]> Git Repo - linux.git/blame - net/core/dev.c
Merge branch 'act_pedit-relative-offset'
[linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <[email protected]>
12 * Mark Evans, <[email protected]>
13 *
14 * Additional Authors:
15 * Florian la Roche <[email protected]>
16 * Alan Cox <[email protected]>
17 * David Hinds <[email protected]>
18 * Alexey Kuznetsov <[email protected]>
19 * Adam Sulmicki <[email protected]>
20 * Pekka Riikonen <[email protected]>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
b90e5794 1698static atomic_t netstamp_needed_deferred;
5fa8bbda 1699static void netstamp_clear(struct work_struct *work)
1da177e4 1700{
b90e5794
ED
1701 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1702
5fa8bbda
ED
1703 while (deferred--)
1704 static_key_slow_dec(&netstamp_needed);
1705}
1706static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1707#endif
5fa8bbda
ED
1708
1709void net_enable_timestamp(void)
1710{
c5905afb 1711 static_key_slow_inc(&netstamp_needed);
1da177e4 1712}
d1b19dff 1713EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1714
1715void net_disable_timestamp(void)
1716{
b90e5794 1717#ifdef HAVE_JUMP_LABEL
5fa8bbda
ED
1718 /* net_disable_timestamp() can be called from non process context */
1719 atomic_inc(&netstamp_needed_deferred);
1720 schedule_work(&netstamp_work);
1721#else
c5905afb 1722 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1723#endif
1da177e4 1724}
d1b19dff 1725EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1726
3b098e2d 1727static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1728{
2456e855 1729 skb->tstamp = 0;
c5905afb 1730 if (static_key_false(&netstamp_needed))
a61bbcf2 1731 __net_timestamp(skb);
1da177e4
LT
1732}
1733
588f0330 1734#define net_timestamp_check(COND, SKB) \
c5905afb 1735 if (static_key_false(&netstamp_needed)) { \
2456e855 1736 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1737 __net_timestamp(SKB); \
1738 } \
3b098e2d 1739
f4b05d27 1740bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1741{
1742 unsigned int len;
1743
1744 if (!(dev->flags & IFF_UP))
1745 return false;
1746
1747 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1748 if (skb->len <= len)
1749 return true;
1750
1751 /* if TSO is enabled, we don't care about the length as the packet
1752 * could be forwarded without being segmented before
1753 */
1754 if (skb_is_gso(skb))
1755 return true;
1756
1757 return false;
1758}
1ee481fb 1759EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1760
a0265d28
HX
1761int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1762{
4e3264d2 1763 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1764
4e3264d2
MKL
1765 if (likely(!ret)) {
1766 skb->protocol = eth_type_trans(skb, dev);
1767 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1768 }
a0265d28 1769
4e3264d2 1770 return ret;
a0265d28
HX
1771}
1772EXPORT_SYMBOL_GPL(__dev_forward_skb);
1773
44540960
AB
1774/**
1775 * dev_forward_skb - loopback an skb to another netif
1776 *
1777 * @dev: destination network device
1778 * @skb: buffer to forward
1779 *
1780 * return values:
1781 * NET_RX_SUCCESS (no congestion)
6ec82562 1782 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1783 *
1784 * dev_forward_skb can be used for injecting an skb from the
1785 * start_xmit function of one device into the receive queue
1786 * of another device.
1787 *
1788 * The receiving device may be in another namespace, so
1789 * we have to clear all information in the skb that could
1790 * impact namespace isolation.
1791 */
1792int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1793{
a0265d28 1794 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1795}
1796EXPORT_SYMBOL_GPL(dev_forward_skb);
1797
71d9dec2
CG
1798static inline int deliver_skb(struct sk_buff *skb,
1799 struct packet_type *pt_prev,
1800 struct net_device *orig_dev)
1801{
1080e512
MT
1802 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1803 return -ENOMEM;
71d9dec2
CG
1804 atomic_inc(&skb->users);
1805 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1806}
1807
7866a621
SN
1808static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1809 struct packet_type **pt,
fbcb2170
JP
1810 struct net_device *orig_dev,
1811 __be16 type,
7866a621
SN
1812 struct list_head *ptype_list)
1813{
1814 struct packet_type *ptype, *pt_prev = *pt;
1815
1816 list_for_each_entry_rcu(ptype, ptype_list, list) {
1817 if (ptype->type != type)
1818 continue;
1819 if (pt_prev)
fbcb2170 1820 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1821 pt_prev = ptype;
1822 }
1823 *pt = pt_prev;
1824}
1825
c0de08d0
EL
1826static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1827{
a3d744e9 1828 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1829 return false;
1830
1831 if (ptype->id_match)
1832 return ptype->id_match(ptype, skb->sk);
1833 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1834 return true;
1835
1836 return false;
1837}
1838
1da177e4
LT
1839/*
1840 * Support routine. Sends outgoing frames to any network
1841 * taps currently in use.
1842 */
1843
74b20582 1844void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1845{
1846 struct packet_type *ptype;
71d9dec2
CG
1847 struct sk_buff *skb2 = NULL;
1848 struct packet_type *pt_prev = NULL;
7866a621 1849 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1850
1da177e4 1851 rcu_read_lock();
7866a621
SN
1852again:
1853 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1854 /* Never send packets back to the socket
1855 * they originated from - MvS ([email protected])
1856 */
7866a621
SN
1857 if (skb_loop_sk(ptype, skb))
1858 continue;
71d9dec2 1859
7866a621
SN
1860 if (pt_prev) {
1861 deliver_skb(skb2, pt_prev, skb->dev);
1862 pt_prev = ptype;
1863 continue;
1864 }
1da177e4 1865
7866a621
SN
1866 /* need to clone skb, done only once */
1867 skb2 = skb_clone(skb, GFP_ATOMIC);
1868 if (!skb2)
1869 goto out_unlock;
70978182 1870
7866a621 1871 net_timestamp_set(skb2);
1da177e4 1872
7866a621
SN
1873 /* skb->nh should be correctly
1874 * set by sender, so that the second statement is
1875 * just protection against buggy protocols.
1876 */
1877 skb_reset_mac_header(skb2);
1878
1879 if (skb_network_header(skb2) < skb2->data ||
1880 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1881 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1882 ntohs(skb2->protocol),
1883 dev->name);
1884 skb_reset_network_header(skb2);
1da177e4 1885 }
7866a621
SN
1886
1887 skb2->transport_header = skb2->network_header;
1888 skb2->pkt_type = PACKET_OUTGOING;
1889 pt_prev = ptype;
1890 }
1891
1892 if (ptype_list == &ptype_all) {
1893 ptype_list = &dev->ptype_all;
1894 goto again;
1da177e4 1895 }
7866a621 1896out_unlock:
71d9dec2
CG
1897 if (pt_prev)
1898 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1899 rcu_read_unlock();
1900}
74b20582 1901EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1902
2c53040f
BH
1903/**
1904 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1905 * @dev: Network device
1906 * @txq: number of queues available
1907 *
1908 * If real_num_tx_queues is changed the tc mappings may no longer be
1909 * valid. To resolve this verify the tc mapping remains valid and if
1910 * not NULL the mapping. With no priorities mapping to this
1911 * offset/count pair it will no longer be used. In the worst case TC0
1912 * is invalid nothing can be done so disable priority mappings. If is
1913 * expected that drivers will fix this mapping if they can before
1914 * calling netif_set_real_num_tx_queues.
1915 */
bb134d22 1916static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1917{
1918 int i;
1919 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1920
1921 /* If TC0 is invalidated disable TC mapping */
1922 if (tc->offset + tc->count > txq) {
7b6cd1ce 1923 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1924 dev->num_tc = 0;
1925 return;
1926 }
1927
1928 /* Invalidated prio to tc mappings set to TC0 */
1929 for (i = 1; i < TC_BITMASK + 1; i++) {
1930 int q = netdev_get_prio_tc_map(dev, i);
1931
1932 tc = &dev->tc_to_txq[q];
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1934 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1935 i, q);
4f57c087
JF
1936 netdev_set_prio_tc_map(dev, i, 0);
1937 }
1938 }
1939}
1940
8d059b0f
AD
1941int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1942{
1943 if (dev->num_tc) {
1944 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1945 int i;
1946
1947 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1948 if ((txq - tc->offset) < tc->count)
1949 return i;
1950 }
1951
1952 return -1;
1953 }
1954
1955 return 0;
1956}
1957
537c00de
AD
1958#ifdef CONFIG_XPS
1959static DEFINE_MUTEX(xps_map_mutex);
1960#define xmap_dereference(P) \
1961 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1962
6234f874
AD
1963static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1964 int tci, u16 index)
537c00de 1965{
10cdc3f3
AD
1966 struct xps_map *map = NULL;
1967 int pos;
537c00de 1968
10cdc3f3 1969 if (dev_maps)
6234f874
AD
1970 map = xmap_dereference(dev_maps->cpu_map[tci]);
1971 if (!map)
1972 return false;
537c00de 1973
6234f874
AD
1974 for (pos = map->len; pos--;) {
1975 if (map->queues[pos] != index)
1976 continue;
1977
1978 if (map->len > 1) {
1979 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1980 break;
537c00de 1981 }
6234f874
AD
1982
1983 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1984 kfree_rcu(map, rcu);
1985 return false;
537c00de
AD
1986 }
1987
6234f874 1988 return true;
10cdc3f3
AD
1989}
1990
6234f874
AD
1991static bool remove_xps_queue_cpu(struct net_device *dev,
1992 struct xps_dev_maps *dev_maps,
1993 int cpu, u16 offset, u16 count)
1994{
184c449f
AD
1995 int num_tc = dev->num_tc ? : 1;
1996 bool active = false;
1997 int tci;
6234f874 1998
184c449f
AD
1999 for (tci = cpu * num_tc; num_tc--; tci++) {
2000 int i, j;
2001
2002 for (i = count, j = offset; i--; j++) {
2003 if (!remove_xps_queue(dev_maps, cpu, j))
2004 break;
2005 }
2006
2007 active |= i < 0;
6234f874
AD
2008 }
2009
184c449f 2010 return active;
6234f874
AD
2011}
2012
2013static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2014 u16 count)
10cdc3f3
AD
2015{
2016 struct xps_dev_maps *dev_maps;
024e9679 2017 int cpu, i;
10cdc3f3
AD
2018 bool active = false;
2019
2020 mutex_lock(&xps_map_mutex);
2021 dev_maps = xmap_dereference(dev->xps_maps);
2022
2023 if (!dev_maps)
2024 goto out_no_maps;
2025
6234f874
AD
2026 for_each_possible_cpu(cpu)
2027 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2028 offset, count);
10cdc3f3
AD
2029
2030 if (!active) {
537c00de
AD
2031 RCU_INIT_POINTER(dev->xps_maps, NULL);
2032 kfree_rcu(dev_maps, rcu);
2033 }
2034
6234f874 2035 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2036 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2037 NUMA_NO_NODE);
2038
537c00de
AD
2039out_no_maps:
2040 mutex_unlock(&xps_map_mutex);
2041}
2042
6234f874
AD
2043static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2044{
2045 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2046}
2047
01c5f864
AD
2048static struct xps_map *expand_xps_map(struct xps_map *map,
2049 int cpu, u16 index)
2050{
2051 struct xps_map *new_map;
2052 int alloc_len = XPS_MIN_MAP_ALLOC;
2053 int i, pos;
2054
2055 for (pos = 0; map && pos < map->len; pos++) {
2056 if (map->queues[pos] != index)
2057 continue;
2058 return map;
2059 }
2060
2061 /* Need to add queue to this CPU's existing map */
2062 if (map) {
2063 if (pos < map->alloc_len)
2064 return map;
2065
2066 alloc_len = map->alloc_len * 2;
2067 }
2068
2069 /* Need to allocate new map to store queue on this CPU's map */
2070 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2071 cpu_to_node(cpu));
2072 if (!new_map)
2073 return NULL;
2074
2075 for (i = 0; i < pos; i++)
2076 new_map->queues[i] = map->queues[i];
2077 new_map->alloc_len = alloc_len;
2078 new_map->len = pos;
2079
2080 return new_map;
2081}
2082
3573540c
MT
2083int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2084 u16 index)
537c00de 2085{
01c5f864 2086 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2087 int i, cpu, tci, numa_node_id = -2;
2088 int maps_sz, num_tc = 1, tc = 0;
537c00de 2089 struct xps_map *map, *new_map;
01c5f864 2090 bool active = false;
537c00de 2091
184c449f
AD
2092 if (dev->num_tc) {
2093 num_tc = dev->num_tc;
2094 tc = netdev_txq_to_tc(dev, index);
2095 if (tc < 0)
2096 return -EINVAL;
2097 }
2098
2099 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2100 if (maps_sz < L1_CACHE_BYTES)
2101 maps_sz = L1_CACHE_BYTES;
2102
537c00de
AD
2103 mutex_lock(&xps_map_mutex);
2104
2105 dev_maps = xmap_dereference(dev->xps_maps);
2106
01c5f864 2107 /* allocate memory for queue storage */
184c449f 2108 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2109 if (!new_dev_maps)
2110 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2111 if (!new_dev_maps) {
2112 mutex_unlock(&xps_map_mutex);
01c5f864 2113 return -ENOMEM;
2bb60cb9 2114 }
01c5f864 2115
184c449f
AD
2116 tci = cpu * num_tc + tc;
2117 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2118 NULL;
2119
2120 map = expand_xps_map(map, cpu, index);
2121 if (!map)
2122 goto error;
2123
184c449f 2124 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2125 }
2126
2127 if (!new_dev_maps)
2128 goto out_no_new_maps;
2129
537c00de 2130 for_each_possible_cpu(cpu) {
184c449f
AD
2131 /* copy maps belonging to foreign traffic classes */
2132 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2133 /* fill in the new device map from the old device map */
2134 map = xmap_dereference(dev_maps->cpu_map[tci]);
2135 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2136 }
2137
2138 /* We need to explicitly update tci as prevous loop
2139 * could break out early if dev_maps is NULL.
2140 */
2141 tci = cpu * num_tc + tc;
2142
01c5f864
AD
2143 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2144 /* add queue to CPU maps */
2145 int pos = 0;
2146
184c449f 2147 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2148 while ((pos < map->len) && (map->queues[pos] != index))
2149 pos++;
2150
2151 if (pos == map->len)
2152 map->queues[map->len++] = index;
537c00de 2153#ifdef CONFIG_NUMA
537c00de
AD
2154 if (numa_node_id == -2)
2155 numa_node_id = cpu_to_node(cpu);
2156 else if (numa_node_id != cpu_to_node(cpu))
2157 numa_node_id = -1;
537c00de 2158#endif
01c5f864
AD
2159 } else if (dev_maps) {
2160 /* fill in the new device map from the old device map */
184c449f
AD
2161 map = xmap_dereference(dev_maps->cpu_map[tci]);
2162 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2163 }
01c5f864 2164
184c449f
AD
2165 /* copy maps belonging to foreign traffic classes */
2166 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2167 /* fill in the new device map from the old device map */
2168 map = xmap_dereference(dev_maps->cpu_map[tci]);
2169 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 }
537c00de
AD
2171 }
2172
01c5f864
AD
2173 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2174
537c00de 2175 /* Cleanup old maps */
184c449f
AD
2176 if (!dev_maps)
2177 goto out_no_old_maps;
2178
2179 for_each_possible_cpu(cpu) {
2180 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2181 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2182 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2183 if (map && map != new_map)
2184 kfree_rcu(map, rcu);
2185 }
537c00de
AD
2186 }
2187
184c449f
AD
2188 kfree_rcu(dev_maps, rcu);
2189
2190out_no_old_maps:
01c5f864
AD
2191 dev_maps = new_dev_maps;
2192 active = true;
537c00de 2193
01c5f864
AD
2194out_no_new_maps:
2195 /* update Tx queue numa node */
537c00de
AD
2196 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2197 (numa_node_id >= 0) ? numa_node_id :
2198 NUMA_NO_NODE);
2199
01c5f864
AD
2200 if (!dev_maps)
2201 goto out_no_maps;
2202
2203 /* removes queue from unused CPUs */
2204 for_each_possible_cpu(cpu) {
184c449f
AD
2205 for (i = tc, tci = cpu * num_tc; i--; tci++)
2206 active |= remove_xps_queue(dev_maps, tci, index);
2207 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2208 active |= remove_xps_queue(dev_maps, tci, index);
2209 for (i = num_tc - tc, tci++; --i; tci++)
2210 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2211 }
2212
2213 /* free map if not active */
2214 if (!active) {
2215 RCU_INIT_POINTER(dev->xps_maps, NULL);
2216 kfree_rcu(dev_maps, rcu);
2217 }
2218
2219out_no_maps:
537c00de
AD
2220 mutex_unlock(&xps_map_mutex);
2221
2222 return 0;
2223error:
01c5f864
AD
2224 /* remove any maps that we added */
2225 for_each_possible_cpu(cpu) {
184c449f
AD
2226 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2227 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2228 map = dev_maps ?
2229 xmap_dereference(dev_maps->cpu_map[tci]) :
2230 NULL;
2231 if (new_map && new_map != map)
2232 kfree(new_map);
2233 }
01c5f864
AD
2234 }
2235
537c00de
AD
2236 mutex_unlock(&xps_map_mutex);
2237
537c00de
AD
2238 kfree(new_dev_maps);
2239 return -ENOMEM;
2240}
2241EXPORT_SYMBOL(netif_set_xps_queue);
2242
2243#endif
9cf1f6a8
AD
2244void netdev_reset_tc(struct net_device *dev)
2245{
6234f874
AD
2246#ifdef CONFIG_XPS
2247 netif_reset_xps_queues_gt(dev, 0);
2248#endif
9cf1f6a8
AD
2249 dev->num_tc = 0;
2250 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2251 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2252}
2253EXPORT_SYMBOL(netdev_reset_tc);
2254
2255int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2256{
2257 if (tc >= dev->num_tc)
2258 return -EINVAL;
2259
6234f874
AD
2260#ifdef CONFIG_XPS
2261 netif_reset_xps_queues(dev, offset, count);
2262#endif
9cf1f6a8
AD
2263 dev->tc_to_txq[tc].count = count;
2264 dev->tc_to_txq[tc].offset = offset;
2265 return 0;
2266}
2267EXPORT_SYMBOL(netdev_set_tc_queue);
2268
2269int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2270{
2271 if (num_tc > TC_MAX_QUEUE)
2272 return -EINVAL;
2273
6234f874
AD
2274#ifdef CONFIG_XPS
2275 netif_reset_xps_queues_gt(dev, 0);
2276#endif
9cf1f6a8
AD
2277 dev->num_tc = num_tc;
2278 return 0;
2279}
2280EXPORT_SYMBOL(netdev_set_num_tc);
2281
f0796d5c
JF
2282/*
2283 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2284 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2285 */
e6484930 2286int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2287{
1d24eb48
TH
2288 int rc;
2289
e6484930
TH
2290 if (txq < 1 || txq > dev->num_tx_queues)
2291 return -EINVAL;
f0796d5c 2292
5c56580b
BH
2293 if (dev->reg_state == NETREG_REGISTERED ||
2294 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2295 ASSERT_RTNL();
2296
1d24eb48
TH
2297 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2298 txq);
bf264145
TH
2299 if (rc)
2300 return rc;
2301
4f57c087
JF
2302 if (dev->num_tc)
2303 netif_setup_tc(dev, txq);
2304
024e9679 2305 if (txq < dev->real_num_tx_queues) {
e6484930 2306 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2307#ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, txq);
2309#endif
2310 }
f0796d5c 2311 }
e6484930
TH
2312
2313 dev->real_num_tx_queues = txq;
2314 return 0;
f0796d5c
JF
2315}
2316EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2317
a953be53 2318#ifdef CONFIG_SYSFS
62fe0b40
BH
2319/**
2320 * netif_set_real_num_rx_queues - set actual number of RX queues used
2321 * @dev: Network device
2322 * @rxq: Actual number of RX queues
2323 *
2324 * This must be called either with the rtnl_lock held or before
2325 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2326 * negative error code. If called before registration, it always
2327 * succeeds.
62fe0b40
BH
2328 */
2329int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2330{
2331 int rc;
2332
bd25fa7b
TH
2333 if (rxq < 1 || rxq > dev->num_rx_queues)
2334 return -EINVAL;
2335
62fe0b40
BH
2336 if (dev->reg_state == NETREG_REGISTERED) {
2337 ASSERT_RTNL();
2338
62fe0b40
BH
2339 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2340 rxq);
2341 if (rc)
2342 return rc;
62fe0b40
BH
2343 }
2344
2345 dev->real_num_rx_queues = rxq;
2346 return 0;
2347}
2348EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2349#endif
2350
2c53040f
BH
2351/**
2352 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2353 *
2354 * This routine should set an upper limit on the number of RSS queues
2355 * used by default by multiqueue devices.
2356 */
a55b138b 2357int netif_get_num_default_rss_queues(void)
16917b87 2358{
40e4e713
HS
2359 return is_kdump_kernel() ?
2360 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2361}
2362EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2363
3bcb846c 2364static void __netif_reschedule(struct Qdisc *q)
56079431 2365{
def82a1d
JP
2366 struct softnet_data *sd;
2367 unsigned long flags;
56079431 2368
def82a1d 2369 local_irq_save(flags);
903ceff7 2370 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2371 q->next_sched = NULL;
2372 *sd->output_queue_tailp = q;
2373 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2374 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2375 local_irq_restore(flags);
2376}
2377
2378void __netif_schedule(struct Qdisc *q)
2379{
2380 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2381 __netif_reschedule(q);
56079431
DV
2382}
2383EXPORT_SYMBOL(__netif_schedule);
2384
e6247027
ED
2385struct dev_kfree_skb_cb {
2386 enum skb_free_reason reason;
2387};
2388
2389static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2390{
e6247027
ED
2391 return (struct dev_kfree_skb_cb *)skb->cb;
2392}
2393
46e5da40
JF
2394void netif_schedule_queue(struct netdev_queue *txq)
2395{
2396 rcu_read_lock();
2397 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2398 struct Qdisc *q = rcu_dereference(txq->qdisc);
2399
2400 __netif_schedule(q);
2401 }
2402 rcu_read_unlock();
2403}
2404EXPORT_SYMBOL(netif_schedule_queue);
2405
46e5da40
JF
2406void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2407{
2408 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2409 struct Qdisc *q;
2410
2411 rcu_read_lock();
2412 q = rcu_dereference(dev_queue->qdisc);
2413 __netif_schedule(q);
2414 rcu_read_unlock();
2415 }
2416}
2417EXPORT_SYMBOL(netif_tx_wake_queue);
2418
e6247027 2419void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2420{
e6247027 2421 unsigned long flags;
56079431 2422
e6247027
ED
2423 if (likely(atomic_read(&skb->users) == 1)) {
2424 smp_rmb();
2425 atomic_set(&skb->users, 0);
2426 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2427 return;
bea3348e 2428 }
e6247027
ED
2429 get_kfree_skb_cb(skb)->reason = reason;
2430 local_irq_save(flags);
2431 skb->next = __this_cpu_read(softnet_data.completion_queue);
2432 __this_cpu_write(softnet_data.completion_queue, skb);
2433 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2434 local_irq_restore(flags);
56079431 2435}
e6247027 2436EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2437
e6247027 2438void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2439{
2440 if (in_irq() || irqs_disabled())
e6247027 2441 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2442 else
2443 dev_kfree_skb(skb);
2444}
e6247027 2445EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2446
2447
bea3348e
SH
2448/**
2449 * netif_device_detach - mark device as removed
2450 * @dev: network device
2451 *
2452 * Mark device as removed from system and therefore no longer available.
2453 */
56079431
DV
2454void netif_device_detach(struct net_device *dev)
2455{
2456 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2457 netif_running(dev)) {
d543103a 2458 netif_tx_stop_all_queues(dev);
56079431
DV
2459 }
2460}
2461EXPORT_SYMBOL(netif_device_detach);
2462
bea3348e
SH
2463/**
2464 * netif_device_attach - mark device as attached
2465 * @dev: network device
2466 *
2467 * Mark device as attached from system and restart if needed.
2468 */
56079431
DV
2469void netif_device_attach(struct net_device *dev)
2470{
2471 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2472 netif_running(dev)) {
d543103a 2473 netif_tx_wake_all_queues(dev);
4ec93edb 2474 __netdev_watchdog_up(dev);
56079431
DV
2475 }
2476}
2477EXPORT_SYMBOL(netif_device_attach);
2478
5605c762
JP
2479/*
2480 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2481 * to be used as a distribution range.
2482 */
2483u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2484 unsigned int num_tx_queues)
2485{
2486 u32 hash;
2487 u16 qoffset = 0;
2488 u16 qcount = num_tx_queues;
2489
2490 if (skb_rx_queue_recorded(skb)) {
2491 hash = skb_get_rx_queue(skb);
2492 while (unlikely(hash >= num_tx_queues))
2493 hash -= num_tx_queues;
2494 return hash;
2495 }
2496
2497 if (dev->num_tc) {
2498 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2499 qoffset = dev->tc_to_txq[tc].offset;
2500 qcount = dev->tc_to_txq[tc].count;
2501 }
2502
2503 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2504}
2505EXPORT_SYMBOL(__skb_tx_hash);
2506
36c92474
BH
2507static void skb_warn_bad_offload(const struct sk_buff *skb)
2508{
84d15ae5 2509 static const netdev_features_t null_features;
36c92474 2510 struct net_device *dev = skb->dev;
88ad4175 2511 const char *name = "";
36c92474 2512
c846ad9b
BG
2513 if (!net_ratelimit())
2514 return;
2515
88ad4175
BM
2516 if (dev) {
2517 if (dev->dev.parent)
2518 name = dev_driver_string(dev->dev.parent);
2519 else
2520 name = netdev_name(dev);
2521 }
36c92474
BH
2522 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2523 "gso_type=%d ip_summed=%d\n",
88ad4175 2524 name, dev ? &dev->features : &null_features,
65e9d2fa 2525 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2526 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2527 skb_shinfo(skb)->gso_type, skb->ip_summed);
2528}
2529
1da177e4
LT
2530/*
2531 * Invalidate hardware checksum when packet is to be mangled, and
2532 * complete checksum manually on outgoing path.
