]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
3 | * (C) William Irwin, April 2004 | |
4 | */ | |
1da177e4 LT |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> | |
7 | #include <linux/module.h> | |
8 | #include <linux/mm.h> | |
e1759c21 | 9 | #include <linux/seq_file.h> |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
aea47ff3 | 16 | #include <linux/cpuset.h> |
3935baa9 | 17 | #include <linux/mutex.h> |
aa888a74 | 18 | #include <linux/bootmem.h> |
a3437870 | 19 | #include <linux/sysfs.h> |
5a0e3ad6 | 20 | #include <linux/slab.h> |
0fe6e20b | 21 | #include <linux/rmap.h> |
fd6a03ed NH |
22 | #include <linux/swap.h> |
23 | #include <linux/swapops.h> | |
d6606683 | 24 | |
63551ae0 DG |
25 | #include <asm/page.h> |
26 | #include <asm/pgtable.h> | |
78a34ae2 | 27 | #include <asm/io.h> |
63551ae0 DG |
28 | |
29 | #include <linux/hugetlb.h> | |
9a305230 | 30 | #include <linux/node.h> |
7835e98b | 31 | #include "internal.h" |
1da177e4 LT |
32 | |
33 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
396faf03 MG |
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | |
a5516438 | 36 | |
e5ff2159 AK |
37 | static int max_hstate; |
38 | unsigned int default_hstate_idx; | |
39 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
40 | ||
53ba51d2 JT |
41 | __initdata LIST_HEAD(huge_boot_pages); |
42 | ||
e5ff2159 AK |
43 | /* for command line parsing */ |
44 | static struct hstate * __initdata parsed_hstate; | |
45 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 46 | static unsigned long __initdata default_hstate_size; |
e5ff2159 AK |
47 | |
48 | #define for_each_hstate(h) \ | |
49 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | |
396faf03 | 50 | |
3935baa9 DG |
51 | /* |
52 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
53 | */ | |
54 | static DEFINE_SPINLOCK(hugetlb_lock); | |
0bd0f9fb | 55 | |
96822904 AW |
56 | /* |
57 | * Region tracking -- allows tracking of reservations and instantiated pages | |
58 | * across the pages in a mapping. | |
84afd99b AW |
59 | * |
60 | * The region data structures are protected by a combination of the mmap_sem | |
61 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | |
62 | * must either hold the mmap_sem for write, or the mmap_sem for read and | |
63 | * the hugetlb_instantiation mutex: | |
64 | * | |
65 | * down_write(&mm->mmap_sem); | |
66 | * or | |
67 | * down_read(&mm->mmap_sem); | |
68 | * mutex_lock(&hugetlb_instantiation_mutex); | |
96822904 AW |
69 | */ |
70 | struct file_region { | |
71 | struct list_head link; | |
72 | long from; | |
73 | long to; | |
74 | }; | |
75 | ||
76 | static long region_add(struct list_head *head, long f, long t) | |
77 | { | |
78 | struct file_region *rg, *nrg, *trg; | |
79 | ||
80 | /* Locate the region we are either in or before. */ | |
81 | list_for_each_entry(rg, head, link) | |
82 | if (f <= rg->to) | |
83 | break; | |
84 | ||
85 | /* Round our left edge to the current segment if it encloses us. */ | |
86 | if (f > rg->from) | |
87 | f = rg->from; | |
88 | ||
89 | /* Check for and consume any regions we now overlap with. */ | |
90 | nrg = rg; | |
91 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
92 | if (&rg->link == head) | |
93 | break; | |
94 | if (rg->from > t) | |
95 | break; | |
96 | ||
97 | /* If this area reaches higher then extend our area to | |
98 | * include it completely. If this is not the first area | |
99 | * which we intend to reuse, free it. */ | |
100 | if (rg->to > t) | |
101 | t = rg->to; | |
102 | if (rg != nrg) { | |
103 | list_del(&rg->link); | |
104 | kfree(rg); | |
105 | } | |
106 | } | |
107 | nrg->from = f; | |
108 | nrg->to = t; | |
109 | return 0; | |
110 | } | |
111 | ||
112 | static long region_chg(struct list_head *head, long f, long t) | |
113 | { | |
114 | struct file_region *rg, *nrg; | |
115 | long chg = 0; | |
116 | ||
117 | /* Locate the region we are before or in. */ | |
118 | list_for_each_entry(rg, head, link) | |
119 | if (f <= rg->to) | |
120 | break; | |
121 | ||
122 | /* If we are below the current region then a new region is required. | |
123 | * Subtle, allocate a new region at the position but make it zero | |
124 | * size such that we can guarantee to record the reservation. */ | |
125 | if (&rg->link == head || t < rg->from) { | |
126 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
127 | if (!nrg) | |
128 | return -ENOMEM; | |
129 | nrg->from = f; | |
130 | nrg->to = f; | |
131 | INIT_LIST_HEAD(&nrg->link); | |
132 | list_add(&nrg->link, rg->link.prev); | |
133 | ||
134 | return t - f; | |
135 | } | |
136 | ||
137 | /* Round our left edge to the current segment if it encloses us. */ | |
138 | if (f > rg->from) | |
139 | f = rg->from; | |
140 | chg = t - f; | |
141 | ||
142 | /* Check for and consume any regions we now overlap with. */ | |
143 | list_for_each_entry(rg, rg->link.prev, link) { | |
144 | if (&rg->link == head) | |
145 | break; | |
146 | if (rg->from > t) | |
147 | return chg; | |
148 | ||
149 | /* We overlap with this area, if it extends futher than | |
150 | * us then we must extend ourselves. Account for its | |
151 | * existing reservation. */ | |
152 | if (rg->to > t) { | |
153 | chg += rg->to - t; | |
154 | t = rg->to; | |
155 | } | |
156 | chg -= rg->to - rg->from; | |
157 | } | |
158 | return chg; | |
159 | } | |
160 | ||
161 | static long region_truncate(struct list_head *head, long end) | |
162 | { | |
163 | struct file_region *rg, *trg; | |
164 | long chg = 0; | |
165 | ||
166 | /* Locate the region we are either in or before. */ | |
167 | list_for_each_entry(rg, head, link) | |
168 | if (end <= rg->to) | |
169 | break; | |
170 | if (&rg->link == head) | |
171 | return 0; | |
172 | ||
173 | /* If we are in the middle of a region then adjust it. */ | |
174 | if (end > rg->from) { | |
175 | chg = rg->to - end; | |
176 | rg->to = end; | |
177 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
178 | } | |
179 | ||
180 | /* Drop any remaining regions. */ | |
181 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
182 | if (&rg->link == head) | |
183 | break; | |
184 | chg += rg->to - rg->from; | |
185 | list_del(&rg->link); | |
186 | kfree(rg); | |
187 | } | |
188 | return chg; | |
189 | } | |
190 | ||
84afd99b AW |
191 | static long region_count(struct list_head *head, long f, long t) |
192 | { | |
193 | struct file_region *rg; | |
194 | long chg = 0; | |
195 | ||
196 | /* Locate each segment we overlap with, and count that overlap. */ | |
197 | list_for_each_entry(rg, head, link) { | |
198 | int seg_from; | |
199 | int seg_to; | |
200 | ||
201 | if (rg->to <= f) | |
202 | continue; | |
203 | if (rg->from >= t) | |
204 | break; | |
205 | ||
206 | seg_from = max(rg->from, f); | |
207 | seg_to = min(rg->to, t); | |
208 | ||
209 | chg += seg_to - seg_from; | |
210 | } | |
211 | ||
212 | return chg; | |
213 | } | |
214 | ||
e7c4b0bf AW |
215 | /* |
216 | * Convert the address within this vma to the page offset within | |
217 | * the mapping, in pagecache page units; huge pages here. | |
218 | */ | |
a5516438 AK |
219 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
220 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 221 | { |
a5516438 AK |
222 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
223 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
224 | } |
225 | ||
0fe6e20b NH |
226 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
227 | unsigned long address) | |
228 | { | |
229 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
230 | } | |
231 | ||
08fba699 MG |
232 | /* |
233 | * Return the size of the pages allocated when backing a VMA. In the majority | |
234 | * cases this will be same size as used by the page table entries. | |
235 | */ | |
236 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
237 | { | |
238 | struct hstate *hstate; | |
239 | ||
240 | if (!is_vm_hugetlb_page(vma)) | |
