]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
1da177e4 LT |
22 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
23 | * enough at me, Linus for the original (flawed) idea, Matthew | |
24 | * Kirkwood for proof-of-concept implementation. | |
25 | * | |
26 | * "The futexes are also cursed." | |
27 | * "But they come in a choice of three flavours!" | |
28 | * | |
29 | * This program is free software; you can redistribute it and/or modify | |
30 | * it under the terms of the GNU General Public License as published by | |
31 | * the Free Software Foundation; either version 2 of the License, or | |
32 | * (at your option) any later version. | |
33 | * | |
34 | * This program is distributed in the hope that it will be useful, | |
35 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
36 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
37 | * GNU General Public License for more details. | |
38 | * | |
39 | * You should have received a copy of the GNU General Public License | |
40 | * along with this program; if not, write to the Free Software | |
41 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
42 | */ | |
43 | #include <linux/slab.h> | |
44 | #include <linux/poll.h> | |
45 | #include <linux/fs.h> | |
46 | #include <linux/file.h> | |
47 | #include <linux/jhash.h> | |
48 | #include <linux/init.h> | |
49 | #include <linux/futex.h> | |
50 | #include <linux/mount.h> | |
51 | #include <linux/pagemap.h> | |
52 | #include <linux/syscalls.h> | |
7ed20e1a | 53 | #include <linux/signal.h> |
9adef58b | 54 | #include <linux/module.h> |
fd5eea42 | 55 | #include <linux/magic.h> |
b488893a PE |
56 | #include <linux/pid.h> |
57 | #include <linux/nsproxy.h> | |
58 | ||
4732efbe | 59 | #include <asm/futex.h> |
1da177e4 | 60 | |
c87e2837 IM |
61 | #include "rtmutex_common.h" |
62 | ||
1da177e4 LT |
63 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
64 | ||
c87e2837 IM |
65 | /* |
66 | * Priority Inheritance state: | |
67 | */ | |
68 | struct futex_pi_state { | |
69 | /* | |
70 | * list of 'owned' pi_state instances - these have to be | |
71 | * cleaned up in do_exit() if the task exits prematurely: | |
72 | */ | |
73 | struct list_head list; | |
74 | ||
75 | /* | |
76 | * The PI object: | |
77 | */ | |
78 | struct rt_mutex pi_mutex; | |
79 | ||
80 | struct task_struct *owner; | |
81 | atomic_t refcount; | |
82 | ||
83 | union futex_key key; | |
84 | }; | |
85 | ||
1da177e4 LT |
86 | /* |
87 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | |
88 | * we can wake only the relevant ones (hashed queues may be shared). | |
89 | * | |
90 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 91 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
1da177e4 LT |
92 | * The order of wakup is always to make the first condition true, then |
93 | * wake up q->waiters, then make the second condition true. | |
94 | */ | |
95 | struct futex_q { | |
ec92d082 | 96 | struct plist_node list; |
1da177e4 LT |
97 | wait_queue_head_t waiters; |
98 | ||
e2970f2f | 99 | /* Which hash list lock to use: */ |
1da177e4 LT |
100 | spinlock_t *lock_ptr; |
101 | ||
e2970f2f | 102 | /* Key which the futex is hashed on: */ |
1da177e4 LT |
103 | union futex_key key; |
104 | ||
e2970f2f | 105 | /* For fd, sigio sent using these: */ |
1da177e4 LT |
106 | int fd; |
107 | struct file *filp; | |
c87e2837 IM |
108 | |
109 | /* Optional priority inheritance state: */ | |
110 | struct futex_pi_state *pi_state; | |
111 | struct task_struct *task; | |
cd689985 TG |
112 | |
113 | /* Bitset for the optional bitmasked wakeup */ | |
114 | u32 bitset; | |
1da177e4 LT |
115 | }; |
116 | ||
117 | /* | |
118 | * Split the global futex_lock into every hash list lock. | |
119 | */ | |
120 | struct futex_hash_bucket { | |
ec92d082 PP |
121 | spinlock_t lock; |
122 | struct plist_head chain; | |
1da177e4 LT |
123 | }; |
124 | ||
125 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
126 | ||
127 | /* Futex-fs vfsmount entry: */ | |
128 | static struct vfsmount *futex_mnt; | |
129 | ||
36cf3b5c TG |
130 | /* |
131 | * Take mm->mmap_sem, when futex is shared | |
132 | */ | |
133 | static inline void futex_lock_mm(struct rw_semaphore *fshared) | |
134 | { | |
135 | if (fshared) | |
136 | down_read(fshared); | |
137 | } | |
138 | ||
139 | /* | |
140 | * Release mm->mmap_sem, when the futex is shared | |
141 | */ | |
142 | static inline void futex_unlock_mm(struct rw_semaphore *fshared) | |
143 | { | |
144 | if (fshared) | |
145 | up_read(fshared); | |
146 | } | |
147 | ||
1da177e4 LT |
148 | /* |
149 | * We hash on the keys returned from get_futex_key (see below). | |
150 | */ | |
151 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
152 | { | |
153 | u32 hash = jhash2((u32*)&key->both.word, | |
154 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
155 | key->both.offset); | |
156 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
157 | } | |
158 | ||
159 | /* | |
160 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
161 | */ | |
162 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
163 | { | |
164 | return (key1->both.word == key2->both.word | |
165 | && key1->both.ptr == key2->both.ptr | |
166 | && key1->both.offset == key2->both.offset); | |
167 | } | |
168 | ||
34f01cc1 ED |
169 | /** |
170 | * get_futex_key - Get parameters which are the keys for a futex. | |
171 | * @uaddr: virtual address of the futex | |
172 | * @shared: NULL for a PROCESS_PRIVATE futex, | |
173 | * ¤t->mm->mmap_sem for a PROCESS_SHARED futex | |
174 | * @key: address where result is stored. | |
175 | * | |
176 | * Returns a negative error code or 0 | |
177 | * The key words are stored in *key on success. | |
1da177e4 | 178 | * |
f3a43f3f | 179 | * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
1da177e4 LT |
180 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
181 | * We can usually work out the index without swapping in the page. | |
182 | * | |
34f01cc1 ED |
183 | * fshared is NULL for PROCESS_PRIVATE futexes |
184 | * For other futexes, it points to ¤t->mm->mmap_sem and | |
185 | * caller must have taken the reader lock. but NOT any spinlocks. | |
1da177e4 | 186 | */ |
fad23fc7 AB |
187 | static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared, |
188 | union futex_key *key) | |
1da177e4 | 189 | { |
e2970f2f | 190 | unsigned long address = (unsigned long)uaddr; |
1da177e4 LT |
191 | struct mm_struct *mm = current->mm; |
192 | struct vm_area_struct *vma; | |
193 | struct page *page; | |
194 | int err; | |
195 | ||
196 | /* | |
197 | * The futex address must be "naturally" aligned. | |
198 | */ | |
e2970f2f | 199 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 200 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 201 | return -EINVAL; |
e2970f2f | 202 | address -= key->both.offset; |
1da177e4 | 203 | |
34f01cc1 ED |
204 | /* |
205 | * PROCESS_PRIVATE futexes are fast. | |
206 | * As the mm cannot disappear under us and the 'key' only needs | |
207 | * virtual address, we dont even have to find the underlying vma. | |
208 | * Note : We do have to check 'uaddr' is a valid user address, | |
209 | * but access_ok() should be faster than find_vma() | |
210 | */ | |
211 | if (!fshared) { | |
212 | if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) | |
213 | return -EFAULT; | |
214 | key->private.mm = mm; | |
215 | key->private.address = address; | |
216 | return 0; | |
217 | } | |
1da177e4 LT |
218 | /* |
219 | * The futex is hashed differently depending on whether | |
220 | * it's in a shared or private mapping. So check vma first. | |
221 | */ | |
e2970f2f | 222 | vma = find_extend_vma(mm, address); |
1da177e4 LT |
223 | if (unlikely(!vma)) |
224 | return -EFAULT; | |
225 | ||
226 | /* | |
227 | * Permissions. | |
228 | */ | |
229 | if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ)) | |
230 | return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES; | |
231 | ||
232 | /* | |
233 | * Private mappings are handled in a simple way. | |
234 | * | |
235 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
236 | * it's a read-only handle, it's expected that futexes attach to | |
237 | * the object not the particular process. Therefore we use | |
238 | * VM_MAYSHARE here, not VM_SHARED which is restricted to shared | |
239 | * mappings of _writable_ handles. | |
240 | */ | |
241 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { | |
34f01cc1 | 242 | key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */ |
1da177e4 | 243 | key->private.mm = mm; |
e2970f2f | 244 | key->private.address = address; |
1da177e4 LT |
245 | return 0; |
246 | } | |
247 | ||
248 | /* | |
249 | * Linear file mappings are also simple. | |
250 | */ | |
f3a43f3f | 251 | key->shared.inode = vma->vm_file->f_path.dentry->d_inode; |
34f01cc1 | 252 | key->both.offset |= FUT_OFF_INODE; /* inode-based key. */ |
1da177e4 | 253 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { |
e2970f2f | 254 | key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT) |
1da177e4 LT |
255 | + vma->vm_pgoff); |
256 | return 0; | |
257 | } | |
258 | ||
259 | /* | |
260 | * We could walk the page table to read the non-linear | |
261 | * pte, and get the page index without fetching the page | |
262 | * from swap. But that's a lot of code to duplicate here | |
263 | * for a rare case, so we simply fetch the page. | |
264 | */ | |
e2970f2f | 265 | err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL); |
1da177e4 LT |
266 | if (err >= 0) { |
267 | key->shared.pgoff = | |
268 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
269 | put_page(page); | |
270 | return 0; | |