2533 */
84fa7933 2534int skb_checksum_help(struct sk_buff *skb)
1da177e4 2535{
d3bc23e7 2536 __wsum csum;
663ead3b 2537 int ret = 0, offset;
1da177e4 2538
84fa7933 2539 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2540 goto out_set_summed;
2541
2542 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2543 skb_warn_bad_offload(skb);
2544 return -EINVAL;
1da177e4
LT
2545 }
2546
cef401de
ED
2547 /* Before computing a checksum, we should make sure no frag could
2548 * be modified by an external entity : checksum could be wrong.
2549 */
2550 if (skb_has_shared_frag(skb)) {
2551 ret = __skb_linearize(skb);
2552 if (ret)
2553 goto out;
2554 }
2555
55508d60 2556 offset = skb_checksum_start_offset(skb);
a030847e
HX
2557 BUG_ON(offset >= skb_headlen(skb));
2558 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2559
2560 offset += skb->csum_offset;
2561 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2562
2563 if (skb_cloned(skb) &&
2564 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2565 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2566 if (ret)
2567 goto out;
2568 }
2569
4f2e4ad5 2570 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2571out_set_summed:
1da177e4 2572 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2573out:
1da177e4
LT
2574 return ret;
2575}
d1b19dff 2576EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2577
53d6471c 2578__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2579{
252e3346 2580 __be16 type = skb->protocol;
f6a78bfc 2581
19acc327
PS
2582 /* Tunnel gso handlers can set protocol to ethernet. */
2583 if (type == htons(ETH_P_TEB)) {
2584 struct ethhdr *eth;
2585
2586 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2587 return 0;
2588
2589 eth = (struct ethhdr *)skb_mac_header(skb);
2590 type = eth->h_proto;
2591 }
2592
d4bcef3f 2593 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2594}
2595
2596/**
2597 * skb_mac_gso_segment - mac layer segmentation handler.
2598 * @skb: buffer to segment
2599 * @features: features for the output path (see dev->features)
2600 */
2601struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2602 netdev_features_t features)
2603{
2604 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2605 struct packet_offload *ptype;
53d6471c
VY
2606 int vlan_depth = skb->mac_len;
2607 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2608
2609 if (unlikely(!type))
2610 return ERR_PTR(-EINVAL);
2611
53d6471c 2612 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2613
2614 rcu_read_lock();
22061d80 2615 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2616 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2617 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2618 break;
2619 }
2620 }
2621 rcu_read_unlock();
2622
98e399f8 2623 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2624
f6a78bfc
HX
2625 return segs;
2626}
05e8ef4a
PS
2627EXPORT_SYMBOL(skb_mac_gso_segment);
2628
2629
2630/* openvswitch calls this on rx path, so we need a different check.
2631 */
2632static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2633{
2634 if (tx_path)
6e7bc478
ED
2635 return skb->ip_summed != CHECKSUM_PARTIAL &&
2636 skb->ip_summed != CHECKSUM_NONE;
2637
2638 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2639}
2640
2641/**
2642 * __skb_gso_segment - Perform segmentation on skb.
2643 * @skb: buffer to segment
2644 * @features: features for the output path (see dev->features)
2645 * @tx_path: whether it is called in TX path
2646 *
2647 * This function segments the given skb and returns a list of segments.
2648 *
2649 * It may return NULL if the skb requires no segmentation. This is
2650 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2651 *
2652 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2653 */
2654struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2655 netdev_features_t features, bool tx_path)
2656{
b2504a5d
ED
2657 struct sk_buff *segs;
2658
05e8ef4a
PS
2659 if (unlikely(skb_needs_check(skb, tx_path))) {
2660 int err;
2661
b2504a5d 2662 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2663 err = skb_cow_head(skb, 0);
2664 if (err < 0)
05e8ef4a
PS
2665 return ERR_PTR(err);
2666 }
2667
802ab55a
AD
2668 /* Only report GSO partial support if it will enable us to
2669 * support segmentation on this frame without needing additional
2670 * work.
2671 */
2672 if (features & NETIF_F_GSO_PARTIAL) {
2673 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2674 struct net_device *dev = skb->dev;
2675
2676 partial_features |= dev->features & dev->gso_partial_features;
2677 if (!skb_gso_ok(skb, features | partial_features))
2678 features &= ~NETIF_F_GSO_PARTIAL;
2679 }
2680
9207f9d4
KK
2681 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2682 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2683
68c33163 2684 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2685 SKB_GSO_CB(skb)->encap_level = 0;
2686
05e8ef4a
PS
2687 skb_reset_mac_header(skb);
2688 skb_reset_mac_len(skb);
2689
b2504a5d
ED
2690 segs = skb_mac_gso_segment(skb, features);
2691
2692 if (unlikely(skb_needs_check(skb, tx_path)))
2693 skb_warn_bad_offload(skb);
2694
2695 return segs;
05e8ef4a 2696}
12b0004d 2697EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2698
fb286bb2
HX
2699/* Take action when hardware reception checksum errors are detected. */
2700#ifdef CONFIG_BUG
2701void netdev_rx_csum_fault(struct net_device *dev)
2702{
2703 if (net_ratelimit()) {
7b6cd1ce 2704 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2705 dump_stack();
2706 }
2707}
2708EXPORT_SYMBOL(netdev_rx_csum_fault);
2709#endif
2710
1da177e4
LT
2711/* Actually, we should eliminate this check as soon as we know, that:
2712 * 1. IOMMU is present and allows to map all the memory.
2713 * 2. No high memory really exists on this machine.
2714 */
2715
c1e756bf 2716static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2717{
3d3a8533 2718#ifdef CONFIG_HIGHMEM
1da177e4 2719 int i;
5acbbd42 2720 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2722 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2723 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2724 return 1;
ea2ab693 2725 }
5acbbd42 2726 }
1da177e4 2727
5acbbd42
FT
2728 if (PCI_DMA_BUS_IS_PHYS) {
2729 struct device *pdev = dev->dev.parent;
1da177e4 2730
9092c658
ED
2731 if (!pdev)
2732 return 0;
5acbbd42 2733 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2734 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2735 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2736 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2737 return 1;
2738 }
2739 }
3d3a8533 2740#endif
1da177e4
LT
2741 return 0;
2742}
1da177e4 2743
3b392ddb
SH
2744/* If MPLS offload request, verify we are testing hardware MPLS features
2745 * instead of standard features for the netdev.
2746 */
d0edc7bf 2747#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2748static netdev_features_t net_mpls_features(struct sk_buff *skb,
2749 netdev_features_t features,
2750 __be16 type)
2751{
25cd9ba0 2752 if (eth_p_mpls(type))
3b392ddb
SH
2753 features &= skb->dev->mpls_features;
2754
2755 return features;
2756}
2757#else
2758static netdev_features_t net_mpls_features(struct sk_buff *skb,
2759 netdev_features_t features,
2760 __be16 type)
2761{
2762 return features;
2763}
2764#endif
2765
c8f44aff 2766static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2767 netdev_features_t features)
f01a5236 2768{
53d6471c 2769 int tmp;
3b392ddb
SH
2770 __be16 type;
2771
2772 type = skb_network_protocol(skb, &tmp);
2773 features = net_mpls_features(skb, features, type);
53d6471c 2774
c0d680e5 2775 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2776 !can_checksum_protocol(features, type)) {
996e8021 2777 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2778 }
7be2c82c
ED
2779 if (illegal_highdma(skb->dev, skb))
2780 features &= ~NETIF_F_SG;
f01a5236
JG
2781
2782 return features;
2783}
2784
e38f3025
TM
2785netdev_features_t passthru_features_check(struct sk_buff *skb,
2786 struct net_device *dev,
2787 netdev_features_t features)
2788{
2789 return features;
2790}
2791EXPORT_SYMBOL(passthru_features_check);
2792
8cb65d00
TM
2793static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2794 struct net_device *dev,
2795 netdev_features_t features)
2796{
2797 return vlan_features_check(skb, features);
2798}
2799
cbc53e08
AD
2800static netdev_features_t gso_features_check(const struct sk_buff *skb,
2801 struct net_device *dev,
2802 netdev_features_t features)
2803{
2804 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2805
2806 if (gso_segs > dev->gso_max_segs)
2807 return features & ~NETIF_F_GSO_MASK;
2808
802ab55a
AD
2809 /* Support for GSO partial features requires software
2810 * intervention before we can actually process the packets
2811 * so we need to strip support for any partial features now
2812 * and we can pull them back in after we have partially
2813 * segmented the frame.
2814 */
2815 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2816 features &= ~dev->gso_partial_features;
2817
2818 /* Make sure to clear the IPv4 ID mangling feature if the
2819 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2820 */
2821 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2822 struct iphdr *iph = skb->encapsulation ?
2823 inner_ip_hdr(skb) : ip_hdr(skb);
2824
2825 if (!(iph->frag_off & htons(IP_DF)))
2826 features &= ~NETIF_F_TSO_MANGLEID;
2827 }
2828
2829 return features;
2830}
2831
c1e756bf 2832netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2833{
5f35227e 2834 struct net_device *dev = skb->dev;
fcbeb976 2835 netdev_features_t features = dev->features;
58e998c6 2836
cbc53e08
AD
2837 if (skb_is_gso(skb))
2838 features = gso_features_check(skb, dev, features);
30b678d8 2839
5f35227e
JG
2840 /* If encapsulation offload request, verify we are testing
2841 * hardware encapsulation features instead of standard
2842 * features for the netdev
2843 */
2844 if (skb->encapsulation)
2845 features &= dev->hw_enc_features;
2846
f5a7fb88
TM
2847 if (skb_vlan_tagged(skb))
2848 features = netdev_intersect_features(features,
2849 dev->vlan_features |
2850 NETIF_F_HW_VLAN_CTAG_TX |
2851 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2852
5f35227e
JG
2853 if (dev->netdev_ops->ndo_features_check)
2854 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2855 features);
8cb65d00
TM
2856 else
2857 features &= dflt_features_check(skb, dev, features);
5f35227e 2858
c1e756bf 2859 return harmonize_features(skb, features);
58e998c6 2860}
c1e756bf 2861EXPORT_SYMBOL(netif_skb_features);
58e998c6 2862
2ea25513 2863static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2864 struct netdev_queue *txq, bool more)
f6a78bfc 2865{
2ea25513
DM
2866 unsigned int len;
2867 int rc;
00829823 2868
7866a621 2869 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2870 dev_queue_xmit_nit(skb, dev);
fc741216 2871
2ea25513
DM
2872 len = skb->len;
2873 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2874 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2875 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2876
2ea25513
DM
2877 return rc;
2878}
7b9c6090 2879
8dcda22a
DM
2880struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2881 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2882{
2883 struct sk_buff *skb = first;
2884 int rc = NETDEV_TX_OK;
7b9c6090 2885
7f2e870f
DM
2886 while (skb) {
2887 struct sk_buff *next = skb->next;
fc70fb64 2888
7f2e870f 2889 skb->next = NULL;
95f6b3dd 2890 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2891 if (unlikely(!dev_xmit_complete(rc))) {
2892 skb->next = next;
2893 goto out;
2894 }
6afff0ca 2895
7f2e870f
DM
2896 skb = next;
2897 if (netif_xmit_stopped(txq) && skb) {
2898 rc = NETDEV_TX_BUSY;
2899 break;
9ccb8975 2900 }
7f2e870f 2901 }
9ccb8975 2902
7f2e870f
DM
2903out:
2904 *ret = rc;
2905 return skb;
2906}
b40863c6 2907
1ff0dc94
ED
2908static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2909 netdev_features_t features)
f6a78bfc 2910{
df8a39de 2911 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2912 !vlan_hw_offload_capable(features, skb->vlan_proto))
2913 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2914 return skb;
2915}
f6a78bfc 2916
55a93b3e 2917static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2918{
2919 netdev_features_t features;
f6a78bfc 2920
eae3f88e
DM
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
7b9c6090 2925
8b86a61d 2926 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2927 struct sk_buff *segs;
2928
2929 segs = skb_gso_segment(skb, features);
cecda693 2930 if (IS_ERR(segs)) {
af6dabc9 2931 goto out_kfree_skb;
cecda693
JW
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
f6a78bfc 2935 }
eae3f88e
DM
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
4ec93edb 2940
eae3f88e
DM
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2944 */
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
a188222b 2952 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
7b9c6090 2955 }
0c772159 2956 }
7b9c6090 2957
eae3f88e 2958 return skb;
fc70fb64 2959
f6a78bfc
HX
2960out_kfree_skb:
2961 kfree_skb(skb);
eae3f88e 2962out_null:
d21fd63e 2963 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2964 return NULL;
2965}
6afff0ca 2966
55a93b3e
ED
2967struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2968{
2969 struct sk_buff *next, *head = NULL, *tail;
2970
bec3cfdc 2971 for (; skb != NULL; skb = next) {
55a93b3e
ED
2972 next = skb->next;
2973 skb->next = NULL;
bec3cfdc
ED
2974
2975 /* in case skb wont be segmented, point to itself */
2976 skb->prev = skb;
2977
55a93b3e 2978 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2979 if (!skb)
2980 continue;
55a93b3e 2981
bec3cfdc
ED
2982 if (!head)
2983 head = skb;
2984 else
2985 tail->next = skb;
2986 /* If skb was segmented, skb->prev points to
2987 * the last segment. If not, it still contains skb.
2988 */
2989 tail = skb->prev;
55a93b3e
ED
2990 }
2991 return head;
f6a78bfc 2992}
104ba78c 2993EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 2994
1def9238
ED
2995static void qdisc_pkt_len_init(struct sk_buff *skb)
2996{
2997 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2998
2999 qdisc_skb_cb(skb)->pkt_len = skb->len;
3000
3001 /* To get more precise estimation of bytes sent on wire,
3002 * we add to pkt_len the headers size of all segments
3003 */
3004 if (shinfo->gso_size) {
757b8b1d 3005 unsigned int hdr_len;
15e5a030 3006 u16 gso_segs = shinfo->gso_segs;
1def9238 3007
757b8b1d
ED
3008 /* mac layer + network layer */
3009 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3010
3011 /* + transport layer */
1def9238
ED
3012 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3013 hdr_len += tcp_hdrlen(skb);
3014 else
3015 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3016
3017 if (shinfo->gso_type & SKB_GSO_DODGY)
3018 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3019 shinfo->gso_size);
3020
3021 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3022 }
3023}
3024
bbd8a0d3
KK
3025static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3026 struct net_device *dev,
3027 struct netdev_queue *txq)
3028{
3029 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3030 struct sk_buff *to_free = NULL;
a2da570d 3031 bool contended;
bbd8a0d3
KK
3032 int rc;
3033
a2da570d 3034 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3035 /*
3036 * Heuristic to force contended enqueues to serialize on a
3037 * separate lock before trying to get qdisc main lock.
f9eb8aea 3038 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3039 * often and dequeue packets faster.
79640a4c 3040 */
a2da570d 3041 contended = qdisc_is_running(q);
79640a4c
ED
3042 if (unlikely(contended))
3043 spin_lock(&q->busylock);
3044
bbd8a0d3
KK
3045 spin_lock(root_lock);
3046 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3047 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3048 rc = NET_XMIT_DROP;
3049 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3050 qdisc_run_begin(q)) {
bbd8a0d3
KK
3051 /*
3052 * This is a work-conserving queue; there are no old skbs
3053 * waiting to be sent out; and the qdisc is not running -
3054 * xmit the skb directly.
3055 */
bfe0d029 3056
bfe0d029
ED
3057 qdisc_bstats_update(q, skb);
3058
55a93b3e 3059 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3060 if (unlikely(contended)) {
3061 spin_unlock(&q->busylock);
3062 contended = false;
3063 }
bbd8a0d3 3064 __qdisc_run(q);
79640a4c 3065 } else
bc135b23 3066 qdisc_run_end(q);
bbd8a0d3
KK
3067
3068 rc = NET_XMIT_SUCCESS;
3069 } else {
520ac30f 3070 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3071 if (qdisc_run_begin(q)) {
3072 if (unlikely(contended)) {
3073 spin_unlock(&q->busylock);
3074 contended = false;
3075 }
3076 __qdisc_run(q);
3077 }
bbd8a0d3
KK
3078 }
3079 spin_unlock(root_lock);
520ac30f
ED
3080 if (unlikely(to_free))
3081 kfree_skb_list(to_free);
79640a4c
ED
3082 if (unlikely(contended))
3083 spin_unlock(&q->busylock);
bbd8a0d3
KK
3084 return rc;
3085}
3086
86f8515f 3087#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3088static void skb_update_prio(struct sk_buff *skb)
3089{
6977a79d 3090 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3091
91c68ce2 3092 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3093 unsigned int prioidx =
3094 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3095
3096 if (prioidx < map->priomap_len)
3097 skb->priority = map->priomap[prioidx];
3098 }
5bc1421e
NH
3099}
3100#else
3101#define skb_update_prio(skb)
3102#endif
3103
f60e5990 3104DEFINE_PER_CPU(int, xmit_recursion);
3105EXPORT_SYMBOL(xmit_recursion);
3106
95603e22
MM
3107/**
3108 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3109 * @net: network namespace this loopback is happening in
3110 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3111 * @skb: buffer to transmit
3112 */
0c4b51f0 3113int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3114{
3115 skb_reset_mac_header(skb);
3116 __skb_pull(skb, skb_network_offset(skb));
3117 skb->pkt_type = PACKET_LOOPBACK;
3118 skb->ip_summed = CHECKSUM_UNNECESSARY;
3119 WARN_ON(!skb_dst(skb));
3120 skb_dst_force(skb);
3121 netif_rx_ni(skb);
3122 return 0;
3123}
3124EXPORT_SYMBOL(dev_loopback_xmit);
3125
1f211a1b
DB
3126#ifdef CONFIG_NET_EGRESS
3127static struct sk_buff *
3128sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3129{
3130 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3131 struct tcf_result cl_res;
3132
3133 if (!cl)
3134 return skb;
3135
8dc07fdb 3136 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3137 qdisc_bstats_cpu_update(cl->q, skb);
3138
3139 switch (tc_classify(skb, cl, &cl_res, false)) {
3140 case TC_ACT_OK:
3141 case TC_ACT_RECLASSIFY:
3142 skb->tc_index = TC_H_MIN(cl_res.classid);
3143 break;
3144 case TC_ACT_SHOT:
3145 qdisc_qstats_cpu_drop(cl->q);
3146 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3147 kfree_skb(skb);
3148 return NULL;
1f211a1b
DB
3149 case TC_ACT_STOLEN:
3150 case TC_ACT_QUEUED:
3151 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3152 consume_skb(skb);
1f211a1b
DB
3153 return NULL;
3154 case TC_ACT_REDIRECT:
3155 /* No need to push/pop skb's mac_header here on egress! */
3156 skb_do_redirect(skb);
3157 *ret = NET_XMIT_SUCCESS;
3158 return NULL;
3159 default:
3160 break;
3161 }
3162
3163 return skb;
3164}
3165#endif /* CONFIG_NET_EGRESS */
3166
638b2a69
JP
3167static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3168{
3169#ifdef CONFIG_XPS
3170 struct xps_dev_maps *dev_maps;
3171 struct xps_map *map;
3172 int queue_index = -1;
3173
3174 rcu_read_lock();
3175 dev_maps = rcu_dereference(dev->xps_maps);
3176 if (dev_maps) {
184c449f
AD
3177 unsigned int tci = skb->sender_cpu - 1;
3178
3179 if (dev->num_tc) {
3180 tci *= dev->num_tc;
3181 tci += netdev_get_prio_tc_map(dev, skb->priority);
3182 }
3183
3184 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3185 if (map) {
3186 if (map->len == 1)
3187 queue_index = map->queues[0];
3188 else
3189 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3190 map->len)];
3191 if (unlikely(queue_index >= dev->real_num_tx_queues))
3192 queue_index = -1;
3193 }
3194 }
3195 rcu_read_unlock();
3196
3197 return queue_index;
3198#else
3199 return -1;
3200#endif
3201}
3202
3203static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3204{
3205 struct sock *sk = skb->sk;
3206 int queue_index = sk_tx_queue_get(sk);
3207
3208 if (queue_index < 0 || skb->ooo_okay ||
3209 queue_index >= dev->real_num_tx_queues) {
3210 int new_index = get_xps_queue(dev, skb);
3211 if (new_index < 0)
3212 new_index = skb_tx_hash(dev, skb);
3213
3214 if (queue_index != new_index && sk &&
004a5d01 3215 sk_fullsock(sk) &&
638b2a69
JP
3216 rcu_access_pointer(sk->sk_dst_cache))
3217 sk_tx_queue_set(sk, new_index);
3218
3219 queue_index = new_index;
3220 }
3221
3222 return queue_index;
3223}
3224
3225struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3226 struct sk_buff *skb,
3227 void *accel_priv)
3228{
3229 int queue_index = 0;
3230
3231#ifdef CONFIG_XPS
52bd2d62
ED
3232 u32 sender_cpu = skb->sender_cpu - 1;
3233
3234 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3235 skb->sender_cpu = raw_smp_processor_id() + 1;
3236#endif
3237
3238 if (dev->real_num_tx_queues != 1) {
3239 const struct net_device_ops *ops = dev->netdev_ops;
3240 if (ops->ndo_select_queue)
3241 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3242 __netdev_pick_tx);
3243 else
3244 queue_index = __netdev_pick_tx(dev, skb);
3245
3246 if (!accel_priv)
3247 queue_index = netdev_cap_txqueue(dev, queue_index);
3248 }
3249
3250 skb_set_queue_mapping(skb, queue_index);
3251 return netdev_get_tx_queue(dev, queue_index);
3252}
3253
d29f749e 3254/**
9d08dd3d 3255 * __dev_queue_xmit - transmit a buffer
d29f749e 3256 * @skb: buffer to transmit
9d08dd3d 3257 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3258 *
3259 * Queue a buffer for transmission to a network device. The caller must
3260 * have set the device and priority and built the buffer before calling
3261 * this function. The function can be called from an interrupt.
3262 *
3263 * A negative errno code is returned on a failure. A success does not
3264 * guarantee the frame will be transmitted as it may be dropped due
3265 * to congestion or traffic shaping.
3266 *
3267 * -----------------------------------------------------------------------------------
3268 * I notice this method can also return errors from the queue disciplines,
3269 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3270 * be positive.
3271 *
3272 * Regardless of the return value, the skb is consumed, so it is currently
3273 * difficult to retry a send to this method. (You can bump the ref count
3274 * before sending to hold a reference for retry if you are careful.)
3275 *
3276 * When calling this method, interrupts MUST be enabled. This is because
3277 * the BH enable code must have IRQs enabled so that it will not deadlock.
3278 * --BLG
3279 */
0a59f3a9 3280static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3281{
3282 struct net_device *dev = skb->dev;
dc2b4847 3283 struct netdev_queue *txq;
1da177e4
LT
3284 struct Qdisc *q;
3285 int rc = -ENOMEM;
3286
6d1ccff6
ED
3287 skb_reset_mac_header(skb);
3288
e7fd2885
WB
3289 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3290 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3291
4ec93edb
YH
3292 /* Disable soft irqs for various locks below. Also
3293 * stops preemption for RCU.
1da177e4 3294 */
4ec93edb 3295 rcu_read_lock_bh();
1da177e4 3296
5bc1421e
NH
3297 skb_update_prio(skb);
3298
1f211a1b
DB
3299 qdisc_pkt_len_init(skb);
3300#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3301 skb->tc_at_ingress = 0;
1f211a1b
DB
3302# ifdef CONFIG_NET_EGRESS
3303 if (static_key_false(&egress_needed)) {
3304 skb = sch_handle_egress(skb, &rc, dev);
3305 if (!skb)
3306 goto out;
3307 }
3308# endif
3309#endif
02875878
ED
3310 /* If device/qdisc don't need skb->dst, release it right now while
3311 * its hot in this cpu cache.
3312 */
3313 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3314 skb_dst_drop(skb);
3315 else
3316 skb_dst_force(skb);
3317
f663dd9a 3318 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3319 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3320
cf66ba58 3321 trace_net_dev_queue(skb);
1da177e4 3322 if (q->enqueue) {
bbd8a0d3 3323 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3324 goto out;
1da177e4
LT
3325 }
3326
3327 /* The device has no queue. Common case for software devices:
3328 loopback, all the sorts of tunnels...
3329
932ff279
HX
3330 Really, it is unlikely that netif_tx_lock protection is necessary
3331 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3332 counters.)
3333 However, it is possible, that they rely on protection
3334 made by us here.
