]> Git Repo - linux.git/blame - net/core/dev.c
net: core: Fix kernel-doc for call_netdevice_notifiers_info()
[linux.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <[email protected]>
12 * Mark Evans, <[email protected]>
13 *
14 * Additional Authors:
15 * Florian la Roche <[email protected]>
16 * Alan Cox <[email protected]>
17 * David Hinds <[email protected]>
18 * Alexey Kuznetsov <[email protected]>
19 * Adam Sulmicki <[email protected]>
20 * Pekka Riikonen <[email protected]>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
93809105
RV
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
51f299dd 1070 p = strchr(name, '%');
1da177e4
LT
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
cfcabdcc 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1082 if (!inuse)
1083 return -ENOMEM;
1084
881d966b 1085 for_each_netdev(net, d) {
1da177e4
LT
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1092 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
6224abda 1101 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1102 if (!__dev_get_by_name(net, buf))
1da177e4 1103 return i;
1da177e4
LT
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
029b6d14 1109 return -ENFILE;
1da177e4
LT
1110}
1111
2c88b855
RV
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
c46d7642 1119 BUG_ON(!net);
2c88b855
RV
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1da177e4
LT
1124}
1125
b267b179
EB
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
c46d7642 1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1143}
d1b19dff 1144EXPORT_SYMBOL(dev_alloc_name);
b267b179 1145
0ad646c8
CW
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
828de4f6 1148{
55a5ec9b
DM
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
d9031024 1162}
0ad646c8 1163EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
cf04a4c7 1173int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1174{
238fa362 1175 unsigned char old_assign_type;
fcc5a03a 1176 char oldname[IFNAMSIZ];
1da177e4 1177 int err = 0;
fcc5a03a 1178 int ret;
881d966b 1179 struct net *net;
1da177e4
LT
1180
1181 ASSERT_RTNL();
c346dca1 1182 BUG_ON(!dev_net(dev));
1da177e4 1183
c346dca1 1184 net = dev_net(dev);
1da177e4
LT
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
30e6c9fa 1188 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1191 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1192 return 0;
c91f6df2 1193 }
c8d90dca 1194
fcc5a03a
HX
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
828de4f6 1197 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1198 if (err < 0) {
30e6c9fa 1199 write_seqcount_end(&devnet_rename_seq);
d9031024 1200 return err;
c91f6df2 1201 }
1da177e4 1202
6fe82a39
VF
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
238fa362
TG
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
fcc5a03a 1209rollback:
a1b3f594
EB
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1213 dev->name_assign_type = old_assign_type;
30e6c9fa 1214 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1215 return ret;
dcc99773 1216 }
7f988eab 1217
30e6c9fa 1218 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1219
5bb025fa
VF
1220 netdev_adjacent_rename_links(dev, oldname);
1221
7f988eab 1222 write_lock_bh(&dev_base_lock);
372b2312 1223 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1230 write_unlock_bh(&dev_base_lock);
1231
056925ab 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
91e9c07b
ED
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
fcc5a03a 1238 err = ret;
30e6c9fa 1239 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1240 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1241 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1244 goto rollback;
91e9c07b 1245 } else {
7b6cd1ce 1246 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1247 dev->name, ret);
fcc5a03a
HX
1248 }
1249 }
1da177e4
LT
1250
1251 return err;
1252}
1253
0b815a1a
SH
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
f0db275a 1258 * @len: limit of bytes to copy from info
0b815a1a
SH
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
6c557001 1264 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
6c557001
FW
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1276 }
1277
6c557001
FW
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
0b815a1a 1285
0b815a1a
SH
1286 return len;
1287}
1288
6c557001
FW
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
20e88320 1292 * @name: buffer to store name of ifalias
6c557001
FW
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
0b815a1a 1311
d8a33ac4 1312/**
3041a069 1313 * netdev_features_change - device changes features
d8a33ac4
SH
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
056925ab 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1da177e4
LT
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
51d0c047
DA
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
54951194 1338
51d0c047 1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1340 &change_info.info);
7f294054 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1342 }
1343}
d1b19dff 1344EXPORT_SYMBOL(netdev_state_change);
1da177e4 1345
ee89bab1 1346/**
722c9a0c 1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
ee89bab1
AW
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1357{
ee89bab1
AW
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1361 rtnl_unlock();
c1da4ac7 1362}
ee89bab1 1363EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1364
bd380811 1365static int __dev_open(struct net_device *dev)
1da177e4 1366{
d314774c 1367 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1368 int ret;
1da177e4 1369
e46b66bc
BH
1370 ASSERT_RTNL();
1371
1da177e4
LT
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
ca99ca14
NH
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
66b5552f 1379 netpoll_poll_disable(dev);
ca99ca14 1380
3b8bcfd5
JB
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1da177e4 1386 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1387
d314774c
SH
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
bada339b 1390
d314774c
SH
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1da177e4 1393
66b5552f 1394 netpoll_poll_enable(dev);
ca99ca14 1395
bada339b
JG
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1da177e4 1399 dev->flags |= IFF_UP;
4417da66 1400 dev_set_rx_mode(dev);
1da177e4 1401 dev_activate(dev);
7bf23575 1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1403 }
bada339b 1404
1da177e4
LT
1405 return ret;
1406}
1407
1408/**
bd380811
PM
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1da177e4 1411 *
bd380811
PM
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1da177e4 1419 */
bd380811
PM
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
bd380811
PM
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
bd380811
PM
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
7f294054 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
7051b88a 1438static void __dev_close_many(struct list_head *head)
1da177e4 1439{
44345724 1440 struct net_device *dev;
e46b66bc 1441
bd380811 1442 ASSERT_RTNL();
9d5010db
DM
1443 might_sleep();
1444
5cde2829 1445 list_for_each_entry(dev, head, close_list) {
3f4df206 1446 /* Temporarily disable netpoll until the interface is down */
66b5552f 1447 netpoll_poll_disable(dev);
3f4df206 1448
44345724 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1450
44345724 1451 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1452
44345724
OP
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
4e857c58 1459 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1460 }
1da177e4 1461
44345724 1462 dev_deactivate_many(head);
d8b2a4d2 1463
5cde2829 1464 list_for_each_entry(dev, head, close_list) {
44345724 1465 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1466
44345724
OP
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
44345724 1477 dev->flags &= ~IFF_UP;
66b5552f 1478 netpoll_poll_enable(dev);
44345724 1479 }
44345724
OP
1480}
1481
7051b88a 1482static void __dev_close(struct net_device *dev)
44345724
OP
1483{
1484 LIST_HEAD(single);
1485
5cde2829 1486 list_add(&dev->close_list, &single);
7051b88a 1487 __dev_close_many(&single);
f87e6f47 1488 list_del(&single);
44345724
OP
1489}
1490
7051b88a 1491void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1492{
1493 struct net_device *dev, *tmp;
1da177e4 1494
5cde2829
EB
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1497 if (!(dev->flags & IFF_UP))
5cde2829 1498 list_del_init(&dev->close_list);
44345724
OP
1499
1500 __dev_close_many(head);
1da177e4 1501
5cde2829 1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1505 if (unlink)
1506 list_del_init(&dev->close_list);
44345724 1507 }
bd380811 1508}
99c4a26a 1509EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
7051b88a 1520void dev_close(struct net_device *dev)
bd380811 1521{
e14a5993
ED
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1da177e4 1524
5cde2829 1525 list_add(&dev->close_list, &single);
99c4a26a 1526 dev_close_many(&single, true);
e14a5993
ED
1527 list_del(&single);
1528 }
1da177e4 1529}
d1b19dff 1530EXPORT_SYMBOL(dev_close);
1da177e4
LT
1531
1532
0187bdfb
BH
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
fbe168ba
MK
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
529d0489 1545
bc5787c6
MM
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
27660515 1548
22d5969f
MM
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
0187bdfb
BH
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
56f5aa77
MC
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
351638e7
JP
1574static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 struct net_device *dev)
1576{
51d0c047
DA
1577 struct netdev_notifier_info info = {
1578 .dev = dev,
1579 };
351638e7 1580
351638e7
JP
1581 return nb->notifier_call(nb, val, &info);
1582}
0187bdfb 1583
881d966b
EB
1584static int dev_boot_phase = 1;
1585
1da177e4 1586/**
722c9a0c 1587 * register_netdevice_notifier - register a network notifier block
1588 * @nb: notifier
1da177e4 1589 *
722c9a0c 1590 * Register a notifier to be called when network device events occur.
1591 * The notifier passed is linked into the kernel structures and must
1592 * not be reused until it has been unregistered. A negative errno code
1593 * is returned on a failure.
1da177e4 1594 *
722c9a0c 1595 * When registered all registration and up events are replayed
1596 * to the new notifier to allow device to have a race free
1597 * view of the network device list.
1da177e4
LT
1598 */
1599
1600int register_netdevice_notifier(struct notifier_block *nb)
1601{
1602 struct net_device *dev;
fcc5a03a 1603 struct net_device *last;
881d966b 1604 struct net *net;
1da177e4
LT
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1609 if (err)
1610 goto unlock;
881d966b
EB
1611 if (dev_boot_phase)
1612 goto unlock;
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
351638e7 1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1616 err = notifier_to_errno(err);
1617 if (err)
1618 goto rollback;
1619
1620 if (!(dev->flags & IFF_UP))
1621 continue;
1da177e4 1622
351638e7 1623 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1624 }
1da177e4 1625 }
fcc5a03a
HX
1626
1627unlock:
1da177e4
LT
1628 rtnl_unlock();
1629 return err;
fcc5a03a
HX
1630
1631rollback:
1632 last = dev;
881d966b
EB
1633 for_each_net(net) {
1634 for_each_netdev(net, dev) {
1635 if (dev == last)
8f891489 1636 goto outroll;
fcc5a03a 1637
881d966b 1638 if (dev->flags & IFF_UP) {
351638e7
JP
1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 dev);
1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1642 }
351638e7 1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1644 }
fcc5a03a 1645 }
c67625a1 1646
8f891489 1647outroll:
c67625a1 1648 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1649 goto unlock;
1da177e4 1650}
d1b19dff 1651EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1652
1653/**
722c9a0c 1654 * unregister_netdevice_notifier - unregister a network notifier block
1655 * @nb: notifier
1da177e4 1656 *
722c9a0c 1657 * Unregister a notifier previously registered by
1658 * register_netdevice_notifier(). The notifier is unlinked into the
1659 * kernel structures and may then be reused. A negative errno code
1660 * is returned on a failure.
7d3d43da 1661 *
722c9a0c 1662 * After unregistering unregister and down device events are synthesized
1663 * for all devices on the device list to the removed notifier to remove
1664 * the need for special case cleanup code.
1da177e4
LT
1665 */
1666
1667int unregister_netdevice_notifier(struct notifier_block *nb)
1668{
7d3d43da
EB
1669 struct net_device *dev;
1670 struct net *net;
9f514950
HX
1671 int err;
1672
1673 rtnl_lock();
f07d5b94 1674 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1675 if (err)
1676 goto unlock;
1677
1678 for_each_net(net) {
1679 for_each_netdev(net, dev) {
1680 if (dev->flags & IFF_UP) {
351638e7
JP
1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 dev);
1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1684 }
351638e7 1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1686 }
1687 }
1688unlock:
9f514950
HX
1689 rtnl_unlock();
1690 return err;
1da177e4 1691}
d1b19dff 1692EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1693
351638e7
JP
1694/**
1695 * call_netdevice_notifiers_info - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
351638e7
JP
1697 * @info: notifier information data
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702
1d143d9f 1703static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1704 struct netdev_notifier_info *info)
351638e7
JP
1705{
1706 ASSERT_RTNL();
351638e7
JP
1707 return raw_notifier_call_chain(&netdev_chain, val, info);
1708}
351638e7 1709
1da177e4
LT
1710/**
1711 * call_netdevice_notifiers - call all network notifier blocks
1712 * @val: value passed unmodified to notifier function
c4ea43c5 1713 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1714 *
1715 * Call all network notifier blocks. Parameters and return value
f07d5b94 1716 * are as for raw_notifier_call_chain().
1da177e4
LT
1717 */
1718
ad7379d4 1719int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1720{
51d0c047
DA
1721 struct netdev_notifier_info info = {
1722 .dev = dev,
1723 };
351638e7 1724
51d0c047 1725 return call_netdevice_notifiers_info(val, &info);
1da177e4 1726}
edf947f1 1727EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1728
1cf51900 1729#ifdef CONFIG_NET_INGRESS
4577139b
DB
1730static struct static_key ingress_needed __read_mostly;
1731
1732void net_inc_ingress_queue(void)
1733{
1734 static_key_slow_inc(&ingress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738void net_dec_ingress_queue(void)
1739{
1740 static_key_slow_dec(&ingress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743#endif
1744
1f211a1b
DB
1745#ifdef CONFIG_NET_EGRESS
1746static struct static_key egress_needed __read_mostly;
1747
1748void net_inc_egress_queue(void)
1749{
1750 static_key_slow_inc(&egress_needed);
1751}
1752EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754void net_dec_egress_queue(void)
1755{
1756 static_key_slow_dec(&egress_needed);
1757}
1758EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759#endif
1760
c5905afb 1761static struct static_key netstamp_needed __read_mostly;
b90e5794 1762#ifdef HAVE_JUMP_LABEL
b90e5794 1763static atomic_t netstamp_needed_deferred;
13baa00a 1764static atomic_t netstamp_wanted;
5fa8bbda 1765static void netstamp_clear(struct work_struct *work)
1da177e4 1766{
b90e5794 1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1768 int wanted;
b90e5794 1769
13baa00a
ED
1770 wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 if (wanted > 0)
1772 static_key_enable(&netstamp_needed);
1773 else
1774 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1775}
1776static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1777#endif
5fa8bbda
ED
1778
1779void net_enable_timestamp(void)
1780{
13baa00a
ED
1781#ifdef HAVE_JUMP_LABEL
1782 int wanted;
1783
1784 while (1) {
1785 wanted = atomic_read(&netstamp_wanted);
1786 if (wanted <= 0)
1787 break;
1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 return;
1790 }
1791 atomic_inc(&netstamp_needed_deferred);
1792 schedule_work(&netstamp_work);
1793#else
c5905afb 1794 static_key_slow_inc(&netstamp_needed);
13baa00a 1795#endif
1da177e4 1796}
d1b19dff 1797EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1798
1799void net_disable_timestamp(void)
1800{
b90e5794 1801#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1802 int wanted;
1803
1804 while (1) {
1805 wanted = atomic_read(&netstamp_wanted);
1806 if (wanted <= 1)
1807 break;
1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 return;
1810 }
1811 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1812 schedule_work(&netstamp_work);
1813#else
c5905afb 1814 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1815#endif
1da177e4 1816}
d1b19dff 1817EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1818
3b098e2d 1819static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1820{
2456e855 1821 skb->tstamp = 0;
c5905afb 1822 if (static_key_false(&netstamp_needed))
a61bbcf2 1823 __net_timestamp(skb);
1da177e4
LT
1824}
1825
588f0330 1826#define net_timestamp_check(COND, SKB) \
c5905afb 1827 if (static_key_false(&netstamp_needed)) { \
2456e855 1828 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1829 __net_timestamp(SKB); \
1830 } \
3b098e2d 1831
f4b05d27 1832bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1833{
1834 unsigned int len;
1835
1836 if (!(dev->flags & IFF_UP))
1837 return false;
1838
1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 if (skb->len <= len)
1841 return true;
1842
1843 /* if TSO is enabled, we don't care about the length as the packet
1844 * could be forwarded without being segmented before
1845 */
1846 if (skb_is_gso(skb))
1847 return true;
1848
1849 return false;
1850}
1ee481fb 1851EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1852
a0265d28
HX
1853int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
4e3264d2 1855 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1856
4e3264d2
MKL
1857 if (likely(!ret)) {
1858 skb->protocol = eth_type_trans(skb, dev);
1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 }
a0265d28 1861
4e3264d2 1862 return ret;
a0265d28
HX
1863}
1864EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
44540960
AB
1866/**
1867 * dev_forward_skb - loopback an skb to another netif
1868 *
1869 * @dev: destination network device
1870 * @skb: buffer to forward
1871 *
1872 * return values:
1873 * NET_RX_SUCCESS (no congestion)
6ec82562 1874 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1875 *
1876 * dev_forward_skb can be used for injecting an skb from the
1877 * start_xmit function of one device into the receive queue
1878 * of another device.
1879 *
1880 * The receiving device may be in another namespace, so
1881 * we have to clear all information in the skb that could
1882 * impact namespace isolation.
1883 */
1884int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885{
a0265d28 1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1887}
1888EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
71d9dec2
CG
1890static inline int deliver_skb(struct sk_buff *skb,
1891 struct packet_type *pt_prev,
1892 struct net_device *orig_dev)
1893{
1f8b977a 1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1895 return -ENOMEM;
63354797 1896 refcount_inc(&skb->users);
71d9dec2
CG
1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898}
1899
7866a621
SN
1900static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 struct packet_type **pt,
fbcb2170
JP
1902 struct net_device *orig_dev,
1903 __be16 type,
7866a621
SN
1904 struct list_head *ptype_list)
1905{
1906 struct packet_type *ptype, *pt_prev = *pt;
1907
1908 list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 if (ptype->type != type)
1910 continue;
1911 if (pt_prev)
fbcb2170 1912 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1913 pt_prev = ptype;
1914 }
1915 *pt = pt_prev;
1916}
1917
c0de08d0
EL
1918static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919{
a3d744e9 1920 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1921 return false;
1922
1923 if (ptype->id_match)
1924 return ptype->id_match(ptype, skb->sk);
1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 return true;
1927
1928 return false;
1929}
1930
1da177e4
LT
1931/*
1932 * Support routine. Sends outgoing frames to any network
1933 * taps currently in use.
1934 */
1935
74b20582 1936void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1937{
1938 struct packet_type *ptype;
71d9dec2
CG
1939 struct sk_buff *skb2 = NULL;
1940 struct packet_type *pt_prev = NULL;
7866a621 1941 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1942
1da177e4 1943 rcu_read_lock();
7866a621
SN
1944again:
1945 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1946 /* Never send packets back to the socket
1947 * they originated from - MvS ([email protected])
1948 */
7866a621
SN
1949 if (skb_loop_sk(ptype, skb))
1950 continue;
71d9dec2 1951
7866a621
SN
1952 if (pt_prev) {
1953 deliver_skb(skb2, pt_prev, skb->dev);
1954 pt_prev = ptype;
1955 continue;
1956 }
1da177e4 1957
7866a621
SN
1958 /* need to clone skb, done only once */
1959 skb2 = skb_clone(skb, GFP_ATOMIC);
1960 if (!skb2)
1961 goto out_unlock;
70978182 1962
7866a621 1963 net_timestamp_set(skb2);
1da177e4 1964
7866a621
SN
1965 /* skb->nh should be correctly
1966 * set by sender, so that the second statement is
1967 * just protection against buggy protocols.
1968 */
1969 skb_reset_mac_header(skb2);
1970
1971 if (skb_network_header(skb2) < skb2->data ||
1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 ntohs(skb2->protocol),
1975 dev->name);
1976 skb_reset_network_header(skb2);
1da177e4 1977 }
7866a621
SN
1978
1979 skb2->transport_header = skb2->network_header;
1980 skb2->pkt_type = PACKET_OUTGOING;
1981 pt_prev = ptype;
1982 }
1983
1984 if (ptype_list == &ptype_all) {
1985 ptype_list = &dev->ptype_all;
1986 goto again;
1da177e4 1987 }
7866a621 1988out_unlock:
581fe0ea
WB
1989 if (pt_prev) {
1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 else
1993 kfree_skb(skb2);
1994 }
1da177e4
LT
1995 rcu_read_unlock();
1996}
74b20582 1997EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1998
2c53040f
BH
1999/**
2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2001 * @dev: Network device
2002 * @txq: number of queues available
2003 *
2004 * If real_num_tx_queues is changed the tc mappings may no longer be
2005 * valid. To resolve this verify the tc mapping remains valid and if
2006 * not NULL the mapping. With no priorities mapping to this
2007 * offset/count pair it will no longer be used. In the worst case TC0
2008 * is invalid nothing can be done so disable priority mappings. If is
2009 * expected that drivers will fix this mapping if they can before
2010 * calling netif_set_real_num_tx_queues.
2011 */
bb134d22 2012static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2013{
2014 int i;
2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017 /* If TC0 is invalidated disable TC mapping */
2018 if (tc->offset + tc->count > txq) {
7b6cd1ce 2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2020 dev->num_tc = 0;
2021 return;
2022 }
2023
2024 /* Invalidated prio to tc mappings set to TC0 */
2025 for (i = 1; i < TC_BITMASK + 1; i++) {
2026 int q = netdev_get_prio_tc_map(dev, i);
2027
2028 tc = &dev->tc_to_txq[q];
2029 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 i, q);
4f57c087
JF
2032 netdev_set_prio_tc_map(dev, i, 0);
2033 }
2034 }
2035}
2036
8d059b0f
AD
2037int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038{
2039 if (dev->num_tc) {
2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 int i;
2042
2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 if ((txq - tc->offset) < tc->count)
2045 return i;
2046 }
2047
2048 return -1;
2049 }
2050
2051 return 0;
2052}
8a5f2166 2053EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2054
537c00de
AD
2055#ifdef CONFIG_XPS
2056static DEFINE_MUTEX(xps_map_mutex);
2057#define xmap_dereference(P) \
2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
6234f874
AD
2060static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 int tci, u16 index)
537c00de 2062{
10cdc3f3
AD
2063 struct xps_map *map = NULL;
2064 int pos;
537c00de 2065
10cdc3f3 2066 if (dev_maps)
6234f874
AD
2067 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 if (!map)
2069 return false;
537c00de 2070
6234f874
AD
2071 for (pos = map->len; pos--;) {
2072 if (map->queues[pos] != index)
2073 continue;
2074
2075 if (map->len > 1) {
2076 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2077 break;
537c00de 2078 }
6234f874
AD
2079
2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 kfree_rcu(map, rcu);
2082 return false;
537c00de
AD
2083 }
2084
6234f874 2085 return true;
10cdc3f3
AD
2086}
2087
6234f874
AD
2088static bool remove_xps_queue_cpu(struct net_device *dev,
2089 struct xps_dev_maps *dev_maps,
2090 int cpu, u16 offset, u16 count)
2091{
184c449f
AD
2092 int num_tc = dev->num_tc ? : 1;
2093 bool active = false;
2094 int tci;
6234f874 2095
184c449f
AD
2096 for (tci = cpu * num_tc; num_tc--; tci++) {
2097 int i, j;
2098
2099 for (i = count, j = offset; i--; j++) {
2100 if (!remove_xps_queue(dev_maps, cpu, j))
2101 break;
2102 }
2103
2104 active |= i < 0;
6234f874
AD
2105 }
2106
184c449f 2107 return active;
6234f874
AD
2108}
2109
2110static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 u16 count)
10cdc3f3
AD
2112{
2113 struct xps_dev_maps *dev_maps;
024e9679 2114 int cpu, i;
10cdc3f3
AD
2115 bool active = false;
2116
2117 mutex_lock(&xps_map_mutex);
2118 dev_maps = xmap_dereference(dev->xps_maps);
2119
2120 if (!dev_maps)
2121 goto out_no_maps;
2122
6234f874
AD
2123 for_each_possible_cpu(cpu)
2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 offset, count);
10cdc3f3
AD
2126
2127 if (!active) {
537c00de
AD
2128 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 kfree_rcu(dev_maps, rcu);
2130 }
2131
6234f874 2132 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 NUMA_NO_NODE);
2135
537c00de
AD
2136out_no_maps:
2137 mutex_unlock(&xps_map_mutex);
2138}
2139
6234f874
AD
2140static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141{
2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143}
2144
01c5f864
AD
2145static struct xps_map *expand_xps_map(struct xps_map *map,
2146 int cpu, u16 index)
2147{
2148 struct xps_map *new_map;
2149 int alloc_len = XPS_MIN_MAP_ALLOC;
2150 int i, pos;
2151
2152 for (pos = 0; map && pos < map->len; pos++) {
2153 if (map->queues[pos] != index)
2154 continue;
2155 return map;
2156 }
2157
2158 /* Need to add queue to this CPU's existing map */
2159 if (map) {
2160 if (pos < map->alloc_len)
2161 return map;
2162
2163 alloc_len = map->alloc_len * 2;
2164 }
2165
2166 /* Need to allocate new map to store queue on this CPU's map */
2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 cpu_to_node(cpu));
2169 if (!new_map)
2170 return NULL;
2171
2172 for (i = 0; i < pos; i++)
2173 new_map->queues[i] = map->queues[i];
2174 new_map->alloc_len = alloc_len;
2175 new_map->len = pos;
2176
2177 return new_map;
2178}
2179
3573540c
MT
2180int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 u16 index)
537c00de 2182{
01c5f864 2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2184 int i, cpu, tci, numa_node_id = -2;
2185 int maps_sz, num_tc = 1, tc = 0;
537c00de 2186 struct xps_map *map, *new_map;
01c5f864 2187 bool active = false;
537c00de 2188
184c449f
AD
2189 if (dev->num_tc) {
2190 num_tc = dev->num_tc;
2191 tc = netdev_txq_to_tc(dev, index);
2192 if (tc < 0)
2193 return -EINVAL;
2194 }
2195
2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 if (maps_sz < L1_CACHE_BYTES)
2198 maps_sz = L1_CACHE_BYTES;
2199
537c00de
AD
2200 mutex_lock(&xps_map_mutex);
2201
2202 dev_maps = xmap_dereference(dev->xps_maps);
2203
01c5f864 2204 /* allocate memory for queue storage */
184c449f 2205 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2206 if (!new_dev_maps)
2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2208 if (!new_dev_maps) {
2209 mutex_unlock(&xps_map_mutex);
01c5f864 2210 return -ENOMEM;
2bb60cb9 2211 }
01c5f864 2212
184c449f
AD
2213 tci = cpu * num_tc + tc;
2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2215 NULL;
2216
2217 map = expand_xps_map(map, cpu, index);
2218 if (!map)
2219 goto error;
2220
184c449f 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2222 }
2223
2224 if (!new_dev_maps)
2225 goto out_no_new_maps;
2226
537c00de 2227 for_each_possible_cpu(cpu) {
184c449f
AD
2228 /* copy maps belonging to foreign traffic classes */
2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 /* fill in the new device map from the old device map */
2231 map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 }
2234
2235 /* We need to explicitly update tci as prevous loop
2236 * could break out early if dev_maps is NULL.
2237 */
2238 tci = cpu * num_tc + tc;
2239
01c5f864
AD
2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 /* add queue to CPU maps */
2242 int pos = 0;
2243
184c449f 2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2245 while ((pos < map->len) && (map->queues[pos] != index))
2246 pos++;
2247
2248 if (pos == map->len)
2249 map->queues[map->len++] = index;
537c00de 2250#ifdef CONFIG_NUMA
537c00de
AD
2251 if (numa_node_id == -2)
2252 numa_node_id = cpu_to_node(cpu);
2253 else if (numa_node_id != cpu_to_node(cpu))
2254 numa_node_id = -1;
537c00de 2255#endif
01c5f864
AD
2256 } else if (dev_maps) {
2257 /* fill in the new device map from the old device map */
184c449f
AD
2258 map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2260 }
01c5f864 2261
184c449f
AD
2262 /* copy maps belonging to foreign traffic classes */
2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 /* fill in the new device map from the old device map */
2265 map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 }
537c00de
AD
2268 }
2269
01c5f864
AD
2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
537c00de 2272 /* Cleanup old maps */
184c449f
AD
2273 if (!dev_maps)
2274 goto out_no_old_maps;
2275
2276 for_each_possible_cpu(cpu) {
2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2280 if (map && map != new_map)
2281 kfree_rcu(map, rcu);
2282 }
537c00de
AD
2283 }
2284
184c449f
AD
2285 kfree_rcu(dev_maps, rcu);
2286
2287out_no_old_maps:
01c5f864
AD
2288 dev_maps = new_dev_maps;
2289 active = true;
537c00de 2290
01c5f864
AD
2291out_no_new_maps:
2292 /* update Tx queue numa node */
537c00de
AD
2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 (numa_node_id >= 0) ? numa_node_id :
2295 NUMA_NO_NODE);
2296
01c5f864
AD
2297 if (!dev_maps)
2298 goto out_no_maps;
2299
2300 /* removes queue from unused CPUs */
2301 for_each_possible_cpu(cpu) {
184c449f
AD
2302 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 active |= remove_xps_queue(dev_maps, tci, index);
2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 active |= remove_xps_queue(dev_maps, tci, index);
2306 for (i = num_tc - tc, tci++; --i; tci++)
2307 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2308 }
2309
2310 /* free map if not active */
2311 if (!active) {
2312 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 kfree_rcu(dev_maps, rcu);
2314 }
2315
2316out_no_maps:
537c00de
AD
2317 mutex_unlock(&xps_map_mutex);
2318
2319 return 0;
2320error:
01c5f864
AD
2321 /* remove any maps that we added */
2322 for_each_possible_cpu(cpu) {
184c449f
AD
2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 map = dev_maps ?