271 | } | |
272 | return err; | |
273 | } | |
274 | ||
275 | /* | |
276 | * Take a reference to the resource addressed by a key. | |
277 | * Can be called while holding spinlocks. | |
278 | * | |
1da177e4 | 279 | */ |
fad23fc7 | 280 | static void get_futex_key_refs(union futex_key *key) |
1da177e4 | 281 | { |
34f01cc1 ED |
282 | if (key->both.ptr == 0) |
283 | return; | |
284 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
285 | case FUT_OFF_INODE: | |
1da177e4 | 286 | atomic_inc(&key->shared.inode->i_count); |
34f01cc1 ED |
287 | break; |
288 | case FUT_OFF_MMSHARED: | |
1da177e4 | 289 | atomic_inc(&key->private.mm->mm_count); |
34f01cc1 | 290 | break; |
1da177e4 LT |
291 | } |
292 | } | |
293 | ||
294 | /* | |
295 | * Drop a reference to the resource addressed by a key. | |
296 | * The hash bucket spinlock must not be held. | |
297 | */ | |
fad23fc7 | 298 | static void drop_futex_key_refs(union futex_key *key) |
1da177e4 | 299 | { |
c80544dc | 300 | if (!key->both.ptr) |
34f01cc1 ED |
301 | return; |
302 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
303 | case FUT_OFF_INODE: | |
1da177e4 | 304 | iput(key->shared.inode); |
34f01cc1 ED |
305 | break; |
306 | case FUT_OFF_MMSHARED: | |
1da177e4 | 307 | mmdrop(key->private.mm); |
34f01cc1 | 308 | break; |
1da177e4 LT |
309 | } |
310 | } | |
311 | ||
36cf3b5c TG |
312 | static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval) |
313 | { | |
314 | u32 curval; | |
315 | ||
316 | pagefault_disable(); | |
317 | curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval); | |
318 | pagefault_enable(); | |
319 | ||
320 | return curval; | |
321 | } | |
322 | ||
323 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
324 | { |
325 | int ret; | |
326 | ||
a866374a | 327 | pagefault_disable(); |
e2970f2f | 328 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 329 | pagefault_enable(); |
1da177e4 LT |
330 | |
331 | return ret ? -EFAULT : 0; | |
332 | } | |
333 | ||
c87e2837 | 334 | /* |
34f01cc1 ED |
335 | * Fault handling. |
336 | * if fshared is non NULL, current->mm->mmap_sem is already held | |
c87e2837 | 337 | */ |
34f01cc1 ED |
338 | static int futex_handle_fault(unsigned long address, |
339 | struct rw_semaphore *fshared, int attempt) | |
c87e2837 IM |
340 | { |
341 | struct vm_area_struct * vma; | |
342 | struct mm_struct *mm = current->mm; | |
34f01cc1 | 343 | int ret = -EFAULT; |
c87e2837 | 344 | |
34f01cc1 ED |
345 | if (attempt > 2) |
346 | return ret; | |
c87e2837 | 347 | |
34f01cc1 ED |
348 | if (!fshared) |
349 | down_read(&mm->mmap_sem); | |
350 | vma = find_vma(mm, address); | |
351 | if (vma && address >= vma->vm_start && | |
352 | (vma->vm_flags & VM_WRITE)) { | |
83c54070 NP |
353 | int fault; |
354 | fault = handle_mm_fault(mm, vma, address, 1); | |
355 | if (unlikely((fault & VM_FAULT_ERROR))) { | |
356 | #if 0 | |
357 | /* XXX: let's do this when we verify it is OK */ | |
358 | if (ret & VM_FAULT_OOM) | |
359 | ret = -ENOMEM; | |
360 | #endif | |
361 | } else { | |
34f01cc1 | 362 | ret = 0; |
83c54070 NP |
363 | if (fault & VM_FAULT_MAJOR) |
364 | current->maj_flt++; | |
365 | else | |
366 | current->min_flt++; | |
34f01cc1 | 367 | } |
c87e2837 | 368 | } |
34f01cc1 ED |
369 | if (!fshared) |
370 | up_read(&mm->mmap_sem); | |
371 | return ret; | |
c87e2837 IM |
372 | } |
373 | ||
374 | /* | |
375 | * PI code: | |
376 | */ | |
377 | static int refill_pi_state_cache(void) | |
378 | { | |
379 | struct futex_pi_state *pi_state; | |
380 | ||
381 | if (likely(current->pi_state_cache)) | |
382 | return 0; | |
383 | ||
4668edc3 | 384 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
385 | |
386 | if (!pi_state) | |
387 | return -ENOMEM; | |
388 | ||
c87e2837 IM |
389 | INIT_LIST_HEAD(&pi_state->list); |
390 | /* pi_mutex gets initialized later */ | |
391 | pi_state->owner = NULL; | |
392 | atomic_set(&pi_state->refcount, 1); | |
393 | ||
394 | current->pi_state_cache = pi_state; | |
395 | ||
396 | return 0; | |
397 | } | |
398 | ||
399 | static struct futex_pi_state * alloc_pi_state(void) | |
400 | { | |
401 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
402 | ||
403 | WARN_ON(!pi_state); | |
404 | current->pi_state_cache = NULL; | |
405 | ||
406 | return pi_state; | |
407 | } | |
408 | ||
409 | static void free_pi_state(struct futex_pi_state *pi_state) | |
410 | { | |
411 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
412 | return; | |
413 | ||
414 | /* | |
415 | * If pi_state->owner is NULL, the owner is most probably dying | |
416 | * and has cleaned up the pi_state already | |
417 | */ | |
418 | if (pi_state->owner) { | |
419 | spin_lock_irq(&pi_state->owner->pi_lock); | |
420 | list_del_init(&pi_state->list); | |
421 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
422 | ||
423 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
424 | } | |
425 | ||
426 | if (current->pi_state_cache) | |
427 | kfree(pi_state); | |
428 | else { | |
429 | /* | |
430 | * pi_state->list is already empty. | |
431 | * clear pi_state->owner. | |
432 | * refcount is at 0 - put it back to 1. | |
433 | */ | |
434 | pi_state->owner = NULL; | |
435 | atomic_set(&pi_state->refcount, 1); | |
436 | current->pi_state_cache = pi_state; | |
437 | } | |
438 | } | |
439 | ||
440 | /* | |
441 | * Look up the task based on what TID userspace gave us. | |
442 | * We dont trust it. | |
443 | */ | |
444 | static struct task_struct * futex_find_get_task(pid_t pid) | |
445 | { | |
446 | struct task_struct *p; | |
447 | ||
d359b549 | 448 | rcu_read_lock(); |
228ebcbe | 449 | p = find_task_by_vpid(pid); |
a06381fe TG |
450 | if (!p || ((current->euid != p->euid) && (current->euid != p->uid))) |
451 | p = ERR_PTR(-ESRCH); | |
452 | else | |
453 | get_task_struct(p); | |
454 | ||
d359b549 | 455 | rcu_read_unlock(); |
c87e2837 IM |
456 | |
457 | return p; | |
458 | } | |
459 | ||
460 | /* | |
461 | * This task is holding PI mutexes at exit time => bad. | |
462 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
463 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
464 | */ | |
465 | void exit_pi_state_list(struct task_struct *curr) | |
466 | { | |
c87e2837 IM |
467 | struct list_head *next, *head = &curr->pi_state_list; |
468 | struct futex_pi_state *pi_state; | |
627371d7 | 469 | struct futex_hash_bucket *hb; |
c87e2837 IM |
470 | union futex_key key; |
471 | ||
472 | /* | |
473 | * We are a ZOMBIE and nobody can enqueue itself on | |
474 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 475 | * versus waiters unqueueing themselves: |
c87e2837 IM |
476 | */ |
477 | spin_lock_irq(&curr->pi_lock); | |
478 | while (!list_empty(head)) { | |
479 | ||
480 | next = head->next; | |
481 | pi_state = list_entry(next, struct futex_pi_state, list); | |
482 | key = pi_state->key; | |
627371d7 | 483 | hb = hash_futex(&key); |
c87e2837 IM |
484 | spin_unlock_irq(&curr->pi_lock); |
485 | ||
c87e2837 IM |
486 | spin_lock(&hb->lock); |
487 | ||
488 | spin_lock_irq(&curr->pi_lock); | |
627371d7 IM |
489 | /* |
490 | * We dropped the pi-lock, so re-check whether this | |
491 | * task still owns the PI-state: | |
492 | */ | |
c87e2837 IM |
493 | if (head->next != next) { |
494 | spin_unlock(&hb->lock); | |
495 | continue; | |
496 | } | |
497 | ||
c87e2837 | 498 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
499 | WARN_ON(list_empty(&pi_state->list)); |
500 | list_del_init(&pi_state->list); | |
c87e2837 IM |
501 | pi_state->owner = NULL; |
502 | spin_unlock_irq(&curr->pi_lock); | |
503 | ||
504 | rt_mutex_unlock(&pi_state->pi_mutex); | |
505 | ||
506 | spin_unlock(&hb->lock); | |
507 | ||
508 | spin_lock_irq(&curr->pi_lock); | |
509 | } | |
510 | spin_unlock_irq(&curr->pi_lock); | |
511 | } | |
512 | ||
513 | static int | |
d0aa7a70 PP |
514 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
515 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
516 | { |
517 | struct futex_pi_state *pi_state = NULL; | |
518 | struct futex_q *this, *next; | |
ec92d082 | 519 | struct plist_head *head; |
c87e2837 | 520 | struct task_struct *p; |
778e9a9c | 521 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 IM |
522 | |
523 | head = &hb->chain; | |
524 | ||
ec92d082 | 525 | plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70 | 526 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
527 | /* |
528 | * Another waiter already exists - bump up | |
529 | * the refcount and return its pi_state: | |
530 | */ | |
531 | pi_state = this->pi_state; | |
06a9ec29 TG |
532 | /* |
533 | * Userspace might have messed up non PI and PI futexes | |
534 | */ | |
535 | if (unlikely(!pi_state)) | |
536 | return -EINVAL; | |
537 | ||
627371d7 | 538 | WARN_ON(!atomic_read(&pi_state->refcount)); |
778e9a9c AK |
539 | WARN_ON(pid && pi_state->owner && |
540 | pi_state->owner->pid != pid); | |
627371d7 | 541 | |
c87e2837 | 542 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 543 | *ps = pi_state; |
c87e2837 IM |
544 | |
545 | return 0; | |
546 | } | |
547 | } | |
548 | ||
549 | /* | |
e3f2ddea | 550 | * We are the first waiter - try to look up the real owner and attach |
778e9a9c | 551 | * the new pi_state to it, but bail out when TID = 0 |
c87e2837 | 552 | */ |
778e9a9c | 553 | if (!pid) |
e3f2ddea | 554 | return -ESRCH; |
c87e2837 | 555 | p = futex_find_get_task(pid); |
778e9a9c AK |
556 | if (IS_ERR(p)) |
557 | return PTR_ERR(p); | |
558 | ||
559 | /* | |
560 | * We need to look at the task state flags to figure out, | |
561 | * whether the task is exiting. To protect against the do_exit | |
562 | * change of the task flags, we do this protected by | |
