPORT_SYMBOL(netstamp_needed_key);
e9666d10 2054#ifdef CONFIG_JUMP_LABEL
b90e5794 2055static atomic_t netstamp_needed_deferred;
13baa00a 2056static atomic_t netstamp_wanted;
5fa8bbda 2057static void netstamp_clear(struct work_struct *work)
1da177e4 2058{
b90e5794 2059 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2060 int wanted;
b90e5794 2061
13baa00a
ED
2062 wanted = atomic_add_return(deferred, &netstamp_wanted);
2063 if (wanted > 0)
39e83922 2064 static_branch_enable(&netstamp_needed_key);
13baa00a 2065 else
39e83922 2066 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2067}
2068static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2069#endif
5fa8bbda
ED
2070
2071void net_enable_timestamp(void)
2072{
e9666d10 2073#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2074 int wanted;
2075
2076 while (1) {
2077 wanted = atomic_read(&netstamp_wanted);
2078 if (wanted <= 0)
2079 break;
2080 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2081 return;
2082 }
2083 atomic_inc(&netstamp_needed_deferred);
2084 schedule_work(&netstamp_work);
2085#else
39e83922 2086 static_branch_inc(&netstamp_needed_key);
13baa00a 2087#endif
1da177e4 2088}
d1b19dff 2089EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2090
2091void net_disable_timestamp(void)
2092{
e9666d10 2093#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2094 int wanted;
2095
2096 while (1) {
2097 wanted = atomic_read(&netstamp_wanted);
2098 if (wanted <= 1)
2099 break;
2100 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2101 return;
2102 }
2103 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2104 schedule_work(&netstamp_work);
2105#else
39e83922 2106 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2107#endif
1da177e4 2108}
d1b19dff 2109EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2110
3b098e2d 2111static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2112{
2456e855 2113 skb->tstamp = 0;
27942a15 2114 skb->mono_delivery_time = 0;
39e83922 2115 if (static_branch_unlikely(&netstamp_needed_key))
d93376f5 2116 skb->tstamp = ktime_get_real();
1da177e4
LT
2117}
2118
39e83922
DB
2119#define net_timestamp_check(COND, SKB) \
2120 if (static_branch_unlikely(&netstamp_needed_key)) { \
2121 if ((COND) && !(SKB)->tstamp) \
d93376f5 2122 (SKB)->tstamp = ktime_get_real(); \
39e83922 2123 } \
3b098e2d 2124
f4b05d27 2125bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0 2126{
5f7d5728 2127 return __is_skb_forwardable(dev, skb, true);
79b569f0 2128}
1ee481fb 2129EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2130
5f7d5728
JDB
2131static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2132 bool check_mtu)
a0265d28 2133{
5f7d5728 2134 int ret = ____dev_forward_skb(dev, skb, check_mtu);
a0265d28 2135
4e3264d2
MKL
2136 if (likely(!ret)) {
2137 skb->protocol = eth_type_trans(skb, dev);
2138 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2139 }
a0265d28 2140
4e3264d2 2141 return ret;
a0265d28 2142}
5f7d5728
JDB
2143
2144int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2145{
2146 return __dev_forward_skb2(dev, skb, true);
2147}
a0265d28
HX
2148EXPORT_SYMBOL_GPL(__dev_forward_skb);
2149
44540960
AB
2150/**
2151 * dev_forward_skb - loopback an skb to another netif
2152 *
2153 * @dev: destination network device
2154 * @skb: buffer to forward
2155 *
2156 * return values:
2157 * NET_RX_SUCCESS (no congestion)
6ec82562 2158 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2159 *
2160 * dev_forward_skb can be used for injecting an skb from the
2161 * start_xmit function of one device into the receive queue
2162 * of another device.
2163 *
2164 * The receiving device may be in another namespace, so
2165 * we have to clear all information in the skb that could
2166 * impact namespace isolation.
2167 */
2168int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2169{
a0265d28 2170 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2171}
2172EXPORT_SYMBOL_GPL(dev_forward_skb);
2173
5f7d5728
JDB
2174int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2175{
2176 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2177}
2178
71d9dec2
CG
2179static inline int deliver_skb(struct sk_buff *skb,
2180 struct packet_type *pt_prev,
2181 struct net_device *orig_dev)
2182{
1f8b977a 2183 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2184 return -ENOMEM;
63354797 2185 refcount_inc(&skb->users);
71d9dec2
CG
2186 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2187}
2188
7866a621
SN
2189static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2190 struct packet_type **pt,
fbcb2170
JP
2191 struct net_device *orig_dev,
2192 __be16 type,
7866a621
SN
2193 struct list_head *ptype_list)
2194{
2195 struct packet_type *ptype, *pt_prev = *pt;
2196
2197 list_for_each_entry_rcu(ptype, ptype_list, list) {
2198 if (ptype->type != type)
2199 continue;
2200 if (pt_prev)
fbcb2170 2201 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2202 pt_prev = ptype;
2203 }
2204 *pt = pt_prev;
2205}
2206
c0de08d0
EL
2207static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2208{
a3d744e9 2209 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2210 return false;
2211
2212 if (ptype->id_match)
2213 return ptype->id_match(ptype, skb->sk);
2214 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2215 return true;
2216
2217 return false;
2218}
2219
9f9a742d
MR
2220/**
2221 * dev_nit_active - return true if any network interface taps are in use
2222 *
2223 * @dev: network device to check for the presence of taps
2224 */
2225bool dev_nit_active(struct net_device *dev)
2226{
2227 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2228}
2229EXPORT_SYMBOL_GPL(dev_nit_active);
2230
1da177e4
LT
2231/*
2232 * Support routine. Sends outgoing frames to any network
2233 * taps currently in use.
2234 */
2235
74b20582 2236void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2237{
2238 struct packet_type *ptype;
71d9dec2
CG
2239 struct sk_buff *skb2 = NULL;
2240 struct packet_type *pt_prev = NULL;
7866a621 2241 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2242
1da177e4 2243 rcu_read_lock();
7866a621
SN
2244again:
2245 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2246 if (ptype->ignore_outgoing)
2247 continue;
2248
1da177e4
LT
2249 /* Never send packets back to the socket
2250 * they originated from - MvS ([email protected])
2251 */
7866a621
SN
2252 if (skb_loop_sk(ptype, skb))
2253 continue;
71d9dec2 2254
7866a621
SN
2255 if (pt_prev) {
2256 deliver_skb(skb2, pt_prev, skb->dev);
2257 pt_prev = ptype;
2258 continue;
2259 }
1da177e4 2260
7866a621
SN
2261 /* need to clone skb, done only once */
2262 skb2 = skb_clone(skb, GFP_ATOMIC);
2263 if (!skb2)
2264 goto out_unlock;
70978182 2265
7866a621 2266 net_timestamp_set(skb2);
1da177e4 2267
7866a621
SN
2268 /* skb->nh should be correctly
2269 * set by sender, so that the second statement is
2270 * just protection against buggy protocols.
2271 */
2272 skb_reset_mac_header(skb2);
2273
2274 if (skb_network_header(skb2) < skb2->data ||
2275 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2276 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2277 ntohs(skb2->protocol),
2278 dev->name);
2279 skb_reset_network_header(skb2);
1da177e4 2280 }
7866a621
SN
2281
2282 skb2->transport_header = skb2->network_header;
2283 skb2->pkt_type = PACKET_OUTGOING;
2284 pt_prev = ptype;
2285 }
2286
2287 if (ptype_list == &ptype_all) {
2288 ptype_list = &dev->ptype_all;
2289 goto again;
1da177e4 2290 }
7866a621 2291out_unlock:
581fe0ea
WB
2292 if (pt_prev) {
2293 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2294 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2295 else
2296 kfree_skb(skb2);
2297 }
1da177e4
LT
2298 rcu_read_unlock();
2299}
74b20582 2300EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2301
2c53040f
BH
2302/**
2303 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2304 * @dev: Network device
2305 * @txq: number of queues available
2306 *
2307 * If real_num_tx_queues is changed the tc mappings may no longer be
2308 * valid. To resolve this verify the tc mapping remains valid and if
2309 * not NULL the mapping. With no priorities mapping to this
2310 * offset/count pair it will no longer be used. In the worst case TC0
2311 * is invalid nothing can be done so disable priority mappings. If is
2312 * expected that drivers will fix this mapping if they can before
2313 * calling netif_set_real_num_tx_queues.
2314 */
bb134d22 2315static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2316{
2317 int i;
2318 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2319
2320 /* If TC0 is invalidated disable TC mapping */
2321 if (tc->offset + tc->count > txq) {
5b92be64 2322 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2323 dev->num_tc = 0;
2324 return;
2325 }
2326
2327 /* Invalidated prio to tc mappings set to TC0 */
2328 for (i = 1; i < TC_BITMASK + 1; i++) {
2329 int q = netdev_get_prio_tc_map(dev, i);
2330
2331 tc = &dev->tc_to_txq[q];
2332 if (tc->offset + tc->count > txq) {
5b92be64
JB
2333 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2334 i, q);
4f57c087
JF
2335 netdev_set_prio_tc_map(dev, i, 0);
2336 }
2337 }
2338}
2339
8d059b0f
AD
2340int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2341{
2342 if (dev->num_tc) {
2343 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2344 int i;
2345
ffcfe25b 2346 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2347 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2348 if ((txq - tc->offset) < tc->count)
2349 return i;
2350 }
2351
ffcfe25b 2352 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2353 return -1;
2354 }
2355
2356 return 0;
2357}
8a5f2166 2358EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2359
537c00de 2360#ifdef CONFIG_XPS
5da9ace3
VO
2361static struct static_key xps_needed __read_mostly;
2362static struct static_key xps_rxqs_needed __read_mostly;
537c00de
AD
2363static DEFINE_MUTEX(xps_map_mutex);
2364#define xmap_dereference(P) \
2365 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2366
6234f874 2367static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2d05bf01 2368 struct xps_dev_maps *old_maps, int tci, u16 index)
537c00de 2369{
10cdc3f3
AD
2370 struct xps_map *map = NULL;
2371 int pos;
537c00de 2372
10cdc3f3 2373 if (dev_maps)
80d19669 2374 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2375 if (!map)
2376 return false;
537c00de 2377
6234f874
AD
2378 for (pos = map->len; pos--;) {
2379 if (map->queues[pos] != index)
2380 continue;
2381
2382 if (map->len > 1) {
2383 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2384 break;
537c00de 2385 }
6234f874 2386
2d05bf01
AT
2387 if (old_maps)
2388 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
80d19669 2389 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2390 kfree_rcu(map, rcu);
2391 return false;
537c00de
AD
2392 }
2393
6234f874 2394 return true;
10cdc3f3
AD
2395}
2396
6234f874
AD
2397static bool remove_xps_queue_cpu(struct net_device *dev,
2398 struct xps_dev_maps *dev_maps,
2399 int cpu, u16 offset, u16 count)
2400{
255c04a8 2401 int num_tc = dev_maps->num_tc;
184c449f
AD
2402 bool active = false;
2403 int tci;
6234f874 2404
184c449f
AD
2405 for (tci = cpu * num_tc; num_tc--; tci++) {
2406 int i, j;
2407
2408 for (i = count, j = offset; i--; j++) {
2d05bf01 2409 if (!remove_xps_queue(dev_maps, NULL, tci, j))
184c449f
AD
2410 break;
2411 }
2412
2413 active |= i < 0;
6234f874
AD
2414 }
2415
184c449f 2416 return active;
6234f874
AD
2417}
2418
867d0ad4
SD
2419static void reset_xps_maps(struct net_device *dev,
2420 struct xps_dev_maps *dev_maps,
044ab86d 2421 enum xps_map_type type)
867d0ad4 2422{
867d0ad4 2423 static_key_slow_dec_cpuslocked(&xps_needed);
044ab86d
AT
2424 if (type == XPS_RXQS)
2425 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2426
2427 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2428
867d0ad4
SD
2429 kfree_rcu(dev_maps, rcu);
2430}
2431
044ab86d
AT
2432static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2433 u16 offset, u16 count)
80d19669 2434{
044ab86d 2435 struct xps_dev_maps *dev_maps;
80d19669
AN
2436 bool active = false;
2437 int i, j;
2438
044ab86d
AT
2439 dev_maps = xmap_dereference(dev->xps_maps[type]);
2440 if (!dev_maps)
2441 return;
2442
6f36158e
AT
2443 for (j = 0; j < dev_maps->nr_ids; j++)
2444 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
867d0ad4 2445 if (!active)
044ab86d 2446 reset_xps_maps(dev, dev_maps, type);
80d19669 2447
044ab86d 2448 if (type == XPS_CPUS) {
6f36158e 2449 for (i = offset + (count - 1); count--; i--)
f28c020f 2450 netdev_queue_numa_node_write(
6f36158e 2451 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
80d19669
AN
2452 }
2453}
2454
6234f874
AD
2455static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2456 u16 count)
10cdc3f3 2457{
04157469
AN
2458 if (!static_key_false(&xps_needed))
2459 return;
10cdc3f3 2460
4d99f660 2461 cpus_read_lock();
04157469 2462 mutex_lock(&xps_map_mutex);
10cdc3f3 2463
044ab86d
AT
2464 if (static_key_false(&xps_rxqs_needed))
2465 clean_xps_maps(dev, XPS_RXQS, offset, count);
80d19669 2466
044ab86d 2467 clean_xps_maps(dev, XPS_CPUS, offset, count);
024e9679 2468
537c00de 2469 mutex_unlock(&xps_map_mutex);
4d99f660 2470 cpus_read_unlock();
537c00de
AD
2471}
2472
6234f874
AD
2473static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2474{
2475 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2476}
2477
80d19669
AN
2478static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2479 u16 index, bool is_rxqs_map)
01c5f864
AD
2480{
2481 struct xps_map *new_map;
2482 int alloc_len = XPS_MIN_MAP_ALLOC;
2483 int i, pos;
2484
2485 for (pos = 0; map && pos < map->len; pos++) {
2486 if (map->queues[pos] != index)
2487 continue;
2488 return map;
2489 }
2490
80d19669 2491 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2492 if (map) {
2493 if (pos < map->alloc_len)
2494 return map;
2495
2496 alloc_len = map->alloc_len * 2;
2497 }
2498
80d19669
AN
2499 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2500 * map
2501 */
2502 if (is_rxqs_map)
2503 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2504 else
2505 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2506 cpu_to_node(attr_index));
01c5f864
AD
2507 if (!new_map)
2508 return NULL;
2509
2510 for (i = 0; i < pos; i++)
2511 new_map->queues[i] = map->queues[i];
2512 new_map->alloc_len = alloc_len;
2513 new_map->len = pos;
2514
2515 return new_map;
2516}
2517
402fbb99
AT
2518/* Copy xps maps at a given index */
2519static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2520 struct xps_dev_maps *new_dev_maps, int index,
2521 int tc, bool skip_tc)
2522{
2523 int i, tci = index * dev_maps->num_tc;
2524 struct xps_map *map;
2525
2526 /* copy maps belonging to foreign traffic classes */
2527 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2528 if (i == tc && skip_tc)
2529 continue;
2530
2531 /* fill in the new device map from the old device map */
2532 map = xmap_dereference(dev_maps->attr_map[tci]);
2533 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2534 }
2535}
2536
4d99f660 2537/* Must be called under cpus_read_lock */
80d19669 2538int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
044ab86d 2539 u16 index, enum xps_map_type type)
537c00de 2540{
2d05bf01 2541 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
6f36158e 2542 const unsigned long *online_mask = NULL;
255c04a8 2543 bool active = false, copy = false;
80d19669 2544 int i, j, tci, numa_node_id = -2;
184c449f 2545 int maps_sz, num_tc = 1, tc = 0;
537c00de 2546 struct xps_map *map, *new_map;
80d19669 2547 unsigned int nr_ids;
537c00de 2548
184c449f 2549 if (dev->num_tc) {
ffcfe25b 2550 /* Do not allow XPS on subordinate device directly */
184c449f 2551 num_tc = dev->num_tc;
ffcfe25b
AD
2552 if (num_tc < 0)
2553 return -EINVAL;
2554
2555 /* If queue belongs to subordinate dev use its map */
2556 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2557
184c449f
AD
2558 tc = netdev_txq_to_tc(dev, index);
2559 if (tc < 0)
2560 return -EINVAL;
2561 }
2562
537c00de 2563 mutex_lock(&xps_map_mutex);
044ab86d
AT
2564
2565 dev_maps = xmap_dereference(dev->xps_maps[type]);
2566 if (type == XPS_RXQS) {
80d19669 2567 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
80d19669
AN
2568 nr_ids = dev->num_rx_queues;
2569 } else {
2570 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
6f36158e 2571 if (num_possible_cpus() > 1)
80d19669 2572 online_mask = cpumask_bits(cpu_online_mask);
80d19669
AN
2573 nr_ids = nr_cpu_ids;
2574 }
537c00de 2575
80d19669
AN
2576 if (maps_sz < L1_CACHE_BYTES)
2577 maps_sz = L1_CACHE_BYTES;
537c00de 2578
255c04a8 2579 /* The old dev_maps could be larger or smaller than the one we're
5478fcd0
AT
2580 * setting up now, as dev->num_tc or nr_ids could have been updated in
2581 * between. We could try to be smart, but let's be safe instead and only
2582 * copy foreign traffic classes if the two map sizes match.
255c04a8 2583 */
5478fcd0
AT
2584 if (dev_maps &&
2585 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
255c04a8
AT
2586 copy = true;
2587
01c5f864 2588 /* allocate memory for queue storage */
80d19669
AN
2589 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2590 j < nr_ids;) {
2bb60cb9 2591 if (!new_dev_maps) {
255c04a8
AT
2592 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2593 if (!new_dev_maps) {
2594 mutex_unlock(&xps_map_mutex);
2595 return -ENOMEM;
2596 }
2597
5478fcd0 2598 new_dev_maps->nr_ids = nr_ids;
255c04a8 2599 new_dev_maps->num_tc = num_tc;
2bb60cb9 2600 }
01c5f864 2601
80d19669 2602 tci = j * num_tc + tc;
255c04a8 2603 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
01c5f864 2604
044ab86d 2605 map = expand_xps_map(map, j, index, type == XPS_RXQS);
01c5f864
AD
2606 if (!map)
2607 goto error;
2608
80d19669 2609 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2610 }
2611
2612 if (!new_dev_maps)
2613 goto out_no_new_maps;
2614
867d0ad4
SD
2615 if (!dev_maps) {
2616 /* Increment static keys at most once per type */
2617 static_key_slow_inc_cpuslocked(&xps_needed);
044ab86d 2618 if (type == XPS_RXQS)
867d0ad4
SD
2619 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2620 }
04157469 2621
6f36158e 2622 for (j = 0; j < nr_ids; j++) {
402fbb99 2623 bool skip_tc = false;
184c449f 2624
80d19669 2625 tci = j * num_tc + tc;
80d19669
AN
2626 if (netif_attr_test_mask(j, mask, nr_ids) &&
2627 netif_attr_test_online(j, online_mask, nr_ids)) {
2628 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2629 int pos = 0;
2630
402fbb99
AT
2631 skip_tc = true;
2632
80d19669 2633 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2634 while ((pos < map->len) && (map->queues[pos] != index))
2635 pos++;
2636
2637 if (pos == map->len)
2638 map->queues[map->len++] = index;
537c00de 2639#ifdef CONFIG_NUMA
044ab86d 2640 if (type == XPS_CPUS) {
80d19669
AN
2641 if (numa_node_id == -2)
2642 numa_node_id = cpu_to_node(j);
2643 else if (numa_node_id != cpu_to_node(j))
2644 numa_node_id = -1;
2645 }
537c00de 2646#endif
537c00de 2647 }
01c5f864 2648
402fbb99
AT
2649 if (copy)
2650 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2651 skip_tc);
537c00de
AD
2652 }
2653
044ab86d 2654 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
01c5f864 2655
537c00de 2656 /* Cleanup old maps */
184c449f
AD
2657 if (!dev_maps)
2658 goto out_no_old_maps;
2659
6f36158e 2660 for (j = 0; j < dev_maps->nr_ids; j++) {
255c04a8 2661 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
80d19669 2662 map = xmap_dereference(dev_maps->attr_map[tci]);
255c04a8
AT
2663 if (!map)
2664 continue;
2665
2666 if (copy) {
2667 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2668 if (map == new_map)
2669 continue;
2670 }
2671
75b2758a 2672 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
255c04a8 2673 kfree_rcu(map, rcu);
01c5f864 2674 }
537c00de
AD
2675 }
2676
2d05bf01 2677 old_dev_maps = dev_maps;
184c449f
AD
2678
2679out_no_old_maps:
01c5f864
AD
2680 dev_maps = new_dev_maps;
2681 active = true;
537c00de 2682
01c5f864 2683out_no_new_maps:
044ab86d 2684 if (type == XPS_CPUS)
80d19669
AN
2685 /* update Tx queue numa node */
2686 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2687 (numa_node_id >= 0) ?
2688 numa_node_id : NUMA_NO_NODE);
537c00de 2689
01c5f864
AD
2690 if (!dev_maps)
2691 goto out_no_maps;
2692
80d19669 2693 /* removes tx-queue from unused CPUs/rx-queues */
6f36158e 2694 for (j = 0; j < dev_maps->nr_ids; j++) {
132f743b
AT
2695 tci = j * dev_maps->num_tc;
2696
2697 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2698 if (i == tc &&
2699 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2700 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2701 continue;
2702
2d05bf01
AT
2703 active |= remove_xps_queue(dev_maps,
2704 copy ? old_dev_maps : NULL,
2705 tci, index);
132f743b 2706 }
01c5f864
AD
2707 }
2708
2d05bf01
AT
2709 if (old_dev_maps)
2710 kfree_rcu(old_dev_maps, rcu);
2711
01c5f864 2712 /* free map if not active */
867d0ad4 2713 if (!active)
044ab86d 2714 reset_xps_maps(dev, dev_maps, type);
01c5f864
AD
2715
2716out_no_maps:
537c00de
AD
2717 mutex_unlock(&xps_map_mutex);
2718
2719 return 0;
2720error:
01c5f864 2721 /* remove any maps that we added */
6f36158e 2722 for (j = 0; j < nr_ids; j++) {
80d19669
AN
2723 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2724 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
255c04a8 2725 map = copy ?
80d19669 2726 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2727 NULL;
2728 if (new_map && new_map != map)
2729 kfree(new_map);
2730 }
01c5f864
AD
2731 }
2732
537c00de
AD
2733 mutex_unlock(&xps_map_mutex);
2734
537c00de
AD
2735 kfree(new_dev_maps);
2736 return -ENOMEM;
2737}
4d99f660 2738EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2739
2740int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2741 u16 index)
2742{
4d99f660
AV
2743 int ret;
2744
2745 cpus_read_lock();
044ab86d 2746 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
4d99f660
AV
2747 cpus_read_unlock();
2748
2749 return ret;
80d19669 2750}
537c00de
AD
2751EXPORT_SYMBOL(netif_set_xps_queue);
2752
2753#endif
ffcfe25b
AD
2754static void netdev_unbind_all_sb_channels(struct net_device *dev)
2755{
2756 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2757
2758 /* Unbind any subordinate channels */
2759 while (txq-- != &dev->_tx[0]) {
2760 if (txq->sb_dev)
2761 netdev_unbind_sb_channel(dev, txq->sb_dev);
2762 }
2763}
2764
9cf1f6a8
AD
2765void netdev_reset_tc(struct net_device *dev)
2766{
6234f874
AD
2767#ifdef CONFIG_XPS
2768 netif_reset_xps_queues_gt(dev, 0);
2769#endif
ffcfe25b
AD
2770 netdev_unbind_all_sb_channels(dev);
2771
2772 /* Reset TC configuration of device */
9cf1f6a8
AD
2773 dev->num_tc = 0;
2774 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2775 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2776}
2777EXPORT_SYMBOL(netdev_reset_tc);
2778
2779int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2780{
2781 if (tc >= dev->num_tc)
2782 return -EINVAL;
2783
6234f874
AD
2784#ifdef CONFIG_XPS
2785 netif_reset_xps_queues(dev, offset, count);
2786#endif
9cf1f6a8
AD
2787 dev->tc_to_txq[tc].count = count;
2788 dev->tc_to_txq[tc].offset = offset;
2789 return 0;
2790}
2791EXPORT_SYMBOL(netdev_set_tc_queue);
2792
2793int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2794{
2795 if (num_tc > TC_MAX_QUEUE)
2796 return -EINVAL;
2797
6234f874
AD
2798#ifdef CONFIG_XPS
2799 netif_reset_xps_queues_gt(dev, 0);
2800#endif
ffcfe25b
AD
2801 netdev_unbind_all_sb_channels(dev);
2802
9cf1f6a8
AD
2803 dev->num_tc = num_tc;
2804 return 0;
2805}
2806EXPORT_SYMBOL(netdev_set_num_tc);
2807
ffcfe25b
AD
2808void netdev_unbind_sb_channel(struct net_device *dev,
2809 struct net_device *sb_dev)
2810{
2811 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2812
2813#ifdef CONFIG_XPS
2814 netif_reset_xps_queues_gt(sb_dev, 0);
2815#endif
2816 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2817 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2818
2819 while (txq-- != &dev->_tx[0]) {
2820 if (txq->sb_dev == sb_dev)
2821 txq->sb_dev = NULL;
2822 }
2823}
2824EXPORT_SYMBOL(netdev_unbind_sb_channel);
2825
2826int netdev_bind_sb_channel_queue(struct net_device *dev,
2827 struct net_device *sb_dev,
2828 u8 tc, u16 count, u16 offset)
2829{
2830 /* Make certain the sb_dev and dev are already configured */
2831 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2832 return -EINVAL;
2833
2834 /* We cannot hand out queues we don't have */
2835 if ((offset + count) > dev->real_num_tx_queues)
2836 return -EINVAL;
2837
2838 /* Record the mapping */
2839 sb_dev->tc_to_txq[tc].count = count;
2840 sb_dev->tc_to_txq[tc].offset = offset;
2841
2842 /* Provide a way for Tx queue to find the tc_to_txq map or
2843 * XPS map for itself.
2844 */
2845 while (count--)
2846 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2847
2848 return 0;
2849}
2850EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2851
2852int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2853{
2854 /* Do not use a multiqueue device to represent a subordinate channel */
2855 if (netif_is_multiqueue(dev))
2856 return -ENODEV;
2857
2858 /* We allow channels 1 - 32767 to be used for subordinate channels.
2859 * Channel 0 is meant to be "native" mode and used only to represent
2860 * the main root device. We allow writing 0 to reset the device back
2861 * to normal mode after being used as a subordinate channel.
2862 */
2863 if (channel > S16_MAX)
2864 return -EINVAL;
2865
2866 dev->num_tc = -channel;
2867
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_sb_channel);
2871
f0796d5c
JF
2872/*
2873 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2874 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2875 */
e6484930 2876int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2877{
ac5b7019 2878 bool disabling;
1d24eb48
TH
2879 int rc;
2880
ac5b7019
JK
2881 disabling = txq < dev->real_num_tx_queues;
2882
e6484930
TH
2883 if (txq < 1 || txq > dev->num_tx_queues)
2884 return -EINVAL;
f0796d5c 2885
5c56580b
BH
2886 if (dev->reg_state == NETREG_REGISTERED ||
2887 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2888 ASSERT_RTNL();
2889
1d24eb48
TH
2890 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2891 txq);
bf264145
TH
2892 if (rc)
2893 return rc;
2894
4f57c087
JF
2895 if (dev->num_tc)
2896 netif_setup_tc(dev, txq);
2897
1e080f17
JK
2898 dev_qdisc_change_real_num_tx(dev, txq);
2899
ac5b7019
JK
2900 dev->real_num_tx_queues = txq;
2901
2902 if (disabling) {
2903 synchronize_net();
e6484930 2904 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2905#ifdef CONFIG_XPS
2906 netif_reset_xps_queues_gt(dev, txq);
2907#endif
2908 }
ac5b7019
JK
2909 } else {
2910 dev->real_num_tx_queues = txq;
f0796d5c 2911 }
e6484930 2912
e6484930 2913 return 0;
f0796d5c
JF
2914}
2915EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2916
a953be53 2917#ifdef CONFIG_SYSFS
62fe0b40
BH
2918/**
2919 * netif_set_real_num_rx_queues - set actual number of RX queues used
2920 * @dev: Network device
2921 * @rxq: Actual number of RX queues
2922 *
2923 * This must be called either with the rtnl_lock held or before
2924 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2925 * negative error code. If called before registration, it always
2926 * succeeds.
62fe0b40
BH
2927 */
2928int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2929{
2930 int rc;
2931
bd25fa7b
TH
2932 if (rxq < 1 || rxq > dev->num_rx_queues)
2933 return -EINVAL;
2934
62fe0b40
BH
2935 if (dev->reg_state == NETREG_REGISTERED) {
2936 ASSERT_RTNL();
2937
62fe0b40
BH
2938 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2939 rxq);
2940 if (rc)
2941 return rc;
62fe0b40
BH
2942 }
2943
2944 dev->real_num_rx_queues = rxq;
2945 return 0;
2946}
2947EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2948#endif
2949
271e5b7d
JK
2950/**
2951 * netif_set_real_num_queues - set actual number of RX and TX queues used
2952 * @dev: Network device
2953 * @txq: Actual number of TX queues
2954 * @rxq: Actual number of RX queues
2955 *
2956 * Set the real number of both TX and RX queues.
2957 * Does nothing if the number of queues is already correct.
2958 */
2959int netif_set_real_num_queues(struct net_device *dev,
2960 unsigned int txq, unsigned int rxq)
2961{
2962 unsigned int old_rxq = dev->real_num_rx_queues;
2963 int err;
2964
2965 if (txq < 1 || txq > dev->num_tx_queues ||
2966 rxq < 1 || rxq > dev->num_rx_queues)
2967 return -EINVAL;
2968
2969 /* Start from increases, so the error path only does decreases -
2970 * decreases can't fail.
2971 */
2972 if (rxq > dev->real_num_rx_queues) {
2973 err = netif_set_real_num_rx_queues(dev, rxq);
2974 if (err)
2975 return err;
2976 }
2977 if (txq > dev->real_num_tx_queues) {
2978 err = netif_set_real_num_tx_queues(dev, txq);
2979 if (err)
2980 goto undo_rx;
2981 }
2982 if (rxq < dev->real_num_rx_queues)
2983 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2984 if (txq < dev->real_num_tx_queues)
2985 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2986
2987 return 0;
2988undo_rx:
2989 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2990 return err;
2991}
2992EXPORT_SYMBOL(netif_set_real_num_queues);
2993
2c53040f
BH
2994/**
2995 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87 2996 *
046e1537
ÍH
2997 * Default value is the number of physical cores if there are only 1 or 2, or
2998 * divided by 2 if there are more.
16917b87 2999 */
a55b138b 3000int netif_get_num_default_rss_queues(void)
16917b87 3001{
046e1537
ÍH
3002 cpumask_var_t cpus;
3003 int cpu, count = 0;
3004
3005 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3006 return 1;
3007
3008 cpumask_copy(cpus, cpu_online_mask);
3009 for_each_cpu(cpu, cpus) {
3010 ++count;
3011 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3012 }
3013 free_cpumask_var(cpus);
3014
3015 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
16917b87
YM
3016}
3017EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018
3bcb846c 3019static void __netif_reschedule(struct Qdisc *q)
56079431 3020{
def82a1d
JP
3021 struct softnet_data *sd;
3022 unsigned long flags;
56079431 3023
def82a1d 3024 local_irq_save(flags);
903ceff7 3025 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3026 q->next_sched = NULL;
3027 *sd->output_queue_tailp = q;
3028 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3029 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030 local_irq_restore(flags);
3031}
3032
3033void __netif_schedule(struct Qdisc *q)
3034{
3035 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036 __netif_reschedule(q);
56079431
DV
3037}
3038EXPORT_SYMBOL(__netif_schedule);
3039
e6247027
ED
3040struct dev_kfree_skb_cb {
3041 enum skb_free_reason reason;
3042};
3043
3044static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3045{
e6247027
ED
3046 return (struct dev_kfree_skb_cb *)skb->cb;
3047}
3048
46e5da40
JF
3049void netif_schedule_queue(struct netdev_queue *txq)
3050{
3051 rcu_read_lock();
5be5515a 3052 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3053 struct Qdisc *q = rcu_dereference(txq->qdisc);
3054
3055 __netif_schedule(q);
3056 }
3057 rcu_read_unlock();
3058}
3059EXPORT_SYMBOL(netif_schedule_queue);
3060
46e5da40
JF
3061void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062{
3063 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064 struct Qdisc *q;
3065
3066 rcu_read_lock();
3067 q = rcu_dereference(dev_queue->qdisc);
3068 __netif_schedule(q);
3069 rcu_read_unlock();
3070 }
3071}
3072EXPORT_SYMBOL(netif_tx_wake_queue);
3073
e6247027 3074void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3075{
e6247027 3076 unsigned long flags;
56079431 3077
9899886d
MJ
3078 if (unlikely(!skb))
3079 return;
3080
63354797 3081 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3082 smp_rmb();
63354797
RE
3083 refcount_set(&skb->users, 0);
3084 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3085 return;
bea3348e 3086 }
e6247027
ED
3087 get_kfree_skb_cb(skb)->reason = reason;
3088 local_irq_save(flags);
3089 skb->next = __this_cpu_read(softnet_data.completion_queue);
3090 __this_cpu_write(softnet_data.completion_queue, skb);
3091 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092 local_irq_restore(flags);
56079431 3093}
e6247027 3094EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3095
e6247027 3096void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3097{
afa79d08 3098 if (in_hardirq() || irqs_disabled())
e6247027 3099 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3100 else
3101 dev_kfree_skb(skb);
3102}
e6247027 3103EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3104
3105
bea3348e
SH
3106/**
3107 * netif_device_detach - mark device as removed
3108 * @dev: network device
3109 *
3110 * Mark device as removed from system and therefore no longer available.
3111 */
56079431
DV
3112void netif_device_detach(struct net_device *dev)
3113{
3114 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 netif_running(dev)) {
d543103a 3116 netif_tx_stop_all_queues(dev);
56079431
DV
3117 }
3118}
3119EXPORT_SYMBOL(netif_device_detach);
3120
bea3348e
SH
3121/**
3122 * netif_device_attach - mark device as attached
3123 * @dev: network device
3124 *
3125 * Mark device as attached from system and restart if needed.
3126 */
56079431
DV
3127void netif_device_attach(struct net_device *dev)
3128{
3129 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130 netif_running(dev)) {
d543103a 3131 netif_tx_wake_all_queues(dev);
4ec93edb 3132 __netdev_watchdog_up(dev);
56079431
DV
3133 }
3134}
3135EXPORT_SYMBOL(netif_device_attach);
3136
5605c762
JP
3137/*
3138 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139 * to be used as a distribution range.
3140 */
eadec877
AD
3141static u16 skb_tx_hash(const struct net_device *dev,
3142 const struct net_device *sb_dev,
3143 struct sk_buff *skb)
5605c762
JP
3144{
3145 u32 hash;
3146 u16 qoffset = 0;
1b837d48 3147 u16 qcount = dev->real_num_tx_queues;
5605c762 3148
eadec877
AD
3149 if (dev->num_tc) {
3150 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151
3152 qoffset = sb_dev->tc_to_txq[tc].offset;
3153 qcount = sb_dev->tc_to_txq[tc].count;
0c57eeec
MC
3154 if (unlikely(!qcount)) {
3155 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3156 sb_dev->name, qoffset, tc);
3157 qoffset = 0;
3158 qcount = dev->real_num_tx_queues;
3159 }
eadec877
AD
3160 }
3161
5605c762
JP
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
6e11d157
AN
3164 if (hash >= qoffset)
3165 hash -= qoffset;
1b837d48
AD
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
eadec877 3168 return hash + qoffset;
5605c762
JP
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
5605c762 3173
36c92474
BH
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
84d15ae5 3176 static const netdev_features_t null_features;
36c92474 3177 struct net_device *dev = skb->dev;
88ad4175 3178 const char *name = "";
36c92474 3179
c846ad9b
BG
3180 if (!net_ratelimit())
3181 return;
3182
88ad4175
BM
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
6413139d
WB
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3191 name, dev ? &dev->features : &null_features,
6413139d 3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3193}
3194
1da177e4
LT
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
84fa7933 3199int skb_checksum_help(struct sk_buff *skb)
1da177e4 3200{
d3bc23e7 3201 __wsum csum;
663ead3b 3202 int ret = 0, offset;
1da177e4 3203
84fa7933 3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3205 goto out_set_summed;
3206
3aefd7d6 3207 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
1da177e4
LT
3210 }
3211
cef401de
ED
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
55508d60 3221 offset = skb_checksum_start_offset(skb);
a030847e
HX
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
8211fbfa
HK
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
1da177e4 3231
4f2e4ad5 3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3233out_set_summed:
1da177e4 3234 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3235out:
1da177e4
LT
3236 return ret;
3237}
d1b19dff 3238EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3239
b72b5bf6
DC
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
8211fbfa
HK
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
b72b5bf6
DC
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
dba00306 3275 skb->csum_not_inet = 0;
b72b5bf6
DC
3276out:
3277 return ret;
3278}
3279
53d6471c 3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3281{
252e3346 3282 __be16 type = skb->protocol;
f6a78bfc 3283
19acc327
PS
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
1dfe82eb 3291 eth = (struct ethhdr *)skb->data;
19acc327
PS
3292 type = eth->h_proto;
3293 }
3294
d4bcef3f 3295 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3296}
3297
05e8ef4a
PS
3298/* openvswitch calls this on rx path, so we need a different check.