2326 xmap_dereference(dev_maps->cpu_map[tci]) :
2327 NULL;
2328 if (new_map && new_map != map)
2329 kfree(new_map);
2330 }
01c5f864
AD
2331 }
2332
537c00de
AD
2333 mutex_unlock(&xps_map_mutex);
2334
537c00de
AD
2335 kfree(new_dev_maps);
2336 return -ENOMEM;
2337}
2338EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340#endif
9cf1f6a8
AD
2341void netdev_reset_tc(struct net_device *dev)
2342{
6234f874
AD
2343#ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345#endif
9cf1f6a8
AD
2346 dev->num_tc = 0;
2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349}
2350EXPORT_SYMBOL(netdev_reset_tc);
2351
2352int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353{
2354 if (tc >= dev->num_tc)
2355 return -EINVAL;
2356
6234f874
AD
2357#ifdef CONFIG_XPS
2358 netif_reset_xps_queues(dev, offset, count);
2359#endif
9cf1f6a8
AD
2360 dev->tc_to_txq[tc].count = count;
2361 dev->tc_to_txq[tc].offset = offset;
2362 return 0;
2363}
2364EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367{
2368 if (num_tc > TC_MAX_QUEUE)
2369 return -EINVAL;
2370
6234f874
AD
2371#ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373#endif
9cf1f6a8
AD
2374 dev->num_tc = num_tc;
2375 return 0;
2376}
2377EXPORT_SYMBOL(netdev_set_num_tc);
2378
f0796d5c
JF
2379/*
2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382 */
e6484930 2383int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2384{
1d24eb48
TH
2385 int rc;
2386
e6484930
TH
2387 if (txq < 1 || txq > dev->num_tx_queues)
2388 return -EINVAL;
f0796d5c 2389
5c56580b
BH
2390 if (dev->reg_state == NETREG_REGISTERED ||
2391 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2392 ASSERT_RTNL();
2393
1d24eb48
TH
2394 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2395 txq);
bf264145
TH
2396 if (rc)
2397 return rc;
2398
4f57c087
JF
2399 if (dev->num_tc)
2400 netif_setup_tc(dev, txq);
2401
024e9679 2402 if (txq < dev->real_num_tx_queues) {
e6484930 2403 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2404#ifdef CONFIG_XPS
2405 netif_reset_xps_queues_gt(dev, txq);
2406#endif
2407 }
f0796d5c 2408 }
e6484930
TH
2409
2410 dev->real_num_tx_queues = txq;
2411 return 0;
f0796d5c
JF
2412}
2413EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2414
a953be53 2415#ifdef CONFIG_SYSFS
62fe0b40
BH
2416/**
2417 * netif_set_real_num_rx_queues - set actual number of RX queues used
2418 * @dev: Network device
2419 * @rxq: Actual number of RX queues
2420 *
2421 * This must be called either with the rtnl_lock held or before
2422 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2423 * negative error code. If called before registration, it always
2424 * succeeds.
62fe0b40
BH
2425 */
2426int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2427{
2428 int rc;
2429
bd25fa7b
TH
2430 if (rxq < 1 || rxq > dev->num_rx_queues)
2431 return -EINVAL;
2432
62fe0b40
BH
2433 if (dev->reg_state == NETREG_REGISTERED) {
2434 ASSERT_RTNL();
2435
62fe0b40
BH
2436 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2437 rxq);
2438 if (rc)
2439 return rc;
62fe0b40
BH
2440 }
2441
2442 dev->real_num_rx_queues = rxq;
2443 return 0;
2444}
2445EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2446#endif
2447
2c53040f
BH
2448/**
2449 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2450 *
2451 * This routine should set an upper limit on the number of RSS queues
2452 * used by default by multiqueue devices.
2453 */
a55b138b 2454int netif_get_num_default_rss_queues(void)
16917b87 2455{
40e4e713
HS
2456 return is_kdump_kernel() ?
2457 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2458}
2459EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2460
3bcb846c 2461static void __netif_reschedule(struct Qdisc *q)
56079431 2462{
def82a1d
JP
2463 struct softnet_data *sd;
2464 unsigned long flags;
56079431 2465
def82a1d 2466 local_irq_save(flags);
903ceff7 2467 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2468 q->next_sched = NULL;
2469 *sd->output_queue_tailp = q;
2470 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2471 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2472 local_irq_restore(flags);
2473}
2474
2475void __netif_schedule(struct Qdisc *q)
2476{
2477 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2478 __netif_reschedule(q);
56079431
DV
2479}
2480EXPORT_SYMBOL(__netif_schedule);
2481
e6247027
ED
2482struct dev_kfree_skb_cb {
2483 enum skb_free_reason reason;
2484};
2485
2486static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2487{
e6247027
ED
2488 return (struct dev_kfree_skb_cb *)skb->cb;
2489}
2490
46e5da40
JF
2491void netif_schedule_queue(struct netdev_queue *txq)
2492{
2493 rcu_read_lock();
2494 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2495 struct Qdisc *q = rcu_dereference(txq->qdisc);
2496
2497 __netif_schedule(q);
2498 }
2499 rcu_read_unlock();
2500}
2501EXPORT_SYMBOL(netif_schedule_queue);
2502
46e5da40
JF
2503void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2504{
2505 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2506 struct Qdisc *q;
2507
2508 rcu_read_lock();
2509 q = rcu_dereference(dev_queue->qdisc);
2510 __netif_schedule(q);
2511 rcu_read_unlock();
2512 }
2513}
2514EXPORT_SYMBOL(netif_tx_wake_queue);
2515
e6247027 2516void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2517{
e6247027 2518 unsigned long flags;
56079431 2519
9899886d
MJ
2520 if (unlikely(!skb))
2521 return;
2522
63354797 2523 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2524 smp_rmb();
63354797
RE
2525 refcount_set(&skb->users, 0);
2526 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2527 return;
bea3348e 2528 }
e6247027
ED
2529 get_kfree_skb_cb(skb)->reason = reason;
2530 local_irq_save(flags);
2531 skb->next = __this_cpu_read(softnet_data.completion_queue);
2532 __this_cpu_write(softnet_data.completion_queue, skb);
2533 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2534 local_irq_restore(flags);
56079431 2535}
e6247027 2536EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2537
e6247027 2538void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2539{
2540 if (in_irq() || irqs_disabled())
e6247027 2541 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2542 else
2543 dev_kfree_skb(skb);
2544}
e6247027 2545EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2546
2547
bea3348e
SH
2548/**
2549 * netif_device_detach - mark device as removed
2550 * @dev: network device
2551 *
2552 * Mark device as removed from system and therefore no longer available.
2553 */
56079431
DV
2554void netif_device_detach(struct net_device *dev)
2555{
2556 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2557 netif_running(dev)) {
d543103a 2558 netif_tx_stop_all_queues(dev);
56079431
DV
2559 }
2560}
2561EXPORT_SYMBOL(netif_device_detach);
2562
bea3348e
SH
2563/**
2564 * netif_device_attach - mark device as attached
2565 * @dev: network device
2566 *
2567 * Mark device as attached from system and restart if needed.
2568 */
56079431
DV
2569void netif_device_attach(struct net_device *dev)
2570{
2571 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2572 netif_running(dev)) {
d543103a 2573 netif_tx_wake_all_queues(dev);
4ec93edb 2574 __netdev_watchdog_up(dev);
56079431
DV
2575 }
2576}
2577EXPORT_SYMBOL(netif_device_attach);
2578
5605c762
JP
2579/*
2580 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2581 * to be used as a distribution range.
2582 */
2583u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2584 unsigned int num_tx_queues)
2585{
2586 u32 hash;
2587 u16 qoffset = 0;
2588 u16 qcount = num_tx_queues;
2589
2590 if (skb_rx_queue_recorded(skb)) {
2591 hash = skb_get_rx_queue(skb);
2592 while (unlikely(hash >= num_tx_queues))
2593 hash -= num_tx_queues;
2594 return hash;
2595 }
2596
2597 if (dev->num_tc) {
2598 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2599
5605c762
JP
2600 qoffset = dev->tc_to_txq[tc].offset;
2601 qcount = dev->tc_to_txq[tc].count;
2602 }
2603
2604 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2605}
2606EXPORT_SYMBOL(__skb_tx_hash);
2607
36c92474
BH
2608static void skb_warn_bad_offload(const struct sk_buff *skb)
2609{
84d15ae5 2610 static const netdev_features_t null_features;
36c92474 2611 struct net_device *dev = skb->dev;
88ad4175 2612 const char *name = "";
36c92474 2613
c846ad9b
BG
2614 if (!net_ratelimit())
2615 return;
2616
88ad4175
BM
2617 if (dev) {
2618 if (dev->dev.parent)
2619 name = dev_driver_string(dev->dev.parent);
2620 else
2621 name = netdev_name(dev);
2622 }
36c92474
BH
2623 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2624 "gso_type=%d ip_summed=%d\n",
88ad4175 2625 name, dev ? &dev->features : &null_features,
65e9d2fa 2626 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2627 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2628 skb_shinfo(skb)->gso_type, skb->ip_summed);
2629}
2630
1da177e4
LT
2631/*
2632 * Invalidate hardware checksum when packet is to be mangled, and
2633 * complete checksum manually on outgoing path.
2634 */
84fa7933 2635int skb_checksum_help(struct sk_buff *skb)
1da177e4 2636{
d3bc23e7 2637 __wsum csum;
663ead3b 2638 int ret = 0, offset;
1da177e4 2639
84fa7933 2640 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2641 goto out_set_summed;
2642
2643 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2644 skb_warn_bad_offload(skb);
2645 return -EINVAL;
1da177e4
LT
2646 }
2647
cef401de
ED
2648 /* Before computing a checksum, we should make sure no frag could
2649 * be modified by an external entity : checksum could be wrong.
2650 */
2651 if (skb_has_shared_frag(skb)) {
2652 ret = __skb_linearize(skb);
2653 if (ret)
2654 goto out;
2655 }
2656
55508d60 2657 offset = skb_checksum_start_offset(skb);
a030847e
HX
2658 BUG_ON(offset >= skb_headlen(skb));
2659 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2660
2661 offset += skb->csum_offset;
2662 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2663
2664 if (skb_cloned(skb) &&
2665 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2666 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2667 if (ret)
2668 goto out;
2669 }
2670
4f2e4ad5 2671 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2672out_set_summed:
1da177e4 2673 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2674out:
1da177e4
LT
2675 return ret;
2676}
d1b19dff 2677EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2678
b72b5bf6
DC
2679int skb_crc32c_csum_help(struct sk_buff *skb)
2680{
2681 __le32 crc32c_csum;
2682 int ret = 0, offset, start;
2683
2684 if (skb->ip_summed != CHECKSUM_PARTIAL)
2685 goto out;
2686
2687 if (unlikely(skb_is_gso(skb)))
2688 goto out;
2689
2690 /* Before computing a checksum, we should make sure no frag could
2691 * be modified by an external entity : checksum could be wrong.
2692 */
2693 if (unlikely(skb_has_shared_frag(skb))) {
2694 ret = __skb_linearize(skb);
2695 if (ret)
2696 goto out;
2697 }
2698 start = skb_checksum_start_offset(skb);
2699 offset = start + offsetof(struct sctphdr, checksum);
2700 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2701 ret = -EINVAL;
2702 goto out;
2703 }
2704 if (skb_cloned(skb) &&
2705 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2706 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2707 if (ret)
2708 goto out;
2709 }
2710 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2711 skb->len - start, ~(__u32)0,
2712 crc32c_csum_stub));
2713 *(__le32 *)(skb->data + offset) = crc32c_csum;
2714 skb->ip_summed = CHECKSUM_NONE;
dba00306 2715 skb->csum_not_inet = 0;
b72b5bf6
DC
2716out:
2717 return ret;
2718}
2719
53d6471c 2720__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2721{
252e3346 2722 __be16 type = skb->protocol;
f6a78bfc 2723
19acc327
PS
2724 /* Tunnel gso handlers can set protocol to ethernet. */
2725 if (type == htons(ETH_P_TEB)) {
2726 struct ethhdr *eth;
2727
2728 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2729 return 0;
2730
2731 eth = (struct ethhdr *)skb_mac_header(skb);
2732 type = eth->h_proto;
2733 }
2734
d4bcef3f 2735 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2736}
2737
2738/**
2739 * skb_mac_gso_segment - mac layer segmentation handler.
2740 * @skb: buffer to segment
2741 * @features: features for the output path (see dev->features)
2742 */
2743struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2744 netdev_features_t features)
2745{
2746 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2747 struct packet_offload *ptype;
53d6471c
VY
2748 int vlan_depth = skb->mac_len;
2749 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2750
2751 if (unlikely(!type))
2752 return ERR_PTR(-EINVAL);
2753
53d6471c 2754 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2755
2756 rcu_read_lock();
22061d80 2757 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2758 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2759 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2760 break;
2761 }
2762 }
2763 rcu_read_unlock();
2764
98e399f8 2765 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2766
f6a78bfc
HX
2767 return segs;
2768}
05e8ef4a
PS
2769EXPORT_SYMBOL(skb_mac_gso_segment);
2770
2771
2772/* openvswitch calls this on rx path, so we need a different check.
2773 */
2774static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2775{
2776 if (tx_path)
0c19f846
WB
2777 return skb->ip_summed != CHECKSUM_PARTIAL &&
2778 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2779
2780 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2781}
2782
2783/**
2784 * __skb_gso_segment - Perform segmentation on skb.
2785 * @skb: buffer to segment
2786 * @features: features for the output path (see dev->features)
2787 * @tx_path: whether it is called in TX path
2788 *
2789 * This function segments the given skb and returns a list of segments.
2790 *
2791 * It may return NULL if the skb requires no segmentation. This is
2792 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2793 *
2794 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2795 */
2796struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2797 netdev_features_t features, bool tx_path)
2798{
b2504a5d
ED
2799 struct sk_buff *segs;
2800
05e8ef4a
PS
2801 if (unlikely(skb_needs_check(skb, tx_path))) {
2802 int err;
2803
b2504a5d 2804 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2805 err = skb_cow_head(skb, 0);
2806 if (err < 0)
05e8ef4a
PS
2807 return ERR_PTR(err);
2808 }
2809
802ab55a
AD
2810 /* Only report GSO partial support if it will enable us to
2811 * support segmentation on this frame without needing additional
2812 * work.
2813 */
2814 if (features & NETIF_F_GSO_PARTIAL) {
2815 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2816 struct net_device *dev = skb->dev;
2817
2818 partial_features |= dev->features & dev->gso_partial_features;
2819 if (!skb_gso_ok(skb, features | partial_features))
2820 features &= ~NETIF_F_GSO_PARTIAL;
2821 }
2822
9207f9d4
KK
2823 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2824 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2825
68c33163 2826 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2827 SKB_GSO_CB(skb)->encap_level = 0;
2828
05e8ef4a
PS
2829 skb_reset_mac_header(skb);
2830 skb_reset_mac_len(skb);
2831
b2504a5d
ED
2832 segs = skb_mac_gso_segment(skb, features);
2833
8d74e9f8 2834 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
2835 skb_warn_bad_offload(skb);
2836
2837 return segs;
05e8ef4a 2838}
12b0004d 2839EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2840
fb286bb2
HX
2841/* Take action when hardware reception checksum errors are detected. */
2842#ifdef CONFIG_BUG
2843void netdev_rx_csum_fault(struct net_device *dev)
2844{
2845 if (net_ratelimit()) {
7b6cd1ce 2846 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2847 dump_stack();
2848 }
2849}
2850EXPORT_SYMBOL(netdev_rx_csum_fault);
2851#endif
2852
1da177e4
LT
2853/* Actually, we should eliminate this check as soon as we know, that:
2854 * 1. IOMMU is present and allows to map all the memory.
2855 * 2. No high memory really exists on this machine.
2856 */
2857
c1e756bf 2858static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2859{
3d3a8533 2860#ifdef CONFIG_HIGHMEM
1da177e4 2861 int i;
f4563a75 2862
5acbbd42 2863 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2866
ea2ab693 2867 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2868 return 1;
ea2ab693 2869 }
5acbbd42 2870 }
1da177e4 2871
5acbbd42
FT
2872 if (PCI_DMA_BUS_IS_PHYS) {
2873 struct device *pdev = dev->dev.parent;
1da177e4 2874
9092c658
ED
2875 if (!pdev)
2876 return 0;
5acbbd42 2877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2878 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2879 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2880
5acbbd42
FT
2881 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2882 return 1;
2883 }
2884 }
3d3a8533 2885#endif
1da177e4
LT
2886 return 0;
2887}
1da177e4 2888
3b392ddb
SH
2889/* If MPLS offload request, verify we are testing hardware MPLS features
2890 * instead of standard features for the netdev.
2891 */
d0edc7bf 2892#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2893static netdev_features_t net_mpls_features(struct sk_buff *skb,
2894 netdev_features_t features,
2895 __be16 type)
2896{
25cd9ba0 2897 if (eth_p_mpls(type))
3b392ddb
SH
2898 features &= skb->dev->mpls_features;
2899
2900 return features;
2901}
2902#else
2903static netdev_features_t net_mpls_features(struct sk_buff *skb,
2904 netdev_features_t features,
2905 __be16 type)
2906{
2907 return features;
2908}
2909#endif
2910
c8f44aff 2911static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2912 netdev_features_t features)
f01a5236 2913{
53d6471c 2914 int tmp;
3b392ddb
SH
2915 __be16 type;
2916
2917 type = skb_network_protocol(skb, &tmp);
2918 features = net_mpls_features(skb, features, type);
53d6471c 2919
c0d680e5 2920 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2921 !can_checksum_protocol(features, type)) {
996e8021 2922 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2923 }
7be2c82c
ED
2924 if (illegal_highdma(skb->dev, skb))
2925 features &= ~NETIF_F_SG;
f01a5236
JG
2926
2927 return features;
2928}
2929
e38f3025
TM
2930netdev_features_t passthru_features_check(struct sk_buff *skb,
2931 struct net_device *dev,
2932 netdev_features_t features)
2933{
2934 return features;
2935}
2936EXPORT_SYMBOL(passthru_features_check);
2937
8cb65d00
TM
2938static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2939 struct net_device *dev,
2940 netdev_features_t features)
2941{
2942 return vlan_features_check(skb, features);
2943}
2944
cbc53e08
AD
2945static netdev_features_t gso_features_check(const struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948{
2949 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2950
2951 if (gso_segs > dev->gso_max_segs)
2952 return features & ~NETIF_F_GSO_MASK;
2953
802ab55a
AD
2954 /* Support for GSO partial features requires software
2955 * intervention before we can actually process the packets
2956 * so we need to strip support for any partial features now
2957 * and we can pull them back in after we have partially
2958 * segmented the frame.
2959 */
2960 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2961 features &= ~dev->gso_partial_features;
2962
2963 /* Make sure to clear the IPv4 ID mangling feature if the
2964 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2965 */
2966 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2967 struct iphdr *iph = skb->encapsulation ?
2968 inner_ip_hdr(skb) : ip_hdr(skb);
2969
2970 if (!(iph->frag_off & htons(IP_DF)))
2971 features &= ~NETIF_F_TSO_MANGLEID;
2972 }
2973
2974 return features;
2975}
2976
c1e756bf 2977netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2978{
5f35227e 2979 struct net_device *dev = skb->dev;
fcbeb976 2980 netdev_features_t features = dev->features;
58e998c6 2981
cbc53e08
AD
2982 if (skb_is_gso(skb))
2983 features = gso_features_check(skb, dev, features);
30b678d8 2984
5f35227e
JG
2985 /* If encapsulation offload request, verify we are testing
2986 * hardware encapsulation features instead of standard
2987 * features for the netdev
2988 */
2989 if (skb->encapsulation)
2990 features &= dev->hw_enc_features;
2991
f5a7fb88
TM
2992 if (skb_vlan_tagged(skb))
2993 features = netdev_intersect_features(features,
2994 dev->vlan_features |
2995 NETIF_F_HW_VLAN_CTAG_TX |
2996 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2997
5f35227e
JG
2998 if (dev->netdev_ops->ndo_features_check)
2999 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3000 features);
8cb65d00
TM
3001 else
3002 features &= dflt_features_check(skb, dev, features);
5f35227e 3003
c1e756bf 3004 return harmonize_features(skb, features);
58e998c6 3005}
c1e756bf 3006EXPORT_SYMBOL(netif_skb_features);
58e998c6 3007
2ea25513 3008static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3009 struct netdev_queue *txq, bool more)
f6a78bfc 3010{
2ea25513
DM
3011 unsigned int len;
3012 int rc;
00829823 3013
7866a621 3014 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3015 dev_queue_xmit_nit(skb, dev);
fc741216 3016
2ea25513
DM
3017 len = skb->len;
3018 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3019 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3020 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3021
2ea25513
DM
3022 return rc;
3023}
7b9c6090 3024
8dcda22a
DM
3025struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3026 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3027{
3028 struct sk_buff *skb = first;
3029 int rc = NETDEV_TX_OK;
7b9c6090 3030
7f2e870f
DM
3031 while (skb) {
3032 struct sk_buff *next = skb->next;
fc70fb64 3033
7f2e870f 3034 skb->next = NULL;
95f6b3dd 3035 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3036 if (unlikely(!dev_xmit_complete(rc))) {
3037 skb->next = next;
3038 goto out;
3039 }
6afff0ca 3040
7f2e870f
DM
3041 skb = next;
3042 if (netif_xmit_stopped(txq) && skb) {
3043 rc = NETDEV_TX_BUSY;
3044 break;
9ccb8975 3045 }
7f2e870f 3046 }
9ccb8975 3047
7f2e870f
DM
3048out:
3049 *ret = rc;
3050 return skb;
3051}
b40863c6 3052
1ff0dc94
ED
3053static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3054 netdev_features_t features)
f6a78bfc 3055{
df8a39de 3056 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3057 !vlan_hw_offload_capable(features, skb->vlan_proto))
3058 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3059 return skb;
3060}
f6a78bfc 3061
43c26a1a
DC
3062int skb_csum_hwoffload_help(struct sk_buff *skb,
3063 const netdev_features_t features)
3064{
3065 if (unlikely(skb->csum_not_inet))
3066 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3067 skb_crc32c_csum_help(skb);
3068
3069 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3070}
3071EXPORT_SYMBOL(skb_csum_hwoffload_help);
3072
f53c7239 3073static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3074{
3075 netdev_features_t features;
f6a78bfc 3076
eae3f88e
DM
3077 features = netif_skb_features(skb);
3078 skb = validate_xmit_vlan(skb, features);
3079 if (unlikely(!skb))
3080 goto out_null;
7b9c6090 3081
8b86a61d 3082 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3083 struct sk_buff *segs;
3084
3085 segs = skb_gso_segment(skb, features);
cecda693 3086 if (IS_ERR(segs)) {
af6dabc9 3087 goto out_kfree_skb;
cecda693
JW
3088 } else if (segs) {
3089 consume_skb(skb);
3090 skb = segs;
f6a78bfc 3091 }
eae3f88e
DM
3092 } else {
3093 if (skb_needs_linearize(skb, features) &&
3094 __skb_linearize(skb))
3095 goto out_kfree_skb;
4ec93edb 3096
eae3f88e
DM
3097 /* If packet is not checksummed and device does not
3098 * support checksumming for this protocol, complete
3099 * checksumming here.
3100 */
3101 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3102 if (skb->encapsulation)
3103 skb_set_inner_transport_header(skb,
3104 skb_checksum_start_offset(skb));
3105 else
3106 skb_set_transport_header(skb,
3107 skb_checksum_start_offset(skb));
43c26a1a 3108 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3109 goto out_kfree_skb;
7b9c6090 3110 }
0c772159 3111 }
7b9c6090 3112
f53c7239 3113 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3114
eae3f88e 3115 return skb;
fc70fb64 3116
f6a78bfc
HX
3117out_kfree_skb:
3118 kfree_skb(skb);
eae3f88e 3119out_null:
d21fd63e 3120 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3121 return NULL;
3122}
6afff0ca 3123
f53c7239 3124struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3125{
3126 struct sk_buff *next, *head = NULL, *tail;
3127
bec3cfdc 3128 for (; skb != NULL; skb = next) {
55a93b3e
ED
3129 next = skb->next;
3130 skb->next = NULL;
bec3cfdc
ED
3131
3132 /* in case skb wont be segmented, point to itself */
3133 skb->prev = skb;
3134
f53c7239 3135 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3136 if (!skb)
3137 continue;
55a93b3e 3138
bec3cfdc
ED
3139 if (!head)
3140 head = skb;
3141 else
3142 tail->next = skb;
3143 /* If skb was segmented, skb->prev points to
3144 * the last segment. If not, it still contains skb.
3145 */
3146 tail = skb->prev;
55a93b3e
ED
3147 }
3148 return head;
f6a78bfc 3149}
104ba78c 3150EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3151
1def9238
ED
3152static void qdisc_pkt_len_init(struct sk_buff *skb)
3153{
3154 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3155
3156 qdisc_skb_cb(skb)->pkt_len = skb->len;
3157
3158 /* To get more precise estimation of bytes sent on wire,
3159 * we add to pkt_len the headers size of all segments
3160 */
3161 if (shinfo->gso_size) {
757b8b1d 3162 unsigned int hdr_len;
15e5a030 3163 u16 gso_segs = shinfo->gso_segs;
1def9238 3164
757b8b1d
ED
3165 /* mac layer + network layer */
3166 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3167
3168 /* + transport layer */
1def9238
ED
3169 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3170 hdr_len += tcp_hdrlen(skb);
3171 else
3172 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3173
3174 if (shinfo->gso_type & SKB_GSO_DODGY)
3175 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3176 shinfo->gso_size);
3177
3178 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3179 }
3180}
3181
bbd8a0d3
KK
3182static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3183 struct net_device *dev,
3184 struct netdev_queue *txq)
3185{
3186 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3187 struct sk_buff *to_free = NULL;
a2da570d 3188 bool contended;
bbd8a0d3
KK
3189 int rc;
3190
a2da570d 3191 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3192
3193 if (q->flags & TCQ_F_NOLOCK) {
3194 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3195 __qdisc_drop(skb, &to_free);
3196 rc = NET_XMIT_DROP;
3197 } else {
3198 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3199 __qdisc_run(q);
3200 }
3201
3202 if (unlikely(to_free))
3203 kfree_skb_list(to_free);
3204 return rc;
3205 }
3206
79640a4c
ED
3207 /*
3208 * Heuristic to force contended enqueues to serialize on a
3209 * separate lock before trying to get qdisc main lock.
f9eb8aea 3210 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3211 * often and dequeue packets faster.
79640a4c 3212 */
a2da570d 3213 contended = qdisc_is_running(q);
79640a4c
ED
3214 if (unlikely(contended))
3215 spin_lock(&q->busylock);
3216
bbd8a0d3
KK
3217 spin_lock(root_lock);
3218 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3219 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3220 rc = NET_XMIT_DROP;
3221 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3222 qdisc_run_begin(q)) {
bbd8a0d3
KK
3223 /*
3224 * This is a work-conserving queue; there are no old skbs
3225 * waiting to be sent out; and the qdisc is not running -
3226 * xmit the skb directly.
3227 */
bfe0d029 3228
bfe0d029
ED
3229 qdisc_bstats_update(q, skb);
3230
55a93b3e 3231 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3232 if (unlikely(contended)) {
3233 spin_unlock(&q->busylock);
3234 contended = false;
3235 }
bbd8a0d3 3236 __qdisc_run(q);
6c148184 3237 }
bbd8a0d3 3238
6c148184 3239 qdisc_run_end(q);
bbd8a0d3
KK
3240 rc = NET_XMIT_SUCCESS;
3241 } else {
520ac30f 3242 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3243 if (qdisc_run_begin(q)) {
3244 if (unlikely(contended)) {
3245 spin_unlock(&q->busylock);
3246 contended = false;
3247 }
3248 __qdisc_run(q);
6c148184 3249 qdisc_run_end(q);
79640a4c 3250 }
bbd8a0d3
KK
3251 }
3252 spin_unlock(root_lock);
520ac30f
ED
3253 if (unlikely(to_free))
3254 kfree_skb_list(to_free);
79640a4c
ED
3255 if (unlikely(contended))
3256 spin_unlock(&q->busylock);
bbd8a0d3
KK
3257 return rc;
3258}
3259
86f8515f 3260#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3261static void skb_update_prio(struct sk_buff *skb)
3262{
6977a79d 3263 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3264
91c68ce2 3265 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3266 unsigned int prioidx =
3267 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3268
3269 if (prioidx < map->priomap_len)
3270 skb->priority = map->priomap[prioidx];
3271 }
5bc1421e
NH
3272}
3273#else
3274#define skb_update_prio(skb)
3275#endif
3276
f60e5990 3277DEFINE_PER_CPU(int, xmit_recursion);
3278EXPORT_SYMBOL(xmit_recursion);
3279
95603e22
MM
3280/**
3281 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3282 * @net: network namespace this loopback is happening in
3283 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3284 * @skb: buffer to transmit
3285 */
0c4b51f0 3286int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3287{
3288 skb_reset_mac_header(skb);
3289 __skb_pull(skb, skb_network_offset(skb));
3290 skb->pkt_type = PACKET_LOOPBACK;
3291 skb->ip_summed = CHECKSUM_UNNECESSARY;
3292 WARN_ON(!skb_dst(skb));
3293 skb_dst_force(skb);
3294 netif_rx_ni(skb);
3295 return 0;
3296}
3297EXPORT_SYMBOL(dev_loopback_xmit);
3298
1f211a1b
DB
3299#ifdef CONFIG_NET_EGRESS
3300static struct sk_buff *
3301sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3302{
46209401 3303 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3304 struct tcf_result cl_res;
3305
46209401 3306 if (!miniq)
1f211a1b
DB
3307 return skb;
3308
8dc07fdb 3309 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3310 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3311
46209401 3312 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3313 case TC_ACT_OK:
3314 case TC_ACT_RECLASSIFY:
3315 skb->tc_index = TC_H_MIN(cl_res.classid);
3316 break;
3317 case TC_ACT_SHOT:
46209401 3318 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3319 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3320 kfree_skb(skb);
3321 return NULL;
1f211a1b
DB
3322 case TC_ACT_STOLEN:
3323 case TC_ACT_QUEUED:
e25ea21f 3324 case TC_ACT_TRAP:
1f211a1b 3325 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3326 consume_skb(skb);
1f211a1b
DB
3327 return NULL;
3328 case TC_ACT_REDIRECT:
3329 /* No need to push/pop skb's mac_header here on egress! */
3330 skb_do_redirect(skb);
3331 *ret = NET_XMIT_SUCCESS;
3332 return NULL;
3333 default:
3334 break;
3335 }
3336
3337 return skb;
3338}
3339#endif /* CONFIG_NET_EGRESS */
3340
638b2a69
JP
3341static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3342{
3343#ifdef CONFIG_XPS
3344 struct xps_dev_maps *dev_maps;
3345 struct xps_map *map;
3346 int queue_index = -1;
3347
3348 rcu_read_lock();
3349 dev_maps = rcu_dereference(dev->xps_maps);
3350 if (dev_maps) {
184c449f
AD
3351 unsigned int tci = skb->sender_cpu - 1;
3352
3353 if (dev->num_tc) {
3354 tci *= dev->num_tc;
3355 tci += netdev_get_prio_tc_map(dev, skb->priority);
3356 }
3357
3358 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3359 if (map) {
3360 if (map->len == 1)
3361 queue_index = map->queues[0];
3362 else
3363 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3364 map->len)];
3365 if (unlikely(queue_index >= dev->real_num_tx_queues))
3366 queue_index = -1;
3367 }
3368 }
3369 rcu_read_unlock();
3370
3371 return queue_index;
3372#else
3373 return -1;
3374#endif
3375}
3376
3377static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3378{
3379 struct sock *sk = skb->sk;
3380 int queue_index = sk_tx_queue_get(sk);
3381
3382 if (queue_index < 0 || skb->ooo_okay ||
3383 queue_index >= dev->real_num_tx_queues) {
3384 int new_index = get_xps_queue(dev, skb);
f4563a75 3385
638b2a69
JP
3386 if (new_index < 0)
3387 new_index = skb_tx_hash(dev, skb);
3388
3389 if (queue_index != new_index && sk &&
004a5d01 3390 sk_fullsock(sk) &&
638b2a69
JP
3391 rcu_access_pointer(sk->sk_dst_cache))
3392 sk_tx_queue_set(sk, new_index);
3393
3394 queue_index = new_index;
3395 }
3396
3397 return queue_index;
3398}
3399
3400struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3401 struct sk_buff *skb,
3402 void *accel_priv)
3403{
3404 int queue_index = 0;
3405
3406#ifdef CONFIG_XPS
52bd2d62
ED
3407 u32 sender_cpu = skb->sender_cpu - 1;
3408
3409 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3410 skb->sender_cpu = raw_smp_processor_id() + 1;
3411#endif
3412
3413 if (dev->real_num_tx_queues != 1) {
3414 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3415
638b2a69
JP
3416 if (ops->ndo_select_queue)
3417 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3418 __netdev_pick_tx);
3419 else
3420 queue_index = __netdev_pick_tx(dev, skb);
3421
d584527c 3422 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3423 }
3424
3425 skb_set_queue_mapping(skb, queue_index);
3426 return netdev_get_tx_queue(dev, queue_index);
3427}
3428
d29f749e 3429/**
9d08dd3d 3430 * __dev_queue_xmit - transmit a buffer
d29f749e 3431 * @skb: buffer to transmit
9d08dd3d 3432 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3433 *
3434 * Queue a buffer for transmission to a network device. The caller must
3435 * have set the device and priority and built the buffer before calling
3436 * this function. The function can be called from an interrupt.