563 | * p->pi_lock: | |
564 | */ | |
565 | spin_lock_irq(&p->pi_lock); | |
566 | if (unlikely(p->flags & PF_EXITING)) { | |
567 | /* | |
568 | * The task is on the way out. When PF_EXITPIDONE is | |
569 | * set, we know that the task has finished the | |
570 | * cleanup: | |
571 | */ | |
572 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
573 | ||
574 | spin_unlock_irq(&p->pi_lock); | |
575 | put_task_struct(p); | |
576 | return ret; | |
577 | } | |
c87e2837 IM |
578 | |
579 | pi_state = alloc_pi_state(); | |
580 | ||
581 | /* | |
582 | * Initialize the pi_mutex in locked state and make 'p' | |
583 | * the owner of it: | |
584 | */ | |
585 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
586 | ||
587 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 588 | pi_state->key = *key; |
c87e2837 | 589 | |
627371d7 | 590 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
591 | list_add(&pi_state->list, &p->pi_state_list); |
592 | pi_state->owner = p; | |
593 | spin_unlock_irq(&p->pi_lock); | |
594 | ||
595 | put_task_struct(p); | |
596 | ||
d0aa7a70 | 597 | *ps = pi_state; |
c87e2837 IM |
598 | |
599 | return 0; | |
600 | } | |
601 | ||
1da177e4 LT |
602 | /* |
603 | * The hash bucket lock must be held when this is called. | |
604 | * Afterwards, the futex_q must not be accessed. | |
605 | */ | |
606 | static void wake_futex(struct futex_q *q) | |
607 | { | |
ec92d082 | 608 | plist_del(&q->list, &q->list.plist); |
1da177e4 LT |
609 | if (q->filp) |
610 | send_sigio(&q->filp->f_owner, q->fd, POLL_IN); | |
611 | /* | |
612 | * The lock in wake_up_all() is a crucial memory barrier after the | |
ec92d082 | 613 | * plist_del() and also before assigning to q->lock_ptr. |
1da177e4 LT |
614 | */ |
615 | wake_up_all(&q->waiters); | |
616 | /* | |
617 | * The waiting task can free the futex_q as soon as this is written, | |
618 | * without taking any locks. This must come last. | |
8e31108b AM |
619 | * |
620 | * A memory barrier is required here to prevent the following store | |
621 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock | |
622 | * at the end of wake_up_all() does not prevent this store from | |
623 | * moving. | |
1da177e4 | 624 | */ |
ccdea2f8 | 625 | smp_wmb(); |
1da177e4 LT |
626 | q->lock_ptr = NULL; |
627 | } | |
628 | ||
c87e2837 IM |
629 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
630 | { | |
631 | struct task_struct *new_owner; | |
632 | struct futex_pi_state *pi_state = this->pi_state; | |
633 | u32 curval, newval; | |
634 | ||
635 | if (!pi_state) | |
636 | return -EINVAL; | |
637 | ||
21778867 | 638 | spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
639 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
640 | ||
641 | /* | |
642 | * This happens when we have stolen the lock and the original | |
643 | * pending owner did not enqueue itself back on the rt_mutex. | |
644 | * Thats not a tragedy. We know that way, that a lock waiter | |
645 | * is on the fly. We make the futex_q waiter the pending owner. | |
646 | */ | |
647 | if (!new_owner) | |
648 | new_owner = this->task; | |
649 | ||
650 | /* | |
651 | * We pass it to the next owner. (The WAITERS bit is always | |
652 | * kept enabled while there is PI state around. We must also | |
653 | * preserve the owner died bit.) | |
654 | */ | |
e3f2ddea | 655 | if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c AK |
656 | int ret = 0; |
657 | ||
b488893a | 658 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 659 | |
36cf3b5c | 660 | curval = cmpxchg_futex_value_locked(uaddr, uval, newval); |
778e9a9c | 661 | |
e3f2ddea | 662 | if (curval == -EFAULT) |
778e9a9c | 663 | ret = -EFAULT; |
cde898fa | 664 | else if (curval != uval) |
778e9a9c AK |
665 | ret = -EINVAL; |
666 | if (ret) { | |
667 | spin_unlock(&pi_state->pi_mutex.wait_lock); | |
668 | return ret; | |
669 | } | |
e3f2ddea | 670 | } |
c87e2837 | 671 | |
627371d7 IM |
672 | spin_lock_irq(&pi_state->owner->pi_lock); |
673 | WARN_ON(list_empty(&pi_state->list)); | |
674 | list_del_init(&pi_state->list); | |
675 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
676 | ||
677 | spin_lock_irq(&new_owner->pi_lock); | |
678 | WARN_ON(!list_empty(&pi_state->list)); | |
c87e2837 IM |
679 | list_add(&pi_state->list, &new_owner->pi_state_list); |
680 | pi_state->owner = new_owner; | |
627371d7 IM |
681 | spin_unlock_irq(&new_owner->pi_lock); |
682 | ||
21778867 | 683 | spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
684 | rt_mutex_unlock(&pi_state->pi_mutex); |
685 | ||
686 | return 0; | |
687 | } | |
688 | ||
689 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
690 | { | |
691 | u32 oldval; | |
692 | ||
693 | /* | |
694 | * There is no waiter, so we unlock the futex. The owner died | |
695 | * bit has not to be preserved here. We are the owner: | |
696 | */ | |
36cf3b5c | 697 | oldval = cmpxchg_futex_value_locked(uaddr, uval, 0); |
c87e2837 IM |
698 | |
699 | if (oldval == -EFAULT) | |
700 | return oldval; | |
701 | if (oldval != uval) | |
702 | return -EAGAIN; | |
703 | ||
704 | return 0; | |
705 | } | |
706 | ||
8b8f319f IM |
707 | /* |
708 | * Express the locking dependencies for lockdep: | |
709 | */ | |
710 | static inline void | |
711 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
712 | { | |
713 | if (hb1 <= hb2) { | |
714 | spin_lock(&hb1->lock); | |
715 | if (hb1 < hb2) | |
716 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
717 | } else { /* hb1 > hb2 */ | |
718 | spin_lock(&hb2->lock); | |
719 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
720 | } | |
721 | } | |
722 | ||
1da177e4 LT |
723 | /* |
724 | * Wake up all waiters hashed on the physical page that is mapped | |
725 | * to this virtual address: | |
726 | */ | |
34f01cc1 | 727 | static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared, |
cd689985 | 728 | int nr_wake, u32 bitset) |
1da177e4 | 729 | { |
e2970f2f | 730 | struct futex_hash_bucket *hb; |
1da177e4 | 731 | struct futex_q *this, *next; |
ec92d082 | 732 | struct plist_head *head; |
e2970f2f | 733 | union futex_key key; |
1da177e4 LT |
734 | int ret; |
735 | ||
cd689985 TG |
736 | if (!bitset) |
737 | return -EINVAL; | |
738 | ||
36cf3b5c | 739 | futex_lock_mm(fshared); |
1da177e4 | 740 | |
34f01cc1 | 741 | ret = get_futex_key(uaddr, fshared, &key); |
1da177e4 LT |
742 | if (unlikely(ret != 0)) |
743 | goto out; | |
744 | ||
e2970f2f IM |
745 | hb = hash_futex(&key); |
746 | spin_lock(&hb->lock); | |
747 | head = &hb->chain; | |
1da177e4 | 748 | |
ec92d082 | 749 | plist_for_each_entry_safe(this, next, head, list) { |
1da177e4 | 750 | if (match_futex (&this->key, &key)) { |
ed6f7b10 IM |
751 | if (this->pi_state) { |
752 | ret = -EINVAL; | |
753 | break; | |
754 | } | |
cd689985 TG |
755 | |
756 | /* Check if one of the bits is set in both bitsets */ | |
757 | if (!(this->bitset & bitset)) | |
758 | continue; | |
759 | ||
1da177e4 LT |
760 | wake_futex(this); |
761 | if (++ret >= nr_wake) | |
762 | break; | |
763 | } | |
764 | } | |
765 | ||
e2970f2f | 766 | spin_unlock(&hb->lock); |
1da177e4 | 767 | out: |
36cf3b5c | 768 | futex_unlock_mm(fshared); |
1da177e4 LT |
769 | return ret; |
770 | } | |
771 | ||
4732efbe JJ |
772 | /* |
773 | * Wake up all waiters hashed on the physical page that is mapped | |
774 | * to this virtual address: | |
775 | */ | |
e2970f2f | 776 | static int |
34f01cc1 ED |
777 | futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared, |
778 | u32 __user *uaddr2, | |
e2970f2f | 779 | int nr_wake, int nr_wake2, int op) |
4732efbe JJ |
780 | { |
781 | union futex_key key1, key2; | |
e2970f2f | 782 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 783 | struct plist_head *head; |
4732efbe JJ |
784 | struct futex_q *this, *next; |
785 | int ret, op_ret, attempt = 0; | |
786 | ||
787 | retryfull: | |
36cf3b5c | 788 | futex_lock_mm(fshared); |
4732efbe | 789 | |
34f01cc1 | 790 | ret = get_futex_key(uaddr1, fshared, &key1); |
4732efbe JJ |
791 | if (unlikely(ret != 0)) |
792 | goto out; | |
34f01cc1 | 793 | ret = get_futex_key(uaddr2, fshared, &key2); |
4732efbe JJ |
794 | if (unlikely(ret != 0)) |
795 | goto out; | |
796 | ||
e2970f2f IM |
797 | hb1 = hash_futex(&key1); |
798 | hb2 = hash_futex(&key2); | |
4732efbe JJ |
799 | |
800 | retry: | |
8b8f319f | 801 | double_lock_hb(hb1, hb2); |
4732efbe | 802 | |
e2970f2f | 803 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 804 | if (unlikely(op_ret < 0)) { |
e2970f2f | 805 | u32 dummy; |
4732efbe | 806 | |
e2970f2f IM |
807 | spin_unlock(&hb1->lock); |
808 | if (hb1 != hb2) | |
809 | spin_unlock(&hb2->lock); | |
4732efbe | 810 | |
7ee1dd3f | 811 | #ifndef CONFIG_MMU |
e2970f2f IM |
812 | /* |
813 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
814 | * but we might get them from range checking | |
815 | */ | |
7ee1dd3f DH |
816 | ret = op_ret; |
817 | goto out; | |
818 | #endif | |
819 | ||
796f8d9b DG |
820 | if (unlikely(op_ret != -EFAULT)) { |
821 | ret = op_ret; | |
822 | goto out; | |
823 | } | |
824 | ||
e2970f2f IM |
825 | /* |
826 | * futex_atomic_op_inuser needs to both read and write | |
4732efbe JJ |
827 | * *(int __user *)uaddr2, but we can't modify it |
828 | * non-atomically. Therefore, if get_user below is not | |
829 | * enough, we need to handle the fault ourselves, while | |
e2970f2f IM |
830 | * still holding the mmap_sem. |
831 | */ | |
4732efbe | 832 | if (attempt++) { |
34f01cc1 | 833 | ret = futex_handle_fault((unsigned long)uaddr2, |
36cf3b5c | 834 | fshared, attempt); |
34f01cc1 | 835 | if (ret) |
4732efbe | 836 | goto out; |
4732efbe JJ |
837 | goto retry; |
838 | } | |
839 | ||
e2970f2f IM |