3335
3336 Check this and shot the lock. It is not prone from deadlocks.
3337 Either shot noqueue qdisc, it is even simpler 8)
3338 */
3339 if (dev->flags & IFF_UP) {
3340 int cpu = smp_processor_id(); /* ok because BHs are off */
3341
c773e847 3342 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3343 if (unlikely(__this_cpu_read(xmit_recursion) >
3344 XMIT_RECURSION_LIMIT))
745e20f1
ED
3345 goto recursion_alert;
3346
1f59533f
JDB
3347 skb = validate_xmit_skb(skb, dev);
3348 if (!skb)
d21fd63e 3349 goto out;
1f59533f 3350
c773e847 3351 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3352
73466498 3353 if (!netif_xmit_stopped(txq)) {
745e20f1 3354 __this_cpu_inc(xmit_recursion);
ce93718f 3355 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3356 __this_cpu_dec(xmit_recursion);
572a9d7b 3357 if (dev_xmit_complete(rc)) {
c773e847 3358 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3359 goto out;
3360 }
3361 }
c773e847 3362 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3363 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3364 dev->name);
1da177e4
LT
3365 } else {
3366 /* Recursion is detected! It is possible,
745e20f1
ED
3367 * unfortunately
3368 */
3369recursion_alert:
e87cc472
JP
3370 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3371 dev->name);
1da177e4
LT
3372 }
3373 }
3374
3375 rc = -ENETDOWN;
d4828d85 3376 rcu_read_unlock_bh();
1da177e4 3377
015f0688 3378 atomic_long_inc(&dev->tx_dropped);
1f59533f 3379 kfree_skb_list(skb);
1da177e4
LT
3380 return rc;
3381out:
d4828d85 3382 rcu_read_unlock_bh();
1da177e4
LT
3383 return rc;
3384}
f663dd9a 3385
2b4aa3ce 3386int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3387{
3388 return __dev_queue_xmit(skb, NULL);
3389}
2b4aa3ce 3390EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3391
f663dd9a
JW
3392int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3393{
3394 return __dev_queue_xmit(skb, accel_priv);
3395}
3396EXPORT_SYMBOL(dev_queue_xmit_accel);
3397
1da177e4
LT
3398
3399/*=======================================================================
3400 Receiver routines
3401 =======================================================================*/
3402
6b2bedc3 3403int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3404EXPORT_SYMBOL(netdev_max_backlog);
3405
3b098e2d 3406int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3407int netdev_budget __read_mostly = 300;
3d48b53f
MT
3408int weight_p __read_mostly = 64; /* old backlog weight */
3409int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3410int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3411int dev_rx_weight __read_mostly = 64;
3412int dev_tx_weight __read_mostly = 64;
1da177e4 3413
eecfd7c4
ED
3414/* Called with irq disabled */
3415static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3417{
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420}
3421
bfb564e7
KK
3422#ifdef CONFIG_RPS
3423
3424/* One global table that all flow-based protocols share. */
6e3f7faf 3425struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3426EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3427u32 rps_cpu_mask __read_mostly;
3428EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3429
c5905afb 3430struct static_key rps_needed __read_mostly;
3df97ba8 3431EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3432struct static_key rfs_needed __read_mostly;
3433EXPORT_SYMBOL(rfs_needed);
adc9300e 3434
c445477d
BH
3435static struct rps_dev_flow *
3436set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3437 struct rps_dev_flow *rflow, u16 next_cpu)
3438{
a31196b0 3439 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3440#ifdef CONFIG_RFS_ACCEL
3441 struct netdev_rx_queue *rxqueue;
3442 struct rps_dev_flow_table *flow_table;
3443 struct rps_dev_flow *old_rflow;
3444 u32 flow_id;
3445 u16 rxq_index;
3446 int rc;
3447
3448 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3449 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3450 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3451 goto out;
3452 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3453 if (rxq_index == skb_get_rx_queue(skb))
3454 goto out;
3455
3456 rxqueue = dev->_rx + rxq_index;
3457 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3458 if (!flow_table)
3459 goto out;
61b905da 3460 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3461 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3462 rxq_index, flow_id);
3463 if (rc < 0)
3464 goto out;
3465 old_rflow = rflow;
3466 rflow = &flow_table->flows[flow_id];
c445477d
BH
3467 rflow->filter = rc;
3468 if (old_rflow->filter == rflow->filter)
3469 old_rflow->filter = RPS_NO_FILTER;
3470 out:
3471#endif
3472 rflow->last_qtail =
09994d1b 3473 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3474 }
3475
09994d1b 3476 rflow->cpu = next_cpu;
c445477d
BH
3477 return rflow;
3478}
3479
bfb564e7
KK
3480/*
3481 * get_rps_cpu is called from netif_receive_skb and returns the target
3482 * CPU from the RPS map of the receiving queue for a given skb.
3483 * rcu_read_lock must be held on entry.
3484 */
3485static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3486 struct rps_dev_flow **rflowp)
3487{
567e4b79
ED
3488 const struct rps_sock_flow_table *sock_flow_table;
3489 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3490 struct rps_dev_flow_table *flow_table;
567e4b79 3491 struct rps_map *map;
bfb564e7 3492 int cpu = -1;
567e4b79 3493 u32 tcpu;
61b905da 3494 u32 hash;
bfb564e7
KK
3495
3496 if (skb_rx_queue_recorded(skb)) {
3497 u16 index = skb_get_rx_queue(skb);
567e4b79 3498
62fe0b40
BH
3499 if (unlikely(index >= dev->real_num_rx_queues)) {
3500 WARN_ONCE(dev->real_num_rx_queues > 1,
3501 "%s received packet on queue %u, but number "
3502 "of RX queues is %u\n",
3503 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3504 goto done;
3505 }
567e4b79
ED
3506 rxqueue += index;
3507 }
bfb564e7 3508
567e4b79
ED
3509 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3510
3511 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3512 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3513 if (!flow_table && !map)
bfb564e7
KK
3514 goto done;
3515
2d47b459 3516 skb_reset_network_header(skb);
61b905da
TH
3517 hash = skb_get_hash(skb);
3518 if (!hash)
bfb564e7
KK
3519 goto done;
3520
fec5e652
TH
3521 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3522 if (flow_table && sock_flow_table) {
fec5e652 3523 struct rps_dev_flow *rflow;
567e4b79
ED
3524 u32 next_cpu;
3525 u32 ident;
3526
3527 /* First check into global flow table if there is a match */
3528 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3529 if ((ident ^ hash) & ~rps_cpu_mask)
3530 goto try_rps;
fec5e652 3531
567e4b79
ED
3532 next_cpu = ident & rps_cpu_mask;
3533
3534 /* OK, now we know there is a match,
3535 * we can look at the local (per receive queue) flow table
3536 */
61b905da 3537 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3538 tcpu = rflow->cpu;
3539
fec5e652
TH
3540 /*
3541 * If the desired CPU (where last recvmsg was done) is
3542 * different from current CPU (one in the rx-queue flow
3543 * table entry), switch if one of the following holds:
a31196b0 3544 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3545 * - Current CPU is offline.
3546 * - The current CPU's queue tail has advanced beyond the
3547 * last packet that was enqueued using this table entry.
3548 * This guarantees that all previous packets for the flow
3549 * have been dequeued, thus preserving in order delivery.
3550 */
3551 if (unlikely(tcpu != next_cpu) &&
a31196b0 3552 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3553 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3554 rflow->last_qtail)) >= 0)) {
3555 tcpu = next_cpu;
c445477d 3556 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3557 }
c445477d 3558
a31196b0 3559 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3560 *rflowp = rflow;
3561 cpu = tcpu;
3562 goto done;
3563 }
3564 }
3565
567e4b79
ED
3566try_rps:
3567
0a9627f2 3568 if (map) {
8fc54f68 3569 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3570 if (cpu_online(tcpu)) {
3571 cpu = tcpu;
3572 goto done;
3573 }
3574 }
3575
3576done:
0a9627f2
TH
3577 return cpu;
3578}
3579
c445477d
BH
3580#ifdef CONFIG_RFS_ACCEL
3581
3582/**
3583 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3584 * @dev: Device on which the filter was set
3585 * @rxq_index: RX queue index
3586 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3587 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3588 *
3589 * Drivers that implement ndo_rx_flow_steer() should periodically call
3590 * this function for each installed filter and remove the filters for
3591 * which it returns %true.
3592 */
3593bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3594 u32 flow_id, u16 filter_id)
3595{
3596 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3597 struct rps_dev_flow_table *flow_table;
3598 struct rps_dev_flow *rflow;
3599 bool expire = true;
a31196b0 3600 unsigned int cpu;
c445477d
BH
3601
3602 rcu_read_lock();
3603 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3604 if (flow_table && flow_id <= flow_table->mask) {
3605 rflow = &flow_table->flows[flow_id];
3606 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3607 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3608 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3609 rflow->last_qtail) <
3610 (int)(10 * flow_table->mask)))
3611 expire = false;
3612 }
3613 rcu_read_unlock();
3614 return expire;
3615}
3616EXPORT_SYMBOL(rps_may_expire_flow);
3617
3618#endif /* CONFIG_RFS_ACCEL */
3619
0a9627f2 3620/* Called from hardirq (IPI) context */
e36fa2f7 3621static void rps_trigger_softirq(void *data)
0a9627f2 3622{
e36fa2f7
ED
3623 struct softnet_data *sd = data;
3624
eecfd7c4 3625 ____napi_schedule(sd, &sd->backlog);
dee42870 3626 sd->received_rps++;
0a9627f2 3627}
e36fa2f7 3628
fec5e652 3629#endif /* CONFIG_RPS */
0a9627f2 3630
e36fa2f7
ED
3631/*
3632 * Check if this softnet_data structure is another cpu one
3633 * If yes, queue it to our IPI list and return 1
3634 * If no, return 0
3635 */
3636static int rps_ipi_queued(struct softnet_data *sd)
3637{
3638#ifdef CONFIG_RPS
903ceff7 3639 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3640
3641 if (sd != mysd) {
3642 sd->rps_ipi_next = mysd->rps_ipi_list;
3643 mysd->rps_ipi_list = sd;
3644
3645 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3646 return 1;
3647 }
3648#endif /* CONFIG_RPS */
3649 return 0;
3650}
3651
99bbc707
WB
3652#ifdef CONFIG_NET_FLOW_LIMIT
3653int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3654#endif
3655
3656static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3657{
3658#ifdef CONFIG_NET_FLOW_LIMIT
3659 struct sd_flow_limit *fl;
3660 struct softnet_data *sd;
3661 unsigned int old_flow, new_flow;
3662
3663 if (qlen < (netdev_max_backlog >> 1))
3664 return false;
3665
903ceff7 3666 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3667
3668 rcu_read_lock();
3669 fl = rcu_dereference(sd->flow_limit);
3670 if (fl) {
3958afa1 3671 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3672 old_flow = fl->history[fl->history_head];
3673 fl->history[fl->history_head] = new_flow;
3674
3675 fl->history_head++;
3676 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3677
3678 if (likely(fl->buckets[old_flow]))
3679 fl->buckets[old_flow]--;
3680
3681 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3682 fl->count++;
3683 rcu_read_unlock();
3684 return true;
3685 }
3686 }
3687 rcu_read_unlock();
3688#endif
3689 return false;
3690}
3691
0a9627f2
TH
3692/*
3693 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3694 * queue (may be a remote CPU queue).
3695 */
fec5e652
TH
3696static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3697 unsigned int *qtail)
0a9627f2 3698{
e36fa2f7 3699 struct softnet_data *sd;
0a9627f2 3700 unsigned long flags;
99bbc707 3701 unsigned int qlen;
0a9627f2 3702
e36fa2f7 3703 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3704
3705 local_irq_save(flags);
0a9627f2 3706
e36fa2f7 3707 rps_lock(sd);
e9e4dd32
JA
3708 if (!netif_running(skb->dev))
3709 goto drop;
99bbc707
WB
3710 qlen = skb_queue_len(&sd->input_pkt_queue);
3711 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3712 if (qlen) {
0a9627f2 3713enqueue:
e36fa2f7 3714 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3715 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3716 rps_unlock(sd);
152102c7 3717 local_irq_restore(flags);
0a9627f2
TH
3718 return NET_RX_SUCCESS;
3719 }
3720
ebda37c2
ED
3721 /* Schedule NAPI for backlog device
3722 * We can use non atomic operation since we own the queue lock
3723 */
3724 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3725 if (!rps_ipi_queued(sd))
eecfd7c4 3726 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3727 }
3728 goto enqueue;
3729 }
3730
e9e4dd32 3731drop:
dee42870 3732 sd->dropped++;
e36fa2f7 3733 rps_unlock(sd);
0a9627f2 3734
0a9627f2
TH
3735 local_irq_restore(flags);
3736
caf586e5 3737 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3738 kfree_skb(skb);
3739 return NET_RX_DROP;
3740}
1da177e4 3741
ae78dbfa 3742static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3743{
b0e28f1e 3744 int ret;
1da177e4 3745
588f0330 3746 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3747
cf66ba58 3748 trace_netif_rx(skb);
df334545 3749#ifdef CONFIG_RPS
c5905afb 3750 if (static_key_false(&rps_needed)) {
fec5e652 3751 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3752 int cpu;
3753
cece1945 3754 preempt_disable();
b0e28f1e 3755 rcu_read_lock();
fec5e652
TH
3756
3757 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3758 if (cpu < 0)
3759 cpu = smp_processor_id();
fec5e652
TH
3760
3761 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3762
b0e28f1e 3763 rcu_read_unlock();
cece1945 3764 preempt_enable();
adc9300e
ED
3765 } else
3766#endif
fec5e652
TH
3767 {
3768 unsigned int qtail;
3769 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3770 put_cpu();
3771 }
b0e28f1e 3772 return ret;
1da177e4 3773}
ae78dbfa
BH
3774
3775/**
3776 * netif_rx - post buffer to the network code
3777 * @skb: buffer to post
3778 *
3779 * This function receives a packet from a device driver and queues it for
3780 * the upper (protocol) levels to process. It always succeeds. The buffer
3781 * may be dropped during processing for congestion control or by the
3782 * protocol layers.
3783 *
3784 * return values:
3785 * NET_RX_SUCCESS (no congestion)
3786 * NET_RX_DROP (packet was dropped)
3787 *
3788 */
3789
3790int netif_rx(struct sk_buff *skb)
3791{
3792 trace_netif_rx_entry(skb);
3793
3794 return netif_rx_internal(skb);
3795}
d1b19dff 3796EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3797
3798int netif_rx_ni(struct sk_buff *skb)
3799{
3800 int err;
3801
ae78dbfa
BH
3802 trace_netif_rx_ni_entry(skb);
3803
1da177e4 3804 preempt_disable();
ae78dbfa 3805 err = netif_rx_internal(skb);
1da177e4
LT
3806 if (local_softirq_pending())
3807 do_softirq();
3808 preempt_enable();
3809
3810 return err;
3811}
1da177e4
LT
3812EXPORT_SYMBOL(netif_rx_ni);
3813
0766f788 3814static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3815{
903ceff7 3816 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3817
3818 if (sd->completion_queue) {
3819 struct sk_buff *clist;
3820
3821 local_irq_disable();
3822 clist = sd->completion_queue;
3823 sd->completion_queue = NULL;
3824 local_irq_enable();
3825
3826 while (clist) {
3827 struct sk_buff *skb = clist;
3828 clist = clist->next;
3829
547b792c 3830 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3831 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3832 trace_consume_skb(skb);
3833 else
3834 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3835
3836 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3837 __kfree_skb(skb);
3838 else
3839 __kfree_skb_defer(skb);
1da177e4 3840 }
15fad714
JDB
3841
3842 __kfree_skb_flush();
1da177e4
LT
3843 }
3844
3845 if (sd->output_queue) {
37437bb2 3846 struct Qdisc *head;
1da177e4
LT
3847
3848 local_irq_disable();
3849 head = sd->output_queue;
3850 sd->output_queue = NULL;
a9cbd588 3851 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3852 local_irq_enable();
3853
3854 while (head) {
37437bb2
DM
3855 struct Qdisc *q = head;
3856 spinlock_t *root_lock;
3857
1da177e4
LT
3858 head = head->next_sched;
3859
5fb66229 3860 root_lock = qdisc_lock(q);
3bcb846c
ED
3861 spin_lock(root_lock);
3862 /* We need to make sure head->next_sched is read
3863 * before clearing __QDISC_STATE_SCHED
3864 */
3865 smp_mb__before_atomic();
3866 clear_bit(__QDISC_STATE_SCHED, &q->state);
3867 qdisc_run(q);
3868 spin_unlock(root_lock);
1da177e4
LT
3869 }
3870 }
3871}
3872
181402a5 3873#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3874/* This hook is defined here for ATM LANE */
3875int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876 unsigned char *addr) __read_mostly;
4fb019a0 3877EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3878#endif
1da177e4 3879
1f211a1b
DB
3880static inline struct sk_buff *
3881sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882 struct net_device *orig_dev)
f697c3e8 3883{
e7582bab 3884#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886 struct tcf_result cl_res;
24824a09 3887
c9e99fd0
DB
3888 /* If there's at least one ingress present somewhere (so
3889 * we get here via enabled static key), remaining devices
3890 * that are not configured with an ingress qdisc will bail
d2788d34 3891 * out here.
c9e99fd0 3892 */
d2788d34 3893 if (!cl)
4577139b 3894 return skb;
f697c3e8
HX
3895 if (*pt_prev) {
3896 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3897 *pt_prev = NULL;
1da177e4
LT
3898 }
3899
3365495c 3900 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3901 skb->tc_at_ingress = 1;
24ea591d 3902 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3903
3b3ae880 3904 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3905 case TC_ACT_OK:
3906 case TC_ACT_RECLASSIFY:
3907 skb->tc_index = TC_H_MIN(cl_res.classid);
3908 break;
3909 case TC_ACT_SHOT:
24ea591d 3910 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3911 kfree_skb(skb);
3912 return NULL;
d2788d34
DB
3913 case TC_ACT_STOLEN:
3914 case TC_ACT_QUEUED:
8a3a4c6e 3915 consume_skb(skb);
d2788d34 3916 return NULL;
27b29f63
AS
3917 case TC_ACT_REDIRECT:
3918 /* skb_mac_header check was done by cls/act_bpf, so
3919 * we can safely push the L2 header back before
3920 * redirecting to another netdev
3921 */
3922 __skb_push(skb, skb->mac_len);
3923 skb_do_redirect(skb);
3924 return NULL;
d2788d34
DB
3925 default:
3926 break;
f697c3e8 3927 }
e7582bab 3928#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3929 return skb;
3930}
1da177e4 3931
24b27fc4
MB
3932/**
3933 * netdev_is_rx_handler_busy - check if receive handler is registered
3934 * @dev: device to check
3935 *
3936 * Check if a receive handler is already registered for a given device.
3937 * Return true if there one.
3938 *
3939 * The caller must hold the rtnl_mutex.
3940 */
3941bool netdev_is_rx_handler_busy(struct net_device *dev)
3942{
3943 ASSERT_RTNL();
3944 return dev && rtnl_dereference(dev->rx_handler);
3945}
3946EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3947
ab95bfe0
JP
3948/**
3949 * netdev_rx_handler_register - register receive handler
3950 * @dev: device to register a handler for
3951 * @rx_handler: receive handler to register
93e2c32b 3952 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3953 *
e227867f 3954 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3955 * called from __netif_receive_skb. A negative errno code is returned
3956 * on a failure.
3957 *
3958 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3959 *
3960 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3961 */
3962int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3963 rx_handler_func_t *rx_handler,
3964 void *rx_handler_data)
ab95bfe0 3965{
1b7cd004 3966 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
3967 return -EBUSY;
3968
00cfec37 3969 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3970 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3971 rcu_assign_pointer(dev->rx_handler, rx_handler);
3972
3973 return 0;
3974}
3975EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3976
3977/**
3978 * netdev_rx_handler_unregister - unregister receive handler
3979 * @dev: device to unregister a handler from
3980 *
166ec369 3981 * Unregister a receive handler from a device.
ab95bfe0
JP
3982 *
3983 * The caller must hold the rtnl_mutex.
3984 */
3985void netdev_rx_handler_unregister(struct net_device *dev)
3986{
3987
3988 ASSERT_RTNL();
a9b3cd7f 3989 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3990 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3991 * section has a guarantee to see a non NULL rx_handler_data
3992 * as well.
3993 */
3994 synchronize_net();
a9b3cd7f 3995 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3996}
3997EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3998
b4b9e355
MG
3999/*
4000 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4001 * the special handling of PFMEMALLOC skbs.
4002 */
4003static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4004{
4005 switch (skb->protocol) {
2b8837ae
JP
4006 case htons(ETH_P_ARP):
4007 case htons(ETH_P_IP):
4008 case htons(ETH_P_IPV6):
4009 case htons(ETH_P_8021Q):
4010 case htons(ETH_P_8021AD):
b4b9e355
MG
4011 return true;
4012 default:
4013 return false;
4014 }
4015}
4016
e687ad60
PN
4017static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4018 int *ret, struct net_device *orig_dev)
4019{
e7582bab 4020#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4021 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4022 int ingress_retval;
4023
e687ad60
PN
4024 if (*pt_prev) {
4025 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4026 *pt_prev = NULL;
4027 }
4028
2c1e2703
AC
4029 rcu_read_lock();
4030 ingress_retval = nf_hook_ingress(skb);
4031 rcu_read_unlock();
4032 return ingress_retval;
e687ad60 4033 }
e7582bab 4034#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4035 return 0;
4036}
e687ad60 4037
9754e293 4038static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4039{
4040 struct packet_type *ptype, *pt_prev;
ab95bfe0 4041 rx_handler_func_t *rx_handler;
f2ccd8fa 4042 struct net_device *orig_dev;
8a4eb573 4043 bool deliver_exact = false;
1da177e4 4044 int ret = NET_RX_DROP;
252e3346 4045 __be16 type;
1da177e4 4046
588f0330 4047 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4048
cf66ba58 4049 trace_netif_receive_skb(skb);
9b22ea56 4050
cc9bd5ce 4051 orig_dev = skb->dev;
8f903c70 4052
c1d2bbe1 4053 skb_reset_network_header(skb);
fda55eca
ED
4054 if (!skb_transport_header_was_set(skb))
4055 skb_reset_transport_header(skb);
0b5c9db1 4056 skb_reset_mac_len(skb);
1da177e4
LT
4057
4058 pt_prev = NULL;
4059
63d8ea7f 4060another_round:
b6858177 4061 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4062
4063 __this_cpu_inc(softnet_data.processed);
4064
8ad227ff
PM
4065 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4066 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4067 skb = skb_vlan_untag(skb);
bcc6d479 4068 if (unlikely(!skb))
2c17d27c 4069 goto out;
bcc6d479
JP
4070 }
4071
e7246e12
WB
4072 if (skb_skip_tc_classify(skb))
4073 goto skip_classify;
1da177e4 4074
9754e293 4075 if (pfmemalloc)
b4b9e355
MG
4076 goto skip_taps;
4077
1da177e4 4078 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4079 if (pt_prev)
4080 ret = deliver_skb(skb, pt_prev, orig_dev);
4081 pt_prev = ptype;
4082 }
4083
4084 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4085 if (pt_prev)
4086 ret = deliver_skb(skb, pt_prev, orig_dev);
4087 pt_prev = ptype;
1da177e4
LT
4088 }
4089
b4b9e355 4090skip_taps:
1cf51900 4091#ifdef CONFIG_NET_INGRESS
4577139b 4092 if (static_key_false(&ingress_needed)) {
1f211a1b 4093 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4094 if (!skb)
2c17d27c 4095 goto out;
e687ad60
PN
4096
4097 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4098 goto out;
4577139b 4099 }
1cf51900 4100#endif
a5135bcf 4101 skb_reset_tc(skb);
e7246e12 4102skip_classify:
9754e293 4103 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4104 goto drop;
4105
df8a39de 4106 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4107 if (pt_prev) {
4108 ret = deliver_skb(skb, pt_prev, orig_dev);
4109 pt_prev = NULL;
4110 }
48cc32d3 4111 if (vlan_do_receive(&skb))
2425717b
JF
4112 goto another_round;
4113 else if (unlikely(!skb))
2c17d27c 4114 goto out;
2425717b
JF
4115 }
4116
48cc32d3 4117 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4118 if (rx_handler) {
4119 if (pt_prev) {
4120 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 pt_prev = NULL;
4122 }
8a4eb573
JP
4123 switch (rx_handler(&skb)) {
4124 case RX_HANDLER_CONSUMED:
3bc1b1ad 4125 ret = NET_RX_SUCCESS;
2c17d27c 4126 goto out;
8a4eb573 4127 case RX_HANDLER_ANOTHER:
63d8ea7f 4128 goto another_round;
8a4eb573
JP
4129 case RX_HANDLER_EXACT:
4130 deliver_exact = true;
4131 case RX_HANDLER_PASS:
4132 break;
4133 default:
4134 BUG();
4135 }
ab95bfe0 4136 }
1da177e4 4137
df8a39de
JP
4138 if (unlikely(skb_vlan_tag_present(skb))) {
4139 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4140 skb->pkt_type = PACKET_OTHERHOST;
4141 /* Note: we might in the future use prio bits
4142 * and set skb->priority like in vlan_do_receive()
4143 * For the time being, just ignore Priority Code Point
4144 */
4145 skb->vlan_tci = 0;
4146 }
48cc32d3 4147
7866a621
SN
4148 type = skb->protocol;
4149
63d8ea7f 4150 /* deliver only exact match when indicated */
7866a621
SN
4151 if (likely(!deliver_exact)) {
4152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153 &ptype_base[ntohs(type) &
4154 PTYPE_HASH_MASK]);
4155 }
1f3c8804 4156
7866a621
SN
4157 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4158 &orig_dev->ptype_specific);
4159
4160 if (unlikely(skb->dev != orig_dev)) {
4161 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4162 &skb->dev->ptype_specific);
1da177e4
LT
4163 }
4164
4165 if (pt_prev) {
1080e512 4166 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4167 goto drop;
1080e512
MT
4168 else
4169 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4170 } else {
b4b9e355 4171drop:
6e7333d3
JW
4172 if (!deliver_exact)
4173 atomic_long_inc(&skb->dev->rx_dropped);
4174 else
4175 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4176 kfree_skb(skb);
4177 /* Jamal, now you will not able to escape explaining
4178 * me how you were going to use this. :-)
4179 */
4180 ret = NET_RX_DROP;
4181 }
4182
2c17d27c 4183out:
9754e293
DM
4184 return ret;
4185}
4186
4187static int __netif_receive_skb(struct sk_buff *skb)
4188{
4189 int ret;
4190
4191 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4192 unsigned long pflags = current->flags;
4193
4194 /*
4195 * PFMEMALLOC skbs are special, they should
4196 * - be delivered to SOCK_MEMALLOC sockets only
4197 * - stay away from userspace
4198 * - have bounded memory usage
4199 *
4200 * Use PF_MEMALLOC as this saves us from propagating the allocation
4201 * context down to all allocation sites.