241 | return PAGE_SIZE; | |
242 | ||
243 | hstate = hstate_vma(vma); | |
244 | ||
245 | return 1UL << (hstate->order + PAGE_SHIFT); | |
246 | } | |
f340ca0f | 247 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 248 | |
3340289d MG |
249 | /* |
250 | * Return the page size being used by the MMU to back a VMA. In the majority | |
251 | * of cases, the page size used by the kernel matches the MMU size. On | |
252 | * architectures where it differs, an architecture-specific version of this | |
253 | * function is required. | |
254 | */ | |
255 | #ifndef vma_mmu_pagesize | |
256 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | |
257 | { | |
258 | return vma_kernel_pagesize(vma); | |
259 | } | |
260 | #endif | |
261 | ||
84afd99b AW |
262 | /* |
263 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
264 | * bits of the reservation map pointer, which are always clear due to | |
265 | * alignment. | |
266 | */ | |
267 | #define HPAGE_RESV_OWNER (1UL << 0) | |
268 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 269 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 270 | |
a1e78772 MG |
271 | /* |
272 | * These helpers are used to track how many pages are reserved for | |
273 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
274 | * is guaranteed to have their future faults succeed. | |
275 | * | |
276 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
277 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
278 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
279 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
280 | * |
281 | * The private mapping reservation is represented in a subtly different | |
282 | * manner to a shared mapping. A shared mapping has a region map associated | |
283 | * with the underlying file, this region map represents the backing file | |
284 | * pages which have ever had a reservation assigned which this persists even | |
285 | * after the page is instantiated. A private mapping has a region map | |
286 | * associated with the original mmap which is attached to all VMAs which | |
287 | * reference it, this region map represents those offsets which have consumed | |
288 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 289 | */ |
e7c4b0bf AW |
290 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
291 | { | |
292 | return (unsigned long)vma->vm_private_data; | |
293 | } | |
294 | ||
295 | static void set_vma_private_data(struct vm_area_struct *vma, | |
296 | unsigned long value) | |
297 | { | |
298 | vma->vm_private_data = (void *)value; | |
299 | } | |
300 | ||
84afd99b AW |
301 | struct resv_map { |
302 | struct kref refs; | |
303 | struct list_head regions; | |
304 | }; | |
305 | ||
2a4b3ded | 306 | static struct resv_map *resv_map_alloc(void) |
84afd99b AW |
307 | { |
308 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
309 | if (!resv_map) | |
310 | return NULL; | |
311 | ||
312 | kref_init(&resv_map->refs); | |
313 | INIT_LIST_HEAD(&resv_map->regions); | |
314 | ||
315 | return resv_map; | |
316 | } | |
317 | ||
2a4b3ded | 318 | static void resv_map_release(struct kref *ref) |
84afd99b AW |
319 | { |
320 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
321 | ||
322 | /* Clear out any active regions before we release the map. */ | |
323 | region_truncate(&resv_map->regions, 0); | |
324 | kfree(resv_map); | |
325 | } | |
326 | ||
327 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | |
a1e78772 MG |
328 | { |
329 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 330 | if (!(vma->vm_flags & VM_MAYSHARE)) |
84afd99b AW |
331 | return (struct resv_map *)(get_vma_private_data(vma) & |
332 | ~HPAGE_RESV_MASK); | |
2a4b3ded | 333 | return NULL; |
a1e78772 MG |
334 | } |
335 | ||
84afd99b | 336 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 MG |
337 | { |
338 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 339 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
a1e78772 | 340 | |
84afd99b AW |
341 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
342 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
343 | } |
344 | ||
345 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
346 | { | |
04f2cbe3 | 347 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
f83a275d | 348 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
e7c4b0bf AW |
349 | |
350 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
351 | } |
352 | ||
353 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
354 | { | |
355 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
e7c4b0bf AW |
356 | |
357 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
358 | } |
359 | ||
360 | /* Decrement the reserved pages in the hugepage pool by one */ | |
a5516438 AK |
361 | static void decrement_hugepage_resv_vma(struct hstate *h, |
362 | struct vm_area_struct *vma) | |
a1e78772 | 363 | { |
c37f9fb1 AW |
364 | if (vma->vm_flags & VM_NORESERVE) |
365 | return; | |
366 | ||
f83a275d | 367 | if (vma->vm_flags & VM_MAYSHARE) { |
a1e78772 | 368 | /* Shared mappings always use reserves */ |
a5516438 | 369 | h->resv_huge_pages--; |
84afd99b | 370 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
a1e78772 MG |
371 | /* |
372 | * Only the process that called mmap() has reserves for | |
373 | * private mappings. | |
374 | */ | |
a5516438 | 375 | h->resv_huge_pages--; |
a1e78772 MG |
376 | } |
377 | } | |
378 | ||
04f2cbe3 | 379 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
380 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
381 | { | |
382 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 383 | if (!(vma->vm_flags & VM_MAYSHARE)) |
a1e78772 MG |
384 | vma->vm_private_data = (void *)0; |
385 | } | |
386 | ||
387 | /* Returns true if the VMA has associated reserve pages */ | |
7f09ca51 | 388 | static int vma_has_reserves(struct vm_area_struct *vma) |
a1e78772 | 389 | { |
f83a275d | 390 | if (vma->vm_flags & VM_MAYSHARE) |
7f09ca51 MG |
391 | return 1; |
392 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | |
393 | return 1; | |
394 | return 0; | |
a1e78772 MG |
395 | } |
396 | ||
69d177c2 AW |
397 | static void clear_gigantic_page(struct page *page, |
398 | unsigned long addr, unsigned long sz) | |
399 | { | |
400 | int i; | |
401 | struct page *p = page; | |
402 | ||
403 | might_sleep(); | |
404 | for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { | |
405 | cond_resched(); | |
406 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
407 | } | |
408 | } | |
a5516438 AK |
409 | static void clear_huge_page(struct page *page, |
410 | unsigned long addr, unsigned long sz) | |
79ac6ba4 DG |
411 | { |
412 | int i; | |
413 | ||
74dbdd23 | 414 | if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) { |
ebdd4aea HE |
415 | clear_gigantic_page(page, addr, sz); |
416 | return; | |
417 | } | |
69d177c2 | 418 | |
79ac6ba4 | 419 | might_sleep(); |
a5516438 | 420 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
79ac6ba4 | 421 | cond_resched(); |
281e0e3b | 422 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
79ac6ba4 DG |
423 | } |
424 | } | |
425 | ||
0ebabb41 | 426 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
69d177c2 AW |
427 | unsigned long addr, struct vm_area_struct *vma) |
428 | { | |
429 | int i; | |
430 | struct hstate *h = hstate_vma(vma); | |
431 | struct page *dst_base = dst; | |
432 | struct page *src_base = src; | |
0ebabb41 | 433 | |
69d177c2 AW |
434 | for (i = 0; i < pages_per_huge_page(h); ) { |
435 | cond_resched(); | |
436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
437 | ||
438 | i++; | |
439 | dst = mem_map_next(dst, dst_base, i); | |
440 | src = mem_map_next(src, src_base, i); | |
441 | } | |
442 | } | |
0ebabb41 NH |
443 | |
444 | static void copy_user_huge_page(struct page *dst, struct page *src, | |
9de455b2 | 445 | unsigned long addr, struct vm_area_struct *vma) |
79ac6ba4 DG |
446 | { |
447 | int i; | |