840 | /* |
841 | * If we would have faulted, release mmap_sem, | |
842 | * fault it in and start all over again. | |
843 | */ | |
36cf3b5c | 844 | futex_unlock_mm(fshared); |
4732efbe | 845 | |
e2970f2f | 846 | ret = get_user(dummy, uaddr2); |
4732efbe JJ |
847 | if (ret) |
848 | return ret; | |
849 | ||
850 | goto retryfull; | |
851 | } | |
852 | ||
e2970f2f | 853 | head = &hb1->chain; |
4732efbe | 854 | |
ec92d082 | 855 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
856 | if (match_futex (&this->key, &key1)) { |
857 | wake_futex(this); | |
858 | if (++ret >= nr_wake) | |
859 | break; | |
860 | } | |
861 | } | |
862 | ||
863 | if (op_ret > 0) { | |
e2970f2f | 864 | head = &hb2->chain; |
4732efbe JJ |
865 | |
866 | op_ret = 0; | |
ec92d082 | 867 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
868 | if (match_futex (&this->key, &key2)) { |
869 | wake_futex(this); | |
870 | if (++op_ret >= nr_wake2) | |
871 | break; | |
872 | } | |
873 | } | |
874 | ret += op_ret; | |
875 | } | |
876 | ||
e2970f2f IM |
877 | spin_unlock(&hb1->lock); |
878 | if (hb1 != hb2) | |
879 | spin_unlock(&hb2->lock); | |
4732efbe | 880 | out: |
36cf3b5c TG |
881 | futex_unlock_mm(fshared); |
882 | ||
4732efbe JJ |
883 | return ret; |
884 | } | |
885 | ||
1da177e4 LT |
886 | /* |
887 | * Requeue all waiters hashed on one physical page to another | |
888 | * physical page. | |
889 | */ | |
34f01cc1 ED |
890 | static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared, |
891 | u32 __user *uaddr2, | |
e2970f2f | 892 | int nr_wake, int nr_requeue, u32 *cmpval) |
1da177e4 LT |
893 | { |
894 | union futex_key key1, key2; | |
e2970f2f | 895 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 896 | struct plist_head *head1; |
1da177e4 LT |
897 | struct futex_q *this, *next; |
898 | int ret, drop_count = 0; | |
899 | ||
900 | retry: | |
36cf3b5c | 901 | futex_lock_mm(fshared); |
1da177e4 | 902 | |
34f01cc1 | 903 | ret = get_futex_key(uaddr1, fshared, &key1); |
1da177e4 LT |
904 | if (unlikely(ret != 0)) |
905 | goto out; | |
34f01cc1 | 906 | ret = get_futex_key(uaddr2, fshared, &key2); |
1da177e4 LT |
907 | if (unlikely(ret != 0)) |
908 | goto out; | |
909 | ||
e2970f2f IM |
910 | hb1 = hash_futex(&key1); |
911 | hb2 = hash_futex(&key2); | |
1da177e4 | 912 | |
8b8f319f | 913 | double_lock_hb(hb1, hb2); |
1da177e4 | 914 | |
e2970f2f IM |
915 | if (likely(cmpval != NULL)) { |
916 | u32 curval; | |
1da177e4 | 917 | |
e2970f2f | 918 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
919 | |
920 | if (unlikely(ret)) { | |
e2970f2f IM |
921 | spin_unlock(&hb1->lock); |
922 | if (hb1 != hb2) | |
923 | spin_unlock(&hb2->lock); | |
1da177e4 | 924 | |
e2970f2f IM |
925 | /* |
926 | * If we would have faulted, release mmap_sem, fault | |
1da177e4 LT |
927 | * it in and start all over again. |
928 | */ | |
36cf3b5c | 929 | futex_unlock_mm(fshared); |
1da177e4 | 930 | |
e2970f2f | 931 | ret = get_user(curval, uaddr1); |
1da177e4 LT |
932 | |
933 | if (!ret) | |
934 | goto retry; | |
935 | ||
936 | return ret; | |
937 | } | |
e2970f2f | 938 | if (curval != *cmpval) { |
1da177e4 LT |
939 | ret = -EAGAIN; |
940 | goto out_unlock; | |
941 | } | |
942 | } | |
943 | ||
e2970f2f | 944 | head1 = &hb1->chain; |
ec92d082 | 945 | plist_for_each_entry_safe(this, next, head1, list) { |
1da177e4 LT |
946 | if (!match_futex (&this->key, &key1)) |
947 | continue; | |
948 | if (++ret <= nr_wake) { | |
949 | wake_futex(this); | |
950 | } else { | |
59e0e0ac SD |
951 | /* |
952 | * If key1 and key2 hash to the same bucket, no need to | |
953 | * requeue. | |
954 | */ | |
955 | if (likely(head1 != &hb2->chain)) { | |
ec92d082 PP |
956 | plist_del(&this->list, &hb1->chain); |
957 | plist_add(&this->list, &hb2->chain); | |
59e0e0ac | 958 | this->lock_ptr = &hb2->lock; |
ec92d082 PP |
959 | #ifdef CONFIG_DEBUG_PI_LIST |
960 | this->list.plist.lock = &hb2->lock; | |
961 | #endif | |
778e9a9c | 962 | } |
1da177e4 | 963 | this->key = key2; |
9adef58b | 964 | get_futex_key_refs(&key2); |
1da177e4 LT |
965 | drop_count++; |
966 | ||
967 | if (ret - nr_wake >= nr_requeue) | |
968 | break; | |
1da177e4 LT |
969 | } |
970 | } | |
971 | ||
972 | out_unlock: | |
e2970f2f IM |
973 | spin_unlock(&hb1->lock); |
974 | if (hb1 != hb2) | |
975 | spin_unlock(&hb2->lock); | |
1da177e4 | 976 | |
9adef58b | 977 | /* drop_futex_key_refs() must be called outside the spinlocks. */ |
1da177e4 | 978 | while (--drop_count >= 0) |
9adef58b | 979 | drop_futex_key_refs(&key1); |
1da177e4 LT |
980 | |
981 | out: | |
36cf3b5c | 982 | futex_unlock_mm(fshared); |
1da177e4 LT |
983 | return ret; |
984 | } | |
985 | ||
986 | /* The key must be already stored in q->key. */ | |
987 | static inline struct futex_hash_bucket * | |
988 | queue_lock(struct futex_q *q, int fd, struct file *filp) | |
989 | { | |
e2970f2f | 990 | struct futex_hash_bucket *hb; |
1da177e4 LT |
991 | |
992 | q->fd = fd; | |
993 | q->filp = filp; | |
994 | ||
995 | init_waitqueue_head(&q->waiters); | |
996 | ||
9adef58b | 997 | get_futex_key_refs(&q->key); |
e2970f2f IM |
998 | hb = hash_futex(&q->key); |
999 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1000 | |
e2970f2f IM |
1001 | spin_lock(&hb->lock); |
1002 | return hb; | |
1da177e4 LT |
1003 | } |
1004 | ||
e2970f2f | 1005 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 1006 | { |
ec92d082 PP |
1007 | int prio; |
1008 | ||
1009 | /* | |
1010 | * The priority used to register this element is | |
1011 | * - either the real thread-priority for the real-time threads | |
1012 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1013 | * - or MAX_RT_PRIO for non-RT threads. | |
1014 | * Thus, all RT-threads are woken first in priority order, and | |
1015 | * the others are woken last, in FIFO order. | |
1016 | */ | |
1017 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1018 | ||
1019 | plist_node_init(&q->list, prio); | |
1020 | #ifdef CONFIG_DEBUG_PI_LIST | |
1021 | q->list.plist.lock = &hb->lock; | |
1022 | #endif | |
1023 | plist_add(&q->list, &hb->chain); | |
c87e2837 | 1024 | q->task = current; |
e2970f2f | 1025 | spin_unlock(&hb->lock); |
1da177e4 LT |
1026 | } |
1027 | ||
1028 | static inline void | |
e2970f2f | 1029 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
1da177e4 | 1030 | { |
e2970f2f | 1031 | spin_unlock(&hb->lock); |
9adef58b | 1032 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1033 | } |
1034 | ||
1035 | /* | |
1036 | * queue_me and unqueue_me must be called as a pair, each | |
1037 | * exactly once. They are called with the hashed spinlock held. | |
1038 | */ | |
1039 | ||
1040 | /* The key must be already stored in q->key. */ | |
1041 | static void queue_me(struct futex_q *q, int fd, struct file *filp) | |
1042 | { | |
e2970f2f IM |
1043 | struct futex_hash_bucket *hb; |
1044 | ||
1045 | hb = queue_lock(q, fd, filp); | |
1046 | __queue_me(q, hb); | |
1da177e4 LT |
1047 | } |
1048 | ||
1049 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | |
1050 | static int unqueue_me(struct futex_q *q) | |
1051 | { | |
1da177e4 | 1052 | spinlock_t *lock_ptr; |
e2970f2f | 1053 | int ret = 0; |
1da177e4 LT |
1054 | |
1055 | /* In the common case we don't take the spinlock, which is nice. */ | |
1056 | retry: | |
1057 | lock_ptr = q->lock_ptr; | |
e91467ec | 1058 | barrier(); |
c80544dc | 1059 | if (lock_ptr != NULL) { |
1da177e4 LT |
1060 | spin_lock(lock_ptr); |
1061 | /* | |
1062 | * q->lock_ptr can change between reading it and | |
1063 | * spin_lock(), causing us to take the wrong lock. This | |
1064 | * corrects the race condition. | |
1065 | * | |
1066 | * Reasoning goes like this: if we have the wrong lock, | |
1067 | * q->lock_ptr must have changed (maybe several times) | |
1068 | * between reading it and the spin_lock(). It can | |
1069 | * change again after the spin_lock() but only if it was | |
1070 | * already changed before the spin_lock(). It cannot, | |
1071 | * however, change back to the original value. Therefore | |
1072 | * we can detect whether we acquired the correct lock. | |
1073 | */ | |
1074 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1075 | spin_unlock(lock_ptr); | |
1076 | goto retry; | |
1077 | } | |
ec92d082 PP |
1078 | WARN_ON(plist_node_empty(&q->list)); |
1079 | plist_del(&q->list, &q->list.plist); | |
c87e2837 IM |
1080 | |
1081 | BUG_ON(q->pi_state); | |
1082 | ||
1da177e4 LT |
1083 | spin_unlock(lock_ptr); |
1084 | ret = 1; | |
1085 | } | |
1086 | ||
9adef58b | 1087 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1088 | return ret; |
1089 | } | |
1090 | ||
c87e2837 IM |
1091 | /* |
1092 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1093 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1094 | * and dropped here. | |
c87e2837 | 1095 | */ |
d0aa7a70 | 1096 | static void unqueue_me_pi(struct futex_q *q) |
c87e2837 | 1097 | { |
ec92d082 PP |
1098 | WARN_ON(plist_node_empty(&q->list)); |
1099 | plist_del(&q->list, &q->list.plist); | |
c87e2837 IM |
1100 | |
1101 | BUG_ON(!q->pi_state); | |
1102 | free_pi_state(q->pi_state); | |
1103 | q->pi_state = NULL; | |
1104 | ||
d0aa7a70 | 1105 | spin_unlock(q->lock_ptr); |
c87e2837 | 1106 | |
9adef58b | 1107 | drop_futex_key_refs(&q->key); |
c87e2837 IM |
1108 | } |
1109 | ||
d0aa7a70 | 1110 | /* |
cdf71a10 | 1111 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1112 | * |
778e9a9c AK |
1113 | * Must be called with hash bucket lock held and mm->sem held for non |
1114 | * private futexes. | |
d0aa7a70 | 1115 | */ |
778e9a9c | 1116 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
cdf71a10 | 1117 | struct task_struct *newowner) |