3299 */
3300static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3301{
3302 if (tx_path)
0c19f846
WB
3303 return skb->ip_summed != CHECKSUM_PARTIAL &&
3304 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3305
3306 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3307}
3308
3309/**
3310 * __skb_gso_segment - Perform segmentation on skb.
3311 * @skb: buffer to segment
3312 * @features: features for the output path (see dev->features)
3313 * @tx_path: whether it is called in TX path
3314 *
3315 * This function segments the given skb and returns a list of segments.
3316 *
3317 * It may return NULL if the skb requires no segmentation. This is
3318 * only possible when GSO is used for verifying header integrity.
9207f9d4 3319 *
a08e7fd9 3320 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3321 */
3322struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3323 netdev_features_t features, bool tx_path)
3324{
b2504a5d
ED
3325 struct sk_buff *segs;
3326
05e8ef4a
PS
3327 if (unlikely(skb_needs_check(skb, tx_path))) {
3328 int err;
3329
b2504a5d 3330 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3331 err = skb_cow_head(skb, 0);
3332 if (err < 0)
05e8ef4a
PS
3333 return ERR_PTR(err);
3334 }
3335
802ab55a
AD
3336 /* Only report GSO partial support if it will enable us to
3337 * support segmentation on this frame without needing additional
3338 * work.
3339 */
3340 if (features & NETIF_F_GSO_PARTIAL) {
3341 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3342 struct net_device *dev = skb->dev;
3343
3344 partial_features |= dev->features & dev->gso_partial_features;
3345 if (!skb_gso_ok(skb, features | partial_features))
3346 features &= ~NETIF_F_GSO_PARTIAL;
3347 }
3348
a08e7fd9 3349 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3350 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3351
68c33163 3352 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3353 SKB_GSO_CB(skb)->encap_level = 0;
3354
05e8ef4a
PS
3355 skb_reset_mac_header(skb);
3356 skb_reset_mac_len(skb);
3357
b2504a5d
ED
3358 segs = skb_mac_gso_segment(skb, features);
3359
3a1296a3 3360 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3361 skb_warn_bad_offload(skb);
3362
3363 return segs;
05e8ef4a 3364}
12b0004d 3365EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3366
fb286bb2
HX
3367/* Take action when hardware reception checksum errors are detected. */
3368#ifdef CONFIG_BUG
127d7355
TL
3369static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370{
5b92be64 3371 netdev_err(dev, "hw csum failure\n");
127d7355
TL
3372 skb_dump(KERN_ERR, skb, true);
3373 dump_stack();
3374}
3375
7fe50ac8 3376void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2 3377{
127d7355 3378 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
fb286bb2
HX
3379}
3380EXPORT_SYMBOL(netdev_rx_csum_fault);
3381#endif
3382
ab74cfeb 3383/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3384static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3385{
3d3a8533 3386#ifdef CONFIG_HIGHMEM
1da177e4 3387 int i;
f4563a75 3388
5acbbd42 3389 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3390 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3391 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3392
ea2ab693 3393 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3394 return 1;
ea2ab693 3395 }
5acbbd42 3396 }
3d3a8533 3397#endif
1da177e4
LT
3398 return 0;
3399}
1da177e4 3400
3b392ddb
SH
3401/* If MPLS offload request, verify we are testing hardware MPLS features
3402 * instead of standard features for the netdev.
3403 */
d0edc7bf 3404#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3405static netdev_features_t net_mpls_features(struct sk_buff *skb,
3406 netdev_features_t features,
3407 __be16 type)
3408{
25cd9ba0 3409 if (eth_p_mpls(type))
3b392ddb
SH
3410 features &= skb->dev->mpls_features;
3411
3412 return features;
3413}
3414#else
3415static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 netdev_features_t features,
3417 __be16 type)
3418{
3419 return features;
3420}
3421#endif
3422
c8f44aff 3423static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3424 netdev_features_t features)
f01a5236 3425{
3b392ddb
SH
3426 __be16 type;
3427
9fc95f50 3428 type = skb_network_protocol(skb, NULL);
3b392ddb 3429 features = net_mpls_features(skb, features, type);
53d6471c 3430
c0d680e5 3431 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3432 !can_checksum_protocol(features, type)) {
996e8021 3433 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3434 }
7be2c82c
ED
3435 if (illegal_highdma(skb->dev, skb))
3436 features &= ~NETIF_F_SG;
f01a5236
JG
3437
3438 return features;
3439}
3440
e38f3025
TM
3441netdev_features_t passthru_features_check(struct sk_buff *skb,
3442 struct net_device *dev,
3443 netdev_features_t features)
3444{
3445 return features;
3446}
3447EXPORT_SYMBOL(passthru_features_check);
3448
7ce23672 3449static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3450 struct net_device *dev,
3451 netdev_features_t features)
3452{
3453 return vlan_features_check(skb, features);
3454}
3455
cbc53e08
AD
3456static netdev_features_t gso_features_check(const struct sk_buff *skb,
3457 struct net_device *dev,
3458 netdev_features_t features)
3459{
3460 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3461
6d872df3 3462 if (gso_segs > READ_ONCE(dev->gso_max_segs))
cbc53e08
AD
3463 return features & ~NETIF_F_GSO_MASK;
3464
1d155dfd
HK
3465 if (!skb_shinfo(skb)->gso_type) {
3466 skb_warn_bad_offload(skb);
3467 return features & ~NETIF_F_GSO_MASK;
3468 }
3469
802ab55a
AD
3470 /* Support for GSO partial features requires software
3471 * intervention before we can actually process the packets
3472 * so we need to strip support for any partial features now
3473 * and we can pull them back in after we have partially
3474 * segmented the frame.
3475 */
3476 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3477 features &= ~dev->gso_partial_features;
3478
3479 /* Make sure to clear the IPv4 ID mangling feature if the
3480 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3481 */
3482 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3483 struct iphdr *iph = skb->encapsulation ?
3484 inner_ip_hdr(skb) : ip_hdr(skb);
3485
3486 if (!(iph->frag_off & htons(IP_DF)))
3487 features &= ~NETIF_F_TSO_MANGLEID;
3488 }
3489
3490 return features;
3491}
3492
c1e756bf 3493netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3494{
5f35227e 3495 struct net_device *dev = skb->dev;
fcbeb976 3496 netdev_features_t features = dev->features;
58e998c6 3497
cbc53e08
AD
3498 if (skb_is_gso(skb))
3499 features = gso_features_check(skb, dev, features);
30b678d8 3500
5f35227e
JG
3501 /* If encapsulation offload request, verify we are testing
3502 * hardware encapsulation features instead of standard
3503 * features for the netdev
3504 */
3505 if (skb->encapsulation)
3506 features &= dev->hw_enc_features;
3507
f5a7fb88
TM
3508 if (skb_vlan_tagged(skb))
3509 features = netdev_intersect_features(features,
3510 dev->vlan_features |
3511 NETIF_F_HW_VLAN_CTAG_TX |
3512 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3513
5f35227e
JG
3514 if (dev->netdev_ops->ndo_features_check)
3515 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3516 features);
8cb65d00
TM
3517 else
3518 features &= dflt_features_check(skb, dev, features);
5f35227e 3519
c1e756bf 3520 return harmonize_features(skb, features);
58e998c6 3521}
c1e756bf 3522EXPORT_SYMBOL(netif_skb_features);
58e998c6 3523
2ea25513 3524static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3525 struct netdev_queue *txq, bool more)
f6a78bfc 3526{
2ea25513
DM
3527 unsigned int len;
3528 int rc;
00829823 3529
9f9a742d 3530 if (dev_nit_active(dev))
2ea25513 3531 dev_queue_xmit_nit(skb, dev);
fc741216 3532
2ea25513 3533 len = skb->len;
3744741a 3534 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3535 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3536 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3537 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3538
2ea25513
DM
3539 return rc;
3540}
7b9c6090 3541
8dcda22a
DM
3542struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3543 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3544{
3545 struct sk_buff *skb = first;
3546 int rc = NETDEV_TX_OK;
7b9c6090 3547
7f2e870f
DM
3548 while (skb) {
3549 struct sk_buff *next = skb->next;
fc70fb64 3550
a8305bff 3551 skb_mark_not_on_list(skb);
95f6b3dd 3552 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3553 if (unlikely(!dev_xmit_complete(rc))) {
3554 skb->next = next;
3555 goto out;
3556 }
6afff0ca 3557
7f2e870f 3558 skb = next;
fe60faa5 3559 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3560 rc = NETDEV_TX_BUSY;
3561 break;
9ccb8975 3562 }
7f2e870f 3563 }
9ccb8975 3564
7f2e870f
DM
3565out:
3566 *ret = rc;
3567 return skb;
3568}
b40863c6 3569
1ff0dc94
ED
3570static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3571 netdev_features_t features)
f6a78bfc 3572{
df8a39de 3573 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3574 !vlan_hw_offload_capable(features, skb->vlan_proto))
3575 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3576 return skb;
3577}
f6a78bfc 3578
43c26a1a
DC
3579int skb_csum_hwoffload_help(struct sk_buff *skb,
3580 const netdev_features_t features)
3581{
fa821170 3582 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3583 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3584 skb_crc32c_csum_help(skb);
3585
62fafcd6
XL
3586 if (features & NETIF_F_HW_CSUM)
3587 return 0;
3588
3589 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3590 switch (skb->csum_offset) {
3591 case offsetof(struct tcphdr, check):
3592 case offsetof(struct udphdr, check):
3593 return 0;
3594 }
3595 }
3596
3597 return skb_checksum_help(skb);
43c26a1a
DC
3598}
3599EXPORT_SYMBOL(skb_csum_hwoffload_help);
3600
f53c7239 3601static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3602{
3603 netdev_features_t features;
f6a78bfc 3604
eae3f88e
DM
3605 features = netif_skb_features(skb);
3606 skb = validate_xmit_vlan(skb, features);
3607 if (unlikely(!skb))
3608 goto out_null;
7b9c6090 3609
ebf4e808
IL
3610 skb = sk_validate_xmit_skb(skb, dev);
3611 if (unlikely(!skb))
3612 goto out_null;
3613
8b86a61d 3614 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3615 struct sk_buff *segs;
3616
3617 segs = skb_gso_segment(skb, features);
cecda693 3618 if (IS_ERR(segs)) {
af6dabc9 3619 goto out_kfree_skb;
cecda693
JW
3620 } else if (segs) {
3621 consume_skb(skb);
3622 skb = segs;
f6a78bfc 3623 }
eae3f88e
DM
3624 } else {
3625 if (skb_needs_linearize(skb, features) &&
3626 __skb_linearize(skb))
3627 goto out_kfree_skb;
4ec93edb 3628
eae3f88e
DM
3629 /* If packet is not checksummed and device does not
3630 * support checksumming for this protocol, complete
3631 * checksumming here.
3632 */
3633 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3634 if (skb->encapsulation)
3635 skb_set_inner_transport_header(skb,
3636 skb_checksum_start_offset(skb));
3637 else
3638 skb_set_transport_header(skb,
3639 skb_checksum_start_offset(skb));
43c26a1a 3640 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3641 goto out_kfree_skb;
7b9c6090 3642 }
0c772159 3643 }
7b9c6090 3644
f53c7239 3645 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3646
eae3f88e 3647 return skb;
fc70fb64 3648
f6a78bfc
HX
3649out_kfree_skb:
3650 kfree_skb(skb);
eae3f88e 3651out_null:
625788b5 3652 dev_core_stats_tx_dropped_inc(dev);
eae3f88e
DM
3653 return NULL;
3654}
6afff0ca 3655
f53c7239 3656struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3657{
3658 struct sk_buff *next, *head = NULL, *tail;
3659
bec3cfdc 3660 for (; skb != NULL; skb = next) {
55a93b3e 3661 next = skb->next;
a8305bff 3662 skb_mark_not_on_list(skb);
bec3cfdc
ED
3663
3664 /* in case skb wont be segmented, point to itself */
3665 skb->prev = skb;
3666
f53c7239 3667 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3668 if (!skb)
3669 continue;
55a93b3e 3670
bec3cfdc
ED
3671 if (!head)
3672 head = skb;
3673 else
3674 tail->next = skb;
3675 /* If skb was segmented, skb->prev points to
3676 * the last segment. If not, it still contains skb.
3677 */
3678 tail = skb->prev;
55a93b3e
ED
3679 }
3680 return head;
f6a78bfc 3681}
104ba78c 3682EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3683
1def9238
ED
3684static void qdisc_pkt_len_init(struct sk_buff *skb)
3685{
3686 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3687
3688 qdisc_skb_cb(skb)->pkt_len = skb->len;
3689
3690 /* To get more precise estimation of bytes sent on wire,
3691 * we add to pkt_len the headers size of all segments
3692 */
a0dce875 3693 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3694 unsigned int hdr_len;
15e5a030 3695 u16 gso_segs = shinfo->gso_segs;
1def9238 3696
757b8b1d
ED
3697 /* mac layer + network layer */
3698 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3699
3700 /* + transport layer */
7c68d1a6
ED
3701 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3702 const struct tcphdr *th;
3703 struct tcphdr _tcphdr;
3704
3705 th = skb_header_pointer(skb, skb_transport_offset(skb),
3706 sizeof(_tcphdr), &_tcphdr);
3707 if (likely(th))
3708 hdr_len += __tcp_hdrlen(th);
3709 } else {
3710 struct udphdr _udphdr;
3711
3712 if (skb_header_pointer(skb, skb_transport_offset(skb),
3713 sizeof(_udphdr), &_udphdr))
3714 hdr_len += sizeof(struct udphdr);
3715 }
15e5a030
JW
3716
3717 if (shinfo->gso_type & SKB_GSO_DODGY)
3718 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3719 shinfo->gso_size);
3720
3721 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3722 }
3723}
3724
70713ddd
QX
3725static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3726 struct sk_buff **to_free,
3727 struct netdev_queue *txq)
3728{
3729 int rc;
3730
3731 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3732 if (rc == NET_XMIT_SUCCESS)
3733 trace_qdisc_enqueue(q, txq, skb);
3734 return rc;
3735}
3736
bbd8a0d3
KK
3737static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3738 struct net_device *dev,
3739 struct netdev_queue *txq)
3740{
3741 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3742 struct sk_buff *to_free = NULL;
a2da570d 3743 bool contended;
bbd8a0d3
KK
3744 int rc;
3745
a2da570d 3746 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3747
3748 if (q->flags & TCQ_F_NOLOCK) {
c4fef01b
YL
3749 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3750 qdisc_run_begin(q)) {
3751 /* Retest nolock_qdisc_is_empty() within the protection
3752 * of q->seqlock to protect from racing with requeuing.
3753 */
3754 if (unlikely(!nolock_qdisc_is_empty(q))) {
70713ddd 3755 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b
YL
3756 __qdisc_run(q);
3757 qdisc_run_end(q);
3758
3759 goto no_lock_out;
3760 }
3761
3762 qdisc_bstats_cpu_update(q, skb);
3763 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3764 !nolock_qdisc_is_empty(q))
3765 __qdisc_run(q);
3766
3767 qdisc_run_end(q);
3768 return NET_XMIT_SUCCESS;
3769 }
3770
70713ddd 3771 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b 3772 qdisc_run(q);
6b3ba914 3773
c4fef01b 3774no_lock_out:
6b3ba914 3775 if (unlikely(to_free))
7faef054
MD
3776 kfree_skb_list_reason(to_free,
3777 SKB_DROP_REASON_QDISC_DROP);
6b3ba914
JF
3778 return rc;
3779 }
3780
79640a4c
ED
3781 /*
3782 * Heuristic to force contended enqueues to serialize on a
3783 * separate lock before trying to get qdisc main lock.
f9eb8aea 3784 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3785 * often and dequeue packets faster.
64445dda
SAS
3786 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3787 * and then other tasks will only enqueue packets. The packets will be
3788 * sent after the qdisc owner is scheduled again. To prevent this
3789 * scenario the task always serialize on the lock.
79640a4c 3790 */
a9aa5e33 3791 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
79640a4c
ED
3792 if (unlikely(contended))
3793 spin_lock(&q->busylock);
3794
bbd8a0d3
KK
3795 spin_lock(root_lock);
3796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3797 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3798 rc = NET_XMIT_DROP;
3799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3800 qdisc_run_begin(q)) {
bbd8a0d3
KK
3801 /*
3802 * This is a work-conserving queue; there are no old skbs
3803 * waiting to be sent out; and the qdisc is not running -
3804 * xmit the skb directly.
3805 */
bfe0d029 3806
bfe0d029
ED
3807 qdisc_bstats_update(q, skb);
3808
55a93b3e 3809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3810 if (unlikely(contended)) {
3811 spin_unlock(&q->busylock);
3812 contended = false;
3813 }
bbd8a0d3 3814 __qdisc_run(q);
6c148184 3815 }
bbd8a0d3 3816
6c148184 3817 qdisc_run_end(q);
bbd8a0d3
KK
3818 rc = NET_XMIT_SUCCESS;
3819 } else {
70713ddd 3820 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
79640a4c
ED
3821 if (qdisc_run_begin(q)) {
3822 if (unlikely(contended)) {
3823 spin_unlock(&q->busylock);
3824 contended = false;
3825 }
3826 __qdisc_run(q);
6c148184 3827 qdisc_run_end(q);
79640a4c 3828 }
bbd8a0d3
KK
3829 }
3830 spin_unlock(root_lock);
520ac30f 3831 if (unlikely(to_free))
7faef054 3832 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
79640a4c
ED
3833 if (unlikely(contended))
3834 spin_unlock(&q->busylock);
bbd8a0d3
KK
3835 return rc;
3836}
3837
86f8515f 3838#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3839static void skb_update_prio(struct sk_buff *skb)
3840{
4dcb31d4
ED
3841 const struct netprio_map *map;
3842 const struct sock *sk;
3843 unsigned int prioidx;
5bc1421e 3844
4dcb31d4
ED
3845 if (skb->priority)
3846 return;
3847 map = rcu_dereference_bh(skb->dev->priomap);
3848 if (!map)
3849 return;
3850 sk = skb_to_full_sk(skb);
3851 if (!sk)
3852 return;
91c68ce2 3853
4dcb31d4
ED
3854 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3855
3856 if (prioidx < map->priomap_len)
3857 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3858}
3859#else
3860#define skb_update_prio(skb)
3861#endif
3862
95603e22
MM
3863/**
3864 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3865 * @net: network namespace this loopback is happening in
3866 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3867 * @skb: buffer to transmit
3868 */
0c4b51f0 3869int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3870{
3871 skb_reset_mac_header(skb);
3872 __skb_pull(skb, skb_network_offset(skb));
3873 skb->pkt_type = PACKET_LOOPBACK;
9122a70a
CS
3874 if (skb->ip_summed == CHECKSUM_NONE)
3875 skb->ip_summed = CHECKSUM_UNNECESSARY;
95603e22
MM
3876 WARN_ON(!skb_dst(skb));
3877 skb_dst_force(skb);
ad0a043f 3878 netif_rx(skb);
95603e22
MM
3879 return 0;
3880}
3881EXPORT_SYMBOL(dev_loopback_xmit);
3882
1f211a1b
DB
3883#ifdef CONFIG_NET_EGRESS
3884static struct sk_buff *
3885sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3886{
42df6e1d 3887#ifdef CONFIG_NET_CLS_ACT
46209401 3888 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3889 struct tcf_result cl_res;
3890
46209401 3891 if (!miniq)
1f211a1b
DB
3892 return skb;
3893
8dc07fdb 3894 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
ec624fe7
PB
3895 tc_skb_cb(skb)->mru = 0;
3896 tc_skb_cb(skb)->post_ct = false;
46209401 3897 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3898
3aa26055 3899 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3900 case TC_ACT_OK:
3901 case TC_ACT_RECLASSIFY:
3902 skb->tc_index = TC_H_MIN(cl_res.classid);
3903 break;
3904 case TC_ACT_SHOT:
46209401 3905 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3906 *ret = NET_XMIT_DROP;
98b4d7a4 3907 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
7e2c3aea 3908 return NULL;
1f211a1b
DB
3909 case TC_ACT_STOLEN:
3910 case TC_ACT_QUEUED:
e25ea21f 3911 case TC_ACT_TRAP:
1f211a1b 3912 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3913 consume_skb(skb);
1f211a1b
DB
3914 return NULL;
3915 case TC_ACT_REDIRECT:
3916 /* No need to push/pop skb's mac_header here on egress! */
3917 skb_do_redirect(skb);
3918 *ret = NET_XMIT_SUCCESS;
3919 return NULL;
3920 default:
3921 break;
3922 }
42df6e1d 3923#endif /* CONFIG_NET_CLS_ACT */
357b6cc5 3924
1f211a1b
DB
3925 return skb;
3926}
3927#endif /* CONFIG_NET_EGRESS */
3928
fc9bab24
AN
3929#ifdef CONFIG_XPS
3930static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3931 struct xps_dev_maps *dev_maps, unsigned int tci)
3932{
255c04a8 3933 int tc = netdev_get_prio_tc_map(dev, skb->priority);
fc9bab24
AN
3934 struct xps_map *map;
3935 int queue_index = -1;
3936
5478fcd0 3937 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
255c04a8
AT
3938 return queue_index;
3939
3940 tci *= dev_maps->num_tc;
3941 tci += tc;
fc9bab24
AN
3942
3943 map = rcu_dereference(dev_maps->attr_map[tci]);
3944 if (map) {
3945 if (map->len == 1)
3946 queue_index = map->queues[0];
3947 else
3948 queue_index = map->queues[reciprocal_scale(
3949 skb_get_hash(skb), map->len)];
3950 if (unlikely(queue_index >= dev->real_num_tx_queues))
3951 queue_index = -1;
3952 }
3953 return queue_index;
3954}
3955#endif
3956
eadec877
AD
3957static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3958 struct sk_buff *skb)
638b2a69
JP
3959{
3960#ifdef CONFIG_XPS
3961 struct xps_dev_maps *dev_maps;
fc9bab24 3962 struct sock *sk = skb->sk;
638b2a69
JP
3963 int queue_index = -1;
3964
04157469
AN
3965 if (!static_key_false(&xps_needed))
3966 return -1;
3967
638b2a69 3968 rcu_read_lock();
fc9bab24
AN
3969 if (!static_key_false(&xps_rxqs_needed))
3970 goto get_cpus_map;
3971
044ab86d 3972 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
638b2a69 3973 if (dev_maps) {
fc9bab24 3974 int tci = sk_rx_queue_get(sk);
184c449f 3975
5478fcd0 3976 if (tci >= 0)
fc9bab24
AN
3977 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3978 tci);
3979 }
184c449f 3980
fc9bab24
AN
3981get_cpus_map:
3982 if (queue_index < 0) {
044ab86d 3983 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
fc9bab24
AN
3984 if (dev_maps) {
3985 unsigned int tci = skb->sender_cpu - 1;
3986
3987 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3988 tci);
638b2a69
JP
3989 }
3990 }
3991 rcu_read_unlock();
3992
3993 return queue_index;
3994#else
3995 return -1;
3996#endif
3997}
3998
a4ea8a3d 3999u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4000 struct net_device *sb_dev)
a4ea8a3d
AD
4001{
4002 return 0;
4003}
4004EXPORT_SYMBOL(dev_pick_tx_zero);
4005
4006u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4007 struct net_device *sb_dev)
a4ea8a3d
AD
4008{
4009 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4010}
4011EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4012
b71b5837
PA
4013u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4014 struct net_device *sb_dev)
638b2a69
JP
4015{
4016 struct sock *sk = skb->sk;
4017 int queue_index = sk_tx_queue_get(sk);
4018
eadec877
AD
4019 sb_dev = sb_dev ? : dev;
4020
638b2a69
JP
4021 if (queue_index < 0 || skb->ooo_okay ||
4022 queue_index >= dev->real_num_tx_queues) {
eadec877 4023 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4024
638b2a69 4025 if (new_index < 0)
eadec877 4026 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4027
4028 if (queue_index != new_index && sk &&
004a5d01 4029 sk_fullsock(sk) &&
638b2a69
JP
4030 rcu_access_pointer(sk->sk_dst_cache))
4031 sk_tx_queue_set(sk, new_index);
4032
4033 queue_index = new_index;
4034 }
4035
4036 return queue_index;
4037}
b71b5837 4038EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4039
4bd97d51
PA
4040struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4041 struct sk_buff *skb,
4042 struct net_device *sb_dev)
638b2a69
JP
4043{
4044 int queue_index = 0;
4045
4046#ifdef CONFIG_XPS
52bd2d62
ED
4047 u32 sender_cpu = skb->sender_cpu - 1;
4048
4049 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4050 skb->sender_cpu = raw_smp_processor_id() + 1;
4051#endif
4052
4053 if (dev->real_num_tx_queues != 1) {
4054 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4055
638b2a69 4056 if (ops->ndo_select_queue)
a350ecce 4057 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4058 else
4bd97d51 4059 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4060
d584527c 4061 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4062 }
4063
4064 skb_set_queue_mapping(skb, queue_index);
4065 return netdev_get_tx_queue(dev, queue_index);
4066}
4067
d29f749e 4068/**
9d08dd3d 4069 * __dev_queue_xmit - transmit a buffer
d29f749e 4070 * @skb: buffer to transmit
eadec877 4071 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4072 *
4073 * Queue a buffer for transmission to a network device. The caller must
4074 * have set the device and priority and built the buffer before calling
4075 * this function. The function can be called from an interrupt.
4076 *
4077 * A negative errno code is returned on a failure. A success does not
4078 * guarantee the frame will be transmitted as it may be dropped due
4079 * to congestion or traffic shaping.
4080 *
4081 * -----------------------------------------------------------------------------------
4082 * I notice this method can also return errors from the queue disciplines,
4083 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4084 * be positive.
4085 *
4086 * Regardless of the return value, the skb is consumed, so it is currently
4087 * difficult to retry a send to this method. (You can bump the ref count
4088 * before sending to hold a reference for retry if you are careful.)
4089 *
4090 * When calling this method, interrupts MUST be enabled. This is because
4091 * the BH enable code must have IRQs enabled so that it will not deadlock.
4092 * --BLG
4093 */
eadec877 4094static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4095{
4096 struct net_device *dev = skb->dev;
dc2b4847 4097 struct netdev_queue *txq;
1da177e4
LT
4098 struct Qdisc *q;
4099 int rc = -ENOMEM;
f53c7239 4100 bool again = false;
1da177e4 4101
6d1ccff6
ED
4102 skb_reset_mac_header(skb);
4103
e7fd2885 4104 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4105 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4106
4ec93edb
YH
4107 /* Disable soft irqs for various locks below. Also
4108 * stops preemption for RCU.
1da177e4 4109 */
4ec93edb 4110 rcu_read_lock_bh();
1da177e4 4111
5bc1421e
NH
4112 skb_update_prio(skb);
4113
1f211a1b
DB
4114 qdisc_pkt_len_init(skb);
4115#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4116 skb->tc_at_ingress = 0;
42df6e1d
LW
4117#endif
4118#ifdef CONFIG_NET_EGRESS
aabf6772 4119 if (static_branch_unlikely(&egress_needed_key)) {
42df6e1d
LW
4120 if (nf_hook_egress_active()) {
4121 skb = nf_hook_egress(skb, &rc, dev);
4122 if (!skb)
4123 goto out;
4124 }
4125 nf_skip_egress(skb, true);
1f211a1b
DB
4126 skb = sch_handle_egress(skb, &rc, dev);
4127 if (!skb)
4128 goto out;
42df6e1d 4129 nf_skip_egress(skb, false);
1f211a1b 4130 }
1f211a1b 4131#endif
02875878
ED
4132 /* If device/qdisc don't need skb->dst, release it right now while
4133 * its hot in this cpu cache.
4134 */
4135 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4136 skb_dst_drop(skb);
4137 else
4138 skb_dst_force(skb);
4139
4bd97d51 4140 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4141 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4142
cf66ba58 4143 trace_net_dev_queue(skb);
1da177e4 4144 if (q->enqueue) {
bbd8a0d3 4145 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4146 goto out;
1da177e4
LT
4147 }
4148
4149 /* The device has no queue. Common case for software devices:
eb13da1a 4150 * loopback, all the sorts of tunnels...
1da177e4 4151
eb13da1a 4152 * Really, it is unlikely that netif_tx_lock protection is necessary
4153 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4154 * counters.)
4155 * However, it is possible, that they rely on protection
4156 * made by us here.
1da177e4 4157
eb13da1a 4158 * Check this and shot the lock. It is not prone from deadlocks.
4159 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4160 */
4161 if (dev->flags & IFF_UP) {
4162 int cpu = smp_processor_id(); /* ok because BHs are off */
4163
7a10d8c8
ED
4164 /* Other cpus might concurrently change txq->xmit_lock_owner
4165 * to -1 or to their cpu id, but not to our id.
4166 */
4167 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
97cdcf37 4168 if (dev_xmit_recursion())
745e20f1
ED
4169 goto recursion_alert;
4170
f53c7239 4171 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4172 if (!skb)
d21fd63e 4173 goto out;
1f59533f 4174
3744741a 4175 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4176 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4177
73466498 4178 if (!netif_xmit_stopped(txq)) {
97cdcf37 4179 dev_xmit_recursion_inc();
ce93718f 4180 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4181 dev_xmit_recursion_dec();
572a9d7b 4182 if (dev_xmit_complete(rc)) {
c773e847 4183 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4184 goto out;
4185 }
4186 }
c773e847 4187 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4188 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4189 dev->name);
1da177e4
LT
4190 } else {
4191 /* Recursion is detected! It is possible,
745e20f1
ED
4192 * unfortunately
4193 */
4194recursion_alert:
e87cc472
JP
4195 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4196 dev->name);
1da177e4
LT
4197 }
4198 }
4199
4200 rc = -ENETDOWN;
d4828d85 4201 rcu_read_unlock_bh();
1da177e4 4202
625788b5 4203 dev_core_stats_tx_dropped_inc(dev);
1f59533f 4204 kfree_skb_list(skb);
1da177e4
LT
4205 return rc;
4206out:
d4828d85 4207 rcu_read_unlock_bh();
1da177e4
LT
4208 return rc;
4209}
f663dd9a 4210
2b4aa3ce 4211int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4212{
4213 return __dev_queue_xmit(skb, NULL);
4214}
2b4aa3ce 4215EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4216
eadec877 4217int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4218{
eadec877 4219 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4220}
4221EXPORT_SYMBOL(dev_queue_xmit_accel);
4222
36ccdf85 4223int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4224{
4225 struct net_device *dev = skb->dev;
4226 struct sk_buff *orig_skb = skb;
4227 struct netdev_queue *txq;
4228 int ret = NETDEV_TX_BUSY;
4229 bool again = false;
4230
4231 if (unlikely(!netif_running(dev) ||
4232 !netif_carrier_ok(dev)))
4233 goto drop;
4234
4235 skb = validate_xmit_skb_list(skb, dev, &again);
4236 if (skb != orig_skb)
4237 goto drop;
4238
4239 skb_set_queue_mapping(skb, queue_id);
4240 txq = skb_get_tx_queue(dev, skb);
3744741a 4241 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4242
4243 local_bh_disable();
4244
0ad6f6e7 4245 dev_xmit_recursion_inc();
865b03f2
MK
4246 HARD_TX_LOCK(dev, txq, smp_processor_id());
4247 if (!netif_xmit_frozen_or_drv_stopped(txq))
4248 ret = netdev_start_xmit(skb, dev, txq, false);
4249 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4250 dev_xmit_recursion_dec();
865b03f2
MK
4251
4252 local_bh_enable();
865b03f2
MK
4253 return ret;
4254drop:
625788b5 4255 dev_core_stats_tx_dropped_inc(dev);
865b03f2
MK
4256 kfree_skb_list(skb);
4257 return NET_XMIT_DROP;
4258}
36ccdf85 4259EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4260
eb13da1a 4261/*************************************************************************
4262 * Receiver routines
4263 *************************************************************************/
1da177e4 4264
6b2bedc3 4265int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4266EXPORT_SYMBOL(netdev_max_backlog);
4267
3b098e2d 4268int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4269int netdev_budget __read_mostly = 300;
a4837980
KK
4270/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4271unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4272int weight_p __read_mostly = 64; /* old backlog weight */
4273int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4274int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4275int dev_rx_weight __read_mostly = 64;
4276int dev_tx_weight __read_mostly = 64;
1da177e4 4277
eecfd7c4
ED
4278/* Called with irq disabled */
4279static inline void ____napi_schedule(struct softnet_data *sd,
4280 struct napi_struct *napi)
4281{
29863d41
WW
4282 struct task_struct *thread;
4283
fbd9a2ce
SAS
4284 lockdep_assert_irqs_disabled();
4285
29863d41
WW
4286 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4287 /* Paired with smp_mb__before_atomic() in
5fdd2f0e
WW
4288 * napi_enable()/dev_set_threaded().
4289 * Use READ_ONCE() to guarantee a complete
4290 * read on napi->thread. Only call
29863d41
WW
4291 * wake_up_process() when it's not NULL.
4292 */
4293 thread = READ_ONCE(napi->thread);
4294 if (thread) {
cb038357
WW
4295 /* Avoid doing set_bit() if the thread is in
4296 * INTERRUPTIBLE state, cause napi_thread_wait()
4297 * makes sure to proceed with napi polling
4298 * if the thread is explicitly woken from here.
4299 */
2f064a59 4300 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
cb038357 4301 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
29863d41
WW
4302 wake_up_process(thread);
4303 return;
4304 }
4305 }
4306
eecfd7c4
ED
4307 list_add_tail(&napi->poll_list, &sd->poll_list);
4308 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4309}
4310
bfb564e7
KK
4311#ifdef CONFIG_RPS
4312
4313/* One global table that all flow-based protocols share. */
6e3f7faf 4314struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4315EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4316u32 rps_cpu_mask __read_mostly;
4317EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4318
dc05360f 4319struct static_key_false rps_needed __read_mostly;
3df97ba8 4320EXPORT_SYMBOL(rps_needed);
dc05360f 4321struct static_key_false rfs_needed __read_mostly;
13bfff25 4322EXPORT_SYMBOL(rfs_needed);
adc9300e 4323
c445477d
BH
4324static struct rps_dev_flow *
4325set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4326 struct rps_dev_flow *rflow, u16 next_cpu)
4327{
a31196b0 4328 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4329#ifdef CONFIG_RFS_ACCEL
4330 struct netdev_rx_queue *rxqueue;
4331 struct rps_dev_flow_table *flow_table;
4332 struct rps_dev_flow *old_rflow;
4333 u32 flow_id;
4334 u16 rxq_index;
4335 int rc;
4336
4337 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4338 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4339 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4340 goto out;
4341 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4342 if (rxq_index == skb_get_rx_queue(skb))
4343 goto out;
4344
4345 rxqueue = dev->_rx + rxq_index;
4346 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4347 if (!flow_table)
4348 goto out;
61b905da 4349 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4350 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4351 rxq_index, flow_id);
4352 if (rc < 0)
4353 goto out;
4354 old_rflow = rflow;
4355 rflow = &flow_table->flows[flow_id];
c445477d
BH
4356 rflow->filter = rc;
4357 if (old_rflow->filter == rflow->filter)
4358 old_rflow->filter = RPS_NO_FILTER;
4359 out:
4360#endif
4361 rflow->last_qtail =
09994d1b 4362 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4363 }
4364
09994d1b 4365 rflow->cpu = next_cpu;
c445477d
BH
4366 return rflow;
4367}
4368
bfb564e7
KK
4369/*
4370 * get_rps_cpu is called from netif_receive_skb and returns the target
4371 * CPU from the RPS map of the receiving queue for a given skb.
4372 * rcu_read_lock must be held on entry.