3437 *
3438 * A negative errno code is returned on a failure. A success does not
3439 * guarantee the frame will be transmitted as it may be dropped due
3440 * to congestion or traffic shaping.
3441 *
3442 * -----------------------------------------------------------------------------------
3443 * I notice this method can also return errors from the queue disciplines,
3444 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3445 * be positive.
3446 *
3447 * Regardless of the return value, the skb is consumed, so it is currently
3448 * difficult to retry a send to this method. (You can bump the ref count
3449 * before sending to hold a reference for retry if you are careful.)
3450 *
3451 * When calling this method, interrupts MUST be enabled. This is because
3452 * the BH enable code must have IRQs enabled so that it will not deadlock.
3453 * --BLG
3454 */
0a59f3a9 3455static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3456{
3457 struct net_device *dev = skb->dev;
dc2b4847 3458 struct netdev_queue *txq;
1da177e4
LT
3459 struct Qdisc *q;
3460 int rc = -ENOMEM;
f53c7239 3461 bool again = false;
1da177e4 3462
6d1ccff6
ED
3463 skb_reset_mac_header(skb);
3464
e7fd2885
WB
3465 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3466 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3467
4ec93edb
YH
3468 /* Disable soft irqs for various locks below. Also
3469 * stops preemption for RCU.
1da177e4 3470 */
4ec93edb 3471 rcu_read_lock_bh();
1da177e4 3472
5bc1421e
NH
3473 skb_update_prio(skb);
3474
1f211a1b
DB
3475 qdisc_pkt_len_init(skb);
3476#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3477 skb->tc_at_ingress = 0;
1f211a1b
DB
3478# ifdef CONFIG_NET_EGRESS
3479 if (static_key_false(&egress_needed)) {
3480 skb = sch_handle_egress(skb, &rc, dev);
3481 if (!skb)
3482 goto out;
3483 }
3484# endif
3485#endif
02875878
ED
3486 /* If device/qdisc don't need skb->dst, release it right now while
3487 * its hot in this cpu cache.
3488 */
3489 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3490 skb_dst_drop(skb);
3491 else
3492 skb_dst_force(skb);
3493
f663dd9a 3494 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3495 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3496
cf66ba58 3497 trace_net_dev_queue(skb);
1da177e4 3498 if (q->enqueue) {
bbd8a0d3 3499 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3500 goto out;
1da177e4
LT
3501 }
3502
3503 /* The device has no queue. Common case for software devices:
eb13da1a 3504 * loopback, all the sorts of tunnels...
1da177e4 3505
eb13da1a 3506 * Really, it is unlikely that netif_tx_lock protection is necessary
3507 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3508 * counters.)
3509 * However, it is possible, that they rely on protection
3510 * made by us here.
1da177e4 3511
eb13da1a 3512 * Check this and shot the lock. It is not prone from deadlocks.
3513 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3514 */
3515 if (dev->flags & IFF_UP) {
3516 int cpu = smp_processor_id(); /* ok because BHs are off */
3517
c773e847 3518 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3519 if (unlikely(__this_cpu_read(xmit_recursion) >
3520 XMIT_RECURSION_LIMIT))
745e20f1
ED
3521 goto recursion_alert;
3522
f53c7239 3523 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3524 if (!skb)
d21fd63e 3525 goto out;
1f59533f 3526
c773e847 3527 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3528
73466498 3529 if (!netif_xmit_stopped(txq)) {
745e20f1 3530 __this_cpu_inc(xmit_recursion);
ce93718f 3531 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3532 __this_cpu_dec(xmit_recursion);
572a9d7b 3533 if (dev_xmit_complete(rc)) {
c773e847 3534 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3535 goto out;
3536 }
3537 }
c773e847 3538 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3539 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3540 dev->name);
1da177e4
LT
3541 } else {
3542 /* Recursion is detected! It is possible,
745e20f1
ED
3543 * unfortunately
3544 */
3545recursion_alert:
e87cc472
JP
3546 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3547 dev->name);
1da177e4
LT
3548 }
3549 }
3550
3551 rc = -ENETDOWN;
d4828d85 3552 rcu_read_unlock_bh();
1da177e4 3553
015f0688 3554 atomic_long_inc(&dev->tx_dropped);
1f59533f 3555 kfree_skb_list(skb);
1da177e4
LT
3556 return rc;
3557out:
d4828d85 3558 rcu_read_unlock_bh();
1da177e4
LT
3559 return rc;
3560}
f663dd9a 3561
2b4aa3ce 3562int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3563{
3564 return __dev_queue_xmit(skb, NULL);
3565}
2b4aa3ce 3566EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3567
f663dd9a
JW
3568int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3569{
3570 return __dev_queue_xmit(skb, accel_priv);
3571}
3572EXPORT_SYMBOL(dev_queue_xmit_accel);
3573
1da177e4 3574
eb13da1a 3575/*************************************************************************
3576 * Receiver routines
3577 *************************************************************************/
1da177e4 3578
6b2bedc3 3579int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3580EXPORT_SYMBOL(netdev_max_backlog);
3581
3b098e2d 3582int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3583int netdev_budget __read_mostly = 300;
7acf8a1e 3584unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3585int weight_p __read_mostly = 64; /* old backlog weight */
3586int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3587int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3588int dev_rx_weight __read_mostly = 64;
3589int dev_tx_weight __read_mostly = 64;
1da177e4 3590
eecfd7c4
ED
3591/* Called with irq disabled */
3592static inline void ____napi_schedule(struct softnet_data *sd,
3593 struct napi_struct *napi)
3594{
3595 list_add_tail(&napi->poll_list, &sd->poll_list);
3596 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3597}
3598
bfb564e7
KK
3599#ifdef CONFIG_RPS
3600
3601/* One global table that all flow-based protocols share. */
6e3f7faf 3602struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3603EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3604u32 rps_cpu_mask __read_mostly;
3605EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3606
c5905afb 3607struct static_key rps_needed __read_mostly;
3df97ba8 3608EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3609struct static_key rfs_needed __read_mostly;
3610EXPORT_SYMBOL(rfs_needed);
adc9300e 3611
c445477d
BH
3612static struct rps_dev_flow *
3613set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3614 struct rps_dev_flow *rflow, u16 next_cpu)
3615{
a31196b0 3616 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3617#ifdef CONFIG_RFS_ACCEL
3618 struct netdev_rx_queue *rxqueue;
3619 struct rps_dev_flow_table *flow_table;
3620 struct rps_dev_flow *old_rflow;
3621 u32 flow_id;
3622 u16 rxq_index;
3623 int rc;
3624
3625 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3626 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3627 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3628 goto out;
3629 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3630 if (rxq_index == skb_get_rx_queue(skb))
3631 goto out;
3632
3633 rxqueue = dev->_rx + rxq_index;
3634 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3635 if (!flow_table)
3636 goto out;
61b905da 3637 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3638 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3639 rxq_index, flow_id);
3640 if (rc < 0)
3641 goto out;
3642 old_rflow = rflow;
3643 rflow = &flow_table->flows[flow_id];
c445477d
BH
3644 rflow->filter = rc;
3645 if (old_rflow->filter == rflow->filter)
3646 old_rflow->filter = RPS_NO_FILTER;
3647 out:
3648#endif
3649 rflow->last_qtail =
09994d1b 3650 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3651 }
3652
09994d1b 3653 rflow->cpu = next_cpu;
c445477d
BH
3654 return rflow;
3655}
3656
bfb564e7
KK
3657/*
3658 * get_rps_cpu is called from netif_receive_skb and returns the target
3659 * CPU from the RPS map of the receiving queue for a given skb.
3660 * rcu_read_lock must be held on entry.
3661 */
3662static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3663 struct rps_dev_flow **rflowp)
3664{
567e4b79
ED
3665 const struct rps_sock_flow_table *sock_flow_table;
3666 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3667 struct rps_dev_flow_table *flow_table;
567e4b79 3668 struct rps_map *map;
bfb564e7 3669 int cpu = -1;
567e4b79 3670 u32 tcpu;
61b905da 3671 u32 hash;
bfb564e7
KK
3672
3673 if (skb_rx_queue_recorded(skb)) {
3674 u16 index = skb_get_rx_queue(skb);
567e4b79 3675
62fe0b40
BH
3676 if (unlikely(index >= dev->real_num_rx_queues)) {
3677 WARN_ONCE(dev->real_num_rx_queues > 1,
3678 "%s received packet on queue %u, but number "
3679 "of RX queues is %u\n",
3680 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3681 goto done;
3682 }
567e4b79
ED
3683 rxqueue += index;
3684 }
bfb564e7 3685
567e4b79
ED
3686 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3687
3688 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3689 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3690 if (!flow_table && !map)
bfb564e7
KK
3691 goto done;
3692
2d47b459 3693 skb_reset_network_header(skb);
61b905da
TH
3694 hash = skb_get_hash(skb);
3695 if (!hash)
bfb564e7
KK
3696 goto done;
3697
fec5e652
TH
3698 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3699 if (flow_table && sock_flow_table) {
fec5e652 3700 struct rps_dev_flow *rflow;
567e4b79
ED
3701 u32 next_cpu;
3702 u32 ident;
3703
3704 /* First check into global flow table if there is a match */
3705 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3706 if ((ident ^ hash) & ~rps_cpu_mask)
3707 goto try_rps;
fec5e652 3708
567e4b79
ED
3709 next_cpu = ident & rps_cpu_mask;
3710
3711 /* OK, now we know there is a match,
3712 * we can look at the local (per receive queue) flow table
3713 */
61b905da 3714 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3715 tcpu = rflow->cpu;
3716
fec5e652
TH
3717 /*
3718 * If the desired CPU (where last recvmsg was done) is
3719 * different from current CPU (one in the rx-queue flow
3720 * table entry), switch if one of the following holds:
a31196b0 3721 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3722 * - Current CPU is offline.
3723 * - The current CPU's queue tail has advanced beyond the
3724 * last packet that was enqueued using this table entry.
3725 * This guarantees that all previous packets for the flow
3726 * have been dequeued, thus preserving in order delivery.
3727 */
3728 if (unlikely(tcpu != next_cpu) &&
a31196b0 3729 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3730 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3731 rflow->last_qtail)) >= 0)) {
3732 tcpu = next_cpu;
c445477d 3733 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3734 }
c445477d 3735
a31196b0 3736 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3737 *rflowp = rflow;
3738 cpu = tcpu;
3739 goto done;
3740 }
3741 }
3742
567e4b79
ED
3743try_rps:
3744
0a9627f2 3745 if (map) {
8fc54f68 3746 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3747 if (cpu_online(tcpu)) {
3748 cpu = tcpu;
3749 goto done;
3750 }
3751 }
3752
3753done:
0a9627f2
TH
3754 return cpu;
3755}
3756
c445477d
BH
3757#ifdef CONFIG_RFS_ACCEL
3758
3759/**
3760 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3761 * @dev: Device on which the filter was set
3762 * @rxq_index: RX queue index
3763 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3764 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3765 *
3766 * Drivers that implement ndo_rx_flow_steer() should periodically call
3767 * this function for each installed filter and remove the filters for
3768 * which it returns %true.
3769 */
3770bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3771 u32 flow_id, u16 filter_id)
3772{
3773 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3774 struct rps_dev_flow_table *flow_table;
3775 struct rps_dev_flow *rflow;
3776 bool expire = true;
a31196b0 3777 unsigned int cpu;
c445477d
BH
3778
3779 rcu_read_lock();
3780 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3781 if (flow_table && flow_id <= flow_table->mask) {
3782 rflow = &flow_table->flows[flow_id];
6aa7de05 3783 cpu = READ_ONCE(rflow->cpu);
a31196b0 3784 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3785 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3786 rflow->last_qtail) <
3787 (int)(10 * flow_table->mask)))
3788 expire = false;
3789 }
3790 rcu_read_unlock();
3791 return expire;
3792}
3793EXPORT_SYMBOL(rps_may_expire_flow);
3794
3795#endif /* CONFIG_RFS_ACCEL */
3796
0a9627f2 3797/* Called from hardirq (IPI) context */
e36fa2f7 3798static void rps_trigger_softirq(void *data)
0a9627f2 3799{
e36fa2f7
ED
3800 struct softnet_data *sd = data;
3801
eecfd7c4 3802 ____napi_schedule(sd, &sd->backlog);
dee42870 3803 sd->received_rps++;
0a9627f2 3804}
e36fa2f7 3805
fec5e652 3806#endif /* CONFIG_RPS */
0a9627f2 3807
e36fa2f7
ED
3808/*
3809 * Check if this softnet_data structure is another cpu one
3810 * If yes, queue it to our IPI list and return 1
3811 * If no, return 0
3812 */
3813static int rps_ipi_queued(struct softnet_data *sd)
3814{
3815#ifdef CONFIG_RPS
903ceff7 3816 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3817
3818 if (sd != mysd) {
3819 sd->rps_ipi_next = mysd->rps_ipi_list;
3820 mysd->rps_ipi_list = sd;
3821
3822 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3823 return 1;
3824 }
3825#endif /* CONFIG_RPS */
3826 return 0;
3827}
3828
99bbc707
WB
3829#ifdef CONFIG_NET_FLOW_LIMIT
3830int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3831#endif
3832
3833static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3834{
3835#ifdef CONFIG_NET_FLOW_LIMIT
3836 struct sd_flow_limit *fl;
3837 struct softnet_data *sd;
3838 unsigned int old_flow, new_flow;
3839
3840 if (qlen < (netdev_max_backlog >> 1))
3841 return false;
3842
903ceff7 3843 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3844
3845 rcu_read_lock();
3846 fl = rcu_dereference(sd->flow_limit);
3847 if (fl) {
3958afa1 3848 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3849 old_flow = fl->history[fl->history_head];
3850 fl->history[fl->history_head] = new_flow;
3851
3852 fl->history_head++;
3853 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3854
3855 if (likely(fl->buckets[old_flow]))
3856 fl->buckets[old_flow]--;
3857
3858 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3859 fl->count++;
3860 rcu_read_unlock();
3861 return true;
3862 }
3863 }
3864 rcu_read_unlock();
3865#endif
3866 return false;
3867}
3868
0a9627f2
TH
3869/*
3870 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3871 * queue (may be a remote CPU queue).
3872 */
fec5e652
TH
3873static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3874 unsigned int *qtail)
0a9627f2 3875{
e36fa2f7 3876 struct softnet_data *sd;
0a9627f2 3877 unsigned long flags;
99bbc707 3878 unsigned int qlen;
0a9627f2 3879
e36fa2f7 3880 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3881
3882 local_irq_save(flags);
0a9627f2 3883
e36fa2f7 3884 rps_lock(sd);
e9e4dd32
JA
3885 if (!netif_running(skb->dev))
3886 goto drop;
99bbc707
WB
3887 qlen = skb_queue_len(&sd->input_pkt_queue);
3888 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3889 if (qlen) {
0a9627f2 3890enqueue:
e36fa2f7 3891 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3892 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3893 rps_unlock(sd);
152102c7 3894 local_irq_restore(flags);
0a9627f2
TH
3895 return NET_RX_SUCCESS;
3896 }
3897
ebda37c2
ED
3898 /* Schedule NAPI for backlog device
3899 * We can use non atomic operation since we own the queue lock
3900 */
3901 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3902 if (!rps_ipi_queued(sd))
eecfd7c4 3903 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3904 }
3905 goto enqueue;
3906 }
3907
e9e4dd32 3908drop:
dee42870 3909 sd->dropped++;
e36fa2f7 3910 rps_unlock(sd);
0a9627f2 3911
0a9627f2
TH
3912 local_irq_restore(flags);
3913
caf586e5 3914 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3915 kfree_skb(skb);
3916 return NET_RX_DROP;
3917}
1da177e4 3918
e817f856
JDB
3919static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3920{
3921 struct net_device *dev = skb->dev;
3922 struct netdev_rx_queue *rxqueue;
3923
3924 rxqueue = dev->_rx;
3925
3926 if (skb_rx_queue_recorded(skb)) {
3927 u16 index = skb_get_rx_queue(skb);
3928
3929 if (unlikely(index >= dev->real_num_rx_queues)) {
3930 WARN_ONCE(dev->real_num_rx_queues > 1,
3931 "%s received packet on queue %u, but number "
3932 "of RX queues is %u\n",
3933 dev->name, index, dev->real_num_rx_queues);
3934
3935 return rxqueue; /* Return first rxqueue */
3936 }
3937 rxqueue += index;
3938 }
3939 return rxqueue;
3940}
3941
d4455169
JF
3942static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3943 struct bpf_prog *xdp_prog)
3944{
e817f856 3945 struct netdev_rx_queue *rxqueue;
de8f3a83 3946 u32 metalen, act = XDP_DROP;
d4455169 3947 struct xdp_buff xdp;
d4455169
JF
3948 void *orig_data;
3949 int hlen, off;
3950 u32 mac_len;
3951
3952 /* Reinjected packets coming from act_mirred or similar should
3953 * not get XDP generic processing.
3954 */
3955 if (skb_cloned(skb))
3956 return XDP_PASS;
3957
de8f3a83
DB
3958 /* XDP packets must be linear and must have sufficient headroom
3959 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3960 * native XDP provides, thus we need to do it here as well.
3961 */
3962 if (skb_is_nonlinear(skb) ||
3963 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3964 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3965 int troom = skb->tail + skb->data_len - skb->end;
3966
3967 /* In case we have to go down the path and also linearize,
3968 * then lets do the pskb_expand_head() work just once here.
3969 */
3970 if (pskb_expand_head(skb,
3971 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3972 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3973 goto do_drop;
2d17d8d7 3974 if (skb_linearize(skb))
de8f3a83
DB
3975 goto do_drop;
3976 }
d4455169
JF
3977
3978 /* The XDP program wants to see the packet starting at the MAC
3979 * header.
3980 */
3981 mac_len = skb->data - skb_mac_header(skb);
3982 hlen = skb_headlen(skb) + mac_len;
3983 xdp.data = skb->data - mac_len;
de8f3a83 3984 xdp.data_meta = xdp.data;
d4455169
JF
3985 xdp.data_end = xdp.data + hlen;
3986 xdp.data_hard_start = skb->data - skb_headroom(skb);
3987 orig_data = xdp.data;
3988
e817f856
JDB
3989 rxqueue = netif_get_rxqueue(skb);
3990 xdp.rxq = &rxqueue->xdp_rxq;
3991
d4455169
JF
3992 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3993
3994 off = xdp.data - orig_data;
3995 if (off > 0)
3996 __skb_pull(skb, off);
3997 else if (off < 0)
3998 __skb_push(skb, -off);
92dd5452 3999 skb->mac_header += off;
d4455169
JF
4000
4001 switch (act) {
6103aa96 4002 case XDP_REDIRECT:
d4455169
JF
4003 case XDP_TX:
4004 __skb_push(skb, mac_len);
de8f3a83 4005 break;
d4455169 4006 case XDP_PASS:
de8f3a83
DB
4007 metalen = xdp.data - xdp.data_meta;
4008 if (metalen)
4009 skb_metadata_set(skb, metalen);
d4455169 4010 break;
d4455169
JF
4011 default:
4012 bpf_warn_invalid_xdp_action(act);
4013 /* fall through */
4014 case XDP_ABORTED:
4015 trace_xdp_exception(skb->dev, xdp_prog, act);
4016 /* fall through */
4017 case XDP_DROP:
4018 do_drop:
4019 kfree_skb(skb);
4020 break;
4021 }
4022
4023 return act;
4024}
4025
4026/* When doing generic XDP we have to bypass the qdisc layer and the
4027 * network taps in order to match in-driver-XDP behavior.
4028 */
7c497478 4029void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4030{
4031 struct net_device *dev = skb->dev;
4032 struct netdev_queue *txq;
4033 bool free_skb = true;
4034 int cpu, rc;
4035
4036 txq = netdev_pick_tx(dev, skb, NULL);
4037 cpu = smp_processor_id();
4038 HARD_TX_LOCK(dev, txq, cpu);
4039 if (!netif_xmit_stopped(txq)) {
4040 rc = netdev_start_xmit(skb, dev, txq, 0);
4041 if (dev_xmit_complete(rc))
4042 free_skb = false;
4043 }
4044 HARD_TX_UNLOCK(dev, txq);
4045 if (free_skb) {
4046 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4047 kfree_skb(skb);
4048 }
4049}
7c497478 4050EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
4051
4052static struct static_key generic_xdp_needed __read_mostly;
4053
7c497478 4054int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4055{
d4455169
JF
4056 if (xdp_prog) {
4057 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 4058 int err;
d4455169
JF
4059
4060 if (act != XDP_PASS) {
6103aa96
JF
4061 switch (act) {
4062 case XDP_REDIRECT:
2facaad6
JDB
4063 err = xdp_do_generic_redirect(skb->dev, skb,
4064 xdp_prog);
6103aa96
JF
4065 if (err)
4066 goto out_redir;
4067 /* fallthru to submit skb */
4068 case XDP_TX:
d4455169 4069 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4070 break;
4071 }
d4455169
JF
4072 return XDP_DROP;
4073 }
4074 }
4075 return XDP_PASS;
6103aa96 4076out_redir:
6103aa96
JF
4077 kfree_skb(skb);
4078 return XDP_DROP;
d4455169 4079}
7c497478 4080EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4081
ae78dbfa 4082static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4083{
b0e28f1e 4084 int ret;
1da177e4 4085
588f0330 4086 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4087
cf66ba58 4088 trace_netif_rx(skb);
d4455169
JF
4089
4090 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4091 int ret;
4092
4093 preempt_disable();
4094 rcu_read_lock();
4095 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4096 rcu_read_unlock();
4097 preempt_enable();
d4455169 4098
6103aa96
JF
4099 /* Consider XDP consuming the packet a success from
4100 * the netdev point of view we do not want to count
4101 * this as an error.
4102 */
d4455169 4103 if (ret != XDP_PASS)
6103aa96 4104 return NET_RX_SUCCESS;
d4455169
JF
4105 }
4106
df334545 4107#ifdef CONFIG_RPS
c5905afb 4108 if (static_key_false(&rps_needed)) {
fec5e652 4109 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4110 int cpu;
4111
cece1945 4112 preempt_disable();
b0e28f1e 4113 rcu_read_lock();
fec5e652
TH
4114
4115 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4116 if (cpu < 0)
4117 cpu = smp_processor_id();
fec5e652
TH
4118
4119 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4120
b0e28f1e 4121 rcu_read_unlock();
cece1945 4122 preempt_enable();
adc9300e
ED
4123 } else
4124#endif
fec5e652
TH
4125 {
4126 unsigned int qtail;
f4563a75 4127
fec5e652
TH
4128 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4129 put_cpu();
4130 }
b0e28f1e 4131 return ret;
1da177e4 4132}
ae78dbfa
BH
4133
4134/**
4135 * netif_rx - post buffer to the network code
4136 * @skb: buffer to post
4137 *
4138 * This function receives a packet from a device driver and queues it for
4139 * the upper (protocol) levels to process. It always succeeds. The buffer
4140 * may be dropped during processing for congestion control or by the
4141 * protocol layers.
4142 *
4143 * return values:
4144 * NET_RX_SUCCESS (no congestion)
4145 * NET_RX_DROP (packet was dropped)
4146 *
4147 */
4148
4149int netif_rx(struct sk_buff *skb)
4150{
4151 trace_netif_rx_entry(skb);
4152
4153 return netif_rx_internal(skb);
4154}
d1b19dff 4155EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4156
4157int netif_rx_ni(struct sk_buff *skb)
4158{
4159 int err;
4160
ae78dbfa
BH
4161 trace_netif_rx_ni_entry(skb);
4162
1da177e4 4163 preempt_disable();
ae78dbfa 4164 err = netif_rx_internal(skb);
1da177e4
LT
4165 if (local_softirq_pending())
4166 do_softirq();
4167 preempt_enable();
4168
4169 return err;
4170}
1da177e4
LT
4171EXPORT_SYMBOL(netif_rx_ni);
4172
0766f788 4173static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4174{
903ceff7 4175 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4176
4177 if (sd->completion_queue) {
4178 struct sk_buff *clist;
4179
4180 local_irq_disable();
4181 clist = sd->completion_queue;
4182 sd->completion_queue = NULL;
4183 local_irq_enable();
4184
4185 while (clist) {
4186 struct sk_buff *skb = clist;
f4563a75 4187
1da177e4
LT
4188 clist = clist->next;
4189
63354797 4190 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4191 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4192 trace_consume_skb(skb);
4193 else
4194 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4195
4196 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4197 __kfree_skb(skb);
4198 else
4199 __kfree_skb_defer(skb);
1da177e4 4200 }
15fad714
JDB
4201
4202 __kfree_skb_flush();
1da177e4
LT
4203 }
4204
4205 if (sd->output_queue) {
37437bb2 4206 struct Qdisc *head;
1da177e4
LT
4207
4208 local_irq_disable();
4209 head = sd->output_queue;
4210 sd->output_queue = NULL;
a9cbd588 4211 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4212 local_irq_enable();
4213
4214 while (head) {
37437bb2 4215 struct Qdisc *q = head;
6b3ba914 4216 spinlock_t *root_lock = NULL;
37437bb2 4217
1da177e4
LT
4218 head = head->next_sched;
4219
6b3ba914
JF
4220 if (!(q->flags & TCQ_F_NOLOCK)) {
4221 root_lock = qdisc_lock(q);
4222 spin_lock(root_lock);
4223 }
3bcb846c
ED
4224 /* We need to make sure head->next_sched is read
4225 * before clearing __QDISC_STATE_SCHED
4226 */
4227 smp_mb__before_atomic();
4228 clear_bit(__QDISC_STATE_SCHED, &q->state);
4229 qdisc_run(q);
6b3ba914
JF
4230 if (root_lock)
4231 spin_unlock(root_lock);
1da177e4
LT
4232 }
4233 }
f53c7239
SK
4234
4235 xfrm_dev_backlog(sd);
1da177e4
LT
4236}
4237
181402a5 4238#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4239/* This hook is defined here for ATM LANE */
4240int (*br_fdb_test_addr_hook)(struct net_device *dev,
4241 unsigned char *addr) __read_mostly;
4fb019a0 4242EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4243#endif
1da177e4 4244
1f211a1b
DB
4245static inline struct sk_buff *
4246sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4247 struct net_device *orig_dev)
f697c3e8 4248{
e7582bab 4249#ifdef CONFIG_NET_CLS_ACT
46209401 4250 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4251 struct tcf_result cl_res;
24824a09 4252
c9e99fd0
DB
4253 /* If there's at least one ingress present somewhere (so
4254 * we get here via enabled static key), remaining devices
4255 * that are not configured with an ingress qdisc will bail
d2788d34 4256 * out here.
c9e99fd0 4257 */
46209401 4258 if (!miniq)
4577139b 4259 return skb;
46209401 4260
f697c3e8
HX
4261 if (*pt_prev) {
4262 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4263 *pt_prev = NULL;
1da177e4
LT
4264 }
4265
3365495c 4266 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4267 skb->tc_at_ingress = 1;
46209401 4268 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4269
46209401 4270 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4271 case TC_ACT_OK:
4272 case TC_ACT_RECLASSIFY:
4273 skb->tc_index = TC_H_MIN(cl_res.classid);
4274 break;
4275 case TC_ACT_SHOT:
46209401 4276 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4277 kfree_skb(skb);
4278 return NULL;
d2788d34
DB
4279 case TC_ACT_STOLEN:
4280 case TC_ACT_QUEUED:
e25ea21f 4281 case TC_ACT_TRAP:
8a3a4c6e 4282 consume_skb(skb);
d2788d34 4283 return NULL;
27b29f63
AS
4284 case TC_ACT_REDIRECT:
4285 /* skb_mac_header check was done by cls/act_bpf, so
4286 * we can safely push the L2 header back before
4287 * redirecting to another netdev
4288 */
4289 __skb_push(skb, skb->mac_len);
4290 skb_do_redirect(skb);
4291 return NULL;
d2788d34
DB
4292 default:
4293 break;
f697c3e8 4294 }
e7582bab 4295#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4296 return skb;
4297}
1da177e4 4298
24b27fc4
MB
4299/**
4300 * netdev_is_rx_handler_busy - check if receive handler is registered
4301 * @dev: device to check
4302 *
4303 * Check if a receive handler is already registered for a given device.