d0aa7a70 | 1118 | { |
cdf71a10 | 1119 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 PP |
1120 | struct futex_pi_state *pi_state = q->pi_state; |
1121 | u32 uval, curval, newval; | |
1122 | int ret; | |
1123 | ||
1124 | /* Owner died? */ | |
1125 | if (pi_state->owner != NULL) { | |
1126 | spin_lock_irq(&pi_state->owner->pi_lock); | |
1127 | WARN_ON(list_empty(&pi_state->list)); | |
1128 | list_del_init(&pi_state->list); | |
1129 | spin_unlock_irq(&pi_state->owner->pi_lock); | |
1130 | } else | |
1131 | newtid |= FUTEX_OWNER_DIED; | |
1132 | ||
cdf71a10 | 1133 | pi_state->owner = newowner; |
d0aa7a70 | 1134 | |
cdf71a10 | 1135 | spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1136 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 TG |
1137 | list_add(&pi_state->list, &newowner->pi_state_list); |
1138 | spin_unlock_irq(&newowner->pi_lock); | |
d0aa7a70 | 1139 | |
d0aa7a70 PP |
1140 | /* |
1141 | * We own it, so we have to replace the pending owner | |
1142 | * TID. This must be atomic as we have preserve the | |
1143 | * owner died bit here. | |
1144 | */ | |
778e9a9c AK |
1145 | ret = get_futex_value_locked(&uval, uaddr); |
1146 | ||
d0aa7a70 PP |
1147 | while (!ret) { |
1148 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
778e9a9c | 1149 | |
36cf3b5c | 1150 | curval = cmpxchg_futex_value_locked(uaddr, uval, newval); |
778e9a9c | 1151 | |
d0aa7a70 | 1152 | if (curval == -EFAULT) |
778e9a9c | 1153 | ret = -EFAULT; |
d0aa7a70 PP |
1154 | if (curval == uval) |
1155 | break; | |
1156 | uval = curval; | |
1157 | } | |
1158 | return ret; | |
1159 | } | |
1160 | ||
34f01cc1 ED |
1161 | /* |
1162 | * In case we must use restart_block to restart a futex_wait, | |
ce6bd420 | 1163 | * we encode in the 'flags' shared capability |
34f01cc1 | 1164 | */ |
ce6bd420 | 1165 | #define FLAGS_SHARED 1 |
34f01cc1 | 1166 | |
72c1bbf3 | 1167 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1168 | |
34f01cc1 | 1169 | static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, |
cd689985 | 1170 | u32 val, ktime_t *abs_time, u32 bitset) |
1da177e4 | 1171 | { |
c87e2837 IM |
1172 | struct task_struct *curr = current; |
1173 | DECLARE_WAITQUEUE(wait, curr); | |
e2970f2f | 1174 | struct futex_hash_bucket *hb; |
1da177e4 | 1175 | struct futex_q q; |
e2970f2f IM |
1176 | u32 uval; |
1177 | int ret; | |
bd197234 | 1178 | struct hrtimer_sleeper t; |
c19384b5 | 1179 | int rem = 0; |
1da177e4 | 1180 | |
cd689985 TG |
1181 | if (!bitset) |
1182 | return -EINVAL; | |
1183 | ||
c87e2837 | 1184 | q.pi_state = NULL; |
cd689985 | 1185 | q.bitset = bitset; |
1da177e4 | 1186 | retry: |
36cf3b5c | 1187 | futex_lock_mm(fshared); |
1da177e4 | 1188 | |
34f01cc1 | 1189 | ret = get_futex_key(uaddr, fshared, &q.key); |
1da177e4 LT |
1190 | if (unlikely(ret != 0)) |
1191 | goto out_release_sem; | |
1192 | ||
e2970f2f | 1193 | hb = queue_lock(&q, -1, NULL); |
1da177e4 LT |
1194 | |
1195 | /* | |
1196 | * Access the page AFTER the futex is queued. | |
1197 | * Order is important: | |
1198 | * | |
1199 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1200 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1201 | * | |
1202 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1203 | * if cond(var) is known to be true at the time of blocking, for | |
1204 | * any cond. If we queued after testing *uaddr, that would open | |
1205 | * a race condition where we could block indefinitely with | |
1206 | * cond(var) false, which would violate the guarantee. | |
1207 | * | |
1208 | * A consequence is that futex_wait() can return zero and absorb | |
1209 | * a wakeup when *uaddr != val on entry to the syscall. This is | |
1210 | * rare, but normal. | |
1211 | * | |
34f01cc1 ED |
1212 | * for shared futexes, we hold the mmap semaphore, so the mapping |
1213 | * cannot have changed since we looked it up in get_futex_key. | |
1da177e4 | 1214 | */ |
e2970f2f | 1215 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 LT |
1216 | |
1217 | if (unlikely(ret)) { | |
e2970f2f | 1218 | queue_unlock(&q, hb); |
1da177e4 | 1219 | |
e2970f2f IM |
1220 | /* |
1221 | * If we would have faulted, release mmap_sem, fault it in and | |
1da177e4 LT |
1222 | * start all over again. |
1223 | */ | |
36cf3b5c | 1224 | futex_unlock_mm(fshared); |
1da177e4 | 1225 | |
e2970f2f | 1226 | ret = get_user(uval, uaddr); |
1da177e4 LT |
1227 | |
1228 | if (!ret) | |
1229 | goto retry; | |
1230 | return ret; | |
1231 | } | |
c87e2837 IM |
1232 | ret = -EWOULDBLOCK; |
1233 | if (uval != val) | |
1234 | goto out_unlock_release_sem; | |
1da177e4 LT |
1235 | |
1236 | /* Only actually queue if *uaddr contained val. */ | |
e2970f2f | 1237 | __queue_me(&q, hb); |
1da177e4 LT |
1238 | |
1239 | /* | |
1240 | * Now the futex is queued and we have checked the data, we | |
1241 | * don't want to hold mmap_sem while we sleep. | |
c87e2837 | 1242 | */ |
36cf3b5c | 1243 | futex_unlock_mm(fshared); |
1da177e4 LT |
1244 | |
1245 | /* | |
1246 | * There might have been scheduling since the queue_me(), as we | |
1247 | * cannot hold a spinlock across the get_user() in case it | |
1248 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | |
1249 | * queueing ourselves into the futex hash. This code thus has to | |
1250 | * rely on the futex_wake() code removing us from hash when it | |
1251 | * wakes us up. | |
1252 | */ | |
1253 | ||
1254 | /* add_wait_queue is the barrier after __set_current_state. */ | |
1255 | __set_current_state(TASK_INTERRUPTIBLE); | |
1256 | add_wait_queue(&q.waiters, &wait); | |
1257 | /* | |
ec92d082 | 1258 | * !plist_node_empty() is safe here without any lock. |
1da177e4 LT |
1259 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. |
1260 | */ | |
ec92d082 | 1261 | if (likely(!plist_node_empty(&q.list))) { |
c19384b5 PP |
1262 | if (!abs_time) |
1263 | schedule(); | |
1264 | else { | |
1265 | hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | |
1266 | hrtimer_init_sleeper(&t, current); | |
1267 | t.timer.expires = *abs_time; | |
1268 | ||
1269 | hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS); | |
3588a085 PZ |
1270 | if (!hrtimer_active(&t.timer)) |
1271 | t.task = NULL; | |
c19384b5 PP |
1272 | |
1273 | /* | |
1274 | * the timer could have already expired, in which | |
1275 | * case current would be flagged for rescheduling. | |
1276 | * Don't bother calling schedule. | |
1277 | */ | |
1278 | if (likely(t.task)) | |
1279 | schedule(); | |
1280 | ||
1281 | hrtimer_cancel(&t.timer); | |
72c1bbf3 | 1282 | |
c19384b5 PP |
1283 | /* Flag if a timeout occured */ |
1284 | rem = (t.task == NULL); | |
1285 | } | |
72c1bbf3 | 1286 | } |
1da177e4 LT |
1287 | __set_current_state(TASK_RUNNING); |
1288 | ||
1289 | /* | |
1290 | * NOTE: we don't remove ourselves from the waitqueue because | |
1291 | * we are the only user of it. | |
1292 | */ | |
1293 | ||
1294 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
1295 | if (!unqueue_me(&q)) | |
1296 | return 0; | |
c19384b5 | 1297 | if (rem) |
1da177e4 | 1298 | return -ETIMEDOUT; |
72c1bbf3 | 1299 | |
e2970f2f IM |
1300 | /* |
1301 | * We expect signal_pending(current), but another thread may | |
1302 | * have handled it for us already. | |
1303 | */ | |
c19384b5 | 1304 | if (!abs_time) |
72c1bbf3 NP |
1305 | return -ERESTARTSYS; |
1306 | else { | |
1307 | struct restart_block *restart; | |
1308 | restart = ¤t_thread_info()->restart_block; | |
1309 | restart->fn = futex_wait_restart; | |
ce6bd420 SR |
1310 | restart->futex.uaddr = (u32 *)uaddr; |
1311 | restart->futex.val = val; | |
1312 | restart->futex.time = abs_time->tv64; | |
cd689985 | 1313 | restart->futex.bitset = bitset; |
ce6bd420 SR |
1314 | restart->futex.flags = 0; |
1315 | ||
34f01cc1 | 1316 | if (fshared) |
ce6bd420 | 1317 | restart->futex.flags |= FLAGS_SHARED; |
72c1bbf3 NP |
1318 | return -ERESTART_RESTARTBLOCK; |
1319 | } | |
1da177e4 | 1320 | |
c87e2837 IM |
1321 | out_unlock_release_sem: |
1322 | queue_unlock(&q, hb); | |
1323 | ||
1da177e4 | 1324 | out_release_sem: |
36cf3b5c | 1325 | futex_unlock_mm(fshared); |
c87e2837 IM |
1326 | return ret; |
1327 | } | |
1328 | ||
72c1bbf3 NP |
1329 | |
1330 | static long futex_wait_restart(struct restart_block *restart) | |
1331 | { | |
ce6bd420 | 1332 | u32 __user *uaddr = (u32 __user *)restart->futex.uaddr; |
34f01cc1 | 1333 | struct rw_semaphore *fshared = NULL; |
ce6bd420 | 1334 | ktime_t t; |
72c1bbf3 | 1335 | |
ce6bd420 | 1336 | t.tv64 = restart->futex.time; |
72c1bbf3 | 1337 | restart->fn = do_no_restart_syscall; |
ce6bd420 | 1338 | if (restart->futex.flags & FLAGS_SHARED) |
34f01cc1 | 1339 | fshared = ¤t->mm->mmap_sem; |
cd689985 TG |
1340 | return (long)futex_wait(uaddr, fshared, restart->futex.val, &t, |
1341 | restart->futex.bitset); | |
72c1bbf3 NP |
1342 | } |
1343 | ||
1344 | ||
c87e2837 IM |
1345 | /* |
1346 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1347 | * and failed. The kernel side here does the whole locking operation: | |
1348 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1349 | * races the kernel might see a 0 value of the futex too.) | |
1350 | */ | |
34f01cc1 ED |
1351 | static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, |
1352 | int detect, ktime_t *time, int trylock) | |
c87e2837 | 1353 | { |
c5780e97 | 1354 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 IM |
1355 | struct task_struct *curr = current; |
1356 | struct futex_hash_bucket *hb; | |
1357 | u32 uval, newval, curval; | |
1358 | struct futex_q q; | |
778e9a9c | 1359 | int ret, lock_taken, ownerdied = 0, attempt = 0; |
c87e2837 IM |
1360 | |
1361 | if (refill_pi_state_cache()) | |