4373 */
4374static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375 struct rps_dev_flow **rflowp)
4376{
567e4b79
ED
4377 const struct rps_sock_flow_table *sock_flow_table;
4378 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4379 struct rps_dev_flow_table *flow_table;
567e4b79 4380 struct rps_map *map;
bfb564e7 4381 int cpu = -1;
567e4b79 4382 u32 tcpu;
61b905da 4383 u32 hash;
bfb564e7
KK
4384
4385 if (skb_rx_queue_recorded(skb)) {
4386 u16 index = skb_get_rx_queue(skb);
567e4b79 4387
62fe0b40
BH
4388 if (unlikely(index >= dev->real_num_rx_queues)) {
4389 WARN_ONCE(dev->real_num_rx_queues > 1,
4390 "%s received packet on queue %u, but number "
4391 "of RX queues is %u\n",
4392 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4393 goto done;
4394 }
567e4b79
ED
4395 rxqueue += index;
4396 }
bfb564e7 4397
567e4b79
ED
4398 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4399
4400 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4401 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4402 if (!flow_table && !map)
bfb564e7
KK
4403 goto done;
4404
2d47b459 4405 skb_reset_network_header(skb);
61b905da
TH
4406 hash = skb_get_hash(skb);
4407 if (!hash)
bfb564e7
KK
4408 goto done;
4409
fec5e652
TH
4410 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4411 if (flow_table && sock_flow_table) {
fec5e652 4412 struct rps_dev_flow *rflow;
567e4b79
ED
4413 u32 next_cpu;
4414 u32 ident;
4415
4416 /* First check into global flow table if there is a match */
4417 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4418 if ((ident ^ hash) & ~rps_cpu_mask)
4419 goto try_rps;
fec5e652 4420
567e4b79
ED
4421 next_cpu = ident & rps_cpu_mask;
4422
4423 /* OK, now we know there is a match,
4424 * we can look at the local (per receive queue) flow table
4425 */
61b905da 4426 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4427 tcpu = rflow->cpu;
4428
fec5e652
TH
4429 /*
4430 * If the desired CPU (where last recvmsg was done) is
4431 * different from current CPU (one in the rx-queue flow
4432 * table entry), switch if one of the following holds:
a31196b0 4433 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4434 * - Current CPU is offline.
4435 * - The current CPU's queue tail has advanced beyond the
4436 * last packet that was enqueued using this table entry.
4437 * This guarantees that all previous packets for the flow
4438 * have been dequeued, thus preserving in order delivery.
4439 */
4440 if (unlikely(tcpu != next_cpu) &&
a31196b0 4441 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4442 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4443 rflow->last_qtail)) >= 0)) {
4444 tcpu = next_cpu;
c445477d 4445 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4446 }
c445477d 4447
a31196b0 4448 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4449 *rflowp = rflow;
4450 cpu = tcpu;
4451 goto done;
4452 }
4453 }
4454
567e4b79
ED
4455try_rps:
4456
0a9627f2 4457 if (map) {
8fc54f68 4458 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4459 if (cpu_online(tcpu)) {
4460 cpu = tcpu;
4461 goto done;
4462 }
4463 }
4464
4465done:
0a9627f2
TH
4466 return cpu;
4467}
4468
c445477d
BH
4469#ifdef CONFIG_RFS_ACCEL
4470
4471/**
4472 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4473 * @dev: Device on which the filter was set
4474 * @rxq_index: RX queue index
4475 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4476 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4477 *
4478 * Drivers that implement ndo_rx_flow_steer() should periodically call
4479 * this function for each installed filter and remove the filters for
4480 * which it returns %true.
4481 */
4482bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4483 u32 flow_id, u16 filter_id)
4484{
4485 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4486 struct rps_dev_flow_table *flow_table;
4487 struct rps_dev_flow *rflow;
4488 bool expire = true;
a31196b0 4489 unsigned int cpu;
c445477d
BH
4490
4491 rcu_read_lock();
4492 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4493 if (flow_table && flow_id <= flow_table->mask) {
4494 rflow = &flow_table->flows[flow_id];
6aa7de05 4495 cpu = READ_ONCE(rflow->cpu);
a31196b0 4496 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4497 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4498 rflow->last_qtail) <
4499 (int)(10 * flow_table->mask)))
4500 expire = false;
4501 }
4502 rcu_read_unlock();
4503 return expire;
4504}
4505EXPORT_SYMBOL(rps_may_expire_flow);
4506
4507#endif /* CONFIG_RFS_ACCEL */
4508
0a9627f2 4509/* Called from hardirq (IPI) context */
e36fa2f7 4510static void rps_trigger_softirq(void *data)
0a9627f2 4511{
e36fa2f7
ED
4512 struct softnet_data *sd = data;
4513
eecfd7c4 4514 ____napi_schedule(sd, &sd->backlog);
dee42870 4515 sd->received_rps++;
0a9627f2 4516}
e36fa2f7 4517
fec5e652 4518#endif /* CONFIG_RPS */
0a9627f2 4519
e36fa2f7
ED
4520/*
4521 * Check if this softnet_data structure is another cpu one
4522 * If yes, queue it to our IPI list and return 1
4523 * If no, return 0
4524 */
e722db8d 4525static int napi_schedule_rps(struct softnet_data *sd)
e36fa2f7 4526{
903ceff7 4527 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7 4528
e722db8d 4529#ifdef CONFIG_RPS
e36fa2f7
ED
4530 if (sd != mysd) {
4531 sd->rps_ipi_next = mysd->rps_ipi_list;
4532 mysd->rps_ipi_list = sd;
4533
4534 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4535 return 1;
4536 }
4537#endif /* CONFIG_RPS */
e722db8d 4538 __napi_schedule_irqoff(&mysd->backlog);
e36fa2f7
ED
4539 return 0;
4540}
4541
99bbc707
WB
4542#ifdef CONFIG_NET_FLOW_LIMIT
4543int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4544#endif
4545
4546static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4547{
4548#ifdef CONFIG_NET_FLOW_LIMIT
4549 struct sd_flow_limit *fl;
4550 struct softnet_data *sd;
4551 unsigned int old_flow, new_flow;
4552
4553 if (qlen < (netdev_max_backlog >> 1))
4554 return false;
4555
903ceff7 4556 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4557
4558 rcu_read_lock();
4559 fl = rcu_dereference(sd->flow_limit);
4560 if (fl) {
3958afa1 4561 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4562 old_flow = fl->history[fl->history_head];
4563 fl->history[fl->history_head] = new_flow;
4564
4565 fl->history_head++;
4566 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4567
4568 if (likely(fl->buckets[old_flow]))
4569 fl->buckets[old_flow]--;
4570
4571 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4572 fl->count++;
4573 rcu_read_unlock();
4574 return true;
4575 }
4576 }
4577 rcu_read_unlock();
4578#endif
4579 return false;
4580}
4581
0a9627f2
TH
4582/*
4583 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4584 * queue (may be a remote CPU queue).
4585 */
fec5e652
TH
4586static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4587 unsigned int *qtail)
0a9627f2 4588{
44f0bd40 4589 enum skb_drop_reason reason;
e36fa2f7 4590 struct softnet_data *sd;
0a9627f2 4591 unsigned long flags;
99bbc707 4592 unsigned int qlen;
0a9627f2 4593
44f0bd40 4594 reason = SKB_DROP_REASON_NOT_SPECIFIED;
e36fa2f7 4595 sd = &per_cpu(softnet_data, cpu);
0a9627f2 4596
e722db8d 4597 rps_lock_irqsave(sd, &flags);
e9e4dd32
JA
4598 if (!netif_running(skb->dev))
4599 goto drop;
99bbc707
WB
4600 qlen = skb_queue_len(&sd->input_pkt_queue);
4601 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4602 if (qlen) {
0a9627f2 4603enqueue:
e36fa2f7 4604 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4605 input_queue_tail_incr_save(sd, qtail);
e722db8d 4606 rps_unlock_irq_restore(sd, &flags);
0a9627f2
TH
4607 return NET_RX_SUCCESS;
4608 }
4609
ebda37c2
ED
4610 /* Schedule NAPI for backlog device
4611 * We can use non atomic operation since we own the queue lock
4612 */
e722db8d
SAS
4613 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4614 napi_schedule_rps(sd);
0a9627f2
TH
4615 goto enqueue;
4616 }
44f0bd40 4617 reason = SKB_DROP_REASON_CPU_BACKLOG;
0a9627f2 4618
e9e4dd32 4619drop:
dee42870 4620 sd->dropped++;
e722db8d 4621 rps_unlock_irq_restore(sd, &flags);
0a9627f2 4622
625788b5 4623 dev_core_stats_rx_dropped_inc(skb->dev);
44f0bd40 4624 kfree_skb_reason(skb, reason);
0a9627f2
TH
4625 return NET_RX_DROP;
4626}
1da177e4 4627
e817f856
JDB
4628static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4629{
4630 struct net_device *dev = skb->dev;
4631 struct netdev_rx_queue *rxqueue;
4632
4633 rxqueue = dev->_rx;
4634
4635 if (skb_rx_queue_recorded(skb)) {
4636 u16 index = skb_get_rx_queue(skb);
4637
4638 if (unlikely(index >= dev->real_num_rx_queues)) {
4639 WARN_ONCE(dev->real_num_rx_queues > 1,
4640 "%s received packet on queue %u, but number "
4641 "of RX queues is %u\n",
4642 dev->name, index, dev->real_num_rx_queues);
4643
4644 return rxqueue; /* Return first rxqueue */
4645 }
4646 rxqueue += index;
4647 }
4648 return rxqueue;
4649}
4650
fe21cb91
KKD
4651u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4652 struct bpf_prog *xdp_prog)
d4455169 4653{
be9df4af 4654 void *orig_data, *orig_data_end, *hard_start;
e817f856 4655 struct netdev_rx_queue *rxqueue;
22b60343 4656 bool orig_bcast, orig_host;
43b5169d 4657 u32 mac_len, frame_sz;
29724956
JDB
4658 __be16 orig_eth_type;
4659 struct ethhdr *eth;
fe21cb91 4660 u32 metalen, act;
be9df4af 4661 int off;
d4455169 4662
d4455169
JF
4663 /* The XDP program wants to see the packet starting at the MAC
4664 * header.
4665 */
4666 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4667 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4668
4669 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4670 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4671 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4672
be9df4af
LB
4673 rxqueue = netif_get_rxqueue(skb);
4674 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4675 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4676 skb_headlen(skb) + mac_len, true);
a075767b 4677
02671e23
BT
4678 orig_data_end = xdp->data_end;
4679 orig_data = xdp->data;
29724956 4680 eth = (struct ethhdr *)xdp->data;
22b60343 4681 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
29724956
JDB
4682 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4683 orig_eth_type = eth->h_proto;
d4455169 4684
02671e23 4685 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4686
065af355 4687 /* check if bpf_xdp_adjust_head was used */
02671e23 4688 off = xdp->data - orig_data;
065af355
JDB
4689 if (off) {
4690 if (off > 0)
4691 __skb_pull(skb, off);
4692 else if (off < 0)
4693 __skb_push(skb, -off);
4694
4695 skb->mac_header += off;
4696 skb_reset_network_header(skb);
4697 }
d4455169 4698
a075767b
JDB
4699 /* check if bpf_xdp_adjust_tail was used */
4700 off = xdp->data_end - orig_data_end;
f7613120 4701 if (off != 0) {
02671e23 4702 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4703 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4704 }
198d83bb 4705
29724956
JDB
4706 /* check if XDP changed eth hdr such SKB needs update */
4707 eth = (struct ethhdr *)xdp->data;
4708 if ((orig_eth_type != eth->h_proto) ||
22b60343
MW
4709 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4710 skb->dev->dev_addr)) ||
29724956
JDB
4711 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4712 __skb_push(skb, ETH_HLEN);
22b60343 4713 skb->pkt_type = PACKET_HOST;
29724956
JDB
4714 skb->protocol = eth_type_trans(skb, skb->dev);
4715 }
4716
fe21cb91
KKD
4717 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4718 * before calling us again on redirect path. We do not call do_redirect
4719 * as we leave that up to the caller.
4720 *
4721 * Caller is responsible for managing lifetime of skb (i.e. calling
4722 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4723 */
d4455169 4724 switch (act) {
6103aa96 4725 case XDP_REDIRECT:
d4455169
JF
4726 case XDP_TX:
4727 __skb_push(skb, mac_len);
de8f3a83 4728 break;
d4455169 4729 case XDP_PASS:
02671e23 4730 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4731 if (metalen)
4732 skb_metadata_set(skb, metalen);
d4455169 4733 break;
fe21cb91
KKD
4734 }
4735
4736 return act;
4737}
4738
4739static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4740 struct xdp_buff *xdp,
4741 struct bpf_prog *xdp_prog)
4742{
4743 u32 act = XDP_DROP;
4744
4745 /* Reinjected packets coming from act_mirred or similar should
4746 * not get XDP generic processing.
4747 */
4748 if (skb_is_redirected(skb))
4749 return XDP_PASS;
4750
4751 /* XDP packets must be linear and must have sufficient headroom
4752 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4753 * native XDP provides, thus we need to do it here as well.
4754 */
4755 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4756 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4757 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4758 int troom = skb->tail + skb->data_len - skb->end;
4759
4760 /* In case we have to go down the path and also linearize,
4761 * then lets do the pskb_expand_head() work just once here.
4762 */
4763 if (pskb_expand_head(skb,
4764 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4765 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4766 goto do_drop;
4767 if (skb_linearize(skb))
4768 goto do_drop;
4769 }
4770
4771 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4772 switch (act) {
4773 case XDP_REDIRECT:
4774 case XDP_TX:
4775 case XDP_PASS:
4776 break;
d4455169 4777 default:
c8064e5b 4778 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
df561f66 4779 fallthrough;
d4455169
JF
4780 case XDP_ABORTED:
4781 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4782 fallthrough;
d4455169
JF
4783 case XDP_DROP:
4784 do_drop:
4785 kfree_skb(skb);
4786 break;
4787 }
4788
4789 return act;
4790}
4791
4792/* When doing generic XDP we have to bypass the qdisc layer and the
4793 * network taps in order to match in-driver-XDP behavior.
4794 */
7c497478 4795void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4796{
4797 struct net_device *dev = skb->dev;
4798 struct netdev_queue *txq;
4799 bool free_skb = true;
4800 int cpu, rc;
4801
4bd97d51 4802 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4803 cpu = smp_processor_id();
4804 HARD_TX_LOCK(dev, txq, cpu);
4805 if (!netif_xmit_stopped(txq)) {
4806 rc = netdev_start_xmit(skb, dev, txq, 0);
4807 if (dev_xmit_complete(rc))
4808 free_skb = false;
4809 }
4810 HARD_TX_UNLOCK(dev, txq);
4811 if (free_skb) {
4812 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4813 kfree_skb(skb);
4814 }
4815}
4816
02786475 4817static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4818
7c497478 4819int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4820{
d4455169 4821 if (xdp_prog) {
02671e23
BT
4822 struct xdp_buff xdp;
4823 u32 act;
6103aa96 4824 int err;
d4455169 4825
02671e23 4826 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4827 if (act != XDP_PASS) {
6103aa96
JF
4828 switch (act) {
4829 case XDP_REDIRECT:
2facaad6 4830 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4831 &xdp, xdp_prog);
6103aa96
JF
4832 if (err)
4833 goto out_redir;
02671e23 4834 break;
6103aa96 4835 case XDP_TX:
d4455169 4836 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4837 break;
4838 }
d4455169
JF
4839 return XDP_DROP;
4840 }
4841 }
4842 return XDP_PASS;
6103aa96 4843out_redir:
7e726ed8 4844 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
6103aa96 4845 return XDP_DROP;
d4455169 4846}
7c497478 4847EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4848
ae78dbfa 4849static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4850{
b0e28f1e 4851 int ret;
1da177e4 4852
588f0330 4853 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4854
cf66ba58 4855 trace_netif_rx(skb);
d4455169 4856
df334545 4857#ifdef CONFIG_RPS
dc05360f 4858 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4859 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4860 int cpu;
4861
4862 rcu_read_lock();
fec5e652
TH
4863
4864 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4865 if (cpu < 0)
4866 cpu = smp_processor_id();
fec5e652
TH
4867
4868 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4869
b0e28f1e 4870 rcu_read_unlock();
adc9300e
ED
4871 } else
4872#endif
fec5e652
TH
4873 {
4874 unsigned int qtail;
f4563a75 4875
f234ae29 4876 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
fec5e652 4877 }
b0e28f1e 4878 return ret;
1da177e4 4879}
ae78dbfa 4880
baebdf48
SAS
4881/**
4882 * __netif_rx - Slightly optimized version of netif_rx
4883 * @skb: buffer to post
4884 *
4885 * This behaves as netif_rx except that it does not disable bottom halves.
4886 * As a result this function may only be invoked from the interrupt context
4887 * (either hard or soft interrupt).
4888 */
4889int __netif_rx(struct sk_buff *skb)
4890{
4891 int ret;
4892
351bdbb6 4893 lockdep_assert_once(hardirq_count() | softirq_count());
baebdf48
SAS
4894
4895 trace_netif_rx_entry(skb);
4896 ret = netif_rx_internal(skb);
4897 trace_netif_rx_exit(ret);
4898 return ret;
4899}
4900EXPORT_SYMBOL(__netif_rx);
4901
ae78dbfa
BH
4902/**
4903 * netif_rx - post buffer to the network code
4904 * @skb: buffer to post
4905 *
4906 * This function receives a packet from a device driver and queues it for
baebdf48
SAS
4907 * the upper (protocol) levels to process via the backlog NAPI device. It
4908 * always succeeds. The buffer may be dropped during processing for
4909 * congestion control or by the protocol layers.
4910 * The network buffer is passed via the backlog NAPI device. Modern NIC
4911 * driver should use NAPI and GRO.
167053f8
SAS
4912 * This function can used from interrupt and from process context. The
4913 * caller from process context must not disable interrupts before invoking
4914 * this function.
ae78dbfa
BH
4915 *
4916 * return values:
4917 * NET_RX_SUCCESS (no congestion)
4918 * NET_RX_DROP (packet was dropped)
4919 *
4920 */
ae78dbfa
BH
4921int netif_rx(struct sk_buff *skb)
4922{
167053f8 4923 bool need_bh_off = !(hardirq_count() | softirq_count());
b0e3f1bd
GB
4924 int ret;
4925
167053f8
SAS
4926 if (need_bh_off)
4927 local_bh_disable();
ae78dbfa 4928 trace_netif_rx_entry(skb);
b0e3f1bd
GB
4929 ret = netif_rx_internal(skb);
4930 trace_netif_rx_exit(ret);
167053f8
SAS
4931 if (need_bh_off)
4932 local_bh_enable();
b0e3f1bd 4933 return ret;
ae78dbfa 4934}
d1b19dff 4935EXPORT_SYMBOL(netif_rx);
1da177e4 4936
0766f788 4937static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4938{
903ceff7 4939 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4940
4941 if (sd->completion_queue) {
4942 struct sk_buff *clist;
4943
4944 local_irq_disable();
4945 clist = sd->completion_queue;
4946 sd->completion_queue = NULL;
4947 local_irq_enable();
4948
4949 while (clist) {
4950 struct sk_buff *skb = clist;
f4563a75 4951
1da177e4
LT
4952 clist = clist->next;
4953
63354797 4954 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4955 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4956 trace_consume_skb(skb);
4957 else
c504e5c2
MD
4958 trace_kfree_skb(skb, net_tx_action,
4959 SKB_DROP_REASON_NOT_SPECIFIED);
15fad714
JDB
4960
4961 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4962 __kfree_skb(skb);
4963 else
4964 __kfree_skb_defer(skb);
1da177e4
LT
4965 }
4966 }
4967
4968 if (sd->output_queue) {
37437bb2 4969 struct Qdisc *head;
1da177e4
LT
4970
4971 local_irq_disable();
4972 head = sd->output_queue;
4973 sd->output_queue = NULL;
a9cbd588 4974 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4975 local_irq_enable();
4976
102b55ee
YL
4977 rcu_read_lock();
4978
1da177e4 4979 while (head) {
37437bb2 4980 struct Qdisc *q = head;
6b3ba914 4981 spinlock_t *root_lock = NULL;
37437bb2 4982
1da177e4
LT
4983 head = head->next_sched;
4984
3bcb846c
ED
4985 /* We need to make sure head->next_sched is read
4986 * before clearing __QDISC_STATE_SCHED
4987 */
4988 smp_mb__before_atomic();
102b55ee
YL
4989
4990 if (!(q->flags & TCQ_F_NOLOCK)) {
4991 root_lock = qdisc_lock(q);
4992 spin_lock(root_lock);
4993 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4994 &q->state))) {
4995 /* There is a synchronize_net() between
4996 * STATE_DEACTIVATED flag being set and
4997 * qdisc_reset()/some_qdisc_is_busy() in
4998 * dev_deactivate(), so we can safely bail out
4999 * early here to avoid data race between
5000 * qdisc_deactivate() and some_qdisc_is_busy()
5001 * for lockless qdisc.
5002 */
5003 clear_bit(__QDISC_STATE_SCHED, &q->state);
5004 continue;
5005 }
5006
3bcb846c
ED
5007 clear_bit(__QDISC_STATE_SCHED, &q->state);
5008 qdisc_run(q);
6b3ba914
JF
5009 if (root_lock)
5010 spin_unlock(root_lock);
1da177e4 5011 }
102b55ee
YL
5012
5013 rcu_read_unlock();
1da177e4 5014 }
f53c7239
SK
5015
5016 xfrm_dev_backlog(sd);
1da177e4
LT
5017}
5018
181402a5 5019#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
5020/* This hook is defined here for ATM LANE */
5021int (*br_fdb_test_addr_hook)(struct net_device *dev,
5022 unsigned char *addr) __read_mostly;
4fb019a0 5023EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 5024#endif
1da177e4 5025
1f211a1b
DB
5026static inline struct sk_buff *
5027sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 5028 struct net_device *orig_dev, bool *another)
f697c3e8 5029{
e7582bab 5030#ifdef CONFIG_NET_CLS_ACT
46209401 5031 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 5032 struct tcf_result cl_res;
24824a09 5033
c9e99fd0
DB
5034 /* If there's at least one ingress present somewhere (so
5035 * we get here via enabled static key), remaining devices
5036 * that are not configured with an ingress qdisc will bail
d2788d34 5037 * out here.
c9e99fd0 5038 */
46209401 5039 if (!miniq)
4577139b 5040 return skb;
46209401 5041
f697c3e8
HX
5042 if (*pt_prev) {
5043 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5044 *pt_prev = NULL;
1da177e4
LT
5045 }
5046
3365495c 5047 qdisc_skb_cb(skb)->pkt_len = skb->len;
ec624fe7
PB
5048 tc_skb_cb(skb)->mru = 0;
5049 tc_skb_cb(skb)->post_ct = false;
8dc07fdb 5050 skb->tc_at_ingress = 1;
46209401 5051 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5052
3aa26055 5053 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
5054 case TC_ACT_OK:
5055 case TC_ACT_RECLASSIFY:
5056 skb->tc_index = TC_H_MIN(cl_res.classid);
5057 break;
5058 case TC_ACT_SHOT:
46209401 5059 mini_qdisc_qstats_cpu_drop(miniq);
a568aff2 5060 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
8a3a4c6e 5061 return NULL;
d2788d34
DB
5062 case TC_ACT_STOLEN:
5063 case TC_ACT_QUEUED:
e25ea21f 5064 case TC_ACT_TRAP:
8a3a4c6e 5065 consume_skb(skb);
d2788d34 5066 return NULL;
27b29f63
AS
5067 case TC_ACT_REDIRECT:
5068 /* skb_mac_header check was done by cls/act_bpf, so
5069 * we can safely push the L2 header back before
5070 * redirecting to another netdev
5071 */
5072 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5073 if (skb_do_redirect(skb) == -EAGAIN) {
5074 __skb_pull(skb, skb->mac_len);
5075 *another = true;
5076 break;
5077 }
27b29f63 5078 return NULL;
720f22fe 5079 case TC_ACT_CONSUMED:
cd11b164 5080 return NULL;
d2788d34
DB
5081 default:
5082 break;
f697c3e8 5083 }
e7582bab 5084#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5085 return skb;
5086}
1da177e4 5087
24b27fc4
MB
5088/**
5089 * netdev_is_rx_handler_busy - check if receive handler is registered
5090 * @dev: device to check
5091 *
5092 * Check if a receive handler is already registered for a given device.
5093 * Return true if there one.
5094 *
5095 * The caller must hold the rtnl_mutex.
5096 */
5097bool netdev_is_rx_handler_busy(struct net_device *dev)
5098{
5099 ASSERT_RTNL();
5100 return dev && rtnl_dereference(dev->rx_handler);
5101}
5102EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5103
ab95bfe0
JP
5104/**
5105 * netdev_rx_handler_register - register receive handler
5106 * @dev: device to register a handler for
5107 * @rx_handler: receive handler to register
93e2c32b 5108 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5109 *
e227867f 5110 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5111 * called from __netif_receive_skb. A negative errno code is returned
5112 * on a failure.
5113 *
5114 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5115 *
5116 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5117 */
5118int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5119 rx_handler_func_t *rx_handler,
5120 void *rx_handler_data)
ab95bfe0 5121{
1b7cd004 5122 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5123 return -EBUSY;
5124
f5426250
PA
5125 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5126 return -EINVAL;
5127
00cfec37 5128 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5129 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5130 rcu_assign_pointer(dev->rx_handler, rx_handler);
5131
5132 return 0;
5133}
5134EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5135
5136/**
5137 * netdev_rx_handler_unregister - unregister receive handler
5138 * @dev: device to unregister a handler from
5139 *
166ec369 5140 * Unregister a receive handler from a device.
ab95bfe0
JP
5141 *
5142 * The caller must hold the rtnl_mutex.
5143 */
5144void netdev_rx_handler_unregister(struct net_device *dev)
5145{
5146
5147 ASSERT_RTNL();
a9b3cd7f 5148 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5149 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5150 * section has a guarantee to see a non NULL rx_handler_data
5151 * as well.
5152 */
5153 synchronize_net();
a9b3cd7f 5154 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5155}
5156EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5157
b4b9e355
MG
5158/*
5159 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5160 * the special handling of PFMEMALLOC skbs.
5161 */
5162static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5163{
5164 switch (skb->protocol) {
2b8837ae
JP
5165 case htons(ETH_P_ARP):
5166 case htons(ETH_P_IP):
5167 case htons(ETH_P_IPV6):
5168 case htons(ETH_P_8021Q):
5169 case htons(ETH_P_8021AD):
b4b9e355
MG
5170 return true;
5171 default:
5172 return false;
5173 }
5174}
5175
e687ad60
PN
5176static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5177 int *ret, struct net_device *orig_dev)
5178{
5179 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5180 int ingress_retval;
5181
e687ad60
PN
5182 if (*pt_prev) {
5183 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5184 *pt_prev = NULL;
5185 }
5186
2c1e2703
AC
5187 rcu_read_lock();
5188 ingress_retval = nf_hook_ingress(skb);
5189 rcu_read_unlock();
5190 return ingress_retval;
e687ad60
PN
5191 }
5192 return 0;
5193}
e687ad60 5194
c0bbbdc3 5195static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5196 struct packet_type **ppt_prev)
1da177e4
LT
5197{
5198 struct packet_type *ptype, *pt_prev;
ab95bfe0 5199 rx_handler_func_t *rx_handler;
c0bbbdc3 5200 struct sk_buff *skb = *pskb;
f2ccd8fa 5201 struct net_device *orig_dev;
8a4eb573 5202 bool deliver_exact = false;
1da177e4 5203 int ret = NET_RX_DROP;
252e3346 5204 __be16 type;
1da177e4 5205
588f0330 5206 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5207
cf66ba58 5208 trace_netif_receive_skb(skb);
9b22ea56 5209
cc9bd5ce 5210 orig_dev = skb->dev;
8f903c70 5211
c1d2bbe1 5212 skb_reset_network_header(skb);
fda55eca
ED
5213 if (!skb_transport_header_was_set(skb))
5214 skb_reset_transport_header(skb);
0b5c9db1 5215 skb_reset_mac_len(skb);
1da177e4
LT
5216
5217 pt_prev = NULL;
5218
63d8ea7f 5219another_round:
b6858177 5220 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5221
5222 __this_cpu_inc(softnet_data.processed);
5223
458bf2f2
SH
5224 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5225 int ret2;
5226
2b4cd14f 5227 migrate_disable();
458bf2f2 5228 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
2b4cd14f 5229 migrate_enable();
458bf2f2 5230
c0bbbdc3
BS
5231 if (ret2 != XDP_PASS) {
5232 ret = NET_RX_DROP;
5233 goto out;
5234 }
458bf2f2
SH
5235 }
5236
324cefaf 5237 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5238 skb = skb_vlan_untag(skb);
bcc6d479 5239 if (unlikely(!skb))
2c17d27c 5240 goto out;
bcc6d479
JP
5241 }
5242
cd14e9b7 5243 if (skb_skip_tc_classify(skb))
e7246e12 5244 goto skip_classify;
1da177e4 5245
9754e293 5246 if (pfmemalloc)
b4b9e355
MG
5247 goto skip_taps;
5248
1da177e4 5249 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5250 if (pt_prev)
5251 ret = deliver_skb(skb, pt_prev, orig_dev);
5252 pt_prev = ptype;
5253 }
5254
5255 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5256 if (pt_prev)
5257 ret = deliver_skb(skb, pt_prev, orig_dev);
5258 pt_prev = ptype;
1da177e4
LT
5259 }
5260
b4b9e355 5261skip_taps:
1cf51900 5262#ifdef CONFIG_NET_INGRESS
aabf6772 5263 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5264 bool another = false;
5265
42df6e1d 5266 nf_skip_egress(skb, true);
9aa1206e
DB
5267 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5268 &another);
5269 if (another)
5270 goto another_round;
4577139b 5271 if (!skb)
2c17d27c 5272 goto out;
e687ad60 5273
42df6e1d 5274 nf_skip_egress(skb, false);
e687ad60 5275 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5276 goto out;
cd14e9b7 5277 }
1cf51900 5278#endif
2c64605b 5279 skb_reset_redirect(skb);
e7246e12 5280skip_classify:
9754e293 5281 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5282 goto drop;
5283
df8a39de 5284 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5285 if (pt_prev) {
5286 ret = deliver_skb(skb, pt_prev, orig_dev);
5287 pt_prev = NULL;
5288 }
48cc32d3 5289 if (vlan_do_receive(&skb))
2425717b
JF
5290 goto another_round;
5291 else if (unlikely(!skb))
2c17d27c 5292 goto out;
2425717b
JF
5293 }
5294
48cc32d3 5295 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5296 if (rx_handler) {
5297 if (pt_prev) {
5298 ret = deliver_skb(skb, pt_prev, orig_dev);
5299 pt_prev = NULL;
5300 }
8a4eb573
JP
5301 switch (rx_handler(&skb)) {
5302 case RX_HANDLER_CONSUMED:
3bc1b1ad 5303 ret = NET_RX_SUCCESS;
2c17d27c 5304 goto out;
8a4eb573 5305 case RX_HANDLER_ANOTHER:
63d8ea7f 5306 goto another_round;
8a4eb573
JP
5307 case RX_HANDLER_EXACT:
5308 deliver_exact = true;
b1866bff 5309 break;
8a4eb573
JP
5310 case RX_HANDLER_PASS:
5311 break;
5312 default:
5313 BUG();
5314 }
ab95bfe0 5315 }
1da177e4 5316
b14a9fc4 5317 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5318check_vlan_id:
5319 if (skb_vlan_tag_get_id(skb)) {
5320 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5321 * find vlan device.
5322 */
d4b812de 5323 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5324 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5325 /* Outer header is 802.1P with vlan 0, inner header is
5326 * 802.1Q or 802.1AD and vlan_do_receive() above could
5327 * not find vlan dev for vlan id 0.
5328 */
5329 __vlan_hwaccel_clear_tag(skb);
5330 skb = skb_vlan_untag(skb);
5331 if (unlikely(!skb))
5332 goto out;
5333 if (vlan_do_receive(&skb))
5334 /* After stripping off 802.1P header with vlan 0
5335 * vlan dev is found for inner header.
5336 */
5337 goto another_round;
5338 else if (unlikely(!skb))
5339 goto out;
5340 else
5341 /* We have stripped outer 802.1P vlan 0 header.
5342 * But could not find vlan dev.
5343 * check again for vlan id to set OTHERHOST.
5344 */
5345 goto check_vlan_id;
5346 }
d4b812de
ED
5347 /* Note: we might in the future use prio bits
5348 * and set skb->priority like in vlan_do_receive()
5349 * For the time being, just ignore Priority Code Point
5350 */
b1817524 5351 __vlan_hwaccel_clear_tag(skb);
d4b812de 5352 }
48cc32d3 5353
7866a621
SN
5354 type = skb->protocol;
5355
63d8ea7f 5356 /* deliver only exact match when indicated */
7866a621
SN
5357 if (likely(!deliver_exact)) {
5358 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5359 &ptype_base[ntohs(type) &
5360 PTYPE_HASH_MASK]);
5361 }
1f3c8804 5362
7866a621
SN
5363 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5364 &orig_dev->ptype_specific);
5365
5366 if (unlikely(skb->dev != orig_dev)) {
5367 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5368 &skb->dev->ptype_specific);
1da177e4
LT
5369 }
5370
5371 if (pt_prev) {
1f8b977a 5372 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5373 goto drop;
88eb1944 5374 *ppt_prev = pt_prev;
1da177e4 5375 } else {
b4b9e355 5376drop:
6c2728b7 5377 if (!deliver_exact) {
625788b5 5378 dev_core_stats_rx_dropped_inc(skb->dev);
6c2728b7
MD
5379 kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5380 } else {
625788b5 5381 dev_core_stats_rx_nohandler_inc(skb->dev);
6c2728b7
MD
5382 kfree_skb(skb);
5383 }
1da177e4
LT
5384 /* Jamal, now you will not able to escape explaining
5385 * me how you were going to use this. :-)
5386 */
5387 ret = NET_RX_DROP;
5388 }
5389
2c17d27c 5390out:
c0bbbdc3
BS
5391 /* The invariant here is that if *ppt_prev is not NULL
5392 * then skb should also be non-NULL.
5393 *
5394 * Apparently *ppt_prev assignment above holds this invariant due to
5395 * skb dereferencing near it.
5396 */
5397 *pskb = skb;
9754e293
DM
5398 return ret;
5399}
5400
88eb1944
EC
5401static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5402{
5403 struct net_device *orig_dev = skb->dev;
5404 struct packet_type *pt_prev = NULL;
5405 int ret;
5406
c0bbbdc3 5407 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5408 if (pt_prev)
f5737cba
PA
5409 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5410 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5411 return ret;
5412}
5413
1c601d82
JDB
5414/**
5415 * netif_receive_skb_core - special purpose version of netif_receive_skb
5416 * @skb: buffer to process
5417 *
5418 * More direct receive version of netif_receive_skb(). It should
5419 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5420 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5421 *
5422 * This function may only be called from softirq context and interrupts
5423 * should be enabled.
5424 *
5425 * Return values (usually ignored):
5426 * NET_RX_SUCCESS: no congestion
5427 * NET_RX_DROP: packet was dropped
5428 */
5429int netif_receive_skb_core(struct sk_buff *skb)
5430{
5431 int ret;
5432
5433 rcu_read_lock();
88eb1944 5434 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5435 rcu_read_unlock();
5436
5437 return ret;
5438}
5439EXPORT_SYMBOL(netif_receive_skb_core);
5440
88eb1944
EC
5441static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5442 struct packet_type *pt_prev,
5443 struct net_device *orig_dev)
4ce0017a
EC
5444{
5445 struct sk_buff *skb, *next;
5446
88eb1944
EC
5447 if (!pt_prev)
5448 return;
5449 if (list_empty(head))
5450 return;
17266ee9 5451 if (pt_prev->list_func != NULL)
fdf71426
PA
5452 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5453 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5454 else
9a5a90d1
AL
5455 list_for_each_entry_safe(skb, next, head, list) {
5456 skb_list_del_init(skb);
fdf71426 5457 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5458 }
88eb1944
EC
5459}
5460
5461static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5462{
5463 /* Fast-path assumptions:
5464 * - There is no RX handler.
5465 * - Only one packet_type matches.
5466 * If either of these fails, we will end up doing some per-packet
5467 * processing in-line, then handling the 'last ptype' for the whole
5468 * sublist. This can't cause out-of-order delivery to any single ptype,
5469 * because the 'last ptype' must be constant across the sublist, and all
5470 * other ptypes are handled per-packet.