4304 * Return true if there one.
4305 *
4306 * The caller must hold the rtnl_mutex.
4307 */
4308bool netdev_is_rx_handler_busy(struct net_device *dev)
4309{
4310 ASSERT_RTNL();
4311 return dev && rtnl_dereference(dev->rx_handler);
4312}
4313EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4314
ab95bfe0
JP
4315/**
4316 * netdev_rx_handler_register - register receive handler
4317 * @dev: device to register a handler for
4318 * @rx_handler: receive handler to register
93e2c32b 4319 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4320 *
e227867f 4321 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4322 * called from __netif_receive_skb. A negative errno code is returned
4323 * on a failure.
4324 *
4325 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4326 *
4327 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4328 */
4329int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4330 rx_handler_func_t *rx_handler,
4331 void *rx_handler_data)
ab95bfe0 4332{
1b7cd004 4333 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4334 return -EBUSY;
4335
00cfec37 4336 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4337 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4338 rcu_assign_pointer(dev->rx_handler, rx_handler);
4339
4340 return 0;
4341}
4342EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4343
4344/**
4345 * netdev_rx_handler_unregister - unregister receive handler
4346 * @dev: device to unregister a handler from
4347 *
166ec369 4348 * Unregister a receive handler from a device.
ab95bfe0
JP
4349 *
4350 * The caller must hold the rtnl_mutex.
4351 */
4352void netdev_rx_handler_unregister(struct net_device *dev)
4353{
4354
4355 ASSERT_RTNL();
a9b3cd7f 4356 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4357 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4358 * section has a guarantee to see a non NULL rx_handler_data
4359 * as well.
4360 */
4361 synchronize_net();
a9b3cd7f 4362 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4363}
4364EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4365
b4b9e355
MG
4366/*
4367 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4368 * the special handling of PFMEMALLOC skbs.
4369 */
4370static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4371{
4372 switch (skb->protocol) {
2b8837ae
JP
4373 case htons(ETH_P_ARP):
4374 case htons(ETH_P_IP):
4375 case htons(ETH_P_IPV6):
4376 case htons(ETH_P_8021Q):
4377 case htons(ETH_P_8021AD):
b4b9e355
MG
4378 return true;
4379 default:
4380 return false;
4381 }
4382}
4383
e687ad60
PN
4384static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4385 int *ret, struct net_device *orig_dev)
4386{
e7582bab 4387#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4388 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4389 int ingress_retval;
4390
e687ad60
PN
4391 if (*pt_prev) {
4392 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4393 *pt_prev = NULL;
4394 }
4395
2c1e2703
AC
4396 rcu_read_lock();
4397 ingress_retval = nf_hook_ingress(skb);
4398 rcu_read_unlock();
4399 return ingress_retval;
e687ad60 4400 }
e7582bab 4401#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4402 return 0;
4403}
e687ad60 4404
9754e293 4405static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4406{
4407 struct packet_type *ptype, *pt_prev;
ab95bfe0 4408 rx_handler_func_t *rx_handler;
f2ccd8fa 4409 struct net_device *orig_dev;
8a4eb573 4410 bool deliver_exact = false;
1da177e4 4411 int ret = NET_RX_DROP;
252e3346 4412 __be16 type;
1da177e4 4413
588f0330 4414 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4415
cf66ba58 4416 trace_netif_receive_skb(skb);
9b22ea56 4417
cc9bd5ce 4418 orig_dev = skb->dev;
8f903c70 4419
c1d2bbe1 4420 skb_reset_network_header(skb);
fda55eca
ED
4421 if (!skb_transport_header_was_set(skb))
4422 skb_reset_transport_header(skb);
0b5c9db1 4423 skb_reset_mac_len(skb);
1da177e4
LT
4424
4425 pt_prev = NULL;
4426
63d8ea7f 4427another_round:
b6858177 4428 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4429
4430 __this_cpu_inc(softnet_data.processed);
4431
8ad227ff
PM
4432 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4433 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4434 skb = skb_vlan_untag(skb);
bcc6d479 4435 if (unlikely(!skb))
2c17d27c 4436 goto out;
bcc6d479
JP
4437 }
4438
e7246e12
WB
4439 if (skb_skip_tc_classify(skb))
4440 goto skip_classify;
1da177e4 4441
9754e293 4442 if (pfmemalloc)
b4b9e355
MG
4443 goto skip_taps;
4444
1da177e4 4445 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4446 if (pt_prev)
4447 ret = deliver_skb(skb, pt_prev, orig_dev);
4448 pt_prev = ptype;
4449 }
4450
4451 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4452 if (pt_prev)
4453 ret = deliver_skb(skb, pt_prev, orig_dev);
4454 pt_prev = ptype;
1da177e4
LT
4455 }
4456
b4b9e355 4457skip_taps:
1cf51900 4458#ifdef CONFIG_NET_INGRESS
4577139b 4459 if (static_key_false(&ingress_needed)) {
1f211a1b 4460 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4461 if (!skb)
2c17d27c 4462 goto out;
e687ad60
PN
4463
4464 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4465 goto out;
4577139b 4466 }
1cf51900 4467#endif
a5135bcf 4468 skb_reset_tc(skb);
e7246e12 4469skip_classify:
9754e293 4470 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4471 goto drop;
4472
df8a39de 4473 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4474 if (pt_prev) {
4475 ret = deliver_skb(skb, pt_prev, orig_dev);
4476 pt_prev = NULL;
4477 }
48cc32d3 4478 if (vlan_do_receive(&skb))
2425717b
JF
4479 goto another_round;
4480 else if (unlikely(!skb))
2c17d27c 4481 goto out;
2425717b
JF
4482 }
4483
48cc32d3 4484 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4485 if (rx_handler) {
4486 if (pt_prev) {
4487 ret = deliver_skb(skb, pt_prev, orig_dev);
4488 pt_prev = NULL;
4489 }
8a4eb573
JP
4490 switch (rx_handler(&skb)) {
4491 case RX_HANDLER_CONSUMED:
3bc1b1ad 4492 ret = NET_RX_SUCCESS;
2c17d27c 4493 goto out;
8a4eb573 4494 case RX_HANDLER_ANOTHER:
63d8ea7f 4495 goto another_round;
8a4eb573
JP
4496 case RX_HANDLER_EXACT:
4497 deliver_exact = true;
4498 case RX_HANDLER_PASS:
4499 break;
4500 default:
4501 BUG();
4502 }
ab95bfe0 4503 }
1da177e4 4504
df8a39de
JP
4505 if (unlikely(skb_vlan_tag_present(skb))) {
4506 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4507 skb->pkt_type = PACKET_OTHERHOST;
4508 /* Note: we might in the future use prio bits
4509 * and set skb->priority like in vlan_do_receive()
4510 * For the time being, just ignore Priority Code Point
4511 */
4512 skb->vlan_tci = 0;
4513 }
48cc32d3 4514
7866a621
SN
4515 type = skb->protocol;
4516
63d8ea7f 4517 /* deliver only exact match when indicated */
7866a621
SN
4518 if (likely(!deliver_exact)) {
4519 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4520 &ptype_base[ntohs(type) &
4521 PTYPE_HASH_MASK]);
4522 }
1f3c8804 4523
7866a621
SN
4524 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4525 &orig_dev->ptype_specific);
4526
4527 if (unlikely(skb->dev != orig_dev)) {
4528 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4529 &skb->dev->ptype_specific);
1da177e4
LT
4530 }
4531
4532 if (pt_prev) {
1f8b977a 4533 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4534 goto drop;
1080e512
MT
4535 else
4536 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4537 } else {
b4b9e355 4538drop:
6e7333d3
JW
4539 if (!deliver_exact)
4540 atomic_long_inc(&skb->dev->rx_dropped);
4541 else
4542 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4543 kfree_skb(skb);
4544 /* Jamal, now you will not able to escape explaining
4545 * me how you were going to use this. :-)
4546 */
4547 ret = NET_RX_DROP;
4548 }
4549
2c17d27c 4550out:
9754e293
DM
4551 return ret;
4552}
4553
1c601d82
JDB
4554/**
4555 * netif_receive_skb_core - special purpose version of netif_receive_skb
4556 * @skb: buffer to process
4557 *
4558 * More direct receive version of netif_receive_skb(). It should
4559 * only be used by callers that have a need to skip RPS and Generic XDP.
4560 * Caller must also take care of handling if (page_is_)pfmemalloc.
4561 *
4562 * This function may only be called from softirq context and interrupts
4563 * should be enabled.
4564 *
4565 * Return values (usually ignored):
4566 * NET_RX_SUCCESS: no congestion
4567 * NET_RX_DROP: packet was dropped
4568 */
4569int netif_receive_skb_core(struct sk_buff *skb)
4570{
4571 int ret;
4572
4573 rcu_read_lock();
4574 ret = __netif_receive_skb_core(skb, false);
4575 rcu_read_unlock();
4576
4577 return ret;
4578}
4579EXPORT_SYMBOL(netif_receive_skb_core);
4580
9754e293
DM
4581static int __netif_receive_skb(struct sk_buff *skb)
4582{
4583 int ret;
4584
4585 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4586 unsigned int noreclaim_flag;
9754e293
DM
4587
4588 /*
4589 * PFMEMALLOC skbs are special, they should
4590 * - be delivered to SOCK_MEMALLOC sockets only
4591 * - stay away from userspace
4592 * - have bounded memory usage
4593 *
4594 * Use PF_MEMALLOC as this saves us from propagating the allocation
4595 * context down to all allocation sites.
4596 */
f1083048 4597 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4598 ret = __netif_receive_skb_core(skb, true);
f1083048 4599 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4600 } else
4601 ret = __netif_receive_skb_core(skb, false);
4602
1da177e4
LT
4603 return ret;
4604}
0a9627f2 4605
f4e63525 4606static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 4607{
58038695 4608 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4609 struct bpf_prog *new = xdp->prog;
4610 int ret = 0;
4611
4612 switch (xdp->command) {
58038695 4613 case XDP_SETUP_PROG:
b5cdae32
DM
4614 rcu_assign_pointer(dev->xdp_prog, new);
4615 if (old)
4616 bpf_prog_put(old);
4617
4618 if (old && !new) {
4619 static_key_slow_dec(&generic_xdp_needed);
4620 } else if (new && !old) {
4621 static_key_slow_inc(&generic_xdp_needed);
4622 dev_disable_lro(dev);
56f5aa77 4623 dev_disable_gro_hw(dev);
b5cdae32
DM
4624 }
4625 break;
b5cdae32
DM
4626
4627 case XDP_QUERY_PROG:
58038695
MKL
4628 xdp->prog_attached = !!old;
4629 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4630 break;
4631
4632 default:
4633 ret = -EINVAL;
4634 break;
4635 }
4636
4637 return ret;
4638}
4639
ae78dbfa 4640static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4641{
2c17d27c
JA
4642 int ret;
4643
588f0330 4644 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4645
c1f19b51
RC
4646 if (skb_defer_rx_timestamp(skb))
4647 return NET_RX_SUCCESS;
4648
b5cdae32 4649 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4650 int ret;
b5cdae32 4651
bbbe211c
JF
4652 preempt_disable();
4653 rcu_read_lock();
4654 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4655 rcu_read_unlock();
4656 preempt_enable();
4657
4658 if (ret != XDP_PASS)
d4455169 4659 return NET_RX_DROP;
b5cdae32
DM
4660 }
4661
bbbe211c 4662 rcu_read_lock();
df334545 4663#ifdef CONFIG_RPS
c5905afb 4664 if (static_key_false(&rps_needed)) {
3b098e2d 4665 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4666 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4667
3b098e2d
ED
4668 if (cpu >= 0) {
4669 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4670 rcu_read_unlock();
adc9300e 4671 return ret;
3b098e2d 4672 }
fec5e652 4673 }
1e94d72f 4674#endif
2c17d27c
JA
4675 ret = __netif_receive_skb(skb);
4676 rcu_read_unlock();
4677 return ret;
0a9627f2 4678}
ae78dbfa
BH
4679
4680/**
4681 * netif_receive_skb - process receive buffer from network
4682 * @skb: buffer to process
4683 *
4684 * netif_receive_skb() is the main receive data processing function.
4685 * It always succeeds. The buffer may be dropped during processing
4686 * for congestion control or by the protocol layers.
4687 *
4688 * This function may only be called from softirq context and interrupts
4689 * should be enabled.
4690 *
4691 * Return values (usually ignored):
4692 * NET_RX_SUCCESS: no congestion
4693 * NET_RX_DROP: packet was dropped
4694 */
04eb4489 4695int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4696{
4697 trace_netif_receive_skb_entry(skb);
4698
4699 return netif_receive_skb_internal(skb);
4700}
04eb4489 4701EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4702
41852497 4703DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4704
4705/* Network device is going away, flush any packets still pending */
4706static void flush_backlog(struct work_struct *work)
6e583ce5 4707{
6e583ce5 4708 struct sk_buff *skb, *tmp;
145dd5f9
PA
4709 struct softnet_data *sd;
4710
4711 local_bh_disable();
4712 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4713
145dd5f9 4714 local_irq_disable();
e36fa2f7 4715 rps_lock(sd);
6e7676c1 4716 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4717 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4718 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4719 kfree_skb(skb);
76cc8b13 4720 input_queue_head_incr(sd);
6e583ce5 4721 }
6e7676c1 4722 }
e36fa2f7 4723 rps_unlock(sd);
145dd5f9 4724 local_irq_enable();
6e7676c1
CG
4725
4726 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4727 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4728 __skb_unlink(skb, &sd->process_queue);
4729 kfree_skb(skb);
76cc8b13 4730 input_queue_head_incr(sd);
6e7676c1
CG
4731 }
4732 }
145dd5f9
PA
4733 local_bh_enable();
4734}
4735
41852497 4736static void flush_all_backlogs(void)
145dd5f9
PA
4737{
4738 unsigned int cpu;
4739
4740 get_online_cpus();
4741
41852497
ED
4742 for_each_online_cpu(cpu)
4743 queue_work_on(cpu, system_highpri_wq,
4744 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4745
4746 for_each_online_cpu(cpu)
41852497 4747 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4748
4749 put_online_cpus();
6e583ce5
SH
4750}
4751
d565b0a1
HX
4752static int napi_gro_complete(struct sk_buff *skb)
4753{
22061d80 4754 struct packet_offload *ptype;
d565b0a1 4755 __be16 type = skb->protocol;
22061d80 4756 struct list_head *head = &offload_base;
d565b0a1
HX
4757 int err = -ENOENT;
4758
c3c7c254
ED
4759 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4760
fc59f9a3
HX
4761 if (NAPI_GRO_CB(skb)->count == 1) {
4762 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4763 goto out;
fc59f9a3 4764 }
d565b0a1
HX
4765
4766 rcu_read_lock();
4767 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4768 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4769 continue;
4770
299603e8 4771 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4772 break;
4773 }
4774 rcu_read_unlock();
4775
4776 if (err) {
4777 WARN_ON(&ptype->list == head);
4778 kfree_skb(skb);
4779 return NET_RX_SUCCESS;
4780 }
4781
4782out:
ae78dbfa 4783 return netif_receive_skb_internal(skb);
d565b0a1
HX
4784}
4785
2e71a6f8
ED
4786/* napi->gro_list contains packets ordered by age.
4787 * youngest packets at the head of it.
4788 * Complete skbs in reverse order to reduce latencies.
4789 */
4790void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4791{
2e71a6f8 4792 struct sk_buff *skb, *prev = NULL;
d565b0a1 4793
2e71a6f8
ED
4794 /* scan list and build reverse chain */
4795 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4796 skb->prev = prev;
4797 prev = skb;
4798 }
4799
4800 for (skb = prev; skb; skb = prev) {
d565b0a1 4801 skb->next = NULL;
2e71a6f8
ED
4802
4803 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4804 return;
4805
4806 prev = skb->prev;
d565b0a1 4807 napi_gro_complete(skb);
2e71a6f8 4808 napi->gro_count--;
d565b0a1
HX
4809 }
4810
4811 napi->gro_list = NULL;
4812}
86cac58b 4813EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4814
89c5fa33
ED
4815static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4816{
4817 struct sk_buff *p;
4818 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4819 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4820
4821 for (p = napi->gro_list; p; p = p->next) {
4822 unsigned long diffs;
4823
0b4cec8c
TH
4824 NAPI_GRO_CB(p)->flush = 0;
4825
4826 if (hash != skb_get_hash_raw(p)) {
4827 NAPI_GRO_CB(p)->same_flow = 0;
4828 continue;
4829 }
4830
89c5fa33
ED
4831 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4832 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4833 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4834 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4835 if (maclen == ETH_HLEN)
4836 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4837 skb_mac_header(skb));
89c5fa33
ED
4838 else if (!diffs)
4839 diffs = memcmp(skb_mac_header(p),
a50e233c 4840 skb_mac_header(skb),
89c5fa33
ED
4841 maclen);
4842 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4843 }
4844}
4845
299603e8
JC
4846static void skb_gro_reset_offset(struct sk_buff *skb)
4847{
4848 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4849 const skb_frag_t *frag0 = &pinfo->frags[0];
4850
4851 NAPI_GRO_CB(skb)->data_offset = 0;
4852 NAPI_GRO_CB(skb)->frag0 = NULL;
4853 NAPI_GRO_CB(skb)->frag0_len = 0;
4854
4855 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4856 pinfo->nr_frags &&
4857 !PageHighMem(skb_frag_page(frag0))) {
4858 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4859 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4860 skb_frag_size(frag0),
4861 skb->end - skb->tail);
89c5fa33
ED
4862 }
4863}
4864
a50e233c
ED
4865static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4866{
4867 struct skb_shared_info *pinfo = skb_shinfo(skb);
4868
4869 BUG_ON(skb->end - skb->tail < grow);
4870
4871 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4872
4873 skb->data_len -= grow;
4874 skb->tail += grow;
4875
4876 pinfo->frags[0].page_offset += grow;
4877 skb_frag_size_sub(&pinfo->frags[0], grow);
4878
4879 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4880 skb_frag_unref(skb, 0);
4881 memmove(pinfo->frags, pinfo->frags + 1,
4882 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4883 }
4884}
4885
bb728820 4886static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4887{
4888 struct sk_buff **pp = NULL;
22061d80 4889 struct packet_offload *ptype;
d565b0a1 4890 __be16 type = skb->protocol;
22061d80 4891 struct list_head *head = &offload_base;
0da2afd5 4892 int same_flow;
5b252f0c 4893 enum gro_result ret;
a50e233c 4894 int grow;
d565b0a1 4895
b5cdae32 4896 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4897 goto normal;
4898
89c5fa33
ED
4899 gro_list_prepare(napi, skb);
4900
d565b0a1
HX
4901 rcu_read_lock();
4902 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4903 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4904 continue;
4905
86911732 4906 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4907 skb_reset_mac_len(skb);
d565b0a1 4908 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4909 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4910 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4911 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4912 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4913 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4914 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4915 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4916
662880f4
TH
4917 /* Setup for GRO checksum validation */
4918 switch (skb->ip_summed) {
4919 case CHECKSUM_COMPLETE:
4920 NAPI_GRO_CB(skb)->csum = skb->csum;
4921 NAPI_GRO_CB(skb)->csum_valid = 1;
4922 NAPI_GRO_CB(skb)->csum_cnt = 0;
4923 break;
4924 case CHECKSUM_UNNECESSARY:
4925 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4926 NAPI_GRO_CB(skb)->csum_valid = 0;
4927 break;
4928 default:
4929 NAPI_GRO_CB(skb)->csum_cnt = 0;
4930 NAPI_GRO_CB(skb)->csum_valid = 0;
4931 }
d565b0a1 4932
f191a1d1 4933 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4934 break;
4935 }
4936 rcu_read_unlock();
4937
4938 if (&ptype->list == head)
4939 goto normal;
4940
25393d3f
SK
4941 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4942 ret = GRO_CONSUMED;
4943 goto ok;
4944 }
4945
0da2afd5 4946 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4947 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4948
d565b0a1
HX
4949 if (pp) {
4950 struct sk_buff *nskb = *pp;
4951
4952 *pp = nskb->next;
4953 nskb->next = NULL;
4954 napi_gro_complete(nskb);
4ae5544f 4955 napi->gro_count--;
d565b0a1
HX
4956 }
4957
0da2afd5 4958 if (same_flow)
d565b0a1
HX
4959 goto ok;
4960
600adc18 4961 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4962 goto normal;
d565b0a1 4963
600adc18
ED
4964 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4965 struct sk_buff *nskb = napi->gro_list;
4966
4967 /* locate the end of the list to select the 'oldest' flow */
4968 while (nskb->next) {
4969 pp = &nskb->next;
4970 nskb = *pp;
4971 }
4972 *pp = NULL;
4973 nskb->next = NULL;
4974 napi_gro_complete(nskb);
4975 } else {
4976 napi->gro_count++;
4977 }
d565b0a1 4978 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4979 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4980 NAPI_GRO_CB(skb)->last = skb;
86911732 4981 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4982 skb->next = napi->gro_list;
4983 napi->gro_list = skb;
5d0d9be8 4984 ret = GRO_HELD;
d565b0a1 4985
ad0f9904 4986pull:
a50e233c
ED
4987 grow = skb_gro_offset(skb) - skb_headlen(skb);
4988 if (grow > 0)
4989 gro_pull_from_frag0(skb, grow);
d565b0a1 4990ok:
5d0d9be8 4991 return ret;
d565b0a1
HX
4992
4993normal:
ad0f9904
HX
4994 ret = GRO_NORMAL;
4995 goto pull;
5d38a079 4996}
96e93eab 4997
bf5a755f
JC
4998struct packet_offload *gro_find_receive_by_type(__be16 type)
4999{
5000 struct list_head *offload_head = &offload_base;
5001 struct packet_offload *ptype;
5002
5003 list_for_each_entry_rcu(ptype, offload_head, list) {
5004 if (ptype->type != type || !ptype->callbacks.gro_receive)
5005 continue;
5006 return ptype;
5007 }
5008 return NULL;
5009}
e27a2f83 5010EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5011
5012struct packet_offload *gro_find_complete_by_type(__be16 type)
5013{
5014 struct list_head *offload_head = &offload_base;
5015 struct packet_offload *ptype;
5016
5017 list_for_each_entry_rcu(ptype, offload_head, list) {
5018 if (ptype->type != type || !ptype->callbacks.gro_complete)
5019 continue;
5020 return ptype;
5021 }
5022 return NULL;
5023}
e27a2f83 5024EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5025
e44699d2
MK
5026static void napi_skb_free_stolen_head(struct sk_buff *skb)
5027{
5028 skb_dst_drop(skb);
5029 secpath_reset(skb);
5030 kmem_cache_free(skbuff_head_cache, skb);
5031}
5032
bb728820 5033static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5034{
5d0d9be8
HX
5035 switch (ret) {
5036 case GRO_NORMAL:
ae78dbfa 5037 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5038 ret = GRO_DROP;
5039 break;
5d38a079 5040
5d0d9be8 5041 case GRO_DROP:
5d38a079
HX
5042 kfree_skb(skb);
5043 break;
5b252f0c 5044
daa86548 5045 case GRO_MERGED_FREE:
e44699d2
MK
5046 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5047 napi_skb_free_stolen_head(skb);
5048 else
d7e8883c 5049 __kfree_skb(skb);
daa86548
ED
5050 break;
5051
5b252f0c
BH
5052 case GRO_HELD:
5053 case GRO_MERGED:
25393d3f 5054 case GRO_CONSUMED:
5b252f0c 5055 break;
5d38a079
HX
5056 }
5057
c7c4b3b6 5058 return ret;
5d0d9be8 5059}
5d0d9be8 5060
c7c4b3b6 5061gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5062{
93f93a44 5063 skb_mark_napi_id(skb, napi);
ae78dbfa 5064 trace_napi_gro_receive_entry(skb);
86911732 5065
a50e233c
ED
5066 skb_gro_reset_offset(skb);
5067
89c5fa33 5068 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
5069}
5070EXPORT_SYMBOL(napi_gro_receive);
5071
d0c2b0d2 5072static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5073{
93a35f59
ED
5074 if (unlikely(skb->pfmemalloc)) {
5075 consume_skb(skb);
5076 return;
5077 }
96e93eab 5078 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5079 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5080 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5081 skb->vlan_tci = 0;
66c46d74 5082 skb->dev = napi->dev;
6d152e23 5083 skb->skb_iif = 0;
c3caf119
JC
5084 skb->encapsulation = 0;
5085 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5086 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5087 secpath_reset(skb);
96e93eab
HX
5088
5089 napi->skb = skb;
5090}
96e93eab 5091
76620aaf 5092struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5093{
5d38a079 5094 struct sk_buff *skb = napi->skb;
5d38a079
HX
5095
5096 if (!skb) {
fd11a83d 5097 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5098 if (skb) {
5099 napi->skb = skb;
5100 skb_mark_napi_id(skb, napi);
5101 }
80595d59 5102 }
96e93eab
HX
5103 return skb;
5104}
76620aaf 5105EXPORT_SYMBOL(napi_get_frags);
96e93eab 5106
a50e233c
ED
5107static gro_result_t napi_frags_finish(struct napi_struct *napi,
5108 struct sk_buff *skb,
5109 gro_result_t ret)
96e93eab 5110{
5d0d9be8
HX
5111 switch (ret) {
5112 case GRO_NORMAL:
a50e233c
ED
5113 case GRO_HELD:
5114 __skb_push(skb, ETH_HLEN);
5115 skb->protocol = eth_type_trans(skb, skb->dev);
5116 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5117 ret = GRO_DROP;
86911732 5118 break;
5d38a079 5119
5d0d9be8 5120 case GRO_DROP:
5d0d9be8
HX
5121 napi_reuse_skb(napi, skb);
5122 break;
5b252f0c 5123
e44699d2
MK
5124 case GRO_MERGED_FREE:
5125 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5126 napi_skb_free_stolen_head(skb);
5127 else
5128 napi_reuse_skb(napi, skb);
5129 break;
5130
5b252f0c 5131 case GRO_MERGED:
25393d3f 5132 case GRO_CONSUMED:
5b252f0c 5133 break;
5d0d9be8 5134 }
5d38a079 5135
c7c4b3b6 5136 return ret;
5d38a079 5137}
5d0d9be8 5138
a50e233c
ED
5139/* Upper GRO stack assumes network header starts at gro_offset=0
5140 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5141 * We copy ethernet header into skb->data to have a common layout.
5142 */
4adb9c4a 5143static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5144{
5145 struct sk_buff *skb = napi->skb;
a50e233c
ED
5146 const struct ethhdr *eth;
5147 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5148
5149 napi->skb = NULL;
5150
a50e233c
ED
5151 skb_reset_mac_header(skb);
5152 skb_gro_reset_offset(skb);
5153
5154 eth = skb_gro_header_fast(skb, 0);
5155 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5156 eth = skb_gro_header_slow(skb, hlen, 0);
5157 if (unlikely(!eth)) {
4da46ceb
AC
5158 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5159 __func__, napi->dev->name);
a50e233c
ED
5160 napi_reuse_skb(napi, skb);
5161 return NULL;
5162 }
5163 } else {
5164 gro_pull_from_frag0(skb, hlen);
5165 NAPI_GRO_CB(skb)->frag0 += hlen;
5166 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5167 }
a50e233c
ED
5168 __skb_pull(skb, hlen);
5169
5170 /*
5171 * This works because the only protocols we care about don't require
5172 * special handling.
5173 * We'll fix it up properly in napi_frags_finish()
5174 */
5175 skb->protocol = eth->h_proto;
76620aaf 5176
76620aaf
HX
5177 return skb;
5178}
76620aaf 5179
c7c4b3b6 5180gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5181{
76620aaf 5182 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5183
5184 if (!skb)
c7c4b3b6 5185 return GRO_DROP;
5d0d9be8 5186
ae78dbfa
BH
5187 trace_napi_gro_frags_entry(skb);
5188
89c5fa33 5189 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5190}
5d38a079
HX
5191EXPORT_SYMBOL(napi_gro_frags);
5192
573e8fca
TH
5193/* Compute the checksum from gro_offset and return the folded value
5194 * after adding in any pseudo checksum.