1362 | return -ENOMEM; | |
1363 | ||
c19384b5 | 1364 | if (time) { |
c5780e97 | 1365 | to = &timeout; |
c9cb2e3d | 1366 | hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); |
c5780e97 | 1367 | hrtimer_init_sleeper(to, current); |
c19384b5 | 1368 | to->timer.expires = *time; |
c5780e97 TG |
1369 | } |
1370 | ||
c87e2837 IM |
1371 | q.pi_state = NULL; |
1372 | retry: | |
36cf3b5c | 1373 | futex_lock_mm(fshared); |
c87e2837 | 1374 | |
34f01cc1 | 1375 | ret = get_futex_key(uaddr, fshared, &q.key); |
c87e2837 IM |
1376 | if (unlikely(ret != 0)) |
1377 | goto out_release_sem; | |
1378 | ||
778e9a9c | 1379 | retry_unlocked: |
c87e2837 IM |
1380 | hb = queue_lock(&q, -1, NULL); |
1381 | ||
1382 | retry_locked: | |
778e9a9c | 1383 | ret = lock_taken = 0; |
d0aa7a70 | 1384 | |
c87e2837 IM |
1385 | /* |
1386 | * To avoid races, we attempt to take the lock here again | |
1387 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
1388 | * the locks. It will most likely not succeed. | |
1389 | */ | |
b488893a | 1390 | newval = task_pid_vnr(current); |
c87e2837 | 1391 | |
36cf3b5c | 1392 | curval = cmpxchg_futex_value_locked(uaddr, 0, newval); |
c87e2837 IM |
1393 | |
1394 | if (unlikely(curval == -EFAULT)) | |
1395 | goto uaddr_faulted; | |
1396 | ||
778e9a9c AK |
1397 | /* |
1398 | * Detect deadlocks. In case of REQUEUE_PI this is a valid | |
1399 | * situation and we return success to user space. | |
1400 | */ | |
b488893a | 1401 | if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) { |
bd197234 | 1402 | ret = -EDEADLK; |
c87e2837 IM |
1403 | goto out_unlock_release_sem; |
1404 | } | |
1405 | ||
1406 | /* | |
778e9a9c | 1407 | * Surprise - we got the lock. Just return to userspace: |
c87e2837 IM |
1408 | */ |
1409 | if (unlikely(!curval)) | |
1410 | goto out_unlock_release_sem; | |
1411 | ||
1412 | uval = curval; | |
778e9a9c | 1413 | |
d0aa7a70 | 1414 | /* |
778e9a9c AK |
1415 | * Set the WAITERS flag, so the owner will know it has someone |
1416 | * to wake at next unlock | |
d0aa7a70 | 1417 | */ |
778e9a9c AK |
1418 | newval = curval | FUTEX_WAITERS; |
1419 | ||
1420 | /* | |
1421 | * There are two cases, where a futex might have no owner (the | |
bd197234 TG |
1422 | * owner TID is 0): OWNER_DIED. We take over the futex in this |
1423 | * case. We also do an unconditional take over, when the owner | |
1424 | * of the futex died. | |
778e9a9c AK |
1425 | * |
1426 | * This is safe as we are protected by the hash bucket lock ! | |
1427 | */ | |
1428 | if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) { | |
bd197234 | 1429 | /* Keep the OWNER_DIED bit */ |
b488893a | 1430 | newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current); |
778e9a9c AK |
1431 | ownerdied = 0; |
1432 | lock_taken = 1; | |
1433 | } | |
c87e2837 | 1434 | |
36cf3b5c | 1435 | curval = cmpxchg_futex_value_locked(uaddr, uval, newval); |
c87e2837 IM |
1436 | |
1437 | if (unlikely(curval == -EFAULT)) | |
1438 | goto uaddr_faulted; | |
1439 | if (unlikely(curval != uval)) | |
1440 | goto retry_locked; | |
1441 | ||
778e9a9c | 1442 | /* |
bd197234 | 1443 | * We took the lock due to owner died take over. |
778e9a9c | 1444 | */ |
bd197234 | 1445 | if (unlikely(lock_taken)) |
d0aa7a70 | 1446 | goto out_unlock_release_sem; |
d0aa7a70 | 1447 | |
c87e2837 IM |
1448 | /* |
1449 | * We dont have the lock. Look up the PI state (or create it if | |
1450 | * we are the first waiter): | |
1451 | */ | |
d0aa7a70 | 1452 | ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state); |
c87e2837 IM |
1453 | |
1454 | if (unlikely(ret)) { | |
778e9a9c | 1455 | switch (ret) { |
c87e2837 | 1456 | |
778e9a9c AK |
1457 | case -EAGAIN: |
1458 | /* | |
1459 | * Task is exiting and we just wait for the | |
1460 | * exit to complete. | |
1461 | */ | |
1462 | queue_unlock(&q, hb); | |
36cf3b5c | 1463 | futex_unlock_mm(fshared); |
778e9a9c AK |
1464 | cond_resched(); |
1465 | goto retry; | |
c87e2837 | 1466 | |
778e9a9c AK |
1467 | case -ESRCH: |
1468 | /* | |
1469 | * No owner found for this futex. Check if the | |
1470 | * OWNER_DIED bit is set to figure out whether | |
1471 | * this is a robust futex or not. | |
1472 | */ | |
1473 | if (get_futex_value_locked(&curval, uaddr)) | |
c87e2837 | 1474 | goto uaddr_faulted; |
778e9a9c AK |
1475 | |
1476 | /* | |
1477 | * We simply start over in case of a robust | |
1478 | * futex. The code above will take the futex | |
1479 | * and return happy. | |
1480 | */ | |
1481 | if (curval & FUTEX_OWNER_DIED) { | |
1482 | ownerdied = 1; | |
c87e2837 | 1483 | goto retry_locked; |
778e9a9c AK |
1484 | } |
1485 | default: | |
1486 | goto out_unlock_release_sem; | |
c87e2837 | 1487 | } |
c87e2837 IM |
1488 | } |
1489 | ||
1490 | /* | |
1491 | * Only actually queue now that the atomic ops are done: | |
1492 | */ | |
1493 | __queue_me(&q, hb); | |
1494 | ||
1495 | /* | |
1496 | * Now the futex is queued and we have checked the data, we | |
1497 | * don't want to hold mmap_sem while we sleep. | |
1498 | */ | |
36cf3b5c | 1499 | futex_unlock_mm(fshared); |
c87e2837 IM |
1500 | |
1501 | WARN_ON(!q.pi_state); | |
1502 | /* | |
1503 | * Block on the PI mutex: | |
1504 | */ | |
1505 | if (!trylock) | |
1506 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
1507 | else { | |
1508 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
1509 | /* Fixup the trylock return value: */ | |
1510 | ret = ret ? 0 : -EWOULDBLOCK; | |
1511 | } | |
1512 | ||
36cf3b5c | 1513 | futex_lock_mm(fshared); |
a99e4e41 | 1514 | spin_lock(q.lock_ptr); |
c87e2837 | 1515 | |
778e9a9c AK |
1516 | if (!ret) { |
1517 | /* | |
1518 | * Got the lock. We might not be the anticipated owner | |
1519 | * if we did a lock-steal - fix up the PI-state in | |
1520 | * that case: | |
1521 | */ | |
1522 | if (q.pi_state->owner != curr) | |
1523 | ret = fixup_pi_state_owner(uaddr, &q, curr); | |
1524 | } else { | |
c87e2837 IM |
1525 | /* |
1526 | * Catch the rare case, where the lock was released | |
778e9a9c AK |
1527 | * when we were on the way back before we locked the |
1528 | * hash bucket. | |
c87e2837 | 1529 | */ |
cdf71a10 TG |
1530 | if (q.pi_state->owner == curr) { |
1531 | /* | |
1532 | * Try to get the rt_mutex now. This might | |
1533 | * fail as some other task acquired the | |
1534 | * rt_mutex after we removed ourself from the | |
1535 | * rt_mutex waiters list. | |
1536 | */ | |
1537 | if (rt_mutex_trylock(&q.pi_state->pi_mutex)) | |
1538 | ret = 0; | |
1539 | else { | |
1540 | /* | |
1541 | * pi_state is incorrect, some other | |
1542 | * task did a lock steal and we | |
1543 | * returned due to timeout or signal | |
1544 | * without taking the rt_mutex. Too | |
1545 | * late. We can access the | |
1546 | * rt_mutex_owner without locking, as | |
1547 | * the other task is now blocked on | |
1548 | * the hash bucket lock. Fix the state | |
1549 | * up. | |
1550 | */ | |
1551 | struct task_struct *owner; | |
1552 | int res; | |
1553 | ||
1554 | owner = rt_mutex_owner(&q.pi_state->pi_mutex); | |
1555 | res = fixup_pi_state_owner(uaddr, &q, owner); | |
1556 | ||
cdf71a10 TG |
1557 | /* propagate -EFAULT, if the fixup failed */ |
1558 | if (res) | |
1559 | ret = res; | |
1560 | } | |
778e9a9c AK |
1561 | } else { |
1562 | /* | |
1563 | * Paranoia check. If we did not take the lock | |
1564 | * in the trylock above, then we should not be | |
1565 | * the owner of the rtmutex, neither the real | |
1566 | * nor the pending one: | |
1567 | */ | |
1568 | if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr) | |
1569 | printk(KERN_ERR "futex_lock_pi: ret = %d " | |
1570 | "pi-mutex: %p pi-state %p\n", ret, | |
1571 | q.pi_state->pi_mutex.owner, | |
1572 | q.pi_state->owner); | |
c87e2837 | 1573 | } |
c87e2837 IM |
1574 | } |
1575 | ||
778e9a9c AK |
1576 | /* Unqueue and drop the lock */ |
1577 | unqueue_me_pi(&q); | |
36cf3b5c | 1578 | futex_unlock_mm(fshared); |
c87e2837 | 1579 | |
c5780e97 | 1580 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 IM |
1581 | |
1582 | out_unlock_release_sem: | |
1583 | queue_unlock(&q, hb); | |
1584 | ||
1585 | out_release_sem: | |
36cf3b5c | 1586 | futex_unlock_mm(fshared); |
c87e2837 IM |
1587 | return ret; |
1588 | ||
1589 | uaddr_faulted: | |
1590 | /* | |
1591 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1592 | * non-atomically. Therefore, if get_user below is not | |
1593 | * enough, we need to handle the fault ourselves, while | |
1594 | * still holding the mmap_sem. | |
778e9a9c AK |
1595 | * |
1596 | * ... and hb->lock. :-) --ANK | |
c87e2837 | 1597 | */ |
778e9a9c AK |
1598 | queue_unlock(&q, hb); |
1599 | ||
c87e2837 | 1600 | if (attempt++) { |
34f01cc1 ED |
1601 | ret = futex_handle_fault((unsigned long)uaddr, fshared, |
1602 | attempt); | |
1603 | if (ret) | |
778e9a9c AK |
1604 | goto out_release_sem; |
1605 | goto retry_unlocked; | |
c87e2837 IM |
1606 | } |
1607 | ||
36cf3b5c | 1608 | futex_unlock_mm(fshared); |
c87e2837 IM |
1609 | |
1610 | ret = get_user(uval, uaddr); | |
1611 | if (!ret && (uval != -EFAULT)) | |
1612 | goto retry; | |
1613 | ||
1614 | return ret; | |
1615 | } | |
1616 | ||
c87e2837 IM |
1617 | /* |
1618 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
1619 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
1620 | * and do the rt-mutex unlock. | |
1621 | */ | |
34f01cc1 | 1622 | static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared) |
c87e2837 IM |
1623 | { |
1624 | struct futex_hash_bucket *hb; | |
1625 | struct futex_q *this, *next; | |
1626 | u32 uval; | |
ec92d082 | 1627 | struct plist_head *head; |
c87e2837 IM |
1628 | union futex_key key; |