4202 */
4203 current->flags |= PF_MEMALLOC;
4204 ret = __netif_receive_skb_core(skb, true);
4205 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4206 } else
4207 ret = __netif_receive_skb_core(skb, false);
4208
1da177e4
LT
4209 return ret;
4210}
0a9627f2 4211
ae78dbfa 4212static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4213{
2c17d27c
JA
4214 int ret;
4215
588f0330 4216 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4217
c1f19b51
RC
4218 if (skb_defer_rx_timestamp(skb))
4219 return NET_RX_SUCCESS;
4220
2c17d27c
JA
4221 rcu_read_lock();
4222
df334545 4223#ifdef CONFIG_RPS
c5905afb 4224 if (static_key_false(&rps_needed)) {
3b098e2d 4225 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4226 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4227
3b098e2d
ED
4228 if (cpu >= 0) {
4229 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4230 rcu_read_unlock();
adc9300e 4231 return ret;
3b098e2d 4232 }
fec5e652 4233 }
1e94d72f 4234#endif
2c17d27c
JA
4235 ret = __netif_receive_skb(skb);
4236 rcu_read_unlock();
4237 return ret;
0a9627f2 4238}
ae78dbfa
BH
4239
4240/**
4241 * netif_receive_skb - process receive buffer from network
4242 * @skb: buffer to process
4243 *
4244 * netif_receive_skb() is the main receive data processing function.
4245 * It always succeeds. The buffer may be dropped during processing
4246 * for congestion control or by the protocol layers.
4247 *
4248 * This function may only be called from softirq context and interrupts
4249 * should be enabled.
4250 *
4251 * Return values (usually ignored):
4252 * NET_RX_SUCCESS: no congestion
4253 * NET_RX_DROP: packet was dropped
4254 */
04eb4489 4255int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4256{
4257 trace_netif_receive_skb_entry(skb);
4258
4259 return netif_receive_skb_internal(skb);
4260}
04eb4489 4261EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4262
41852497 4263DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4264
4265/* Network device is going away, flush any packets still pending */
4266static void flush_backlog(struct work_struct *work)
6e583ce5 4267{
6e583ce5 4268 struct sk_buff *skb, *tmp;
145dd5f9
PA
4269 struct softnet_data *sd;
4270
4271 local_bh_disable();
4272 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4273
145dd5f9 4274 local_irq_disable();
e36fa2f7 4275 rps_lock(sd);
6e7676c1 4276 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4277 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4278 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4279 kfree_skb(skb);
76cc8b13 4280 input_queue_head_incr(sd);
6e583ce5 4281 }
6e7676c1 4282 }
e36fa2f7 4283 rps_unlock(sd);
145dd5f9 4284 local_irq_enable();
6e7676c1
CG
4285
4286 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4287 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4288 __skb_unlink(skb, &sd->process_queue);
4289 kfree_skb(skb);
76cc8b13 4290 input_queue_head_incr(sd);
6e7676c1
CG
4291 }
4292 }
145dd5f9
PA
4293 local_bh_enable();
4294}
4295
41852497 4296static void flush_all_backlogs(void)
145dd5f9
PA
4297{
4298 unsigned int cpu;
4299
4300 get_online_cpus();
4301
41852497
ED
4302 for_each_online_cpu(cpu)
4303 queue_work_on(cpu, system_highpri_wq,
4304 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4305
4306 for_each_online_cpu(cpu)
41852497 4307 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4308
4309 put_online_cpus();
6e583ce5
SH
4310}
4311
d565b0a1
HX
4312static int napi_gro_complete(struct sk_buff *skb)
4313{
22061d80 4314 struct packet_offload *ptype;
d565b0a1 4315 __be16 type = skb->protocol;
22061d80 4316 struct list_head *head = &offload_base;
d565b0a1
HX
4317 int err = -ENOENT;
4318
c3c7c254
ED
4319 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4320
fc59f9a3
HX
4321 if (NAPI_GRO_CB(skb)->count == 1) {
4322 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4323 goto out;
fc59f9a3 4324 }
d565b0a1
HX
4325
4326 rcu_read_lock();
4327 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4328 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4329 continue;
4330
299603e8 4331 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4332 break;
4333 }
4334 rcu_read_unlock();
4335
4336 if (err) {
4337 WARN_ON(&ptype->list == head);
4338 kfree_skb(skb);
4339 return NET_RX_SUCCESS;
4340 }
4341
4342out:
ae78dbfa 4343 return netif_receive_skb_internal(skb);
d565b0a1
HX
4344}
4345
2e71a6f8
ED
4346/* napi->gro_list contains packets ordered by age.
4347 * youngest packets at the head of it.
4348 * Complete skbs in reverse order to reduce latencies.
4349 */
4350void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4351{
2e71a6f8 4352 struct sk_buff *skb, *prev = NULL;
d565b0a1 4353
2e71a6f8
ED
4354 /* scan list and build reverse chain */
4355 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4356 skb->prev = prev;
4357 prev = skb;
4358 }
4359
4360 for (skb = prev; skb; skb = prev) {
d565b0a1 4361 skb->next = NULL;
2e71a6f8
ED
4362
4363 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4364 return;
4365
4366 prev = skb->prev;
d565b0a1 4367 napi_gro_complete(skb);
2e71a6f8 4368 napi->gro_count--;
d565b0a1
HX
4369 }
4370
4371 napi->gro_list = NULL;
4372}
86cac58b 4373EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4374
89c5fa33
ED
4375static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4376{
4377 struct sk_buff *p;
4378 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4379 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4380
4381 for (p = napi->gro_list; p; p = p->next) {
4382 unsigned long diffs;
4383
0b4cec8c
TH
4384 NAPI_GRO_CB(p)->flush = 0;
4385
4386 if (hash != skb_get_hash_raw(p)) {
4387 NAPI_GRO_CB(p)->same_flow = 0;
4388 continue;
4389 }
4390
89c5fa33
ED
4391 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4392 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4393 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4394 if (maclen == ETH_HLEN)
4395 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4396 skb_mac_header(skb));
89c5fa33
ED
4397 else if (!diffs)
4398 diffs = memcmp(skb_mac_header(p),
a50e233c 4399 skb_mac_header(skb),
89c5fa33
ED
4400 maclen);
4401 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4402 }
4403}
4404
299603e8
JC
4405static void skb_gro_reset_offset(struct sk_buff *skb)
4406{
4407 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4408 const skb_frag_t *frag0 = &pinfo->frags[0];
4409
4410 NAPI_GRO_CB(skb)->data_offset = 0;
4411 NAPI_GRO_CB(skb)->frag0 = NULL;
4412 NAPI_GRO_CB(skb)->frag0_len = 0;
4413
4414 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4415 pinfo->nr_frags &&
4416 !PageHighMem(skb_frag_page(frag0))) {
4417 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4418 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4419 skb_frag_size(frag0),
4420 skb->end - skb->tail);
89c5fa33
ED
4421 }
4422}
4423
a50e233c
ED
4424static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4425{
4426 struct skb_shared_info *pinfo = skb_shinfo(skb);
4427
4428 BUG_ON(skb->end - skb->tail < grow);
4429
4430 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4431
4432 skb->data_len -= grow;
4433 skb->tail += grow;
4434
4435 pinfo->frags[0].page_offset += grow;
4436 skb_frag_size_sub(&pinfo->frags[0], grow);
4437
4438 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4439 skb_frag_unref(skb, 0);
4440 memmove(pinfo->frags, pinfo->frags + 1,
4441 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4442 }
4443}
4444
bb728820 4445static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4446{
4447 struct sk_buff **pp = NULL;
22061d80 4448 struct packet_offload *ptype;
d565b0a1 4449 __be16 type = skb->protocol;
22061d80 4450 struct list_head *head = &offload_base;
0da2afd5 4451 int same_flow;
5b252f0c 4452 enum gro_result ret;
a50e233c 4453 int grow;
d565b0a1 4454
9c62a68d 4455 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4456 goto normal;
4457
d61d072e 4458 if (skb->csum_bad)
f17f5c91
HX
4459 goto normal;
4460
89c5fa33
ED
4461 gro_list_prepare(napi, skb);
4462
d565b0a1
HX
4463 rcu_read_lock();
4464 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4465 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4466 continue;
4467
86911732 4468 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4469 skb_reset_mac_len(skb);
d565b0a1 4470 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4471 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4472 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4473 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4474 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4475 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4476 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4477 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4478
662880f4
TH
4479 /* Setup for GRO checksum validation */
4480 switch (skb->ip_summed) {
4481 case CHECKSUM_COMPLETE:
4482 NAPI_GRO_CB(skb)->csum = skb->csum;
4483 NAPI_GRO_CB(skb)->csum_valid = 1;
4484 NAPI_GRO_CB(skb)->csum_cnt = 0;
4485 break;
4486 case CHECKSUM_UNNECESSARY:
4487 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4488 NAPI_GRO_CB(skb)->csum_valid = 0;
4489 break;
4490 default:
4491 NAPI_GRO_CB(skb)->csum_cnt = 0;
4492 NAPI_GRO_CB(skb)->csum_valid = 0;
4493 }
d565b0a1 4494
f191a1d1 4495 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4496 break;
4497 }
4498 rcu_read_unlock();
4499
4500 if (&ptype->list == head)
4501 goto normal;
4502
0da2afd5 4503 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4504 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4505
d565b0a1
HX
4506 if (pp) {
4507 struct sk_buff *nskb = *pp;
4508
4509 *pp = nskb->next;
4510 nskb->next = NULL;
4511 napi_gro_complete(nskb);
4ae5544f 4512 napi->gro_count--;
d565b0a1
HX
4513 }
4514
0da2afd5 4515 if (same_flow)
d565b0a1
HX
4516 goto ok;
4517
600adc18 4518 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4519 goto normal;
d565b0a1 4520
600adc18
ED
4521 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4522 struct sk_buff *nskb = napi->gro_list;
4523
4524 /* locate the end of the list to select the 'oldest' flow */
4525 while (nskb->next) {
4526 pp = &nskb->next;
4527 nskb = *pp;
4528 }
4529 *pp = NULL;
4530 nskb->next = NULL;
4531 napi_gro_complete(nskb);
4532 } else {
4533 napi->gro_count++;
4534 }
d565b0a1 4535 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4536 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4537 NAPI_GRO_CB(skb)->last = skb;
86911732 4538 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4539 skb->next = napi->gro_list;
4540 napi->gro_list = skb;
5d0d9be8 4541 ret = GRO_HELD;
d565b0a1 4542
ad0f9904 4543pull:
a50e233c
ED
4544 grow = skb_gro_offset(skb) - skb_headlen(skb);
4545 if (grow > 0)
4546 gro_pull_from_frag0(skb, grow);
d565b0a1 4547ok:
5d0d9be8 4548 return ret;
d565b0a1
HX
4549
4550normal:
ad0f9904
HX
4551 ret = GRO_NORMAL;
4552 goto pull;
5d38a079 4553}
96e93eab 4554
bf5a755f
JC
4555struct packet_offload *gro_find_receive_by_type(__be16 type)
4556{
4557 struct list_head *offload_head = &offload_base;
4558 struct packet_offload *ptype;
4559
4560 list_for_each_entry_rcu(ptype, offload_head, list) {
4561 if (ptype->type != type || !ptype->callbacks.gro_receive)
4562 continue;
4563 return ptype;
4564 }
4565 return NULL;
4566}
e27a2f83 4567EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4568
4569struct packet_offload *gro_find_complete_by_type(__be16 type)
4570{
4571 struct list_head *offload_head = &offload_base;
4572 struct packet_offload *ptype;
4573
4574 list_for_each_entry_rcu(ptype, offload_head, list) {
4575 if (ptype->type != type || !ptype->callbacks.gro_complete)
4576 continue;
4577 return ptype;
4578 }
4579 return NULL;
4580}
e27a2f83 4581EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4582
bb728820 4583static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4584{
5d0d9be8
HX
4585 switch (ret) {
4586 case GRO_NORMAL:
ae78dbfa 4587 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4588 ret = GRO_DROP;
4589 break;
5d38a079 4590
5d0d9be8 4591 case GRO_DROP:
5d38a079
HX
4592 kfree_skb(skb);
4593 break;
5b252f0c 4594
daa86548 4595 case GRO_MERGED_FREE:
ce87fc6c
JG
4596 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4597 skb_dst_drop(skb);
f991bb9d 4598 secpath_reset(skb);
d7e8883c 4599 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4600 } else {
d7e8883c 4601 __kfree_skb(skb);
ce87fc6c 4602 }
daa86548
ED
4603 break;
4604
5b252f0c
BH
4605 case GRO_HELD:
4606 case GRO_MERGED:
4607 break;
5d38a079
HX
4608 }
4609
c7c4b3b6 4610 return ret;
5d0d9be8 4611}
5d0d9be8 4612
c7c4b3b6 4613gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4614{
93f93a44 4615 skb_mark_napi_id(skb, napi);
ae78dbfa 4616 trace_napi_gro_receive_entry(skb);
86911732 4617
a50e233c
ED
4618 skb_gro_reset_offset(skb);
4619
89c5fa33 4620 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4621}
4622EXPORT_SYMBOL(napi_gro_receive);
4623
d0c2b0d2 4624static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4625{
93a35f59
ED
4626 if (unlikely(skb->pfmemalloc)) {
4627 consume_skb(skb);
4628 return;
4629 }
96e93eab 4630 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4631 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4632 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4633 skb->vlan_tci = 0;
66c46d74 4634 skb->dev = napi->dev;
6d152e23 4635 skb->skb_iif = 0;
c3caf119
JC
4636 skb->encapsulation = 0;
4637 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4638 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4639 secpath_reset(skb);
96e93eab
HX
4640
4641 napi->skb = skb;
4642}
96e93eab 4643
76620aaf 4644struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4645{
5d38a079 4646 struct sk_buff *skb = napi->skb;
5d38a079
HX
4647
4648 if (!skb) {
fd11a83d 4649 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4650 if (skb) {
4651 napi->skb = skb;
4652 skb_mark_napi_id(skb, napi);
4653 }
80595d59 4654 }
96e93eab
HX
4655 return skb;
4656}
76620aaf 4657EXPORT_SYMBOL(napi_get_frags);
96e93eab 4658
a50e233c
ED
4659static gro_result_t napi_frags_finish(struct napi_struct *napi,
4660 struct sk_buff *skb,
4661 gro_result_t ret)
96e93eab 4662{
5d0d9be8
HX
4663 switch (ret) {
4664 case GRO_NORMAL:
a50e233c
ED
4665 case GRO_HELD:
4666 __skb_push(skb, ETH_HLEN);
4667 skb->protocol = eth_type_trans(skb, skb->dev);
4668 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4669 ret = GRO_DROP;
86911732 4670 break;
5d38a079 4671
5d0d9be8 4672 case GRO_DROP:
5d0d9be8
HX
4673 case GRO_MERGED_FREE:
4674 napi_reuse_skb(napi, skb);
4675 break;
5b252f0c
BH
4676
4677 case GRO_MERGED:
4678 break;
5d0d9be8 4679 }
5d38a079 4680
c7c4b3b6 4681 return ret;
5d38a079 4682}
5d0d9be8 4683
a50e233c
ED
4684/* Upper GRO stack assumes network header starts at gro_offset=0
4685 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4686 * We copy ethernet header into skb->data to have a common layout.
4687 */
4adb9c4a 4688static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4689{
4690 struct sk_buff *skb = napi->skb;
a50e233c
ED
4691 const struct ethhdr *eth;
4692 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4693
4694 napi->skb = NULL;
4695
a50e233c
ED
4696 skb_reset_mac_header(skb);
4697 skb_gro_reset_offset(skb);
4698
4699 eth = skb_gro_header_fast(skb, 0);
4700 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4701 eth = skb_gro_header_slow(skb, hlen, 0);
4702 if (unlikely(!eth)) {
4da46ceb
AC
4703 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4704 __func__, napi->dev->name);
a50e233c
ED
4705 napi_reuse_skb(napi, skb);
4706 return NULL;
4707 }
4708 } else {
4709 gro_pull_from_frag0(skb, hlen);
4710 NAPI_GRO_CB(skb)->frag0 += hlen;
4711 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4712 }
a50e233c
ED
4713 __skb_pull(skb, hlen);
4714
4715 /*
4716 * This works because the only protocols we care about don't require
4717 * special handling.
4718 * We'll fix it up properly in napi_frags_finish()
4719 */
4720 skb->protocol = eth->h_proto;
76620aaf 4721
76620aaf
HX
4722 return skb;
4723}
76620aaf 4724
c7c4b3b6 4725gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4726{
76620aaf 4727 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4728
4729 if (!skb)
c7c4b3b6 4730 return GRO_DROP;
5d0d9be8 4731
ae78dbfa
BH
4732 trace_napi_gro_frags_entry(skb);
4733
89c5fa33 4734 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4735}
5d38a079
HX
4736EXPORT_SYMBOL(napi_gro_frags);
4737
573e8fca
TH
4738/* Compute the checksum from gro_offset and return the folded value
4739 * after adding in any pseudo checksum.
4740 */
4741__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4742{
4743 __wsum wsum;
4744 __sum16 sum;
4745
4746 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4747
4748 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4749 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4750 if (likely(!sum)) {
4751 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4752 !skb->csum_complete_sw)
4753 netdev_rx_csum_fault(skb->dev);
4754 }
4755
4756 NAPI_GRO_CB(skb)->csum = wsum;
4757 NAPI_GRO_CB(skb)->csum_valid = 1;
4758
4759 return sum;
4760}
4761EXPORT_SYMBOL(__skb_gro_checksum_complete);
4762
e326bed2 4763/*
855abcf0 4764 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4765 * Note: called with local irq disabled, but exits with local irq enabled.
4766 */
4767static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4768{
4769#ifdef CONFIG_RPS
4770 struct softnet_data *remsd = sd->rps_ipi_list;
4771
4772 if (remsd) {
4773 sd->rps_ipi_list = NULL;
4774
4775 local_irq_enable();
4776
4777 /* Send pending IPI's to kick RPS processing on remote cpus. */
4778 while (remsd) {
4779 struct softnet_data *next = remsd->rps_ipi_next;
4780
4781 if (cpu_online(remsd->cpu))
c46fff2a 4782 smp_call_function_single_async(remsd->cpu,
fce8ad15 4783 &remsd->csd);
e326bed2
ED
4784 remsd = next;
4785 }
4786 } else
4787#endif
4788 local_irq_enable();
4789}
4790
d75b1ade
ED
4791static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4792{
4793#ifdef CONFIG_RPS
4794 return sd->rps_ipi_list != NULL;
4795#else
4796 return false;
4797#endif
4798}
4799
bea3348e 4800static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4801{
eecfd7c4 4802 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4803 bool again = true;
4804 int work = 0;
1da177e4 4805
e326bed2
ED
4806 /* Check if we have pending ipi, its better to send them now,
4807 * not waiting net_rx_action() end.
4808 */
d75b1ade 4809 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4810 local_irq_disable();
4811 net_rps_action_and_irq_enable(sd);
4812 }
d75b1ade 4813
3d48b53f 4814 napi->weight = dev_rx_weight;
145dd5f9 4815 while (again) {
1da177e4 4816 struct sk_buff *skb;
6e7676c1
CG
4817
4818 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4819 rcu_read_lock();
6e7676c1 4820 __netif_receive_skb(skb);
2c17d27c 4821 rcu_read_unlock();
76cc8b13 4822 input_queue_head_incr(sd);
145dd5f9 4823 if (++work >= quota)
76cc8b13 4824 return work;
145dd5f9 4825
6e7676c1 4826 }
1da177e4 4827
145dd5f9 4828 local_irq_disable();
e36fa2f7 4829 rps_lock(sd);
11ef7a89 4830 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4831 /*
4832 * Inline a custom version of __napi_complete().
4833 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4834 * and NAPI_STATE_SCHED is the only possible flag set
4835 * on backlog.
4836 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4837 * and we dont need an smp_mb() memory barrier.
4838 */
eecfd7c4 4839 napi->state = 0;
145dd5f9
PA
4840 again = false;
4841 } else {
4842 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4843 &sd->process_queue);
bea3348e 4844 }
e36fa2f7 4845 rps_unlock(sd);
145dd5f9 4846 local_irq_enable();
6e7676c1 4847 }
1da177e4 4848
bea3348e
SH
4849 return work;
4850}
1da177e4 4851
bea3348e
SH
4852/**
4853 * __napi_schedule - schedule for receive
c4ea43c5 4854 * @n: entry to schedule
bea3348e 4855 *
bc9ad166
ED
4856 * The entry's receive function will be scheduled to run.
4857 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4858 */
b5606c2d 4859void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4860{
4861 unsigned long flags;
1da177e4 4862
bea3348e 4863 local_irq_save(flags);
903ceff7 4864 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4865 local_irq_restore(flags);
1da177e4 4866}
bea3348e
SH
4867EXPORT_SYMBOL(__napi_schedule);
4868
bc9ad166
ED
4869/**
4870 * __napi_schedule_irqoff - schedule for receive
4871 * @n: entry to schedule
4872 *
4873 * Variant of __napi_schedule() assuming hard irqs are masked
4874 */
4875void __napi_schedule_irqoff(struct napi_struct *n)
4876{
4877 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4878}
4879EXPORT_SYMBOL(__napi_schedule_irqoff);
4880
364b6055 4881bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4882{
4883 unsigned long flags;
4884
4885 /*
217f6974
ED
4886 * 1) Don't let napi dequeue from the cpu poll list
4887 * just in case its running on a different cpu.
4888 * 2) If we are busy polling, do nothing here, we have
4889 * the guarantee we will be called later.
d565b0a1 4890 */
217f6974
ED
4891 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4892 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4893 return false;
d565b0a1 4894
3b47d303
ED
4895 if (n->gro_list) {
4896 unsigned long timeout = 0;
d75b1ade 4897
3b47d303
ED
4898 if (work_done)
4899 timeout = n->dev->gro_flush_timeout;
4900
4901 if (timeout)
4902 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4903 HRTIMER_MODE_REL_PINNED);
4904 else
4905 napi_gro_flush(n, false);
4906 }
02c1602e 4907 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
4908 /* If n->poll_list is not empty, we need to mask irqs */
4909 local_irq_save(flags);
02c1602e 4910 list_del_init(&n->poll_list);
d75b1ade
ED
4911 local_irq_restore(flags);
4912 }
02c1602e 4913 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
364b6055 4914 return true;
d565b0a1 4915}
3b47d303 4916EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4917
af12fa6e 4918/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4919static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4920{
4921 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4922 struct napi_struct *napi;
4923
4924 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4925 if (napi->napi_id == napi_id)
4926 return napi;
4927
4928 return NULL;
4929}
02d62e86
ED
4930
4931#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 4932
ce6aea93 4933#define BUSY_POLL_BUDGET 8
217f6974
ED
4934
4935static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4936{
4937 int rc;
4938
4939 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4940
4941 local_bh_disable();
4942
4943 /* All we really want here is to re-enable device interrupts.
4944 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4945 */
4946 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4947 netpoll_poll_unlock(have_poll_lock);
4948 if (rc == BUSY_POLL_BUDGET)
4949 __napi_schedule(napi);
4950 local_bh_enable();
4951 if (local_softirq_pending())
4952 do_softirq();
4953}
4954
02d62e86
ED
4955bool sk_busy_loop(struct sock *sk, int nonblock)
4956{
4957 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 4958 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 4959 void *have_poll_lock = NULL;
02d62e86 4960 struct napi_struct *napi;
217f6974
ED
4961 int rc;
4962
4963restart:
4964 rc = false;
4965 napi_poll = NULL;
02d62e86 4966
2a028ecb 4967 rcu_read_lock();
02d62e86
ED
4968
4969 napi = napi_by_id(sk->sk_napi_id);
4970 if (!napi)
4971 goto out;
4972
217f6974
ED
4973 preempt_disable();
4974 for (;;) {
ce6aea93 4975 rc = 0;
2a028ecb 4976 local_bh_disable();
217f6974
ED
4977 if (!napi_poll) {
4978 unsigned long val = READ_ONCE(napi->state);
4979
4980 /* If multiple threads are competing for this napi,
4981 * we avoid dirtying napi->state as much as we can.