5471 */
5472 /* Current (common) ptype of sublist */
5473 struct packet_type *pt_curr = NULL;
5474 /* Current (common) orig_dev of sublist */
5475 struct net_device *od_curr = NULL;
5476 struct list_head sublist;
5477 struct sk_buff *skb, *next;
5478
9af86f93 5479 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5480 list_for_each_entry_safe(skb, next, head, list) {
5481 struct net_device *orig_dev = skb->dev;
5482 struct packet_type *pt_prev = NULL;
5483
22f6bbb7 5484 skb_list_del_init(skb);
c0bbbdc3 5485 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5486 if (!pt_prev)
5487 continue;
88eb1944
EC
5488 if (pt_curr != pt_prev || od_curr != orig_dev) {
5489 /* dispatch old sublist */
88eb1944
EC
5490 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5491 /* start new sublist */
9af86f93 5492 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5493 pt_curr = pt_prev;
5494 od_curr = orig_dev;
5495 }
9af86f93 5496 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5497 }
5498
5499 /* dispatch final sublist */
9af86f93 5500 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5501}
5502
9754e293
DM
5503static int __netif_receive_skb(struct sk_buff *skb)
5504{
5505 int ret;
5506
5507 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5508 unsigned int noreclaim_flag;
9754e293
DM
5509
5510 /*
5511 * PFMEMALLOC skbs are special, they should
5512 * - be delivered to SOCK_MEMALLOC sockets only
5513 * - stay away from userspace
5514 * - have bounded memory usage
5515 *
5516 * Use PF_MEMALLOC as this saves us from propagating the allocation
5517 * context down to all allocation sites.
5518 */
f1083048 5519 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5520 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5521 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5522 } else
88eb1944 5523 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5524
1da177e4
LT
5525 return ret;
5526}
0a9627f2 5527
4ce0017a
EC
5528static void __netif_receive_skb_list(struct list_head *head)
5529{
5530 unsigned long noreclaim_flag = 0;
5531 struct sk_buff *skb, *next;
5532 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5533
5534 list_for_each_entry_safe(skb, next, head, list) {
5535 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5536 struct list_head sublist;
5537
5538 /* Handle the previous sublist */
5539 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5540 if (!list_empty(&sublist))
5541 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5542 pfmemalloc = !pfmemalloc;
5543 /* See comments in __netif_receive_skb */
5544 if (pfmemalloc)
5545 noreclaim_flag = memalloc_noreclaim_save();
5546 else
5547 memalloc_noreclaim_restore(noreclaim_flag);
5548 }
5549 }
5550 /* Handle the remaining sublist */
b9f463d6
EC
5551 if (!list_empty(head))
5552 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5553 /* Restore pflags */
5554 if (pfmemalloc)
5555 memalloc_noreclaim_restore(noreclaim_flag);
5556}
5557
f4e63525 5558static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5559{
58038695 5560 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5561 struct bpf_prog *new = xdp->prog;
5562 int ret = 0;
5563
5564 switch (xdp->command) {
58038695 5565 case XDP_SETUP_PROG:
b5cdae32
DM
5566 rcu_assign_pointer(dev->xdp_prog, new);
5567 if (old)
5568 bpf_prog_put(old);
5569
5570 if (old && !new) {
02786475 5571 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5572 } else if (new && !old) {
02786475 5573 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5574 dev_disable_lro(dev);
56f5aa77 5575 dev_disable_gro_hw(dev);
b5cdae32
DM
5576 }
5577 break;
b5cdae32 5578
b5cdae32
DM
5579 default:
5580 ret = -EINVAL;
5581 break;
5582 }
5583
5584 return ret;
5585}
5586
ae78dbfa 5587static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5588{
2c17d27c
JA
5589 int ret;
5590
588f0330 5591 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5592
c1f19b51
RC
5593 if (skb_defer_rx_timestamp(skb))
5594 return NET_RX_SUCCESS;
5595
bbbe211c 5596 rcu_read_lock();
df334545 5597#ifdef CONFIG_RPS
dc05360f 5598 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5599 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5600 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5601
3b098e2d
ED
5602 if (cpu >= 0) {
5603 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5604 rcu_read_unlock();
adc9300e 5605 return ret;
3b098e2d 5606 }
fec5e652 5607 }
1e94d72f 5608#endif
2c17d27c
JA
5609 ret = __netif_receive_skb(skb);
5610 rcu_read_unlock();
5611 return ret;
0a9627f2 5612}
ae78dbfa 5613
587652bb 5614void netif_receive_skb_list_internal(struct list_head *head)
7da517a3 5615{
7da517a3 5616 struct sk_buff *skb, *next;
8c057efa 5617 struct list_head sublist;
7da517a3 5618
8c057efa 5619 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5620 list_for_each_entry_safe(skb, next, head, list) {
5621 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5622 skb_list_del_init(skb);
8c057efa
EC
5623 if (!skb_defer_rx_timestamp(skb))
5624 list_add_tail(&skb->list, &sublist);
7da517a3 5625 }
8c057efa 5626 list_splice_init(&sublist, head);
7da517a3 5627
7da517a3
EC
5628 rcu_read_lock();
5629#ifdef CONFIG_RPS
dc05360f 5630 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5631 list_for_each_entry_safe(skb, next, head, list) {
5632 struct rps_dev_flow voidflow, *rflow = &voidflow;
5633 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5634
5635 if (cpu >= 0) {
8c057efa 5636 /* Will be handled, remove from list */
22f6bbb7 5637 skb_list_del_init(skb);
8c057efa 5638 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5639 }
5640 }
5641 }
5642#endif
5643 __netif_receive_skb_list(head);
5644 rcu_read_unlock();
5645}
5646
ae78dbfa
BH
5647/**
5648 * netif_receive_skb - process receive buffer from network
5649 * @skb: buffer to process
5650 *
5651 * netif_receive_skb() is the main receive data processing function.
5652 * It always succeeds. The buffer may be dropped during processing
5653 * for congestion control or by the protocol layers.
5654 *
5655 * This function may only be called from softirq context and interrupts
5656 * should be enabled.
5657 *
5658 * Return values (usually ignored):
5659 * NET_RX_SUCCESS: no congestion
5660 * NET_RX_DROP: packet was dropped
5661 */
04eb4489 5662int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5663{
b0e3f1bd
GB
5664 int ret;
5665
ae78dbfa
BH
5666 trace_netif_receive_skb_entry(skb);
5667
b0e3f1bd
GB
5668 ret = netif_receive_skb_internal(skb);
5669 trace_netif_receive_skb_exit(ret);
5670
5671 return ret;
ae78dbfa 5672}
04eb4489 5673EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5674
f6ad8c1b
EC
5675/**
5676 * netif_receive_skb_list - process many receive buffers from network
5677 * @head: list of skbs to process.
5678 *
7da517a3
EC
5679 * Since return value of netif_receive_skb() is normally ignored, and
5680 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5681 *
5682 * This function may only be called from softirq context and interrupts
5683 * should be enabled.
5684 */
5685void netif_receive_skb_list(struct list_head *head)
5686{
7da517a3 5687 struct sk_buff *skb;
f6ad8c1b 5688
b9f463d6
EC
5689 if (list_empty(head))
5690 return;
b0e3f1bd
GB
5691 if (trace_netif_receive_skb_list_entry_enabled()) {
5692 list_for_each_entry(skb, head, list)
5693 trace_netif_receive_skb_list_entry(skb);
5694 }
7da517a3 5695 netif_receive_skb_list_internal(head);
b0e3f1bd 5696 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5697}
5698EXPORT_SYMBOL(netif_receive_skb_list);
5699
ce1e2a77 5700static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5701
5702/* Network device is going away, flush any packets still pending */
5703static void flush_backlog(struct work_struct *work)
6e583ce5 5704{
6e583ce5 5705 struct sk_buff *skb, *tmp;
145dd5f9
PA
5706 struct softnet_data *sd;
5707
5708 local_bh_disable();
5709 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5710
e722db8d 5711 rps_lock_irq_disable(sd);
6e7676c1 5712 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5713 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5714 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5715 dev_kfree_skb_irq(skb);
76cc8b13 5716 input_queue_head_incr(sd);
6e583ce5 5717 }
6e7676c1 5718 }
e722db8d 5719 rps_unlock_irq_enable(sd);
6e7676c1
CG
5720
5721 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5722 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5723 __skb_unlink(skb, &sd->process_queue);
5724 kfree_skb(skb);
76cc8b13 5725 input_queue_head_incr(sd);
6e7676c1
CG
5726 }
5727 }
145dd5f9
PA
5728 local_bh_enable();
5729}
5730
2de79ee2
PA
5731static bool flush_required(int cpu)
5732{
5733#if IS_ENABLED(CONFIG_RPS)
5734 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5735 bool do_flush;
5736
e722db8d 5737 rps_lock_irq_disable(sd);
2de79ee2
PA
5738
5739 /* as insertion into process_queue happens with the rps lock held,
5740 * process_queue access may race only with dequeue
5741 */
5742 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5743 !skb_queue_empty_lockless(&sd->process_queue);
e722db8d 5744 rps_unlock_irq_enable(sd);
2de79ee2
PA
5745
5746 return do_flush;
5747#endif
5748 /* without RPS we can't safely check input_pkt_queue: during a
5749 * concurrent remote skb_queue_splice() we can detect as empty both
5750 * input_pkt_queue and process_queue even if the latter could end-up
5751 * containing a lot of packets.
5752 */
5753 return true;
5754}
5755
41852497 5756static void flush_all_backlogs(void)
145dd5f9 5757{
2de79ee2 5758 static cpumask_t flush_cpus;
145dd5f9
PA
5759 unsigned int cpu;
5760
2de79ee2
PA
5761 /* since we are under rtnl lock protection we can use static data
5762 * for the cpumask and avoid allocating on stack the possibly
5763 * large mask
5764 */
5765 ASSERT_RTNL();
5766
372bbdd5 5767 cpus_read_lock();
145dd5f9 5768
2de79ee2
PA
5769 cpumask_clear(&flush_cpus);
5770 for_each_online_cpu(cpu) {
5771 if (flush_required(cpu)) {
5772 queue_work_on(cpu, system_highpri_wq,
5773 per_cpu_ptr(&flush_works, cpu));
5774 cpumask_set_cpu(cpu, &flush_cpus);
5775 }
5776 }
145dd5f9 5777
2de79ee2 5778 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5779 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5780 * them
5781 */
5782 for_each_cpu(cpu, &flush_cpus)
41852497 5783 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9 5784
372bbdd5 5785 cpus_read_unlock();
6e583ce5
SH
5786}
5787
773fc8f6 5788static void net_rps_send_ipi(struct softnet_data *remsd)
5789{
5790#ifdef CONFIG_RPS
5791 while (remsd) {
5792 struct softnet_data *next = remsd->rps_ipi_next;
5793
5794 if (cpu_online(remsd->cpu))
5795 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5796 remsd = next;
5797 }
5798#endif
5799}
5800
e326bed2 5801/*
855abcf0 5802 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5803 * Note: called with local irq disabled, but exits with local irq enabled.
5804 */
5805static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5806{
5807#ifdef CONFIG_RPS
5808 struct softnet_data *remsd = sd->rps_ipi_list;
5809
5810 if (remsd) {
5811 sd->rps_ipi_list = NULL;
5812
5813 local_irq_enable();
5814
5815 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5816 net_rps_send_ipi(remsd);
e326bed2
ED
5817 } else
5818#endif
5819 local_irq_enable();
5820}
5821
d75b1ade
ED
5822static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5823{
5824#ifdef CONFIG_RPS
5825 return sd->rps_ipi_list != NULL;
5826#else
5827 return false;
5828#endif
5829}
5830
bea3348e 5831static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5832{
eecfd7c4 5833 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5834 bool again = true;
5835 int work = 0;
1da177e4 5836
e326bed2
ED
5837 /* Check if we have pending ipi, its better to send them now,
5838 * not waiting net_rx_action() end.
5839 */
d75b1ade 5840 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5841 local_irq_disable();
5842 net_rps_action_and_irq_enable(sd);
5843 }
d75b1ade 5844
3d48b53f 5845 napi->weight = dev_rx_weight;
145dd5f9 5846 while (again) {
1da177e4 5847 struct sk_buff *skb;
6e7676c1
CG
5848
5849 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5850 rcu_read_lock();
6e7676c1 5851 __netif_receive_skb(skb);
2c17d27c 5852 rcu_read_unlock();
76cc8b13 5853 input_queue_head_incr(sd);
145dd5f9 5854 if (++work >= quota)
76cc8b13 5855 return work;
145dd5f9 5856
6e7676c1 5857 }
1da177e4 5858
e722db8d 5859 rps_lock_irq_disable(sd);
11ef7a89 5860 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5861 /*
5862 * Inline a custom version of __napi_complete().
5863 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5864 * and NAPI_STATE_SCHED is the only possible flag set
5865 * on backlog.
5866 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5867 * and we dont need an smp_mb() memory barrier.
5868 */
eecfd7c4 5869 napi->state = 0;
145dd5f9
PA
5870 again = false;
5871 } else {
5872 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5873 &sd->process_queue);
bea3348e 5874 }
e722db8d 5875 rps_unlock_irq_enable(sd);
6e7676c1 5876 }
1da177e4 5877
bea3348e
SH
5878 return work;
5879}
1da177e4 5880
bea3348e
SH
5881/**
5882 * __napi_schedule - schedule for receive
c4ea43c5 5883 * @n: entry to schedule
bea3348e 5884 *
bc9ad166
ED
5885 * The entry's receive function will be scheduled to run.
5886 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5887 */
b5606c2d 5888void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5889{
5890 unsigned long flags;
1da177e4 5891
bea3348e 5892 local_irq_save(flags);
903ceff7 5893 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5894 local_irq_restore(flags);
1da177e4 5895}
bea3348e
SH
5896EXPORT_SYMBOL(__napi_schedule);
5897
39e6c820
ED
5898/**
5899 * napi_schedule_prep - check if napi can be scheduled
5900 * @n: napi context
5901 *
5902 * Test if NAPI routine is already running, and if not mark
ee1a4c84 5903 * it as running. This is used as a condition variable to
39e6c820
ED
5904 * insure only one NAPI poll instance runs. We also make
5905 * sure there is no pending NAPI disable.
5906 */
5907bool napi_schedule_prep(struct napi_struct *n)
5908{
5909 unsigned long val, new;
5910
5911 do {
5912 val = READ_ONCE(n->state);
5913 if (unlikely(val & NAPIF_STATE_DISABLE))
5914 return false;
5915 new = val | NAPIF_STATE_SCHED;
5916
5917 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5918 * This was suggested by Alexander Duyck, as compiler
5919 * emits better code than :
5920 * if (val & NAPIF_STATE_SCHED)
5921 * new |= NAPIF_STATE_MISSED;
5922 */
5923 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5924 NAPIF_STATE_MISSED;
5925 } while (cmpxchg(&n->state, val, new) != val);
5926
5927 return !(val & NAPIF_STATE_SCHED);
5928}
5929EXPORT_SYMBOL(napi_schedule_prep);
5930
bc9ad166
ED
5931/**
5932 * __napi_schedule_irqoff - schedule for receive
5933 * @n: entry to schedule
5934 *
8380c81d
SAS
5935 * Variant of __napi_schedule() assuming hard irqs are masked.
5936 *
5937 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5938 * because the interrupt disabled assumption might not be true
5939 * due to force-threaded interrupts and spinlock substitution.
bc9ad166
ED
5940 */
5941void __napi_schedule_irqoff(struct napi_struct *n)
5942{
8380c81d
SAS
5943 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5944 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5945 else
5946 __napi_schedule(n);
bc9ad166
ED
5947}
5948EXPORT_SYMBOL(__napi_schedule_irqoff);
5949
364b6055 5950bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5951{
6f8b12d6
ED
5952 unsigned long flags, val, new, timeout = 0;
5953 bool ret = true;
d565b0a1
HX
5954
5955 /*
217f6974
ED
5956 * 1) Don't let napi dequeue from the cpu poll list
5957 * just in case its running on a different cpu.
5958 * 2) If we are busy polling, do nothing here, we have
5959 * the guarantee we will be called later.
d565b0a1 5960 */
217f6974
ED
5961 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5962 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5963 return false;
d565b0a1 5964
6f8b12d6
ED
5965 if (work_done) {
5966 if (n->gro_bitmask)
7e417a66
ED
5967 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5968 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
5969 }
5970 if (n->defer_hard_irqs_count > 0) {
5971 n->defer_hard_irqs_count--;
7e417a66 5972 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
5973 if (timeout)
5974 ret = false;
5975 }
5976 if (n->gro_bitmask) {
605108ac
PA
5977 /* When the NAPI instance uses a timeout and keeps postponing
5978 * it, we need to bound somehow the time packets are kept in
5979 * the GRO layer
5980 */
5981 napi_gro_flush(n, !!timeout);
3b47d303 5982 }
c8079432
MM
5983
5984 gro_normal_list(n);
5985
02c1602e 5986 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5987 /* If n->poll_list is not empty, we need to mask irqs */
5988 local_irq_save(flags);
02c1602e 5989 list_del_init(&n->poll_list);
d75b1ade
ED
5990 local_irq_restore(flags);
5991 }
39e6c820
ED
5992
5993 do {
5994 val = READ_ONCE(n->state);
5995
5996 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5997
7fd3253a 5998 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
cb038357 5999 NAPIF_STATE_SCHED_THREADED |
7fd3253a 6000 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6001
6002 /* If STATE_MISSED was set, leave STATE_SCHED set,
6003 * because we will call napi->poll() one more time.
6004 * This C code was suggested by Alexander Duyck to help gcc.
6005 */
6006 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6007 NAPIF_STATE_SCHED;
6008 } while (cmpxchg(&n->state, val, new) != val);
6009
6010 if (unlikely(val & NAPIF_STATE_MISSED)) {
6011 __napi_schedule(n);
6012 return false;
6013 }
6014
6f8b12d6
ED
6015 if (timeout)
6016 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6017 HRTIMER_MODE_REL_PINNED);
6018 return ret;
d565b0a1 6019}
3b47d303 6020EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6021
af12fa6e 6022/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6023static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6024{
6025 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6026 struct napi_struct *napi;
6027
6028 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6029 if (napi->napi_id == napi_id)
6030 return napi;
6031
6032 return NULL;
6033}
02d62e86
ED
6034
6035#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6036
7fd3253a 6037static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6038{
7fd3253a
BT
6039 if (!skip_schedule) {
6040 gro_normal_list(napi);
6041 __napi_schedule(napi);
6042 return;
6043 }
217f6974 6044
7fd3253a
BT
6045 if (napi->gro_bitmask) {
6046 /* flush too old packets
6047 * If HZ < 1000, flush all packets.
6048 */
6049 napi_gro_flush(napi, HZ >= 1000);
6050 }
217f6974 6051
7fd3253a
BT
6052 gro_normal_list(napi);
6053 clear_bit(NAPI_STATE_SCHED, &napi->state);
6054}
6055
7c951caf
BT
6056static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6057 u16 budget)
217f6974 6058{
7fd3253a
BT
6059 bool skip_schedule = false;
6060 unsigned long timeout;
217f6974
ED
6061 int rc;
6062
39e6c820
ED
6063 /* Busy polling means there is a high chance device driver hard irq
6064 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6065 * set in napi_schedule_prep().
6066 * Since we are about to call napi->poll() once more, we can safely
6067 * clear NAPI_STATE_MISSED.
6068 *
6069 * Note: x86 could use a single "lock and ..." instruction
6070 * to perform these two clear_bit()
6071 */
6072 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6073 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6074
6075 local_bh_disable();
6076
7fd3253a
BT
6077 if (prefer_busy_poll) {
6078 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6079 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6080 if (napi->defer_hard_irqs_count && timeout) {
6081 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6082 skip_schedule = true;
6083 }
6084 }
6085
217f6974
ED
6086 /* All we really want here is to re-enable device interrupts.
6087 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6088 */
7c951caf 6089 rc = napi->poll(napi, budget);
323ebb61
EC
6090 /* We can't gro_normal_list() here, because napi->poll() might have
6091 * rearmed the napi (napi_complete_done()) in which case it could
6092 * already be running on another CPU.
6093 */
7c951caf 6094 trace_napi_poll(napi, rc, budget);
217f6974 6095 netpoll_poll_unlock(have_poll_lock);
7c951caf 6096 if (rc == budget)
7fd3253a 6097 __busy_poll_stop(napi, skip_schedule);
217f6974 6098 local_bh_enable();
217f6974
ED
6099}
6100
7db6b048
SS
6101void napi_busy_loop(unsigned int napi_id,
6102 bool (*loop_end)(void *, unsigned long),
7c951caf 6103 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6104{
7db6b048 6105 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6106 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6107 void *have_poll_lock = NULL;
02d62e86 6108 struct napi_struct *napi;
217f6974
ED
6109
6110restart:
217f6974 6111 napi_poll = NULL;
02d62e86 6112
2a028ecb 6113 rcu_read_lock();
02d62e86 6114
545cd5e5 6115 napi = napi_by_id(napi_id);
02d62e86
ED
6116 if (!napi)
6117 goto out;
6118
217f6974
ED
6119 preempt_disable();
6120 for (;;) {
2b5cd0df
AD
6121 int work = 0;
6122
2a028ecb 6123 local_bh_disable();
217f6974
ED
6124 if (!napi_poll) {
6125 unsigned long val = READ_ONCE(napi->state);
6126
6127 /* If multiple threads are competing for this napi,
6128 * we avoid dirtying napi->state as much as we can.
6129 */
6130 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6131 NAPIF_STATE_IN_BUSY_POLL)) {
6132 if (prefer_busy_poll)
6133 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6134 goto count;
7fd3253a 6135 }
217f6974
ED
6136 if (cmpxchg(&napi->state, val,
6137 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6138 NAPIF_STATE_SCHED) != val) {
6139 if (prefer_busy_poll)
6140 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6141 goto count;
7fd3253a 6142 }
217f6974
ED
6143 have_poll_lock = netpoll_poll_lock(napi);
6144 napi_poll = napi->poll;
6145 }
7c951caf
BT
6146 work = napi_poll(napi, budget);
6147 trace_napi_poll(napi, work, budget);
323ebb61 6148 gro_normal_list(napi);
217f6974 6149count:
2b5cd0df 6150 if (work > 0)
7db6b048 6151 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6152 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6153 local_bh_enable();
02d62e86 6154
7db6b048 6155 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6156 break;
02d62e86 6157
217f6974
ED
6158 if (unlikely(need_resched())) {
6159 if (napi_poll)
7c951caf 6160 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6161 preempt_enable();
6162 rcu_read_unlock();
6163 cond_resched();
7db6b048 6164 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6165 return;
217f6974
ED
6166 goto restart;
6167 }
6cdf89b1 6168 cpu_relax();
217f6974
ED
6169 }
6170 if (napi_poll)
7c951caf 6171 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6172 preempt_enable();
02d62e86 6173out:
2a028ecb 6174 rcu_read_unlock();
02d62e86 6175}
7db6b048 6176EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6177
6178#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6179
149d6ad8 6180static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6181{
4d092dd2 6182 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6183 return;
af12fa6e 6184
52bd2d62 6185 spin_lock(&napi_hash_lock);
af12fa6e 6186
545cd5e5 6187 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6188 do {
545cd5e5
AD
6189 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6190 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6191 } while (napi_by_id(napi_gen_id));
6192 napi->napi_id = napi_gen_id;
af12fa6e 6193
52bd2d62
ED
6194 hlist_add_head_rcu(&napi->napi_hash_node,
6195 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6196
52bd2d62 6197 spin_unlock(&napi_hash_lock);
af12fa6e 6198}
af12fa6e
ET
6199
6200/* Warning : caller is responsible to make sure rcu grace period
6201 * is respected before freeing memory containing @napi
6202 */
5198d545 6203static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6204{
6205 spin_lock(&napi_hash_lock);
6206
4d092dd2 6207 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6208
af12fa6e
ET
6209 spin_unlock(&napi_hash_lock);
6210}
af12fa6e 6211
3b47d303
ED
6212static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6213{
6214 struct napi_struct *napi;
6215
6216 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6217
6218 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6219 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6220 */
6f8b12d6 6221 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6222 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6223 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6224 __napi_schedule_irqoff(napi);
7fd3253a 6225 }
3b47d303
ED
6226
6227 return HRTIMER_NORESTART;
6228}
6229
7c4ec749 6230static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6231{
07d78363
DM
6232 int i;
6233
6312fe77
LR
6234 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6235 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6236 napi->gro_hash[i].count = 0;
6237 }
7c4ec749
DM
6238 napi->gro_bitmask = 0;
6239}
6240
5fdd2f0e
WW
6241int dev_set_threaded(struct net_device *dev, bool threaded)
6242{
6243 struct napi_struct *napi;
6244 int err = 0;
6245
6246 if (dev->threaded == threaded)
6247 return 0;
6248
6249 if (threaded) {
6250 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6251 if (!napi->thread) {
6252 err = napi_kthread_create(napi);
6253 if (err) {
6254 threaded = false;
6255 break;
6256 }
6257 }
6258 }
6259 }
6260
6261 dev->threaded = threaded;
6262
6263 /* Make sure kthread is created before THREADED bit
6264 * is set.
6265 */
6266 smp_mb__before_atomic();
6267
6268 /* Setting/unsetting threaded mode on a napi might not immediately
6269 * take effect, if the current napi instance is actively being
6270 * polled. In this case, the switch between threaded mode and
6271 * softirq mode will happen in the next round of napi_schedule().
6272 * This should not cause hiccups/stalls to the live traffic.
6273 */
6274 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6275 if (threaded)
6276 set_bit(NAPI_STATE_THREADED, &napi->state);
6277 else
6278 clear_bit(NAPI_STATE_THREADED, &napi->state);
6279 }
6280
6281 return err;
6282}
8f64860f 6283EXPORT_SYMBOL(dev_set_threaded);
5fdd2f0e 6284
7c4ec749
DM
6285void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6286 int (*poll)(struct napi_struct *, int), int weight)
6287{
4d092dd2
JK
6288 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6289 return;
6290
7c4ec749 6291 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6292 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6293 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6294 napi->timer.function = napi_watchdog;
6295 init_gro_hash(napi);
5d38a079 6296 napi->skb = NULL;
323ebb61
EC
6297 INIT_LIST_HEAD(&napi->rx_list);
6298 napi->rx_count = 0;
d565b0a1 6299 napi->poll = poll;
82dc3c63 6300 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6301 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6302 weight);
d565b0a1 6303 napi->weight = weight;
d565b0a1 6304 napi->dev = dev;
5d38a079 6305#ifdef CONFIG_NETPOLL
d565b0a1
HX
6306 napi->poll_owner = -1;
6307#endif
6308 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6309 set_bit(NAPI_STATE_NPSVC, &napi->state);
6310 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6311 napi_hash_add(napi);
29863d41
WW
6312 /* Create kthread for this napi if dev->threaded is set.
6313 * Clear dev->threaded if kthread creation failed so that
6314 * threaded mode will not be enabled in napi_enable().
6315 */
6316 if (dev->threaded && napi_kthread_create(napi))
6317 dev->threaded = 0;
d565b0a1
HX
6318}
6319EXPORT_SYMBOL(netif_napi_add);
6320
3b47d303
ED
6321void napi_disable(struct napi_struct *n)
6322{
719c5719
JK
6323 unsigned long val, new;
6324
3b47d303
ED
6325 might_sleep();
6326 set_bit(NAPI_STATE_DISABLE, &n->state);
6327
0315a075 6328 for ( ; ; ) {
719c5719
JK
6329 val = READ_ONCE(n->state);
6330 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6331 usleep_range(20, 200);
6332 continue;
6333 }
6334
6335 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6336 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
0315a075
AL
6337
6338 if (cmpxchg(&n->state, val, new) == val)
6339 break;
6340 }
3b47d303
ED
6341
6342 hrtimer_cancel(&n->timer);
6343
6344 clear_bit(NAPI_STATE_DISABLE, &n->state);
6345}
6346EXPORT_SYMBOL(napi_disable);
6347
29863d41
WW
6348/**
6349 * napi_enable - enable NAPI scheduling
6350 * @n: NAPI context
6351 *
6352 * Resume NAPI from being scheduled on this context.
6353 * Must be paired with napi_disable.
6354 */
6355void napi_enable(struct napi_struct *n)
6356{
3765996e
XZ
6357 unsigned long val, new;
6358
6359 do {
6360 val = READ_ONCE(n->state);
6361 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6362
6363 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6364 if (n->dev->threaded && n->thread)
6365 new |= NAPIF_STATE_THREADED;
6366 } while (cmpxchg(&n->state, val, new) != val);
29863d41
WW
6367}
6368EXPORT_SYMBOL(napi_enable);
6369
07d78363 6370static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6371{
07d78363 6372 int i;
d4546c25 6373
07d78363
DM
6374 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6375 struct sk_buff *skb, *n;
6376
6312fe77 6377 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6378 kfree_skb(skb);
6312fe77 6379 napi->gro_hash[i].count = 0;
07d78363 6380 }
d4546c25
DM
6381}
6382
93d05d4a 6383/* Must be called in process context */
5198d545 6384void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6385{
4d092dd2
JK
6386 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6387 return;
6388
5198d545 6389 napi_hash_del(napi);
5251ef82 6390 list_del_rcu(&napi->dev_list);
76620aaf 6391 napi_free_frags(napi);
d565b0a1 6392
07d78363 6393 flush_gro_hash(napi);
d9f37d01 6394 napi->gro_bitmask = 0;
29863d41
WW
6395
6396 if (napi->thread) {
6397 kthread_stop(napi->thread);
6398 napi->thread = NULL;
6399 }
d565b0a1 6400}
5198d545 6401EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6402
898f8015 6403static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 6404{
726ce70e
HX
6405 int work, weight;
6406
726ce70e
HX
6407 weight = n->weight;
6408
6409 /* This NAPI_STATE_SCHED test is for avoiding a race
6410 * with netpoll's poll_napi(). Only the entity which
6411 * obtains the lock and sees NAPI_STATE_SCHED set will
6412 * actually make the ->poll() call. Therefore we avoid
6413 * accidentally calling ->poll() when NAPI is not scheduled.
6414 */
6415 work = 0;
6416 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6417 work = n->poll(n, weight);
1db19db7 6418 trace_napi_poll(n, work, weight);
726ce70e
HX
6419 }
6420
427d5838 6421 if (unlikely(work > weight))
5b92be64
JB
6422 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6423 n->poll, work, weight);
726ce70e
HX
6424
6425 if (likely(work < weight))
898f8015 6426 return work;
726ce70e
HX
6427
6428 /* Drivers must not modify the NAPI state if they
6429 * consume the entire weight. In such cases this code
6430 * still "owns" the NAPI instance and therefore can
6431 * move the instance around on the list at-will.
6432 */
6433 if (unlikely(napi_disable_pending(n))) {
6434 napi_complete(n);
898f8015 6435 return work;
726ce70e
HX
6436 }
6437
7fd3253a
BT
6438 /* The NAPI context has more processing work, but busy-polling
6439 * is preferred. Exit early.
6440 */
6441 if (napi_prefer_busy_poll(n)) {
6442 if (napi_complete_done(n, work)) {
6443 /* If timeout is not set, we need to make sure
6444 * that the NAPI is re-scheduled.
6445 */
6446 napi_schedule(n);
6447 }
898f8015 6448 return work;
7fd3253a
BT
6449 }
6450
d9f37d01 6451 if (n->gro_bitmask) {
726ce70e
HX
6452 /* flush too old packets
6453 * If HZ < 1000, flush all packets.
6454 */
6455 napi_gro_flush(n, HZ >= 1000);
6456 }
6457
c8079432
MM
6458 gro_normal_list(n);
6459
001ce546
HX
6460 /* Some drivers may have called napi_schedule
6461 * prior to exhausting their budget.
6462 */
6463 if (unlikely(!list_empty(&n->poll_list))) {
6464 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6465 n->dev ? n->dev->name : "backlog");
898f8015 6466 return work;
001ce546
HX
6467 }
6468
898f8015
FF
6469 *repoll = true;
6470
6471 return work;
6472}
6473
6474static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6475{
6476 bool do_repoll = false;
6477 void *have;
6478 int work;
6479
6480 list_del_init(&n->poll_list);
6481
6482 have = netpoll_poll_lock(n);
6483
6484 work = __napi_poll(n, &do_repoll);
6485
6486 if (do_repoll)
6487 list_add_tail(&n->poll_list, repoll);
726ce70e 6488
726ce70e
HX
6489 netpoll_poll_unlock(have);
6490
6491 return work;
6492}
6493
29863d41
WW
6494static int napi_thread_wait(struct napi_struct *napi)
6495{
cb038357
WW
6496 bool woken = false;
6497
29863d41
WW
6498 set_current_state(TASK_INTERRUPTIBLE);
6499
27f0ad71 6500 while (!kthread_should_stop()) {
cb038357
WW
6501 /* Testing SCHED_THREADED bit here to make sure the current
6502 * kthread owns this napi and could poll on this napi.
6503 * Testing SCHED bit is not enough because SCHED bit might be
6504 * set by some other busy poll thread or by napi_disable().
6505 */
6506 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
29863d41
WW
6507 WARN_ON(!list_empty(&napi->poll_list));
6508 __set_current_state(TASK_RUNNING);
6509 return 0;
6510 }
6511
6512 schedule();
cb038357
WW
6513 /* woken being true indicates this thread owns this napi. */
6514 woken = true;
29863d41
WW
6515 set_current_state(TASK_INTERRUPTIBLE);
6516 }
6517 __set_current_state(TASK_RUNNING);
27f0ad71 6518
29863d41
WW
6519 return -1;
6520}
6521
6522static int napi_threaded_poll(void *data)
6523{
6524 struct napi_struct *napi = data;
6525 void *have;
6526
6527 while (!napi_thread_wait(napi)) {
6528 for (;;) {
6529 bool repoll = false;
6530
6531 local_bh_disable();
6532
6533 have = netpoll_poll_lock(napi);
6534 __napi_poll(napi, &repoll);
6535 netpoll_poll_unlock(have);
6536
29863d41
WW
6537 local_bh_enable();
6538
6539 if (!repoll)
6540 break;
6541
6542 cond_resched();
6543 }
6544 }
6545 return 0;
6546}
6547
0766f788 6548static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6549{
903ceff7 6550 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6551 unsigned long time_limit = jiffies +
6552 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6553 int budget = netdev_budget;
d75b1ade
ED
6554 LIST_HEAD(list);
6555 LIST_HEAD(repoll);
53fb95d3 6556
1da177e4 6557 local_irq_disable();
d75b1ade
ED
6558 list_splice_init(&sd->poll_list, &list);
6559 local_irq_enable();
1da177e4 6560
ceb8d5bf 6561 for (;;) {
bea3348e 6562 struct napi_struct *n;
1da177e4 6563
ceb8d5bf
HX
6564 if (list_empty(&list)) {
6565 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
fec6e49b 6566 return;
ceb8d5bf
HX
6567 break;
6568 }
6569
6bd373eb
HX
6570 n = list_first_entry(&list, struct napi_struct, poll_list);
6571 budget -= napi_poll(n, &repoll);
6572
d75b1ade 6573 /* If softirq window is exhausted then punt.
24f8b238
SH
6574 * Allow this to run for 2 jiffies since which will allow
6575 * an average latency of 1.5/HZ.
bea3348e 6576 */
ceb8d5bf
HX
6577 if (unlikely(budget <= 0 ||
6578 time_after_eq(jiffies, time_limit))) {
6579 sd->time_squeeze++;
6580 break;
6581 }
1da177e4 6582 }
d75b1ade 6583
d75b1ade
ED
6584 local_irq_disable();
6585
6586 list_splice_tail_init(&sd->poll_list, &list);
6587 list_splice_tail(&repoll, &list);
6588 list_splice(&list, &sd->poll_list);
6589 if (!list_empty(&sd->poll_list))
6590 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6591
e326bed2 6592 net_rps_action_and_irq_enable(sd);
1da177e4
LT
6593}
6594
aa9d8560 6595struct netdev_adjacent {
9ff162a8 6596 struct net_device *dev;
f77159a3 6597 netdevice_tracker dev_tracker;
5d261913
VF
6598
6599 /* upper master flag, there can only be one master device per list */
9ff162a8 6600 bool master;
5d261913 6601
32b6d34f
TY
6602 /* lookup ignore flag */
6603 bool ignore;
6604
5d261913
VF
6605 /* counter for the number of times this device was added to us */
6606 u16 ref_nr;
6607
402dae96
VF
6608 /* private field for the users */
6609 void *private;
6610
9ff162a8
JP
6611 struct list_head list;
6612 struct rcu_head rcu;
9ff162a8
JP
6613};
6614
6ea29da1 6615static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6616 struct list_head *adj_list)
9ff162a8 6617{
5d261913 6618 struct netdev_adjacent *adj;
5d261913 6619
2f268f12 6620 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6621 if (adj->dev == adj_dev)
6622 return adj;
9ff162a8
JP
6623 }
6624 return NULL;
6625}
6626
eff74233
TY
6627static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6628 struct netdev_nested_priv *priv)
f1170fd4 6629{
eff74233 6630 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
6631
6632 return upper_dev == dev;
6633}
6634
9ff162a8
JP
6635/**
6636 * netdev_has_upper_dev - Check if device is linked to an upper device
6637 * @dev: device
6638 * @upper_dev: upper device to check
6639 *
6640 * Find out if a device is linked to specified upper device and return true
6641 * in case it is. Note that this checks only immediate upper device,
6642 * not through a complete stack of devices. The caller must hold the RTNL lock.