1629 | int ret, attempt = 0; | |
1630 | ||
1631 | retry: | |
1632 | if (get_user(uval, uaddr)) | |
1633 | return -EFAULT; | |
1634 | /* | |
1635 | * We release only a lock we actually own: | |
1636 | */ | |
b488893a | 1637 | if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current)) |
c87e2837 IM |
1638 | return -EPERM; |
1639 | /* | |
1640 | * First take all the futex related locks: | |
1641 | */ | |
36cf3b5c | 1642 | futex_lock_mm(fshared); |
c87e2837 | 1643 | |
34f01cc1 | 1644 | ret = get_futex_key(uaddr, fshared, &key); |
c87e2837 IM |
1645 | if (unlikely(ret != 0)) |
1646 | goto out; | |
1647 | ||
1648 | hb = hash_futex(&key); | |
778e9a9c | 1649 | retry_unlocked: |
c87e2837 IM |
1650 | spin_lock(&hb->lock); |
1651 | ||
c87e2837 IM |
1652 | /* |
1653 | * To avoid races, try to do the TID -> 0 atomic transition | |
1654 | * again. If it succeeds then we can return without waking | |
1655 | * anyone else up: | |
1656 | */ | |
36cf3b5c | 1657 | if (!(uval & FUTEX_OWNER_DIED)) |
b488893a | 1658 | uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0); |
36cf3b5c | 1659 | |
c87e2837 IM |
1660 | |
1661 | if (unlikely(uval == -EFAULT)) | |
1662 | goto pi_faulted; | |
1663 | /* | |
1664 | * Rare case: we managed to release the lock atomically, | |
1665 | * no need to wake anyone else up: | |
1666 | */ | |
b488893a | 1667 | if (unlikely(uval == task_pid_vnr(current))) |
c87e2837 IM |
1668 | goto out_unlock; |
1669 | ||
1670 | /* | |
1671 | * Ok, other tasks may need to be woken up - check waiters | |
1672 | * and do the wakeup if necessary: | |
1673 | */ | |
1674 | head = &hb->chain; | |
1675 | ||
ec92d082 | 1676 | plist_for_each_entry_safe(this, next, head, list) { |
c87e2837 IM |
1677 | if (!match_futex (&this->key, &key)) |
1678 | continue; | |
1679 | ret = wake_futex_pi(uaddr, uval, this); | |
1680 | /* | |
1681 | * The atomic access to the futex value | |
1682 | * generated a pagefault, so retry the | |
1683 | * user-access and the wakeup: | |
1684 | */ | |
1685 | if (ret == -EFAULT) | |
1686 | goto pi_faulted; | |
1687 | goto out_unlock; | |
1688 | } | |
1689 | /* | |
1690 | * No waiters - kernel unlocks the futex: | |
1691 | */ | |
e3f2ddea IM |
1692 | if (!(uval & FUTEX_OWNER_DIED)) { |
1693 | ret = unlock_futex_pi(uaddr, uval); | |
1694 | if (ret == -EFAULT) | |
1695 | goto pi_faulted; | |
1696 | } | |
c87e2837 IM |
1697 | |
1698 | out_unlock: | |
1699 | spin_unlock(&hb->lock); | |
1700 | out: | |
36cf3b5c | 1701 | futex_unlock_mm(fshared); |
c87e2837 IM |
1702 | |
1703 | return ret; | |
1704 | ||
1705 | pi_faulted: | |
1706 | /* | |
1707 | * We have to r/w *(int __user *)uaddr, but we can't modify it | |
1708 | * non-atomically. Therefore, if get_user below is not | |
1709 | * enough, we need to handle the fault ourselves, while | |
1710 | * still holding the mmap_sem. | |
778e9a9c AK |
1711 | * |
1712 | * ... and hb->lock. --ANK | |
c87e2837 | 1713 | */ |
778e9a9c AK |
1714 | spin_unlock(&hb->lock); |
1715 | ||
c87e2837 | 1716 | if (attempt++) { |
34f01cc1 ED |
1717 | ret = futex_handle_fault((unsigned long)uaddr, fshared, |
1718 | attempt); | |
1719 | if (ret) | |
778e9a9c | 1720 | goto out; |
187226f5 | 1721 | uval = 0; |
778e9a9c | 1722 | goto retry_unlocked; |
c87e2837 IM |
1723 | } |
1724 | ||
36cf3b5c | 1725 | futex_unlock_mm(fshared); |
c87e2837 IM |
1726 | |
1727 | ret = get_user(uval, uaddr); | |
1728 | if (!ret && (uval != -EFAULT)) | |
1729 | goto retry; | |
1730 | ||
1da177e4 LT |
1731 | return ret; |
1732 | } | |
1733 | ||
1734 | static int futex_close(struct inode *inode, struct file *filp) | |
1735 | { | |
1736 | struct futex_q *q = filp->private_data; | |
1737 | ||
1738 | unqueue_me(q); | |
1739 | kfree(q); | |
e2970f2f | 1740 | |
1da177e4 LT |
1741 | return 0; |
1742 | } | |
1743 | ||
1744 | /* This is one-shot: once it's gone off you need a new fd */ | |
1745 | static unsigned int futex_poll(struct file *filp, | |
1746 | struct poll_table_struct *wait) | |
1747 | { | |
1748 | struct futex_q *q = filp->private_data; | |
1749 | int ret = 0; | |
1750 | ||
1751 | poll_wait(filp, &q->waiters, wait); | |
1752 | ||
1753 | /* | |
ec92d082 | 1754 | * plist_node_empty() is safe here without any lock. |
1da177e4 LT |
1755 | * q->lock_ptr != 0 is not safe, because of ordering against wakeup. |
1756 | */ | |
ec92d082 | 1757 | if (plist_node_empty(&q->list)) |
1da177e4 LT |
1758 | ret = POLLIN | POLLRDNORM; |
1759 | ||
1760 | return ret; | |
1761 | } | |
1762 | ||
15ad7cdc | 1763 | static const struct file_operations futex_fops = { |
1da177e4 LT |
1764 | .release = futex_close, |
1765 | .poll = futex_poll, | |
1766 | }; | |
1767 | ||
1768 | /* | |
1769 | * Signal allows caller to avoid the race which would occur if they | |
1770 | * set the sigio stuff up afterwards. | |
1771 | */ | |
e2970f2f | 1772 | static int futex_fd(u32 __user *uaddr, int signal) |
1da177e4 LT |
1773 | { |
1774 | struct futex_q *q; | |
1775 | struct file *filp; | |
1776 | int ret, err; | |
34f01cc1 | 1777 | struct rw_semaphore *fshared; |
19c6b6ed AM |
1778 | static unsigned long printk_interval; |
1779 | ||
1780 | if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) { | |
1781 | printk(KERN_WARNING "Process `%s' used FUTEX_FD, which " | |
36cf3b5c TG |
1782 | "will be removed from the kernel in June 2007\n", |
1783 | current->comm); | |
19c6b6ed | 1784 | } |
1da177e4 LT |
1785 | |
1786 | ret = -EINVAL; | |
7ed20e1a | 1787 | if (!valid_signal(signal)) |
1da177e4 LT |
1788 | goto out; |
1789 | ||
1790 | ret = get_unused_fd(); | |
1791 | if (ret < 0) | |
1792 | goto out; | |
1793 | filp = get_empty_filp(); | |
1794 | if (!filp) { | |
1795 | put_unused_fd(ret); | |
1796 | ret = -ENFILE; | |
1797 | goto out; | |
1798 | } | |
1799 | filp->f_op = &futex_fops; | |
f3a43f3f JJS |
1800 | filp->f_path.mnt = mntget(futex_mnt); |
1801 | filp->f_path.dentry = dget(futex_mnt->mnt_root); | |
1802 | filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping; | |
1da177e4 LT |
1803 | |
1804 | if (signal) { | |
609d7fa9 | 1805 | err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1); |
1da177e4 | 1806 | if (err < 0) { |
39ed3fde | 1807 | goto error; |
1da177e4 LT |
1808 | } |
1809 | filp->f_owner.signum = signal; | |
1810 | } | |
1811 | ||
1812 | q = kmalloc(sizeof(*q), GFP_KERNEL); | |
1813 | if (!q) { | |
39ed3fde PE |
1814 | err = -ENOMEM; |
1815 | goto error; | |
1da177e4 | 1816 | } |
c87e2837 | 1817 | q->pi_state = NULL; |
1da177e4 | 1818 | |
34f01cc1 ED |
1819 | fshared = ¤t->mm->mmap_sem; |
1820 | down_read(fshared); | |
1821 | err = get_futex_key(uaddr, fshared, &q->key); | |
1da177e4 LT |
1822 | |
1823 | if (unlikely(err != 0)) { | |
34f01cc1 | 1824 | up_read(fshared); |
1da177e4 | 1825 | kfree(q); |
39ed3fde | 1826 | goto error; |
1da177e4 LT |
1827 | } |
1828 | ||
1829 | /* | |
1830 | * queue_me() must be called before releasing mmap_sem, because | |
1831 | * key->shared.inode needs to be referenced while holding it. | |
1832 | */ | |
1833 | filp->private_data = q; | |
1834 | ||
1835 | queue_me(q, ret, filp); | |
34f01cc1 | 1836 | up_read(fshared); |
1da177e4 LT |
1837 | |
1838 | /* Now we map fd to filp, so userspace can access it */ | |
1839 | fd_install(ret, filp); | |
1840 | out: | |
1841 | return ret; | |
39ed3fde PE |
1842 | error: |
1843 | put_unused_fd(ret); | |
1844 | put_filp(filp); | |
1845 | ret = err; | |
1846 | goto out; | |
1da177e4 LT |
1847 | } |
1848 | ||
0771dfef IM |
1849 | /* |
1850 | * Support for robust futexes: the kernel cleans up held futexes at | |
1851 | * thread exit time. | |
1852 | * | |
1853 | * Implementation: user-space maintains a per-thread list of locks it | |
1854 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
1855 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 1856 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
1857 | * always manipulated with the lock held, so the list is private and |
1858 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
1859 | * field, to allow the kernel to clean up if the thread dies after | |
1860 | * acquiring the lock, but just before it could have added itself to | |
1861 | * the list. There can only be one such pending lock. | |
1862 | */ | |
1863 | ||
1864 | /** | |
1865 | * sys_set_robust_list - set the robust-futex list head of a task | |
1866 | * @head: pointer to the list-head | |
1867 | * @len: length of the list-head, as userspace expects | |
1868 | */ | |
1869 | asmlinkage long | |
1870 | sys_set_robust_list(struct robust_list_head __user *head, | |
1871 | size_t len) | |
1872 | { | |
1873 | /* | |
1874 | * The kernel knows only one size for now: | |
1875 | */ | |
1876 | if (unlikely(len != sizeof(*head))) | |
1877 | return -EINVAL; | |
1878 | ||
1879 | current->robust_list = head; | |
1880 | ||
1881 | return 0; | |
1882 | } | |
1883 | ||
1884 | /** | |
1885 | * sys_get_robust_list - get the robust-futex list head of a task | |
1886 | * @pid: pid of the process [zero for current task] | |
1887 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
1888 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
1889 | */ | |
1890 | asmlinkage long | |
ba46df98 | 1891 | sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr, |
0771dfef IM |
1892 | size_t __user *len_ptr) |
1893 | { | |
ba46df98 | 1894 | struct robust_list_head __user *head; |
0771dfef IM |
1895 | unsigned long ret; |
1896 | ||
1897 | if (!pid) | |
1898 | head = current->robust_list; | |
1899 | else { | |
1900 | struct task_struct *p; | |
1901 | ||
1902 | ret = -ESRCH; | |
aaa2a97e | 1903 | rcu_read_lock(); |
228ebcbe | 1904 | p = find_task_by_vpid(pid); |