a5516438 | 448 | struct hstate *h = hstate_vma(vma); |
79ac6ba4 | 449 | |
ebdd4aea | 450 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { |
0ebabb41 | 451 | copy_user_gigantic_page(dst, src, addr, vma); |
ebdd4aea HE |
452 | return; |
453 | } | |
69d177c2 | 454 | |
79ac6ba4 | 455 | might_sleep(); |
a5516438 | 456 | for (i = 0; i < pages_per_huge_page(h); i++) { |
79ac6ba4 | 457 | cond_resched(); |
9de455b2 | 458 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
79ac6ba4 DG |
459 | } |
460 | } | |
461 | ||
0ebabb41 NH |
462 | static void copy_gigantic_page(struct page *dst, struct page *src) |
463 | { | |
464 | int i; | |
465 | struct hstate *h = page_hstate(src); | |
466 | struct page *dst_base = dst; | |
467 | struct page *src_base = src; | |
468 | ||
469 | for (i = 0; i < pages_per_huge_page(h); ) { | |
470 | cond_resched(); | |
471 | copy_highpage(dst, src); | |
472 | ||
473 | i++; | |
474 | dst = mem_map_next(dst, dst_base, i); | |
475 | src = mem_map_next(src, src_base, i); | |
476 | } | |
477 | } | |
478 | ||
479 | void copy_huge_page(struct page *dst, struct page *src) | |
480 | { | |
481 | int i; | |
482 | struct hstate *h = page_hstate(src); | |
483 | ||
484 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | |
485 | copy_gigantic_page(dst, src); | |
486 | return; | |
487 | } | |
488 | ||
489 | might_sleep(); | |
490 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
491 | cond_resched(); | |
492 | copy_highpage(dst + i, src + i); | |
493 | } | |
494 | } | |
495 | ||
a5516438 | 496 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
497 | { |
498 | int nid = page_to_nid(page); | |
a5516438 AK |
499 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
500 | h->free_huge_pages++; | |
501 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
502 | } |
503 | ||
bf50bab2 NH |
504 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) |
505 | { | |
506 | struct page *page; | |
507 | ||
508 | if (list_empty(&h->hugepage_freelists[nid])) | |
509 | return NULL; | |
510 | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | |
511 | list_del(&page->lru); | |
a9869b83 | 512 | set_page_refcounted(page); |
bf50bab2 NH |
513 | h->free_huge_pages--; |
514 | h->free_huge_pages_node[nid]--; | |
515 | return page; | |
516 | } | |
517 | ||
a5516438 AK |
518 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
519 | struct vm_area_struct *vma, | |
04f2cbe3 | 520 | unsigned long address, int avoid_reserve) |
1da177e4 | 521 | { |
1da177e4 | 522 | struct page *page = NULL; |
480eccf9 | 523 | struct mempolicy *mpol; |
19770b32 | 524 | nodemask_t *nodemask; |
c0ff7453 | 525 | struct zonelist *zonelist; |
dd1a239f MG |
526 | struct zone *zone; |
527 | struct zoneref *z; | |
1da177e4 | 528 | |
c0ff7453 MX |
529 | get_mems_allowed(); |
530 | zonelist = huge_zonelist(vma, address, | |
531 | htlb_alloc_mask, &mpol, &nodemask); | |
a1e78772 MG |
532 | /* |
533 | * A child process with MAP_PRIVATE mappings created by their parent | |
534 | * have no page reserves. This check ensures that reservations are | |
535 | * not "stolen". The child may still get SIGKILLed | |
536 | */ | |
7f09ca51 | 537 | if (!vma_has_reserves(vma) && |
a5516438 | 538 | h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 539 | goto err; |
a1e78772 | 540 | |
04f2cbe3 | 541 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 542 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 543 | goto err;; |
04f2cbe3 | 544 | |
19770b32 MG |
545 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
546 | MAX_NR_ZONES - 1, nodemask) { | |
bf50bab2 NH |
547 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { |
548 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); | |
549 | if (page) { | |
550 | if (!avoid_reserve) | |
551 | decrement_hugepage_resv_vma(h, vma); | |
552 | break; | |
553 | } | |
3abf7afd | 554 | } |
1da177e4 | 555 | } |
c0ff7453 | 556 | err: |
52cd3b07 | 557 | mpol_cond_put(mpol); |
c0ff7453 | 558 | put_mems_allowed(); |
1da177e4 LT |
559 | return page; |
560 | } | |
561 | ||
a5516438 | 562 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
563 | { |
564 | int i; | |
a5516438 | 565 | |
18229df5 AW |
566 | VM_BUG_ON(h->order >= MAX_ORDER); |
567 | ||
a5516438 AK |
568 | h->nr_huge_pages--; |
569 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
570 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
6af2acb6 AL |
571 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
572 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | |
573 | 1 << PG_private | 1<< PG_writeback); | |
574 | } | |
575 | set_compound_page_dtor(page, NULL); | |
576 | set_page_refcounted(page); | |
7f2e9525 | 577 | arch_release_hugepage(page); |
a5516438 | 578 | __free_pages(page, huge_page_order(h)); |
6af2acb6 AL |
579 | } |
580 | ||
e5ff2159 AK |
581 | struct hstate *size_to_hstate(unsigned long size) |
582 | { | |
583 | struct hstate *h; | |
584 | ||
585 | for_each_hstate(h) { | |
586 | if (huge_page_size(h) == size) | |
587 | return h; | |
588 | } | |
589 | return NULL; | |
590 | } | |
591 | ||
27a85ef1 DG |
592 | static void free_huge_page(struct page *page) |
593 | { | |
a5516438 AK |
594 | /* |
595 | * Can't pass hstate in here because it is called from the | |
596 | * compound page destructor. | |
597 | */ | |
e5ff2159 | 598 | struct hstate *h = page_hstate(page); |
7893d1d5 | 599 | int nid = page_to_nid(page); |
c79fb75e | 600 | struct address_space *mapping; |
27a85ef1 | 601 | |
c79fb75e | 602 | mapping = (struct address_space *) page_private(page); |
e5df70ab | 603 | set_page_private(page, 0); |
23be7468 | 604 | page->mapping = NULL; |
7893d1d5 | 605 | BUG_ON(page_count(page)); |
0fe6e20b | 606 | BUG_ON(page_mapcount(page)); |
27a85ef1 DG |
607 | INIT_LIST_HEAD(&page->lru); |
608 | ||
609 | spin_lock(&hugetlb_lock); | |
aa888a74 | 610 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
a5516438 AK |
611 | update_and_free_page(h, page); |
612 | h->surplus_huge_pages--; | |
613 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 614 | } else { |
a5516438 | 615 | enqueue_huge_page(h, page); |
7893d1d5 | 616 | } |
27a85ef1 | 617 | spin_unlock(&hugetlb_lock); |
c79fb75e | 618 | if (mapping) |
9a119c05 | 619 | hugetlb_put_quota(mapping, 1); |
27a85ef1 DG |
620 | } |
621 | ||
a5516438 | 622 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 AK |
623 | { |
624 | set_compound_page_dtor(page, free_huge_page); | |
625 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
626 | h->nr_huge_pages++; |
627 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
628 | spin_unlock(&hugetlb_lock); |
629 | put_page(page); /* free it into the hugepage allocator */ | |
630 | } | |
631 | ||
20a0307c WF |
632 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) |
633 | { | |
634 | int i; | |
635 | int nr_pages = 1 << order; | |
636 | struct page *p = page + 1; | |
637 | ||
638 | /* we rely on prep_new_huge_page to set the destructor */ | |
639 | set_compound_order(page, order); | |
640 | __SetPageHead(page); | |
641 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | |
642 | __SetPageTail(p); | |
643 | p->first_page = page; | |
644 | } | |
645 | } | |
646 | ||
647 | int PageHuge(struct page *page) | |
648 | { | |
649 | compound_page_dtor *dtor; | |
650 | ||
651 | if (!PageCompound(page)) | |
652 | return 0; | |
653 | ||
654 | page = compound_head(page); | |
655 | dtor = get_compound_page_dtor(page); | |
656 | ||
657 | return dtor == free_huge_page; | |
658 | } | |
659 | ||
43131e14 NH |
660 | EXPORT_SYMBOL_GPL(PageHuge); |
661 | ||
a5516438 | 662 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 663 | { |
1da177e4 | 664 | struct page *page; |
f96efd58 | 665 | |
aa888a74 AK |
666 | if (h->order >= MAX_ORDER) |
667 | return NULL; | |
668 | ||
6484eb3e | 669 | page = alloc_pages_exact_node(nid, |
551883ae NA |
670 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