5195 */
5196__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5197{
5198 __wsum wsum;
5199 __sum16 sum;
5200
5201 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5202
5203 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5204 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5205 if (likely(!sum)) {
5206 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5207 !skb->csum_complete_sw)
5208 netdev_rx_csum_fault(skb->dev);
5209 }
5210
5211 NAPI_GRO_CB(skb)->csum = wsum;
5212 NAPI_GRO_CB(skb)->csum_valid = 1;
5213
5214 return sum;
5215}
5216EXPORT_SYMBOL(__skb_gro_checksum_complete);
5217
773fc8f6 5218static void net_rps_send_ipi(struct softnet_data *remsd)
5219{
5220#ifdef CONFIG_RPS
5221 while (remsd) {
5222 struct softnet_data *next = remsd->rps_ipi_next;
5223
5224 if (cpu_online(remsd->cpu))
5225 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5226 remsd = next;
5227 }
5228#endif
5229}
5230
e326bed2 5231/*
855abcf0 5232 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5233 * Note: called with local irq disabled, but exits with local irq enabled.
5234 */
5235static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5236{
5237#ifdef CONFIG_RPS
5238 struct softnet_data *remsd = sd->rps_ipi_list;
5239
5240 if (remsd) {
5241 sd->rps_ipi_list = NULL;
5242
5243 local_irq_enable();
5244
5245 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5246 net_rps_send_ipi(remsd);
e326bed2
ED
5247 } else
5248#endif
5249 local_irq_enable();
5250}
5251
d75b1ade
ED
5252static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5253{
5254#ifdef CONFIG_RPS
5255 return sd->rps_ipi_list != NULL;
5256#else
5257 return false;
5258#endif
5259}
5260
bea3348e 5261static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5262{
eecfd7c4 5263 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5264 bool again = true;
5265 int work = 0;
1da177e4 5266
e326bed2
ED
5267 /* Check if we have pending ipi, its better to send them now,
5268 * not waiting net_rx_action() end.
5269 */
d75b1ade 5270 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5271 local_irq_disable();
5272 net_rps_action_and_irq_enable(sd);
5273 }
d75b1ade 5274
3d48b53f 5275 napi->weight = dev_rx_weight;
145dd5f9 5276 while (again) {
1da177e4 5277 struct sk_buff *skb;
6e7676c1
CG
5278
5279 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5280 rcu_read_lock();
6e7676c1 5281 __netif_receive_skb(skb);
2c17d27c 5282 rcu_read_unlock();
76cc8b13 5283 input_queue_head_incr(sd);
145dd5f9 5284 if (++work >= quota)
76cc8b13 5285 return work;
145dd5f9 5286
6e7676c1 5287 }
1da177e4 5288
145dd5f9 5289 local_irq_disable();
e36fa2f7 5290 rps_lock(sd);
11ef7a89 5291 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5292 /*
5293 * Inline a custom version of __napi_complete().
5294 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5295 * and NAPI_STATE_SCHED is the only possible flag set
5296 * on backlog.
5297 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5298 * and we dont need an smp_mb() memory barrier.
5299 */
eecfd7c4 5300 napi->state = 0;
145dd5f9
PA
5301 again = false;
5302 } else {
5303 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5304 &sd->process_queue);
bea3348e 5305 }
e36fa2f7 5306 rps_unlock(sd);
145dd5f9 5307 local_irq_enable();
6e7676c1 5308 }
1da177e4 5309
bea3348e
SH
5310 return work;
5311}
1da177e4 5312
bea3348e
SH
5313/**
5314 * __napi_schedule - schedule for receive
c4ea43c5 5315 * @n: entry to schedule
bea3348e 5316 *
bc9ad166
ED
5317 * The entry's receive function will be scheduled to run.
5318 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5319 */
b5606c2d 5320void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5321{
5322 unsigned long flags;
1da177e4 5323
bea3348e 5324 local_irq_save(flags);
903ceff7 5325 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5326 local_irq_restore(flags);
1da177e4 5327}
bea3348e
SH
5328EXPORT_SYMBOL(__napi_schedule);
5329
39e6c820
ED
5330/**
5331 * napi_schedule_prep - check if napi can be scheduled
5332 * @n: napi context
5333 *
5334 * Test if NAPI routine is already running, and if not mark
5335 * it as running. This is used as a condition variable
5336 * insure only one NAPI poll instance runs. We also make
5337 * sure there is no pending NAPI disable.
5338 */
5339bool napi_schedule_prep(struct napi_struct *n)
5340{
5341 unsigned long val, new;
5342
5343 do {
5344 val = READ_ONCE(n->state);
5345 if (unlikely(val & NAPIF_STATE_DISABLE))
5346 return false;
5347 new = val | NAPIF_STATE_SCHED;
5348
5349 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5350 * This was suggested by Alexander Duyck, as compiler
5351 * emits better code than :
5352 * if (val & NAPIF_STATE_SCHED)
5353 * new |= NAPIF_STATE_MISSED;
5354 */
5355 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5356 NAPIF_STATE_MISSED;
5357 } while (cmpxchg(&n->state, val, new) != val);
5358
5359 return !(val & NAPIF_STATE_SCHED);
5360}
5361EXPORT_SYMBOL(napi_schedule_prep);
5362
bc9ad166
ED
5363/**
5364 * __napi_schedule_irqoff - schedule for receive
5365 * @n: entry to schedule
5366 *
5367 * Variant of __napi_schedule() assuming hard irqs are masked
5368 */
5369void __napi_schedule_irqoff(struct napi_struct *n)
5370{
5371 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5372}
5373EXPORT_SYMBOL(__napi_schedule_irqoff);
5374
364b6055 5375bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5376{
39e6c820 5377 unsigned long flags, val, new;
d565b0a1
HX
5378
5379 /*
217f6974
ED
5380 * 1) Don't let napi dequeue from the cpu poll list
5381 * just in case its running on a different cpu.
5382 * 2) If we are busy polling, do nothing here, we have
5383 * the guarantee we will be called later.
d565b0a1 5384 */
217f6974
ED
5385 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5386 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5387 return false;
d565b0a1 5388
3b47d303
ED
5389 if (n->gro_list) {
5390 unsigned long timeout = 0;
d75b1ade 5391
3b47d303
ED
5392 if (work_done)
5393 timeout = n->dev->gro_flush_timeout;
5394
5395 if (timeout)
5396 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5397 HRTIMER_MODE_REL_PINNED);
5398 else
5399 napi_gro_flush(n, false);
5400 }
02c1602e 5401 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5402 /* If n->poll_list is not empty, we need to mask irqs */
5403 local_irq_save(flags);
02c1602e 5404 list_del_init(&n->poll_list);
d75b1ade
ED
5405 local_irq_restore(flags);
5406 }
39e6c820
ED
5407
5408 do {
5409 val = READ_ONCE(n->state);
5410
5411 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5412
5413 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5414
5415 /* If STATE_MISSED was set, leave STATE_SCHED set,
5416 * because we will call napi->poll() one more time.
5417 * This C code was suggested by Alexander Duyck to help gcc.
5418 */
5419 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5420 NAPIF_STATE_SCHED;
5421 } while (cmpxchg(&n->state, val, new) != val);
5422
5423 if (unlikely(val & NAPIF_STATE_MISSED)) {
5424 __napi_schedule(n);
5425 return false;
5426 }
5427
364b6055 5428 return true;
d565b0a1 5429}
3b47d303 5430EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5431
af12fa6e 5432/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5433static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5434{
5435 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5436 struct napi_struct *napi;
5437
5438 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5439 if (napi->napi_id == napi_id)
5440 return napi;
5441
5442 return NULL;
5443}
02d62e86
ED
5444
5445#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5446
ce6aea93 5447#define BUSY_POLL_BUDGET 8
217f6974
ED
5448
5449static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5450{
5451 int rc;
5452
39e6c820
ED
5453 /* Busy polling means there is a high chance device driver hard irq
5454 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5455 * set in napi_schedule_prep().
5456 * Since we are about to call napi->poll() once more, we can safely
5457 * clear NAPI_STATE_MISSED.
5458 *
5459 * Note: x86 could use a single "lock and ..." instruction
5460 * to perform these two clear_bit()
5461 */
5462 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5463 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5464
5465 local_bh_disable();
5466
5467 /* All we really want here is to re-enable device interrupts.
5468 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5469 */
5470 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5471 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5472 netpoll_poll_unlock(have_poll_lock);
5473 if (rc == BUSY_POLL_BUDGET)
5474 __napi_schedule(napi);
5475 local_bh_enable();
217f6974
ED
5476}
5477
7db6b048
SS
5478void napi_busy_loop(unsigned int napi_id,
5479 bool (*loop_end)(void *, unsigned long),
5480 void *loop_end_arg)
02d62e86 5481{
7db6b048 5482 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5483 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5484 void *have_poll_lock = NULL;
02d62e86 5485 struct napi_struct *napi;
217f6974
ED
5486
5487restart:
217f6974 5488 napi_poll = NULL;
02d62e86 5489
2a028ecb 5490 rcu_read_lock();
02d62e86 5491
545cd5e5 5492 napi = napi_by_id(napi_id);
02d62e86
ED
5493 if (!napi)
5494 goto out;
5495
217f6974
ED
5496 preempt_disable();
5497 for (;;) {
2b5cd0df
AD
5498 int work = 0;
5499
2a028ecb 5500 local_bh_disable();
217f6974
ED
5501 if (!napi_poll) {
5502 unsigned long val = READ_ONCE(napi->state);
5503
5504 /* If multiple threads are competing for this napi,
5505 * we avoid dirtying napi->state as much as we can.
5506 */
5507 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5508 NAPIF_STATE_IN_BUSY_POLL))
5509 goto count;
5510 if (cmpxchg(&napi->state, val,
5511 val | NAPIF_STATE_IN_BUSY_POLL |
5512 NAPIF_STATE_SCHED) != val)
5513 goto count;
5514 have_poll_lock = netpoll_poll_lock(napi);
5515 napi_poll = napi->poll;
5516 }
2b5cd0df
AD
5517 work = napi_poll(napi, BUSY_POLL_BUDGET);
5518 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5519count:
2b5cd0df 5520 if (work > 0)
7db6b048 5521 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5522 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5523 local_bh_enable();
02d62e86 5524
7db6b048 5525 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5526 break;
02d62e86 5527
217f6974
ED
5528 if (unlikely(need_resched())) {
5529 if (napi_poll)
5530 busy_poll_stop(napi, have_poll_lock);
5531 preempt_enable();
5532 rcu_read_unlock();
5533 cond_resched();
7db6b048 5534 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5535 return;
217f6974
ED
5536 goto restart;
5537 }
6cdf89b1 5538 cpu_relax();
217f6974
ED
5539 }
5540 if (napi_poll)
5541 busy_poll_stop(napi, have_poll_lock);
5542 preempt_enable();
02d62e86 5543out:
2a028ecb 5544 rcu_read_unlock();
02d62e86 5545}
7db6b048 5546EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5547
5548#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5549
149d6ad8 5550static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5551{
d64b5e85
ED
5552 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5553 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5554 return;
af12fa6e 5555
52bd2d62 5556 spin_lock(&napi_hash_lock);
af12fa6e 5557
545cd5e5 5558 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5559 do {
545cd5e5
AD
5560 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5561 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5562 } while (napi_by_id(napi_gen_id));
5563 napi->napi_id = napi_gen_id;
af12fa6e 5564
52bd2d62
ED
5565 hlist_add_head_rcu(&napi->napi_hash_node,
5566 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5567
52bd2d62 5568 spin_unlock(&napi_hash_lock);
af12fa6e 5569}
af12fa6e
ET
5570
5571/* Warning : caller is responsible to make sure rcu grace period
5572 * is respected before freeing memory containing @napi
5573 */
34cbe27e 5574bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5575{
34cbe27e
ED
5576 bool rcu_sync_needed = false;
5577
af12fa6e
ET
5578 spin_lock(&napi_hash_lock);
5579
34cbe27e
ED
5580 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5581 rcu_sync_needed = true;
af12fa6e 5582 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5583 }
af12fa6e 5584 spin_unlock(&napi_hash_lock);
34cbe27e 5585 return rcu_sync_needed;
af12fa6e
ET
5586}
5587EXPORT_SYMBOL_GPL(napi_hash_del);
5588
3b47d303
ED
5589static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5590{
5591 struct napi_struct *napi;
5592
5593 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5594
5595 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5596 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5597 */
5598 if (napi->gro_list && !napi_disable_pending(napi) &&
5599 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5600 __napi_schedule_irqoff(napi);
3b47d303
ED
5601
5602 return HRTIMER_NORESTART;
5603}
5604
d565b0a1
HX
5605void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5606 int (*poll)(struct napi_struct *, int), int weight)
5607{
5608 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5609 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5610 napi->timer.function = napi_watchdog;
4ae5544f 5611 napi->gro_count = 0;
d565b0a1 5612 napi->gro_list = NULL;
5d38a079 5613 napi->skb = NULL;
d565b0a1 5614 napi->poll = poll;
82dc3c63
ED
5615 if (weight > NAPI_POLL_WEIGHT)
5616 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5617 weight, dev->name);
d565b0a1
HX
5618 napi->weight = weight;
5619 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5620 napi->dev = dev;
5d38a079 5621#ifdef CONFIG_NETPOLL
d565b0a1
HX
5622 napi->poll_owner = -1;
5623#endif
5624 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5625 napi_hash_add(napi);
d565b0a1
HX
5626}
5627EXPORT_SYMBOL(netif_napi_add);
5628
3b47d303
ED
5629void napi_disable(struct napi_struct *n)
5630{
5631 might_sleep();
5632 set_bit(NAPI_STATE_DISABLE, &n->state);
5633
5634 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5635 msleep(1);
2d8bff12
NH
5636 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5637 msleep(1);
3b47d303
ED
5638
5639 hrtimer_cancel(&n->timer);
5640
5641 clear_bit(NAPI_STATE_DISABLE, &n->state);
5642}
5643EXPORT_SYMBOL(napi_disable);
5644
93d05d4a 5645/* Must be called in process context */
d565b0a1
HX
5646void netif_napi_del(struct napi_struct *napi)
5647{
93d05d4a
ED
5648 might_sleep();
5649 if (napi_hash_del(napi))
5650 synchronize_net();
d7b06636 5651 list_del_init(&napi->dev_list);
76620aaf 5652 napi_free_frags(napi);
d565b0a1 5653
289dccbe 5654 kfree_skb_list(napi->gro_list);
d565b0a1 5655 napi->gro_list = NULL;
4ae5544f 5656 napi->gro_count = 0;
d565b0a1
HX
5657}
5658EXPORT_SYMBOL(netif_napi_del);
5659
726ce70e
HX
5660static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5661{
5662 void *have;
5663 int work, weight;
5664
5665 list_del_init(&n->poll_list);
5666
5667 have = netpoll_poll_lock(n);
5668
5669 weight = n->weight;
5670
5671 /* This NAPI_STATE_SCHED test is for avoiding a race
5672 * with netpoll's poll_napi(). Only the entity which
5673 * obtains the lock and sees NAPI_STATE_SCHED set will
5674 * actually make the ->poll() call. Therefore we avoid
5675 * accidentally calling ->poll() when NAPI is not scheduled.
5676 */
5677 work = 0;
5678 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5679 work = n->poll(n, weight);
1db19db7 5680 trace_napi_poll(n, work, weight);
726ce70e
HX
5681 }
5682
5683 WARN_ON_ONCE(work > weight);
5684
5685 if (likely(work < weight))
5686 goto out_unlock;
5687
5688 /* Drivers must not modify the NAPI state if they
5689 * consume the entire weight. In such cases this code
5690 * still "owns" the NAPI instance and therefore can
5691 * move the instance around on the list at-will.
5692 */
5693 if (unlikely(napi_disable_pending(n))) {
5694 napi_complete(n);
5695 goto out_unlock;
5696 }
5697
5698 if (n->gro_list) {
5699 /* flush too old packets
5700 * If HZ < 1000, flush all packets.
5701 */
5702 napi_gro_flush(n, HZ >= 1000);
5703 }
5704
001ce546
HX
5705 /* Some drivers may have called napi_schedule
5706 * prior to exhausting their budget.
5707 */
5708 if (unlikely(!list_empty(&n->poll_list))) {
5709 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5710 n->dev ? n->dev->name : "backlog");
5711 goto out_unlock;
5712 }
5713
726ce70e
HX
5714 list_add_tail(&n->poll_list, repoll);
5715
5716out_unlock:
5717 netpoll_poll_unlock(have);
5718
5719 return work;
5720}
5721
0766f788 5722static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5723{
903ceff7 5724 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5725 unsigned long time_limit = jiffies +
5726 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5727 int budget = netdev_budget;
d75b1ade
ED
5728 LIST_HEAD(list);
5729 LIST_HEAD(repoll);
53fb95d3 5730
1da177e4 5731 local_irq_disable();
d75b1ade
ED
5732 list_splice_init(&sd->poll_list, &list);
5733 local_irq_enable();
1da177e4 5734
ceb8d5bf 5735 for (;;) {
bea3348e 5736 struct napi_struct *n;
1da177e4 5737
ceb8d5bf
HX
5738 if (list_empty(&list)) {
5739 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5740 goto out;
ceb8d5bf
HX
5741 break;
5742 }
5743
6bd373eb
HX
5744 n = list_first_entry(&list, struct napi_struct, poll_list);
5745 budget -= napi_poll(n, &repoll);
5746
d75b1ade 5747 /* If softirq window is exhausted then punt.
24f8b238
SH
5748 * Allow this to run for 2 jiffies since which will allow
5749 * an average latency of 1.5/HZ.
bea3348e 5750 */
ceb8d5bf
HX
5751 if (unlikely(budget <= 0 ||
5752 time_after_eq(jiffies, time_limit))) {
5753 sd->time_squeeze++;
5754 break;
5755 }
1da177e4 5756 }
d75b1ade 5757
d75b1ade
ED
5758 local_irq_disable();
5759
5760 list_splice_tail_init(&sd->poll_list, &list);
5761 list_splice_tail(&repoll, &list);
5762 list_splice(&list, &sd->poll_list);
5763 if (!list_empty(&sd->poll_list))
5764 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5765
e326bed2 5766 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5767out:
5768 __kfree_skb_flush();
1da177e4
LT
5769}
5770
aa9d8560 5771struct netdev_adjacent {
9ff162a8 5772 struct net_device *dev;
5d261913
VF
5773
5774 /* upper master flag, there can only be one master device per list */
9ff162a8 5775 bool master;
5d261913 5776
5d261913
VF
5777 /* counter for the number of times this device was added to us */
5778 u16 ref_nr;
5779
402dae96
VF
5780 /* private field for the users */
5781 void *private;
5782
9ff162a8
JP
5783 struct list_head list;
5784 struct rcu_head rcu;
9ff162a8
JP
5785};
5786
6ea29da1 5787static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5788 struct list_head *adj_list)
9ff162a8 5789{
5d261913 5790 struct netdev_adjacent *adj;
5d261913 5791
2f268f12 5792 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5793 if (adj->dev == adj_dev)
5794 return adj;
9ff162a8
JP
5795 }
5796 return NULL;
5797}
5798
f1170fd4
DA
5799static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5800{
5801 struct net_device *dev = data;
5802
5803 return upper_dev == dev;
5804}
5805
9ff162a8
JP
5806/**
5807 * netdev_has_upper_dev - Check if device is linked to an upper device
5808 * @dev: device
5809 * @upper_dev: upper device to check
5810 *
5811 * Find out if a device is linked to specified upper device and return true
5812 * in case it is. Note that this checks only immediate upper device,
5813 * not through a complete stack of devices. The caller must hold the RTNL lock.
5814 */
5815bool netdev_has_upper_dev(struct net_device *dev,
5816 struct net_device *upper_dev)
5817{
5818 ASSERT_RTNL();
5819
f1170fd4
DA
5820 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5821 upper_dev);
9ff162a8
JP
5822}
5823EXPORT_SYMBOL(netdev_has_upper_dev);
5824
1a3f060c
DA
5825/**
5826 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5827 * @dev: device
5828 * @upper_dev: upper device to check
5829 *
5830 * Find out if a device is linked to specified upper device and return true
5831 * in case it is. Note that this checks the entire upper device chain.
5832 * The caller must hold rcu lock.
5833 */
5834
1a3f060c
DA
5835bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5836 struct net_device *upper_dev)
5837{
5838 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5839 upper_dev);
5840}
5841EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5842
9ff162a8
JP
5843/**
5844 * netdev_has_any_upper_dev - Check if device is linked to some device
5845 * @dev: device
5846 *
5847 * Find out if a device is linked to an upper device and return true in case
5848 * it is. The caller must hold the RTNL lock.
5849 */
25cc72a3 5850bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5851{
5852 ASSERT_RTNL();
5853
f1170fd4 5854 return !list_empty(&dev->adj_list.upper);
9ff162a8 5855}
25cc72a3 5856EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5857
5858/**
5859 * netdev_master_upper_dev_get - Get master upper device
5860 * @dev: device
5861 *
5862 * Find a master upper device and return pointer to it or NULL in case
5863 * it's not there. The caller must hold the RTNL lock.
5864 */
5865struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5866{
aa9d8560 5867 struct netdev_adjacent *upper;
9ff162a8
JP
5868
5869 ASSERT_RTNL();
5870
2f268f12 5871 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5872 return NULL;
5873
2f268f12 5874 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5875 struct netdev_adjacent, list);
9ff162a8
JP
5876 if (likely(upper->master))
5877 return upper->dev;
5878 return NULL;
5879}
5880EXPORT_SYMBOL(netdev_master_upper_dev_get);
5881
0f524a80
DA
5882/**
5883 * netdev_has_any_lower_dev - Check if device is linked to some device
5884 * @dev: device
5885 *
5886 * Find out if a device is linked to a lower device and return true in case
5887 * it is. The caller must hold the RTNL lock.
5888 */
5889static bool netdev_has_any_lower_dev(struct net_device *dev)
5890{
5891 ASSERT_RTNL();
5892
5893 return !list_empty(&dev->adj_list.lower);
5894}
5895
b6ccba4c
VF
5896void *netdev_adjacent_get_private(struct list_head *adj_list)
5897{
5898 struct netdev_adjacent *adj;
5899
5900 adj = list_entry(adj_list, struct netdev_adjacent, list);
5901
5902 return adj->private;
5903}
5904EXPORT_SYMBOL(netdev_adjacent_get_private);
5905
44a40855
VY
5906/**
5907 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5908 * @dev: device
5909 * @iter: list_head ** of the current position
5910 *
5911 * Gets the next device from the dev's upper list, starting from iter
5912 * position. The caller must hold RCU read lock.
5913 */
5914struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5915 struct list_head **iter)
5916{
5917 struct netdev_adjacent *upper;
5918
5919 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5920
5921 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5922
5923 if (&upper->list == &dev->adj_list.upper)
5924 return NULL;
5925
5926 *iter = &upper->list;
5927
5928 return upper->dev;
5929}
5930EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5931
1a3f060c
DA
5932static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5933 struct list_head **iter)
5934{
5935 struct netdev_adjacent *upper;
5936
5937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5938
5939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5940
5941 if (&upper->list == &dev->adj_list.upper)
5942 return NULL;
5943
5944 *iter = &upper->list;
5945
5946 return upper->dev;
5947}
5948
5949int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5950 int (*fn)(struct net_device *dev,
5951 void *data),
5952 void *data)
5953{
5954 struct net_device *udev;
5955 struct list_head *iter;
5956 int ret;
5957
5958 for (iter = &dev->adj_list.upper,
5959 udev = netdev_next_upper_dev_rcu(dev, &iter);
5960 udev;
5961 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5962 /* first is the upper device itself */
5963 ret = fn(udev, data);
5964 if (ret)
5965 return ret;
5966
5967 /* then look at all of its upper devices */
5968 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5969 if (ret)
5970 return ret;
5971 }
5972
5973 return 0;
5974}
5975EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5976
31088a11
VF
5977/**
5978 * netdev_lower_get_next_private - Get the next ->private from the
5979 * lower neighbour list
5980 * @dev: device
5981 * @iter: list_head ** of the current position
5982 *
5983 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5984 * list, starting from iter position. The caller must hold either hold the
5985 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5986 * list will remain unchanged.
31088a11
VF
5987 */
5988void *netdev_lower_get_next_private(struct net_device *dev,
5989 struct list_head **iter)
5990{
5991 struct netdev_adjacent *lower;
5992
5993 lower = list_entry(*iter, struct netdev_adjacent, list);
5994
5995 if (&lower->list == &dev->adj_list.lower)
5996 return NULL;
5997
6859e7df 5998 *iter = lower->list.next;
31088a11
VF
5999
6000 return lower->private;
6001}
6002EXPORT_SYMBOL(netdev_lower_get_next_private);
6003
6004/**
6005 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6006 * lower neighbour list, RCU
6007 * variant
6008 * @dev: device
6009 * @iter: list_head ** of the current position
6010 *
6011 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6012 * list, starting from iter position. The caller must hold RCU read lock.
6013 */
6014void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6015 struct list_head **iter)
6016{
6017 struct netdev_adjacent *lower;
6018
6019 WARN_ON_ONCE(!rcu_read_lock_held());
6020
6021 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6022
6023 if (&lower->list == &dev->adj_list.lower)
6024 return NULL;
6025
6859e7df 6026 *iter = &lower->list;
31088a11
VF
6027
6028 return lower->private;
6029}
6030EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6031
4085ebe8
VY
6032/**
6033 * netdev_lower_get_next - Get the next device from the lower neighbour
6034 * list
6035 * @dev: device
6036 * @iter: list_head ** of the current position
6037 *
6038 * Gets the next netdev_adjacent from the dev's lower neighbour
6039 * list, starting from iter position. The caller must hold RTNL lock or
6040 * its own locking that guarantees that the neighbour lower
b469139e 6041 * list will remain unchanged.
4085ebe8
VY
6042 */
6043void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6044{
6045 struct netdev_adjacent *lower;
6046
cfdd28be 6047 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6048
6049 if (&lower->list == &dev->adj_list.lower)
6050 return NULL;
6051
cfdd28be 6052 *iter = lower->list.next;
4085ebe8
VY
6053
6054 return lower->dev;
6055}
6056EXPORT_SYMBOL(netdev_lower_get_next);
6057
1a3f060c
DA
6058static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6059 struct list_head **iter)
6060{
6061 struct netdev_adjacent *lower;
6062
46b5ab1a 6063 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6064
6065 if (&lower->list == &dev->adj_list.lower)
6066 return NULL;
6067
46b5ab1a 6068 *iter = &lower->list;
1a3f060c
DA
6069
6070 return lower->dev;
6071}
6072
6073int netdev_walk_all_lower_dev(struct net_device *dev,
6074 int (*fn)(struct net_device *dev,
6075 void *data),
6076 void *data)
6077{
6078 struct net_device *ldev;
6079 struct list_head *iter;
6080 int ret;
6081
6082 for (iter = &dev->adj_list.lower,
6083 ldev = netdev_next_lower_dev(dev, &iter);
6084 ldev;
6085 ldev = netdev_next_lower_dev(dev, &iter)) {
6086 /* first is the lower device itself */
6087 ret = fn(ldev, data);
6088 if (ret)
6089 return ret;
6090
6091 /* then look at all of its lower devices */
6092 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6093 if (ret)
6094 return ret;
6095 }
6096
6097 return 0;
6098}
6099EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6100
1a3f060c
DA
6101static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6102 struct list_head **iter)
6103{
6104 struct netdev_adjacent *lower;
6105
6106 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6107 if (&lower->list == &dev->adj_list.lower)
6108 return NULL;
6109
6110 *iter = &lower->list;
6111
6112 return lower->dev;
6113}
6114
6115int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6116 int (*fn)(struct net_device *dev,
6117 void *data),
6118 void *data)
6119{
6120 struct net_device *ldev;
6121 struct list_head *iter;
6122 int ret;
6123
6124 for (iter = &dev->adj_list.lower,
6125 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6126 ldev;
6127 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6128 /* first is the lower device itself */
6129 ret = fn(ldev, data);
6130 if (ret)
6131 return ret;
6132
6133 /* then look at all of its lower devices */
6134 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6135 if (ret)
6136 return ret;
6137 }
6138
6139 return 0;
6140}
6141EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6142
e001bfad 6143/**
6144 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6145 * lower neighbour list, RCU
6146 * variant
6147 * @dev: device
6148 *
6149 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6150 * list. The caller must hold RCU read lock.
6151 */
6152void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6153{
6154 struct netdev_adjacent *lower;
6155
6156 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6157 struct netdev_adjacent, list);
6158 if (lower)
6159 return lower->private;
6160 return NULL;
6161}
6162EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6163
9ff162a8
JP
6164/**
6165 * netdev_master_upper_dev_get_rcu - Get master upper device
6166 * @dev: device
6167 *
6168 * Find a master upper device and return pointer to it or NULL in case
6169 * it's not there. The caller must hold the RCU read lock.