0771dfef IM |
1905 | if (!p) |
1906 | goto err_unlock; | |
1907 | ret = -EPERM; | |
1908 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
1909 | !capable(CAP_SYS_PTRACE)) | |
1910 | goto err_unlock; | |
1911 | head = p->robust_list; | |
aaa2a97e | 1912 | rcu_read_unlock(); |
0771dfef IM |
1913 | } |
1914 | ||
1915 | if (put_user(sizeof(*head), len_ptr)) | |
1916 | return -EFAULT; | |
1917 | return put_user(head, head_ptr); | |
1918 | ||
1919 | err_unlock: | |
aaa2a97e | 1920 | rcu_read_unlock(); |
0771dfef IM |
1921 | |
1922 | return ret; | |
1923 | } | |
1924 | ||
1925 | /* | |
1926 | * Process a futex-list entry, check whether it's owned by the | |
1927 | * dying task, and do notification if so: | |
1928 | */ | |
e3f2ddea | 1929 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 1930 | { |
e3f2ddea | 1931 | u32 uval, nval, mval; |
0771dfef | 1932 | |
8f17d3a5 IM |
1933 | retry: |
1934 | if (get_user(uval, uaddr)) | |
0771dfef IM |
1935 | return -1; |
1936 | ||
b488893a | 1937 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
1938 | /* |
1939 | * Ok, this dying thread is truly holding a futex | |
1940 | * of interest. Set the OWNER_DIED bit atomically | |
1941 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
1942 | * set, wake up a waiter (if any). (We have to do a | |
1943 | * futex_wake() even if OWNER_DIED is already set - | |
1944 | * to handle the rare but possible case of recursive | |
1945 | * thread-death.) The rest of the cleanup is done in | |
1946 | * userspace. | |
1947 | */ | |
e3f2ddea IM |
1948 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
1949 | nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval); | |
1950 | ||
c87e2837 IM |
1951 | if (nval == -EFAULT) |
1952 | return -1; | |
1953 | ||
1954 | if (nval != uval) | |
8f17d3a5 | 1955 | goto retry; |
0771dfef | 1956 | |
e3f2ddea IM |
1957 | /* |
1958 | * Wake robust non-PI futexes here. The wakeup of | |
1959 | * PI futexes happens in exit_pi_state(): | |
1960 | */ | |
36cf3b5c | 1961 | if (!pi && (uval & FUTEX_WAITERS)) |
cd689985 TG |
1962 | futex_wake(uaddr, &curr->mm->mmap_sem, 1, |
1963 | FUTEX_BITSET_MATCH_ANY); | |
0771dfef IM |
1964 | } |
1965 | return 0; | |
1966 | } | |
1967 | ||
e3f2ddea IM |
1968 | /* |
1969 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
1970 | */ | |
1971 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 AV |
1972 | struct robust_list __user * __user *head, |
1973 | int *pi) | |
e3f2ddea IM |
1974 | { |
1975 | unsigned long uentry; | |
1976 | ||
ba46df98 | 1977 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
1978 | return -EFAULT; |
1979 | ||
ba46df98 | 1980 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
1981 | *pi = uentry & 1; |
1982 | ||
1983 | return 0; | |
1984 | } | |
1985 | ||
0771dfef IM |
1986 | /* |
1987 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
1988 | * and mark any locks found there dead, and notify any waiters. | |
1989 | * | |
1990 | * We silently return on any sign of list-walking problem. | |
1991 | */ | |
1992 | void exit_robust_list(struct task_struct *curr) | |
1993 | { | |
1994 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e MS |
1995 | struct robust_list __user *entry, *next_entry, *pending; |
1996 | unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip; | |
0771dfef | 1997 | unsigned long futex_offset; |
9f96cb1e | 1998 | int rc; |
0771dfef IM |
1999 | |
2000 | /* | |
2001 | * Fetch the list head (which was registered earlier, via | |
2002 | * sys_set_robust_list()): | |
2003 | */ | |
e3f2ddea | 2004 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2005 | return; |
2006 | /* | |
2007 | * Fetch the relative futex offset: | |
2008 | */ | |
2009 | if (get_user(futex_offset, &head->futex_offset)) | |
2010 | return; | |
2011 | /* | |
2012 | * Fetch any possibly pending lock-add first, and handle it | |
2013 | * if it exists: | |
2014 | */ | |
e3f2ddea | 2015 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2016 | return; |
e3f2ddea | 2017 | |
9f96cb1e | 2018 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2019 | while (entry != &head->list) { |
9f96cb1e MS |
2020 | /* |
2021 | * Fetch the next entry in the list before calling | |
2022 | * handle_futex_death: | |
2023 | */ | |
2024 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2025 | /* |
2026 | * A pending lock might already be on the list, so | |
c87e2837 | 2027 | * don't process it twice: |
0771dfef IM |
2028 | */ |
2029 | if (entry != pending) | |
ba46df98 | 2030 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2031 | curr, pi)) |
0771dfef | 2032 | return; |
9f96cb1e | 2033 | if (rc) |
0771dfef | 2034 | return; |
9f96cb1e MS |
2035 | entry = next_entry; |
2036 | pi = next_pi; | |
0771dfef IM |
2037 | /* |
2038 | * Avoid excessively long or circular lists: | |
2039 | */ | |
2040 | if (!--limit) | |
2041 | break; | |
2042 | ||
2043 | cond_resched(); | |
2044 | } | |
9f96cb1e MS |
2045 | |
2046 | if (pending) | |
2047 | handle_futex_death((void __user *)pending + futex_offset, | |
2048 | curr, pip); | |
0771dfef IM |
2049 | } |
2050 | ||
c19384b5 | 2051 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2052 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 LT |
2053 | { |
2054 | int ret; | |
34f01cc1 ED |
2055 | int cmd = op & FUTEX_CMD_MASK; |
2056 | struct rw_semaphore *fshared = NULL; | |
2057 | ||
2058 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
2059 | fshared = ¤t->mm->mmap_sem; | |
1da177e4 | 2060 | |
34f01cc1 | 2061 | switch (cmd) { |
1da177e4 | 2062 | case FUTEX_WAIT: |
cd689985 TG |
2063 | val3 = FUTEX_BITSET_MATCH_ANY; |
2064 | case FUTEX_WAIT_BITSET: | |
2065 | ret = futex_wait(uaddr, fshared, val, timeout, val3); | |
1da177e4 LT |
2066 | break; |
2067 | case FUTEX_WAKE: | |
cd689985 TG |
2068 | val3 = FUTEX_BITSET_MATCH_ANY; |
2069 | case FUTEX_WAKE_BITSET: | |
2070 | ret = futex_wake(uaddr, fshared, val, val3); | |
1da177e4 LT |
2071 | break; |
2072 | case FUTEX_FD: | |
2073 | /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */ | |
2074 | ret = futex_fd(uaddr, val); | |
2075 | break; | |
2076 | case FUTEX_REQUEUE: | |
34f01cc1 | 2077 | ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL); |
1da177e4 LT |
2078 | break; |
2079 | case FUTEX_CMP_REQUEUE: | |
34f01cc1 | 2080 | ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3); |
1da177e4 | 2081 | break; |
4732efbe | 2082 | case FUTEX_WAKE_OP: |
34f01cc1 | 2083 | ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3); |
4732efbe | 2084 | break; |
c87e2837 | 2085 | case FUTEX_LOCK_PI: |
34f01cc1 | 2086 | ret = futex_lock_pi(uaddr, fshared, val, timeout, 0); |
c87e2837 IM |
2087 | break; |
2088 | case FUTEX_UNLOCK_PI: | |
34f01cc1 | 2089 | ret = futex_unlock_pi(uaddr, fshared); |
c87e2837 IM |
2090 | break; |
2091 | case FUTEX_TRYLOCK_PI: | |
34f01cc1 | 2092 | ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1); |
c87e2837 | 2093 | break; |
1da177e4 LT |
2094 | default: |
2095 | ret = -ENOSYS; | |
2096 | } | |
2097 | return ret; | |
2098 | } | |
2099 | ||
2100 | ||
e2970f2f | 2101 | asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val, |
1da177e4 | 2102 | struct timespec __user *utime, u32 __user *uaddr2, |
e2970f2f | 2103 | u32 val3) |
1da177e4 | 2104 | { |
c19384b5 PP |
2105 | struct timespec ts; |
2106 | ktime_t t, *tp = NULL; | |
e2970f2f | 2107 | u32 val2 = 0; |
34f01cc1 | 2108 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2109 | |
cd689985 TG |
2110 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
2111 | cmd == FUTEX_WAIT_BITSET)) { | |
c19384b5 | 2112 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2113 | return -EFAULT; |
c19384b5 | 2114 | if (!timespec_valid(&ts)) |
9741ef96 | 2115 | return -EINVAL; |
c19384b5 PP |
2116 | |
2117 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2118 | if (cmd == FUTEX_WAIT) |
c19384b5 PP |
2119 | t = ktime_add(ktime_get(), t); |
2120 | tp = &t; | |
1da177e4 LT |
2121 | } |
2122 | /* | |
34f01cc1 | 2123 | * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE. |
f54f0986 | 2124 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2125 | */ |
f54f0986 AS |
2126 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
2127 | cmd == FUTEX_WAKE_OP) | |
e2970f2f | 2128 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2129 | |
c19384b5 | 2130 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2131 | } |
2132 | ||
454e2398 DH |
2133 | static int futexfs_get_sb(struct file_system_type *fs_type, |
2134 | int flags, const char *dev_name, void *data, | |
2135 | struct vfsmount *mnt) | |
1da177e4 | 2136 | { |
fd5eea42 | 2137 | return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt); |
1da177e4 LT |
2138 | } |
2139 | ||
2140 | static struct file_system_type futex_fs_type = { | |
2141 | .name = "futexfs", | |
2142 | .get_sb = futexfs_get_sb, | |
2143 | .kill_sb = kill_anon_super, | |
2144 | }; | |
2145 | ||
2146 | static int __init init(void) | |
2147 | { | |
95362fa9 AM |
2148 | int i = register_filesystem(&futex_fs_type); |
2149 | ||
2150 | if (i) | |
2151 | return i; | |
1da177e4 | 2152 | |
1da177e4 | 2153 | futex_mnt = kern_mount(&futex_fs_type); |
95362fa9 AM |
2154 | if (IS_ERR(futex_mnt)) { |
2155 | unregister_filesystem(&futex_fs_type); | |
2156 | return PTR_ERR(futex_mnt); | |
2157 | } | |
1da177e4 LT |
2158 | |
2159 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { | |
ec92d082 | 2160 | plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock); |
1da177e4 LT |
2161 | spin_lock_init(&futex_queues[i].lock); |
2162 | } | |
2163 | return 0; | |
2164 | } | |
2165 | __initcall(init); |