4982 */
4983 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
4984 NAPIF_STATE_IN_BUSY_POLL))
4985 goto count;
4986 if (cmpxchg(&napi->state, val,
4987 val | NAPIF_STATE_IN_BUSY_POLL |
4988 NAPIF_STATE_SCHED) != val)
4989 goto count;
4990 have_poll_lock = netpoll_poll_lock(napi);
4991 napi_poll = napi->poll;
4992 }
4993 rc = napi_poll(napi, BUSY_POLL_BUDGET);
4994 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4995count:
2a028ecb 4996 if (rc > 0)
02a1d6e7
ED
4997 __NET_ADD_STATS(sock_net(sk),
4998 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4999 local_bh_enable();
02d62e86
ED
5000
5001 if (rc == LL_FLUSH_FAILED)
5002 break; /* permanent failure */
5003
217f6974
ED
5004 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5005 busy_loop_timeout(end_time))
5006 break;
02d62e86 5007
217f6974
ED
5008 if (unlikely(need_resched())) {
5009 if (napi_poll)
5010 busy_poll_stop(napi, have_poll_lock);
5011 preempt_enable();
5012 rcu_read_unlock();
5013 cond_resched();
5014 rc = !skb_queue_empty(&sk->sk_receive_queue);
5015 if (rc || busy_loop_timeout(end_time))
5016 return rc;
5017 goto restart;
5018 }
6cdf89b1 5019 cpu_relax();
217f6974
ED
5020 }
5021 if (napi_poll)
5022 busy_poll_stop(napi, have_poll_lock);
5023 preempt_enable();
02d62e86
ED
5024 rc = !skb_queue_empty(&sk->sk_receive_queue);
5025out:
2a028ecb 5026 rcu_read_unlock();
02d62e86
ED
5027 return rc;
5028}
5029EXPORT_SYMBOL(sk_busy_loop);
5030
5031#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5032
149d6ad8 5033static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5034{
d64b5e85
ED
5035 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5036 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5037 return;
af12fa6e 5038
52bd2d62 5039 spin_lock(&napi_hash_lock);
af12fa6e 5040
52bd2d62
ED
5041 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5042 do {
5043 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5044 napi_gen_id = NR_CPUS + 1;
5045 } while (napi_by_id(napi_gen_id));
5046 napi->napi_id = napi_gen_id;
af12fa6e 5047
52bd2d62
ED
5048 hlist_add_head_rcu(&napi->napi_hash_node,
5049 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5050
52bd2d62 5051 spin_unlock(&napi_hash_lock);
af12fa6e 5052}
af12fa6e
ET
5053
5054/* Warning : caller is responsible to make sure rcu grace period
5055 * is respected before freeing memory containing @napi
5056 */
34cbe27e 5057bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5058{
34cbe27e
ED
5059 bool rcu_sync_needed = false;
5060
af12fa6e
ET
5061 spin_lock(&napi_hash_lock);
5062
34cbe27e
ED
5063 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5064 rcu_sync_needed = true;
af12fa6e 5065 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5066 }
af12fa6e 5067 spin_unlock(&napi_hash_lock);
34cbe27e 5068 return rcu_sync_needed;
af12fa6e
ET
5069}
5070EXPORT_SYMBOL_GPL(napi_hash_del);
5071
3b47d303
ED
5072static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5073{
5074 struct napi_struct *napi;
5075
5076 napi = container_of(timer, struct napi_struct, timer);
5077 if (napi->gro_list)
5078 napi_schedule(napi);
5079
5080 return HRTIMER_NORESTART;
5081}
5082
d565b0a1
HX
5083void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5084 int (*poll)(struct napi_struct *, int), int weight)
5085{
5086 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5087 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5088 napi->timer.function = napi_watchdog;
4ae5544f 5089 napi->gro_count = 0;
d565b0a1 5090 napi->gro_list = NULL;
5d38a079 5091 napi->skb = NULL;
d565b0a1 5092 napi->poll = poll;
82dc3c63
ED
5093 if (weight > NAPI_POLL_WEIGHT)
5094 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5095 weight, dev->name);
d565b0a1
HX
5096 napi->weight = weight;
5097 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5098 napi->dev = dev;
5d38a079 5099#ifdef CONFIG_NETPOLL
d565b0a1
HX
5100 napi->poll_owner = -1;
5101#endif
5102 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5103 napi_hash_add(napi);
d565b0a1
HX
5104}
5105EXPORT_SYMBOL(netif_napi_add);
5106
3b47d303
ED
5107void napi_disable(struct napi_struct *n)
5108{
5109 might_sleep();
5110 set_bit(NAPI_STATE_DISABLE, &n->state);
5111
5112 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5113 msleep(1);
2d8bff12
NH
5114 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5115 msleep(1);
3b47d303
ED
5116
5117 hrtimer_cancel(&n->timer);
5118
5119 clear_bit(NAPI_STATE_DISABLE, &n->state);
5120}
5121EXPORT_SYMBOL(napi_disable);
5122
93d05d4a 5123/* Must be called in process context */
d565b0a1
HX
5124void netif_napi_del(struct napi_struct *napi)
5125{
93d05d4a
ED
5126 might_sleep();
5127 if (napi_hash_del(napi))
5128 synchronize_net();
d7b06636 5129 list_del_init(&napi->dev_list);
76620aaf 5130 napi_free_frags(napi);
d565b0a1 5131
289dccbe 5132 kfree_skb_list(napi->gro_list);
d565b0a1 5133 napi->gro_list = NULL;
4ae5544f 5134 napi->gro_count = 0;
d565b0a1
HX
5135}
5136EXPORT_SYMBOL(netif_napi_del);
5137
726ce70e
HX
5138static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5139{
5140 void *have;
5141 int work, weight;
5142
5143 list_del_init(&n->poll_list);
5144
5145 have = netpoll_poll_lock(n);
5146
5147 weight = n->weight;
5148
5149 /* This NAPI_STATE_SCHED test is for avoiding a race
5150 * with netpoll's poll_napi(). Only the entity which
5151 * obtains the lock and sees NAPI_STATE_SCHED set will
5152 * actually make the ->poll() call. Therefore we avoid
5153 * accidentally calling ->poll() when NAPI is not scheduled.
5154 */
5155 work = 0;
5156 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5157 work = n->poll(n, weight);
1db19db7 5158 trace_napi_poll(n, work, weight);
726ce70e
HX
5159 }
5160
5161 WARN_ON_ONCE(work > weight);
5162
5163 if (likely(work < weight))
5164 goto out_unlock;
5165
5166 /* Drivers must not modify the NAPI state if they
5167 * consume the entire weight. In such cases this code
5168 * still "owns" the NAPI instance and therefore can
5169 * move the instance around on the list at-will.
5170 */
5171 if (unlikely(napi_disable_pending(n))) {
5172 napi_complete(n);
5173 goto out_unlock;
5174 }
5175
5176 if (n->gro_list) {
5177 /* flush too old packets
5178 * If HZ < 1000, flush all packets.
5179 */
5180 napi_gro_flush(n, HZ >= 1000);
5181 }
5182
001ce546
HX
5183 /* Some drivers may have called napi_schedule
5184 * prior to exhausting their budget.
5185 */
5186 if (unlikely(!list_empty(&n->poll_list))) {
5187 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5188 n->dev ? n->dev->name : "backlog");
5189 goto out_unlock;
5190 }
5191
726ce70e
HX
5192 list_add_tail(&n->poll_list, repoll);
5193
5194out_unlock:
5195 netpoll_poll_unlock(have);
5196
5197 return work;
5198}
5199
0766f788 5200static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5201{
903ceff7 5202 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5203 unsigned long time_limit = jiffies + 2;
51b0bded 5204 int budget = netdev_budget;
d75b1ade
ED
5205 LIST_HEAD(list);
5206 LIST_HEAD(repoll);
53fb95d3 5207
1da177e4 5208 local_irq_disable();
d75b1ade
ED
5209 list_splice_init(&sd->poll_list, &list);
5210 local_irq_enable();
1da177e4 5211
ceb8d5bf 5212 for (;;) {
bea3348e 5213 struct napi_struct *n;
1da177e4 5214
ceb8d5bf
HX
5215 if (list_empty(&list)) {
5216 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5217 goto out;
ceb8d5bf
HX
5218 break;
5219 }
5220
6bd373eb
HX
5221 n = list_first_entry(&list, struct napi_struct, poll_list);
5222 budget -= napi_poll(n, &repoll);
5223
d75b1ade 5224 /* If softirq window is exhausted then punt.
24f8b238
SH
5225 * Allow this to run for 2 jiffies since which will allow
5226 * an average latency of 1.5/HZ.
bea3348e 5227 */
ceb8d5bf
HX
5228 if (unlikely(budget <= 0 ||
5229 time_after_eq(jiffies, time_limit))) {
5230 sd->time_squeeze++;
5231 break;
5232 }
1da177e4 5233 }
d75b1ade 5234
d75b1ade
ED
5235 local_irq_disable();
5236
5237 list_splice_tail_init(&sd->poll_list, &list);
5238 list_splice_tail(&repoll, &list);
5239 list_splice(&list, &sd->poll_list);
5240 if (!list_empty(&sd->poll_list))
5241 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5242
e326bed2 5243 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5244out:
5245 __kfree_skb_flush();
1da177e4
LT
5246}
5247
aa9d8560 5248struct netdev_adjacent {
9ff162a8 5249 struct net_device *dev;
5d261913
VF
5250
5251 /* upper master flag, there can only be one master device per list */
9ff162a8 5252 bool master;
5d261913 5253
5d261913
VF
5254 /* counter for the number of times this device was added to us */
5255 u16 ref_nr;
5256
402dae96
VF
5257 /* private field for the users */
5258 void *private;
5259
9ff162a8
JP
5260 struct list_head list;
5261 struct rcu_head rcu;
9ff162a8
JP
5262};
5263
6ea29da1 5264static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5265 struct list_head *adj_list)
9ff162a8 5266{
5d261913 5267 struct netdev_adjacent *adj;
5d261913 5268
2f268f12 5269 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5270 if (adj->dev == adj_dev)
5271 return adj;
9ff162a8
JP
5272 }
5273 return NULL;
5274}
5275
f1170fd4
DA
5276static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5277{
5278 struct net_device *dev = data;
5279
5280 return upper_dev == dev;
5281}
5282
9ff162a8
JP
5283/**
5284 * netdev_has_upper_dev - Check if device is linked to an upper device
5285 * @dev: device
5286 * @upper_dev: upper device to check
5287 *
5288 * Find out if a device is linked to specified upper device and return true
5289 * in case it is. Note that this checks only immediate upper device,
5290 * not through a complete stack of devices. The caller must hold the RTNL lock.
5291 */
5292bool netdev_has_upper_dev(struct net_device *dev,
5293 struct net_device *upper_dev)
5294{
5295 ASSERT_RTNL();
5296
f1170fd4
DA
5297 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5298 upper_dev);
9ff162a8
JP
5299}
5300EXPORT_SYMBOL(netdev_has_upper_dev);
5301
1a3f060c
DA
5302/**
5303 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5304 * @dev: device
5305 * @upper_dev: upper device to check
5306 *
5307 * Find out if a device is linked to specified upper device and return true
5308 * in case it is. Note that this checks the entire upper device chain.
5309 * The caller must hold rcu lock.
5310 */
5311
1a3f060c
DA
5312bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5313 struct net_device *upper_dev)
5314{
5315 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5316 upper_dev);
5317}
5318EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5319
9ff162a8
JP
5320/**
5321 * netdev_has_any_upper_dev - Check if device is linked to some device
5322 * @dev: device
5323 *
5324 * Find out if a device is linked to an upper device and return true in case
5325 * it is. The caller must hold the RTNL lock.
5326 */
1d143d9f 5327static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5328{
5329 ASSERT_RTNL();
5330
f1170fd4 5331 return !list_empty(&dev->adj_list.upper);
9ff162a8 5332}
9ff162a8
JP
5333
5334/**
5335 * netdev_master_upper_dev_get - Get master upper device
5336 * @dev: device
5337 *
5338 * Find a master upper device and return pointer to it or NULL in case
5339 * it's not there. The caller must hold the RTNL lock.
5340 */
5341struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5342{
aa9d8560 5343 struct netdev_adjacent *upper;
9ff162a8
JP
5344
5345 ASSERT_RTNL();
5346
2f268f12 5347 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5348 return NULL;
5349
2f268f12 5350 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5351 struct netdev_adjacent, list);
9ff162a8
JP
5352 if (likely(upper->master))
5353 return upper->dev;
5354 return NULL;
5355}
5356EXPORT_SYMBOL(netdev_master_upper_dev_get);
5357
0f524a80
DA
5358/**
5359 * netdev_has_any_lower_dev - Check if device is linked to some device
5360 * @dev: device
5361 *
5362 * Find out if a device is linked to a lower device and return true in case
5363 * it is. The caller must hold the RTNL lock.
5364 */
5365static bool netdev_has_any_lower_dev(struct net_device *dev)
5366{
5367 ASSERT_RTNL();
5368
5369 return !list_empty(&dev->adj_list.lower);
5370}
5371
b6ccba4c
VF
5372void *netdev_adjacent_get_private(struct list_head *adj_list)
5373{
5374 struct netdev_adjacent *adj;
5375
5376 adj = list_entry(adj_list, struct netdev_adjacent, list);
5377
5378 return adj->private;
5379}
5380EXPORT_SYMBOL(netdev_adjacent_get_private);
5381
44a40855
VY
5382/**
5383 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5384 * @dev: device
5385 * @iter: list_head ** of the current position
5386 *
5387 * Gets the next device from the dev's upper list, starting from iter
5388 * position. The caller must hold RCU read lock.
5389 */
5390struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5391 struct list_head **iter)
5392{
5393 struct netdev_adjacent *upper;
5394
5395 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5396
5397 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5398
5399 if (&upper->list == &dev->adj_list.upper)
5400 return NULL;
5401
5402 *iter = &upper->list;
5403
5404 return upper->dev;
5405}
5406EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5407
1a3f060c
DA
5408static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5409 struct list_head **iter)
5410{
5411 struct netdev_adjacent *upper;
5412
5413 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5414
5415 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5416
5417 if (&upper->list == &dev->adj_list.upper)
5418 return NULL;
5419
5420 *iter = &upper->list;
5421
5422 return upper->dev;
5423}
5424
5425int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5426 int (*fn)(struct net_device *dev,
5427 void *data),
5428 void *data)
5429{
5430 struct net_device *udev;
5431 struct list_head *iter;
5432 int ret;
5433
5434 for (iter = &dev->adj_list.upper,
5435 udev = netdev_next_upper_dev_rcu(dev, &iter);
5436 udev;
5437 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5438 /* first is the upper device itself */
5439 ret = fn(udev, data);
5440 if (ret)
5441 return ret;
5442
5443 /* then look at all of its upper devices */
5444 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5445 if (ret)
5446 return ret;
5447 }
5448
5449 return 0;
5450}
5451EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5452
31088a11
VF
5453/**
5454 * netdev_lower_get_next_private - Get the next ->private from the
5455 * lower neighbour list
5456 * @dev: device
5457 * @iter: list_head ** of the current position
5458 *
5459 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5460 * list, starting from iter position. The caller must hold either hold the
5461 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5462 * list will remain unchanged.
31088a11
VF
5463 */
5464void *netdev_lower_get_next_private(struct net_device *dev,
5465 struct list_head **iter)
5466{
5467 struct netdev_adjacent *lower;
5468
5469 lower = list_entry(*iter, struct netdev_adjacent, list);
5470
5471 if (&lower->list == &dev->adj_list.lower)
5472 return NULL;
5473
6859e7df 5474 *iter = lower->list.next;
31088a11
VF
5475
5476 return lower->private;
5477}
5478EXPORT_SYMBOL(netdev_lower_get_next_private);
5479
5480/**
5481 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5482 * lower neighbour list, RCU
5483 * variant
5484 * @dev: device
5485 * @iter: list_head ** of the current position
5486 *
5487 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5488 * list, starting from iter position. The caller must hold RCU read lock.
5489 */
5490void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5491 struct list_head **iter)
5492{
5493 struct netdev_adjacent *lower;
5494
5495 WARN_ON_ONCE(!rcu_read_lock_held());
5496
5497 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5498
5499 if (&lower->list == &dev->adj_list.lower)
5500 return NULL;
5501
6859e7df 5502 *iter = &lower->list;
31088a11
VF
5503
5504 return lower->private;
5505}
5506EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5507
4085ebe8
VY
5508/**
5509 * netdev_lower_get_next - Get the next device from the lower neighbour
5510 * list
5511 * @dev: device
5512 * @iter: list_head ** of the current position
5513 *
5514 * Gets the next netdev_adjacent from the dev's lower neighbour
5515 * list, starting from iter position. The caller must hold RTNL lock or
5516 * its own locking that guarantees that the neighbour lower
b469139e 5517 * list will remain unchanged.
4085ebe8
VY
5518 */
5519void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5520{
5521 struct netdev_adjacent *lower;
5522
cfdd28be 5523 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5524
5525 if (&lower->list == &dev->adj_list.lower)
5526 return NULL;
5527
cfdd28be 5528 *iter = lower->list.next;
4085ebe8
VY
5529
5530 return lower->dev;
5531}
5532EXPORT_SYMBOL(netdev_lower_get_next);
5533
1a3f060c
DA
5534static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5535 struct list_head **iter)
5536{
5537 struct netdev_adjacent *lower;
5538
46b5ab1a 5539 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5540
5541 if (&lower->list == &dev->adj_list.lower)
5542 return NULL;
5543
46b5ab1a 5544 *iter = &lower->list;
1a3f060c
DA
5545
5546 return lower->dev;
5547}
5548
5549int netdev_walk_all_lower_dev(struct net_device *dev,
5550 int (*fn)(struct net_device *dev,
5551 void *data),
5552 void *data)
5553{
5554 struct net_device *ldev;
5555 struct list_head *iter;
5556 int ret;
5557
5558 for (iter = &dev->adj_list.lower,
5559 ldev = netdev_next_lower_dev(dev, &iter);
5560 ldev;
5561 ldev = netdev_next_lower_dev(dev, &iter)) {
5562 /* first is the lower device itself */
5563 ret = fn(ldev, data);
5564 if (ret)
5565 return ret;
5566
5567 /* then look at all of its lower devices */
5568 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5569 if (ret)
5570 return ret;
5571 }
5572
5573 return 0;
5574}
5575EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5576
1a3f060c
DA
5577static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5578 struct list_head **iter)
5579{
5580 struct netdev_adjacent *lower;
5581
5582 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5583 if (&lower->list == &dev->adj_list.lower)
5584 return NULL;
5585
5586 *iter = &lower->list;
5587
5588 return lower->dev;
5589}
5590
5591int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5592 int (*fn)(struct net_device *dev,
5593 void *data),
5594 void *data)
5595{
5596 struct net_device *ldev;
5597 struct list_head *iter;
5598 int ret;
5599
5600 for (iter = &dev->adj_list.lower,
5601 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5602 ldev;
5603 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5604 /* first is the lower device itself */
5605 ret = fn(ldev, data);
5606 if (ret)
5607 return ret;
5608
5609 /* then look at all of its lower devices */
5610 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5611 if (ret)
5612 return ret;
5613 }
5614
5615 return 0;
5616}
5617EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5618
e001bfad 5619/**
5620 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5621 * lower neighbour list, RCU
5622 * variant
5623 * @dev: device
5624 *
5625 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5626 * list. The caller must hold RCU read lock.
5627 */
5628void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5629{
5630 struct netdev_adjacent *lower;
5631
5632 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5633 struct netdev_adjacent, list);
5634 if (lower)
5635 return lower->private;
5636 return NULL;
5637}
5638EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5639
9ff162a8
JP
5640/**
5641 * netdev_master_upper_dev_get_rcu - Get master upper device
5642 * @dev: device
5643 *
5644 * Find a master upper device and return pointer to it or NULL in case
5645 * it's not there. The caller must hold the RCU read lock.
5646 */
5647struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5648{
aa9d8560 5649 struct netdev_adjacent *upper;
9ff162a8 5650
2f268f12 5651 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5652 struct netdev_adjacent, list);
9ff162a8
JP
5653 if (upper && likely(upper->master))
5654 return upper->dev;
5655 return NULL;
5656}
5657EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5658
0a59f3a9 5659static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5660 struct net_device *adj_dev,
5661 struct list_head *dev_list)
5662{
5663 char linkname[IFNAMSIZ+7];
5664 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5665 "upper_%s" : "lower_%s", adj_dev->name);
5666 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5667 linkname);
5668}
0a59f3a9 5669static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5670 char *name,
5671 struct list_head *dev_list)
5672{
5673 char linkname[IFNAMSIZ+7];
5674 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5675 "upper_%s" : "lower_%s", name);
5676 sysfs_remove_link(&(dev->dev.kobj), linkname);
5677}
5678
7ce64c79
AF
5679static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5680 struct net_device *adj_dev,
5681 struct list_head *dev_list)
5682{
5683 return (dev_list == &dev->adj_list.upper ||
5684 dev_list == &dev->adj_list.lower) &&
5685 net_eq(dev_net(dev), dev_net(adj_dev));
5686}
3ee32707 5687
5d261913
VF
5688static int __netdev_adjacent_dev_insert(struct net_device *dev,
5689 struct net_device *adj_dev,
7863c054 5690 struct list_head *dev_list,
402dae96 5691 void *private, bool master)
5d261913
VF
5692{
5693 struct netdev_adjacent *adj;
842d67a7 5694 int ret;
5d261913 5695
6ea29da1 5696 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5697
5698 if (adj) {
790510d9 5699 adj->ref_nr += 1;
67b62f98
DA
5700 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5701 dev->name, adj_dev->name, adj->ref_nr);
5702
5d261913
VF
5703 return 0;
5704 }
5705
5706 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5707 if (!adj)
5708 return -ENOMEM;
5709
5710 adj->dev = adj_dev;
5711 adj->master = master;
790510d9 5712 adj->ref_nr = 1;
402dae96 5713 adj->private = private;
5d261913 5714 dev_hold(adj_dev);
2f268f12 5715
67b62f98
DA
5716 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5717 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5718
7ce64c79 5719 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5720 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5721 if (ret)
5722 goto free_adj;
5723 }
5724
7863c054 5725 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5726 if (master) {
5727 ret = sysfs_create_link(&(dev->dev.kobj),
5728 &(adj_dev->dev.kobj), "master");
5729 if (ret)
5831d66e 5730 goto remove_symlinks;
842d67a7 5731
7863c054 5732 list_add_rcu(&adj->list, dev_list);
842d67a7 5733 } else {
7863c054 5734 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5735 }
5d261913
VF
5736
5737 return 0;
842d67a7 5738
5831d66e 5739remove_symlinks:
7ce64c79 5740 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5741 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5742free_adj:
5743 kfree(adj);
974daef7 5744 dev_put(adj_dev);
842d67a7
VF
5745
5746 return ret;
5d261913
VF
5747}
5748
1d143d9f 5749static void __netdev_adjacent_dev_remove(struct net_device *dev,
5750 struct net_device *adj_dev,
93409033 5751 u16 ref_nr,
1d143d9f 5752 struct list_head *dev_list)
5d261913
VF
5753{
5754 struct netdev_adjacent *adj;
5755
67b62f98
DA
5756 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5757 dev->name, adj_dev->name, ref_nr);
5758
6ea29da1 5759 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5760
2f268f12 5761 if (!adj) {
67b62f98 5762 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5763 dev->name, adj_dev->name);
67b62f98
DA
5764 WARN_ON(1);
5765 return;
2f268f12 5766 }
5d261913 5767
93409033 5768 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5769 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5770 dev->name, adj_dev->name, ref_nr,
5771 adj->ref_nr - ref_nr);
93409033 5772 adj->ref_nr -= ref_nr;
5d261913
VF
5773 return;
5774 }
5775
842d67a7
VF
5776 if (adj->master)
5777 sysfs_remove_link(&(dev->dev.kobj), "master");
5778
7ce64c79 5779 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5780 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5781
5d261913 5782 list_del_rcu(&adj->list);
67b62f98 5783 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5784 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5785 dev_put(adj_dev);
5786 kfree_rcu(adj, rcu);
5787}
5788
1d143d9f 5789static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5790 struct net_device *upper_dev,
5791 struct list_head *up_list,
5792 struct list_head *down_list,
5793 void *private, bool master)
5d261913
VF
5794{
5795 int ret;
5796
790510d9 5797 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5798 private, master);
5d261913
VF
5799 if (ret)
5800 return ret;
5801
790510d9 5802 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5803 private, false);
5d261913 5804 if (ret) {
790510d9 5805 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5806 return ret;
5807 }
5808
5809 return 0;
5810}
5811
1d143d9f 5812static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5813 struct net_device *upper_dev,
93409033 5814 u16 ref_nr,
1d143d9f 5815 struct list_head *up_list,
5816 struct list_head *down_list)
5d261913 5817{
93409033
AC
5818 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5819 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5820}
5821
1d143d9f 5822static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5823 struct net_device *upper_dev,
5824 void *private, bool master)
2f268f12 5825{
f1170fd4
DA
5826 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5827 &dev->adj_list.upper,
5828 &upper_dev->adj_list.lower,
5829 private, master);
5d261913
VF
5830}
5831
1d143d9f 5832static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5833 struct net_device *upper_dev)
2f268f12 5834{
93409033 5835 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5836 &dev->adj_list.upper,
5837 &upper_dev->adj_list.lower);
5838}
5d261913 5839
9ff162a8 5840static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5841 struct net_device *upper_dev, bool master,
29bf24af 5842 void *upper_priv, void *upper_info)
9ff162a8 5843{
0e4ead9d 5844 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5845 int ret = 0;
9ff162a8
JP
5846
5847 ASSERT_RTNL();
5848
5849 if (dev == upper_dev)
5850 return -EBUSY;
5851
5852 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5853 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5854 return -EBUSY;
5855
f1170fd4 5856 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5857 return -EEXIST;
5858
5859 if (master && netdev_master_upper_dev_get(dev))
5860 return -EBUSY;
5861
0e4ead9d
JP
5862 changeupper_info.upper_dev = upper_dev;
5863 changeupper_info.master = master;
5864 changeupper_info.linking = true;
29bf24af 5865 changeupper_info.upper_info = upper_info;
0e4ead9d 5866
573c7ba0
JP
5867 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5868 &changeupper_info.info);
5869 ret = notifier_to_errno(ret);
5870 if (ret)
5871 return ret;
5872
6dffb044 5873 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5874 master);
5d261913
VF
5875 if (ret)
5876 return ret;
9ff162a8 5877
b03804e7
IS
5878 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5879 &changeupper_info.info);
5880 ret = notifier_to_errno(ret);
5881 if (ret)
f1170fd4 5882 goto rollback;
b03804e7 5883
9ff162a8 5884 return 0;
5d261913 5885
f1170fd4 5886rollback:
2f268f12 5887 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5888
5889 return ret;
9ff162a8
JP
5890}
5891
5892/**
5893 * netdev_upper_dev_link - Add a link to the upper device
5894 * @dev: device
5895 * @upper_dev: new upper device
5896 *
5897 * Adds a link to device which is upper to this one. The caller must hold
5898 * the RTNL lock. On a failure a negative errno code is returned.
5899 * On success the reference counts are adjusted and the function
5900 * returns zero.
5901 */
5902int netdev_upper_dev_link(struct net_device *dev,
5903 struct net_device *upper_dev)
5904{
29bf24af 5905 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5906}
5907EXPORT_SYMBOL(netdev_upper_dev_link);
5908
5909/**
5910 * netdev_master_upper_dev_link - Add a master link to the upper device
5911 * @dev: device
5912 * @upper_dev: new upper device
6dffb044 5913 * @upper_priv: upper device private
29bf24af 5914 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5915 *
5916 * Adds a link to device which is upper to this one. In this case, only
5917 * one master upper device can be linked, although other non-master devices
5918 * might be linked as well. The caller must hold the RTNL lock.
5919 * On a failure a negative errno code is returned. On success the reference
5920 * counts are adjusted and the function returns zero.