671 | __GFP_REPEAT|__GFP_NOWARN, | |
a5516438 | 672 | huge_page_order(h)); |
1da177e4 | 673 | if (page) { |
7f2e9525 | 674 | if (arch_prepare_hugepage(page)) { |
caff3a2c | 675 | __free_pages(page, huge_page_order(h)); |
7b8ee84d | 676 | return NULL; |
7f2e9525 | 677 | } |
a5516438 | 678 | prep_new_huge_page(h, page, nid); |
1da177e4 | 679 | } |
63b4613c NA |
680 | |
681 | return page; | |
682 | } | |
683 | ||
9a76db09 | 684 | /* |
6ae11b27 LS |
685 | * common helper functions for hstate_next_node_to_{alloc|free}. |
686 | * We may have allocated or freed a huge page based on a different | |
687 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
688 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
689 | * node for alloc or free. | |
9a76db09 | 690 | */ |
6ae11b27 | 691 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) |
9a76db09 | 692 | { |
6ae11b27 | 693 | nid = next_node(nid, *nodes_allowed); |
9a76db09 | 694 | if (nid == MAX_NUMNODES) |
6ae11b27 | 695 | nid = first_node(*nodes_allowed); |
9a76db09 LS |
696 | VM_BUG_ON(nid >= MAX_NUMNODES); |
697 | ||
698 | return nid; | |
699 | } | |
700 | ||
6ae11b27 LS |
701 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) |
702 | { | |
703 | if (!node_isset(nid, *nodes_allowed)) | |
704 | nid = next_node_allowed(nid, nodes_allowed); | |
705 | return nid; | |
706 | } | |
707 | ||
5ced66c9 | 708 | /* |
6ae11b27 LS |
709 | * returns the previously saved node ["this node"] from which to |
710 | * allocate a persistent huge page for the pool and advance the | |
711 | * next node from which to allocate, handling wrap at end of node | |
712 | * mask. | |
5ced66c9 | 713 | */ |
6ae11b27 LS |
714 | static int hstate_next_node_to_alloc(struct hstate *h, |
715 | nodemask_t *nodes_allowed) | |
5ced66c9 | 716 | { |
6ae11b27 LS |
717 | int nid; |
718 | ||
719 | VM_BUG_ON(!nodes_allowed); | |
720 | ||
721 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
722 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 723 | |
9a76db09 | 724 | return nid; |
5ced66c9 AK |
725 | } |
726 | ||
6ae11b27 | 727 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
63b4613c NA |
728 | { |
729 | struct page *page; | |
730 | int start_nid; | |
731 | int next_nid; | |
732 | int ret = 0; | |
733 | ||
6ae11b27 | 734 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 735 | next_nid = start_nid; |
63b4613c NA |
736 | |
737 | do { | |
e8c5c824 | 738 | page = alloc_fresh_huge_page_node(h, next_nid); |
9a76db09 | 739 | if (page) { |
63b4613c | 740 | ret = 1; |
9a76db09 LS |
741 | break; |
742 | } | |
6ae11b27 | 743 | next_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
9a76db09 | 744 | } while (next_nid != start_nid); |
63b4613c | 745 | |
3b116300 AL |
746 | if (ret) |
747 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
748 | else | |
749 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
750 | ||
63b4613c | 751 | return ret; |
1da177e4 LT |
752 | } |
753 | ||
e8c5c824 | 754 | /* |
6ae11b27 LS |
755 | * helper for free_pool_huge_page() - return the previously saved |
756 | * node ["this node"] from which to free a huge page. Advance the | |
757 | * next node id whether or not we find a free huge page to free so | |
758 | * that the next attempt to free addresses the next node. | |
e8c5c824 | 759 | */ |
6ae11b27 | 760 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) |
e8c5c824 | 761 | { |
6ae11b27 LS |
762 | int nid; |
763 | ||
764 | VM_BUG_ON(!nodes_allowed); | |
765 | ||
766 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
767 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 768 | |
9a76db09 | 769 | return nid; |
e8c5c824 LS |
770 | } |
771 | ||
772 | /* | |
773 | * Free huge page from pool from next node to free. | |
774 | * Attempt to keep persistent huge pages more or less | |
775 | * balanced over allowed nodes. | |
776 | * Called with hugetlb_lock locked. | |
777 | */ | |
6ae11b27 LS |
778 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
779 | bool acct_surplus) | |
e8c5c824 LS |
780 | { |
781 | int start_nid; | |
782 | int next_nid; | |
783 | int ret = 0; | |
784 | ||
6ae11b27 | 785 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
786 | next_nid = start_nid; |
787 | ||
788 | do { | |
685f3457 LS |
789 | /* |
790 | * If we're returning unused surplus pages, only examine | |
791 | * nodes with surplus pages. | |
792 | */ | |
793 | if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && | |
794 | !list_empty(&h->hugepage_freelists[next_nid])) { | |
e8c5c824 LS |
795 | struct page *page = |
796 | list_entry(h->hugepage_freelists[next_nid].next, | |
797 | struct page, lru); | |
798 | list_del(&page->lru); | |
799 | h->free_huge_pages--; | |
800 | h->free_huge_pages_node[next_nid]--; | |
685f3457 LS |
801 | if (acct_surplus) { |
802 | h->surplus_huge_pages--; | |
803 | h->surplus_huge_pages_node[next_nid]--; | |
804 | } | |
e8c5c824 LS |
805 | update_and_free_page(h, page); |
806 | ret = 1; | |
9a76db09 | 807 | break; |
e8c5c824 | 808 | } |
6ae11b27 | 809 | next_nid = hstate_next_node_to_free(h, nodes_allowed); |
9a76db09 | 810 | } while (next_nid != start_nid); |
e8c5c824 LS |
811 | |
812 | return ret; | |
813 | } | |
814 | ||
bf50bab2 | 815 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
7893d1d5 AL |
816 | { |
817 | struct page *page; | |
bf50bab2 | 818 | unsigned int r_nid; |
7893d1d5 | 819 | |
aa888a74 AK |
820 | if (h->order >= MAX_ORDER) |
821 | return NULL; | |
822 | ||
d1c3fb1f NA |
823 | /* |
824 | * Assume we will successfully allocate the surplus page to | |
825 | * prevent racing processes from causing the surplus to exceed | |
826 | * overcommit | |
827 | * | |
828 | * This however introduces a different race, where a process B | |
829 | * tries to grow the static hugepage pool while alloc_pages() is | |
830 | * called by process A. B will only examine the per-node | |
831 | * counters in determining if surplus huge pages can be | |
832 | * converted to normal huge pages in adjust_pool_surplus(). A | |
833 | * won't be able to increment the per-node counter, until the | |
834 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
835 | * no more huge pages can be converted from surplus to normal | |
836 | * state (and doesn't try to convert again). Thus, we have a | |
837 | * case where a surplus huge page exists, the pool is grown, and | |
838 | * the surplus huge page still exists after, even though it | |
839 | * should just have been converted to a normal huge page. This | |
840 | * does not leak memory, though, as the hugepage will be freed | |
841 | * once it is out of use. It also does not allow the counters to | |
842 | * go out of whack in adjust_pool_surplus() as we don't modify | |
843 | * the node values until we've gotten the hugepage and only the | |
844 | * per-node value is checked there. | |
845 | */ | |
846 | spin_lock(&hugetlb_lock); | |
a5516438 | 847 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
848 | spin_unlock(&hugetlb_lock); |
849 | return NULL; | |
850 | } else { | |
a5516438 AK |
851 | h->nr_huge_pages++; |
852 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
853 | } |
854 | spin_unlock(&hugetlb_lock); | |
855 | ||
bf50bab2 NH |
856 | if (nid == NUMA_NO_NODE) |
857 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | |
858 | __GFP_REPEAT|__GFP_NOWARN, | |
859 | huge_page_order(h)); | |
860 | else | |
861 | page = alloc_pages_exact_node(nid, | |
862 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | |
863 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | |
d1c3fb1f | 864 | |
caff3a2c GS |
865 | if (page && arch_prepare_hugepage(page)) { |
866 | __free_pages(page, huge_page_order(h)); | |
867 | return NULL; | |
868 | } | |
869 | ||
d1c3fb1f | 870 | spin_lock(&hugetlb_lock); |
7893d1d5 | 871 | if (page) { |
bf50bab2 | 872 | r_nid = page_to_nid(page); |
7893d1d5 | 873 | set_compound_page_dtor(page, free_huge_page); |