6170 */
6171struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6172{
aa9d8560 6173 struct netdev_adjacent *upper;
9ff162a8 6174
2f268f12 6175 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6176 struct netdev_adjacent, list);
9ff162a8
JP
6177 if (upper && likely(upper->master))
6178 return upper->dev;
6179 return NULL;
6180}
6181EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6182
0a59f3a9 6183static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6184 struct net_device *adj_dev,
6185 struct list_head *dev_list)
6186{
6187 char linkname[IFNAMSIZ+7];
f4563a75 6188
3ee32707
VF
6189 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6190 "upper_%s" : "lower_%s", adj_dev->name);
6191 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6192 linkname);
6193}
0a59f3a9 6194static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6195 char *name,
6196 struct list_head *dev_list)
6197{
6198 char linkname[IFNAMSIZ+7];
f4563a75 6199
3ee32707
VF
6200 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6201 "upper_%s" : "lower_%s", name);
6202 sysfs_remove_link(&(dev->dev.kobj), linkname);
6203}
6204
7ce64c79
AF
6205static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6206 struct net_device *adj_dev,
6207 struct list_head *dev_list)
6208{
6209 return (dev_list == &dev->adj_list.upper ||
6210 dev_list == &dev->adj_list.lower) &&
6211 net_eq(dev_net(dev), dev_net(adj_dev));
6212}
3ee32707 6213
5d261913
VF
6214static int __netdev_adjacent_dev_insert(struct net_device *dev,
6215 struct net_device *adj_dev,
7863c054 6216 struct list_head *dev_list,
402dae96 6217 void *private, bool master)
5d261913
VF
6218{
6219 struct netdev_adjacent *adj;
842d67a7 6220 int ret;
5d261913 6221
6ea29da1 6222 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6223
6224 if (adj) {
790510d9 6225 adj->ref_nr += 1;
67b62f98
DA
6226 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6227 dev->name, adj_dev->name, adj->ref_nr);
6228
5d261913
VF
6229 return 0;
6230 }
6231
6232 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6233 if (!adj)
6234 return -ENOMEM;
6235
6236 adj->dev = adj_dev;
6237 adj->master = master;
790510d9 6238 adj->ref_nr = 1;
402dae96 6239 adj->private = private;
5d261913 6240 dev_hold(adj_dev);
2f268f12 6241
67b62f98
DA
6242 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6243 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6244
7ce64c79 6245 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6246 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6247 if (ret)
6248 goto free_adj;
6249 }
6250
7863c054 6251 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6252 if (master) {
6253 ret = sysfs_create_link(&(dev->dev.kobj),
6254 &(adj_dev->dev.kobj), "master");
6255 if (ret)
5831d66e 6256 goto remove_symlinks;
842d67a7 6257
7863c054 6258 list_add_rcu(&adj->list, dev_list);
842d67a7 6259 } else {
7863c054 6260 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6261 }
5d261913
VF
6262
6263 return 0;
842d67a7 6264
5831d66e 6265remove_symlinks:
7ce64c79 6266 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6267 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6268free_adj:
6269 kfree(adj);
974daef7 6270 dev_put(adj_dev);
842d67a7
VF
6271
6272 return ret;
5d261913
VF
6273}
6274
1d143d9f 6275static void __netdev_adjacent_dev_remove(struct net_device *dev,
6276 struct net_device *adj_dev,
93409033 6277 u16 ref_nr,
1d143d9f 6278 struct list_head *dev_list)
5d261913
VF
6279{
6280 struct netdev_adjacent *adj;
6281
67b62f98
DA
6282 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6283 dev->name, adj_dev->name, ref_nr);
6284
6ea29da1 6285 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6286
2f268f12 6287 if (!adj) {
67b62f98 6288 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6289 dev->name, adj_dev->name);
67b62f98
DA
6290 WARN_ON(1);
6291 return;
2f268f12 6292 }
5d261913 6293
93409033 6294 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6295 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6296 dev->name, adj_dev->name, ref_nr,
6297 adj->ref_nr - ref_nr);
93409033 6298 adj->ref_nr -= ref_nr;
5d261913
VF
6299 return;
6300 }
6301
842d67a7
VF
6302 if (adj->master)
6303 sysfs_remove_link(&(dev->dev.kobj), "master");
6304
7ce64c79 6305 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6306 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6307
5d261913 6308 list_del_rcu(&adj->list);
67b62f98 6309 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6310 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6311 dev_put(adj_dev);
6312 kfree_rcu(adj, rcu);
6313}
6314
1d143d9f 6315static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6316 struct net_device *upper_dev,
6317 struct list_head *up_list,
6318 struct list_head *down_list,
6319 void *private, bool master)
5d261913
VF
6320{
6321 int ret;
6322
790510d9 6323 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6324 private, master);
5d261913
VF
6325 if (ret)
6326 return ret;
6327
790510d9 6328 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6329 private, false);
5d261913 6330 if (ret) {
790510d9 6331 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6332 return ret;
6333 }
6334
6335 return 0;
6336}
6337
1d143d9f 6338static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6339 struct net_device *upper_dev,
93409033 6340 u16 ref_nr,
1d143d9f 6341 struct list_head *up_list,
6342 struct list_head *down_list)
5d261913 6343{
93409033
AC
6344 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6345 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6346}
6347
1d143d9f 6348static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6349 struct net_device *upper_dev,
6350 void *private, bool master)
2f268f12 6351{
f1170fd4
DA
6352 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6353 &dev->adj_list.upper,
6354 &upper_dev->adj_list.lower,
6355 private, master);
5d261913
VF
6356}
6357
1d143d9f 6358static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6359 struct net_device *upper_dev)
2f268f12 6360{
93409033 6361 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6362 &dev->adj_list.upper,
6363 &upper_dev->adj_list.lower);
6364}
5d261913 6365
9ff162a8 6366static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6367 struct net_device *upper_dev, bool master,
42ab19ee
DA
6368 void *upper_priv, void *upper_info,
6369 struct netlink_ext_ack *extack)
9ff162a8 6370{
51d0c047
DA
6371 struct netdev_notifier_changeupper_info changeupper_info = {
6372 .info = {
6373 .dev = dev,
42ab19ee 6374 .extack = extack,
51d0c047
DA
6375 },
6376 .upper_dev = upper_dev,
6377 .master = master,
6378 .linking = true,
6379 .upper_info = upper_info,
6380 };
5d261913 6381 int ret = 0;
9ff162a8
JP
6382
6383 ASSERT_RTNL();
6384
6385 if (dev == upper_dev)
6386 return -EBUSY;
6387
6388 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6389 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6390 return -EBUSY;
6391
f1170fd4 6392 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6393 return -EEXIST;
6394
6395 if (master && netdev_master_upper_dev_get(dev))
6396 return -EBUSY;
6397
51d0c047 6398 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6399 &changeupper_info.info);
6400 ret = notifier_to_errno(ret);
6401 if (ret)
6402 return ret;
6403
6dffb044 6404 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6405 master);
5d261913
VF
6406 if (ret)
6407 return ret;
9ff162a8 6408
51d0c047 6409 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6410 &changeupper_info.info);
6411 ret = notifier_to_errno(ret);
6412 if (ret)
f1170fd4 6413 goto rollback;
b03804e7 6414
9ff162a8 6415 return 0;
5d261913 6416
f1170fd4 6417rollback:
2f268f12 6418 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6419
6420 return ret;
9ff162a8
JP
6421}
6422
6423/**
6424 * netdev_upper_dev_link - Add a link to the upper device
6425 * @dev: device
6426 * @upper_dev: new upper device
6427 *
6428 * Adds a link to device which is upper to this one. The caller must hold
6429 * the RTNL lock. On a failure a negative errno code is returned.
6430 * On success the reference counts are adjusted and the function
6431 * returns zero.
6432 */
6433int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6434 struct net_device *upper_dev,
6435 struct netlink_ext_ack *extack)
9ff162a8 6436{
42ab19ee
DA
6437 return __netdev_upper_dev_link(dev, upper_dev, false,
6438 NULL, NULL, extack);
9ff162a8
JP
6439}
6440EXPORT_SYMBOL(netdev_upper_dev_link);
6441
6442/**
6443 * netdev_master_upper_dev_link - Add a master link to the upper device
6444 * @dev: device
6445 * @upper_dev: new upper device
6dffb044 6446 * @upper_priv: upper device private
29bf24af 6447 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6448 *
6449 * Adds a link to device which is upper to this one. In this case, only
6450 * one master upper device can be linked, although other non-master devices
6451 * might be linked as well. The caller must hold the RTNL lock.
6452 * On a failure a negative errno code is returned. On success the reference
6453 * counts are adjusted and the function returns zero.
6454 */
6455int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6456 struct net_device *upper_dev,
42ab19ee
DA
6457 void *upper_priv, void *upper_info,
6458 struct netlink_ext_ack *extack)
9ff162a8 6459{
29bf24af 6460 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6461 upper_priv, upper_info, extack);
9ff162a8
JP
6462}
6463EXPORT_SYMBOL(netdev_master_upper_dev_link);
6464
6465/**
6466 * netdev_upper_dev_unlink - Removes a link to upper device
6467 * @dev: device
6468 * @upper_dev: new upper device
6469 *
6470 * Removes a link to device which is upper to this one. The caller must hold
6471 * the RTNL lock.
6472 */
6473void netdev_upper_dev_unlink(struct net_device *dev,
6474 struct net_device *upper_dev)
6475{
51d0c047
DA
6476 struct netdev_notifier_changeupper_info changeupper_info = {
6477 .info = {
6478 .dev = dev,
6479 },
6480 .upper_dev = upper_dev,
6481 .linking = false,
6482 };
f4563a75 6483
9ff162a8
JP
6484 ASSERT_RTNL();
6485
0e4ead9d 6486 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6487
51d0c047 6488 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6489 &changeupper_info.info);
6490
2f268f12 6491 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6492
51d0c047 6493 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6494 &changeupper_info.info);
9ff162a8
JP
6495}
6496EXPORT_SYMBOL(netdev_upper_dev_unlink);
6497
61bd3857
MS
6498/**
6499 * netdev_bonding_info_change - Dispatch event about slave change
6500 * @dev: device
4a26e453 6501 * @bonding_info: info to dispatch
61bd3857
MS
6502 *
6503 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6504 * The caller must hold the RTNL lock.
6505 */
6506void netdev_bonding_info_change(struct net_device *dev,
6507 struct netdev_bonding_info *bonding_info)
6508{
51d0c047
DA
6509 struct netdev_notifier_bonding_info info = {
6510 .info.dev = dev,
6511 };
61bd3857
MS
6512
6513 memcpy(&info.bonding_info, bonding_info,
6514 sizeof(struct netdev_bonding_info));
51d0c047 6515 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6516 &info.info);
6517}
6518EXPORT_SYMBOL(netdev_bonding_info_change);
6519
2ce1ee17 6520static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6521{
6522 struct netdev_adjacent *iter;
6523
6524 struct net *net = dev_net(dev);
6525
6526 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6527 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6528 continue;
6529 netdev_adjacent_sysfs_add(iter->dev, dev,
6530 &iter->dev->adj_list.lower);
6531 netdev_adjacent_sysfs_add(dev, iter->dev,
6532 &dev->adj_list.upper);
6533 }
6534
6535 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6536 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6537 continue;
6538 netdev_adjacent_sysfs_add(iter->dev, dev,
6539 &iter->dev->adj_list.upper);
6540 netdev_adjacent_sysfs_add(dev, iter->dev,
6541 &dev->adj_list.lower);
6542 }
6543}
6544
2ce1ee17 6545static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6546{
6547 struct netdev_adjacent *iter;
6548
6549 struct net *net = dev_net(dev);
6550
6551 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6552 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6553 continue;
6554 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6555 &iter->dev->adj_list.lower);
6556 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6557 &dev->adj_list.upper);
6558 }
6559
6560 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6561 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6562 continue;
6563 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6564 &iter->dev->adj_list.upper);
6565 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6566 &dev->adj_list.lower);
6567 }
6568}
6569
5bb025fa 6570void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6571{
5bb025fa 6572 struct netdev_adjacent *iter;
402dae96 6573
4c75431a
AF
6574 struct net *net = dev_net(dev);
6575
5bb025fa 6576 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6577 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6578 continue;
5bb025fa
VF
6579 netdev_adjacent_sysfs_del(iter->dev, oldname,
6580 &iter->dev->adj_list.lower);
6581 netdev_adjacent_sysfs_add(iter->dev, dev,
6582 &iter->dev->adj_list.lower);
6583 }
402dae96 6584
5bb025fa 6585 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6586 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6587 continue;
5bb025fa
VF
6588 netdev_adjacent_sysfs_del(iter->dev, oldname,
6589 &iter->dev->adj_list.upper);
6590 netdev_adjacent_sysfs_add(iter->dev, dev,
6591 &iter->dev->adj_list.upper);
6592 }
402dae96 6593}
402dae96
VF
6594
6595void *netdev_lower_dev_get_private(struct net_device *dev,
6596 struct net_device *lower_dev)
6597{
6598 struct netdev_adjacent *lower;
6599
6600 if (!lower_dev)
6601 return NULL;
6ea29da1 6602 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6603 if (!lower)
6604 return NULL;
6605
6606 return lower->private;
6607}
6608EXPORT_SYMBOL(netdev_lower_dev_get_private);
6609
4085ebe8 6610
952fcfd0 6611int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6612{
6613 struct net_device *lower = NULL;
6614 struct list_head *iter;
6615 int max_nest = -1;
6616 int nest;
6617
6618 ASSERT_RTNL();
6619
6620 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6621 nest = dev_get_nest_level(lower);
4085ebe8
VY
6622 if (max_nest < nest)
6623 max_nest = nest;
6624 }
6625
952fcfd0 6626 return max_nest + 1;
4085ebe8
VY
6627}
6628EXPORT_SYMBOL(dev_get_nest_level);
6629
04d48266
JP
6630/**
6631 * netdev_lower_change - Dispatch event about lower device state change
6632 * @lower_dev: device
6633 * @lower_state_info: state to dispatch
6634 *
6635 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6636 * The caller must hold the RTNL lock.
6637 */
6638void netdev_lower_state_changed(struct net_device *lower_dev,
6639 void *lower_state_info)
6640{
51d0c047
DA
6641 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6642 .info.dev = lower_dev,
6643 };
04d48266
JP
6644
6645 ASSERT_RTNL();
6646 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6647 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6648 &changelowerstate_info.info);
6649}
6650EXPORT_SYMBOL(netdev_lower_state_changed);
6651
b6c40d68
PM
6652static void dev_change_rx_flags(struct net_device *dev, int flags)
6653{
d314774c
SH
6654 const struct net_device_ops *ops = dev->netdev_ops;
6655
d2615bf4 6656 if (ops->ndo_change_rx_flags)
d314774c 6657 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6658}
6659
991fb3f7 6660static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6661{
b536db93 6662 unsigned int old_flags = dev->flags;
d04a48b0
EB
6663 kuid_t uid;
6664 kgid_t gid;
1da177e4 6665
24023451
PM
6666 ASSERT_RTNL();
6667
dad9b335
WC
6668 dev->flags |= IFF_PROMISC;
6669 dev->promiscuity += inc;
6670 if (dev->promiscuity == 0) {
6671 /*
6672 * Avoid overflow.
6673 * If inc causes overflow, untouch promisc and return error.
6674 */
6675 if (inc < 0)
6676 dev->flags &= ~IFF_PROMISC;
6677 else {
6678 dev->promiscuity -= inc;
7b6cd1ce
JP
6679 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6680 dev->name);
dad9b335
WC
6681 return -EOVERFLOW;
6682 }
6683 }
52609c0b 6684 if (dev->flags != old_flags) {
7b6cd1ce
JP
6685 pr_info("device %s %s promiscuous mode\n",
6686 dev->name,
6687 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6688 if (audit_enabled) {
6689 current_uid_gid(&uid, &gid);
7759db82
KHK
6690 audit_log(current->audit_context, GFP_ATOMIC,
6691 AUDIT_ANOM_PROMISCUOUS,
6692 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6693 dev->name, (dev->flags & IFF_PROMISC),
6694 (old_flags & IFF_PROMISC),
e1760bd5 6695 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6696 from_kuid(&init_user_ns, uid),
6697 from_kgid(&init_user_ns, gid),
7759db82 6698 audit_get_sessionid(current));
8192b0c4 6699 }
24023451 6700
b6c40d68 6701 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6702 }
991fb3f7
ND
6703 if (notify)
6704 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6705 return 0;
1da177e4
LT
6706}
6707
4417da66
PM
6708/**
6709 * dev_set_promiscuity - update promiscuity count on a device
6710 * @dev: device
6711 * @inc: modifier
6712 *
6713 * Add or remove promiscuity from a device. While the count in the device
6714 * remains above zero the interface remains promiscuous. Once it hits zero
6715 * the device reverts back to normal filtering operation. A negative inc
6716 * value is used to drop promiscuity on the device.
dad9b335 6717 * Return 0 if successful or a negative errno code on error.
4417da66 6718 */
dad9b335 6719int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6720{
b536db93 6721 unsigned int old_flags = dev->flags;
dad9b335 6722 int err;
4417da66 6723
991fb3f7 6724 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6725 if (err < 0)
dad9b335 6726 return err;
4417da66
PM
6727 if (dev->flags != old_flags)
6728 dev_set_rx_mode(dev);
dad9b335 6729 return err;
4417da66 6730}
d1b19dff 6731EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6732
991fb3f7 6733static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6734{
991fb3f7 6735 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6736
24023451
PM
6737 ASSERT_RTNL();
6738
1da177e4 6739 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6740 dev->allmulti += inc;
6741 if (dev->allmulti == 0) {
6742 /*
6743 * Avoid overflow.
6744 * If inc causes overflow, untouch allmulti and return error.
6745 */
6746 if (inc < 0)
6747 dev->flags &= ~IFF_ALLMULTI;
6748 else {
6749 dev->allmulti -= inc;
7b6cd1ce
JP
6750 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6751 dev->name);
dad9b335
WC
6752 return -EOVERFLOW;
6753 }
6754 }
24023451 6755 if (dev->flags ^ old_flags) {
b6c40d68 6756 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6757 dev_set_rx_mode(dev);
991fb3f7
ND
6758 if (notify)
6759 __dev_notify_flags(dev, old_flags,
6760 dev->gflags ^ old_gflags);
24023451 6761 }
dad9b335 6762 return 0;
4417da66 6763}
991fb3f7
ND
6764
6765/**
6766 * dev_set_allmulti - update allmulti count on a device
6767 * @dev: device
6768 * @inc: modifier
6769 *
6770 * Add or remove reception of all multicast frames to a device. While the
6771 * count in the device remains above zero the interface remains listening
6772 * to all interfaces. Once it hits zero the device reverts back to normal
6773 * filtering operation. A negative @inc value is used to drop the counter
6774 * when releasing a resource needing all multicasts.
6775 * Return 0 if successful or a negative errno code on error.
6776 */
6777
6778int dev_set_allmulti(struct net_device *dev, int inc)
6779{
6780 return __dev_set_allmulti(dev, inc, true);
6781}
d1b19dff 6782EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6783
6784/*
6785 * Upload unicast and multicast address lists to device and
6786 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6787 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6788 * are present.
6789 */
6790void __dev_set_rx_mode(struct net_device *dev)
6791{
d314774c
SH
6792 const struct net_device_ops *ops = dev->netdev_ops;
6793
4417da66
PM
6794 /* dev_open will call this function so the list will stay sane. */
6795 if (!(dev->flags&IFF_UP))
6796 return;
6797
6798 if (!netif_device_present(dev))
40b77c94 6799 return;
4417da66 6800
01789349 6801 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6802 /* Unicast addresses changes may only happen under the rtnl,
6803 * therefore calling __dev_set_promiscuity here is safe.
6804 */
32e7bfc4 6805 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6806 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6807 dev->uc_promisc = true;
32e7bfc4 6808 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6809 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6810 dev->uc_promisc = false;
4417da66 6811 }
4417da66 6812 }
01789349
JP
6813
6814 if (ops->ndo_set_rx_mode)
6815 ops->ndo_set_rx_mode(dev);
4417da66
PM
6816}
6817
6818void dev_set_rx_mode(struct net_device *dev)
6819{
b9e40857 6820 netif_addr_lock_bh(dev);
4417da66 6821 __dev_set_rx_mode(dev);
b9e40857 6822 netif_addr_unlock_bh(dev);
1da177e4
LT
6823}
6824
f0db275a
SH
6825/**
6826 * dev_get_flags - get flags reported to userspace
6827 * @dev: device
6828 *
6829 * Get the combination of flag bits exported through APIs to userspace.
6830 */
95c96174 6831unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6832{
95c96174 6833 unsigned int flags;
1da177e4
LT
6834
6835 flags = (dev->flags & ~(IFF_PROMISC |
6836 IFF_ALLMULTI |
b00055aa
SR
6837 IFF_RUNNING |
6838 IFF_LOWER_UP |
6839 IFF_DORMANT)) |
1da177e4
LT
6840 (dev->gflags & (IFF_PROMISC |
6841 IFF_ALLMULTI));
6842
b00055aa
SR
6843 if (netif_running(dev)) {
6844 if (netif_oper_up(dev))
6845 flags |= IFF_RUNNING;
6846 if (netif_carrier_ok(dev))
6847 flags |= IFF_LOWER_UP;
6848 if (netif_dormant(dev))
6849 flags |= IFF_DORMANT;
6850 }
1da177e4
LT
6851
6852 return flags;
6853}
d1b19dff 6854EXPORT_SYMBOL(dev_get_flags);
1da177e4 6855
bd380811 6856int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6857{
b536db93 6858 unsigned int old_flags = dev->flags;
bd380811 6859 int ret;
1da177e4 6860
24023451
PM
6861 ASSERT_RTNL();
6862
1da177e4
LT
6863 /*
6864 * Set the flags on our device.
6865 */
6866
6867 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6868 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6869 IFF_AUTOMEDIA)) |
6870 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6871 IFF_ALLMULTI));
6872
6873 /*
6874 * Load in the correct multicast list now the flags have changed.
6875 */
6876
b6c40d68
PM
6877 if ((old_flags ^ flags) & IFF_MULTICAST)
6878 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6879
4417da66 6880 dev_set_rx_mode(dev);
1da177e4
LT
6881
6882 /*
6883 * Have we downed the interface. We handle IFF_UP ourselves
6884 * according to user attempts to set it, rather than blindly
6885 * setting it.
6886 */
6887
6888 ret = 0;
7051b88a 6889 if ((old_flags ^ flags) & IFF_UP) {
6890 if (old_flags & IFF_UP)
6891 __dev_close(dev);
6892 else
6893 ret = __dev_open(dev);
6894 }
1da177e4 6895
1da177e4 6896 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6897 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6898 unsigned int old_flags = dev->flags;
d1b19dff 6899
1da177e4 6900 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6901
6902 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6903 if (dev->flags != old_flags)
6904 dev_set_rx_mode(dev);
1da177e4
LT
6905 }
6906
6907 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6908 * is important. Some (broken) drivers set IFF_PROMISC, when
6909 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6910 */
6911 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6912 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6913
1da177e4 6914 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6915 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6916 }
6917
bd380811
PM
6918 return ret;
6919}
6920
a528c219
ND
6921void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6922 unsigned int gchanges)
bd380811
PM
6923{
6924 unsigned int changes = dev->flags ^ old_flags;
6925
a528c219 6926 if (gchanges)
7f294054 6927 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6928
bd380811
PM
6929 if (changes & IFF_UP) {
6930 if (dev->flags & IFF_UP)
6931 call_netdevice_notifiers(NETDEV_UP, dev);
6932 else
6933 call_netdevice_notifiers(NETDEV_DOWN, dev);
6934 }
6935
6936 if (dev->flags & IFF_UP &&
be9efd36 6937 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6938 struct netdev_notifier_change_info change_info = {
6939 .info = {
6940 .dev = dev,
6941 },
6942 .flags_changed = changes,
6943 };
be9efd36 6944
51d0c047 6945 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6946 }
bd380811
PM
6947}
6948
6949/**
6950 * dev_change_flags - change device settings
6951 * @dev: device
6952 * @flags: device state flags
6953 *
6954 * Change settings on device based state flags. The flags are
6955 * in the userspace exported format.
6956 */
b536db93 6957int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6958{
b536db93 6959 int ret;
991fb3f7 6960 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6961
6962 ret = __dev_change_flags(dev, flags);
6963 if (ret < 0)
6964 return ret;
6965
991fb3f7 6966 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6967 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6968 return ret;
6969}
d1b19dff 6970EXPORT_SYMBOL(dev_change_flags);
1da177e4 6971
f51048c3 6972int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6973{
6974 const struct net_device_ops *ops = dev->netdev_ops;
6975
6976 if (ops->ndo_change_mtu)
6977 return ops->ndo_change_mtu(dev, new_mtu);
6978
6979 dev->mtu = new_mtu;
6980 return 0;
6981}
f51048c3 6982EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6983
f0db275a
SH
6984/**
6985 * dev_set_mtu - Change maximum transfer unit
6986 * @dev: device
6987 * @new_mtu: new transfer unit
6988 *
6989 * Change the maximum transfer size of the network device.
6990 */
1da177e4
LT
6991int dev_set_mtu(struct net_device *dev, int new_mtu)
6992{
2315dc91 6993 int err, orig_mtu;
1da177e4
LT
6994
6995 if (new_mtu == dev->mtu)
6996 return 0;
6997
61e84623
JW
6998 /* MTU must be positive, and in range */
6999 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7000 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7001 dev->name, new_mtu, dev->min_mtu);
1da177e4 7002 return -EINVAL;
61e84623
JW
7003 }
7004
7005 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7006 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 7007 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
7008 return -EINVAL;
7009 }
1da177e4
LT
7010
7011 if (!netif_device_present(dev))
7012 return -ENODEV;
7013
1d486bfb
VF
7014 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7015 err = notifier_to_errno(err);
7016 if (err)
7017 return err;
d314774c 7018
2315dc91
VF
7019 orig_mtu = dev->mtu;
7020 err = __dev_set_mtu(dev, new_mtu);
d314774c 7021
2315dc91
VF
7022 if (!err) {
7023 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7024 err = notifier_to_errno(err);
7025 if (err) {
7026 /* setting mtu back and notifying everyone again,
7027 * so that they have a chance to revert changes.
7028 */
7029 __dev_set_mtu(dev, orig_mtu);
7030 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7031 }
7032 }
1da177e4
LT
7033 return err;
7034}
d1b19dff 7035EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7036
cbda10fa
VD
7037/**
7038 * dev_set_group - Change group this device belongs to
7039 * @dev: device
7040 * @new_group: group this device should belong to
7041 */
7042void dev_set_group(struct net_device *dev, int new_group)
7043{
7044 dev->group = new_group;
7045}
7046EXPORT_SYMBOL(dev_set_group);
7047
f0db275a
SH
7048/**
7049 * dev_set_mac_address - Change Media Access Control Address
7050 * @dev: device
7051 * @sa: new address
7052 *
7053 * Change the hardware (MAC) address of the device
7054 */
1da177e4
LT
7055int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7056{
d314774c 7057 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7058 int err;
7059
d314774c 7060 if (!ops->ndo_set_mac_address)
1da177e4
LT
7061 return -EOPNOTSUPP;
7062 if (sa->sa_family != dev->type)
7063 return -EINVAL;
7064 if (!netif_device_present(dev))
7065 return -ENODEV;
d314774c 7066 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7067 if (err)
7068 return err;
fbdeca2d 7069 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7070 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7071 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7072 return 0;
1da177e4 7073}
d1b19dff 7074EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7075
4bf84c35
JP
7076/**
7077 * dev_change_carrier - Change device carrier
7078 * @dev: device
691b3b7e 7079 * @new_carrier: new value
4bf84c35
JP
7080 *
7081 * Change device carrier
7082 */
7083int dev_change_carrier(struct net_device *dev, bool new_carrier)
7084{
7085 const struct net_device_ops *ops = dev->netdev_ops;
7086
7087 if (!ops->ndo_change_carrier)
7088 return -EOPNOTSUPP;
7089 if (!netif_device_present(dev))
7090 return -ENODEV;
7091 return ops->ndo_change_carrier(dev, new_carrier);
7092}
7093EXPORT_SYMBOL(dev_change_carrier);
7094
66b52b0d
JP
7095/**
7096 * dev_get_phys_port_id - Get device physical port ID
7097 * @dev: device
7098 * @ppid: port ID
7099 *
7100 * Get device physical port ID
7101 */
7102int dev_get_phys_port_id(struct net_device *dev,
02637fce 7103 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7104{
7105 const struct net_device_ops *ops = dev->netdev_ops;
7106
7107 if (!ops->ndo_get_phys_port_id)
7108 return -EOPNOTSUPP;
7109 return ops->ndo_get_phys_port_id(dev, ppid);
7110}
7111EXPORT_SYMBOL(dev_get_phys_port_id);
7112
db24a904
DA
7113/**
7114 * dev_get_phys_port_name - Get device physical port name
7115 * @dev: device
7116 * @name: port name
ed49e650 7117 * @len: limit of bytes to copy to name
db24a904
DA
7118 *
7119 * Get device physical port name
7120 */
7121int dev_get_phys_port_name(struct net_device *dev,
7122 char *name, size_t len)
7123{
7124 const struct net_device_ops *ops = dev->netdev_ops;
7125
7126 if (!ops->ndo_get_phys_port_name)
7127 return -EOPNOTSUPP;
7128 return ops->ndo_get_phys_port_name(dev, name, len);
7129}
7130EXPORT_SYMBOL(dev_get_phys_port_name);
7131
d746d707
AK
7132/**
7133 * dev_change_proto_down - update protocol port state information
7134 * @dev: device
7135 * @proto_down: new value
7136 *
7137 * This info can be used by switch drivers to set the phys state of the
7138 * port.