5921 */
5922int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5923 struct net_device *upper_dev,
29bf24af 5924 void *upper_priv, void *upper_info)
9ff162a8 5925{
29bf24af
JP
5926 return __netdev_upper_dev_link(dev, upper_dev, true,
5927 upper_priv, upper_info);
9ff162a8
JP
5928}
5929EXPORT_SYMBOL(netdev_master_upper_dev_link);
5930
5931/**
5932 * netdev_upper_dev_unlink - Removes a link to upper device
5933 * @dev: device
5934 * @upper_dev: new upper device
5935 *
5936 * Removes a link to device which is upper to this one. The caller must hold
5937 * the RTNL lock.
5938 */
5939void netdev_upper_dev_unlink(struct net_device *dev,
5940 struct net_device *upper_dev)
5941{
0e4ead9d 5942 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5943 ASSERT_RTNL();
5944
0e4ead9d
JP
5945 changeupper_info.upper_dev = upper_dev;
5946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5947 changeupper_info.linking = false;
5948
573c7ba0
JP
5949 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5950 &changeupper_info.info);
5951
2f268f12 5952 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5953
0e4ead9d
JP
5954 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5955 &changeupper_info.info);
9ff162a8
JP
5956}
5957EXPORT_SYMBOL(netdev_upper_dev_unlink);
5958
61bd3857
MS
5959/**
5960 * netdev_bonding_info_change - Dispatch event about slave change
5961 * @dev: device
4a26e453 5962 * @bonding_info: info to dispatch
61bd3857
MS
5963 *
5964 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5965 * The caller must hold the RTNL lock.
5966 */
5967void netdev_bonding_info_change(struct net_device *dev,
5968 struct netdev_bonding_info *bonding_info)
5969{
5970 struct netdev_notifier_bonding_info info;
5971
5972 memcpy(&info.bonding_info, bonding_info,
5973 sizeof(struct netdev_bonding_info));
5974 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5975 &info.info);
5976}
5977EXPORT_SYMBOL(netdev_bonding_info_change);
5978
2ce1ee17 5979static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5980{
5981 struct netdev_adjacent *iter;
5982
5983 struct net *net = dev_net(dev);
5984
5985 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5986 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5987 continue;
5988 netdev_adjacent_sysfs_add(iter->dev, dev,
5989 &iter->dev->adj_list.lower);
5990 netdev_adjacent_sysfs_add(dev, iter->dev,
5991 &dev->adj_list.upper);
5992 }
5993
5994 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5995 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5996 continue;
5997 netdev_adjacent_sysfs_add(iter->dev, dev,
5998 &iter->dev->adj_list.upper);
5999 netdev_adjacent_sysfs_add(dev, iter->dev,
6000 &dev->adj_list.lower);
6001 }
6002}
6003
2ce1ee17 6004static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6005{
6006 struct netdev_adjacent *iter;
6007
6008 struct net *net = dev_net(dev);
6009
6010 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6011 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6012 continue;
6013 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6014 &iter->dev->adj_list.lower);
6015 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6016 &dev->adj_list.upper);
6017 }
6018
6019 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6020 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6021 continue;
6022 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6023 &iter->dev->adj_list.upper);
6024 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6025 &dev->adj_list.lower);
6026 }
6027}
6028
5bb025fa 6029void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6030{
5bb025fa 6031 struct netdev_adjacent *iter;
402dae96 6032
4c75431a
AF
6033 struct net *net = dev_net(dev);
6034
5bb025fa 6035 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6036 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6037 continue;
5bb025fa
VF
6038 netdev_adjacent_sysfs_del(iter->dev, oldname,
6039 &iter->dev->adj_list.lower);
6040 netdev_adjacent_sysfs_add(iter->dev, dev,
6041 &iter->dev->adj_list.lower);
6042 }
402dae96 6043
5bb025fa 6044 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6045 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6046 continue;
5bb025fa
VF
6047 netdev_adjacent_sysfs_del(iter->dev, oldname,
6048 &iter->dev->adj_list.upper);
6049 netdev_adjacent_sysfs_add(iter->dev, dev,
6050 &iter->dev->adj_list.upper);
6051 }
402dae96 6052}
402dae96
VF
6053
6054void *netdev_lower_dev_get_private(struct net_device *dev,
6055 struct net_device *lower_dev)
6056{
6057 struct netdev_adjacent *lower;
6058
6059 if (!lower_dev)
6060 return NULL;
6ea29da1 6061 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6062 if (!lower)
6063 return NULL;
6064
6065 return lower->private;
6066}
6067EXPORT_SYMBOL(netdev_lower_dev_get_private);
6068
4085ebe8 6069
952fcfd0 6070int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6071{
6072 struct net_device *lower = NULL;
6073 struct list_head *iter;
6074 int max_nest = -1;
6075 int nest;
6076
6077 ASSERT_RTNL();
6078
6079 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6080 nest = dev_get_nest_level(lower);
4085ebe8
VY
6081 if (max_nest < nest)
6082 max_nest = nest;
6083 }
6084
952fcfd0 6085 return max_nest + 1;
4085ebe8
VY
6086}
6087EXPORT_SYMBOL(dev_get_nest_level);
6088
04d48266
JP
6089/**
6090 * netdev_lower_change - Dispatch event about lower device state change
6091 * @lower_dev: device
6092 * @lower_state_info: state to dispatch
6093 *
6094 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6095 * The caller must hold the RTNL lock.
6096 */
6097void netdev_lower_state_changed(struct net_device *lower_dev,
6098 void *lower_state_info)
6099{
6100 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6101
6102 ASSERT_RTNL();
6103 changelowerstate_info.lower_state_info = lower_state_info;
6104 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6105 &changelowerstate_info.info);
6106}
6107EXPORT_SYMBOL(netdev_lower_state_changed);
6108
b6c40d68
PM
6109static void dev_change_rx_flags(struct net_device *dev, int flags)
6110{
d314774c
SH
6111 const struct net_device_ops *ops = dev->netdev_ops;
6112
d2615bf4 6113 if (ops->ndo_change_rx_flags)
d314774c 6114 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6115}
6116
991fb3f7 6117static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6118{
b536db93 6119 unsigned int old_flags = dev->flags;
d04a48b0
EB
6120 kuid_t uid;
6121 kgid_t gid;
1da177e4 6122
24023451
PM
6123 ASSERT_RTNL();
6124
dad9b335
WC
6125 dev->flags |= IFF_PROMISC;
6126 dev->promiscuity += inc;
6127 if (dev->promiscuity == 0) {
6128 /*
6129 * Avoid overflow.
6130 * If inc causes overflow, untouch promisc and return error.
6131 */
6132 if (inc < 0)
6133 dev->flags &= ~IFF_PROMISC;
6134 else {
6135 dev->promiscuity -= inc;
7b6cd1ce
JP
6136 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6137 dev->name);
dad9b335
WC
6138 return -EOVERFLOW;
6139 }
6140 }
52609c0b 6141 if (dev->flags != old_flags) {
7b6cd1ce
JP
6142 pr_info("device %s %s promiscuous mode\n",
6143 dev->name,
6144 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6145 if (audit_enabled) {
6146 current_uid_gid(&uid, &gid);
7759db82
KHK
6147 audit_log(current->audit_context, GFP_ATOMIC,
6148 AUDIT_ANOM_PROMISCUOUS,
6149 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6150 dev->name, (dev->flags & IFF_PROMISC),
6151 (old_flags & IFF_PROMISC),
e1760bd5 6152 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6153 from_kuid(&init_user_ns, uid),
6154 from_kgid(&init_user_ns, gid),
7759db82 6155 audit_get_sessionid(current));
8192b0c4 6156 }
24023451 6157
b6c40d68 6158 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6159 }
991fb3f7
ND
6160 if (notify)
6161 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6162 return 0;
1da177e4
LT
6163}
6164
4417da66
PM
6165/**
6166 * dev_set_promiscuity - update promiscuity count on a device
6167 * @dev: device
6168 * @inc: modifier
6169 *
6170 * Add or remove promiscuity from a device. While the count in the device
6171 * remains above zero the interface remains promiscuous. Once it hits zero
6172 * the device reverts back to normal filtering operation. A negative inc
6173 * value is used to drop promiscuity on the device.
dad9b335 6174 * Return 0 if successful or a negative errno code on error.
4417da66 6175 */
dad9b335 6176int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6177{
b536db93 6178 unsigned int old_flags = dev->flags;
dad9b335 6179 int err;
4417da66 6180
991fb3f7 6181 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6182 if (err < 0)
dad9b335 6183 return err;
4417da66
PM
6184 if (dev->flags != old_flags)
6185 dev_set_rx_mode(dev);
dad9b335 6186 return err;
4417da66 6187}
d1b19dff 6188EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6189
991fb3f7 6190static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6191{
991fb3f7 6192 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6193
24023451
PM
6194 ASSERT_RTNL();
6195
1da177e4 6196 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6197 dev->allmulti += inc;
6198 if (dev->allmulti == 0) {
6199 /*
6200 * Avoid overflow.
6201 * If inc causes overflow, untouch allmulti and return error.
6202 */
6203 if (inc < 0)
6204 dev->flags &= ~IFF_ALLMULTI;
6205 else {
6206 dev->allmulti -= inc;
7b6cd1ce
JP
6207 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6208 dev->name);
dad9b335
WC
6209 return -EOVERFLOW;
6210 }
6211 }
24023451 6212 if (dev->flags ^ old_flags) {
b6c40d68 6213 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6214 dev_set_rx_mode(dev);
991fb3f7
ND
6215 if (notify)
6216 __dev_notify_flags(dev, old_flags,
6217 dev->gflags ^ old_gflags);
24023451 6218 }
dad9b335 6219 return 0;
4417da66 6220}
991fb3f7
ND
6221
6222/**
6223 * dev_set_allmulti - update allmulti count on a device
6224 * @dev: device
6225 * @inc: modifier
6226 *
6227 * Add or remove reception of all multicast frames to a device. While the
6228 * count in the device remains above zero the interface remains listening
6229 * to all interfaces. Once it hits zero the device reverts back to normal
6230 * filtering operation. A negative @inc value is used to drop the counter
6231 * when releasing a resource needing all multicasts.
6232 * Return 0 if successful or a negative errno code on error.
6233 */
6234
6235int dev_set_allmulti(struct net_device *dev, int inc)
6236{
6237 return __dev_set_allmulti(dev, inc, true);
6238}
d1b19dff 6239EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6240
6241/*
6242 * Upload unicast and multicast address lists to device and
6243 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6244 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6245 * are present.
6246 */
6247void __dev_set_rx_mode(struct net_device *dev)
6248{
d314774c
SH
6249 const struct net_device_ops *ops = dev->netdev_ops;
6250
4417da66
PM
6251 /* dev_open will call this function so the list will stay sane. */
6252 if (!(dev->flags&IFF_UP))
6253 return;
6254
6255 if (!netif_device_present(dev))
40b77c94 6256 return;
4417da66 6257
01789349 6258 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6259 /* Unicast addresses changes may only happen under the rtnl,
6260 * therefore calling __dev_set_promiscuity here is safe.
6261 */
32e7bfc4 6262 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6263 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6264 dev->uc_promisc = true;
32e7bfc4 6265 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6266 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6267 dev->uc_promisc = false;
4417da66 6268 }
4417da66 6269 }
01789349
JP
6270
6271 if (ops->ndo_set_rx_mode)
6272 ops->ndo_set_rx_mode(dev);
4417da66
PM
6273}
6274
6275void dev_set_rx_mode(struct net_device *dev)
6276{
b9e40857 6277 netif_addr_lock_bh(dev);
4417da66 6278 __dev_set_rx_mode(dev);
b9e40857 6279 netif_addr_unlock_bh(dev);
1da177e4
LT
6280}
6281
f0db275a
SH
6282/**
6283 * dev_get_flags - get flags reported to userspace
6284 * @dev: device
6285 *
6286 * Get the combination of flag bits exported through APIs to userspace.
6287 */
95c96174 6288unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6289{
95c96174 6290 unsigned int flags;
1da177e4
LT
6291
6292 flags = (dev->flags & ~(IFF_PROMISC |
6293 IFF_ALLMULTI |
b00055aa
SR
6294 IFF_RUNNING |
6295 IFF_LOWER_UP |
6296 IFF_DORMANT)) |
1da177e4
LT
6297 (dev->gflags & (IFF_PROMISC |
6298 IFF_ALLMULTI));
6299
b00055aa
SR
6300 if (netif_running(dev)) {
6301 if (netif_oper_up(dev))
6302 flags |= IFF_RUNNING;
6303 if (netif_carrier_ok(dev))
6304 flags |= IFF_LOWER_UP;
6305 if (netif_dormant(dev))
6306 flags |= IFF_DORMANT;
6307 }
1da177e4
LT
6308
6309 return flags;
6310}
d1b19dff 6311EXPORT_SYMBOL(dev_get_flags);
1da177e4 6312
bd380811 6313int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6314{
b536db93 6315 unsigned int old_flags = dev->flags;
bd380811 6316 int ret;
1da177e4 6317
24023451
PM
6318 ASSERT_RTNL();
6319
1da177e4
LT
6320 /*
6321 * Set the flags on our device.
6322 */
6323
6324 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6325 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6326 IFF_AUTOMEDIA)) |
6327 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6328 IFF_ALLMULTI));
6329
6330 /*
6331 * Load in the correct multicast list now the flags have changed.
6332 */
6333
b6c40d68
PM
6334 if ((old_flags ^ flags) & IFF_MULTICAST)
6335 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6336
4417da66 6337 dev_set_rx_mode(dev);
1da177e4
LT
6338
6339 /*
6340 * Have we downed the interface. We handle IFF_UP ourselves
6341 * according to user attempts to set it, rather than blindly
6342 * setting it.
6343 */
6344
6345 ret = 0;
d215d10f 6346 if ((old_flags ^ flags) & IFF_UP)
bd380811 6347 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6348
1da177e4 6349 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6350 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6351 unsigned int old_flags = dev->flags;
d1b19dff 6352
1da177e4 6353 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6354
6355 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6356 if (dev->flags != old_flags)
6357 dev_set_rx_mode(dev);
1da177e4
LT
6358 }
6359
6360 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6361 is important. Some (broken) drivers set IFF_PROMISC, when
6362 IFF_ALLMULTI is requested not asking us and not reporting.
6363 */
6364 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6365 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6366
1da177e4 6367 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6368 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6369 }
6370
bd380811
PM
6371 return ret;
6372}
6373
a528c219
ND
6374void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6375 unsigned int gchanges)
bd380811
PM
6376{
6377 unsigned int changes = dev->flags ^ old_flags;
6378
a528c219 6379 if (gchanges)
7f294054 6380 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6381
bd380811
PM
6382 if (changes & IFF_UP) {
6383 if (dev->flags & IFF_UP)
6384 call_netdevice_notifiers(NETDEV_UP, dev);
6385 else
6386 call_netdevice_notifiers(NETDEV_DOWN, dev);
6387 }
6388
6389 if (dev->flags & IFF_UP &&
be9efd36
JP
6390 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6391 struct netdev_notifier_change_info change_info;
6392
6393 change_info.flags_changed = changes;
6394 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6395 &change_info.info);
6396 }
bd380811
PM
6397}
6398
6399/**
6400 * dev_change_flags - change device settings
6401 * @dev: device
6402 * @flags: device state flags
6403 *
6404 * Change settings on device based state flags. The flags are
6405 * in the userspace exported format.
6406 */
b536db93 6407int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6408{
b536db93 6409 int ret;
991fb3f7 6410 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6411
6412 ret = __dev_change_flags(dev, flags);
6413 if (ret < 0)
6414 return ret;
6415
991fb3f7 6416 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6417 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6418 return ret;
6419}
d1b19dff 6420EXPORT_SYMBOL(dev_change_flags);
1da177e4 6421
2315dc91
VF
6422static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6423{
6424 const struct net_device_ops *ops = dev->netdev_ops;
6425
6426 if (ops->ndo_change_mtu)
6427 return ops->ndo_change_mtu(dev, new_mtu);
6428
6429 dev->mtu = new_mtu;
6430 return 0;
6431}
6432
f0db275a
SH
6433/**
6434 * dev_set_mtu - Change maximum transfer unit
6435 * @dev: device
6436 * @new_mtu: new transfer unit
6437 *
6438 * Change the maximum transfer size of the network device.
6439 */
1da177e4
LT
6440int dev_set_mtu(struct net_device *dev, int new_mtu)
6441{
2315dc91 6442 int err, orig_mtu;
1da177e4
LT
6443
6444 if (new_mtu == dev->mtu)
6445 return 0;
6446
61e84623
JW
6447 /* MTU must be positive, and in range */
6448 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6449 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6450 dev->name, new_mtu, dev->min_mtu);
1da177e4 6451 return -EINVAL;
61e84623
JW
6452 }
6453
6454 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6455 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6456 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6457 return -EINVAL;
6458 }
1da177e4
LT
6459
6460 if (!netif_device_present(dev))
6461 return -ENODEV;
6462
1d486bfb
VF
6463 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6464 err = notifier_to_errno(err);
6465 if (err)
6466 return err;
d314774c 6467
2315dc91
VF
6468 orig_mtu = dev->mtu;
6469 err = __dev_set_mtu(dev, new_mtu);
d314774c 6470
2315dc91
VF
6471 if (!err) {
6472 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6473 err = notifier_to_errno(err);
6474 if (err) {
6475 /* setting mtu back and notifying everyone again,
6476 * so that they have a chance to revert changes.
6477 */
6478 __dev_set_mtu(dev, orig_mtu);
6479 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6480 }
6481 }
1da177e4
LT
6482 return err;
6483}
d1b19dff 6484EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6485
cbda10fa
VD
6486/**
6487 * dev_set_group - Change group this device belongs to
6488 * @dev: device
6489 * @new_group: group this device should belong to
6490 */
6491void dev_set_group(struct net_device *dev, int new_group)
6492{
6493 dev->group = new_group;
6494}
6495EXPORT_SYMBOL(dev_set_group);
6496
f0db275a
SH
6497/**
6498 * dev_set_mac_address - Change Media Access Control Address
6499 * @dev: device
6500 * @sa: new address
6501 *
6502 * Change the hardware (MAC) address of the device
6503 */
1da177e4
LT
6504int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6505{
d314774c 6506 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6507 int err;
6508
d314774c 6509 if (!ops->ndo_set_mac_address)
1da177e4
LT
6510 return -EOPNOTSUPP;
6511 if (sa->sa_family != dev->type)
6512 return -EINVAL;
6513 if (!netif_device_present(dev))
6514 return -ENODEV;
d314774c 6515 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6516 if (err)
6517 return err;
fbdeca2d 6518 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6519 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6520 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6521 return 0;
1da177e4 6522}
d1b19dff 6523EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6524
4bf84c35
JP
6525/**
6526 * dev_change_carrier - Change device carrier
6527 * @dev: device
691b3b7e 6528 * @new_carrier: new value
4bf84c35
JP
6529 *
6530 * Change device carrier
6531 */
6532int dev_change_carrier(struct net_device *dev, bool new_carrier)
6533{
6534 const struct net_device_ops *ops = dev->netdev_ops;
6535
6536 if (!ops->ndo_change_carrier)
6537 return -EOPNOTSUPP;
6538 if (!netif_device_present(dev))
6539 return -ENODEV;
6540 return ops->ndo_change_carrier(dev, new_carrier);
6541}
6542EXPORT_SYMBOL(dev_change_carrier);
6543
66b52b0d
JP
6544/**
6545 * dev_get_phys_port_id - Get device physical port ID
6546 * @dev: device
6547 * @ppid: port ID
6548 *
6549 * Get device physical port ID
6550 */
6551int dev_get_phys_port_id(struct net_device *dev,
02637fce 6552 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6553{
6554 const struct net_device_ops *ops = dev->netdev_ops;
6555
6556 if (!ops->ndo_get_phys_port_id)
6557 return -EOPNOTSUPP;
6558 return ops->ndo_get_phys_port_id(dev, ppid);
6559}
6560EXPORT_SYMBOL(dev_get_phys_port_id);
6561
db24a904
DA
6562/**
6563 * dev_get_phys_port_name - Get device physical port name
6564 * @dev: device
6565 * @name: port name
ed49e650 6566 * @len: limit of bytes to copy to name
db24a904
DA
6567 *
6568 * Get device physical port name
6569 */
6570int dev_get_phys_port_name(struct net_device *dev,
6571 char *name, size_t len)
6572{
6573 const struct net_device_ops *ops = dev->netdev_ops;
6574
6575 if (!ops->ndo_get_phys_port_name)
6576 return -EOPNOTSUPP;
6577 return ops->ndo_get_phys_port_name(dev, name, len);
6578}
6579EXPORT_SYMBOL(dev_get_phys_port_name);
6580
d746d707
AK
6581/**
6582 * dev_change_proto_down - update protocol port state information
6583 * @dev: device
6584 * @proto_down: new value
6585 *
6586 * This info can be used by switch drivers to set the phys state of the
6587 * port.
6588 */
6589int dev_change_proto_down(struct net_device *dev, bool proto_down)
6590{
6591 const struct net_device_ops *ops = dev->netdev_ops;
6592
6593 if (!ops->ndo_change_proto_down)
6594 return -EOPNOTSUPP;
6595 if (!netif_device_present(dev))
6596 return -ENODEV;
6597 return ops->ndo_change_proto_down(dev, proto_down);
6598}
6599EXPORT_SYMBOL(dev_change_proto_down);
6600
a7862b45
BB
6601/**
6602 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6603 * @dev: device
6604 * @fd: new program fd or negative value to clear
85de8576 6605 * @flags: xdp-related flags
a7862b45
BB
6606 *
6607 * Set or clear a bpf program for a device
6608 */
85de8576 6609int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6610{
6611 const struct net_device_ops *ops = dev->netdev_ops;
6612 struct bpf_prog *prog = NULL;
85de8576 6613 struct netdev_xdp xdp;
a7862b45
BB
6614 int err;
6615
85de8576
DB
6616 ASSERT_RTNL();
6617
a7862b45
BB
6618 if (!ops->ndo_xdp)
6619 return -EOPNOTSUPP;
6620 if (fd >= 0) {
85de8576
DB
6621 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6622 memset(&xdp, 0, sizeof(xdp));
6623 xdp.command = XDP_QUERY_PROG;
6624
6625 err = ops->ndo_xdp(dev, &xdp);
6626 if (err < 0)
6627 return err;
6628 if (xdp.prog_attached)
6629 return -EBUSY;
6630 }
6631
a7862b45
BB
6632 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6633 if (IS_ERR(prog))
6634 return PTR_ERR(prog);
6635 }
6636
85de8576 6637 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6638 xdp.command = XDP_SETUP_PROG;
6639 xdp.prog = prog;
85de8576 6640
a7862b45
BB
6641 err = ops->ndo_xdp(dev, &xdp);
6642 if (err < 0 && prog)
6643 bpf_prog_put(prog);
6644
6645 return err;
6646}
6647EXPORT_SYMBOL(dev_change_xdp_fd);
6648
1da177e4
LT
6649/**
6650 * dev_new_index - allocate an ifindex
c4ea43c5 6651 * @net: the applicable net namespace
1da177e4
LT
6652 *
6653 * Returns a suitable unique value for a new device interface
6654 * number. The caller must hold the rtnl semaphore or the
6655 * dev_base_lock to be sure it remains unique.
6656 */
881d966b 6657static int dev_new_index(struct net *net)
1da177e4 6658{
aa79e66e 6659 int ifindex = net->ifindex;
1da177e4
LT
6660 for (;;) {
6661 if (++ifindex <= 0)
6662 ifindex = 1;
881d966b 6663 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6664 return net->ifindex = ifindex;
1da177e4
LT
6665 }
6666}
6667
1da177e4 6668/* Delayed registration/unregisteration */
3b5b34fd 6669static LIST_HEAD(net_todo_list);
200b916f 6670DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6671
6f05f629 6672static void net_set_todo(struct net_device *dev)
1da177e4 6673{
1da177e4 6674 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6675 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6676}
6677
9b5e383c 6678static void rollback_registered_many(struct list_head *head)
93ee31f1 6679{
e93737b0 6680 struct net_device *dev, *tmp;
5cde2829 6681 LIST_HEAD(close_head);
9b5e383c 6682
93ee31f1
DL
6683 BUG_ON(dev_boot_phase);
6684 ASSERT_RTNL();
6685
e93737b0 6686 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6687 /* Some devices call without registering
e93737b0
KK
6688 * for initialization unwind. Remove those
6689 * devices and proceed with the remaining.
9b5e383c
ED
6690 */
6691 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6692 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6693 dev->name, dev);
93ee31f1 6694
9b5e383c 6695 WARN_ON(1);
e93737b0
KK
6696 list_del(&dev->unreg_list);
6697 continue;
9b5e383c 6698 }
449f4544 6699 dev->dismantle = true;
9b5e383c 6700 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6701 }
93ee31f1 6702
44345724 6703 /* If device is running, close it first. */
5cde2829
EB
6704 list_for_each_entry(dev, head, unreg_list)
6705 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6706 dev_close_many(&close_head, true);
93ee31f1 6707
44345724 6708 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6709 /* And unlink it from device chain. */
6710 unlist_netdevice(dev);
93ee31f1 6711
9b5e383c
ED
6712 dev->reg_state = NETREG_UNREGISTERING;
6713 }
41852497 6714 flush_all_backlogs();
93ee31f1
DL
6715
6716 synchronize_net();
6717
9b5e383c 6718 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6719 struct sk_buff *skb = NULL;
6720
9b5e383c
ED
6721 /* Shutdown queueing discipline. */
6722 dev_shutdown(dev);
93ee31f1
DL
6723
6724
9b5e383c
ED
6725 /* Notify protocols, that we are about to destroy
6726 this device. They should clean all the things.