d1c3fb1f NA |
874 | /* |
875 | * We incremented the global counters already | |
876 | */ | |
bf50bab2 NH |
877 | h->nr_huge_pages_node[r_nid]++; |
878 | h->surplus_huge_pages_node[r_nid]++; | |
3b116300 | 879 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 880 | } else { |
a5516438 AK |
881 | h->nr_huge_pages--; |
882 | h->surplus_huge_pages--; | |
3b116300 | 883 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 884 | } |
d1c3fb1f | 885 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
886 | |
887 | return page; | |
888 | } | |
889 | ||
bf50bab2 NH |
890 | /* |
891 | * This allocation function is useful in the context where vma is irrelevant. | |
892 | * E.g. soft-offlining uses this function because it only cares physical | |
893 | * address of error page. | |
894 | */ | |
895 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | |
896 | { | |
897 | struct page *page; | |
898 | ||
899 | spin_lock(&hugetlb_lock); | |
900 | page = dequeue_huge_page_node(h, nid); | |
901 | spin_unlock(&hugetlb_lock); | |
902 | ||
903 | if (!page) | |
904 | page = alloc_buddy_huge_page(h, nid); | |
905 | ||
906 | return page; | |
907 | } | |
908 | ||
e4e574b7 AL |
909 | /* |
910 | * Increase the hugetlb pool such that it can accomodate a reservation | |
911 | * of size 'delta'. | |
912 | */ | |
a5516438 | 913 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
914 | { |
915 | struct list_head surplus_list; | |
916 | struct page *page, *tmp; | |
917 | int ret, i; | |
918 | int needed, allocated; | |
919 | ||
a5516438 | 920 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 921 | if (needed <= 0) { |
a5516438 | 922 | h->resv_huge_pages += delta; |
e4e574b7 | 923 | return 0; |
ac09b3a1 | 924 | } |
e4e574b7 AL |
925 | |
926 | allocated = 0; | |
927 | INIT_LIST_HEAD(&surplus_list); | |
928 | ||
929 | ret = -ENOMEM; | |
930 | retry: | |
931 | spin_unlock(&hugetlb_lock); | |
932 | for (i = 0; i < needed; i++) { | |
bf50bab2 | 933 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
a9869b83 | 934 | if (!page) |
e4e574b7 AL |
935 | /* |
936 | * We were not able to allocate enough pages to | |
937 | * satisfy the entire reservation so we free what | |
938 | * we've allocated so far. | |
939 | */ | |
e4e574b7 | 940 | goto free; |
e4e574b7 AL |
941 | |
942 | list_add(&page->lru, &surplus_list); | |
943 | } | |
944 | allocated += needed; | |
945 | ||
946 | /* | |
947 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
948 | * because either resv_huge_pages or free_huge_pages may have changed. | |
949 | */ | |
950 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
951 | needed = (h->resv_huge_pages + delta) - |
952 | (h->free_huge_pages + allocated); | |
e4e574b7 AL |
953 | if (needed > 0) |
954 | goto retry; | |
955 | ||
956 | /* | |
957 | * The surplus_list now contains _at_least_ the number of extra pages | |
958 | * needed to accomodate the reservation. Add the appropriate number | |
959 | * of pages to the hugetlb pool and free the extras back to the buddy | |
ac09b3a1 AL |
960 | * allocator. Commit the entire reservation here to prevent another |
961 | * process from stealing the pages as they are added to the pool but | |
962 | * before they are reserved. | |
e4e574b7 AL |
963 | */ |
964 | needed += allocated; | |
a5516438 | 965 | h->resv_huge_pages += delta; |
e4e574b7 | 966 | ret = 0; |
a9869b83 NH |
967 | |
968 | spin_unlock(&hugetlb_lock); | |
19fc3f0a | 969 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 970 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
971 | if ((--needed) < 0) |
972 | break; | |
e4e574b7 | 973 | list_del(&page->lru); |
a9869b83 NH |
974 | /* |
975 | * This page is now managed by the hugetlb allocator and has | |
976 | * no users -- drop the buddy allocator's reference. | |
977 | */ | |
978 | put_page_testzero(page); | |
979 | VM_BUG_ON(page_count(page)); | |
a5516438 | 980 | enqueue_huge_page(h, page); |
19fc3f0a AL |
981 | } |
982 | ||
983 | /* Free unnecessary surplus pages to the buddy allocator */ | |
a9869b83 | 984 | free: |
19fc3f0a | 985 | if (!list_empty(&surplus_list)) { |
19fc3f0a AL |
986 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
987 | list_del(&page->lru); | |
a9869b83 | 988 | put_page(page); |
af767cbd | 989 | } |
e4e574b7 | 990 | } |
a9869b83 | 991 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
992 | |
993 | return ret; | |
994 | } | |
995 | ||
996 | /* | |
997 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
998 | * allocated to satisfy the reservation must be explicitly freed if they were | |
999 | * never used. | |
685f3457 | 1000 | * Called with hugetlb_lock held. |
e4e574b7 | 1001 | */ |
a5516438 AK |
1002 | static void return_unused_surplus_pages(struct hstate *h, |
1003 | unsigned long unused_resv_pages) | |
e4e574b7 | 1004 | { |
e4e574b7 AL |
1005 | unsigned long nr_pages; |
1006 | ||
ac09b3a1 | 1007 | /* Uncommit the reservation */ |
a5516438 | 1008 | h->resv_huge_pages -= unused_resv_pages; |
ac09b3a1 | 1009 | |
aa888a74 AK |
1010 | /* Cannot return gigantic pages currently */ |
1011 | if (h->order >= MAX_ORDER) | |
1012 | return; | |
1013 | ||
a5516438 | 1014 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 1015 | |
685f3457 LS |
1016 | /* |
1017 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
1018 | * evenly across all nodes with memory. Iterate across these nodes |
1019 | * until we can no longer free unreserved surplus pages. This occurs | |
1020 | * when the nodes with surplus pages have no free pages. | |
1021 | * free_pool_huge_page() will balance the the freed pages across the | |
1022 | * on-line nodes with memory and will handle the hstate accounting. | |
685f3457 LS |
1023 | */ |
1024 | while (nr_pages--) { | |
9b5e5d0f | 1025 | if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) |
685f3457 | 1026 | break; |
e4e574b7 AL |
1027 | } |
1028 | } | |
1029 | ||
c37f9fb1 AW |
1030 | /* |
1031 | * Determine if the huge page at addr within the vma has an associated | |
1032 | * reservation. Where it does not we will need to logically increase | |
1033 | * reservation and actually increase quota before an allocation can occur. | |
1034 | * Where any new reservation would be required the reservation change is | |
1035 | * prepared, but not committed. Once the page has been quota'd allocated | |
1036 | * an instantiated the change should be committed via vma_commit_reservation. | |
1037 | * No action is required on failure. | |
1038 | */ | |
e2f17d94 | 1039 | static long vma_needs_reservation(struct hstate *h, |
a5516438 | 1040 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 AW |
1041 | { |
1042 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1043 | struct inode *inode = mapping->host; | |
1044 | ||
f83a275d | 1045 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1046 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 AW |
1047 | return region_chg(&inode->i_mapping->private_list, |
1048 | idx, idx + 1); | |
1049 | ||
84afd99b AW |
1050 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1051 | return 1; | |
c37f9fb1 | 1052 | |
84afd99b | 1053 | } else { |
e2f17d94 | 1054 | long err; |
a5516438 | 1055 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1056 | struct resv_map *reservations = vma_resv_map(vma); |
1057 | ||
1058 | err = region_chg(&reservations->regions, idx, idx + 1); | |
1059 | if (err < 0) | |
1060 | return err; | |
1061 | return 0; | |
1062 | } | |
c37f9fb1 | 1063 | } |
a5516438 AK |
1064 | static void vma_commit_reservation(struct hstate *h, |
1065 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 AW |
1066 | { |
1067 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1068 | struct inode *inode = mapping->host; | |
1069 | ||
f83a275d | 1070 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1071 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 | 1072 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