6643 */
6644bool netdev_has_upper_dev(struct net_device *dev,
6645 struct net_device *upper_dev)
6646{
eff74233
TY
6647 struct netdev_nested_priv priv = {
6648 .data = (void *)upper_dev,
6649 };
6650
9ff162a8
JP
6651 ASSERT_RTNL();
6652
32b6d34f 6653 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6654 &priv);
9ff162a8
JP
6655}
6656EXPORT_SYMBOL(netdev_has_upper_dev);
6657
1a3f060c 6658/**
c1639be9 6659 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
6660 * @dev: device
6661 * @upper_dev: upper device to check
6662 *
6663 * Find out if a device is linked to specified upper device and return true
6664 * in case it is. Note that this checks the entire upper device chain.
6665 * The caller must hold rcu lock.
6666 */
6667
1a3f060c
DA
6668bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6669 struct net_device *upper_dev)
6670{
eff74233
TY
6671 struct netdev_nested_priv priv = {
6672 .data = (void *)upper_dev,
6673 };
6674
32b6d34f 6675 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6676 &priv);
1a3f060c
DA
6677}
6678EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6679
9ff162a8
JP
6680/**
6681 * netdev_has_any_upper_dev - Check if device is linked to some device
6682 * @dev: device
6683 *
6684 * Find out if a device is linked to an upper device and return true in case
6685 * it is. The caller must hold the RTNL lock.
6686 */
25cc72a3 6687bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6688{
6689 ASSERT_RTNL();
6690
f1170fd4 6691 return !list_empty(&dev->adj_list.upper);
9ff162a8 6692}
25cc72a3 6693EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6694
6695/**
6696 * netdev_master_upper_dev_get - Get master upper device
6697 * @dev: device
6698 *
6699 * Find a master upper device and return pointer to it or NULL in case
6700 * it's not there. The caller must hold the RTNL lock.
6701 */
6702struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6703{
aa9d8560 6704 struct netdev_adjacent *upper;
9ff162a8
JP
6705
6706 ASSERT_RTNL();
6707
2f268f12 6708 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6709 return NULL;
6710
2f268f12 6711 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6712 struct netdev_adjacent, list);
9ff162a8
JP
6713 if (likely(upper->master))
6714 return upper->dev;
6715 return NULL;
6716}
6717EXPORT_SYMBOL(netdev_master_upper_dev_get);
6718
32b6d34f
TY
6719static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6720{
6721 struct netdev_adjacent *upper;
6722
6723 ASSERT_RTNL();
6724
6725 if (list_empty(&dev->adj_list.upper))
6726 return NULL;
6727
6728 upper = list_first_entry(&dev->adj_list.upper,
6729 struct netdev_adjacent, list);
6730 if (likely(upper->master) && !upper->ignore)
6731 return upper->dev;
6732 return NULL;
6733}
6734
0f524a80
DA
6735/**
6736 * netdev_has_any_lower_dev - Check if device is linked to some device
6737 * @dev: device
6738 *
6739 * Find out if a device is linked to a lower device and return true in case
6740 * it is. The caller must hold the RTNL lock.
6741 */
6742static bool netdev_has_any_lower_dev(struct net_device *dev)
6743{
6744 ASSERT_RTNL();
6745
6746 return !list_empty(&dev->adj_list.lower);
6747}
6748
b6ccba4c
VF
6749void *netdev_adjacent_get_private(struct list_head *adj_list)
6750{
6751 struct netdev_adjacent *adj;
6752
6753 adj = list_entry(adj_list, struct netdev_adjacent, list);
6754
6755 return adj->private;
6756}
6757EXPORT_SYMBOL(netdev_adjacent_get_private);
6758
44a40855
VY
6759/**
6760 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6761 * @dev: device
6762 * @iter: list_head ** of the current position
6763 *
6764 * Gets the next device from the dev's upper list, starting from iter
6765 * position. The caller must hold RCU read lock.
6766 */
6767struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6768 struct list_head **iter)
6769{
6770 struct netdev_adjacent *upper;
6771
6772 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6773
6774 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6775
6776 if (&upper->list == &dev->adj_list.upper)
6777 return NULL;
6778
6779 *iter = &upper->list;
6780
6781 return upper->dev;
6782}
6783EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6784
32b6d34f
TY
6785static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6786 struct list_head **iter,
6787 bool *ignore)
5343da4c
TY
6788{
6789 struct netdev_adjacent *upper;
6790
6791 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6792
6793 if (&upper->list == &dev->adj_list.upper)
6794 return NULL;
6795
6796 *iter = &upper->list;
32b6d34f 6797 *ignore = upper->ignore;
5343da4c
TY
6798
6799 return upper->dev;
6800}
6801
1a3f060c
DA
6802static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6803 struct list_head **iter)
6804{
6805 struct netdev_adjacent *upper;
6806
6807 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6808
6809 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6810
6811 if (&upper->list == &dev->adj_list.upper)
6812 return NULL;
6813
6814 *iter = &upper->list;
6815
6816 return upper->dev;
6817}
6818
32b6d34f
TY
6819static int __netdev_walk_all_upper_dev(struct net_device *dev,
6820 int (*fn)(struct net_device *dev,
eff74233
TY
6821 struct netdev_nested_priv *priv),
6822 struct netdev_nested_priv *priv)
5343da4c
TY
6823{
6824 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6825 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6826 int ret, cur = 0;
32b6d34f 6827 bool ignore;
5343da4c
TY
6828
6829 now = dev;
6830 iter = &dev->adj_list.upper;
6831
6832 while (1) {
6833 if (now != dev) {
eff74233 6834 ret = fn(now, priv);
5343da4c
TY
6835 if (ret)
6836 return ret;
6837 }
6838
6839 next = NULL;
6840 while (1) {
32b6d34f 6841 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6842 if (!udev)
6843 break;
32b6d34f
TY
6844 if (ignore)
6845 continue;
5343da4c
TY
6846
6847 next = udev;
6848 niter = &udev->adj_list.upper;
6849 dev_stack[cur] = now;
6850 iter_stack[cur++] = iter;
6851 break;
6852 }
6853
6854 if (!next) {
6855 if (!cur)
6856 return 0;
6857 next = dev_stack[--cur];
6858 niter = iter_stack[cur];
6859 }
6860
6861 now = next;
6862 iter = niter;
6863 }
6864
6865 return 0;
6866}
6867
1a3f060c
DA
6868int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6869 int (*fn)(struct net_device *dev,
eff74233
TY
6870 struct netdev_nested_priv *priv),
6871 struct netdev_nested_priv *priv)
1a3f060c 6872{
5343da4c
TY
6873 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6874 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6875 int ret, cur = 0;
1a3f060c 6876
5343da4c
TY
6877 now = dev;
6878 iter = &dev->adj_list.upper;
1a3f060c 6879
5343da4c
TY
6880 while (1) {
6881 if (now != dev) {
eff74233 6882 ret = fn(now, priv);
5343da4c
TY
6883 if (ret)
6884 return ret;
6885 }
6886
6887 next = NULL;
6888 while (1) {
6889 udev = netdev_next_upper_dev_rcu(now, &iter);
6890 if (!udev)
6891 break;
6892
6893 next = udev;
6894 niter = &udev->adj_list.upper;
6895 dev_stack[cur] = now;
6896 iter_stack[cur++] = iter;
6897 break;
6898 }
6899
6900 if (!next) {
6901 if (!cur)
6902 return 0;
6903 next = dev_stack[--cur];
6904 niter = iter_stack[cur];
6905 }
6906
6907 now = next;
6908 iter = niter;
1a3f060c
DA
6909 }
6910
6911 return 0;
6912}
6913EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6914
32b6d34f
TY
6915static bool __netdev_has_upper_dev(struct net_device *dev,
6916 struct net_device *upper_dev)
6917{
eff74233 6918 struct netdev_nested_priv priv = {
1fc70edb 6919 .flags = 0,
eff74233
TY
6920 .data = (void *)upper_dev,
6921 };
6922
32b6d34f
TY
6923 ASSERT_RTNL();
6924
6925 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 6926 &priv);
32b6d34f
TY
6927}
6928
31088a11
VF
6929/**
6930 * netdev_lower_get_next_private - Get the next ->private from the
6931 * lower neighbour list
6932 * @dev: device
6933 * @iter: list_head ** of the current position
6934 *
6935 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6936 * list, starting from iter position. The caller must hold either hold the
6937 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6938 * list will remain unchanged.
31088a11
VF
6939 */
6940void *netdev_lower_get_next_private(struct net_device *dev,
6941 struct list_head **iter)
6942{
6943 struct netdev_adjacent *lower;
6944
6945 lower = list_entry(*iter, struct netdev_adjacent, list);
6946
6947 if (&lower->list == &dev->adj_list.lower)
6948 return NULL;
6949
6859e7df 6950 *iter = lower->list.next;
31088a11
VF
6951
6952 return lower->private;
6953}
6954EXPORT_SYMBOL(netdev_lower_get_next_private);
6955
6956/**
6957 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6958 * lower neighbour list, RCU
6959 * variant
6960 * @dev: device
6961 * @iter: list_head ** of the current position
6962 *
6963 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6964 * list, starting from iter position. The caller must hold RCU read lock.
6965 */
6966void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6967 struct list_head **iter)
6968{
6969 struct netdev_adjacent *lower;
6970
68918669 6971 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
31088a11
VF
6972
6973 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6974
6975 if (&lower->list == &dev->adj_list.lower)
6976 return NULL;
6977
6859e7df 6978 *iter = &lower->list;
31088a11
VF
6979
6980 return lower->private;
6981}
6982EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6983
4085ebe8
VY
6984/**
6985 * netdev_lower_get_next - Get the next device from the lower neighbour
6986 * list
6987 * @dev: device
6988 * @iter: list_head ** of the current position
6989 *
6990 * Gets the next netdev_adjacent from the dev's lower neighbour
6991 * list, starting from iter position. The caller must hold RTNL lock or
6992 * its own locking that guarantees that the neighbour lower
b469139e 6993 * list will remain unchanged.
4085ebe8
VY
6994 */
6995void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6996{
6997 struct netdev_adjacent *lower;
6998
cfdd28be 6999 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7000
7001 if (&lower->list == &dev->adj_list.lower)
7002 return NULL;
7003
cfdd28be 7004 *iter = lower->list.next;
4085ebe8
VY
7005
7006 return lower->dev;
7007}
7008EXPORT_SYMBOL(netdev_lower_get_next);
7009
1a3f060c
DA
7010static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7011 struct list_head **iter)
7012{
7013 struct netdev_adjacent *lower;
7014
46b5ab1a 7015 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7016
7017 if (&lower->list == &dev->adj_list.lower)
7018 return NULL;
7019
46b5ab1a 7020 *iter = &lower->list;
1a3f060c
DA
7021
7022 return lower->dev;
7023}
7024
32b6d34f
TY
7025static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7026 struct list_head **iter,
7027 bool *ignore)
7028{
7029 struct netdev_adjacent *lower;
7030
7031 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7032
7033 if (&lower->list == &dev->adj_list.lower)
7034 return NULL;
7035
7036 *iter = &lower->list;
7037 *ignore = lower->ignore;
7038
7039 return lower->dev;
7040}
7041
1a3f060c
DA
7042int netdev_walk_all_lower_dev(struct net_device *dev,
7043 int (*fn)(struct net_device *dev,
eff74233
TY
7044 struct netdev_nested_priv *priv),
7045 struct netdev_nested_priv *priv)
1a3f060c 7046{
5343da4c
TY
7047 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7048 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7049 int ret, cur = 0;
1a3f060c 7050
5343da4c
TY
7051 now = dev;
7052 iter = &dev->adj_list.lower;
1a3f060c 7053
5343da4c
TY
7054 while (1) {
7055 if (now != dev) {
eff74233 7056 ret = fn(now, priv);
5343da4c
TY
7057 if (ret)
7058 return ret;
7059 }
7060
7061 next = NULL;
7062 while (1) {
7063 ldev = netdev_next_lower_dev(now, &iter);
7064 if (!ldev)
7065 break;
7066
7067 next = ldev;
7068 niter = &ldev->adj_list.lower;
7069 dev_stack[cur] = now;
7070 iter_stack[cur++] = iter;
7071 break;
7072 }
7073
7074 if (!next) {
7075 if (!cur)
7076 return 0;
7077 next = dev_stack[--cur];
7078 niter = iter_stack[cur];
7079 }
7080
7081 now = next;
7082 iter = niter;
1a3f060c
DA
7083 }
7084
7085 return 0;
7086}
7087EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7088
32b6d34f
TY
7089static int __netdev_walk_all_lower_dev(struct net_device *dev,
7090 int (*fn)(struct net_device *dev,
eff74233
TY
7091 struct netdev_nested_priv *priv),
7092 struct netdev_nested_priv *priv)
32b6d34f
TY
7093{
7094 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7095 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7096 int ret, cur = 0;
7097 bool ignore;
7098
7099 now = dev;
7100 iter = &dev->adj_list.lower;
7101
7102 while (1) {
7103 if (now != dev) {
eff74233 7104 ret = fn(now, priv);
32b6d34f
TY
7105 if (ret)
7106 return ret;
7107 }
7108
7109 next = NULL;
7110 while (1) {
7111 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7112 if (!ldev)
7113 break;
7114 if (ignore)
7115 continue;
7116
7117 next = ldev;
7118 niter = &ldev->adj_list.lower;
7119 dev_stack[cur] = now;
7120 iter_stack[cur++] = iter;
7121 break;
7122 }
7123
7124 if (!next) {
7125 if (!cur)
7126 return 0;
7127 next = dev_stack[--cur];
7128 niter = iter_stack[cur];
7129 }
7130
7131 now = next;
7132 iter = niter;
7133 }
7134
7135 return 0;
7136}
7137
7151affe
TY
7138struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7139 struct list_head **iter)
1a3f060c
DA
7140{
7141 struct netdev_adjacent *lower;
7142
7143 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7144 if (&lower->list == &dev->adj_list.lower)
7145 return NULL;
7146
7147 *iter = &lower->list;
7148
7149 return lower->dev;
7150}
7151affe 7151EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7152
5343da4c
TY
7153static u8 __netdev_upper_depth(struct net_device *dev)
7154{
7155 struct net_device *udev;
7156 struct list_head *iter;
7157 u8 max_depth = 0;
32b6d34f 7158 bool ignore;
5343da4c
TY
7159
7160 for (iter = &dev->adj_list.upper,
32b6d34f 7161 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7162 udev;
32b6d34f
TY
7163 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7164 if (ignore)
7165 continue;
5343da4c
TY
7166 if (max_depth < udev->upper_level)
7167 max_depth = udev->upper_level;
7168 }
7169
7170 return max_depth;
7171}
7172
7173static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7174{
7175 struct net_device *ldev;
7176 struct list_head *iter;
5343da4c 7177 u8 max_depth = 0;
32b6d34f 7178 bool ignore;
1a3f060c
DA
7179
7180 for (iter = &dev->adj_list.lower,
32b6d34f 7181 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7182 ldev;
32b6d34f
TY
7183 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7184 if (ignore)
7185 continue;
5343da4c
TY
7186 if (max_depth < ldev->lower_level)
7187 max_depth = ldev->lower_level;
7188 }
1a3f060c 7189
5343da4c
TY
7190 return max_depth;
7191}
7192
eff74233
TY
7193static int __netdev_update_upper_level(struct net_device *dev,
7194 struct netdev_nested_priv *__unused)
5343da4c
TY
7195{
7196 dev->upper_level = __netdev_upper_depth(dev) + 1;
7197 return 0;
7198}
7199
f32404ae
JB
7200#ifdef CONFIG_LOCKDEP
7201static LIST_HEAD(net_unlink_list);
7202
7203static void net_unlink_todo(struct net_device *dev)
7204{
7205 if (list_empty(&dev->unlink_list))
7206 list_add_tail(&dev->unlink_list, &net_unlink_list);
7207}
7208#endif
7209
eff74233 7210static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7211 struct netdev_nested_priv *priv)
5343da4c
TY
7212{
7213 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7214
7215#ifdef CONFIG_LOCKDEP
7216 if (!priv)
7217 return 0;
7218
7219 if (priv->flags & NESTED_SYNC_IMM)
7220 dev->nested_level = dev->lower_level - 1;
7221 if (priv->flags & NESTED_SYNC_TODO)
7222 net_unlink_todo(dev);
7223#endif
5343da4c
TY
7224 return 0;
7225}
7226
7227int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7228 int (*fn)(struct net_device *dev,
eff74233
TY
7229 struct netdev_nested_priv *priv),
7230 struct netdev_nested_priv *priv)
5343da4c
TY
7231{
7232 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7233 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7234 int ret, cur = 0;
7235
7236 now = dev;
7237 iter = &dev->adj_list.lower;
7238
7239 while (1) {
7240 if (now != dev) {
eff74233 7241 ret = fn(now, priv);
5343da4c
TY
7242 if (ret)
7243 return ret;
7244 }
7245
7246 next = NULL;
7247 while (1) {
7248 ldev = netdev_next_lower_dev_rcu(now, &iter);
7249 if (!ldev)
7250 break;
7251
7252 next = ldev;
7253 niter = &ldev->adj_list.lower;
7254 dev_stack[cur] = now;
7255 iter_stack[cur++] = iter;
7256 break;
7257 }
7258
7259 if (!next) {
7260 if (!cur)
7261 return 0;
7262 next = dev_stack[--cur];
7263 niter = iter_stack[cur];
7264 }
7265
7266 now = next;
7267 iter = niter;
1a3f060c
DA
7268 }
7269
7270 return 0;
7271}
7272EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7273
e001bfad 7274/**
7275 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7276 * lower neighbour list, RCU
7277 * variant
7278 * @dev: device
7279 *
7280 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7281 * list. The caller must hold RCU read lock.
7282 */
7283void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7284{
7285 struct netdev_adjacent *lower;
7286
7287 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7288 struct netdev_adjacent, list);
7289 if (lower)
7290 return lower->private;
7291 return NULL;
7292}
7293EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7294
9ff162a8
JP
7295/**
7296 * netdev_master_upper_dev_get_rcu - Get master upper device
7297 * @dev: device
7298 *
7299 * Find a master upper device and return pointer to it or NULL in case
7300 * it's not there. The caller must hold the RCU read lock.
7301 */
7302struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7303{
aa9d8560 7304 struct netdev_adjacent *upper;
9ff162a8 7305
2f268f12 7306 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7307 struct netdev_adjacent, list);
9ff162a8
JP
7308 if (upper && likely(upper->master))
7309 return upper->dev;
7310 return NULL;
7311}
7312EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7313
0a59f3a9 7314static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7315 struct net_device *adj_dev,
7316 struct list_head *dev_list)
7317{
7318 char linkname[IFNAMSIZ+7];
f4563a75 7319
3ee32707
VF
7320 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7321 "upper_%s" : "lower_%s", adj_dev->name);
7322 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7323 linkname);
7324}
0a59f3a9 7325static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7326 char *name,
7327 struct list_head *dev_list)
7328{
7329 char linkname[IFNAMSIZ+7];
f4563a75 7330
3ee32707
VF
7331 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7332 "upper_%s" : "lower_%s", name);
7333 sysfs_remove_link(&(dev->dev.kobj), linkname);
7334}
7335
7ce64c79
AF
7336static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7337 struct net_device *adj_dev,
7338 struct list_head *dev_list)
7339{
7340 return (dev_list == &dev->adj_list.upper ||
7341 dev_list == &dev->adj_list.lower) &&
7342 net_eq(dev_net(dev), dev_net(adj_dev));
7343}
3ee32707 7344
5d261913
VF
7345static int __netdev_adjacent_dev_insert(struct net_device *dev,
7346 struct net_device *adj_dev,
7863c054 7347 struct list_head *dev_list,
402dae96 7348 void *private, bool master)
5d261913
VF
7349{
7350 struct netdev_adjacent *adj;
842d67a7 7351 int ret;
5d261913 7352
6ea29da1 7353 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7354
7355 if (adj) {
790510d9 7356 adj->ref_nr += 1;
67b62f98
DA
7357 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7358 dev->name, adj_dev->name, adj->ref_nr);
7359
5d261913
VF
7360 return 0;
7361 }
7362
7363 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7364 if (!adj)
7365 return -ENOMEM;
7366
7367 adj->dev = adj_dev;
7368 adj->master = master;
790510d9 7369 adj->ref_nr = 1;
402dae96 7370 adj->private = private;
32b6d34f 7371 adj->ignore = false;
f77159a3 7372 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
2f268f12 7373
67b62f98
DA
7374 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7375 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7376
7ce64c79 7377 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7378 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7379 if (ret)
7380 goto free_adj;
7381 }
7382
7863c054 7383 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7384 if (master) {
7385 ret = sysfs_create_link(&(dev->dev.kobj),
7386 &(adj_dev->dev.kobj), "master");
7387 if (ret)
5831d66e 7388 goto remove_symlinks;
842d67a7 7389
7863c054 7390 list_add_rcu(&adj->list, dev_list);
842d67a7 7391 } else {
7863c054 7392 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7393 }
5d261913
VF
7394
7395 return 0;
842d67a7 7396
5831d66e 7397remove_symlinks:
7ce64c79 7398 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7399 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7 7400free_adj:
f77159a3 7401 dev_put_track(adj_dev, &adj->dev_tracker);
842d67a7
VF
7402 kfree(adj);
7403
7404 return ret;
5d261913
VF
7405}
7406
1d143d9f 7407static void __netdev_adjacent_dev_remove(struct net_device *dev,
7408 struct net_device *adj_dev,
93409033 7409 u16 ref_nr,
1d143d9f 7410 struct list_head *dev_list)
5d261913
VF
7411{
7412 struct netdev_adjacent *adj;
7413
67b62f98
DA
7414 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7415 dev->name, adj_dev->name, ref_nr);
7416
6ea29da1 7417 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7418
2f268f12 7419 if (!adj) {
67b62f98 7420 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7421 dev->name, adj_dev->name);
67b62f98
DA
7422 WARN_ON(1);
7423 return;
2f268f12 7424 }
5d261913 7425
93409033 7426 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7427 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7428 dev->name, adj_dev->name, ref_nr,
7429 adj->ref_nr - ref_nr);
93409033 7430 adj->ref_nr -= ref_nr;
5d261913
VF
7431 return;
7432 }
7433
842d67a7
VF
7434 if (adj->master)
7435 sysfs_remove_link(&(dev->dev.kobj), "master");
7436
7ce64c79 7437 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7438 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7439
5d261913 7440 list_del_rcu(&adj->list);
67b62f98 7441 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7442 adj_dev->name, dev->name, adj_dev->name);
f77159a3 7443 dev_put_track(adj_dev, &adj->dev_tracker);
5d261913
VF
7444 kfree_rcu(adj, rcu);
7445}
7446
1d143d9f 7447static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7448 struct net_device *upper_dev,
7449 struct list_head *up_list,
7450 struct list_head *down_list,
7451 void *private, bool master)
5d261913
VF
7452{
7453 int ret;
7454
790510d9 7455 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7456 private, master);
5d261913
VF
7457 if (ret)
7458 return ret;
7459
790510d9 7460 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7461 private, false);
5d261913 7462 if (ret) {
790510d9 7463 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7464 return ret;
7465 }
7466
7467 return 0;
7468}
7469
1d143d9f 7470static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7471 struct net_device *upper_dev,
93409033 7472 u16 ref_nr,
1d143d9f 7473 struct list_head *up_list,
7474 struct list_head *down_list)
5d261913 7475{
93409033
AC
7476 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7477 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7478}
7479
1d143d9f 7480static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7481 struct net_device *upper_dev,
7482 void *private, bool master)
2f268f12 7483{
f1170fd4
DA
7484 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7485 &dev->adj_list.upper,
7486 &upper_dev->adj_list.lower,
7487 private, master);
5d261913
VF
7488}
7489
1d143d9f 7490static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7491 struct net_device *upper_dev)
2f268f12 7492{
93409033 7493 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7494 &dev->adj_list.upper,
7495 &upper_dev->adj_list.lower);
7496}
5d261913 7497
9ff162a8 7498static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7499 struct net_device *upper_dev, bool master,
42ab19ee 7500 void *upper_priv, void *upper_info,
1fc70edb 7501 struct netdev_nested_priv *priv,
42ab19ee 7502 struct netlink_ext_ack *extack)
9ff162a8 7503{
51d0c047
DA
7504 struct netdev_notifier_changeupper_info changeupper_info = {
7505 .info = {
7506 .dev = dev,
42ab19ee 7507 .extack = extack,
51d0c047
DA
7508 },
7509 .upper_dev = upper_dev,
7510 .master = master,
7511 .linking = true,
7512 .upper_info = upper_info,
7513 };
50d629e7 7514 struct net_device *master_dev;
5d261913 7515 int ret = 0;
9ff162a8
JP
7516
7517 ASSERT_RTNL();
7518
7519 if (dev == upper_dev)
7520 return -EBUSY;
7521
7522 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7523 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7524 return -EBUSY;
7525
5343da4c
TY
7526 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7527 return -EMLINK;
7528
50d629e7 7529 if (!master) {
32b6d34f 7530 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7531 return -EEXIST;
7532 } else {
32b6d34f 7533 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7534 if (master_dev)
7535 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7536 }
9ff162a8 7537
51d0c047 7538 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7539 &changeupper_info.info);
7540 ret = notifier_to_errno(ret);
7541 if (ret)
7542 return ret;
7543
6dffb044 7544 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7545 master);
5d261913
VF
7546 if (ret)
7547 return ret;
9ff162a8 7548
51d0c047 7549 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7550 &changeupper_info.info);
7551 ret = notifier_to_errno(ret);
7552 if (ret)
f1170fd4 7553 goto rollback;
b03804e7 7554
5343da4c 7555 __netdev_update_upper_level(dev, NULL);
32b6d34f 7556 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7557
1fc70edb 7558 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7559 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7560 priv);
5343da4c 7561
9ff162a8 7562 return 0;
5d261913 7563
f1170fd4 7564rollback:
2f268f12 7565 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7566
7567 return ret;
9ff162a8
JP
7568}
7569
7570/**
7571 * netdev_upper_dev_link - Add a link to the upper device
7572 * @dev: device
7573 * @upper_dev: new upper device
7a006d59 7574 * @extack: netlink extended ack
9ff162a8
JP
7575 *
7576 * Adds a link to device which is upper to this one. The caller must hold
7577 * the RTNL lock. On a failure a negative errno code is returned.
7578 * On success the reference counts are adjusted and the function
7579 * returns zero.
7580 */
7581int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7582 struct net_device *upper_dev,
7583 struct netlink_ext_ack *extack)
9ff162a8 7584{
1fc70edb
TY
7585 struct netdev_nested_priv priv = {
7586 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7587 .data = NULL,
7588 };
7589
42ab19ee 7590 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 7591 NULL, NULL, &priv, extack);
9ff162a8
JP
7592}
7593EXPORT_SYMBOL(netdev_upper_dev_link);
7594
7595/**
7596 * netdev_master_upper_dev_link - Add a master link to the upper device
7597 * @dev: device
7598 * @upper_dev: new upper device
6dffb044 7599 * @upper_priv: upper device private
29bf24af 7600 * @upper_info: upper info to be passed down via notifier
7a006d59 7601 * @extack: netlink extended ack
9ff162a8
JP
7602 *
7603 * Adds a link to device which is upper to this one. In this case, only
7604 * one master upper device can be linked, although other non-master devices
7605 * might be linked as well. The caller must hold the RTNL lock.
7606 * On a failure a negative errno code is returned. On success the reference
7607 * counts are adjusted and the function returns zero.
7608 */
7609int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7610 struct net_device *upper_dev,
42ab19ee
DA
7611 void *upper_priv, void *upper_info,
7612 struct netlink_ext_ack *extack)
9ff162a8 7613{
1fc70edb
TY
7614 struct netdev_nested_priv priv = {
7615 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7616 .data = NULL,
7617 };
7618
29bf24af 7619 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 7620 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
7621}
7622EXPORT_SYMBOL(netdev_master_upper_dev_link);
7623
fe8300fd 7624static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
7625 struct net_device *upper_dev,
7626 struct netdev_nested_priv *priv)
9ff162a8 7627{
51d0c047
DA
7628 struct netdev_notifier_changeupper_info changeupper_info = {
7629 .info = {
7630 .dev = dev,
7631 },
7632 .upper_dev = upper_dev,
7633 .linking = false,
7634 };
f4563a75 7635
9ff162a8
JP
7636 ASSERT_RTNL();
7637
0e4ead9d 7638 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7639
51d0c047 7640 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7641 &changeupper_info.info);
7642
2f268f12 7643 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7644
51d0c047 7645 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7646 &changeupper_info.info);
5343da4c
TY
7647
7648 __netdev_update_upper_level(dev, NULL);
32b6d34f 7649 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7650
1fc70edb 7651 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7652 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7653 priv);
9ff162a8 7654}
fe8300fd
TY
7655
7656/**
7657 * netdev_upper_dev_unlink - Removes a link to upper device
7658 * @dev: device
7659 * @upper_dev: new upper device
7660 *
7661 * Removes a link to device which is upper to this one. The caller must hold
7662 * the RTNL lock.
7663 */
7664void netdev_upper_dev_unlink(struct net_device *dev,
7665 struct net_device *upper_dev)
7666{
1fc70edb
TY
7667 struct netdev_nested_priv priv = {
7668 .flags = NESTED_SYNC_TODO,
7669 .data = NULL,
7670 };
7671
7672 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
7673}
7674EXPORT_SYMBOL(netdev_upper_dev_unlink);
7675
32b6d34f
TY
7676static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7677 struct net_device *lower_dev,
7678 bool val)
7679{
7680 struct netdev_adjacent *adj;
7681
7682 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7683 if (adj)
7684 adj->ignore = val;
7685
7686 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7687 if (adj)
7688 adj->ignore = val;
7689}
7690
7691static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7692 struct net_device *lower_dev)
7693{
7694 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7695}
7696
7697static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7698 struct net_device *lower_dev)
7699{
7700 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7701}
7702
7703int netdev_adjacent_change_prepare(struct net_device *old_dev,
7704 struct net_device *new_dev,
7705 struct net_device *dev,
7706 struct netlink_ext_ack *extack)
7707{
1fc70edb
TY
7708 struct netdev_nested_priv priv = {
7709 .flags = 0,
7710 .data = NULL,
7711 };
32b6d34f
TY
7712 int err;
7713
7714 if (!new_dev)
7715 return 0;
7716
7717 if (old_dev && new_dev != old_dev)
7718 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
7719 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7720 extack);
32b6d34f
TY
7721 if (err) {
7722 if (old_dev && new_dev != old_dev)
7723 netdev_adjacent_dev_enable(dev, old_dev);
7724 return err;
7725 }
7726
7727 return 0;
7728}
7729EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7730
7731void netdev_adjacent_change_commit(struct net_device *old_dev,
7732 struct net_device *new_dev,
7733 struct net_device *dev)
7734{
1fc70edb
TY
7735 struct netdev_nested_priv priv = {
7736 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7737 .data = NULL,
7738 };
7739
32b6d34f
TY
7740 if (!new_dev || !old_dev)
7741 return;
7742
7743 if (new_dev == old_dev)
7744 return;
7745
7746 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 7747 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
7748}
7749EXPORT_SYMBOL(netdev_adjacent_change_commit);
7750
7751void netdev_adjacent_change_abort(struct net_device *old_dev,
7752 struct net_device *new_dev,
7753 struct net_device *dev)
7754{
1fc70edb
TY
7755 struct netdev_nested_priv priv = {
7756 .flags = 0,
7757 .data = NULL,
7758 };
7759
32b6d34f
TY
7760 if (!new_dev)
7761 return;
7762
7763 if (old_dev && new_dev != old_dev)
7764 netdev_adjacent_dev_enable(dev, old_dev);
7765
1fc70edb 7766 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
7767}
7768EXPORT_SYMBOL(netdev_adjacent_change_abort);
7769
61bd3857
MS
7770/**
7771 * netdev_bonding_info_change - Dispatch event about slave change
7772 * @dev: device
4a26e453 7773 * @bonding_info: info to dispatch
61bd3857
MS
7774 *
7775 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7776 * The caller must hold the RTNL lock.
7777 */
7778void netdev_bonding_info_change(struct net_device *dev,
7779 struct netdev_bonding_info *bonding_info)
7780{
51d0c047
DA
7781 struct netdev_notifier_bonding_info info = {
7782 .info.dev = dev,
7783 };
61bd3857
MS
7784
7785 memcpy(&info.bonding_info, bonding_info,
7786 sizeof(struct netdev_bonding_info));
51d0c047 7787 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7788 &info.info);
7789}
7790EXPORT_SYMBOL(netdev_bonding_info_change);
7791
9309f97a
PM
7792static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7793 struct netlink_ext_ack *extack)
7794{
7795 struct netdev_notifier_offload_xstats_info info = {
7796 .info.dev = dev,
7797 .info.extack = extack,
7798 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7799 };
7800 int err;
7801 int rc;
7802
7803 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7804 GFP_KERNEL);
7805 if (!dev->offload_xstats_l3)
7806 return -ENOMEM;
7807
7808 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7809 NETDEV_OFFLOAD_XSTATS_DISABLE,
7810 &info.info);
7811 err = notifier_to_errno(rc);
7812 if (err)
7813 goto free_stats;
7814
7815 return 0;
7816
7817free_stats:
7818 kfree(dev->offload_xstats_l3);
7819 dev->offload_xstats_l3 = NULL;
7820 return err;
7821}
7822
7823int netdev_offload_xstats_enable(struct net_device *dev,
7824 enum netdev_offload_xstats_type type,
7825 struct netlink_ext_ack *extack)
7826{
7827 ASSERT_RTNL();
7828
7829 if (netdev_offload_xstats_enabled(dev, type))
7830 return -EALREADY;
7831
7832 switch (type) {
7833 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7834 return netdev_offload_xstats_enable_l3(dev, extack);
7835 }
7836
7837 WARN_ON(1);
7838 return -EINVAL;
7839}
7840EXPORT_SYMBOL(netdev_offload_xstats_enable);
7841
7842static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7843{
7844 struct netdev_notifier_offload_xstats_info info = {
7845 .info.dev = dev,
7846 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7847 };
7848
7849 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7850 &info.info);
7851 kfree(dev->offload_xstats_l3);
7852 dev->offload_xstats_l3 = NULL;
7853}
7854
7855int netdev_offload_xstats_disable(struct net_device *dev,
7856 enum netdev_offload_xstats_type type)
7857{
7858 ASSERT_RTNL();
7859
7860 if (!netdev_offload_xstats_enabled(dev, type))
7861 return -EALREADY;
7862
7863 switch (type) {
7864 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7865 netdev_offload_xstats_disable_l3(dev);
7866 return 0;
7867 }
7868
7869 WARN_ON(1);
7870 return -EINVAL;
7871}
7872EXPORT_SYMBOL(netdev_offload_xstats_disable);
7873
7874static void netdev_offload_xstats_disable_all(struct net_device *dev)
7875{
7876 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7877}
7878
7879static struct rtnl_hw_stats64 *
7880netdev_offload_xstats_get_ptr(const struct net_device *dev,
7881 enum netdev_offload_xstats_type type)
7882{
7883 switch (type) {
7884 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7885 return dev->offload_xstats_l3;
7886 }
7887
7888 WARN_ON(1);
7889 return NULL;
7890}
7891
7892bool netdev_offload_xstats_enabled(const struct net_device *dev,
7893 enum netdev_offload_xstats_type type)
7894{
7895 ASSERT_RTNL();
7896
7897 return netdev_offload_xstats_get_ptr(dev, type);
7898}
7899EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7900
7901struct netdev_notifier_offload_xstats_ru {
7902 bool used;
7903};
7904
7905struct netdev_notifier_offload_xstats_rd {
7906 struct rtnl_hw_stats64 stats;
7907 bool used;
7908};
7909
7910static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7911 const struct rtnl_hw_stats64 *src)
7912{
7913 dest->rx_packets += src->rx_packets;
7914 dest->tx_packets += src->tx_packets;
7915 dest->rx_bytes += src->rx_bytes;
7916 dest->tx_bytes += src->tx_bytes;
7917 dest->rx_errors += src->rx_errors;
7918 dest->tx_errors += src->tx_errors;
7919 dest->rx_dropped += src->rx_dropped;
7920 dest->tx_dropped += src->tx_dropped;
7921 dest->multicast += src->multicast;
7922}
7923
7924static int netdev_offload_xstats_get_used(struct net_device *dev,
7925 enum netdev_offload_xstats_type type,
7926 bool *p_used,
7927 struct netlink_ext_ack *extack)
7928{
7929 struct netdev_notifier_offload_xstats_ru report_used = {};
7930 struct netdev_notifier_offload_xstats_info info = {
7931 .info.dev = dev,
7932 .info.extack = extack,
7933 .type = type,
7934 .report_used = &report_used,
7935 };
7936 int rc;
7937
7938 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7939 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7940 &info.info);
7941 *p_used = report_used.used;
7942 return notifier_to_errno(rc);
7943}
7944
7945static int netdev_offload_xstats_get_stats(struct net_device *dev,
7946 enum netdev_offload_xstats_type type,
7947 struct rtnl_hw_stats64 *p_stats,
7948 bool *p_used,
7949 struct netlink_ext_ack *extack)
7950{
7951 struct netdev_notifier_offload_xstats_rd report_delta = {};
7952 struct netdev_notifier_offload_xstats_info info = {
7953 .info.dev = dev,
7954 .info.extack = extack,
7955 .type = type,
7956 .report_delta = &report_delta,
7957 };
7958 struct rtnl_hw_stats64 *stats;
7959 int rc;
7960
7961 stats = netdev_offload_xstats_get_ptr(dev, type);
7962 if (WARN_ON(!stats))
7963 return -EINVAL;
7964
7965 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7966 &info.info);
7967
7968 /* Cache whatever we got, even if there was an error, otherwise the
7969 * successful stats retrievals would get lost.