6727 */
6728 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6729
395eea6c
MB
6730 if (!dev->rtnl_link_ops ||
6731 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6732 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6733 GFP_KERNEL);
6734
9b5e383c
ED
6735 /*
6736 * Flush the unicast and multicast chains
6737 */
a748ee24 6738 dev_uc_flush(dev);
22bedad3 6739 dev_mc_flush(dev);
93ee31f1 6740
9b5e383c
ED
6741 if (dev->netdev_ops->ndo_uninit)
6742 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6743
395eea6c
MB
6744 if (skb)
6745 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6746
9ff162a8
JP
6747 /* Notifier chain MUST detach us all upper devices. */
6748 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6749 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6750
9b5e383c
ED
6751 /* Remove entries from kobject tree */
6752 netdev_unregister_kobject(dev);
024e9679
AD
6753#ifdef CONFIG_XPS
6754 /* Remove XPS queueing entries */
6755 netif_reset_xps_queues_gt(dev, 0);
6756#endif
9b5e383c 6757 }
93ee31f1 6758
850a545b 6759 synchronize_net();
395264d5 6760
a5ee1551 6761 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6762 dev_put(dev);
6763}
6764
6765static void rollback_registered(struct net_device *dev)
6766{
6767 LIST_HEAD(single);
6768
6769 list_add(&dev->unreg_list, &single);
6770 rollback_registered_many(&single);
ceaaec98 6771 list_del(&single);
93ee31f1
DL
6772}
6773
fd867d51
JW
6774static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6775 struct net_device *upper, netdev_features_t features)
6776{
6777 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6778 netdev_features_t feature;
5ba3f7d6 6779 int feature_bit;
fd867d51 6780
5ba3f7d6
JW
6781 for_each_netdev_feature(&upper_disables, feature_bit) {
6782 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6783 if (!(upper->wanted_features & feature)
6784 && (features & feature)) {
6785 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6786 &feature, upper->name);
6787 features &= ~feature;
6788 }
6789 }
6790
6791 return features;
6792}
6793
6794static void netdev_sync_lower_features(struct net_device *upper,
6795 struct net_device *lower, netdev_features_t features)
6796{
6797 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6798 netdev_features_t feature;
5ba3f7d6 6799 int feature_bit;
fd867d51 6800
5ba3f7d6
JW
6801 for_each_netdev_feature(&upper_disables, feature_bit) {
6802 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6803 if (!(features & feature) && (lower->features & feature)) {
6804 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6805 &feature, lower->name);
6806 lower->wanted_features &= ~feature;
6807 netdev_update_features(lower);
6808
6809 if (unlikely(lower->features & feature))
6810 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6811 &feature, lower->name);
6812 }
6813 }
6814}
6815
c8f44aff
MM
6816static netdev_features_t netdev_fix_features(struct net_device *dev,
6817 netdev_features_t features)
b63365a2 6818{
57422dc5
MM
6819 /* Fix illegal checksum combinations */
6820 if ((features & NETIF_F_HW_CSUM) &&
6821 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6822 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6823 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6824 }
6825
b63365a2 6826 /* TSO requires that SG is present as well. */
ea2d3688 6827 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6828 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6829 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6830 }
6831
ec5f0615
PS
6832 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6833 !(features & NETIF_F_IP_CSUM)) {
6834 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6835 features &= ~NETIF_F_TSO;
6836 features &= ~NETIF_F_TSO_ECN;
6837 }
6838
6839 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6840 !(features & NETIF_F_IPV6_CSUM)) {
6841 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6842 features &= ~NETIF_F_TSO6;
6843 }
6844
b1dc497b
AD
6845 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6846 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6847 features &= ~NETIF_F_TSO_MANGLEID;
6848
31d8b9e0
BH
6849 /* TSO ECN requires that TSO is present as well. */
6850 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6851 features &= ~NETIF_F_TSO_ECN;
6852
212b573f
MM
6853 /* Software GSO depends on SG. */
6854 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6855 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6856 features &= ~NETIF_F_GSO;
6857 }
6858
acd1130e 6859 /* UFO needs SG and checksumming */
b63365a2 6860 if (features & NETIF_F_UFO) {
79032644 6861 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6862 if (!(features & NETIF_F_HW_CSUM) &&
6863 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6864 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6865 netdev_dbg(dev,
acd1130e 6866 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6867 features &= ~NETIF_F_UFO;
6868 }
6869
6870 if (!(features & NETIF_F_SG)) {
6f404e44 6871 netdev_dbg(dev,
acd1130e 6872 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6873 features &= ~NETIF_F_UFO;
6874 }
6875 }
6876
802ab55a
AD
6877 /* GSO partial features require GSO partial be set */
6878 if ((features & dev->gso_partial_features) &&
6879 !(features & NETIF_F_GSO_PARTIAL)) {
6880 netdev_dbg(dev,
6881 "Dropping partially supported GSO features since no GSO partial.\n");
6882 features &= ~dev->gso_partial_features;
6883 }
6884
b63365a2
HX
6885 return features;
6886}
b63365a2 6887
6cb6a27c 6888int __netdev_update_features(struct net_device *dev)
5455c699 6889{
fd867d51 6890 struct net_device *upper, *lower;
c8f44aff 6891 netdev_features_t features;
fd867d51 6892 struct list_head *iter;
e7868a85 6893 int err = -1;
5455c699 6894
87267485
MM
6895 ASSERT_RTNL();
6896
5455c699
MM
6897 features = netdev_get_wanted_features(dev);
6898
6899 if (dev->netdev_ops->ndo_fix_features)
6900 features = dev->netdev_ops->ndo_fix_features(dev, features);
6901
6902 /* driver might be less strict about feature dependencies */
6903 features = netdev_fix_features(dev, features);
6904
fd867d51
JW
6905 /* some features can't be enabled if they're off an an upper device */
6906 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6907 features = netdev_sync_upper_features(dev, upper, features);
6908
5455c699 6909 if (dev->features == features)
e7868a85 6910 goto sync_lower;
5455c699 6911
c8f44aff
MM
6912 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6913 &dev->features, &features);
5455c699
MM
6914
6915 if (dev->netdev_ops->ndo_set_features)
6916 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6917 else
6918 err = 0;
5455c699 6919
6cb6a27c 6920 if (unlikely(err < 0)) {
5455c699 6921 netdev_err(dev,
c8f44aff
MM
6922 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6923 err, &features, &dev->features);
17b85d29
NA
6924 /* return non-0 since some features might have changed and
6925 * it's better to fire a spurious notification than miss it
6926 */
6927 return -1;
6cb6a27c
MM
6928 }
6929
e7868a85 6930sync_lower:
fd867d51
JW
6931 /* some features must be disabled on lower devices when disabled
6932 * on an upper device (think: bonding master or bridge)
6933 */
6934 netdev_for_each_lower_dev(dev, lower, iter)
6935 netdev_sync_lower_features(dev, lower, features);
6936
6cb6a27c
MM
6937 if (!err)
6938 dev->features = features;
6939
e7868a85 6940 return err < 0 ? 0 : 1;
6cb6a27c
MM
6941}
6942
afe12cc8
MM
6943/**
6944 * netdev_update_features - recalculate device features
6945 * @dev: the device to check
6946 *
6947 * Recalculate dev->features set and send notifications if it
6948 * has changed. Should be called after driver or hardware dependent
6949 * conditions might have changed that influence the features.
6950 */
6cb6a27c
MM
6951void netdev_update_features(struct net_device *dev)
6952{
6953 if (__netdev_update_features(dev))
6954 netdev_features_change(dev);
5455c699
MM
6955}
6956EXPORT_SYMBOL(netdev_update_features);
6957
afe12cc8
MM
6958/**
6959 * netdev_change_features - recalculate device features
6960 * @dev: the device to check
6961 *
6962 * Recalculate dev->features set and send notifications even
6963 * if they have not changed. Should be called instead of
6964 * netdev_update_features() if also dev->vlan_features might
6965 * have changed to allow the changes to be propagated to stacked
6966 * VLAN devices.
6967 */
6968void netdev_change_features(struct net_device *dev)
6969{
6970 __netdev_update_features(dev);
6971 netdev_features_change(dev);
6972}
6973EXPORT_SYMBOL(netdev_change_features);
6974
fc4a7489
PM
6975/**
6976 * netif_stacked_transfer_operstate - transfer operstate
6977 * @rootdev: the root or lower level device to transfer state from
6978 * @dev: the device to transfer operstate to
6979 *
6980 * Transfer operational state from root to device. This is normally
6981 * called when a stacking relationship exists between the root
6982 * device and the device(a leaf device).
6983 */
6984void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6985 struct net_device *dev)
6986{
6987 if (rootdev->operstate == IF_OPER_DORMANT)
6988 netif_dormant_on(dev);
6989 else
6990 netif_dormant_off(dev);
6991
6992 if (netif_carrier_ok(rootdev)) {
6993 if (!netif_carrier_ok(dev))
6994 netif_carrier_on(dev);
6995 } else {
6996 if (netif_carrier_ok(dev))
6997 netif_carrier_off(dev);
6998 }
6999}
7000EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7001
a953be53 7002#ifdef CONFIG_SYSFS
1b4bf461
ED
7003static int netif_alloc_rx_queues(struct net_device *dev)
7004{
1b4bf461 7005 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7006 struct netdev_rx_queue *rx;
10595902 7007 size_t sz = count * sizeof(*rx);
1b4bf461 7008
bd25fa7b 7009 BUG_ON(count < 1);
1b4bf461 7010
10595902
PG
7011 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7012 if (!rx) {
7013 rx = vzalloc(sz);
7014 if (!rx)
7015 return -ENOMEM;
7016 }
bd25fa7b
TH
7017 dev->_rx = rx;
7018
bd25fa7b 7019 for (i = 0; i < count; i++)
fe822240 7020 rx[i].dev = dev;
1b4bf461
ED
7021 return 0;
7022}
bf264145 7023#endif
1b4bf461 7024
aa942104
CG
7025static void netdev_init_one_queue(struct net_device *dev,
7026 struct netdev_queue *queue, void *_unused)
7027{
7028 /* Initialize queue lock */
7029 spin_lock_init(&queue->_xmit_lock);
7030 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7031 queue->xmit_lock_owner = -1;
b236da69 7032 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7033 queue->dev = dev;
114cf580
TH
7034#ifdef CONFIG_BQL
7035 dql_init(&queue->dql, HZ);
7036#endif
aa942104
CG
7037}
7038
60877a32
ED
7039static void netif_free_tx_queues(struct net_device *dev)
7040{
4cb28970 7041 kvfree(dev->_tx);
60877a32
ED
7042}
7043
e6484930
TH
7044static int netif_alloc_netdev_queues(struct net_device *dev)
7045{
7046 unsigned int count = dev->num_tx_queues;
7047 struct netdev_queue *tx;
60877a32 7048 size_t sz = count * sizeof(*tx);
e6484930 7049
d339727c
ED
7050 if (count < 1 || count > 0xffff)
7051 return -EINVAL;
62b5942a 7052
60877a32
ED
7053 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7054 if (!tx) {
7055 tx = vzalloc(sz);
7056 if (!tx)
7057 return -ENOMEM;
7058 }
e6484930 7059 dev->_tx = tx;
1d24eb48 7060
e6484930
TH
7061 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7062 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7063
7064 return 0;
e6484930
TH
7065}
7066
a2029240
DV
7067void netif_tx_stop_all_queues(struct net_device *dev)
7068{
7069 unsigned int i;
7070
7071 for (i = 0; i < dev->num_tx_queues; i++) {
7072 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7073 netif_tx_stop_queue(txq);
7074 }
7075}
7076EXPORT_SYMBOL(netif_tx_stop_all_queues);
7077
1da177e4
LT
7078/**
7079 * register_netdevice - register a network device
7080 * @dev: device to register
7081 *
7082 * Take a completed network device structure and add it to the kernel
7083 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7084 * chain. 0 is returned on success. A negative errno code is returned
7085 * on a failure to set up the device, or if the name is a duplicate.
7086 *
7087 * Callers must hold the rtnl semaphore. You may want
7088 * register_netdev() instead of this.
7089 *
7090 * BUGS:
7091 * The locking appears insufficient to guarantee two parallel registers
7092 * will not get the same name.
7093 */
7094
7095int register_netdevice(struct net_device *dev)
7096{
1da177e4 7097 int ret;
d314774c 7098 struct net *net = dev_net(dev);
1da177e4
LT
7099
7100 BUG_ON(dev_boot_phase);
7101 ASSERT_RTNL();
7102
b17a7c17
SH
7103 might_sleep();
7104
1da177e4
LT
7105 /* When net_device's are persistent, this will be fatal. */
7106 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7107 BUG_ON(!net);
1da177e4 7108
f1f28aa3 7109 spin_lock_init(&dev->addr_list_lock);
cf508b12 7110 netdev_set_addr_lockdep_class(dev);
1da177e4 7111
828de4f6 7112 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7113 if (ret < 0)
7114 goto out;
7115
1da177e4 7116 /* Init, if this function is available */
d314774c
SH
7117 if (dev->netdev_ops->ndo_init) {
7118 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7119 if (ret) {
7120 if (ret > 0)
7121 ret = -EIO;
90833aa4 7122 goto out;
1da177e4
LT
7123 }
7124 }
4ec93edb 7125
f646968f
PM
7126 if (((dev->hw_features | dev->features) &
7127 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7128 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7129 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7130 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7131 ret = -EINVAL;
7132 goto err_uninit;
7133 }
7134
9c7dafbf
PE
7135 ret = -EBUSY;
7136 if (!dev->ifindex)
7137 dev->ifindex = dev_new_index(net);
7138 else if (__dev_get_by_index(net, dev->ifindex))
7139 goto err_uninit;
7140
5455c699
MM
7141 /* Transfer changeable features to wanted_features and enable
7142 * software offloads (GSO and GRO).
7143 */
7144 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7145 dev->features |= NETIF_F_SOFT_FEATURES;
7146 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7147
cbc53e08 7148 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7149 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7150
7f348a60
AD
7151 /* If IPv4 TCP segmentation offload is supported we should also
7152 * allow the device to enable segmenting the frame with the option
7153 * of ignoring a static IP ID value. This doesn't enable the
7154 * feature itself but allows the user to enable it later.
7155 */
cbc53e08
AD
7156 if (dev->hw_features & NETIF_F_TSO)
7157 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7158 if (dev->vlan_features & NETIF_F_TSO)
7159 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7160 if (dev->mpls_features & NETIF_F_TSO)
7161 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7162 if (dev->hw_enc_features & NETIF_F_TSO)
7163 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7164
1180e7d6 7165 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7166 */
1180e7d6 7167 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7168
ee579677
PS
7169 /* Make NETIF_F_SG inheritable to tunnel devices.
7170 */
802ab55a 7171 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7172
0d89d203
SH
7173 /* Make NETIF_F_SG inheritable to MPLS.
7174 */
7175 dev->mpls_features |= NETIF_F_SG;
7176
7ffbe3fd
JB
7177 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7178 ret = notifier_to_errno(ret);
7179 if (ret)
7180 goto err_uninit;
7181
8b41d188 7182 ret = netdev_register_kobject(dev);
b17a7c17 7183 if (ret)
7ce1b0ed 7184 goto err_uninit;
b17a7c17
SH
7185 dev->reg_state = NETREG_REGISTERED;
7186
6cb6a27c 7187 __netdev_update_features(dev);
8e9b59b2 7188
1da177e4
LT
7189 /*
7190 * Default initial state at registry is that the
7191 * device is present.
7192 */
7193
7194 set_bit(__LINK_STATE_PRESENT, &dev->state);
7195
8f4cccbb
BH
7196 linkwatch_init_dev(dev);
7197
1da177e4 7198 dev_init_scheduler(dev);
1da177e4 7199 dev_hold(dev);
ce286d32 7200 list_netdevice(dev);
7bf23575 7201 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7202
948b337e
JP
7203 /* If the device has permanent device address, driver should
7204 * set dev_addr and also addr_assign_type should be set to
7205 * NET_ADDR_PERM (default value).
7206 */
7207 if (dev->addr_assign_type == NET_ADDR_PERM)
7208 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7209
1da177e4 7210 /* Notify protocols, that a new device appeared. */
056925ab 7211 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7212 ret = notifier_to_errno(ret);
93ee31f1
DL
7213 if (ret) {
7214 rollback_registered(dev);
7215 dev->reg_state = NETREG_UNREGISTERED;
7216 }
d90a909e
EB
7217 /*
7218 * Prevent userspace races by waiting until the network
7219 * device is fully setup before sending notifications.
7220 */
a2835763
PM
7221 if (!dev->rtnl_link_ops ||
7222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7224
7225out:
7226 return ret;
7ce1b0ed
HX
7227
7228err_uninit:
d314774c
SH
7229 if (dev->netdev_ops->ndo_uninit)
7230 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7231 goto out;
1da177e4 7232}
d1b19dff 7233EXPORT_SYMBOL(register_netdevice);
1da177e4 7234
937f1ba5
BH
7235/**
7236 * init_dummy_netdev - init a dummy network device for NAPI
7237 * @dev: device to init
7238 *
7239 * This takes a network device structure and initialize the minimum
7240 * amount of fields so it can be used to schedule NAPI polls without
7241 * registering a full blown interface. This is to be used by drivers
7242 * that need to tie several hardware interfaces to a single NAPI
7243 * poll scheduler due to HW limitations.
7244 */
7245int init_dummy_netdev(struct net_device *dev)
7246{
7247 /* Clear everything. Note we don't initialize spinlocks
7248 * are they aren't supposed to be taken by any of the
7249 * NAPI code and this dummy netdev is supposed to be
7250 * only ever used for NAPI polls
7251 */
7252 memset(dev, 0, sizeof(struct net_device));
7253
7254 /* make sure we BUG if trying to hit standard
7255 * register/unregister code path
7256 */
7257 dev->reg_state = NETREG_DUMMY;
7258
937f1ba5
BH
7259 /* NAPI wants this */
7260 INIT_LIST_HEAD(&dev->napi_list);
7261
7262 /* a dummy interface is started by default */
7263 set_bit(__LINK_STATE_PRESENT, &dev->state);
7264 set_bit(__LINK_STATE_START, &dev->state);
7265
29b4433d
ED
7266 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7267 * because users of this 'device' dont need to change
7268 * its refcount.
7269 */
7270
937f1ba5
BH
7271 return 0;
7272}
7273EXPORT_SYMBOL_GPL(init_dummy_netdev);
7274
7275
1da177e4
LT
7276/**
7277 * register_netdev - register a network device
7278 * @dev: device to register
7279 *
7280 * Take a completed network device structure and add it to the kernel
7281 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7282 * chain. 0 is returned on success. A negative errno code is returned
7283 * on a failure to set up the device, or if the name is a duplicate.
7284 *
38b4da38 7285 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7286 * and expands the device name if you passed a format string to
7287 * alloc_netdev.
7288 */
7289int register_netdev(struct net_device *dev)
7290{
7291 int err;
7292
7293 rtnl_lock();
1da177e4 7294 err = register_netdevice(dev);
1da177e4
LT
7295 rtnl_unlock();
7296 return err;
7297}
7298EXPORT_SYMBOL(register_netdev);
7299
29b4433d
ED
7300int netdev_refcnt_read(const struct net_device *dev)
7301{
7302 int i, refcnt = 0;
7303
7304 for_each_possible_cpu(i)
7305 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7306 return refcnt;
7307}
7308EXPORT_SYMBOL(netdev_refcnt_read);
7309
2c53040f 7310/**
1da177e4 7311 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7312 * @dev: target net_device
1da177e4
LT
7313 *
7314 * This is called when unregistering network devices.
7315 *
7316 * Any protocol or device that holds a reference should register
7317 * for netdevice notification, and cleanup and put back the
7318 * reference if they receive an UNREGISTER event.
7319 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7320 * call dev_put.
1da177e4
LT
7321 */
7322static void netdev_wait_allrefs(struct net_device *dev)
7323{
7324 unsigned long rebroadcast_time, warning_time;
29b4433d 7325 int refcnt;
1da177e4 7326
e014debe
ED
7327 linkwatch_forget_dev(dev);
7328
1da177e4 7329 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7330 refcnt = netdev_refcnt_read(dev);
7331
7332 while (refcnt != 0) {
1da177e4 7333 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7334 rtnl_lock();
1da177e4
LT
7335
7336 /* Rebroadcast unregister notification */
056925ab 7337 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7338
748e2d93 7339 __rtnl_unlock();
0115e8e3 7340 rcu_barrier();
748e2d93
ED
7341 rtnl_lock();
7342
0115e8e3 7343 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7344 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7345 &dev->state)) {
7346 /* We must not have linkwatch events
7347 * pending on unregister. If this
7348 * happens, we simply run the queue
7349 * unscheduled, resulting in a noop
7350 * for this device.
7351 */
7352 linkwatch_run_queue();
7353 }
7354
6756ae4b 7355 __rtnl_unlock();
1da177e4
LT
7356
7357 rebroadcast_time = jiffies;
7358 }
7359
7360 msleep(250);
7361
29b4433d
ED
7362 refcnt = netdev_refcnt_read(dev);
7363
1da177e4 7364 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7365 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7366 dev->name, refcnt);
1da177e4
LT
7367 warning_time = jiffies;
7368 }
7369 }
7370}
7371
7372/* The sequence is:
7373 *
7374 * rtnl_lock();
7375 * ...
7376 * register_netdevice(x1);
7377 * register_netdevice(x2);
7378 * ...
7379 * unregister_netdevice(y1);
7380 * unregister_netdevice(y2);
7381 * ...
7382 * rtnl_unlock();
7383 * free_netdev(y1);
7384 * free_netdev(y2);
7385 *
58ec3b4d 7386 * We are invoked by rtnl_unlock().
1da177e4 7387 * This allows us to deal with problems:
b17a7c17 7388 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7389 * without deadlocking with linkwatch via keventd.
7390 * 2) Since we run with the RTNL semaphore not held, we can sleep
7391 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7392 *
7393 * We must not return until all unregister events added during
7394 * the interval the lock was held have been completed.
1da177e4 7395 */
1da177e4
LT
7396void netdev_run_todo(void)
7397{
626ab0e6 7398 struct list_head list;
1da177e4 7399
1da177e4 7400 /* Snapshot list, allow later requests */
626ab0e6 7401 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7402
7403 __rtnl_unlock();
626ab0e6 7404
0115e8e3
ED
7405
7406 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7407 if (!list_empty(&list))
7408 rcu_barrier();
7409
1da177e4
LT
7410 while (!list_empty(&list)) {
7411 struct net_device *dev
e5e26d75 7412 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7413 list_del(&dev->todo_list);
7414
748e2d93 7415 rtnl_lock();
0115e8e3 7416 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7417 __rtnl_unlock();
0115e8e3 7418
b17a7c17 7419 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7420 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7421 dev->name, dev->reg_state);
7422 dump_stack();
7423 continue;
7424 }
1da177e4 7425
b17a7c17 7426 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7427
b17a7c17 7428 netdev_wait_allrefs(dev);
1da177e4 7429
b17a7c17 7430 /* paranoia */
29b4433d 7431 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7432 BUG_ON(!list_empty(&dev->ptype_all));
7433 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7434 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7435 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7436 WARN_ON(dev->dn_ptr);
1da177e4 7437
b17a7c17
SH
7438 if (dev->destructor)
7439 dev->destructor(dev);
9093bbb2 7440
50624c93
EB
7441 /* Report a network device has been unregistered */
7442 rtnl_lock();
7443 dev_net(dev)->dev_unreg_count--;
7444 __rtnl_unlock();
7445 wake_up(&netdev_unregistering_wq);
7446
9093bbb2
SH
7447 /* Free network device */
7448 kobject_put(&dev->dev.kobj);
1da177e4 7449 }
1da177e4
LT
7450}
7451
9256645a
JW
7452/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7453 * all the same fields in the same order as net_device_stats, with only
7454 * the type differing, but rtnl_link_stats64 may have additional fields
7455 * at the end for newer counters.
3cfde79c 7456 */
77a1abf5
ED
7457void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7458 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7459{
7460#if BITS_PER_LONG == 64
9256645a 7461 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7462 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7463 /* zero out counters that only exist in rtnl_link_stats64 */
7464 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7465 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7466#else
9256645a 7467 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7468 const unsigned long *src = (const unsigned long *)netdev_stats;
7469 u64 *dst = (u64 *)stats64;
7470
9256645a 7471 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7472 for (i = 0; i < n; i++)
7473 dst[i] = src[i];
9256645a
JW
7474 /* zero out counters that only exist in rtnl_link_stats64 */
7475 memset((char *)stats64 + n * sizeof(u64), 0,
7476 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7477#endif
7478}
77a1abf5 7479EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7480
eeda3fd6
SH
7481/**
7482 * dev_get_stats - get network device statistics
7483 * @dev: device to get statistics from
28172739 7484 * @storage: place to store stats
eeda3fd6 7485 *
d7753516
BH
7486 * Get network statistics from device. Return @storage.
7487 * The device driver may provide its own method by setting
7488 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7489 * otherwise the internal statistics structure is used.
eeda3fd6 7490 */
d7753516
BH
7491struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7492 struct rtnl_link_stats64 *storage)
7004bf25 7493{
eeda3fd6
SH
7494 const struct net_device_ops *ops = dev->netdev_ops;
7495
28172739
ED
7496 if (ops->ndo_get_stats64) {
7497 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7498 ops->ndo_get_stats64(dev, storage);
7499 } else if (ops->ndo_get_stats) {
3cfde79c 7500 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7501 } else {
7502 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7503 }
caf586e5 7504 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7505 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7506 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7507 return storage;
c45d286e 7508}
eeda3fd6 7509EXPORT_SYMBOL(dev_get_stats);
c45d286e 7510
24824a09 7511struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7512{
24824a09 7513 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7514
24824a09
ED
7515#ifdef CONFIG_NET_CLS_ACT
7516 if (queue)
7517 return queue;
7518 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7519 if (!queue)
7520 return NULL;
7521 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7522 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7523 queue->qdisc_sleeping = &noop_qdisc;
7524 rcu_assign_pointer(dev->ingress_queue, queue);
7525#endif
7526 return queue;
bb949fbd
DM
7527}
7528
2c60db03
ED
7529static const struct ethtool_ops default_ethtool_ops;
7530
d07d7507
SG
7531void netdev_set_default_ethtool_ops(struct net_device *dev,
7532 const struct ethtool_ops *ops)
7533{
7534 if (dev->ethtool_ops == &default_ethtool_ops)
7535 dev->ethtool_ops = ops;
7536}
7537EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7538
74d332c1
ED
7539void netdev_freemem(struct net_device *dev)
7540{
7541 char *addr = (char *)dev - dev->padded;
7542
4cb28970 7543 kvfree(addr);
74d332c1
ED
7544}
7545
1da177e4 7546/**
36909ea4 7547 * alloc_netdev_mqs - allocate network device
c835a677
TG
7548 * @sizeof_priv: size of private data to allocate space for
7549 * @name: device name format string
7550 * @name_assign_type: origin of device name
7551 * @setup: callback to initialize device
7552 * @txqs: the number of TX subqueues to allocate
7553 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7554 *
7555 * Allocates a struct net_device with private data area for driver use
90e51adf 7556 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7557 * for each queue on the device.