7139 */
7140int dev_change_proto_down(struct net_device *dev, bool proto_down)
7141{
7142 const struct net_device_ops *ops = dev->netdev_ops;
7143
7144 if (!ops->ndo_change_proto_down)
7145 return -EOPNOTSUPP;
7146 if (!netif_device_present(dev))
7147 return -ENODEV;
7148 return ops->ndo_change_proto_down(dev, proto_down);
7149}
7150EXPORT_SYMBOL(dev_change_proto_down);
7151
118b4aa2
JK
7152void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7153 struct netdev_bpf *xdp)
d67b9cd2 7154{
118b4aa2
JK
7155 memset(xdp, 0, sizeof(*xdp));
7156 xdp->command = XDP_QUERY_PROG;
d67b9cd2
DB
7157
7158 /* Query must always succeed. */
118b4aa2
JK
7159 WARN_ON(bpf_op(dev, xdp) < 0);
7160}
7161
7162static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7163{
7164 struct netdev_bpf xdp;
7165
7166 __dev_xdp_query(dev, bpf_op, &xdp);
58038695 7167
d67b9cd2
DB
7168 return xdp.prog_attached;
7169}
7170
f4e63525 7171static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7172 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7173 struct bpf_prog *prog)
7174{
f4e63525 7175 struct netdev_bpf xdp;
d67b9cd2
DB
7176
7177 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7178 if (flags & XDP_FLAGS_HW_MODE)
7179 xdp.command = XDP_SETUP_PROG_HW;
7180 else
7181 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7182 xdp.extack = extack;
32d60277 7183 xdp.flags = flags;
d67b9cd2
DB
7184 xdp.prog = prog;
7185
f4e63525 7186 return bpf_op(dev, &xdp);
d67b9cd2
DB
7187}
7188
bd0b2e7f
JK
7189static void dev_xdp_uninstall(struct net_device *dev)
7190{
7191 struct netdev_bpf xdp;
7192 bpf_op_t ndo_bpf;
7193
7194 /* Remove generic XDP */
7195 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7196
7197 /* Remove from the driver */
7198 ndo_bpf = dev->netdev_ops->ndo_bpf;
7199 if (!ndo_bpf)
7200 return;
7201
7202 __dev_xdp_query(dev, ndo_bpf, &xdp);
7203 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7204 return;
7205
7206 /* Program removal should always succeed */
7207 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7208}
7209
a7862b45
BB
7210/**
7211 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7212 * @dev: device
b5d60989 7213 * @extack: netlink extended ack
a7862b45 7214 * @fd: new program fd or negative value to clear
85de8576 7215 * @flags: xdp-related flags
a7862b45
BB
7216 *
7217 * Set or clear a bpf program for a device
7218 */
ddf9f970
JK
7219int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7220 int fd, u32 flags)
a7862b45
BB
7221{
7222 const struct net_device_ops *ops = dev->netdev_ops;
7223 struct bpf_prog *prog = NULL;
f4e63525 7224 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7225 int err;
7226
85de8576
DB
7227 ASSERT_RTNL();
7228
f4e63525
JK
7229 bpf_op = bpf_chk = ops->ndo_bpf;
7230 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7231 return -EOPNOTSUPP;
f4e63525
JK
7232 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7233 bpf_op = generic_xdp_install;
7234 if (bpf_op == bpf_chk)
7235 bpf_chk = generic_xdp_install;
b5cdae32 7236
a7862b45 7237 if (fd >= 0) {
118b4aa2 7238 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
d67b9cd2
DB
7239 return -EEXIST;
7240 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
118b4aa2 7241 __dev_xdp_attached(dev, bpf_op))
d67b9cd2 7242 return -EBUSY;
85de8576 7243
288b3de5
JK
7244 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7245 bpf_op == ops->ndo_bpf);
a7862b45
BB
7246 if (IS_ERR(prog))
7247 return PTR_ERR(prog);
441a3303
JK
7248
7249 if (!(flags & XDP_FLAGS_HW_MODE) &&
7250 bpf_prog_is_dev_bound(prog->aux)) {
7251 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7252 bpf_prog_put(prog);
7253 return -EINVAL;
7254 }
a7862b45
BB
7255 }
7256
f4e63525 7257 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7258 if (err < 0 && prog)
7259 bpf_prog_put(prog);
7260
7261 return err;
7262}
a7862b45 7263
1da177e4
LT
7264/**
7265 * dev_new_index - allocate an ifindex
c4ea43c5 7266 * @net: the applicable net namespace
1da177e4
LT
7267 *
7268 * Returns a suitable unique value for a new device interface
7269 * number. The caller must hold the rtnl semaphore or the
7270 * dev_base_lock to be sure it remains unique.
7271 */
881d966b 7272static int dev_new_index(struct net *net)
1da177e4 7273{
aa79e66e 7274 int ifindex = net->ifindex;
f4563a75 7275
1da177e4
LT
7276 for (;;) {
7277 if (++ifindex <= 0)
7278 ifindex = 1;
881d966b 7279 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7280 return net->ifindex = ifindex;
1da177e4
LT
7281 }
7282}
7283
1da177e4 7284/* Delayed registration/unregisteration */
3b5b34fd 7285static LIST_HEAD(net_todo_list);
200b916f 7286DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7287
6f05f629 7288static void net_set_todo(struct net_device *dev)
1da177e4 7289{
1da177e4 7290 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7291 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7292}
7293
9b5e383c 7294static void rollback_registered_many(struct list_head *head)
93ee31f1 7295{
e93737b0 7296 struct net_device *dev, *tmp;
5cde2829 7297 LIST_HEAD(close_head);
9b5e383c 7298
93ee31f1
DL
7299 BUG_ON(dev_boot_phase);
7300 ASSERT_RTNL();
7301
e93737b0 7302 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7303 /* Some devices call without registering
e93737b0
KK
7304 * for initialization unwind. Remove those
7305 * devices and proceed with the remaining.
9b5e383c
ED
7306 */
7307 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7308 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7309 dev->name, dev);
93ee31f1 7310
9b5e383c 7311 WARN_ON(1);
e93737b0
KK
7312 list_del(&dev->unreg_list);
7313 continue;
9b5e383c 7314 }
449f4544 7315 dev->dismantle = true;
9b5e383c 7316 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7317 }
93ee31f1 7318
44345724 7319 /* If device is running, close it first. */
5cde2829
EB
7320 list_for_each_entry(dev, head, unreg_list)
7321 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7322 dev_close_many(&close_head, true);
93ee31f1 7323
44345724 7324 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7325 /* And unlink it from device chain. */
7326 unlist_netdevice(dev);
93ee31f1 7327
9b5e383c
ED
7328 dev->reg_state = NETREG_UNREGISTERING;
7329 }
41852497 7330 flush_all_backlogs();
93ee31f1
DL
7331
7332 synchronize_net();
7333
9b5e383c 7334 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7335 struct sk_buff *skb = NULL;
7336
9b5e383c
ED
7337 /* Shutdown queueing discipline. */
7338 dev_shutdown(dev);
93ee31f1 7339
bd0b2e7f 7340 dev_xdp_uninstall(dev);
93ee31f1 7341
9b5e383c 7342 /* Notify protocols, that we are about to destroy
eb13da1a 7343 * this device. They should clean all the things.
7344 */
9b5e383c 7345 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7346
395eea6c
MB
7347 if (!dev->rtnl_link_ops ||
7348 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7349 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
6621dd29 7350 GFP_KERNEL, NULL);
395eea6c 7351
9b5e383c
ED
7352 /*
7353 * Flush the unicast and multicast chains
7354 */
a748ee24 7355 dev_uc_flush(dev);
22bedad3 7356 dev_mc_flush(dev);
93ee31f1 7357
9b5e383c
ED
7358 if (dev->netdev_ops->ndo_uninit)
7359 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7360
395eea6c
MB
7361 if (skb)
7362 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7363
9ff162a8
JP
7364 /* Notifier chain MUST detach us all upper devices. */
7365 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7366 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7367
9b5e383c
ED
7368 /* Remove entries from kobject tree */
7369 netdev_unregister_kobject(dev);
024e9679
AD
7370#ifdef CONFIG_XPS
7371 /* Remove XPS queueing entries */
7372 netif_reset_xps_queues_gt(dev, 0);
7373#endif
9b5e383c 7374 }
93ee31f1 7375
850a545b 7376 synchronize_net();
395264d5 7377
a5ee1551 7378 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7379 dev_put(dev);
7380}
7381
7382static void rollback_registered(struct net_device *dev)
7383{
7384 LIST_HEAD(single);
7385
7386 list_add(&dev->unreg_list, &single);
7387 rollback_registered_many(&single);
ceaaec98 7388 list_del(&single);
93ee31f1
DL
7389}
7390
fd867d51
JW
7391static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7392 struct net_device *upper, netdev_features_t features)
7393{
7394 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7395 netdev_features_t feature;
5ba3f7d6 7396 int feature_bit;
fd867d51 7397
5ba3f7d6
JW
7398 for_each_netdev_feature(&upper_disables, feature_bit) {
7399 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7400 if (!(upper->wanted_features & feature)
7401 && (features & feature)) {
7402 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7403 &feature, upper->name);
7404 features &= ~feature;
7405 }
7406 }
7407
7408 return features;
7409}
7410
7411static void netdev_sync_lower_features(struct net_device *upper,
7412 struct net_device *lower, netdev_features_t features)
7413{
7414 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7415 netdev_features_t feature;
5ba3f7d6 7416 int feature_bit;
fd867d51 7417
5ba3f7d6
JW
7418 for_each_netdev_feature(&upper_disables, feature_bit) {
7419 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7420 if (!(features & feature) && (lower->features & feature)) {
7421 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7422 &feature, lower->name);
7423 lower->wanted_features &= ~feature;
7424 netdev_update_features(lower);
7425
7426 if (unlikely(lower->features & feature))
7427 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7428 &feature, lower->name);
7429 }
7430 }
7431}
7432
c8f44aff
MM
7433static netdev_features_t netdev_fix_features(struct net_device *dev,
7434 netdev_features_t features)
b63365a2 7435{
57422dc5
MM
7436 /* Fix illegal checksum combinations */
7437 if ((features & NETIF_F_HW_CSUM) &&
7438 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7439 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7440 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7441 }
7442
b63365a2 7443 /* TSO requires that SG is present as well. */
ea2d3688 7444 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7445 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7446 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7447 }
7448
ec5f0615
PS
7449 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7450 !(features & NETIF_F_IP_CSUM)) {
7451 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7452 features &= ~NETIF_F_TSO;
7453 features &= ~NETIF_F_TSO_ECN;
7454 }
7455
7456 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7457 !(features & NETIF_F_IPV6_CSUM)) {
7458 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7459 features &= ~NETIF_F_TSO6;
7460 }
7461
b1dc497b
AD
7462 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7463 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7464 features &= ~NETIF_F_TSO_MANGLEID;
7465
31d8b9e0
BH
7466 /* TSO ECN requires that TSO is present as well. */
7467 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7468 features &= ~NETIF_F_TSO_ECN;
7469
212b573f
MM
7470 /* Software GSO depends on SG. */
7471 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7472 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7473 features &= ~NETIF_F_GSO;
7474 }
7475
802ab55a
AD
7476 /* GSO partial features require GSO partial be set */
7477 if ((features & dev->gso_partial_features) &&
7478 !(features & NETIF_F_GSO_PARTIAL)) {
7479 netdev_dbg(dev,
7480 "Dropping partially supported GSO features since no GSO partial.\n");
7481 features &= ~dev->gso_partial_features;
7482 }
7483
fb1f5f79
MC
7484 if (!(features & NETIF_F_RXCSUM)) {
7485 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7486 * successfully merged by hardware must also have the
7487 * checksum verified by hardware. If the user does not
7488 * want to enable RXCSUM, logically, we should disable GRO_HW.
7489 */
7490 if (features & NETIF_F_GRO_HW) {
7491 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7492 features &= ~NETIF_F_GRO_HW;
7493 }
7494 }
7495
b63365a2
HX
7496 return features;
7497}
b63365a2 7498
6cb6a27c 7499int __netdev_update_features(struct net_device *dev)
5455c699 7500{
fd867d51 7501 struct net_device *upper, *lower;
c8f44aff 7502 netdev_features_t features;
fd867d51 7503 struct list_head *iter;
e7868a85 7504 int err = -1;
5455c699 7505
87267485
MM
7506 ASSERT_RTNL();
7507
5455c699
MM
7508 features = netdev_get_wanted_features(dev);
7509
7510 if (dev->netdev_ops->ndo_fix_features)
7511 features = dev->netdev_ops->ndo_fix_features(dev, features);
7512
7513 /* driver might be less strict about feature dependencies */
7514 features = netdev_fix_features(dev, features);
7515
fd867d51
JW
7516 /* some features can't be enabled if they're off an an upper device */
7517 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7518 features = netdev_sync_upper_features(dev, upper, features);
7519
5455c699 7520 if (dev->features == features)
e7868a85 7521 goto sync_lower;
5455c699 7522
c8f44aff
MM
7523 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7524 &dev->features, &features);
5455c699
MM
7525
7526 if (dev->netdev_ops->ndo_set_features)
7527 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7528 else
7529 err = 0;
5455c699 7530
6cb6a27c 7531 if (unlikely(err < 0)) {
5455c699 7532 netdev_err(dev,
c8f44aff
MM
7533 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7534 err, &features, &dev->features);
17b85d29
NA
7535 /* return non-0 since some features might have changed and
7536 * it's better to fire a spurious notification than miss it
7537 */
7538 return -1;
6cb6a27c
MM
7539 }
7540
e7868a85 7541sync_lower:
fd867d51
JW
7542 /* some features must be disabled on lower devices when disabled
7543 * on an upper device (think: bonding master or bridge)
7544 */
7545 netdev_for_each_lower_dev(dev, lower, iter)
7546 netdev_sync_lower_features(dev, lower, features);
7547
ae847f40
SD
7548 if (!err) {
7549 netdev_features_t diff = features ^ dev->features;
7550
7551 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7552 /* udp_tunnel_{get,drop}_rx_info both need
7553 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7554 * device, or they won't do anything.
7555 * Thus we need to update dev->features
7556 * *before* calling udp_tunnel_get_rx_info,
7557 * but *after* calling udp_tunnel_drop_rx_info.
7558 */
7559 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7560 dev->features = features;
7561 udp_tunnel_get_rx_info(dev);
7562 } else {
7563 udp_tunnel_drop_rx_info(dev);
7564 }
7565 }
7566
6cb6a27c 7567 dev->features = features;
ae847f40 7568 }
6cb6a27c 7569
e7868a85 7570 return err < 0 ? 0 : 1;
6cb6a27c
MM
7571}
7572
afe12cc8
MM
7573/**
7574 * netdev_update_features - recalculate device features
7575 * @dev: the device to check
7576 *
7577 * Recalculate dev->features set and send notifications if it
7578 * has changed. Should be called after driver or hardware dependent
7579 * conditions might have changed that influence the features.
7580 */
6cb6a27c
MM
7581void netdev_update_features(struct net_device *dev)
7582{
7583 if (__netdev_update_features(dev))
7584 netdev_features_change(dev);
5455c699
MM
7585}
7586EXPORT_SYMBOL(netdev_update_features);
7587
afe12cc8
MM
7588/**
7589 * netdev_change_features - recalculate device features
7590 * @dev: the device to check
7591 *
7592 * Recalculate dev->features set and send notifications even
7593 * if they have not changed. Should be called instead of
7594 * netdev_update_features() if also dev->vlan_features might
7595 * have changed to allow the changes to be propagated to stacked
7596 * VLAN devices.
7597 */
7598void netdev_change_features(struct net_device *dev)
7599{
7600 __netdev_update_features(dev);
7601 netdev_features_change(dev);
7602}
7603EXPORT_SYMBOL(netdev_change_features);
7604
fc4a7489
PM
7605/**
7606 * netif_stacked_transfer_operstate - transfer operstate
7607 * @rootdev: the root or lower level device to transfer state from
7608 * @dev: the device to transfer operstate to
7609 *
7610 * Transfer operational state from root to device. This is normally
7611 * called when a stacking relationship exists between the root
7612 * device and the device(a leaf device).
7613 */
7614void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7615 struct net_device *dev)
7616{
7617 if (rootdev->operstate == IF_OPER_DORMANT)
7618 netif_dormant_on(dev);
7619 else
7620 netif_dormant_off(dev);
7621
0575c86b
ZS
7622 if (netif_carrier_ok(rootdev))
7623 netif_carrier_on(dev);
7624 else
7625 netif_carrier_off(dev);
fc4a7489
PM
7626}
7627EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7628
1b4bf461
ED
7629static int netif_alloc_rx_queues(struct net_device *dev)
7630{
1b4bf461 7631 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7632 struct netdev_rx_queue *rx;
10595902 7633 size_t sz = count * sizeof(*rx);
e817f856 7634 int err = 0;
1b4bf461 7635
bd25fa7b 7636 BUG_ON(count < 1);
1b4bf461 7637
dcda9b04 7638 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7639 if (!rx)
7640 return -ENOMEM;
7641
bd25fa7b
TH
7642 dev->_rx = rx;
7643
e817f856 7644 for (i = 0; i < count; i++) {
fe822240 7645 rx[i].dev = dev;
e817f856
JDB
7646
7647 /* XDP RX-queue setup */
7648 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7649 if (err < 0)
7650 goto err_rxq_info;
7651 }
1b4bf461 7652 return 0;
e817f856
JDB
7653
7654err_rxq_info:
7655 /* Rollback successful reg's and free other resources */
7656 while (i--)
7657 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 7658 kvfree(dev->_rx);
e817f856
JDB
7659 dev->_rx = NULL;
7660 return err;
7661}
7662
7663static void netif_free_rx_queues(struct net_device *dev)
7664{
7665 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
7666
7667 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7668 if (!dev->_rx)
7669 return;
7670
e817f856 7671 for (i = 0; i < count; i++)
82aaff2f
JK
7672 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7673
7674 kvfree(dev->_rx);
1b4bf461
ED
7675}
7676
aa942104
CG
7677static void netdev_init_one_queue(struct net_device *dev,
7678 struct netdev_queue *queue, void *_unused)
7679{
7680 /* Initialize queue lock */
7681 spin_lock_init(&queue->_xmit_lock);
7682 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7683 queue->xmit_lock_owner = -1;
b236da69 7684 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7685 queue->dev = dev;
114cf580
TH
7686#ifdef CONFIG_BQL
7687 dql_init(&queue->dql, HZ);
7688#endif
aa942104
CG
7689}
7690
60877a32
ED
7691static void netif_free_tx_queues(struct net_device *dev)
7692{
4cb28970 7693 kvfree(dev->_tx);
60877a32
ED
7694}
7695
e6484930
TH
7696static int netif_alloc_netdev_queues(struct net_device *dev)
7697{
7698 unsigned int count = dev->num_tx_queues;
7699 struct netdev_queue *tx;
60877a32 7700 size_t sz = count * sizeof(*tx);
e6484930 7701
d339727c
ED
7702 if (count < 1 || count > 0xffff)
7703 return -EINVAL;
62b5942a 7704
dcda9b04 7705 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7706 if (!tx)
7707 return -ENOMEM;
7708
e6484930 7709 dev->_tx = tx;
1d24eb48 7710
e6484930
TH
7711 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7712 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7713
7714 return 0;
e6484930
TH
7715}
7716
a2029240
DV
7717void netif_tx_stop_all_queues(struct net_device *dev)
7718{
7719 unsigned int i;
7720
7721 for (i = 0; i < dev->num_tx_queues; i++) {
7722 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7723
a2029240
DV
7724 netif_tx_stop_queue(txq);
7725 }
7726}
7727EXPORT_SYMBOL(netif_tx_stop_all_queues);
7728
1da177e4
LT
7729/**
7730 * register_netdevice - register a network device
7731 * @dev: device to register
7732 *
7733 * Take a completed network device structure and add it to the kernel
7734 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7735 * chain. 0 is returned on success. A negative errno code is returned
7736 * on a failure to set up the device, or if the name is a duplicate.
7737 *
7738 * Callers must hold the rtnl semaphore. You may want
7739 * register_netdev() instead of this.
7740 *
7741 * BUGS:
7742 * The locking appears insufficient to guarantee two parallel registers
7743 * will not get the same name.
7744 */
7745
7746int register_netdevice(struct net_device *dev)
7747{
1da177e4 7748 int ret;
d314774c 7749 struct net *net = dev_net(dev);
1da177e4
LT
7750
7751 BUG_ON(dev_boot_phase);
7752 ASSERT_RTNL();
7753
b17a7c17
SH
7754 might_sleep();
7755
1da177e4
LT
7756 /* When net_device's are persistent, this will be fatal. */
7757 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7758 BUG_ON(!net);
1da177e4 7759
f1f28aa3 7760 spin_lock_init(&dev->addr_list_lock);
cf508b12 7761 netdev_set_addr_lockdep_class(dev);
1da177e4 7762
828de4f6 7763 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7764 if (ret < 0)
7765 goto out;
7766
1da177e4 7767 /* Init, if this function is available */
d314774c
SH
7768 if (dev->netdev_ops->ndo_init) {
7769 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7770 if (ret) {
7771 if (ret > 0)
7772 ret = -EIO;
90833aa4 7773 goto out;
1da177e4
LT
7774 }
7775 }
4ec93edb 7776
f646968f
PM
7777 if (((dev->hw_features | dev->features) &
7778 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7779 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7780 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7781 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7782 ret = -EINVAL;
7783 goto err_uninit;
7784 }
7785
9c7dafbf
PE
7786 ret = -EBUSY;
7787 if (!dev->ifindex)
7788 dev->ifindex = dev_new_index(net);
7789 else if (__dev_get_by_index(net, dev->ifindex))
7790 goto err_uninit;
7791
5455c699
MM
7792 /* Transfer changeable features to wanted_features and enable
7793 * software offloads (GSO and GRO).
7794 */
7795 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7796 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7797
7798 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7799 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7800 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7801 }
7802
14d1232f 7803 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7804
cbc53e08 7805 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7806 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7807
7f348a60
AD
7808 /* If IPv4 TCP segmentation offload is supported we should also
7809 * allow the device to enable segmenting the frame with the option
7810 * of ignoring a static IP ID value. This doesn't enable the
7811 * feature itself but allows the user to enable it later.
7812 */
cbc53e08
AD
7813 if (dev->hw_features & NETIF_F_TSO)
7814 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7815 if (dev->vlan_features & NETIF_F_TSO)
7816 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7817 if (dev->mpls_features & NETIF_F_TSO)
7818 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7819 if (dev->hw_enc_features & NETIF_F_TSO)
7820 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7821
1180e7d6 7822 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7823 */
1180e7d6 7824 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7825
ee579677
PS
7826 /* Make NETIF_F_SG inheritable to tunnel devices.
7827 */
802ab55a 7828 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7829
0d89d203
SH
7830 /* Make NETIF_F_SG inheritable to MPLS.
7831 */
7832 dev->mpls_features |= NETIF_F_SG;
7833
7ffbe3fd
JB
7834 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7835 ret = notifier_to_errno(ret);
7836 if (ret)
7837 goto err_uninit;
7838
8b41d188 7839 ret = netdev_register_kobject(dev);
b17a7c17 7840 if (ret)
7ce1b0ed 7841 goto err_uninit;
b17a7c17
SH
7842 dev->reg_state = NETREG_REGISTERED;
7843
6cb6a27c 7844 __netdev_update_features(dev);
8e9b59b2 7845
1da177e4
LT
7846 /*
7847 * Default initial state at registry is that the
7848 * device is present.
7849 */
7850
7851 set_bit(__LINK_STATE_PRESENT, &dev->state);
7852
8f4cccbb
BH
7853 linkwatch_init_dev(dev);
7854
1da177e4 7855 dev_init_scheduler(dev);
1da177e4 7856 dev_hold(dev);
ce286d32 7857 list_netdevice(dev);
7bf23575 7858 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7859
948b337e
JP
7860 /* If the device has permanent device address, driver should
7861 * set dev_addr and also addr_assign_type should be set to
7862 * NET_ADDR_PERM (default value).
7863 */
7864 if (dev->addr_assign_type == NET_ADDR_PERM)
7865 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7866
1da177e4 7867 /* Notify protocols, that a new device appeared. */
056925ab 7868 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7869 ret = notifier_to_errno(ret);
93ee31f1
DL
7870 if (ret) {
7871 rollback_registered(dev);
7872 dev->reg_state = NETREG_UNREGISTERED;
7873 }
d90a909e
EB
7874 /*
7875 * Prevent userspace races by waiting until the network
7876 * device is fully setup before sending notifications.
7877 */
a2835763
PM
7878 if (!dev->rtnl_link_ops ||
7879 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7880 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7881
7882out:
7883 return ret;
7ce1b0ed
HX
7884
7885err_uninit:
d314774c
SH
7886 if (dev->netdev_ops->ndo_uninit)
7887 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7888 if (dev->priv_destructor)
7889 dev->priv_destructor(dev);
7ce1b0ed 7890 goto out;
1da177e4 7891}
d1b19dff 7892EXPORT_SYMBOL(register_netdevice);
1da177e4 7893
937f1ba5
BH
7894/**
7895 * init_dummy_netdev - init a dummy network device for NAPI
7896 * @dev: device to init
7897 *
7898 * This takes a network device structure and initialize the minimum
7899 * amount of fields so it can be used to schedule NAPI polls without
7900 * registering a full blown interface. This is to be used by drivers
7901 * that need to tie several hardware interfaces to a single NAPI
7902 * poll scheduler due to HW limitations.
7903 */
7904int init_dummy_netdev(struct net_device *dev)
7905{
7906 /* Clear everything. Note we don't initialize spinlocks
7907 * are they aren't supposed to be taken by any of the
7908 * NAPI code and this dummy netdev is supposed to be
7909 * only ever used for NAPI polls
7910 */
7911 memset(dev, 0, sizeof(struct net_device));
7912
7913 /* make sure we BUG if trying to hit standard
7914 * register/unregister code path
7915 */
7916 dev->reg_state = NETREG_DUMMY;
7917
937f1ba5
BH
7918 /* NAPI wants this */
7919 INIT_LIST_HEAD(&dev->napi_list);
7920
7921 /* a dummy interface is started by default */
7922 set_bit(__LINK_STATE_PRESENT, &dev->state);
7923 set_bit(__LINK_STATE_START, &dev->state);
7924
29b4433d
ED
7925 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7926 * because users of this 'device' dont need to change
7927 * its refcount.
7928 */
7929
937f1ba5
BH
7930 return 0;
7931}
7932EXPORT_SYMBOL_GPL(init_dummy_netdev);
7933
7934
1da177e4
LT
7935/**
7936 * register_netdev - register a network device
7937 * @dev: device to register
7938 *
7939 * Take a completed network device structure and add it to the kernel
7940 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7941 * chain. 0 is returned on success. A negative errno code is returned
7942 * on a failure to set up the device, or if the name is a duplicate.
7943 *
38b4da38 7944 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7945 * and expands the device name if you passed a format string to
7946 * alloc_netdev.
7947 */
7948int register_netdev(struct net_device *dev)
7949{
7950 int err;
7951
7952 rtnl_lock();
1da177e4 7953 err = register_netdevice(dev);
1da177e4
LT
7954 rtnl_unlock();
7955 return err;
7956}
7957EXPORT_SYMBOL(register_netdev);
7958
29b4433d
ED
7959int netdev_refcnt_read(const struct net_device *dev)
7960{
7961 int i, refcnt = 0;
7962
7963 for_each_possible_cpu(i)
7964 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7965 return refcnt;
7966}
7967EXPORT_SYMBOL(netdev_refcnt_read);
7968
2c53040f 7969/**
1da177e4 7970 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7971 * @dev: target net_device
1da177e4
LT
7972 *
7973 * This is called when unregistering network devices.
7974 *
7975 * Any protocol or device that holds a reference should register
7976 * for netdevice notification, and cleanup and put back the
7977 * reference if they receive an UNREGISTER event.
7978 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7979 * call dev_put.
1da177e4
LT
7980 */
7981static void netdev_wait_allrefs(struct net_device *dev)
7982{
7983 unsigned long rebroadcast_time, warning_time;
29b4433d 7984 int refcnt;
1da177e4 7985
e014debe
ED
7986 linkwatch_forget_dev(dev);
7987
1da177e4 7988 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7989 refcnt = netdev_refcnt_read(dev);
7990
7991 while (refcnt != 0) {
1da177e4 7992 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7993 rtnl_lock();
1da177e4
LT
7994
7995 /* Rebroadcast unregister notification */
056925ab 7996 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7997
748e2d93 7998 __rtnl_unlock();
0115e8e3 7999 rcu_barrier();
748e2d93
ED
8000 rtnl_lock();
8001
0115e8e3 8002 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
8003 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8004 &dev->state)) {
8005 /* We must not have linkwatch events
8006 * pending on unregister. If this
8007 * happens, we simply run the queue
8008 * unscheduled, resulting in a noop
8009 * for this device.
8010 */
8011 linkwatch_run_queue();
8012 }
8013
6756ae4b 8014 __rtnl_unlock();
1da177e4
LT
8015
8016 rebroadcast_time = jiffies;
8017 }
8018
8019 msleep(250);
8020
29b4433d
ED
8021 refcnt = netdev_refcnt_read(dev);
8022
1da177e4 8023 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8024 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8025 dev->name, refcnt);
1da177e4
LT
8026 warning_time = jiffies;
8027 }
8028 }
8029}
8030
8031/* The sequence is:
8032 *
8033 * rtnl_lock();
8034 * ...
8035 * register_netdevice(x1);
8036 * register_netdevice(x2);
8037 * ...
8038 * unregister_netdevice(y1);
8039 * unregister_netdevice(y2);
8040 * ...
8041 * rtnl_unlock();
8042 * free_netdev(y1);
8043 * free_netdev(y2);
8044 *
58ec3b4d 8045 * We are invoked by rtnl_unlock().
1da177e4 8046 * This allows us to deal with problems:
b17a7c17 8047 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8048 * without deadlocking with linkwatch via keventd.
8049 * 2) Since we run with the RTNL semaphore not held, we can sleep
8050 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8051 *
8052 * We must not return until all unregister events added during
8053 * the interval the lock was held have been completed.