84afd99b AW |
1073 | |
1074 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | |
a5516438 | 1075 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1076 | struct resv_map *reservations = vma_resv_map(vma); |
1077 | ||
1078 | /* Mark this page used in the map. */ | |
1079 | region_add(&reservations->regions, idx, idx + 1); | |
c37f9fb1 AW |
1080 | } |
1081 | } | |
1082 | ||
a1e78772 | 1083 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 1084 | unsigned long addr, int avoid_reserve) |
1da177e4 | 1085 | { |
a5516438 | 1086 | struct hstate *h = hstate_vma(vma); |
348ea204 | 1087 | struct page *page; |
a1e78772 MG |
1088 | struct address_space *mapping = vma->vm_file->f_mapping; |
1089 | struct inode *inode = mapping->host; | |
e2f17d94 | 1090 | long chg; |
a1e78772 MG |
1091 | |
1092 | /* | |
1093 | * Processes that did not create the mapping will have no reserves and | |
1094 | * will not have accounted against quota. Check that the quota can be | |
1095 | * made before satisfying the allocation | |
c37f9fb1 AW |
1096 | * MAP_NORESERVE mappings may also need pages and quota allocated |
1097 | * if no reserve mapping overlaps. | |
a1e78772 | 1098 | */ |
a5516438 | 1099 | chg = vma_needs_reservation(h, vma, addr); |
c37f9fb1 AW |
1100 | if (chg < 0) |
1101 | return ERR_PTR(chg); | |
1102 | if (chg) | |
a1e78772 MG |
1103 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1104 | return ERR_PTR(-ENOSPC); | |
1da177e4 LT |
1105 | |
1106 | spin_lock(&hugetlb_lock); | |
a5516438 | 1107 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
1da177e4 | 1108 | spin_unlock(&hugetlb_lock); |
b45b5bd6 | 1109 | |
68842c9b | 1110 | if (!page) { |
bf50bab2 | 1111 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
68842c9b | 1112 | if (!page) { |
a1e78772 | 1113 | hugetlb_put_quota(inode->i_mapping, chg); |
4a6018f7 | 1114 | return ERR_PTR(-VM_FAULT_SIGBUS); |
68842c9b KC |
1115 | } |
1116 | } | |
348ea204 | 1117 | |
a1e78772 | 1118 | set_page_private(page, (unsigned long) mapping); |
90d8b7e6 | 1119 | |
a5516438 | 1120 | vma_commit_reservation(h, vma, addr); |
c37f9fb1 | 1121 | |
90d8b7e6 | 1122 | return page; |
b45b5bd6 DG |
1123 | } |
1124 | ||
91f47662 | 1125 | int __weak alloc_bootmem_huge_page(struct hstate *h) |
aa888a74 AK |
1126 | { |
1127 | struct huge_bootmem_page *m; | |
9b5e5d0f | 1128 | int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); |
aa888a74 AK |
1129 | |
1130 | while (nr_nodes) { | |
1131 | void *addr; | |
1132 | ||
1133 | addr = __alloc_bootmem_node_nopanic( | |
6ae11b27 | 1134 | NODE_DATA(hstate_next_node_to_alloc(h, |
9b5e5d0f | 1135 | &node_states[N_HIGH_MEMORY])), |
aa888a74 AK |
1136 | huge_page_size(h), huge_page_size(h), 0); |
1137 | ||
1138 | if (addr) { | |
1139 | /* | |
1140 | * Use the beginning of the huge page to store the | |
1141 | * huge_bootmem_page struct (until gather_bootmem | |
1142 | * puts them into the mem_map). | |
1143 | */ | |
1144 | m = addr; | |
91f47662 | 1145 | goto found; |
aa888a74 | 1146 | } |
aa888a74 AK |
1147 | nr_nodes--; |
1148 | } | |
1149 | return 0; | |
1150 | ||
1151 | found: | |
1152 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | |
1153 | /* Put them into a private list first because mem_map is not up yet */ | |
1154 | list_add(&m->list, &huge_boot_pages); | |
1155 | m->hstate = h; | |
1156 | return 1; | |
1157 | } | |
1158 | ||
18229df5 AW |
1159 | static void prep_compound_huge_page(struct page *page, int order) |
1160 | { | |
1161 | if (unlikely(order > (MAX_ORDER - 1))) | |
1162 | prep_compound_gigantic_page(page, order); | |
1163 | else | |
1164 | prep_compound_page(page, order); | |
1165 | } | |
1166 | ||
aa888a74 AK |
1167 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
1168 | static void __init gather_bootmem_prealloc(void) | |
1169 | { | |
1170 | struct huge_bootmem_page *m; | |
1171 | ||
1172 | list_for_each_entry(m, &huge_boot_pages, list) { | |
1173 | struct page *page = virt_to_page(m); | |
1174 | struct hstate *h = m->hstate; | |
1175 | __ClearPageReserved(page); | |
1176 | WARN_ON(page_count(page) != 1); | |
18229df5 | 1177 | prep_compound_huge_page(page, h->order); |
aa888a74 AK |
1178 | prep_new_huge_page(h, page, page_to_nid(page)); |
1179 | } | |
1180 | } | |
1181 | ||
8faa8b07 | 1182 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
1183 | { |
1184 | unsigned long i; | |
a5516438 | 1185 | |
e5ff2159 | 1186 | for (i = 0; i < h->max_huge_pages; ++i) { |
aa888a74 AK |
1187 | if (h->order >= MAX_ORDER) { |
1188 | if (!alloc_bootmem_huge_page(h)) | |
1189 | break; | |
9b5e5d0f LS |
1190 | } else if (!alloc_fresh_huge_page(h, |
1191 | &node_states[N_HIGH_MEMORY])) | |
1da177e4 | 1192 | break; |
1da177e4 | 1193 | } |
8faa8b07 | 1194 | h->max_huge_pages = i; |
e5ff2159 AK |
1195 | } |
1196 | ||
1197 | static void __init hugetlb_init_hstates(void) | |
1198 | { | |
1199 | struct hstate *h; | |
1200 | ||
1201 | for_each_hstate(h) { | |
8faa8b07 AK |
1202 | /* oversize hugepages were init'ed in early boot */ |
1203 | if (h->order < MAX_ORDER) | |
1204 | hugetlb_hstate_alloc_pages(h); | |
e5ff2159 AK |
1205 | } |
1206 | } | |
1207 | ||
4abd32db AK |
1208 | static char * __init memfmt(char *buf, unsigned long n) |
1209 | { | |
1210 | if (n >= (1UL << 30)) | |
1211 | sprintf(buf, "%lu GB", n >> 30); | |
1212 | else if (n >= (1UL << 20)) | |
1213 | sprintf(buf, "%lu MB", n >> 20); | |
1214 | else | |
1215 | sprintf(buf, "%lu KB", n >> 10); | |
1216 | return buf; | |
1217 | } | |
1218 | ||
e5ff2159 AK |
1219 | static void __init report_hugepages(void) |
1220 | { | |
1221 | struct hstate *h; | |
1222 | ||
1223 | for_each_hstate(h) { | |
4abd32db AK |
1224 | char buf[32]; |
1225 | printk(KERN_INFO "HugeTLB registered %s page size, " | |
1226 | "pre-allocated %ld pages\n", | |
1227 | memfmt(buf, huge_page_size(h)), | |
1228 | h->free_huge_pages); | |
e5ff2159 AK |
1229 | } |
1230 | } | |
1231 | ||
1da177e4 | 1232 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
1233 | static void try_to_free_low(struct hstate *h, unsigned long count, |
1234 | nodemask_t *nodes_allowed) | |
1da177e4 | 1235 | { |
4415cc8d CL |
1236 | int i; |
1237 | ||
aa888a74 AK |
1238 | if (h->order >= MAX_ORDER) |
1239 | return; | |
1240 | ||
6ae11b27 | 1241 | for_each_node_mask(i, *nodes_allowed) { |
1da177e4 | 1242 | struct page *page, *next; |
a5516438 AK |
1243 | struct list_head *freel = &h->hugepage_freelists[i]; |
1244 | list_for_each_entry_safe(page, next, freel, lru) { | |
1245 | if (count >= h->nr_huge_pages) | |
6b0c880d | 1246 | return; |
1da177e4 LT |
1247 | if (PageHighMem(page)) |
1248 | continue; | |
1249 | list_del(&page->lru); | |
e5ff2159 | 1250 | update_and_free_page(h, page); |
a5516438 AK |
1251 | h->free_huge_pages--; |
1252 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
1253 | } |
1254 | } | |
1255 | } | |
1256 | #else | |
6ae11b27 LS |
1257 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
1258 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
1259 | { |
1260 | } | |
1261 | #endif | |
1262 | ||
20a0307c WF |
1263 | /* |
1264 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
1265 | * balanced by operating on them in a round-robin fashion. | |
1266 | * Returns 1 if an adjustment was made. | |
1267 | */ | |
6ae11b27 LS |
1268 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
1269 | int delta) | |
20a0307c | 1270 | { |
e8c5c824 | 1271 | int start_nid, next_nid; |
20a0307c WF |
1272 | int ret = 0; |
1273 | ||
1274 | VM_BUG_ON(delta != -1 && delta != 1); | |
20a0307c | 1275 | |
e8c5c824 | 1276 | if (delta < 0) |
6ae11b27 | 1277 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 1278 | else |
6ae11b27 | 1279 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
1280 | next_nid = start_nid; |
1281 | ||
1282 | do { | |
1283 | int nid = next_nid; | |
1284 | if (delta < 0) { | |
e8c5c824 LS |