7970 */
7971 netdev_hw_stats64_add(stats, &report_delta.stats);
7972
7973 if (p_stats)
7974 *p_stats = *stats;
7975 *p_used = report_delta.used;
7976
7977 return notifier_to_errno(rc);
7978}
7979
7980int netdev_offload_xstats_get(struct net_device *dev,
7981 enum netdev_offload_xstats_type type,
7982 struct rtnl_hw_stats64 *p_stats, bool *p_used,
7983 struct netlink_ext_ack *extack)
7984{
7985 ASSERT_RTNL();
7986
7987 if (p_stats)
7988 return netdev_offload_xstats_get_stats(dev, type, p_stats,
7989 p_used, extack);
7990 else
7991 return netdev_offload_xstats_get_used(dev, type, p_used,
7992 extack);
7993}
7994EXPORT_SYMBOL(netdev_offload_xstats_get);
7995
7996void
7997netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7998 const struct rtnl_hw_stats64 *stats)
7999{
8000 report_delta->used = true;
8001 netdev_hw_stats64_add(&report_delta->stats, stats);
8002}
8003EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8004
8005void
8006netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8007{
8008 report_used->used = true;
8009}
8010EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8011
8012void netdev_offload_xstats_push_delta(struct net_device *dev,
8013 enum netdev_offload_xstats_type type,
8014 const struct rtnl_hw_stats64 *p_stats)
8015{
8016 struct rtnl_hw_stats64 *stats;
8017
8018 ASSERT_RTNL();
8019
8020 stats = netdev_offload_xstats_get_ptr(dev, type);
8021 if (WARN_ON(!stats))
8022 return;
8023
8024 netdev_hw_stats64_add(stats, p_stats);
8025}
8026EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8027
cff9f12b
MG
8028/**
8029 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8030 * @dev: device
cff9f12b
MG
8031 * @skb: The packet
8032 * @all_slaves: assume all the slaves are active
8033 *
8034 * The reference counters are not incremented so the caller must be
8035 * careful with locks. The caller must hold RCU lock.
8036 * %NULL is returned if no slave is found.
8037 */
8038
8039struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8040 struct sk_buff *skb,
8041 bool all_slaves)
8042{
8043 const struct net_device_ops *ops = dev->netdev_ops;
8044
8045 if (!ops->ndo_get_xmit_slave)
8046 return NULL;
8047 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8048}
8049EXPORT_SYMBOL(netdev_get_xmit_slave);
8050
719a402c
TT
8051static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8052 struct sock *sk)
8053{
8054 const struct net_device_ops *ops = dev->netdev_ops;
8055
8056 if (!ops->ndo_sk_get_lower_dev)
8057 return NULL;
8058 return ops->ndo_sk_get_lower_dev(dev, sk);
8059}
8060
8061/**
8062 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8063 * @dev: device
8064 * @sk: the socket
8065 *
8066 * %NULL is returned if no lower device is found.
8067 */
8068
8069struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8070 struct sock *sk)
8071{
8072 struct net_device *lower;
8073
8074 lower = netdev_sk_get_lower_dev(dev, sk);
8075 while (lower) {
8076 dev = lower;
8077 lower = netdev_sk_get_lower_dev(dev, sk);
8078 }
8079
8080 return dev;
8081}
8082EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8083
2ce1ee17 8084static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8085{
8086 struct netdev_adjacent *iter;
8087
8088 struct net *net = dev_net(dev);
8089
8090 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8091 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8092 continue;
8093 netdev_adjacent_sysfs_add(iter->dev, dev,
8094 &iter->dev->adj_list.lower);
8095 netdev_adjacent_sysfs_add(dev, iter->dev,
8096 &dev->adj_list.upper);
8097 }
8098
8099 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8100 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8101 continue;
8102 netdev_adjacent_sysfs_add(iter->dev, dev,
8103 &iter->dev->adj_list.upper);
8104 netdev_adjacent_sysfs_add(dev, iter->dev,
8105 &dev->adj_list.lower);
8106 }
8107}
8108
2ce1ee17 8109static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8110{
8111 struct netdev_adjacent *iter;
8112
8113 struct net *net = dev_net(dev);
8114
8115 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8116 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8117 continue;
8118 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8119 &iter->dev->adj_list.lower);
8120 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8121 &dev->adj_list.upper);
8122 }
8123
8124 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8125 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8126 continue;
8127 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8128 &iter->dev->adj_list.upper);
8129 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8130 &dev->adj_list.lower);
8131 }
8132}
8133
5bb025fa 8134void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8135{
5bb025fa 8136 struct netdev_adjacent *iter;
402dae96 8137
4c75431a
AF
8138 struct net *net = dev_net(dev);
8139
5bb025fa 8140 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8141 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8142 continue;
5bb025fa
VF
8143 netdev_adjacent_sysfs_del(iter->dev, oldname,
8144 &iter->dev->adj_list.lower);
8145 netdev_adjacent_sysfs_add(iter->dev, dev,
8146 &iter->dev->adj_list.lower);
8147 }
402dae96 8148
5bb025fa 8149 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8150 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8151 continue;
5bb025fa
VF
8152 netdev_adjacent_sysfs_del(iter->dev, oldname,
8153 &iter->dev->adj_list.upper);
8154 netdev_adjacent_sysfs_add(iter->dev, dev,
8155 &iter->dev->adj_list.upper);
8156 }
402dae96 8157}
402dae96
VF
8158
8159void *netdev_lower_dev_get_private(struct net_device *dev,
8160 struct net_device *lower_dev)
8161{
8162 struct netdev_adjacent *lower;
8163
8164 if (!lower_dev)
8165 return NULL;
6ea29da1 8166 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8167 if (!lower)
8168 return NULL;
8169
8170 return lower->private;
8171}
8172EXPORT_SYMBOL(netdev_lower_dev_get_private);
8173
4085ebe8 8174
04d48266 8175/**
c1639be9 8176 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8177 * @lower_dev: device
8178 * @lower_state_info: state to dispatch
8179 *
8180 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8181 * The caller must hold the RTNL lock.
8182 */
8183void netdev_lower_state_changed(struct net_device *lower_dev,
8184 void *lower_state_info)
8185{
51d0c047
DA
8186 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8187 .info.dev = lower_dev,
8188 };
04d48266
JP
8189
8190 ASSERT_RTNL();
8191 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8192 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8193 &changelowerstate_info.info);
8194}
8195EXPORT_SYMBOL(netdev_lower_state_changed);
8196
b6c40d68
PM
8197static void dev_change_rx_flags(struct net_device *dev, int flags)
8198{
d314774c
SH
8199 const struct net_device_ops *ops = dev->netdev_ops;
8200
d2615bf4 8201 if (ops->ndo_change_rx_flags)
d314774c 8202 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8203}
8204
991fb3f7 8205static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8206{
b536db93 8207 unsigned int old_flags = dev->flags;
d04a48b0
EB
8208 kuid_t uid;
8209 kgid_t gid;
1da177e4 8210
24023451
PM
8211 ASSERT_RTNL();
8212
dad9b335
WC
8213 dev->flags |= IFF_PROMISC;
8214 dev->promiscuity += inc;
8215 if (dev->promiscuity == 0) {
8216 /*
8217 * Avoid overflow.
8218 * If inc causes overflow, untouch promisc and return error.
8219 */
8220 if (inc < 0)
8221 dev->flags &= ~IFF_PROMISC;
8222 else {
8223 dev->promiscuity -= inc;
5b92be64 8224 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
dad9b335
WC
8225 return -EOVERFLOW;
8226 }
8227 }
52609c0b 8228 if (dev->flags != old_flags) {
7b6cd1ce
JP
8229 pr_info("device %s %s promiscuous mode\n",
8230 dev->name,
8231 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8232 if (audit_enabled) {
8233 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8234 audit_log(audit_context(), GFP_ATOMIC,
8235 AUDIT_ANOM_PROMISCUOUS,
8236 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8237 dev->name, (dev->flags & IFF_PROMISC),
8238 (old_flags & IFF_PROMISC),
8239 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8240 from_kuid(&init_user_ns, uid),
8241 from_kgid(&init_user_ns, gid),
8242 audit_get_sessionid(current));
8192b0c4 8243 }
24023451 8244
b6c40d68 8245 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8246 }
991fb3f7
ND
8247 if (notify)
8248 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8249 return 0;
1da177e4
LT
8250}
8251
4417da66
PM
8252/**
8253 * dev_set_promiscuity - update promiscuity count on a device
8254 * @dev: device
8255 * @inc: modifier
8256 *
8257 * Add or remove promiscuity from a device. While the count in the device
8258 * remains above zero the interface remains promiscuous. Once it hits zero
8259 * the device reverts back to normal filtering operation. A negative inc
8260 * value is used to drop promiscuity on the device.
dad9b335 8261 * Return 0 if successful or a negative errno code on error.
4417da66 8262 */
dad9b335 8263int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8264{
b536db93 8265 unsigned int old_flags = dev->flags;
dad9b335 8266 int err;
4417da66 8267
991fb3f7 8268 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8269 if (err < 0)
dad9b335 8270 return err;
4417da66
PM
8271 if (dev->flags != old_flags)
8272 dev_set_rx_mode(dev);
dad9b335 8273 return err;
4417da66 8274}
d1b19dff 8275EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8276
991fb3f7 8277static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8278{
991fb3f7 8279 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8280
24023451
PM
8281 ASSERT_RTNL();
8282
1da177e4 8283 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8284 dev->allmulti += inc;
8285 if (dev->allmulti == 0) {
8286 /*
8287 * Avoid overflow.
8288 * If inc causes overflow, untouch allmulti and return error.
8289 */
8290 if (inc < 0)
8291 dev->flags &= ~IFF_ALLMULTI;
8292 else {
8293 dev->allmulti -= inc;
5b92be64 8294 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
dad9b335
WC
8295 return -EOVERFLOW;
8296 }
8297 }
24023451 8298 if (dev->flags ^ old_flags) {
b6c40d68 8299 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8300 dev_set_rx_mode(dev);
991fb3f7
ND
8301 if (notify)
8302 __dev_notify_flags(dev, old_flags,
8303 dev->gflags ^ old_gflags);
24023451 8304 }
dad9b335 8305 return 0;
4417da66 8306}
991fb3f7
ND
8307
8308/**
8309 * dev_set_allmulti - update allmulti count on a device
8310 * @dev: device
8311 * @inc: modifier
8312 *
8313 * Add or remove reception of all multicast frames to a device. While the
8314 * count in the device remains above zero the interface remains listening
8315 * to all interfaces. Once it hits zero the device reverts back to normal
8316 * filtering operation. A negative @inc value is used to drop the counter
8317 * when releasing a resource needing all multicasts.
8318 * Return 0 if successful or a negative errno code on error.
8319 */
8320
8321int dev_set_allmulti(struct net_device *dev, int inc)
8322{
8323 return __dev_set_allmulti(dev, inc, true);
8324}
d1b19dff 8325EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8326
8327/*
8328 * Upload unicast and multicast address lists to device and
8329 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8330 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8331 * are present.
8332 */
8333void __dev_set_rx_mode(struct net_device *dev)
8334{
d314774c
SH
8335 const struct net_device_ops *ops = dev->netdev_ops;
8336
4417da66
PM
8337 /* dev_open will call this function so the list will stay sane. */
8338 if (!(dev->flags&IFF_UP))
8339 return;
8340
8341 if (!netif_device_present(dev))
40b77c94 8342 return;
4417da66 8343
01789349 8344 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8345 /* Unicast addresses changes may only happen under the rtnl,
8346 * therefore calling __dev_set_promiscuity here is safe.
8347 */
32e7bfc4 8348 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8349 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8350 dev->uc_promisc = true;
32e7bfc4 8351 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8352 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8353 dev->uc_promisc = false;
4417da66 8354 }
4417da66 8355 }
01789349
JP
8356
8357 if (ops->ndo_set_rx_mode)
8358 ops->ndo_set_rx_mode(dev);
4417da66
PM
8359}
8360
8361void dev_set_rx_mode(struct net_device *dev)
8362{
b9e40857 8363 netif_addr_lock_bh(dev);
4417da66 8364 __dev_set_rx_mode(dev);
b9e40857 8365 netif_addr_unlock_bh(dev);
1da177e4
LT
8366}
8367
f0db275a
SH
8368/**
8369 * dev_get_flags - get flags reported to userspace
8370 * @dev: device
8371 *
8372 * Get the combination of flag bits exported through APIs to userspace.
8373 */
95c96174 8374unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8375{
95c96174 8376 unsigned int flags;
1da177e4
LT
8377
8378 flags = (dev->flags & ~(IFF_PROMISC |
8379 IFF_ALLMULTI |
b00055aa
SR
8380 IFF_RUNNING |
8381 IFF_LOWER_UP |
8382 IFF_DORMANT)) |
1da177e4
LT
8383 (dev->gflags & (IFF_PROMISC |
8384 IFF_ALLMULTI));
8385
b00055aa
SR
8386 if (netif_running(dev)) {
8387 if (netif_oper_up(dev))
8388 flags |= IFF_RUNNING;
8389 if (netif_carrier_ok(dev))
8390 flags |= IFF_LOWER_UP;
8391 if (netif_dormant(dev))
8392 flags |= IFF_DORMANT;
8393 }
1da177e4
LT
8394
8395 return flags;
8396}
d1b19dff 8397EXPORT_SYMBOL(dev_get_flags);
1da177e4 8398
6d040321
PM
8399int __dev_change_flags(struct net_device *dev, unsigned int flags,
8400 struct netlink_ext_ack *extack)
1da177e4 8401{
b536db93 8402 unsigned int old_flags = dev->flags;
bd380811 8403 int ret;
1da177e4 8404
24023451
PM
8405 ASSERT_RTNL();
8406
1da177e4
LT
8407 /*
8408 * Set the flags on our device.
8409 */
8410
8411 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8412 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8413 IFF_AUTOMEDIA)) |
8414 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8415 IFF_ALLMULTI));
8416
8417 /*
8418 * Load in the correct multicast list now the flags have changed.
8419 */
8420
b6c40d68
PM
8421 if ((old_flags ^ flags) & IFF_MULTICAST)
8422 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8423
4417da66 8424 dev_set_rx_mode(dev);
1da177e4
LT
8425
8426 /*
8427 * Have we downed the interface. We handle IFF_UP ourselves
8428 * according to user attempts to set it, rather than blindly
8429 * setting it.
8430 */
8431
8432 ret = 0;
7051b88a 8433 if ((old_flags ^ flags) & IFF_UP) {
8434 if (old_flags & IFF_UP)
8435 __dev_close(dev);
8436 else
40c900aa 8437 ret = __dev_open(dev, extack);
7051b88a 8438 }
1da177e4 8439
1da177e4 8440 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8441 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8442 unsigned int old_flags = dev->flags;
d1b19dff 8443
1da177e4 8444 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8445
8446 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8447 if (dev->flags != old_flags)
8448 dev_set_rx_mode(dev);
1da177e4
LT
8449 }
8450
8451 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8452 * is important. Some (broken) drivers set IFF_PROMISC, when
8453 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8454 */
8455 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8456 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8457
1da177e4 8458 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8459 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8460 }
8461
bd380811
PM
8462 return ret;
8463}
8464
a528c219
ND
8465void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8466 unsigned int gchanges)
bd380811
PM
8467{
8468 unsigned int changes = dev->flags ^ old_flags;
8469
a528c219 8470 if (gchanges)
7f294054 8471 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8472
bd380811
PM
8473 if (changes & IFF_UP) {
8474 if (dev->flags & IFF_UP)
8475 call_netdevice_notifiers(NETDEV_UP, dev);
8476 else
8477 call_netdevice_notifiers(NETDEV_DOWN, dev);
8478 }
8479
8480 if (dev->flags & IFF_UP &&
be9efd36 8481 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8482 struct netdev_notifier_change_info change_info = {
8483 .info = {
8484 .dev = dev,
8485 },
8486 .flags_changed = changes,
8487 };
be9efd36 8488
51d0c047 8489 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8490 }
bd380811
PM
8491}
8492
8493/**
8494 * dev_change_flags - change device settings
8495 * @dev: device
8496 * @flags: device state flags
567c5e13 8497 * @extack: netlink extended ack
bd380811
PM
8498 *
8499 * Change settings on device based state flags. The flags are
8500 * in the userspace exported format.
8501 */
567c5e13
PM
8502int dev_change_flags(struct net_device *dev, unsigned int flags,
8503 struct netlink_ext_ack *extack)
bd380811 8504{
b536db93 8505 int ret;
991fb3f7 8506 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8507
6d040321 8508 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8509 if (ret < 0)
8510 return ret;
8511
991fb3f7 8512 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8513 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8514 return ret;
8515}
d1b19dff 8516EXPORT_SYMBOL(dev_change_flags);
1da177e4 8517
f51048c3 8518int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8519{
8520 const struct net_device_ops *ops = dev->netdev_ops;
8521
8522 if (ops->ndo_change_mtu)
8523 return ops->ndo_change_mtu(dev, new_mtu);
8524
501a90c9
ED
8525 /* Pairs with all the lockless reads of dev->mtu in the stack */
8526 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8527 return 0;
8528}
f51048c3 8529EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8530
d836f5c6
ED
8531int dev_validate_mtu(struct net_device *dev, int new_mtu,
8532 struct netlink_ext_ack *extack)
8533{
8534 /* MTU must be positive, and in range */
8535 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8536 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8537 return -EINVAL;
8538 }
8539
8540 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8541 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8542 return -EINVAL;
8543 }
8544 return 0;
8545}
8546
f0db275a 8547/**
7a4c53be 8548 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8549 * @dev: device
8550 * @new_mtu: new transfer unit
7a4c53be 8551 * @extack: netlink extended ack
f0db275a
SH
8552 *
8553 * Change the maximum transfer size of the network device.
8554 */
7a4c53be
SH
8555int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8556 struct netlink_ext_ack *extack)
1da177e4 8557{
2315dc91 8558 int err, orig_mtu;
1da177e4
LT
8559
8560 if (new_mtu == dev->mtu)
8561 return 0;
8562
d836f5c6
ED
8563 err = dev_validate_mtu(dev, new_mtu, extack);
8564 if (err)
8565 return err;
1da177e4
LT
8566
8567 if (!netif_device_present(dev))
8568 return -ENODEV;
8569
1d486bfb
VF
8570 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8571 err = notifier_to_errno(err);
8572 if (err)
8573 return err;
d314774c 8574
2315dc91
VF
8575 orig_mtu = dev->mtu;
8576 err = __dev_set_mtu(dev, new_mtu);
d314774c 8577
2315dc91 8578 if (!err) {
af7d6cce
SD
8579 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8580 orig_mtu);
2315dc91
VF
8581 err = notifier_to_errno(err);
8582 if (err) {
8583 /* setting mtu back and notifying everyone again,
8584 * so that they have a chance to revert changes.
8585 */
8586 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8587 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8588 new_mtu);
2315dc91
VF
8589 }
8590 }
1da177e4
LT
8591 return err;
8592}
7a4c53be
SH
8593
8594int dev_set_mtu(struct net_device *dev, int new_mtu)
8595{
8596 struct netlink_ext_ack extack;
8597 int err;
8598
a6bcfc89 8599 memset(&extack, 0, sizeof(extack));
7a4c53be 8600 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8601 if (err && extack._msg)
7a4c53be
SH
8602 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8603 return err;
8604}
d1b19dff 8605EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8606
6a643ddb
CW
8607/**
8608 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8609 * @dev: device
8610 * @new_len: new tx queue length
8611 */
8612int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8613{
8614 unsigned int orig_len = dev->tx_queue_len;
8615 int res;
8616
8617 if (new_len != (unsigned int)new_len)
8618 return -ERANGE;
8619
8620 if (new_len != orig_len) {
8621 dev->tx_queue_len = new_len;
8622 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8623 res = notifier_to_errno(res);
7effaf06
TT
8624 if (res)
8625 goto err_rollback;
8626 res = dev_qdisc_change_tx_queue_len(dev);
8627 if (res)
8628 goto err_rollback;
6a643ddb
CW
8629 }
8630
8631 return 0;
7effaf06
TT
8632
8633err_rollback:
8634 netdev_err(dev, "refused to change device tx_queue_len\n");
8635 dev->tx_queue_len = orig_len;
8636 return res;
6a643ddb
CW
8637}
8638
cbda10fa
VD
8639/**
8640 * dev_set_group - Change group this device belongs to
8641 * @dev: device
8642 * @new_group: group this device should belong to
8643 */
8644void dev_set_group(struct net_device *dev, int new_group)
8645{
8646 dev->group = new_group;
8647}
cbda10fa 8648
d59cdf94
PM
8649/**
8650 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8651 * @dev: device
8652 * @addr: new address
8653 * @extack: netlink extended ack
8654 */
8655int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8656 struct netlink_ext_ack *extack)
8657{
8658 struct netdev_notifier_pre_changeaddr_info info = {
8659 .info.dev = dev,
8660 .info.extack = extack,
8661 .dev_addr = addr,
8662 };
8663 int rc;
8664
8665 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8666 return notifier_to_errno(rc);
8667}
8668EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8669
f0db275a
SH
8670/**
8671 * dev_set_mac_address - Change Media Access Control Address
8672 * @dev: device
8673 * @sa: new address
3a37a963 8674 * @extack: netlink extended ack
f0db275a
SH
8675 *
8676 * Change the hardware (MAC) address of the device
8677 */
3a37a963
PM
8678int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8679 struct netlink_ext_ack *extack)
1da177e4 8680{
d314774c 8681 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8682 int err;
8683
d314774c 8684 if (!ops->ndo_set_mac_address)
1da177e4
LT
8685 return -EOPNOTSUPP;
8686 if (sa->sa_family != dev->type)
8687 return -EINVAL;
8688 if (!netif_device_present(dev))
8689 return -ENODEV;
d59cdf94
PM
8690 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8691 if (err)
8692 return err;
d314774c 8693 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8694 if (err)
8695 return err;
fbdeca2d 8696 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8697 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8698 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8699 return 0;
1da177e4 8700}
d1b19dff 8701EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8702
3b23a32a
CW
8703static DECLARE_RWSEM(dev_addr_sem);
8704
8705int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8706 struct netlink_ext_ack *extack)
8707{
8708 int ret;
8709
8710 down_write(&dev_addr_sem);
8711 ret = dev_set_mac_address(dev, sa, extack);
8712 up_write(&dev_addr_sem);
8713 return ret;
8714}
8715EXPORT_SYMBOL(dev_set_mac_address_user);
8716
8717int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8718{
8719 size_t size = sizeof(sa->sa_data);
8720 struct net_device *dev;
8721 int ret = 0;
8722
8723 down_read(&dev_addr_sem);
8724 rcu_read_lock();
8725
8726 dev = dev_get_by_name_rcu(net, dev_name);
8727 if (!dev) {
8728 ret = -ENODEV;
8729 goto unlock;
8730 }
8731 if (!dev->addr_len)
8732 memset(sa->sa_data, 0, size);
8733 else
8734 memcpy(sa->sa_data, dev->dev_addr,
8735 min_t(size_t, size, dev->addr_len));
8736 sa->sa_family = dev->type;
8737
8738unlock:
8739 rcu_read_unlock();
8740 up_read(&dev_addr_sem);
8741 return ret;
8742}
8743EXPORT_SYMBOL(dev_get_mac_address);
8744
4bf84c35
JP
8745/**
8746 * dev_change_carrier - Change device carrier
8747 * @dev: device
691b3b7e 8748 * @new_carrier: new value
4bf84c35
JP
8749 *
8750 * Change device carrier
8751 */
8752int dev_change_carrier(struct net_device *dev, bool new_carrier)
8753{
8754 const struct net_device_ops *ops = dev->netdev_ops;
8755
8756 if (!ops->ndo_change_carrier)
8757 return -EOPNOTSUPP;
8758 if (!netif_device_present(dev))
8759 return -ENODEV;
8760 return ops->ndo_change_carrier(dev, new_carrier);
8761}
4bf84c35 8762
66b52b0d
JP
8763/**
8764 * dev_get_phys_port_id - Get device physical port ID
8765 * @dev: device
8766 * @ppid: port ID
8767 *
8768 * Get device physical port ID
8769 */
8770int dev_get_phys_port_id(struct net_device *dev,
02637fce 8771 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8772{
8773 const struct net_device_ops *ops = dev->netdev_ops;
8774
8775 if (!ops->ndo_get_phys_port_id)
8776 return -EOPNOTSUPP;
8777 return ops->ndo_get_phys_port_id(dev, ppid);
8778}
66b52b0d 8779
db24a904
DA
8780/**
8781 * dev_get_phys_port_name - Get device physical port name
8782 * @dev: device
8783 * @name: port name
ed49e650 8784 * @len: limit of bytes to copy to name
db24a904
DA
8785 *
8786 * Get device physical port name
8787 */
8788int dev_get_phys_port_name(struct net_device *dev,
8789 char *name, size_t len)
8790{
8791 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8792 int err;
db24a904 8793
af3836df
JP
8794 if (ops->ndo_get_phys_port_name) {
8795 err = ops->ndo_get_phys_port_name(dev, name, len);
8796 if (err != -EOPNOTSUPP)
8797 return err;
8798 }
8799 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904 8800}
db24a904 8801
d6abc596
FF
8802/**
8803 * dev_get_port_parent_id - Get the device's port parent identifier
8804 * @dev: network device
8805 * @ppid: pointer to a storage for the port's parent identifier
8806 * @recurse: allow/disallow recursion to lower devices
8807 *
8808 * Get the devices's port parent identifier
8809 */
8810int dev_get_port_parent_id(struct net_device *dev,
8811 struct netdev_phys_item_id *ppid,
8812 bool recurse)
8813{
8814 const struct net_device_ops *ops = dev->netdev_ops;
8815 struct netdev_phys_item_id first = { };
8816 struct net_device *lower_dev;
8817 struct list_head *iter;
7e1146e8
JP
8818 int err;
8819
8820 if (ops->ndo_get_port_parent_id) {
8821 err = ops->ndo_get_port_parent_id(dev, ppid);
8822 if (err != -EOPNOTSUPP)
8823 return err;
8824 }
d6abc596 8825
7e1146e8 8826 err = devlink_compat_switch_id_get(dev, ppid);
c0288ae8 8827 if (!recurse || err != -EOPNOTSUPP)
7e1146e8 8828 return err;
d6abc596 8829
d6abc596 8830 netdev_for_each_lower_dev(dev, lower_dev, iter) {
c0288ae8 8831 err = dev_get_port_parent_id(lower_dev, ppid, true);
d6abc596
FF
8832 if (err)
8833 break;
8834 if (!first.id_len)
8835 first = *ppid;
8836 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8837 return -EOPNOTSUPP;
d6abc596
FF
8838 }
8839
8840 return err;
8841}
8842EXPORT_SYMBOL(dev_get_port_parent_id);
8843
8844/**
8845 * netdev_port_same_parent_id - Indicate if two network devices have
8846 * the same port parent identifier
8847 * @a: first network device
8848 * @b: second network device
8849 */
8850bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8851{
8852 struct netdev_phys_item_id a_id = { };
8853 struct netdev_phys_item_id b_id = { };
8854
8855 if (dev_get_port_parent_id(a, &a_id, true) ||
8856 dev_get_port_parent_id(b, &b_id, true))
8857 return false;
8858
8859 return netdev_phys_item_id_same(&a_id, &b_id);
8860}
8861EXPORT_SYMBOL(netdev_port_same_parent_id);
8862
d746d707 8863/**
2106efda
JK
8864 * dev_change_proto_down - set carrier according to proto_down.
8865 *
d746d707
AK
8866 * @dev: device
8867 * @proto_down: new value
d746d707
AK
8868 */
8869int dev_change_proto_down(struct net_device *dev, bool proto_down)
8870{
2106efda 8871 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
d746d707
AK
8872 return -EOPNOTSUPP;
8873 if (!netif_device_present(dev))
8874 return -ENODEV;
b5899679
AR
8875 if (proto_down)
8876 netif_carrier_off(dev);
8877 else
8878 netif_carrier_on(dev);
8879 dev->proto_down = proto_down;
8880 return 0;
8881}
b5899679 8882
829eb208
RP
8883/**
8884 * dev_change_proto_down_reason - proto down reason
8885 *
8886 * @dev: device
8887 * @mask: proto down mask
8888 * @value: proto down value
8889 */
8890void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8891 u32 value)
8892{
8893 int b;
8894
8895 if (!mask) {
8896 dev->proto_down_reason = value;
8897 } else {
8898 for_each_set_bit(b, &mask, 32) {
8899 if (value & (1 << b))
8900 dev->proto_down_reason |= BIT(b);
8901 else
8902 dev->proto_down_reason &= ~BIT(b);
8903 }
8904 }
8905}
829eb208 8906
aa8d3a71
AN
8907struct bpf_xdp_link {
8908 struct bpf_link link;
8909 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8910 int flags;
8911};
8912
c8a36f19 8913static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8914{
7f0a8382
AN
8915 if (flags & XDP_FLAGS_HW_MODE)
8916 return XDP_MODE_HW;
8917 if (flags & XDP_FLAGS_DRV_MODE)
8918 return XDP_MODE_DRV;
c8a36f19
AN
8919 if (flags & XDP_FLAGS_SKB_MODE)
8920 return XDP_MODE_SKB;
8921 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8922}
d67b9cd2 8923
7f0a8382
AN
8924static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8925{
8926 switch (mode) {
8927 case XDP_MODE_SKB:
8928 return generic_xdp_install;
8929 case XDP_MODE_DRV:
8930 case XDP_MODE_HW:
8931 return dev->netdev_ops->ndo_bpf;
8932 default:
8933 return NULL;
5d867245 8934 }
7f0a8382 8935}
118b4aa2 8936
aa8d3a71
AN
8937static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8938 enum bpf_xdp_mode mode)
8939{
8940 return dev->xdp_state[mode].link;
8941}
8942
7f0a8382
AN
8943static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8944 enum bpf_xdp_mode mode)
8945{
aa8d3a71
AN
8946 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8947
8948 if (link)
8949 return link->link.prog;
7f0a8382
AN
8950 return dev->xdp_state[mode].prog;
8951}
8952
879af96f 8953u8 dev_xdp_prog_count(struct net_device *dev)
998f1729
THJ
8954{
8955 u8 count = 0;
8956 int i;
8957
8958 for (i = 0; i < __MAX_XDP_MODE; i++)
8959 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8960 count++;
8961 return count;
8962}
879af96f 8963EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
998f1729 8964
7f0a8382
AN
8965u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8966{
8967 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8968
7f0a8382
AN
8969 return prog ? prog->aux->id : 0;
8970}
58038695 8971
aa8d3a71
AN
8972static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8973 struct bpf_xdp_link *link)
8974{
8975 dev->xdp_state[mode].link = link;
8976 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8977}
8978
7f0a8382
AN
8979static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8980 struct bpf_prog *prog)
8981{
aa8d3a71 8982 dev->xdp_state[mode].link = NULL;
7f0a8382 8983 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8984}
8985
7f0a8382
AN
8986static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8987 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8988 u32 flags, struct bpf_prog *prog)
d67b9cd2 8989{
f4e63525 8990 struct netdev_bpf xdp;
7e6897f9
BT
8991 int err;
8992
d67b9cd2 8993 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8994 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8995 xdp.extack = extack;
32d60277 8996 xdp.flags = flags;
d67b9cd2
DB
8997 xdp.prog = prog;
8998
7f0a8382
AN
8999 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9000 * "moved" into driver), so they don't increment it on their own, but
9001 * they do decrement refcnt when program is detached or replaced.
9002 * Given net_device also owns link/prog, we need to bump refcnt here
9003 * to prevent drivers from underflowing it.