1da177e4 8054 */
1da177e4
LT
8055void netdev_run_todo(void)
8056{
626ab0e6 8057 struct list_head list;
1da177e4 8058
1da177e4 8059 /* Snapshot list, allow later requests */
626ab0e6 8060 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8061
8062 __rtnl_unlock();
626ab0e6 8063
0115e8e3
ED
8064
8065 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8066 if (!list_empty(&list))
8067 rcu_barrier();
8068
1da177e4
LT
8069 while (!list_empty(&list)) {
8070 struct net_device *dev
e5e26d75 8071 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8072 list_del(&dev->todo_list);
8073
748e2d93 8074 rtnl_lock();
0115e8e3 8075 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 8076 __rtnl_unlock();
0115e8e3 8077
b17a7c17 8078 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8079 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8080 dev->name, dev->reg_state);
8081 dump_stack();
8082 continue;
8083 }
1da177e4 8084
b17a7c17 8085 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8086
b17a7c17 8087 netdev_wait_allrefs(dev);
1da177e4 8088
b17a7c17 8089 /* paranoia */
29b4433d 8090 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8091 BUG_ON(!list_empty(&dev->ptype_all));
8092 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8093 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8094 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 8095 WARN_ON(dev->dn_ptr);
1da177e4 8096
cf124db5
DM
8097 if (dev->priv_destructor)
8098 dev->priv_destructor(dev);
8099 if (dev->needs_free_netdev)
8100 free_netdev(dev);
9093bbb2 8101
50624c93
EB
8102 /* Report a network device has been unregistered */
8103 rtnl_lock();
8104 dev_net(dev)->dev_unreg_count--;
8105 __rtnl_unlock();
8106 wake_up(&netdev_unregistering_wq);
8107
9093bbb2
SH
8108 /* Free network device */
8109 kobject_put(&dev->dev.kobj);
1da177e4 8110 }
1da177e4
LT
8111}
8112
9256645a
JW
8113/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8114 * all the same fields in the same order as net_device_stats, with only
8115 * the type differing, but rtnl_link_stats64 may have additional fields
8116 * at the end for newer counters.
3cfde79c 8117 */
77a1abf5
ED
8118void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8119 const struct net_device_stats *netdev_stats)
3cfde79c
BH
8120{
8121#if BITS_PER_LONG == 64
9256645a 8122 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 8123 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
8124 /* zero out counters that only exist in rtnl_link_stats64 */
8125 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8126 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 8127#else
9256645a 8128 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
8129 const unsigned long *src = (const unsigned long *)netdev_stats;
8130 u64 *dst = (u64 *)stats64;
8131
9256645a 8132 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
8133 for (i = 0; i < n; i++)
8134 dst[i] = src[i];
9256645a
JW
8135 /* zero out counters that only exist in rtnl_link_stats64 */
8136 memset((char *)stats64 + n * sizeof(u64), 0,
8137 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
8138#endif
8139}
77a1abf5 8140EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8141
eeda3fd6
SH
8142/**
8143 * dev_get_stats - get network device statistics
8144 * @dev: device to get statistics from
28172739 8145 * @storage: place to store stats
eeda3fd6 8146 *
d7753516
BH
8147 * Get network statistics from device. Return @storage.
8148 * The device driver may provide its own method by setting
8149 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8150 * otherwise the internal statistics structure is used.
eeda3fd6 8151 */
d7753516
BH
8152struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8153 struct rtnl_link_stats64 *storage)
7004bf25 8154{
eeda3fd6
SH
8155 const struct net_device_ops *ops = dev->netdev_ops;
8156
28172739
ED
8157 if (ops->ndo_get_stats64) {
8158 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8159 ops->ndo_get_stats64(dev, storage);
8160 } else if (ops->ndo_get_stats) {
3cfde79c 8161 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8162 } else {
8163 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8164 }
6f64ec74
ED
8165 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8166 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8167 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8168 return storage;
c45d286e 8169}
eeda3fd6 8170EXPORT_SYMBOL(dev_get_stats);
c45d286e 8171
24824a09 8172struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8173{
24824a09 8174 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8175
24824a09
ED
8176#ifdef CONFIG_NET_CLS_ACT
8177 if (queue)
8178 return queue;
8179 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8180 if (!queue)
8181 return NULL;
8182 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8183 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8184 queue->qdisc_sleeping = &noop_qdisc;
8185 rcu_assign_pointer(dev->ingress_queue, queue);
8186#endif
8187 return queue;
bb949fbd
DM
8188}
8189
2c60db03
ED
8190static const struct ethtool_ops default_ethtool_ops;
8191
d07d7507
SG
8192void netdev_set_default_ethtool_ops(struct net_device *dev,
8193 const struct ethtool_ops *ops)
8194{
8195 if (dev->ethtool_ops == &default_ethtool_ops)
8196 dev->ethtool_ops = ops;
8197}
8198EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8199
74d332c1
ED
8200void netdev_freemem(struct net_device *dev)
8201{
8202 char *addr = (char *)dev - dev->padded;
8203
4cb28970 8204 kvfree(addr);
74d332c1
ED
8205}
8206
1da177e4 8207/**
722c9a0c 8208 * alloc_netdev_mqs - allocate network device
8209 * @sizeof_priv: size of private data to allocate space for
8210 * @name: device name format string
8211 * @name_assign_type: origin of device name
8212 * @setup: callback to initialize device
8213 * @txqs: the number of TX subqueues to allocate
8214 * @rxqs: the number of RX subqueues to allocate
8215 *
8216 * Allocates a struct net_device with private data area for driver use
8217 * and performs basic initialization. Also allocates subqueue structs
8218 * for each queue on the device.
1da177e4 8219 */
36909ea4 8220struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8221 unsigned char name_assign_type,
36909ea4
TH
8222 void (*setup)(struct net_device *),
8223 unsigned int txqs, unsigned int rxqs)
1da177e4 8224{
1da177e4 8225 struct net_device *dev;
52a59bd5 8226 unsigned int alloc_size;
1ce8e7b5 8227 struct net_device *p;
1da177e4 8228
b6fe17d6
SH
8229 BUG_ON(strlen(name) >= sizeof(dev->name));
8230
36909ea4 8231 if (txqs < 1) {
7b6cd1ce 8232 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8233 return NULL;
8234 }
8235
36909ea4 8236 if (rxqs < 1) {
7b6cd1ce 8237 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8238 return NULL;
8239 }
36909ea4 8240
fd2ea0a7 8241 alloc_size = sizeof(struct net_device);
d1643d24
AD
8242 if (sizeof_priv) {
8243 /* ensure 32-byte alignment of private area */
1ce8e7b5 8244 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8245 alloc_size += sizeof_priv;
8246 }
8247 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8248 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8249
dcda9b04 8250 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8251 if (!p)
1da177e4 8252 return NULL;
1da177e4 8253
1ce8e7b5 8254 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8255 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8256
29b4433d
ED
8257 dev->pcpu_refcnt = alloc_percpu(int);
8258 if (!dev->pcpu_refcnt)
74d332c1 8259 goto free_dev;
ab9c73cc 8260
ab9c73cc 8261 if (dev_addr_init(dev))
29b4433d 8262 goto free_pcpu;
ab9c73cc 8263
22bedad3 8264 dev_mc_init(dev);
a748ee24 8265 dev_uc_init(dev);
ccffad25 8266
c346dca1 8267 dev_net_set(dev, &init_net);
1da177e4 8268
8d3bdbd5 8269 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8270 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8271
8d3bdbd5
DM
8272 INIT_LIST_HEAD(&dev->napi_list);
8273 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8274 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8275 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8276 INIT_LIST_HEAD(&dev->adj_list.upper);
8277 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8278 INIT_LIST_HEAD(&dev->ptype_all);
8279 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8280#ifdef CONFIG_NET_SCHED
8281 hash_init(dev->qdisc_hash);
8282#endif
02875878 8283 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8284 setup(dev);
8285
a813104d 8286 if (!dev->tx_queue_len) {
f84bb1ea 8287 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8288 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8289 }
906470c1 8290
36909ea4
TH
8291 dev->num_tx_queues = txqs;
8292 dev->real_num_tx_queues = txqs;
ed9af2e8 8293 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8294 goto free_all;
e8a0464c 8295
36909ea4
TH
8296 dev->num_rx_queues = rxqs;
8297 dev->real_num_rx_queues = rxqs;
fe822240 8298 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8299 goto free_all;
0a9627f2 8300
1da177e4 8301 strcpy(dev->name, name);
c835a677 8302 dev->name_assign_type = name_assign_type;
cbda10fa 8303 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8304 if (!dev->ethtool_ops)
8305 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8306
8307 nf_hook_ingress_init(dev);
8308
1da177e4 8309 return dev;
ab9c73cc 8310
8d3bdbd5
DM
8311free_all:
8312 free_netdev(dev);
8313 return NULL;
8314
29b4433d
ED
8315free_pcpu:
8316 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8317free_dev:
8318 netdev_freemem(dev);
ab9c73cc 8319 return NULL;
1da177e4 8320}
36909ea4 8321EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8322
8323/**
722c9a0c 8324 * free_netdev - free network device
8325 * @dev: device
1da177e4 8326 *
722c9a0c 8327 * This function does the last stage of destroying an allocated device
8328 * interface. The reference to the device object is released. If this
8329 * is the last reference then it will be freed.Must be called in process
8330 * context.
1da177e4
LT
8331 */
8332void free_netdev(struct net_device *dev)
8333{
d565b0a1
HX
8334 struct napi_struct *p, *n;
8335
93d05d4a 8336 might_sleep();
60877a32 8337 netif_free_tx_queues(dev);
e817f856 8338 netif_free_rx_queues(dev);
e8a0464c 8339
33d480ce 8340 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8341
f001fde5
JP
8342 /* Flush device addresses */
8343 dev_addr_flush(dev);
8344
d565b0a1
HX
8345 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8346 netif_napi_del(p);
8347
29b4433d
ED
8348 free_percpu(dev->pcpu_refcnt);
8349 dev->pcpu_refcnt = NULL;
8350
3041a069 8351 /* Compatibility with error handling in drivers */
1da177e4 8352 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8353 netdev_freemem(dev);
1da177e4
LT
8354 return;
8355 }
8356
8357 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8358 dev->reg_state = NETREG_RELEASED;
8359
43cb76d9
GKH
8360 /* will free via device release */
8361 put_device(&dev->dev);
1da177e4 8362}
d1b19dff 8363EXPORT_SYMBOL(free_netdev);
4ec93edb 8364
f0db275a
SH
8365/**
8366 * synchronize_net - Synchronize with packet receive processing
8367 *
8368 * Wait for packets currently being received to be done.
8369 * Does not block later packets from starting.
8370 */
4ec93edb 8371void synchronize_net(void)
1da177e4
LT
8372{
8373 might_sleep();
be3fc413
ED
8374 if (rtnl_is_locked())
8375 synchronize_rcu_expedited();
8376 else
8377 synchronize_rcu();
1da177e4 8378}
d1b19dff 8379EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8380
8381/**
44a0873d 8382 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8383 * @dev: device
44a0873d 8384 * @head: list
6ebfbc06 8385 *
1da177e4 8386 * This function shuts down a device interface and removes it
d59b54b1 8387 * from the kernel tables.
44a0873d 8388 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8389 *
8390 * Callers must hold the rtnl semaphore. You may want
8391 * unregister_netdev() instead of this.
8392 */
8393
44a0873d 8394void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8395{
a6620712
HX
8396 ASSERT_RTNL();
8397
44a0873d 8398 if (head) {
9fdce099 8399 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8400 } else {
8401 rollback_registered(dev);
8402 /* Finish processing unregister after unlock */
8403 net_set_todo(dev);
8404 }
1da177e4 8405}
44a0873d 8406EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8407
9b5e383c
ED
8408/**
8409 * unregister_netdevice_many - unregister many devices
8410 * @head: list of devices
87757a91
ED
8411 *
8412 * Note: As most callers use a stack allocated list_head,
8413 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8414 */
8415void unregister_netdevice_many(struct list_head *head)
8416{
8417 struct net_device *dev;
8418
8419 if (!list_empty(head)) {
8420 rollback_registered_many(head);
8421 list_for_each_entry(dev, head, unreg_list)
8422 net_set_todo(dev);
87757a91 8423 list_del(head);
9b5e383c
ED
8424 }
8425}
63c8099d 8426EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8427
1da177e4
LT
8428/**
8429 * unregister_netdev - remove device from the kernel
8430 * @dev: device
8431 *
8432 * This function shuts down a device interface and removes it
d59b54b1 8433 * from the kernel tables.
1da177e4
LT
8434 *
8435 * This is just a wrapper for unregister_netdevice that takes
8436 * the rtnl semaphore. In general you want to use this and not
8437 * unregister_netdevice.
8438 */
8439void unregister_netdev(struct net_device *dev)
8440{
8441 rtnl_lock();
8442 unregister_netdevice(dev);
8443 rtnl_unlock();
8444}
1da177e4
LT
8445EXPORT_SYMBOL(unregister_netdev);
8446
ce286d32
EB
8447/**
8448 * dev_change_net_namespace - move device to different nethost namespace
8449 * @dev: device
8450 * @net: network namespace
8451 * @pat: If not NULL name pattern to try if the current device name
8452 * is already taken in the destination network namespace.
8453 *
8454 * This function shuts down a device interface and moves it
8455 * to a new network namespace. On success 0 is returned, on
8456 * a failure a netagive errno code is returned.
8457 *
8458 * Callers must hold the rtnl semaphore.
8459 */
8460
8461int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8462{
6621dd29 8463 int err, new_nsid;
ce286d32
EB
8464
8465 ASSERT_RTNL();
8466
8467 /* Don't allow namespace local devices to be moved. */
8468 err = -EINVAL;
8469 if (dev->features & NETIF_F_NETNS_LOCAL)
8470 goto out;
8471
8472 /* Ensure the device has been registrered */
ce286d32
EB
8473 if (dev->reg_state != NETREG_REGISTERED)
8474 goto out;
8475
8476 /* Get out if there is nothing todo */
8477 err = 0;
878628fb 8478 if (net_eq(dev_net(dev), net))
ce286d32
EB
8479 goto out;
8480
8481 /* Pick the destination device name, and ensure
8482 * we can use it in the destination network namespace.
8483 */
8484 err = -EEXIST;
d9031024 8485 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8486 /* We get here if we can't use the current device name */
8487 if (!pat)
8488 goto out;
828de4f6 8489 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8490 goto out;
8491 }
8492
8493 /*
8494 * And now a mini version of register_netdevice unregister_netdevice.
8495 */
8496
8497 /* If device is running close it first. */
9b772652 8498 dev_close(dev);
ce286d32
EB
8499
8500 /* And unlink it from device chain */
8501 err = -ENODEV;
8502 unlist_netdevice(dev);
8503
8504 synchronize_net();
8505
8506 /* Shutdown queueing discipline. */
8507 dev_shutdown(dev);
8508
8509 /* Notify protocols, that we are about to destroy
eb13da1a 8510 * this device. They should clean all the things.
8511 *
8512 * Note that dev->reg_state stays at NETREG_REGISTERED.
8513 * This is wanted because this way 8021q and macvlan know
8514 * the device is just moving and can keep their slaves up.
8515 */
ce286d32 8516 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8517 rcu_barrier();
8518 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6621dd29
ND
8519 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8520 new_nsid = peernet2id_alloc(dev_net(dev), net);
8521 else
8522 new_nsid = peernet2id(dev_net(dev), net);
8523 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
ce286d32
EB
8524
8525 /*
8526 * Flush the unicast and multicast chains
8527 */
a748ee24 8528 dev_uc_flush(dev);
22bedad3 8529 dev_mc_flush(dev);
ce286d32 8530
4e66ae2e
SH
8531 /* Send a netdev-removed uevent to the old namespace */
8532 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8533 netdev_adjacent_del_links(dev);
4e66ae2e 8534
ce286d32 8535 /* Actually switch the network namespace */
c346dca1 8536 dev_net_set(dev, net);
ce286d32 8537
ce286d32 8538 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8539 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8540 dev->ifindex = dev_new_index(net);
ce286d32 8541
4e66ae2e
SH
8542 /* Send a netdev-add uevent to the new namespace */
8543 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8544 netdev_adjacent_add_links(dev);
4e66ae2e 8545
8b41d188 8546 /* Fixup kobjects */
a1b3f594 8547 err = device_rename(&dev->dev, dev->name);
8b41d188 8548 WARN_ON(err);
ce286d32
EB
8549
8550 /* Add the device back in the hashes */
8551 list_netdevice(dev);
8552
8553 /* Notify protocols, that a new device appeared. */
8554 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8555
d90a909e
EB
8556 /*
8557 * Prevent userspace races by waiting until the network
8558 * device is fully setup before sending notifications.
8559 */
7f294054 8560 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8561
ce286d32
EB
8562 synchronize_net();
8563 err = 0;
8564out:
8565 return err;
8566}
463d0183 8567EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8568
f0bf90de 8569static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8570{
8571 struct sk_buff **list_skb;
1da177e4 8572 struct sk_buff *skb;
f0bf90de 8573 unsigned int cpu;
97d8b6e3 8574 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8575
1da177e4
LT
8576 local_irq_disable();
8577 cpu = smp_processor_id();
8578 sd = &per_cpu(softnet_data, cpu);
8579 oldsd = &per_cpu(softnet_data, oldcpu);
8580
8581 /* Find end of our completion_queue. */
8582 list_skb = &sd->completion_queue;
8583 while (*list_skb)
8584 list_skb = &(*list_skb)->next;
8585 /* Append completion queue from offline CPU. */
8586 *list_skb = oldsd->completion_queue;
8587 oldsd->completion_queue = NULL;
8588
1da177e4 8589 /* Append output queue from offline CPU. */
a9cbd588
CG
8590 if (oldsd->output_queue) {
8591 *sd->output_queue_tailp = oldsd->output_queue;
8592 sd->output_queue_tailp = oldsd->output_queue_tailp;
8593 oldsd->output_queue = NULL;
8594 oldsd->output_queue_tailp = &oldsd->output_queue;
8595 }
ac64da0b
ED
8596 /* Append NAPI poll list from offline CPU, with one exception :
8597 * process_backlog() must be called by cpu owning percpu backlog.
8598 * We properly handle process_queue & input_pkt_queue later.
8599 */
8600 while (!list_empty(&oldsd->poll_list)) {
8601 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8602 struct napi_struct,
8603 poll_list);
8604
8605 list_del_init(&napi->poll_list);
8606 if (napi->poll == process_backlog)
8607 napi->state = 0;
8608 else
8609 ____napi_schedule(sd, napi);
264524d5 8610 }
1da177e4
LT
8611
8612 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8613 local_irq_enable();
8614
773fc8f6 8615#ifdef CONFIG_RPS
8616 remsd = oldsd->rps_ipi_list;
8617 oldsd->rps_ipi_list = NULL;
8618#endif
8619 /* send out pending IPI's on offline CPU */
8620 net_rps_send_ipi(remsd);
8621
1da177e4 8622 /* Process offline CPU's input_pkt_queue */
76cc8b13 8623 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8624 netif_rx_ni(skb);
76cc8b13 8625 input_queue_head_incr(oldsd);
fec5e652 8626 }
ac64da0b 8627 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8628 netif_rx_ni(skb);
76cc8b13
TH
8629 input_queue_head_incr(oldsd);
8630 }
1da177e4 8631
f0bf90de 8632 return 0;
1da177e4 8633}
1da177e4 8634
7f353bf2 8635/**
b63365a2
HX
8636 * netdev_increment_features - increment feature set by one
8637 * @all: current feature set
8638 * @one: new feature set
8639 * @mask: mask feature set
7f353bf2
HX
8640 *
8641 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8642 * @one to the master device with current feature set @all. Will not
8643 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8644 */
c8f44aff
MM
8645netdev_features_t netdev_increment_features(netdev_features_t all,
8646 netdev_features_t one, netdev_features_t mask)
b63365a2 8647{
c8cd0989 8648 if (mask & NETIF_F_HW_CSUM)
a188222b 8649 mask |= NETIF_F_CSUM_MASK;
1742f183 8650 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8651
a188222b 8652 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8653 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8654
1742f183 8655 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8656 if (all & NETIF_F_HW_CSUM)
8657 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8658
8659 return all;
8660}
b63365a2 8661EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8662
430f03cd 8663static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8664{
8665 int i;
8666 struct hlist_head *hash;
8667
8668 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8669 if (hash != NULL)
8670 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8671 INIT_HLIST_HEAD(&hash[i]);
8672
8673 return hash;
8674}
8675
881d966b 8676/* Initialize per network namespace state */
4665079c 8677static int __net_init netdev_init(struct net *net)
881d966b 8678{
734b6541
RM
8679 if (net != &init_net)
8680 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8681
30d97d35
PE
8682 net->dev_name_head = netdev_create_hash();
8683 if (net->dev_name_head == NULL)
8684 goto err_name;
881d966b 8685
30d97d35
PE
8686 net->dev_index_head = netdev_create_hash();
8687 if (net->dev_index_head == NULL)
8688 goto err_idx;
881d966b
EB
8689
8690 return 0;
30d97d35
PE
8691
8692err_idx:
8693 kfree(net->dev_name_head);
8694err_name:
8695 return -ENOMEM;
881d966b
EB
8696}
8697
f0db275a
SH
8698/**
8699 * netdev_drivername - network driver for the device
8700 * @dev: network device
f0db275a
SH
8701 *
8702 * Determine network driver for device.
8703 */
3019de12 8704const char *netdev_drivername(const struct net_device *dev)
6579e57b 8705{
cf04a4c7
SH
8706 const struct device_driver *driver;
8707 const struct device *parent;
3019de12 8708 const char *empty = "";
6579e57b
AV
8709
8710 parent = dev->dev.parent;
6579e57b 8711 if (!parent)
3019de12 8712 return empty;
6579e57b
AV
8713
8714 driver = parent->driver;
8715 if (driver && driver->name)
3019de12
DM
8716 return driver->name;
8717 return empty;
6579e57b
AV
8718}
8719
6ea754eb
JP
8720static void __netdev_printk(const char *level, const struct net_device *dev,
8721 struct va_format *vaf)
256df2f3 8722{
b004ff49 8723 if (dev && dev->dev.parent) {
6ea754eb
JP
8724 dev_printk_emit(level[1] - '0',
8725 dev->dev.parent,
8726 "%s %s %s%s: %pV",
8727 dev_driver_string(dev->dev.parent),
8728 dev_name(dev->dev.parent),
8729 netdev_name(dev), netdev_reg_state(dev),
8730 vaf);
b004ff49 8731 } else if (dev) {
6ea754eb
JP
8732 printk("%s%s%s: %pV",
8733 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8734 } else {
6ea754eb 8735 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8736 }
256df2f3
JP
8737}
8738
6ea754eb
JP
8739void netdev_printk(const char *level, const struct net_device *dev,
8740 const char *format, ...)
256df2f3
JP
8741{
8742 struct va_format vaf;
8743 va_list args;
256df2f3
JP
8744
8745 va_start(args, format);
8746
8747 vaf.fmt = format;
8748 vaf.va = &args;
8749
6ea754eb 8750 __netdev_printk(level, dev, &vaf);
b004ff49 8751
256df2f3 8752 va_end(args);
256df2f3
JP
8753}
8754EXPORT_SYMBOL(netdev_printk);
8755
8756#define define_netdev_printk_level(func, level) \
6ea754eb 8757void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8758{ \
256df2f3
JP
8759 struct va_format vaf; \
8760 va_list args; \
8761 \
8762 va_start(args, fmt); \
8763 \
8764 vaf.fmt = fmt; \
8765 vaf.va = &args; \
8766 \
6ea754eb 8767 __netdev_printk(level, dev, &vaf); \
b004ff49 8768 \
256df2f3 8769 va_end(args); \
256df2f3
JP
8770} \
8771EXPORT_SYMBOL(func);
8772
8773define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8774define_netdev_printk_level(netdev_alert, KERN_ALERT);
8775define_netdev_printk_level(netdev_crit, KERN_CRIT);
8776define_netdev_printk_level(netdev_err, KERN_ERR);
8777define_netdev_printk_level(netdev_warn, KERN_WARNING);
8778define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8779define_netdev_printk_level(netdev_info, KERN_INFO);
8780
4665079c 8781static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8782{
8783 kfree(net->dev_name_head);
8784 kfree(net->dev_index_head);
ee21b18b
VA
8785 if (net != &init_net)
8786 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
8787}
8788
022cbae6 8789static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8790 .init = netdev_init,
8791 .exit = netdev_exit,
8792};
8793
4665079c 8794static void __net_exit default_device_exit(struct net *net)
ce286d32 8795{
e008b5fc 8796 struct net_device *dev, *aux;
ce286d32 8797 /*
e008b5fc 8798 * Push all migratable network devices back to the
ce286d32
EB
8799 * initial network namespace
8800 */
8801 rtnl_lock();
e008b5fc 8802 for_each_netdev_safe(net, dev, aux) {
ce286d32 8803 int err;
aca51397 8804 char fb_name[IFNAMSIZ];
ce286d32
EB
8805
8806 /* Ignore unmoveable devices (i.e. loopback) */
8807 if (dev->features & NETIF_F_NETNS_LOCAL)
8808 continue;
8809
e008b5fc
EB
8810 /* Leave virtual devices for the generic cleanup */
8811 if (dev->rtnl_link_ops)
8812 continue;
d0c082ce 8813
25985edc 8814 /* Push remaining network devices to init_net */
aca51397
PE
8815 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8816 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8817 if (err) {
7b6cd1ce
JP
8818 pr_emerg("%s: failed to move %s to init_net: %d\n",
8819 __func__, dev->name, err);
aca51397 8820 BUG();
ce286d32
EB
8821 }
8822 }
8823 rtnl_unlock();
8824}
8825
50624c93
EB
8826static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8827{
8828 /* Return with the rtnl_lock held when there are no network
8829 * devices unregistering in any network namespace in net_list.
8830 */
8831 struct net *net;
8832 bool unregistering;
ff960a73 8833 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8834
ff960a73 8835 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8836 for (;;) {
50624c93
EB
8837 unregistering = false;
8838 rtnl_lock();
8839 list_for_each_entry(net, net_list, exit_list) {
8840 if (net->dev_unreg_count > 0) {
8841 unregistering = true;
8842 break;
8843 }
8844 }
8845 if (!unregistering)
8846 break;
8847 __rtnl_unlock();
ff960a73
PZ
8848
8849 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8850 }
ff960a73 8851 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8852}
8853
04dc7f6b
EB
8854static void __net_exit default_device_exit_batch(struct list_head *net_list)
8855{
8856 /* At exit all network devices most be removed from a network
b595076a 8857 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8858 * Do this across as many network namespaces as possible to
8859 * improve batching efficiency.
8860 */
8861 struct net_device *dev;
8862 struct net *net;
8863 LIST_HEAD(dev_kill_list);
8864
50624c93
EB
8865 /* To prevent network device cleanup code from dereferencing
8866 * loopback devices or network devices that have been freed
8867 * wait here for all pending unregistrations to complete,
8868 * before unregistring the loopback device and allowing the
8869 * network namespace be freed.
8870 *
8871 * The netdev todo list containing all network devices
8872 * unregistrations that happen in default_device_exit_batch
8873 * will run in the rtnl_unlock() at the end of
8874 * default_device_exit_batch.
8875 */
8876 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8877 list_for_each_entry(net, net_list, exit_list) {
8878 for_each_netdev_reverse(net, dev) {
b0ab2fab 8879 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8880 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8881 else
8882 unregister_netdevice_queue(dev, &dev_kill_list);
8883 }
8884 }
8885 unregister_netdevice_many(&dev_kill_list);
8886 rtnl_unlock();
8887}
8888
022cbae6 8889static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8890 .exit = default_device_exit,
04dc7f6b 8891 .exit_batch = default_device_exit_batch,
ce286d32
EB
8892};
8893
1da177e4
LT
8894/*
8895 * Initialize the DEV module. At boot time this walks the device list and
8896 * unhooks any devices that fail to initialise (normally hardware not
8897 * present) and leaves us with a valid list of present and active devices.
8898 *
8899 */
8900
8901/*
8902 * This is called single threaded during boot, so no need
8903 * to take the rtnl semaphore.
8904 */
8905static int __init net_dev_init(void)
8906{
8907 int i, rc = -ENOMEM;
8908
8909 BUG_ON(!dev_boot_phase);
8910
1da177e4
LT
8911 if (dev_proc_init())
8912 goto out;
8913
8b41d188 8914 if (netdev_kobject_init())
1da177e4
LT
8915 goto out;
8916
8917 INIT_LIST_HEAD(&ptype_all);
82d8a867 8918 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8919 INIT_LIST_HEAD(&ptype_base[i]);
8920
62532da9
VY
8921 INIT_LIST_HEAD(&offload_base);
8922
881d966b
EB
8923 if (register_pernet_subsys(&netdev_net_ops))
8924 goto out;
1da177e4
LT
8925
8926 /*
8927 * Initialise the packet receive queues.
8928 */
8929
6f912042 8930 for_each_possible_cpu(i) {
41852497 8931 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8932 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8933
41852497
ED
8934 INIT_WORK(flush, flush_backlog);
8935
e36fa2f7 8936 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8937 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
8938#ifdef CONFIG_XFRM_OFFLOAD
8939 skb_queue_head_init(&sd->xfrm_backlog);
8940#endif
e36fa2f7 8941 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8942 sd->output_queue_tailp = &sd->output_queue;
df334545 8943#ifdef CONFIG_RPS
e36fa2f7
ED
8944 sd->csd.func = rps_trigger_softirq;
8945 sd->csd.info = sd;
e36fa2f7 8946 sd->cpu = i;
1e94d72f 8947#endif
0a9627f2 8948
e36fa2f7
ED
8949 sd->backlog.poll = process_backlog;
8950 sd->backlog.weight = weight_p;
1da177e4
LT
8951 }
8952
1da177e4
LT
8953 dev_boot_phase = 0;
8954
505d4f73
EB
8955 /* The loopback device is special if any other network devices
8956 * is present in a network namespace the loopback device must
8957 * be present. Since we now dynamically allocate and free the
8958 * loopback device ensure this invariant is maintained by
8959 * keeping the loopback device as the first device on the
8960 * list of network devices. Ensuring the loopback devices
8961 * is the first device that appears and the last network device
8962 * that disappears.
8963 */
8964 if (register_pernet_device(&loopback_net_ops))
8965 goto out;
8966
8967 if (register_pernet_device(&default_device_ops))
8968 goto out;
8969
962cf36c
CM
8970 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8971 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8972
f0bf90de
SAS
8973 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8974 NULL, dev_cpu_dead);
8975 WARN_ON(rc < 0);
1da177e4
LT
8976 rc = 0;
8977out:
8978 return rc;
8979}
8980
8981subsys_initcall(net_dev_init);
This page took 3.835815 seconds and 4 git commands to generate.