1285 | /* |
1286 | * To shrink on this node, there must be a surplus page | |
1287 | */ | |
9a76db09 | 1288 | if (!h->surplus_huge_pages_node[nid]) { |
6ae11b27 LS |
1289 | next_nid = hstate_next_node_to_alloc(h, |
1290 | nodes_allowed); | |
e8c5c824 | 1291 | continue; |
9a76db09 | 1292 | } |
e8c5c824 LS |
1293 | } |
1294 | if (delta > 0) { | |
e8c5c824 LS |
1295 | /* |
1296 | * Surplus cannot exceed the total number of pages | |
1297 | */ | |
1298 | if (h->surplus_huge_pages_node[nid] >= | |
9a76db09 | 1299 | h->nr_huge_pages_node[nid]) { |
6ae11b27 LS |
1300 | next_nid = hstate_next_node_to_free(h, |
1301 | nodes_allowed); | |
e8c5c824 | 1302 | continue; |
9a76db09 | 1303 | } |
e8c5c824 | 1304 | } |
20a0307c WF |
1305 | |
1306 | h->surplus_huge_pages += delta; | |
1307 | h->surplus_huge_pages_node[nid] += delta; | |
1308 | ret = 1; | |
1309 | break; | |
e8c5c824 | 1310 | } while (next_nid != start_nid); |
20a0307c | 1311 | |
20a0307c WF |
1312 | return ret; |
1313 | } | |
1314 | ||
a5516438 | 1315 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
6ae11b27 LS |
1316 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
1317 | nodemask_t *nodes_allowed) | |
1da177e4 | 1318 | { |
7893d1d5 | 1319 | unsigned long min_count, ret; |
1da177e4 | 1320 | |
aa888a74 AK |
1321 | if (h->order >= MAX_ORDER) |
1322 | return h->max_huge_pages; | |
1323 | ||
7893d1d5 AL |
1324 | /* |
1325 | * Increase the pool size | |
1326 | * First take pages out of surplus state. Then make up the | |
1327 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
1328 | * |
1329 | * We might race with alloc_buddy_huge_page() here and be unable | |
1330 | * to convert a surplus huge page to a normal huge page. That is | |
1331 | * not critical, though, it just means the overall size of the | |
1332 | * pool might be one hugepage larger than it needs to be, but | |
1333 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 1334 | */ |
1da177e4 | 1335 | spin_lock(&hugetlb_lock); |
a5516438 | 1336 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 1337 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
1338 | break; |
1339 | } | |
1340 | ||
a5516438 | 1341 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
1342 | /* |
1343 | * If this allocation races such that we no longer need the | |
1344 | * page, free_huge_page will handle it by freeing the page | |
1345 | * and reducing the surplus. | |
1346 | */ | |
1347 | spin_unlock(&hugetlb_lock); | |
6ae11b27 | 1348 | ret = alloc_fresh_huge_page(h, nodes_allowed); |
7893d1d5 AL |
1349 | spin_lock(&hugetlb_lock); |
1350 | if (!ret) | |
1351 | goto out; | |
1352 | ||
536240f2 MG |
1353 | /* Bail for signals. Probably ctrl-c from user */ |
1354 | if (signal_pending(current)) | |
1355 | goto out; | |
7893d1d5 | 1356 | } |
7893d1d5 AL |
1357 | |
1358 | /* | |
1359 | * Decrease the pool size | |
1360 | * First return free pages to the buddy allocator (being careful | |
1361 | * to keep enough around to satisfy reservations). Then place | |
1362 | * pages into surplus state as needed so the pool will shrink | |
1363 | * to the desired size as pages become free. | |
d1c3fb1f NA |
1364 | * |
1365 | * By placing pages into the surplus state independent of the | |
1366 | * overcommit value, we are allowing the surplus pool size to | |
1367 | * exceed overcommit. There are few sane options here. Since | |
1368 | * alloc_buddy_huge_page() is checking the global counter, | |
1369 | * though, we'll note that we're not allowed to exceed surplus | |
1370 | * and won't grow the pool anywhere else. Not until one of the | |
1371 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 1372 | */ |
a5516438 | 1373 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 1374 | min_count = max(count, min_count); |
6ae11b27 | 1375 | try_to_free_low(h, min_count, nodes_allowed); |
a5516438 | 1376 | while (min_count < persistent_huge_pages(h)) { |
6ae11b27 | 1377 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1da177e4 | 1378 | break; |
1da177e4 | 1379 | } |
a5516438 | 1380 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 1381 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
1382 | break; |
1383 | } | |
1384 | out: | |
a5516438 | 1385 | ret = persistent_huge_pages(h); |
1da177e4 | 1386 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 1387 | return ret; |
1da177e4 LT |
1388 | } |
1389 | ||
a3437870 NA |
1390 | #define HSTATE_ATTR_RO(_name) \ |
1391 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1392 | ||
1393 | #define HSTATE_ATTR(_name) \ | |
1394 | static struct kobj_attribute _name##_attr = \ | |
1395 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1396 | ||
1397 | static struct kobject *hugepages_kobj; | |
1398 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1399 | ||
9a305230 LS |
1400 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
1401 | ||
1402 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
1403 | { |
1404 | int i; | |
9a305230 | 1405 | |
a3437870 | 1406 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
1407 | if (hstate_kobjs[i] == kobj) { |
1408 | if (nidp) | |
1409 | *nidp = NUMA_NO_NODE; | |
a3437870 | 1410 | return &hstates[i]; |
9a305230 LS |
1411 | } |
1412 | ||
1413 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
1414 | } |
1415 | ||
06808b08 | 1416 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
1417 | struct kobj_attribute *attr, char *buf) |
1418 | { | |
9a305230 LS |
1419 | struct hstate *h; |
1420 | unsigned long nr_huge_pages; | |
1421 | int nid; | |
1422 | ||
1423 | h = kobj_to_hstate(kobj, &nid); | |
1424 | if (nid == NUMA_NO_NODE) | |
1425 | nr_huge_pages = h->nr_huge_pages; | |
1426 | else | |
1427 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
1428 | ||
1429 | return sprintf(buf, "%lu\n", nr_huge_pages); | |
a3437870 | 1430 | } |
06808b08 LS |
1431 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
1432 | struct kobject *kobj, struct kobj_attribute *attr, | |
1433 | const char *buf, size_t len) | |
a3437870 NA |
1434 | { |
1435 | int err; | |
9a305230 | 1436 | int nid; |
06808b08 | 1437 | unsigned long count; |
9a305230 | 1438 | struct hstate *h; |
bad44b5b | 1439 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
a3437870 | 1440 | |
06808b08 | 1441 | err = strict_strtoul(buf, 10, &count); |
a3437870 NA |
1442 | if (err) |
1443 | return 0; | |
1444 | ||
9a305230 LS |
1445 | h = kobj_to_hstate(kobj, &nid); |
1446 | if (nid == NUMA_NO_NODE) { | |
1447 | /* | |
1448 | * global hstate attribute | |
1449 | */ | |
1450 | if (!(obey_mempolicy && | |
1451 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1452 | NODEMASK_FREE(nodes_allowed); | |
1453 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1454 | } | |
1455 | } else if (nodes_allowed) { | |
1456 | /* | |
1457 | * per node hstate attribute: adjust count to global, | |
1458 | * but restrict alloc/free to the specified node. | |
1459 | */ | |
1460 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
1461 | init_nodemask_of_node(nodes_allowed, nid); | |
1462 | } else | |
1463 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1464 | ||
06808b08 | 1465 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
a3437870 | 1466 | |
9b5e5d0f | 1467 | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) |
06808b08 LS |
1468 | NODEMASK_FREE(nodes_allowed); |
1469 | ||
1470 | return len; | |
1471 | } | |
1472 | ||
1473 | static ssize_t nr_hugepages_show(struct kobject *kobj, | |
1474 | struct kobj_attribute *attr, char *buf) | |
1475 | { | |
1476 | return nr_hugepages_show_common(kobj, attr, buf); | |
1477 | } | |
1478 | ||
1479 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
1480 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1481 | { | |
1482 | return nr_hugepages_store_common(false, kobj, attr, buf, len); | |
a3437870 NA |
1483 | } |
1484 | HSTATE_ATTR(nr_hugepages); | |
1485 | ||