9004 */
9005 if (prog)
9006 bpf_prog_inc(prog);
7e6897f9 9007 err = bpf_op(dev, &xdp);
7f0a8382
AN
9008 if (err) {
9009 if (prog)
9010 bpf_prog_put(prog);
9011 return err;
9012 }
7e6897f9 9013
7f0a8382
AN
9014 if (mode != XDP_MODE_HW)
9015 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9016
7f0a8382 9017 return 0;
d67b9cd2
DB
9018}
9019
bd0b2e7f
JK
9020static void dev_xdp_uninstall(struct net_device *dev)
9021{
aa8d3a71 9022 struct bpf_xdp_link *link;
7f0a8382
AN
9023 struct bpf_prog *prog;
9024 enum bpf_xdp_mode mode;
9025 bpf_op_t bpf_op;
bd0b2e7f 9026
7f0a8382 9027 ASSERT_RTNL();
bd0b2e7f 9028
7f0a8382
AN
9029 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9030 prog = dev_xdp_prog(dev, mode);
9031 if (!prog)
9032 continue;
bd0b2e7f 9033
7f0a8382
AN
9034 bpf_op = dev_xdp_bpf_op(dev, mode);
9035 if (!bpf_op)
9036 continue;
bd0b2e7f 9037
7f0a8382
AN
9038 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9039
aa8d3a71
AN
9040 /* auto-detach link from net device */
9041 link = dev_xdp_link(dev, mode);
9042 if (link)
9043 link->dev = NULL;
9044 else
9045 bpf_prog_put(prog);
9046
9047 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9048 }
bd0b2e7f
JK
9049}
9050
d4baa936 9051static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9052 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9053 struct bpf_prog *old_prog, u32 flags)
a7862b45 9054{
998f1729 9055 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936 9056 struct bpf_prog *cur_prog;
879af96f
JM
9057 struct net_device *upper;
9058 struct list_head *iter;
d4baa936 9059 enum bpf_xdp_mode mode;
7f0a8382 9060 bpf_op_t bpf_op;
a7862b45
BB
9061 int err;
9062
85de8576
DB
9063 ASSERT_RTNL();
9064
aa8d3a71
AN
9065 /* either link or prog attachment, never both */
9066 if (link && (new_prog || old_prog))
9067 return -EINVAL;
9068 /* link supports only XDP mode flags */
9069 if (link && (flags & ~XDP_FLAGS_MODES)) {
9070 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9071 return -EINVAL;
9072 }
998f1729
THJ
9073 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9074 if (num_modes > 1) {
d4baa936
AN
9075 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9076 return -EINVAL;
9077 }
998f1729
THJ
9078 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9079 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9080 NL_SET_ERR_MSG(extack,
9081 "More than one program loaded, unset mode is ambiguous");
9082 return -EINVAL;
9083 }
d4baa936
AN
9084 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9085 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9086 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9087 return -EINVAL;
01dde20c 9088 }
a25717d2 9089
c8a36f19 9090 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9091 /* can't replace attached link */
9092 if (dev_xdp_link(dev, mode)) {
9093 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9094 return -EBUSY;
01dde20c 9095 }
c14a9f63 9096
879af96f
JM
9097 /* don't allow if an upper device already has a program */
9098 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9099 if (dev_xdp_prog_count(upper) > 0) {
9100 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9101 return -EEXIST;
9102 }
9103 }
9104
d4baa936 9105 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9106 /* can't replace attached prog with link */
9107 if (link && cur_prog) {
9108 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9109 return -EBUSY;
9110 }
d4baa936
AN
9111 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9112 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9113 return -EEXIST;
92234c8f 9114 }
c14a9f63 9115
aa8d3a71
AN
9116 /* put effective new program into new_prog */
9117 if (link)
9118 new_prog = link->link.prog;
85de8576 9119
d4baa936
AN
9120 if (new_prog) {
9121 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9122 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9123 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9124
068d9d1e
AN
9125 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9126 NL_SET_ERR_MSG(extack, "XDP program already attached");
9127 return -EBUSY;
9128 }
d4baa936 9129 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9130 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9131 return -EEXIST;
01dde20c 9132 }
d4baa936 9133 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9134 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9135 return -EINVAL;
9136 }
d4baa936 9137 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9138 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9139 return -EINVAL;
9140 }
d4baa936
AN
9141 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9142 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9143 return -EINVAL;
9144 }
d4baa936 9145 }
92164774 9146
d4baa936
AN
9147 /* don't call drivers if the effective program didn't change */
9148 if (new_prog != cur_prog) {
9149 bpf_op = dev_xdp_bpf_op(dev, mode);
9150 if (!bpf_op) {
9151 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9152 return -EOPNOTSUPP;
c14a9f63 9153 }
a7862b45 9154
d4baa936
AN
9155 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9156 if (err)
9157 return err;
7f0a8382 9158 }
d4baa936 9159
aa8d3a71
AN
9160 if (link)
9161 dev_xdp_set_link(dev, mode, link);
9162 else
9163 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9164 if (cur_prog)
9165 bpf_prog_put(cur_prog);
a7862b45 9166
7f0a8382 9167 return 0;
a7862b45 9168}
a7862b45 9169
aa8d3a71
AN
9170static int dev_xdp_attach_link(struct net_device *dev,
9171 struct netlink_ext_ack *extack,
9172 struct bpf_xdp_link *link)
9173{
9174 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9175}
9176
9177static int dev_xdp_detach_link(struct net_device *dev,
9178 struct netlink_ext_ack *extack,
9179 struct bpf_xdp_link *link)
9180{
9181 enum bpf_xdp_mode mode;
9182 bpf_op_t bpf_op;
9183
9184 ASSERT_RTNL();
9185
c8a36f19 9186 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9187 if (dev_xdp_link(dev, mode) != link)
9188 return -EINVAL;
9189
9190 bpf_op = dev_xdp_bpf_op(dev, mode);
9191 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9192 dev_xdp_set_link(dev, mode, NULL);
9193 return 0;
9194}
9195
9196static void bpf_xdp_link_release(struct bpf_link *link)
9197{
9198 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9199
9200 rtnl_lock();
9201
9202 /* if racing with net_device's tear down, xdp_link->dev might be
9203 * already NULL, in which case link was already auto-detached
9204 */
73b11c2a 9205 if (xdp_link->dev) {
aa8d3a71 9206 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9207 xdp_link->dev = NULL;
9208 }
aa8d3a71
AN
9209
9210 rtnl_unlock();
9211}
9212
73b11c2a
AN
9213static int bpf_xdp_link_detach(struct bpf_link *link)
9214{
9215 bpf_xdp_link_release(link);
9216 return 0;
9217}
9218
aa8d3a71
AN
9219static void bpf_xdp_link_dealloc(struct bpf_link *link)
9220{
9221 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9222
9223 kfree(xdp_link);
9224}
9225
c1931c97
AN
9226static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9227 struct seq_file *seq)
9228{
9229 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9230 u32 ifindex = 0;
9231
9232 rtnl_lock();
9233 if (xdp_link->dev)
9234 ifindex = xdp_link->dev->ifindex;
9235 rtnl_unlock();
9236
9237 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9238}
9239
9240static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9241 struct bpf_link_info *info)
9242{
9243 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9244 u32 ifindex = 0;
9245
9246 rtnl_lock();
9247 if (xdp_link->dev)
9248 ifindex = xdp_link->dev->ifindex;
9249 rtnl_unlock();
9250
9251 info->xdp.ifindex = ifindex;
9252 return 0;
9253}
9254
026a4c28
AN
9255static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9256 struct bpf_prog *old_prog)
9257{
9258 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259 enum bpf_xdp_mode mode;
9260 bpf_op_t bpf_op;
9261 int err = 0;
9262
9263 rtnl_lock();
9264
9265 /* link might have been auto-released already, so fail */
9266 if (!xdp_link->dev) {
9267 err = -ENOLINK;
9268 goto out_unlock;
9269 }
9270
9271 if (old_prog && link->prog != old_prog) {
9272 err = -EPERM;
9273 goto out_unlock;
9274 }
9275 old_prog = link->prog;
382778ed
THJ
9276 if (old_prog->type != new_prog->type ||
9277 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9278 err = -EINVAL;
9279 goto out_unlock;
9280 }
9281
026a4c28
AN
9282 if (old_prog == new_prog) {
9283 /* no-op, don't disturb drivers */
9284 bpf_prog_put(new_prog);
9285 goto out_unlock;
9286 }
9287
c8a36f19 9288 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9289 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9290 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9291 xdp_link->flags, new_prog);
9292 if (err)
9293 goto out_unlock;
9294
9295 old_prog = xchg(&link->prog, new_prog);
9296 bpf_prog_put(old_prog);
9297
9298out_unlock:
9299 rtnl_unlock();
9300 return err;
9301}
9302
aa8d3a71
AN
9303static const struct bpf_link_ops bpf_xdp_link_lops = {
9304 .release = bpf_xdp_link_release,
9305 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9306 .detach = bpf_xdp_link_detach,
c1931c97
AN
9307 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9308 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9309 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9310};
9311
9312int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9313{
9314 struct net *net = current->nsproxy->net_ns;
9315 struct bpf_link_primer link_primer;
9316 struct bpf_xdp_link *link;
9317 struct net_device *dev;
9318 int err, fd;
9319
5acc7d3e 9320 rtnl_lock();
aa8d3a71 9321 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
5acc7d3e
XZ
9322 if (!dev) {
9323 rtnl_unlock();
aa8d3a71 9324 return -EINVAL;
5acc7d3e 9325 }
aa8d3a71
AN
9326
9327 link = kzalloc(sizeof(*link), GFP_USER);
9328 if (!link) {
9329 err = -ENOMEM;
5acc7d3e 9330 goto unlock;
aa8d3a71
AN
9331 }
9332
9333 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9334 link->dev = dev;
9335 link->flags = attr->link_create.flags;
9336
9337 err = bpf_link_prime(&link->link, &link_primer);
9338 if (err) {
9339 kfree(link);
5acc7d3e 9340 goto unlock;
aa8d3a71
AN
9341 }
9342
aa8d3a71
AN
9343 err = dev_xdp_attach_link(dev, NULL, link);
9344 rtnl_unlock();
9345
9346 if (err) {
5acc7d3e 9347 link->dev = NULL;
aa8d3a71
AN
9348 bpf_link_cleanup(&link_primer);
9349 goto out_put_dev;
9350 }
9351
9352 fd = bpf_link_settle(&link_primer);
9353 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9354 dev_put(dev);
9355 return fd;
9356
5acc7d3e
XZ
9357unlock:
9358 rtnl_unlock();
9359
aa8d3a71
AN
9360out_put_dev:
9361 dev_put(dev);
9362 return err;
9363}
9364
d4baa936
AN
9365/**
9366 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9367 * @dev: device
9368 * @extack: netlink extended ack
9369 * @fd: new program fd or negative value to clear
9370 * @expected_fd: old program fd that userspace expects to replace or clear
9371 * @flags: xdp-related flags
9372 *
9373 * Set or clear a bpf program for a device
9374 */
9375int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9376 int fd, int expected_fd, u32 flags)
9377{
c8a36f19 9378 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9379 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9380 int err;
9381
9382 ASSERT_RTNL();
9383
9384 if (fd >= 0) {
9385 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9386 mode != XDP_MODE_SKB);
9387 if (IS_ERR(new_prog))
9388 return PTR_ERR(new_prog);
9389 }
9390
9391 if (expected_fd >= 0) {
9392 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9393 mode != XDP_MODE_SKB);
9394 if (IS_ERR(old_prog)) {
9395 err = PTR_ERR(old_prog);
9396 old_prog = NULL;
9397 goto err_out;
c14a9f63 9398 }
a7862b45
BB
9399 }
9400
aa8d3a71 9401 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9402
d4baa936
AN
9403err_out:
9404 if (err && new_prog)
9405 bpf_prog_put(new_prog);
9406 if (old_prog)
9407 bpf_prog_put(old_prog);
a7862b45
BB
9408 return err;
9409}
a7862b45 9410
1da177e4
LT
9411/**
9412 * dev_new_index - allocate an ifindex
c4ea43c5 9413 * @net: the applicable net namespace
1da177e4
LT
9414 *
9415 * Returns a suitable unique value for a new device interface
9416 * number. The caller must hold the rtnl semaphore or the
9417 * dev_base_lock to be sure it remains unique.
9418 */
881d966b 9419static int dev_new_index(struct net *net)
1da177e4 9420{
aa79e66e 9421 int ifindex = net->ifindex;
f4563a75 9422
1da177e4
LT
9423 for (;;) {
9424 if (++ifindex <= 0)
9425 ifindex = 1;
881d966b 9426 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9427 return net->ifindex = ifindex;
1da177e4
LT
9428 }
9429}
9430
1da177e4 9431/* Delayed registration/unregisteration */
0b5c21bb 9432LIST_HEAD(net_todo_list);
200b916f 9433DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9434
6f05f629 9435static void net_set_todo(struct net_device *dev)
1da177e4 9436{
1da177e4 9437 list_add_tail(&dev->todo_list, &net_todo_list);
ede6c39c 9438 atomic_inc(&dev_net(dev)->dev_unreg_count);
1da177e4
LT
9439}
9440
fd867d51
JW
9441static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9442 struct net_device *upper, netdev_features_t features)
9443{
9444 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9445 netdev_features_t feature;
5ba3f7d6 9446 int feature_bit;
fd867d51 9447
3b89ea9c 9448 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9449 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9450 if (!(upper->wanted_features & feature)
9451 && (features & feature)) {
9452 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9453 &feature, upper->name);
9454 features &= ~feature;
9455 }
9456 }
9457
9458 return features;
9459}
9460
9461static void netdev_sync_lower_features(struct net_device *upper,
9462 struct net_device *lower, netdev_features_t features)
9463{
9464 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9465 netdev_features_t feature;
5ba3f7d6 9466 int feature_bit;
fd867d51 9467
3b89ea9c 9468 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9469 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9470 if (!(features & feature) && (lower->features & feature)) {
9471 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9472 &feature, lower->name);
9473 lower->wanted_features &= ~feature;
dd912306 9474 __netdev_update_features(lower);
fd867d51
JW
9475
9476 if (unlikely(lower->features & feature))
9477 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9478 &feature, lower->name);
dd912306
CW
9479 else
9480 netdev_features_change(lower);
fd867d51
JW
9481 }
9482 }
9483}
9484
c8f44aff
MM
9485static netdev_features_t netdev_fix_features(struct net_device *dev,
9486 netdev_features_t features)
b63365a2 9487{
57422dc5
MM
9488 /* Fix illegal checksum combinations */
9489 if ((features & NETIF_F_HW_CSUM) &&
9490 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9491 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9492 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9493 }
9494
b63365a2 9495 /* TSO requires that SG is present as well. */
ea2d3688 9496 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9497 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9498 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9499 }
9500
ec5f0615
PS
9501 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9502 !(features & NETIF_F_IP_CSUM)) {
9503 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9504 features &= ~NETIF_F_TSO;
9505 features &= ~NETIF_F_TSO_ECN;
9506 }
9507
9508 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9509 !(features & NETIF_F_IPV6_CSUM)) {
9510 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9511 features &= ~NETIF_F_TSO6;
9512 }
9513
b1dc497b
AD
9514 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9515 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9516 features &= ~NETIF_F_TSO_MANGLEID;
9517
31d8b9e0
BH
9518 /* TSO ECN requires that TSO is present as well. */
9519 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9520 features &= ~NETIF_F_TSO_ECN;
9521
212b573f
MM
9522 /* Software GSO depends on SG. */
9523 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9524 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9525 features &= ~NETIF_F_GSO;
9526 }
9527
802ab55a
AD
9528 /* GSO partial features require GSO partial be set */
9529 if ((features & dev->gso_partial_features) &&
9530 !(features & NETIF_F_GSO_PARTIAL)) {
9531 netdev_dbg(dev,
9532 "Dropping partially supported GSO features since no GSO partial.\n");
9533 features &= ~dev->gso_partial_features;
9534 }
9535
fb1f5f79
MC
9536 if (!(features & NETIF_F_RXCSUM)) {
9537 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9538 * successfully merged by hardware must also have the
9539 * checksum verified by hardware. If the user does not
9540 * want to enable RXCSUM, logically, we should disable GRO_HW.
9541 */
9542 if (features & NETIF_F_GRO_HW) {
9543 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9544 features &= ~NETIF_F_GRO_HW;
9545 }
9546 }
9547
de8d5ab2
GP
9548 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9549 if (features & NETIF_F_RXFCS) {
9550 if (features & NETIF_F_LRO) {
9551 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9552 features &= ~NETIF_F_LRO;
9553 }
9554
9555 if (features & NETIF_F_GRO_HW) {
9556 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9557 features &= ~NETIF_F_GRO_HW;
9558 }
e6c6a929
GP
9559 }
9560
54b2b3ec
BB
9561 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9562 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9563 features &= ~NETIF_F_LRO;
9564 }
9565
25537d71
TT
9566 if (features & NETIF_F_HW_TLS_TX) {
9567 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9568 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9569 bool hw_csum = features & NETIF_F_HW_CSUM;
9570
9571 if (!ip_csum && !hw_csum) {
9572 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9573 features &= ~NETIF_F_HW_TLS_TX;
9574 }
ae0b04b2
TT
9575 }
9576
a3eb4e9d
TT
9577 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9578 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9579 features &= ~NETIF_F_HW_TLS_RX;
9580 }
9581
b63365a2
HX
9582 return features;
9583}
b63365a2 9584
6cb6a27c 9585int __netdev_update_features(struct net_device *dev)
5455c699 9586{
fd867d51 9587 struct net_device *upper, *lower;
c8f44aff 9588 netdev_features_t features;
fd867d51 9589 struct list_head *iter;
e7868a85 9590 int err = -1;
5455c699 9591
87267485
MM
9592 ASSERT_RTNL();
9593
5455c699
MM
9594 features = netdev_get_wanted_features(dev);
9595
9596 if (dev->netdev_ops->ndo_fix_features)
9597 features = dev->netdev_ops->ndo_fix_features(dev, features);
9598
9599 /* driver might be less strict about feature dependencies */
9600 features = netdev_fix_features(dev, features);
9601
4250b75b 9602 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9603 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9604 features = netdev_sync_upper_features(dev, upper, features);
9605
5455c699 9606 if (dev->features == features)
e7868a85 9607 goto sync_lower;
5455c699 9608
c8f44aff
MM
9609 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9610 &dev->features, &features);
5455c699
MM
9611
9612 if (dev->netdev_ops->ndo_set_features)
9613 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9614 else
9615 err = 0;
5455c699 9616
6cb6a27c 9617 if (unlikely(err < 0)) {
5455c699 9618 netdev_err(dev,
c8f44aff
MM
9619 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9620 err, &features, &dev->features);
17b85d29
NA
9621 /* return non-0 since some features might have changed and
9622 * it's better to fire a spurious notification than miss it
9623 */
9624 return -1;
6cb6a27c
MM
9625 }
9626
e7868a85 9627sync_lower:
fd867d51
JW
9628 /* some features must be disabled on lower devices when disabled
9629 * on an upper device (think: bonding master or bridge)
9630 */
9631 netdev_for_each_lower_dev(dev, lower, iter)
9632 netdev_sync_lower_features(dev, lower, features);
9633
ae847f40
SD
9634 if (!err) {
9635 netdev_features_t diff = features ^ dev->features;
9636
9637 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9638 /* udp_tunnel_{get,drop}_rx_info both need
9639 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9640 * device, or they won't do anything.
9641 * Thus we need to update dev->features
9642 * *before* calling udp_tunnel_get_rx_info,
9643 * but *after* calling udp_tunnel_drop_rx_info.
9644 */
9645 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9646 dev->features = features;
9647 udp_tunnel_get_rx_info(dev);
9648 } else {
9649 udp_tunnel_drop_rx_info(dev);
9650 }
9651 }
9652
9daae9bd
GP
9653 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9654 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9655 dev->features = features;
9656 err |= vlan_get_rx_ctag_filter_info(dev);
9657 } else {
9658 vlan_drop_rx_ctag_filter_info(dev);
9659 }
9660 }
9661
9662 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9663 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9664 dev->features = features;
9665 err |= vlan_get_rx_stag_filter_info(dev);
9666 } else {
9667 vlan_drop_rx_stag_filter_info(dev);
9668 }
9669 }
9670
6cb6a27c 9671 dev->features = features;
ae847f40 9672 }
6cb6a27c 9673
e7868a85 9674 return err < 0 ? 0 : 1;
6cb6a27c
MM
9675}
9676
afe12cc8
MM
9677/**
9678 * netdev_update_features - recalculate device features
9679 * @dev: the device to check
9680 *
9681 * Recalculate dev->features set and send notifications if it
9682 * has changed. Should be called after driver or hardware dependent
9683 * conditions might have changed that influence the features.
9684 */
6cb6a27c
MM
9685void netdev_update_features(struct net_device *dev)
9686{
9687 if (__netdev_update_features(dev))
9688 netdev_features_change(dev);
5455c699
MM
9689}
9690EXPORT_SYMBOL(netdev_update_features);
9691
afe12cc8
MM
9692/**
9693 * netdev_change_features - recalculate device features
9694 * @dev: the device to check
9695 *
9696 * Recalculate dev->features set and send notifications even
9697 * if they have not changed. Should be called instead of
9698 * netdev_update_features() if also dev->vlan_features might
9699 * have changed to allow the changes to be propagated to stacked
9700 * VLAN devices.
9701 */
9702void netdev_change_features(struct net_device *dev)
9703{
9704 __netdev_update_features(dev);
9705 netdev_features_change(dev);
9706}
9707EXPORT_SYMBOL(netdev_change_features);
9708
fc4a7489
PM
9709/**
9710 * netif_stacked_transfer_operstate - transfer operstate
9711 * @rootdev: the root or lower level device to transfer state from
9712 * @dev: the device to transfer operstate to
9713 *
9714 * Transfer operational state from root to device. This is normally
9715 * called when a stacking relationship exists between the root
9716 * device and the device(a leaf device).
9717 */
9718void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9719 struct net_device *dev)
9720{
9721 if (rootdev->operstate == IF_OPER_DORMANT)
9722 netif_dormant_on(dev);
9723 else
9724 netif_dormant_off(dev);
9725
eec517cd
AL
9726 if (rootdev->operstate == IF_OPER_TESTING)
9727 netif_testing_on(dev);
9728 else
9729 netif_testing_off(dev);
9730
0575c86b
ZS
9731 if (netif_carrier_ok(rootdev))
9732 netif_carrier_on(dev);
9733 else
9734 netif_carrier_off(dev);
fc4a7489
PM
9735}
9736EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9737
1b4bf461
ED
9738static int netif_alloc_rx_queues(struct net_device *dev)
9739{
1b4bf461 9740 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9741 struct netdev_rx_queue *rx;
10595902 9742 size_t sz = count * sizeof(*rx);
e817f856 9743 int err = 0;
1b4bf461 9744
bd25fa7b 9745 BUG_ON(count < 1);
1b4bf461 9746
c948f51c 9747 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9748 if (!rx)
9749 return -ENOMEM;
9750
bd25fa7b
TH
9751 dev->_rx = rx;
9752
e817f856 9753 for (i = 0; i < count; i++) {
fe822240 9754 rx[i].dev = dev;
e817f856
JDB
9755
9756 /* XDP RX-queue setup */
b02e5a0e 9757 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
9758 if (err < 0)
9759 goto err_rxq_info;
9760 }
1b4bf461 9761 return 0;
e817f856
JDB
9762
9763err_rxq_info:
9764 /* Rollback successful reg's and free other resources */
9765 while (i--)
9766 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9767 kvfree(dev->_rx);
e817f856
JDB
9768 dev->_rx = NULL;
9769 return err;
9770}
9771
9772static void netif_free_rx_queues(struct net_device *dev)
9773{
9774 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9775
9776 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9777 if (!dev->_rx)
9778 return;
9779
e817f856 9780 for (i = 0; i < count; i++)
82aaff2f
JK
9781 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9782
9783 kvfree(dev->_rx);
1b4bf461
ED
9784}
9785
aa942104
CG
9786static void netdev_init_one_queue(struct net_device *dev,
9787 struct netdev_queue *queue, void *_unused)
9788{
9789 /* Initialize queue lock */
9790 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9791 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9792 queue->xmit_lock_owner = -1;
b236da69 9793 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9794 queue->dev = dev;
114cf580
TH
9795#ifdef CONFIG_BQL
9796 dql_init(&queue->dql, HZ);
9797#endif
aa942104
CG
9798}
9799
60877a32
ED
9800static void netif_free_tx_queues(struct net_device *dev)
9801{
4cb28970 9802 kvfree(dev->_tx);
60877a32
ED
9803}
9804
e6484930
TH
9805static int netif_alloc_netdev_queues(struct net_device *dev)
9806{
9807 unsigned int count = dev->num_tx_queues;
9808 struct netdev_queue *tx;
60877a32 9809 size_t sz = count * sizeof(*tx);
e6484930 9810
d339727c
ED
9811 if (count < 1 || count > 0xffff)
9812 return -EINVAL;
62b5942a 9813
c948f51c 9814 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9815 if (!tx)
9816 return -ENOMEM;
9817
e6484930 9818 dev->_tx = tx;
1d24eb48 9819
e6484930
TH
9820 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9821 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9822
9823 return 0;
e6484930
TH
9824}
9825
a2029240
DV
9826void netif_tx_stop_all_queues(struct net_device *dev)
9827{
9828 unsigned int i;
9829
9830 for (i = 0; i < dev->num_tx_queues; i++) {
9831 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9832
a2029240
DV
9833 netif_tx_stop_queue(txq);
9834 }
9835}
9836EXPORT_SYMBOL(netif_tx_stop_all_queues);
9837
1da177e4
LT
9838/**
9839 * register_netdevice - register a network device
9840 * @dev: device to register
9841 *
9842 * Take a completed network device structure and add it to the kernel
9843 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9844 * chain. 0 is returned on success. A negative errno code is returned
9845 * on a failure to set up the device, or if the name is a duplicate.
9846 *
9847 * Callers must hold the rtnl semaphore. You may want
9848 * register_netdev() instead of this.
9849 *
9850 * BUGS:
9851 * The locking appears insufficient to guarantee two parallel registers
9852 * will not get the same name.
9853 */
9854
9855int register_netdevice(struct net_device *dev)
9856{
1da177e4 9857 int ret;
d314774c 9858 struct net *net = dev_net(dev);
1da177e4 9859
e283de3a
FF
9860 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9861 NETDEV_FEATURE_COUNT);
1da177e4
LT
9862 BUG_ON(dev_boot_phase);
9863 ASSERT_RTNL();
9864
b17a7c17
SH
9865 might_sleep();
9866
1da177e4
LT
9867 /* When net_device's are persistent, this will be fatal. */
9868 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9869 BUG_ON(!net);
1da177e4 9870
9000edb7
JK
9871 ret = ethtool_check_ops(dev->ethtool_ops);
9872 if (ret)
9873 return ret;
9874
f1f28aa3 9875 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9876 netdev_set_addr_lockdep_class(dev);
1da177e4 9877
828de4f6 9878 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9879 if (ret < 0)
9880 goto out;
9881
9077f052 9882 ret = -ENOMEM;
ff927412
JP
9883 dev->name_node = netdev_name_node_head_alloc(dev);
9884 if (!dev->name_node)
9885 goto out;
9886
1da177e4 9887 /* Init, if this function is available */
d314774c
SH
9888 if (dev->netdev_ops->ndo_init) {
9889 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9890 if (ret) {
9891 if (ret > 0)
9892 ret = -EIO;
42c17fa6 9893 goto err_free_name;
1da177e4
LT
9894 }
9895 }
4ec93edb 9896
f646968f
PM
9897 if (((dev->hw_features | dev->features) &
9898 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9899 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9900 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9901 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9902 ret = -EINVAL;
9903 goto err_uninit;
9904 }
9905
9c7dafbf
PE
9906 ret = -EBUSY;
9907 if (!dev->ifindex)
9908 dev->ifindex = dev_new_index(net);
9909 else if (__dev_get_by_index(net, dev->ifindex))
9910 goto err_uninit;
9911
5455c699
MM
9912 /* Transfer changeable features to wanted_features and enable
9913 * software offloads (GSO and GRO).
9914 */
1a3c998f 9915 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9916 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 9917
876c4384 9918 if (dev->udp_tunnel_nic_info) {
d764a122
SD
9919 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9920 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9921 }
9922
14d1232f 9923 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9924
cbc53e08 9925 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9926 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9927
7f348a60
AD
9928 /* If IPv4 TCP segmentation offload is supported we should also
9929 * allow the device to enable segmenting the frame with the option
9930 * of ignoring a static IP ID value. This doesn't enable the
9931 * feature itself but allows the user to enable it later.
9932 */
cbc53e08
AD
9933 if (dev->hw_features & NETIF_F_TSO)
9934 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9935 if (dev->vlan_features & NETIF_F_TSO)
9936 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9937 if (dev->mpls_features & NETIF_F_TSO)
9938 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9939 if (dev->hw_enc_features & NETIF_F_TSO)
9940 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9941
1180e7d6 9942 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9943 */
1180e7d6 9944 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9945
ee579677
PS
9946 /* Make NETIF_F_SG inheritable to tunnel devices.
9947 */
802ab55a 9948 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9949
0d89d203
SH
9950 /* Make NETIF_F_SG inheritable to MPLS.
9951 */
9952 dev->mpls_features |= NETIF_F_SG;
9953
7ffbe3fd
JB
9954 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9955 ret = notifier_to_errno(ret);
9956 if (ret)
9957 goto err_uninit;
9958
8b41d188 9959 ret = netdev_register_kobject(dev);
cb626bf5
JH
9960 if (ret) {
9961 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9962 goto err_uninit;
cb626bf5 9963 }
b17a7c17
SH
9964 dev->reg_state = NETREG_REGISTERED;
9965
6cb6a27c 9966 __netdev_update_features(dev);
8e9b59b2 9967
1da177e4
LT
9968 /*
9969 * Default initial state at registry is that the
9970 * device is present.
9971 */
9972
9973 set_bit(__LINK_STATE_PRESENT, &dev->state);
9974
8f4cccbb
BH
9975 linkwatch_init_dev(dev);
9976
1da177e4 9977 dev_init_scheduler(dev);
b2309a71
ED
9978
9979 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
ce286d32 9980 list_netdevice(dev);
b2309a71 9981
7bf23575 9982 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9983
948b337e
JP
9984 /* If the device has permanent device address, driver should
9985 * set dev_addr and also addr_assign_type should be set to
9986 * NET_ADDR_PERM (default value).
9987 */
9988 if (dev->addr_assign_type == NET_ADDR_PERM)
9989 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9990
1da177e4 9991 /* Notify protocols, that a new device appeared. */
056925ab 9992 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9993 ret = notifier_to_errno(ret);
93ee31f1 9994 if (ret) {
766b0515
JK
9995 /* Expect explicit free_netdev() on failure */
9996 dev->needs_free_netdev = false;
037e56bd 9997 unregister_netdevice_queue(dev, NULL);
766b0515 9998 goto out;
93ee31f1 9999 }
d90a909e
EB
10000 /*
10001 * Prevent userspace races by waiting until the network
10002 * device is fully setup before sending notifications.
10003 */
a2835763
PM
10004 if (!dev->rtnl_link_ops ||
10005 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10006 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10007
10008out:
10009 return ret;
7ce1b0ed
HX
10010
10011err_uninit:
d314774c
SH
10012 if (dev->netdev_ops->ndo_uninit)
10013 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10014 if (dev->priv_destructor)
10015 dev->priv_destructor(dev);
42c17fa6
DC
10016err_free_name:
10017 netdev_name_node_free(dev->name_node);
7ce1b0ed 10018 goto out;
1da177e4 10019}
d1b19dff 10020EXPORT_SYMBOL(register_netdevice);
1da177e4 10021
937f1ba5
BH
10022/**
10023 * init_dummy_netdev - init a dummy network device for NAPI
10024 * @dev: device to init
10025 *
10026 * This takes a network device structure and initialize the minimum
10027 * amount of fields so it can be used to schedule NAPI polls without
10028 * registering a full blown interface. This is to be used by drivers
10029 * that need to tie several hardware interfaces to a single NAPI
10030 * poll scheduler due to HW limitations.
10031 */
10032int init_dummy_netdev(struct net_device *dev)
10033{
10034 /* Clear everything. Note we don't initialize spinlocks
10035 * are they aren't supposed to be taken by any of the
10036 * NAPI code and this dummy netdev is supposed to be
10037 * only ever used for NAPI polls
10038 */
10039 memset(dev, 0, sizeof(struct net_device));
10040
10041 /* make sure we BUG if trying to hit standard
10042 * register/unregister code path
10043 */
10044 dev->reg_state = NETREG_DUMMY;
10045
937f1ba5
BH
10046 /* NAPI wants this */
10047 INIT_LIST_HEAD(&dev->napi_list);
10048
10049 /* a dummy interface is started by default */
10050 set_bit(__LINK_STATE_PRESENT, &dev->state);
10051 set_bit(__LINK_STATE_START, &dev->state);
10052
35edfdc7
JE
10053 /* napi_busy_loop stats accounting wants this */
10054 dev_net_set(dev, &init_net);
10055
29b4433d
ED
10056 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10057 * because users of this 'device' dont need to change
10058 * its refcount.
10059 */
10060
937f1ba5
BH
10061 return 0;
10062}
10063EXPORT_SYMBOL_GPL(init_dummy_netdev);
10064
10065
1da177e4
LT
10066/**
10067 * register_netdev - register a network device
10068 * @dev: device to register
10069 *
10070 * Take a completed network device structure and add it to the kernel
10071 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10072 * chain. 0 is returned on success. A negative errno code is returned
10073 * on a failure to set up the device, or if the name is a duplicate.
10074 *
38b4da38 10075 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10076 * and expands the device name if you passed a format string to
10077 * alloc_netdev.
10078 */
10079int register_netdev(struct net_device *dev)
10080{
10081 int err;
10082
b0f3debc
KT
10083 if (rtnl_lock_killable())
10084 return -EINTR;
1da177e4 10085 err = register_netdevice(dev);
1da177e4
LT
10086 rtnl_unlock();
10087 return err;
10088}
10089EXPORT_SYMBOL(register_netdev);
10090
29b4433d
ED
10091int netdev_refcnt_read(const struct net_device *dev)
10092{
919067cc 10093#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10094 int i, refcnt = 0;
10095
10096 for_each_possible_cpu(i)
10097 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10098 return refcnt;
919067cc
ED
10099#else
10100 return refcount_read(&dev->dev_refcnt);
10101#endif
29b4433d
ED
10102}
10103EXPORT_SYMBOL(netdev_refcnt_read);
10104
5aa3afe1
DV
10105int netdev_unregister_timeout_secs __read_mostly = 10;
10106
de2b541b
MCC
10107#define WAIT_REFS_MIN_MSECS 1
10108#define WAIT_REFS_MAX_MSECS 250
2c53040f 10109/**
faab39f6
JK
10110 * netdev_wait_allrefs_any - wait until all references are gone.
10111 * @list: list of net_devices to wait on
1da177e4
LT
10112 *
10113 * This is called when unregistering network devices.
10114 *
10115 * Any protocol or device that holds a reference should register
10116 * for netdevice notification, and cleanup and put back the
10117 * reference if they receive an UNREGISTER event.
10118 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10119 * call dev_put.
1da177e4 10120 */
faab39f6 10121static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
1da177e4
LT
10122{
10123 unsigned long rebroadcast_time, warning_time;
faab39f6
JK
10124 struct net_device *dev;
10125 int wait = 0;
1da177e4
LT
10126
10127 rebroadcast_time = warning_time = jiffies;
29b4433d 10128
faab39f6
JK
10129 list_for_each_entry(dev, list, todo_list)
10130 if (netdev_refcnt_read(dev) == 1)
10131 return dev;
10132
10133 while (true) {
1da177e4 10134 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10135 rtnl_lock();
1da177e4
LT
10136
10137 /* Rebroadcast unregister notification */
faab39f6
JK
10138 list_for_each_entry(dev, list, todo_list)
10139 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10140
748e2d93 10141 __rtnl_unlock();
0115e8e3 10142 rcu_barrier();
748e2d93
ED
10143 rtnl_lock();
10144
faab39f6
JK
10145 list_for_each_entry(dev, list, todo_list)
10146 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10147 &dev->state)) {
10148 /* We must not have linkwatch events
10149 * pending on unregister. If this
10150 * happens, we simply run the queue
10151 * unscheduled, resulting in a noop
10152 * for this device.
10153 */
10154 linkwatch_run_queue();
10155 break;
10156 }
1da177e4 10157
6756ae4b 10158 __rtnl_unlock();
1da177e4
LT
10159
10160 rebroadcast_time = jiffies;
10161 }
10162
0e4be9e5
FR
10163 if (!wait) {
10164 rcu_barrier();
10165 wait = WAIT_REFS_MIN_MSECS;
10166 } else {
10167 msleep(wait);
10168 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10169 }
1da177e4 10170
faab39f6
JK
10171 list_for_each_entry(dev, list, todo_list)
10172 if (netdev_refcnt_read(dev) == 1)
10173 return dev;
29b4433d 10174
faab39f6 10175 if (time_after(jiffies, warning_time +
5aa3afe1 10176 netdev_unregister_timeout_secs * HZ)) {
faab39f6
JK
10177 list_for_each_entry(dev, list, todo_list) {
10178 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10179 dev->name, netdev_refcnt_read(dev));
10180 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10181 }
10182
1da177e4
LT
10183 warning_time = jiffies;
10184 }
10185 }
10186}
10187
10188/* The sequence is:
10189 *
10190 * rtnl_lock();
10191 * ...
10192 * register_netdevice(x1);
10193 * register_netdevice(x2);
10194 * ...
10195 * unregister_netdevice(y1);
10196 * unregister_netdevice(y2);
10197 * ...
10198 * rtnl_unlock();
10199 * free_netdev(y1);
10200 * free_netdev(y2);
10201 *
58ec3b4d 10202 * We are invoked by rtnl_unlock().
1da177e4 10203 * This allows us to deal with problems:
b17a7c17 10204 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10205 * without deadlocking with linkwatch via keventd.
10206 * 2) Since we run with the RTNL semaphore not held, we can sleep
10207 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10208 *
10209 * We must not return until all unregister events added during
10210 * the interval the lock was held have been completed.
1da177e4 10211 */
1da177e4
LT
10212void netdev_run_todo(void)
10213{
ae68db14 10214 struct net_device *dev, *tmp;
626ab0e6 10215 struct list_head list;
1fc70edb
TY
10216#ifdef CONFIG_LOCKDEP
10217 struct list_head unlink_list;
10218
10219 list_replace_init(&net_unlink_list, &unlink_list);
10220
10221 while (!list_empty(&unlink_list)) {
10222 struct net_device *dev = list_first_entry(&unlink_list,
10223 struct net_device,
10224 unlink_list);
0e8b8d6a 10225 list_del_init(&dev->unlink_list);
1fc70edb
TY
10226 dev->nested_level = dev->lower_level - 1;
10227 }
10228#endif
1da177e4 10229
1da177e4 10230 /* Snapshot list, allow later requests */
626ab0e6 10231 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10232
10233 __rtnl_unlock();
626ab0e6 10234
0115e8e3 10235 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10236 if (!list_empty(&list))
10237 rcu_barrier();
10238
ae68db14 10239 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
b17a7c17 10240 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
ae68db14
JK
10241 netdev_WARN(dev, "run_todo but not unregistering\n");
10242 list_del(&dev->todo_list);
b17a7c17
SH
10243 continue;
10244 }
1da177e4 10245
b17a7c17 10246 dev->reg_state = NETREG_UNREGISTERED;
86213f80 10247 linkwatch_forget_dev(dev);
ae68db14
JK
10248 }
10249
10250 while (!list_empty(&list)) {
faab39f6 10251 dev = netdev_wait_allrefs_any(&list);
ae68db14 10252 list_del(&dev->todo_list);
1da177e4 10253
b17a7c17 10254 /* paranoia */
add2d736 10255 BUG_ON(netdev_refcnt_read(dev) != 1);
7866a621
SN
10256 BUG_ON(!list_empty(&dev->ptype_all));
10257 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10258 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10259 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10260#if IS_ENABLED(CONFIG_DECNET)
547b792c 10261 WARN_ON(dev->dn_ptr);
330c7272 10262#endif
cf124db5
DM
10263 if (dev->priv_destructor)
10264 dev->priv_destructor(dev);
10265 if (dev->needs_free_netdev)
10266 free_netdev(dev);
9093bbb2 10267
ede6c39c
ED
10268 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10269 wake_up(&netdev_unregistering_wq);
50624c93 10270
9093bbb2
SH
10271 /* Free network device */
10272 kobject_put(&dev->dev.kobj);
1da177e4 10273 }
1da177e4
LT
10274}
10275
9256645a
JW
10276/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10277 * all the same fields in the same order as net_device_stats, with only
10278 * the type differing, but rtnl_link_stats64 may have additional fields
10279 * at the end for newer counters.