1da177e4 7558 */
36909ea4 7559struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7560 unsigned char name_assign_type,
36909ea4
TH
7561 void (*setup)(struct net_device *),
7562 unsigned int txqs, unsigned int rxqs)
1da177e4 7563{
1da177e4 7564 struct net_device *dev;
7943986c 7565 size_t alloc_size;
1ce8e7b5 7566 struct net_device *p;
1da177e4 7567
b6fe17d6
SH
7568 BUG_ON(strlen(name) >= sizeof(dev->name));
7569
36909ea4 7570 if (txqs < 1) {
7b6cd1ce 7571 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7572 return NULL;
7573 }
7574
a953be53 7575#ifdef CONFIG_SYSFS
36909ea4 7576 if (rxqs < 1) {
7b6cd1ce 7577 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7578 return NULL;
7579 }
7580#endif
7581
fd2ea0a7 7582 alloc_size = sizeof(struct net_device);
d1643d24
AD
7583 if (sizeof_priv) {
7584 /* ensure 32-byte alignment of private area */
1ce8e7b5 7585 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7586 alloc_size += sizeof_priv;
7587 }
7588 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7589 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7590
74d332c1
ED
7591 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7592 if (!p)
7593 p = vzalloc(alloc_size);
62b5942a 7594 if (!p)
1da177e4 7595 return NULL;
1da177e4 7596
1ce8e7b5 7597 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7598 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7599
29b4433d
ED
7600 dev->pcpu_refcnt = alloc_percpu(int);
7601 if (!dev->pcpu_refcnt)
74d332c1 7602 goto free_dev;
ab9c73cc 7603
ab9c73cc 7604 if (dev_addr_init(dev))
29b4433d 7605 goto free_pcpu;
ab9c73cc 7606
22bedad3 7607 dev_mc_init(dev);
a748ee24 7608 dev_uc_init(dev);
ccffad25 7609
c346dca1 7610 dev_net_set(dev, &init_net);
1da177e4 7611
8d3bdbd5 7612 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7613 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7614
8d3bdbd5
DM
7615 INIT_LIST_HEAD(&dev->napi_list);
7616 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7617 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7618 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7619 INIT_LIST_HEAD(&dev->adj_list.upper);
7620 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7621 INIT_LIST_HEAD(&dev->ptype_all);
7622 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7623#ifdef CONFIG_NET_SCHED
7624 hash_init(dev->qdisc_hash);
7625#endif
02875878 7626 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7627 setup(dev);
7628
a813104d 7629 if (!dev->tx_queue_len) {
f84bb1ea 7630 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7631 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7632 }
906470c1 7633
36909ea4
TH
7634 dev->num_tx_queues = txqs;
7635 dev->real_num_tx_queues = txqs;
ed9af2e8 7636 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7637 goto free_all;
e8a0464c 7638
a953be53 7639#ifdef CONFIG_SYSFS
36909ea4
TH
7640 dev->num_rx_queues = rxqs;
7641 dev->real_num_rx_queues = rxqs;
fe822240 7642 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7643 goto free_all;
df334545 7644#endif
0a9627f2 7645
1da177e4 7646 strcpy(dev->name, name);
c835a677 7647 dev->name_assign_type = name_assign_type;
cbda10fa 7648 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7649 if (!dev->ethtool_ops)
7650 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7651
7652 nf_hook_ingress_init(dev);
7653
1da177e4 7654 return dev;
ab9c73cc 7655
8d3bdbd5
DM
7656free_all:
7657 free_netdev(dev);
7658 return NULL;
7659
29b4433d
ED
7660free_pcpu:
7661 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7662free_dev:
7663 netdev_freemem(dev);
ab9c73cc 7664 return NULL;
1da177e4 7665}
36909ea4 7666EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7667
7668/**
7669 * free_netdev - free network device
7670 * @dev: device
7671 *
4ec93edb
YH
7672 * This function does the last stage of destroying an allocated device
7673 * interface. The reference to the device object is released.
1da177e4 7674 * If this is the last reference then it will be freed.
93d05d4a 7675 * Must be called in process context.
1da177e4
LT
7676 */
7677void free_netdev(struct net_device *dev)
7678{
d565b0a1
HX
7679 struct napi_struct *p, *n;
7680
93d05d4a 7681 might_sleep();
60877a32 7682 netif_free_tx_queues(dev);
a953be53 7683#ifdef CONFIG_SYSFS
10595902 7684 kvfree(dev->_rx);
fe822240 7685#endif
e8a0464c 7686
33d480ce 7687 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7688
f001fde5
JP
7689 /* Flush device addresses */
7690 dev_addr_flush(dev);
7691
d565b0a1
HX
7692 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7693 netif_napi_del(p);
7694
29b4433d
ED
7695 free_percpu(dev->pcpu_refcnt);
7696 dev->pcpu_refcnt = NULL;
7697
3041a069 7698 /* Compatibility with error handling in drivers */
1da177e4 7699 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7700 netdev_freemem(dev);
1da177e4
LT
7701 return;
7702 }
7703
7704 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7705 dev->reg_state = NETREG_RELEASED;
7706
43cb76d9
GKH
7707 /* will free via device release */
7708 put_device(&dev->dev);
1da177e4 7709}
d1b19dff 7710EXPORT_SYMBOL(free_netdev);
4ec93edb 7711
f0db275a
SH
7712/**
7713 * synchronize_net - Synchronize with packet receive processing
7714 *
7715 * Wait for packets currently being received to be done.
7716 * Does not block later packets from starting.
7717 */
4ec93edb 7718void synchronize_net(void)
1da177e4
LT
7719{
7720 might_sleep();
be3fc413
ED
7721 if (rtnl_is_locked())
7722 synchronize_rcu_expedited();
7723 else
7724 synchronize_rcu();
1da177e4 7725}
d1b19dff 7726EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7727
7728/**
44a0873d 7729 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7730 * @dev: device
44a0873d 7731 * @head: list
6ebfbc06 7732 *
1da177e4 7733 * This function shuts down a device interface and removes it
d59b54b1 7734 * from the kernel tables.
44a0873d 7735 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7736 *
7737 * Callers must hold the rtnl semaphore. You may want
7738 * unregister_netdev() instead of this.
7739 */
7740
44a0873d 7741void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7742{
a6620712
HX
7743 ASSERT_RTNL();
7744
44a0873d 7745 if (head) {
9fdce099 7746 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7747 } else {
7748 rollback_registered(dev);
7749 /* Finish processing unregister after unlock */
7750 net_set_todo(dev);
7751 }
1da177e4 7752}
44a0873d 7753EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7754
9b5e383c
ED
7755/**
7756 * unregister_netdevice_many - unregister many devices
7757 * @head: list of devices
87757a91
ED
7758 *
7759 * Note: As most callers use a stack allocated list_head,
7760 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7761 */
7762void unregister_netdevice_many(struct list_head *head)
7763{
7764 struct net_device *dev;
7765
7766 if (!list_empty(head)) {
7767 rollback_registered_many(head);
7768 list_for_each_entry(dev, head, unreg_list)
7769 net_set_todo(dev);
87757a91 7770 list_del(head);
9b5e383c
ED
7771 }
7772}
63c8099d 7773EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7774
1da177e4
LT
7775/**
7776 * unregister_netdev - remove device from the kernel
7777 * @dev: device
7778 *
7779 * This function shuts down a device interface and removes it
d59b54b1 7780 * from the kernel tables.
1da177e4
LT
7781 *
7782 * This is just a wrapper for unregister_netdevice that takes
7783 * the rtnl semaphore. In general you want to use this and not
7784 * unregister_netdevice.
7785 */
7786void unregister_netdev(struct net_device *dev)
7787{
7788 rtnl_lock();
7789 unregister_netdevice(dev);
7790 rtnl_unlock();
7791}
1da177e4
LT
7792EXPORT_SYMBOL(unregister_netdev);
7793
ce286d32
EB
7794/**
7795 * dev_change_net_namespace - move device to different nethost namespace
7796 * @dev: device
7797 * @net: network namespace
7798 * @pat: If not NULL name pattern to try if the current device name
7799 * is already taken in the destination network namespace.
7800 *
7801 * This function shuts down a device interface and moves it
7802 * to a new network namespace. On success 0 is returned, on
7803 * a failure a netagive errno code is returned.
7804 *
7805 * Callers must hold the rtnl semaphore.
7806 */
7807
7808int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7809{
ce286d32
EB
7810 int err;
7811
7812 ASSERT_RTNL();
7813
7814 /* Don't allow namespace local devices to be moved. */
7815 err = -EINVAL;
7816 if (dev->features & NETIF_F_NETNS_LOCAL)
7817 goto out;
7818
7819 /* Ensure the device has been registrered */
ce286d32
EB
7820 if (dev->reg_state != NETREG_REGISTERED)
7821 goto out;
7822
7823 /* Get out if there is nothing todo */
7824 err = 0;
878628fb 7825 if (net_eq(dev_net(dev), net))
ce286d32
EB
7826 goto out;
7827
7828 /* Pick the destination device name, and ensure
7829 * we can use it in the destination network namespace.
7830 */
7831 err = -EEXIST;
d9031024 7832 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7833 /* We get here if we can't use the current device name */
7834 if (!pat)
7835 goto out;
828de4f6 7836 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7837 goto out;
7838 }
7839
7840 /*
7841 * And now a mini version of register_netdevice unregister_netdevice.
7842 */
7843
7844 /* If device is running close it first. */
9b772652 7845 dev_close(dev);
ce286d32
EB
7846
7847 /* And unlink it from device chain */
7848 err = -ENODEV;
7849 unlist_netdevice(dev);
7850
7851 synchronize_net();
7852
7853 /* Shutdown queueing discipline. */
7854 dev_shutdown(dev);
7855
7856 /* Notify protocols, that we are about to destroy
7857 this device. They should clean all the things.
3b27e105
DL
7858
7859 Note that dev->reg_state stays at NETREG_REGISTERED.
7860 This is wanted because this way 8021q and macvlan know
7861 the device is just moving and can keep their slaves up.
ce286d32
EB
7862 */
7863 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7864 rcu_barrier();
7865 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7866 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7867
7868 /*
7869 * Flush the unicast and multicast chains
7870 */
a748ee24 7871 dev_uc_flush(dev);
22bedad3 7872 dev_mc_flush(dev);
ce286d32 7873
4e66ae2e
SH
7874 /* Send a netdev-removed uevent to the old namespace */
7875 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7876 netdev_adjacent_del_links(dev);
4e66ae2e 7877
ce286d32 7878 /* Actually switch the network namespace */
c346dca1 7879 dev_net_set(dev, net);
ce286d32 7880
ce286d32 7881 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7882 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7883 dev->ifindex = dev_new_index(net);
ce286d32 7884
4e66ae2e
SH
7885 /* Send a netdev-add uevent to the new namespace */
7886 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7887 netdev_adjacent_add_links(dev);
4e66ae2e 7888
8b41d188 7889 /* Fixup kobjects */
a1b3f594 7890 err = device_rename(&dev->dev, dev->name);
8b41d188 7891 WARN_ON(err);
ce286d32
EB
7892
7893 /* Add the device back in the hashes */
7894 list_netdevice(dev);
7895
7896 /* Notify protocols, that a new device appeared. */
7897 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7898
d90a909e
EB
7899 /*
7900 * Prevent userspace races by waiting until the network
7901 * device is fully setup before sending notifications.
7902 */
7f294054 7903 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7904
ce286d32
EB
7905 synchronize_net();
7906 err = 0;
7907out:
7908 return err;
7909}
463d0183 7910EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7911
f0bf90de 7912static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
7913{
7914 struct sk_buff **list_skb;
1da177e4 7915 struct sk_buff *skb;
f0bf90de 7916 unsigned int cpu;
1da177e4
LT
7917 struct softnet_data *sd, *oldsd;
7918
1da177e4
LT
7919 local_irq_disable();
7920 cpu = smp_processor_id();
7921 sd = &per_cpu(softnet_data, cpu);
7922 oldsd = &per_cpu(softnet_data, oldcpu);
7923
7924 /* Find end of our completion_queue. */
7925 list_skb = &sd->completion_queue;
7926 while (*list_skb)
7927 list_skb = &(*list_skb)->next;
7928 /* Append completion queue from offline CPU. */
7929 *list_skb = oldsd->completion_queue;
7930 oldsd->completion_queue = NULL;
7931
1da177e4 7932 /* Append output queue from offline CPU. */
a9cbd588
CG
7933 if (oldsd->output_queue) {
7934 *sd->output_queue_tailp = oldsd->output_queue;
7935 sd->output_queue_tailp = oldsd->output_queue_tailp;
7936 oldsd->output_queue = NULL;
7937 oldsd->output_queue_tailp = &oldsd->output_queue;
7938 }
ac64da0b
ED
7939 /* Append NAPI poll list from offline CPU, with one exception :
7940 * process_backlog() must be called by cpu owning percpu backlog.
7941 * We properly handle process_queue & input_pkt_queue later.
7942 */
7943 while (!list_empty(&oldsd->poll_list)) {
7944 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7945 struct napi_struct,
7946 poll_list);
7947
7948 list_del_init(&napi->poll_list);
7949 if (napi->poll == process_backlog)
7950 napi->state = 0;
7951 else
7952 ____napi_schedule(sd, napi);
264524d5 7953 }
1da177e4
LT
7954
7955 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7956 local_irq_enable();
7957
7958 /* Process offline CPU's input_pkt_queue */
76cc8b13 7959 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7960 netif_rx_ni(skb);
76cc8b13 7961 input_queue_head_incr(oldsd);
fec5e652 7962 }
ac64da0b 7963 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7964 netif_rx_ni(skb);
76cc8b13
TH
7965 input_queue_head_incr(oldsd);
7966 }
1da177e4 7967
f0bf90de 7968 return 0;
1da177e4 7969}
1da177e4 7970
7f353bf2 7971/**
b63365a2
HX
7972 * netdev_increment_features - increment feature set by one
7973 * @all: current feature set
7974 * @one: new feature set
7975 * @mask: mask feature set
7f353bf2
HX
7976 *
7977 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7978 * @one to the master device with current feature set @all. Will not
7979 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7980 */
c8f44aff
MM
7981netdev_features_t netdev_increment_features(netdev_features_t all,
7982 netdev_features_t one, netdev_features_t mask)
b63365a2 7983{
c8cd0989 7984 if (mask & NETIF_F_HW_CSUM)
a188222b 7985 mask |= NETIF_F_CSUM_MASK;
1742f183 7986 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7987
a188222b 7988 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7989 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7990
1742f183 7991 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7992 if (all & NETIF_F_HW_CSUM)
7993 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7994
7995 return all;
7996}
b63365a2 7997EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7998
430f03cd 7999static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8000{
8001 int i;
8002 struct hlist_head *hash;
8003
8004 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8005 if (hash != NULL)
8006 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8007 INIT_HLIST_HEAD(&hash[i]);
8008
8009 return hash;
8010}
8011
881d966b 8012/* Initialize per network namespace state */
4665079c 8013static int __net_init netdev_init(struct net *net)
881d966b 8014{
734b6541
RM
8015 if (net != &init_net)
8016 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8017
30d97d35
PE
8018 net->dev_name_head = netdev_create_hash();
8019 if (net->dev_name_head == NULL)
8020 goto err_name;
881d966b 8021
30d97d35
PE
8022 net->dev_index_head = netdev_create_hash();
8023 if (net->dev_index_head == NULL)
8024 goto err_idx;
881d966b
EB
8025
8026 return 0;
30d97d35
PE
8027
8028err_idx:
8029 kfree(net->dev_name_head);
8030err_name:
8031 return -ENOMEM;
881d966b
EB
8032}
8033
f0db275a
SH
8034/**
8035 * netdev_drivername - network driver for the device
8036 * @dev: network device
f0db275a
SH
8037 *
8038 * Determine network driver for device.
8039 */
3019de12 8040const char *netdev_drivername(const struct net_device *dev)
6579e57b 8041{
cf04a4c7
SH
8042 const struct device_driver *driver;
8043 const struct device *parent;
3019de12 8044 const char *empty = "";
6579e57b
AV
8045
8046 parent = dev->dev.parent;
6579e57b 8047 if (!parent)
3019de12 8048 return empty;
6579e57b
AV
8049
8050 driver = parent->driver;
8051 if (driver && driver->name)
3019de12
DM
8052 return driver->name;
8053 return empty;
6579e57b
AV
8054}
8055
6ea754eb
JP
8056static void __netdev_printk(const char *level, const struct net_device *dev,
8057 struct va_format *vaf)
256df2f3 8058{
b004ff49 8059 if (dev && dev->dev.parent) {
6ea754eb
JP
8060 dev_printk_emit(level[1] - '0',
8061 dev->dev.parent,
8062 "%s %s %s%s: %pV",
8063 dev_driver_string(dev->dev.parent),
8064 dev_name(dev->dev.parent),
8065 netdev_name(dev), netdev_reg_state(dev),
8066 vaf);
b004ff49 8067 } else if (dev) {
6ea754eb
JP
8068 printk("%s%s%s: %pV",
8069 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8070 } else {
6ea754eb 8071 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8072 }
256df2f3
JP
8073}
8074
6ea754eb
JP
8075void netdev_printk(const char *level, const struct net_device *dev,
8076 const char *format, ...)
256df2f3
JP
8077{
8078 struct va_format vaf;
8079 va_list args;
256df2f3
JP
8080
8081 va_start(args, format);
8082
8083 vaf.fmt = format;
8084 vaf.va = &args;
8085
6ea754eb 8086 __netdev_printk(level, dev, &vaf);
b004ff49 8087
256df2f3 8088 va_end(args);
256df2f3
JP
8089}
8090EXPORT_SYMBOL(netdev_printk);
8091
8092#define define_netdev_printk_level(func, level) \
6ea754eb 8093void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8094{ \
256df2f3
JP
8095 struct va_format vaf; \
8096 va_list args; \
8097 \
8098 va_start(args, fmt); \
8099 \
8100 vaf.fmt = fmt; \
8101 vaf.va = &args; \
8102 \
6ea754eb 8103 __netdev_printk(level, dev, &vaf); \
b004ff49 8104 \
256df2f3 8105 va_end(args); \
256df2f3
JP
8106} \
8107EXPORT_SYMBOL(func);
8108
8109define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8110define_netdev_printk_level(netdev_alert, KERN_ALERT);
8111define_netdev_printk_level(netdev_crit, KERN_CRIT);
8112define_netdev_printk_level(netdev_err, KERN_ERR);
8113define_netdev_printk_level(netdev_warn, KERN_WARNING);
8114define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8115define_netdev_printk_level(netdev_info, KERN_INFO);
8116
4665079c 8117static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8118{
8119 kfree(net->dev_name_head);
8120 kfree(net->dev_index_head);
8121}
8122
022cbae6 8123static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8124 .init = netdev_init,
8125 .exit = netdev_exit,
8126};
8127
4665079c 8128static void __net_exit default_device_exit(struct net *net)
ce286d32 8129{
e008b5fc 8130 struct net_device *dev, *aux;
ce286d32 8131 /*
e008b5fc 8132 * Push all migratable network devices back to the
ce286d32
EB
8133 * initial network namespace
8134 */
8135 rtnl_lock();
e008b5fc 8136 for_each_netdev_safe(net, dev, aux) {
ce286d32 8137 int err;
aca51397 8138 char fb_name[IFNAMSIZ];
ce286d32
EB
8139
8140 /* Ignore unmoveable devices (i.e. loopback) */
8141 if (dev->features & NETIF_F_NETNS_LOCAL)
8142 continue;
8143
e008b5fc
EB
8144 /* Leave virtual devices for the generic cleanup */
8145 if (dev->rtnl_link_ops)
8146 continue;
d0c082ce 8147
25985edc 8148 /* Push remaining network devices to init_net */
aca51397
PE
8149 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8150 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8151 if (err) {
7b6cd1ce
JP
8152 pr_emerg("%s: failed to move %s to init_net: %d\n",
8153 __func__, dev->name, err);
aca51397 8154 BUG();
ce286d32
EB
8155 }
8156 }
8157 rtnl_unlock();
8158}
8159
50624c93
EB
8160static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8161{
8162 /* Return with the rtnl_lock held when there are no network
8163 * devices unregistering in any network namespace in net_list.
8164 */
8165 struct net *net;
8166 bool unregistering;
ff960a73 8167 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8168
ff960a73 8169 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8170 for (;;) {
50624c93
EB
8171 unregistering = false;
8172 rtnl_lock();
8173 list_for_each_entry(net, net_list, exit_list) {
8174 if (net->dev_unreg_count > 0) {
8175 unregistering = true;
8176 break;
8177 }
8178 }
8179 if (!unregistering)
8180 break;
8181 __rtnl_unlock();
ff960a73
PZ
8182
8183 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8184 }
ff960a73 8185 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8186}
8187
04dc7f6b
EB
8188static void __net_exit default_device_exit_batch(struct list_head *net_list)
8189{
8190 /* At exit all network devices most be removed from a network
b595076a 8191 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8192 * Do this across as many network namespaces as possible to
8193 * improve batching efficiency.
8194 */
8195 struct net_device *dev;
8196 struct net *net;
8197 LIST_HEAD(dev_kill_list);
8198
50624c93
EB
8199 /* To prevent network device cleanup code from dereferencing
8200 * loopback devices or network devices that have been freed
8201 * wait here for all pending unregistrations to complete,
8202 * before unregistring the loopback device and allowing the
8203 * network namespace be freed.
8204 *
8205 * The netdev todo list containing all network devices
8206 * unregistrations that happen in default_device_exit_batch
8207 * will run in the rtnl_unlock() at the end of
8208 * default_device_exit_batch.
8209 */
8210 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8211 list_for_each_entry(net, net_list, exit_list) {
8212 for_each_netdev_reverse(net, dev) {
b0ab2fab 8213 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8214 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8215 else
8216 unregister_netdevice_queue(dev, &dev_kill_list);
8217 }
8218 }
8219 unregister_netdevice_many(&dev_kill_list);
8220 rtnl_unlock();
8221}
8222
022cbae6 8223static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8224 .exit = default_device_exit,
04dc7f6b 8225 .exit_batch = default_device_exit_batch,
ce286d32
EB
8226};
8227
1da177e4
LT
8228/*
8229 * Initialize the DEV module. At boot time this walks the device list and
8230 * unhooks any devices that fail to initialise (normally hardware not
8231 * present) and leaves us with a valid list of present and active devices.
8232 *
8233 */
8234
8235/*
8236 * This is called single threaded during boot, so no need
8237 * to take the rtnl semaphore.
8238 */
8239static int __init net_dev_init(void)
8240{
8241 int i, rc = -ENOMEM;
8242
8243 BUG_ON(!dev_boot_phase);
8244
1da177e4
LT
8245 if (dev_proc_init())
8246 goto out;
8247
8b41d188 8248 if (netdev_kobject_init())
1da177e4
LT
8249 goto out;
8250
8251 INIT_LIST_HEAD(&ptype_all);
82d8a867 8252 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8253 INIT_LIST_HEAD(&ptype_base[i]);
8254
62532da9
VY
8255 INIT_LIST_HEAD(&offload_base);
8256
881d966b
EB
8257 if (register_pernet_subsys(&netdev_net_ops))
8258 goto out;
1da177e4
LT
8259
8260 /*
8261 * Initialise the packet receive queues.
8262 */
8263
6f912042 8264 for_each_possible_cpu(i) {
41852497 8265 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8266 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8267
41852497
ED
8268 INIT_WORK(flush, flush_backlog);
8269
e36fa2f7 8270 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8271 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8272 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8273 sd->output_queue_tailp = &sd->output_queue;
df334545 8274#ifdef CONFIG_RPS
e36fa2f7
ED
8275 sd->csd.func = rps_trigger_softirq;
8276 sd->csd.info = sd;
e36fa2f7 8277 sd->cpu = i;
1e94d72f 8278#endif
0a9627f2 8279
e36fa2f7
ED
8280 sd->backlog.poll = process_backlog;
8281 sd->backlog.weight = weight_p;
1da177e4
LT
8282 }
8283
1da177e4
LT
8284 dev_boot_phase = 0;
8285
505d4f73
EB
8286 /* The loopback device is special if any other network devices
8287 * is present in a network namespace the loopback device must
8288 * be present. Since we now dynamically allocate and free the
8289 * loopback device ensure this invariant is maintained by
8290 * keeping the loopback device as the first device on the
8291 * list of network devices. Ensuring the loopback devices
8292 * is the first device that appears and the last network device
8293 * that disappears.
8294 */
8295 if (register_pernet_device(&loopback_net_ops))
8296 goto out;
8297
8298 if (register_pernet_device(&default_device_ops))
8299 goto out;
8300
962cf36c
CM
8301 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8302 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8303
f0bf90de
SAS
8304 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8305 NULL, dev_cpu_dead);
8306 WARN_ON(rc < 0);
f38a9eb1 8307 dst_subsys_init();
1da177e4
LT
8308 rc = 0;
8309out:
8310 return rc;
8311}
8312
8313subsys_initcall(net_dev_init);
This page took 3.424018 seconds and 4 git commands to generate.