3cfde79c 10280 */
77a1abf5
ED
10281void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10282 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10283{
10284#if BITS_PER_LONG == 64
9256645a 10285 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10286 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10287 /* zero out counters that only exist in rtnl_link_stats64 */
10288 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10289 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10290#else
9256645a 10291 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10292 const unsigned long *src = (const unsigned long *)netdev_stats;
10293 u64 *dst = (u64 *)stats64;
10294
9256645a 10295 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10296 for (i = 0; i < n; i++)
10297 dst[i] = src[i];
9256645a
JW
10298 /* zero out counters that only exist in rtnl_link_stats64 */
10299 memset((char *)stats64 + n * sizeof(u64), 0,
10300 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10301#endif
10302}
77a1abf5 10303EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10304
625788b5
ED
10305struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev)
10306{
10307 struct net_device_core_stats __percpu *p;
10308
10309 p = alloc_percpu_gfp(struct net_device_core_stats,
10310 GFP_ATOMIC | __GFP_NOWARN);
10311
10312 if (p && cmpxchg(&dev->core_stats, NULL, p))
10313 free_percpu(p);
10314
10315 /* This READ_ONCE() pairs with the cmpxchg() above */
10316 p = READ_ONCE(dev->core_stats);
10317 if (!p)
10318 return NULL;
10319
10320 return this_cpu_ptr(p);
10321}
10322EXPORT_SYMBOL(netdev_core_stats_alloc);
10323
eeda3fd6
SH
10324/**
10325 * dev_get_stats - get network device statistics
10326 * @dev: device to get statistics from
28172739 10327 * @storage: place to store stats
eeda3fd6 10328 *
d7753516
BH
10329 * Get network statistics from device. Return @storage.
10330 * The device driver may provide its own method by setting
10331 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10332 * otherwise the internal statistics structure is used.
eeda3fd6 10333 */
d7753516
BH
10334struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10335 struct rtnl_link_stats64 *storage)
7004bf25 10336{
eeda3fd6 10337 const struct net_device_ops *ops = dev->netdev_ops;
625788b5 10338 const struct net_device_core_stats __percpu *p;
eeda3fd6 10339
28172739
ED
10340 if (ops->ndo_get_stats64) {
10341 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10342 ops->ndo_get_stats64(dev, storage);
10343 } else if (ops->ndo_get_stats) {
3cfde79c 10344 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10345 } else {
10346 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10347 }
625788b5
ED
10348
10349 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10350 p = READ_ONCE(dev->core_stats);
10351 if (p) {
10352 const struct net_device_core_stats *core_stats;
10353 int i;
10354
10355 for_each_possible_cpu(i) {
10356 core_stats = per_cpu_ptr(p, i);
10357 storage->rx_dropped += local_read(&core_stats->rx_dropped);
10358 storage->tx_dropped += local_read(&core_stats->tx_dropped);
10359 storage->rx_nohandler += local_read(&core_stats->rx_nohandler);
10360 }
10361 }
28172739 10362 return storage;
c45d286e 10363}
eeda3fd6 10364EXPORT_SYMBOL(dev_get_stats);
c45d286e 10365
44fa32f0
HK
10366/**
10367 * dev_fetch_sw_netstats - get per-cpu network device statistics
10368 * @s: place to store stats
10369 * @netstats: per-cpu network stats to read from
10370 *
10371 * Read per-cpu network statistics and populate the related fields in @s.
10372 */
10373void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10374 const struct pcpu_sw_netstats __percpu *netstats)
10375{
10376 int cpu;
10377
10378 for_each_possible_cpu(cpu) {
10379 const struct pcpu_sw_netstats *stats;
10380 struct pcpu_sw_netstats tmp;
10381 unsigned int start;
10382
10383 stats = per_cpu_ptr(netstats, cpu);
10384 do {
10385 start = u64_stats_fetch_begin_irq(&stats->syncp);
10386 tmp.rx_packets = stats->rx_packets;
10387 tmp.rx_bytes = stats->rx_bytes;
10388 tmp.tx_packets = stats->tx_packets;
10389 tmp.tx_bytes = stats->tx_bytes;
10390 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10391
10392 s->rx_packets += tmp.rx_packets;
10393 s->rx_bytes += tmp.rx_bytes;
10394 s->tx_packets += tmp.tx_packets;
10395 s->tx_bytes += tmp.tx_bytes;
10396 }
10397}
10398EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10399
a1839426
HK
10400/**
10401 * dev_get_tstats64 - ndo_get_stats64 implementation
10402 * @dev: device to get statistics from
10403 * @s: place to store stats
10404 *
10405 * Populate @s from dev->stats and dev->tstats. Can be used as
10406 * ndo_get_stats64() callback.
10407 */
10408void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10409{
10410 netdev_stats_to_stats64(s, &dev->stats);
10411 dev_fetch_sw_netstats(s, dev->tstats);
10412}
10413EXPORT_SYMBOL_GPL(dev_get_tstats64);
10414
24824a09 10415struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10416{
24824a09 10417 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10418
24824a09
ED
10419#ifdef CONFIG_NET_CLS_ACT
10420 if (queue)
10421 return queue;
10422 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10423 if (!queue)
10424 return NULL;
10425 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10426 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10427 queue->qdisc_sleeping = &noop_qdisc;
10428 rcu_assign_pointer(dev->ingress_queue, queue);
10429#endif
10430 return queue;
bb949fbd
DM
10431}
10432
2c60db03
ED
10433static const struct ethtool_ops default_ethtool_ops;
10434
d07d7507
SG
10435void netdev_set_default_ethtool_ops(struct net_device *dev,
10436 const struct ethtool_ops *ops)
10437{
10438 if (dev->ethtool_ops == &default_ethtool_ops)
10439 dev->ethtool_ops = ops;
10440}
10441EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10442
74d332c1
ED
10443void netdev_freemem(struct net_device *dev)
10444{
10445 char *addr = (char *)dev - dev->padded;
10446
4cb28970 10447 kvfree(addr);
74d332c1
ED
10448}
10449
1da177e4 10450/**
722c9a0c 10451 * alloc_netdev_mqs - allocate network device
10452 * @sizeof_priv: size of private data to allocate space for
10453 * @name: device name format string
10454 * @name_assign_type: origin of device name
10455 * @setup: callback to initialize device
10456 * @txqs: the number of TX subqueues to allocate
10457 * @rxqs: the number of RX subqueues to allocate
10458 *
10459 * Allocates a struct net_device with private data area for driver use
10460 * and performs basic initialization. Also allocates subqueue structs
10461 * for each queue on the device.
1da177e4 10462 */
36909ea4 10463struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10464 unsigned char name_assign_type,
36909ea4
TH
10465 void (*setup)(struct net_device *),
10466 unsigned int txqs, unsigned int rxqs)
1da177e4 10467{
1da177e4 10468 struct net_device *dev;
52a59bd5 10469 unsigned int alloc_size;
1ce8e7b5 10470 struct net_device *p;
1da177e4 10471
b6fe17d6
SH
10472 BUG_ON(strlen(name) >= sizeof(dev->name));
10473
36909ea4 10474 if (txqs < 1) {
7b6cd1ce 10475 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10476 return NULL;
10477 }
10478
36909ea4 10479 if (rxqs < 1) {
7b6cd1ce 10480 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10481 return NULL;
10482 }
36909ea4 10483
fd2ea0a7 10484 alloc_size = sizeof(struct net_device);
d1643d24
AD
10485 if (sizeof_priv) {
10486 /* ensure 32-byte alignment of private area */
1ce8e7b5 10487 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10488 alloc_size += sizeof_priv;
10489 }
10490 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10491 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10492
c948f51c 10493 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
62b5942a 10494 if (!p)
1da177e4 10495 return NULL;
1da177e4 10496
1ce8e7b5 10497 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10498 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10499
4d92b95f 10500 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
919067cc 10501#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10502 dev->pcpu_refcnt = alloc_percpu(int);
10503 if (!dev->pcpu_refcnt)
74d332c1 10504 goto free_dev;
4c6c11ea 10505 __dev_hold(dev);
add2d736
ED
10506#else
10507 refcount_set(&dev->dev_refcnt, 1);
919067cc 10508#endif
ab9c73cc 10509
ab9c73cc 10510 if (dev_addr_init(dev))
29b4433d 10511 goto free_pcpu;
ab9c73cc 10512
22bedad3 10513 dev_mc_init(dev);
a748ee24 10514 dev_uc_init(dev);
ccffad25 10515
c346dca1 10516 dev_net_set(dev, &init_net);
1da177e4 10517
8d3bdbd5 10518 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10519 dev->gso_max_segs = GSO_MAX_SEGS;
eac1b93c 10520 dev->gro_max_size = GRO_MAX_SIZE;
5343da4c
TY
10521 dev->upper_level = 1;
10522 dev->lower_level = 1;
1fc70edb
TY
10523#ifdef CONFIG_LOCKDEP
10524 dev->nested_level = 0;
10525 INIT_LIST_HEAD(&dev->unlink_list);
10526#endif
8d3bdbd5 10527
8d3bdbd5
DM
10528 INIT_LIST_HEAD(&dev->napi_list);
10529 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10530 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10531 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10532 INIT_LIST_HEAD(&dev->adj_list.upper);
10533 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10534 INIT_LIST_HEAD(&dev->ptype_all);
10535 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10536 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10537#ifdef CONFIG_NET_SCHED
10538 hash_init(dev->qdisc_hash);
10539#endif
02875878 10540 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10541 setup(dev);
10542
a813104d 10543 if (!dev->tx_queue_len) {
f84bb1ea 10544 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10545 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10546 }
906470c1 10547
36909ea4
TH
10548 dev->num_tx_queues = txqs;
10549 dev->real_num_tx_queues = txqs;
ed9af2e8 10550 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10551 goto free_all;
e8a0464c 10552
36909ea4
TH
10553 dev->num_rx_queues = rxqs;
10554 dev->real_num_rx_queues = rxqs;
fe822240 10555 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10556 goto free_all;
0a9627f2 10557
1da177e4 10558 strcpy(dev->name, name);
c835a677 10559 dev->name_assign_type = name_assign_type;
cbda10fa 10560 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10561 if (!dev->ethtool_ops)
10562 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10563
17d20784 10564 nf_hook_netdev_init(dev);
e687ad60 10565
1da177e4 10566 return dev;
ab9c73cc 10567
8d3bdbd5
DM
10568free_all:
10569 free_netdev(dev);
10570 return NULL;
10571
29b4433d 10572free_pcpu:
919067cc 10573#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d 10574 free_percpu(dev->pcpu_refcnt);
74d332c1 10575free_dev:
919067cc 10576#endif
74d332c1 10577 netdev_freemem(dev);
ab9c73cc 10578 return NULL;
1da177e4 10579}
36909ea4 10580EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10581
10582/**
722c9a0c 10583 * free_netdev - free network device
10584 * @dev: device
1da177e4 10585 *
722c9a0c 10586 * This function does the last stage of destroying an allocated device
10587 * interface. The reference to the device object is released. If this
10588 * is the last reference then it will be freed.Must be called in process
10589 * context.
1da177e4
LT
10590 */
10591void free_netdev(struct net_device *dev)
10592{
d565b0a1
HX
10593 struct napi_struct *p, *n;
10594
93d05d4a 10595 might_sleep();
c269a24c
JK
10596
10597 /* When called immediately after register_netdevice() failed the unwind
10598 * handling may still be dismantling the device. Handle that case by
10599 * deferring the free.
10600 */
10601 if (dev->reg_state == NETREG_UNREGISTERING) {
10602 ASSERT_RTNL();
10603 dev->needs_free_netdev = true;
10604 return;
10605 }
10606
60877a32 10607 netif_free_tx_queues(dev);
e817f856 10608 netif_free_rx_queues(dev);
e8a0464c 10609
33d480ce 10610 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10611
f001fde5
JP
10612 /* Flush device addresses */
10613 dev_addr_flush(dev);
10614
d565b0a1
HX
10615 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10616 netif_napi_del(p);
10617
4d92b95f 10618 ref_tracker_dir_exit(&dev->refcnt_tracker);
919067cc 10619#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10620 free_percpu(dev->pcpu_refcnt);
10621 dev->pcpu_refcnt = NULL;
919067cc 10622#endif
625788b5
ED
10623 free_percpu(dev->core_stats);
10624 dev->core_stats = NULL;
75ccae62
THJ
10625 free_percpu(dev->xdp_bulkq);
10626 dev->xdp_bulkq = NULL;
29b4433d 10627
3041a069 10628 /* Compatibility with error handling in drivers */
1da177e4 10629 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10630 netdev_freemem(dev);
1da177e4
LT
10631 return;
10632 }
10633
10634 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10635 dev->reg_state = NETREG_RELEASED;
10636
43cb76d9
GKH
10637 /* will free via device release */
10638 put_device(&dev->dev);
1da177e4 10639}
d1b19dff 10640EXPORT_SYMBOL(free_netdev);
4ec93edb 10641
f0db275a
SH
10642/**
10643 * synchronize_net - Synchronize with packet receive processing
10644 *
10645 * Wait for packets currently being received to be done.
10646 * Does not block later packets from starting.
10647 */
4ec93edb 10648void synchronize_net(void)
1da177e4
LT
10649{
10650 might_sleep();
be3fc413
ED
10651 if (rtnl_is_locked())
10652 synchronize_rcu_expedited();
10653 else
10654 synchronize_rcu();
1da177e4 10655}
d1b19dff 10656EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10657
10658/**
44a0873d 10659 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10660 * @dev: device
44a0873d 10661 * @head: list
6ebfbc06 10662 *
1da177e4 10663 * This function shuts down a device interface and removes it
d59b54b1 10664 * from the kernel tables.
44a0873d 10665 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10666 *
10667 * Callers must hold the rtnl semaphore. You may want
10668 * unregister_netdev() instead of this.
10669 */
10670
44a0873d 10671void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10672{
a6620712
HX
10673 ASSERT_RTNL();
10674
44a0873d 10675 if (head) {
9fdce099 10676 list_move_tail(&dev->unreg_list, head);
44a0873d 10677 } else {
037e56bd
JK
10678 LIST_HEAD(single);
10679
10680 list_add(&dev->unreg_list, &single);
0cbe1e57 10681 unregister_netdevice_many(&single);
44a0873d 10682 }
1da177e4 10683}
44a0873d 10684EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10685
9b5e383c
ED
10686/**
10687 * unregister_netdevice_many - unregister many devices
10688 * @head: list of devices
87757a91
ED
10689 *
10690 * Note: As most callers use a stack allocated list_head,
10691 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10692 */
10693void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
10694{
10695 struct net_device *dev, *tmp;
10696 LIST_HEAD(close_head);
10697
10698 BUG_ON(dev_boot_phase);
10699 ASSERT_RTNL();
10700
0cbe1e57
JK
10701 if (list_empty(head))
10702 return;
10703
bcfe2f1a
JK
10704 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10705 /* Some devices call without registering
10706 * for initialization unwind. Remove those
10707 * devices and proceed with the remaining.
10708 */
10709 if (dev->reg_state == NETREG_UNINITIALIZED) {
10710 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10711 dev->name, dev);
10712
10713 WARN_ON(1);
10714 list_del(&dev->unreg_list);
10715 continue;
10716 }
10717 dev->dismantle = true;
10718 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10719 }
10720
10721 /* If device is running, close it first. */
10722 list_for_each_entry(dev, head, unreg_list)
10723 list_add_tail(&dev->close_list, &close_head);
10724 dev_close_many(&close_head, true);
10725
10726 list_for_each_entry(dev, head, unreg_list) {
10727 /* And unlink it from device chain. */
10728 unlist_netdevice(dev);
10729
10730 dev->reg_state = NETREG_UNREGISTERING;
10731 }
10732 flush_all_backlogs();
10733
10734 synchronize_net();
10735
10736 list_for_each_entry(dev, head, unreg_list) {
10737 struct sk_buff *skb = NULL;
10738
10739 /* Shutdown queueing discipline. */
10740 dev_shutdown(dev);
10741
10742 dev_xdp_uninstall(dev);
10743
9309f97a
PM
10744 netdev_offload_xstats_disable_all(dev);
10745
bcfe2f1a
JK
10746 /* Notify protocols, that we are about to destroy
10747 * this device. They should clean all the things.
10748 */
10749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10750
10751 if (!dev->rtnl_link_ops ||
10752 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10753 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10754 GFP_KERNEL, NULL, 0);
10755
10756 /*
10757 * Flush the unicast and multicast chains
10758 */
10759 dev_uc_flush(dev);
10760 dev_mc_flush(dev);
10761
10762 netdev_name_node_alt_flush(dev);
10763 netdev_name_node_free(dev->name_node);
10764
10765 if (dev->netdev_ops->ndo_uninit)
10766 dev->netdev_ops->ndo_uninit(dev);
10767
10768 if (skb)
10769 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10770
10771 /* Notifier chain MUST detach us all upper devices. */
10772 WARN_ON(netdev_has_any_upper_dev(dev));
10773 WARN_ON(netdev_has_any_lower_dev(dev));
10774
10775 /* Remove entries from kobject tree */
10776 netdev_unregister_kobject(dev);
10777#ifdef CONFIG_XPS
10778 /* Remove XPS queueing entries */
10779 netif_reset_xps_queues_gt(dev, 0);
10780#endif
10781 }
10782
10783 synchronize_net();
10784
10785 list_for_each_entry(dev, head, unreg_list) {
b2309a71 10786 dev_put_track(dev, &dev->dev_registered_tracker);
bcfe2f1a
JK
10787 net_set_todo(dev);
10788 }
0cbe1e57
JK
10789
10790 list_del(head);
bcfe2f1a 10791}
0cbe1e57 10792EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 10793
1da177e4
LT
10794/**
10795 * unregister_netdev - remove device from the kernel
10796 * @dev: device
10797 *
10798 * This function shuts down a device interface and removes it
d59b54b1 10799 * from the kernel tables.
1da177e4
LT
10800 *
10801 * This is just a wrapper for unregister_netdevice that takes
10802 * the rtnl semaphore. In general you want to use this and not
10803 * unregister_netdevice.
10804 */
10805void unregister_netdev(struct net_device *dev)
10806{
10807 rtnl_lock();
10808 unregister_netdevice(dev);
10809 rtnl_unlock();
10810}
1da177e4
LT
10811EXPORT_SYMBOL(unregister_netdev);
10812
ce286d32 10813/**
0854fa82 10814 * __dev_change_net_namespace - move device to different nethost namespace
ce286d32
EB
10815 * @dev: device
10816 * @net: network namespace
10817 * @pat: If not NULL name pattern to try if the current device name
10818 * is already taken in the destination network namespace.
eeb85a14
AV
10819 * @new_ifindex: If not zero, specifies device index in the target
10820 * namespace.
ce286d32
EB
10821 *
10822 * This function shuts down a device interface and moves it
10823 * to a new network namespace. On success 0 is returned, on
10824 * a failure a netagive errno code is returned.
10825 *
10826 * Callers must hold the rtnl semaphore.
10827 */
10828
0854fa82
AV
10829int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10830 const char *pat, int new_ifindex)
ce286d32 10831{
ef6a4c88 10832 struct net *net_old = dev_net(dev);
eeb85a14 10833 int err, new_nsid;
ce286d32
EB
10834
10835 ASSERT_RTNL();
10836
10837 /* Don't allow namespace local devices to be moved. */
10838 err = -EINVAL;
10839 if (dev->features & NETIF_F_NETNS_LOCAL)
10840 goto out;
10841
10842 /* Ensure the device has been registrered */
ce286d32
EB
10843 if (dev->reg_state != NETREG_REGISTERED)
10844 goto out;
10845
10846 /* Get out if there is nothing todo */
10847 err = 0;
ef6a4c88 10848 if (net_eq(net_old, net))
ce286d32
EB
10849 goto out;
10850
10851 /* Pick the destination device name, and ensure
10852 * we can use it in the destination network namespace.
10853 */
10854 err = -EEXIST;
75ea27d0 10855 if (netdev_name_in_use(net, dev->name)) {
ce286d32
EB
10856 /* We get here if we can't use the current device name */
10857 if (!pat)
10858 goto out;
7892bd08
LR
10859 err = dev_get_valid_name(net, dev, pat);
10860 if (err < 0)
ce286d32
EB
10861 goto out;
10862 }
10863
eeb85a14
AV
10864 /* Check that new_ifindex isn't used yet. */
10865 err = -EBUSY;
10866 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10867 goto out;
10868
ce286d32
EB
10869 /*
10870 * And now a mini version of register_netdevice unregister_netdevice.
10871 */
10872
10873 /* If device is running close it first. */
9b772652 10874 dev_close(dev);
ce286d32
EB
10875
10876 /* And unlink it from device chain */
ce286d32
EB
10877 unlist_netdevice(dev);
10878
10879 synchronize_net();
10880
10881 /* Shutdown queueing discipline. */
10882 dev_shutdown(dev);
10883
10884 /* Notify protocols, that we are about to destroy
eb13da1a 10885 * this device. They should clean all the things.
10886 *
10887 * Note that dev->reg_state stays at NETREG_REGISTERED.
10888 * This is wanted because this way 8021q and macvlan know
10889 * the device is just moving and can keep their slaves up.
10890 */
ce286d32 10891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10892 rcu_barrier();
38e01b30 10893
d4e4fdf9 10894 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30 10895 /* If there is an ifindex conflict assign a new one */
eeb85a14
AV
10896 if (!new_ifindex) {
10897 if (__dev_get_by_index(net, dev->ifindex))
10898 new_ifindex = dev_new_index(net);
10899 else
10900 new_ifindex = dev->ifindex;
10901 }
38e01b30
ND
10902
10903 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10904 new_ifindex);
ce286d32
EB
10905
10906 /*
10907 * Flush the unicast and multicast chains
10908 */
a748ee24 10909 dev_uc_flush(dev);
22bedad3 10910 dev_mc_flush(dev);
ce286d32 10911
4e66ae2e
SH
10912 /* Send a netdev-removed uevent to the old namespace */
10913 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10914 netdev_adjacent_del_links(dev);
4e66ae2e 10915
93642e14
JP
10916 /* Move per-net netdevice notifiers that are following the netdevice */
10917 move_netdevice_notifiers_dev_net(dev, net);
10918
ce286d32 10919 /* Actually switch the network namespace */
c346dca1 10920 dev_net_set(dev, net);
38e01b30 10921 dev->ifindex = new_ifindex;
ce286d32 10922
4e66ae2e
SH
10923 /* Send a netdev-add uevent to the new namespace */
10924 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10925 netdev_adjacent_add_links(dev);
4e66ae2e 10926
8b41d188 10927 /* Fixup kobjects */
a1b3f594 10928 err = device_rename(&dev->dev, dev->name);
8b41d188 10929 WARN_ON(err);
ce286d32 10930
ef6a4c88
CB
10931 /* Adapt owner in case owning user namespace of target network
10932 * namespace is different from the original one.
10933 */
10934 err = netdev_change_owner(dev, net_old, net);
10935 WARN_ON(err);
10936
ce286d32
EB
10937 /* Add the device back in the hashes */
10938 list_netdevice(dev);
10939
10940 /* Notify protocols, that a new device appeared. */
10941 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10942
d90a909e
EB
10943 /*
10944 * Prevent userspace races by waiting until the network
10945 * device is fully setup before sending notifications.
10946 */
7f294054 10947 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10948
ce286d32
EB
10949 synchronize_net();
10950 err = 0;
10951out:
10952 return err;
10953}
0854fa82 10954EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
ce286d32 10955
f0bf90de 10956static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10957{
10958 struct sk_buff **list_skb;
1da177e4 10959 struct sk_buff *skb;
f0bf90de 10960 unsigned int cpu;
97d8b6e3 10961 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10962
1da177e4
LT
10963 local_irq_disable();
10964 cpu = smp_processor_id();
10965 sd = &per_cpu(softnet_data, cpu);
10966 oldsd = &per_cpu(softnet_data, oldcpu);
10967
10968 /* Find end of our completion_queue. */
10969 list_skb = &sd->completion_queue;
10970 while (*list_skb)
10971 list_skb = &(*list_skb)->next;
10972 /* Append completion queue from offline CPU. */
10973 *list_skb = oldsd->completion_queue;
10974 oldsd->completion_queue = NULL;
10975
1da177e4 10976 /* Append output queue from offline CPU. */
a9cbd588
CG
10977 if (oldsd->output_queue) {
10978 *sd->output_queue_tailp = oldsd->output_queue;
10979 sd->output_queue_tailp = oldsd->output_queue_tailp;
10980 oldsd->output_queue = NULL;
10981 oldsd->output_queue_tailp = &oldsd->output_queue;
10982 }
ac64da0b
ED
10983 /* Append NAPI poll list from offline CPU, with one exception :
10984 * process_backlog() must be called by cpu owning percpu backlog.
10985 * We properly handle process_queue & input_pkt_queue later.
10986 */
10987 while (!list_empty(&oldsd->poll_list)) {
10988 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10989 struct napi_struct,
10990 poll_list);
10991
10992 list_del_init(&napi->poll_list);
10993 if (napi->poll == process_backlog)
10994 napi->state = 0;
10995 else
10996 ____napi_schedule(sd, napi);
264524d5 10997 }
1da177e4
LT
10998
10999 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11000 local_irq_enable();
11001
773fc8f6 11002#ifdef CONFIG_RPS
11003 remsd = oldsd->rps_ipi_list;
11004 oldsd->rps_ipi_list = NULL;
11005#endif
11006 /* send out pending IPI's on offline CPU */
11007 net_rps_send_ipi(remsd);
11008
1da177e4 11009 /* Process offline CPU's input_pkt_queue */
76cc8b13 11010 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ad0a043f 11011 netif_rx(skb);
76cc8b13 11012 input_queue_head_incr(oldsd);
fec5e652 11013 }
ac64da0b 11014 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
ad0a043f 11015 netif_rx(skb);
76cc8b13
TH
11016 input_queue_head_incr(oldsd);
11017 }
1da177e4 11018
f0bf90de 11019 return 0;
1da177e4 11020}
1da177e4 11021
7f353bf2 11022/**
b63365a2
HX
11023 * netdev_increment_features - increment feature set by one
11024 * @all: current feature set
11025 * @one: new feature set
11026 * @mask: mask feature set
7f353bf2
HX
11027 *
11028 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11029 * @one to the master device with current feature set @all. Will not
11030 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11031 */
c8f44aff
MM
11032netdev_features_t netdev_increment_features(netdev_features_t all,
11033 netdev_features_t one, netdev_features_t mask)
b63365a2 11034{
c8cd0989 11035 if (mask & NETIF_F_HW_CSUM)
a188222b 11036 mask |= NETIF_F_CSUM_MASK;
1742f183 11037 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11038
a188222b 11039 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11040 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11041
1742f183 11042 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11043 if (all & NETIF_F_HW_CSUM)
11044 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11045
11046 return all;
11047}
b63365a2 11048EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11049
430f03cd 11050static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11051{
11052 int i;
11053 struct hlist_head *hash;
11054
6da2ec56 11055 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11056 if (hash != NULL)
11057 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11058 INIT_HLIST_HEAD(&hash[i]);
11059
11060 return hash;
11061}
11062
881d966b 11063/* Initialize per network namespace state */
4665079c 11064static int __net_init netdev_init(struct net *net)
881d966b 11065{
d9f37d01 11066 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11067 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11068
9c1be193 11069 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11070
30d97d35
PE
11071 net->dev_name_head = netdev_create_hash();
11072 if (net->dev_name_head == NULL)
11073 goto err_name;
881d966b 11074
30d97d35
PE
11075 net->dev_index_head = netdev_create_hash();
11076 if (net->dev_index_head == NULL)
11077 goto err_idx;
881d966b 11078
a30c7b42
JP
11079 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11080
881d966b 11081 return 0;
30d97d35
PE
11082
11083err_idx:
11084 kfree(net->dev_name_head);
11085err_name:
11086 return -ENOMEM;
881d966b
EB
11087}
11088
f0db275a
SH
11089/**
11090 * netdev_drivername - network driver for the device
11091 * @dev: network device
f0db275a
SH
11092 *
11093 * Determine network driver for device.
11094 */
3019de12 11095const char *netdev_drivername(const struct net_device *dev)
6579e57b 11096{
cf04a4c7
SH
11097 const struct device_driver *driver;
11098 const struct device *parent;
3019de12 11099 const char *empty = "";
6579e57b
AV
11100
11101 parent = dev->dev.parent;
6579e57b 11102 if (!parent)
3019de12 11103 return empty;
6579e57b
AV
11104
11105 driver = parent->driver;
11106 if (driver && driver->name)
3019de12
DM
11107 return driver->name;
11108 return empty;
6579e57b
AV
11109}
11110
6ea754eb
JP
11111static void __netdev_printk(const char *level, const struct net_device *dev,
11112 struct va_format *vaf)
256df2f3 11113{
b004ff49 11114 if (dev && dev->dev.parent) {
6ea754eb
JP
11115 dev_printk_emit(level[1] - '0',
11116 dev->dev.parent,
11117 "%s %s %s%s: %pV",
11118 dev_driver_string(dev->dev.parent),
11119 dev_name(dev->dev.parent),
11120 netdev_name(dev), netdev_reg_state(dev),
11121 vaf);
b004ff49 11122 } else if (dev) {
6ea754eb
JP
11123 printk("%s%s%s: %pV",
11124 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11125 } else {
6ea754eb 11126 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11127 }
256df2f3
JP
11128}
11129
6ea754eb
JP
11130void netdev_printk(const char *level, const struct net_device *dev,
11131 const char *format, ...)
256df2f3
JP
11132{
11133 struct va_format vaf;
11134 va_list args;
256df2f3
JP
11135
11136 va_start(args, format);
11137
11138 vaf.fmt = format;
11139 vaf.va = &args;
11140
6ea754eb 11141 __netdev_printk(level, dev, &vaf);
b004ff49 11142
256df2f3 11143 va_end(args);
256df2f3
JP
11144}
11145EXPORT_SYMBOL(netdev_printk);
11146
11147#define define_netdev_printk_level(func, level) \
6ea754eb 11148void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11149{ \
256df2f3
JP
11150 struct va_format vaf; \
11151 va_list args; \
11152 \
11153 va_start(args, fmt); \
11154 \
11155 vaf.fmt = fmt; \
11156 vaf.va = &args; \
11157 \
6ea754eb 11158 __netdev_printk(level, dev, &vaf); \
b004ff49 11159 \
256df2f3 11160 va_end(args); \
256df2f3
JP
11161} \
11162EXPORT_SYMBOL(func);
11163
11164define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11165define_netdev_printk_level(netdev_alert, KERN_ALERT);
11166define_netdev_printk_level(netdev_crit, KERN_CRIT);
11167define_netdev_printk_level(netdev_err, KERN_ERR);
11168define_netdev_printk_level(netdev_warn, KERN_WARNING);
11169define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11170define_netdev_printk_level(netdev_info, KERN_INFO);
11171
4665079c 11172static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11173{
11174 kfree(net->dev_name_head);
11175 kfree(net->dev_index_head);
ee21b18b
VA
11176 if (net != &init_net)
11177 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11178}
11179
022cbae6 11180static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11181 .init = netdev_init,
11182 .exit = netdev_exit,
11183};
11184
ee403248 11185static void __net_exit default_device_exit_net(struct net *net)
ce286d32 11186{
e008b5fc 11187 struct net_device *dev, *aux;
ce286d32 11188 /*
e008b5fc 11189 * Push all migratable network devices back to the
ce286d32
EB
11190 * initial network namespace
11191 */
ee403248 11192 ASSERT_RTNL();
e008b5fc 11193 for_each_netdev_safe(net, dev, aux) {
ce286d32 11194 int err;
aca51397 11195 char fb_name[IFNAMSIZ];
ce286d32
EB
11196
11197 /* Ignore unmoveable devices (i.e. loopback) */
11198 if (dev->features & NETIF_F_NETNS_LOCAL)
11199 continue;
11200
e008b5fc 11201 /* Leave virtual devices for the generic cleanup */
3a5ca857 11202 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
e008b5fc 11203 continue;
d0c082ce 11204
25985edc 11205 /* Push remaining network devices to init_net */
aca51397 11206 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
75ea27d0 11207 if (netdev_name_in_use(&init_net, fb_name))
55b40dbf 11208 snprintf(fb_name, IFNAMSIZ, "dev%%d");
0854fa82 11209 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11210 if (err) {
7b6cd1ce
JP
11211 pr_emerg("%s: failed to move %s to init_net: %d\n",
11212 __func__, dev->name, err);
aca51397 11213 BUG();
ce286d32
EB
11214 }
11215 }
ce286d32
EB
11216}
11217
04dc7f6b
EB
11218static void __net_exit default_device_exit_batch(struct list_head *net_list)
11219{
11220 /* At exit all network devices most be removed from a network
b595076a 11221 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11222 * Do this across as many network namespaces as possible to
11223 * improve batching efficiency.
11224 */
11225 struct net_device *dev;
11226 struct net *net;
11227 LIST_HEAD(dev_kill_list);
11228
ee403248
ED
11229 rtnl_lock();
11230 list_for_each_entry(net, net_list, exit_list) {
11231 default_device_exit_net(net);
11232 cond_resched();
11233 }
ee403248 11234
04dc7f6b
EB
11235 list_for_each_entry(net, net_list, exit_list) {
11236 for_each_netdev_reverse(net, dev) {
b0ab2fab 11237 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11238 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11239 else
11240 unregister_netdevice_queue(dev, &dev_kill_list);
11241 }
11242 }
11243 unregister_netdevice_many(&dev_kill_list);
11244 rtnl_unlock();
11245}
11246
022cbae6 11247static struct pernet_operations __net_initdata default_device_ops = {
04dc7f6b 11248 .exit_batch = default_device_exit_batch,
ce286d32
EB
11249};
11250
1da177e4
LT
11251/*
11252 * Initialize the DEV module. At boot time this walks the device list and
11253 * unhooks any devices that fail to initialise (normally hardware not
11254 * present) and leaves us with a valid list of present and active devices.
11255 *
11256 */
11257
11258/*
11259 * This is called single threaded during boot, so no need
11260 * to take the rtnl semaphore.
11261 */
11262static int __init net_dev_init(void)
11263{
11264 int i, rc = -ENOMEM;
11265
11266 BUG_ON(!dev_boot_phase);
11267
1da177e4
LT
11268 if (dev_proc_init())
11269 goto out;
11270
8b41d188 11271 if (netdev_kobject_init())
1da177e4
LT
11272 goto out;
11273
11274 INIT_LIST_HEAD(&ptype_all);
82d8a867 11275 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11276 INIT_LIST_HEAD(&ptype_base[i]);
11277
881d966b
EB
11278 if (register_pernet_subsys(&netdev_net_ops))
11279 goto out;
1da177e4
LT
11280
11281 /*
11282 * Initialise the packet receive queues.
11283 */
11284
6f912042 11285 for_each_possible_cpu(i) {
41852497 11286 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11287 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11288
41852497
ED
11289 INIT_WORK(flush, flush_backlog);
11290
e36fa2f7 11291 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11292 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11293#ifdef CONFIG_XFRM_OFFLOAD
11294 skb_queue_head_init(&sd->xfrm_backlog);
11295#endif
e36fa2f7 11296 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11297 sd->output_queue_tailp = &sd->output_queue;
df334545 11298#ifdef CONFIG_RPS
545b8c8d 11299 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11300 sd->cpu = i;
1e94d72f 11301#endif
0a9627f2 11302
7c4ec749 11303 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11304 sd->backlog.poll = process_backlog;
11305 sd->backlog.weight = weight_p;
1da177e4
LT
11306 }
11307
1da177e4
LT
11308 dev_boot_phase = 0;
11309
505d4f73
EB
11310 /* The loopback device is special if any other network devices
11311 * is present in a network namespace the loopback device must
11312 * be present. Since we now dynamically allocate and free the
11313 * loopback device ensure this invariant is maintained by
11314 * keeping the loopback device as the first device on the
11315 * list of network devices. Ensuring the loopback devices
11316 * is the first device that appears and the last network device
11317 * that disappears.
11318 */
11319 if (register_pernet_device(&loopback_net_ops))
11320 goto out;
11321
11322 if (register_pernet_device(&default_device_ops))
11323 goto out;
11324
962cf36c
CM
11325 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11326 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11327
f0bf90de
SAS
11328 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11329 NULL, dev_cpu_dead);
11330 WARN_ON(rc < 0);
1da177e4
LT
11331 rc = 0;
11332out:
11333 return rc;
11334}
11335
11336subsys_initcall(net_dev_init);
This page took 5.234585 seconds and 4 git commands to generate.