06808b08 LS |
1486 | #ifdef CONFIG_NUMA |
1487 | ||
1488 | /* | |
1489 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
1490 | * huge page alloc/free. | |
1491 | */ | |
1492 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
1493 | struct kobj_attribute *attr, char *buf) | |
1494 | { | |
1495 | return nr_hugepages_show_common(kobj, attr, buf); | |
1496 | } | |
1497 | ||
1498 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
1499 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1500 | { | |
1501 | return nr_hugepages_store_common(true, kobj, attr, buf, len); | |
1502 | } | |
1503 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
1504 | #endif | |
1505 | ||
1506 | ||
a3437870 NA |
1507 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
1508 | struct kobj_attribute *attr, char *buf) | |
1509 | { | |
9a305230 | 1510 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1511 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
1512 | } | |
1513 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | |
1514 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1515 | { | |
1516 | int err; | |
1517 | unsigned long input; | |
9a305230 | 1518 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1519 | |
1520 | err = strict_strtoul(buf, 10, &input); | |
1521 | if (err) | |
1522 | return 0; | |
1523 | ||
1524 | spin_lock(&hugetlb_lock); | |
1525 | h->nr_overcommit_huge_pages = input; | |
1526 | spin_unlock(&hugetlb_lock); | |
1527 | ||
1528 | return count; | |
1529 | } | |
1530 | HSTATE_ATTR(nr_overcommit_hugepages); | |
1531 | ||
1532 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
1533 | struct kobj_attribute *attr, char *buf) | |
1534 | { | |
9a305230 LS |
1535 | struct hstate *h; |
1536 | unsigned long free_huge_pages; | |
1537 | int nid; | |
1538 | ||
1539 | h = kobj_to_hstate(kobj, &nid); | |
1540 | if (nid == NUMA_NO_NODE) | |
1541 | free_huge_pages = h->free_huge_pages; | |
1542 | else | |
1543 | free_huge_pages = h->free_huge_pages_node[nid]; | |
1544 | ||
1545 | return sprintf(buf, "%lu\n", free_huge_pages); | |
a3437870 NA |
1546 | } |
1547 | HSTATE_ATTR_RO(free_hugepages); | |
1548 | ||
1549 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
1550 | struct kobj_attribute *attr, char *buf) | |
1551 | { | |
9a305230 | 1552 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1553 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
1554 | } | |
1555 | HSTATE_ATTR_RO(resv_hugepages); | |
1556 | ||
1557 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
1558 | struct kobj_attribute *attr, char *buf) | |
1559 | { | |
9a305230 LS |
1560 | struct hstate *h; |
1561 | unsigned long surplus_huge_pages; | |
1562 | int nid; | |
1563 | ||
1564 | h = kobj_to_hstate(kobj, &nid); | |
1565 | if (nid == NUMA_NO_NODE) | |
1566 | surplus_huge_pages = h->surplus_huge_pages; | |
1567 | else | |
1568 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
1569 | ||
1570 | return sprintf(buf, "%lu\n", surplus_huge_pages); | |
a3437870 NA |
1571 | } |
1572 | HSTATE_ATTR_RO(surplus_hugepages); | |
1573 | ||
1574 | static struct attribute *hstate_attrs[] = { | |
1575 | &nr_hugepages_attr.attr, | |
1576 | &nr_overcommit_hugepages_attr.attr, | |
1577 | &free_hugepages_attr.attr, | |
1578 | &resv_hugepages_attr.attr, | |
1579 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
1580 | #ifdef CONFIG_NUMA |
1581 | &nr_hugepages_mempolicy_attr.attr, | |
1582 | #endif | |
a3437870 NA |
1583 | NULL, |
1584 | }; | |
1585 | ||
1586 | static struct attribute_group hstate_attr_group = { | |
1587 | .attrs = hstate_attrs, | |
1588 | }; | |
1589 | ||
094e9539 JM |
1590 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
1591 | struct kobject **hstate_kobjs, | |
1592 | struct attribute_group *hstate_attr_group) | |
a3437870 NA |
1593 | { |
1594 | int retval; | |
9a305230 | 1595 | int hi = h - hstates; |
a3437870 | 1596 | |
9a305230 LS |
1597 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
1598 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
1599 | return -ENOMEM; |
1600 | ||
9a305230 | 1601 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
a3437870 | 1602 | if (retval) |
9a305230 | 1603 | kobject_put(hstate_kobjs[hi]); |
a3437870 NA |
1604 | |
1605 | return retval; | |
1606 | } | |
1607 | ||
1608 | static void __init hugetlb_sysfs_init(void) | |
1609 | { | |
1610 | struct hstate *h; | |
1611 | int err; | |
1612 | ||
1613 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
1614 | if (!hugepages_kobj) | |
1615 | return; | |
1616 | ||
1617 | for_each_hstate(h) { | |
9a305230 LS |
1618 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
1619 | hstate_kobjs, &hstate_attr_group); | |
a3437870 NA |
1620 | if (err) |
1621 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | |
1622 | h->name); | |
1623 | } | |
1624 | } | |
1625 | ||
9a305230 LS |
1626 | #ifdef CONFIG_NUMA |
1627 | ||
1628 | /* | |
1629 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
1630 | * with node sysdevs in node_devices[] using a parallel array. The array | |
1631 | * index of a node sysdev or _hstate == node id. | |
1632 | * This is here to avoid any static dependency of the node sysdev driver, in | |
1633 | * the base kernel, on the hugetlb module. | |
1634 | */ | |
1635 | struct node_hstate { | |
1636 | struct kobject *hugepages_kobj; | |
1637 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1638 | }; | |
1639 | struct node_hstate node_hstates[MAX_NUMNODES]; | |
1640 | ||
1641 | /* | |
1642 | * A subset of global hstate attributes for node sysdevs | |
1643 | */ | |
1644 | static struct attribute *per_node_hstate_attrs[] = { | |
1645 | &nr_hugepages_attr.attr, | |
1646 | &free_hugepages_attr.attr, | |
1647 | &surplus_hugepages_attr.attr, | |
1648 | NULL, | |
1649 | }; | |
1650 | ||
1651 | static struct attribute_group per_node_hstate_attr_group = { | |
1652 | .attrs = per_node_hstate_attrs, | |
1653 | }; | |
1654 | ||
1655 | /* | |
1656 | * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. | |
1657 | * Returns node id via non-NULL nidp. | |
1658 | */ | |
1659 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1660 | { | |
1661 | int nid; | |
1662 | ||
1663 | for (nid = 0; nid < nr_node_ids; nid++) { | |
1664 | struct node_hstate *nhs = &node_hstates[nid]; | |
1665 | int i; | |
1666 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
1667 | if (nhs->hstate_kobjs[i] == kobj) { | |
1668 | if (nidp) | |
1669 | *nidp = nid; | |
1670 | return &hstates[i]; | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | BUG(); | |
1675 | return NULL; | |
1676 | } | |
1677 | ||
1678 | /* | |
1679 | * Unregister hstate attributes from a single node sysdev. | |
1680 | * No-op if no hstate attributes attached. | |
1681 | */ | |
1682 | void hugetlb_unregister_node(struct node *node) | |
1683 | { | |
1684 | struct hstate *h; | |
1685 | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | |
1686 | ||
1687 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 1688 | return; /* no hstate attributes */ |
9a305230 LS |
1689 | |
1690 | for_each_hstate(h) | |
1691 | if (nhs->hstate_kobjs[h - hstates]) { | |
1692 | kobject_put(nhs->hstate_kobjs[h - hstates]); | |
1693 | nhs->hstate_kobjs[h - hstates] = NULL; | |
1694 | } | |
1695 | ||
1696 | kobject_put(nhs->hugepages_kobj); | |
1697 | nhs->hugepages_kobj = NULL; | |
1698 | } | |
1699 | ||
1700 | /* | |
1701 | * hugetlb module exit: unregister hstate attributes from node sysdevs | |
1702 | * that have them. | |
1703 | */ | |
1704 | static void hugetlb_unregister_all_nodes(void) | |
1705 | { | |
1706 | int nid; | |
1707 | ||
1708 | /* | |
1709 | * disable node sysdev registrations. | |
1710 | */ | |
1711 | register_hugetlbfs_with_node(NULL, NULL); | |
1712 | ||
1713 | /* | |
1714 | * remove hstate attributes from any nodes that have them. | |
1715 | */ | |
1716 | for (nid = 0; nid < nr_node_ids; nid++) | |
1717 | hugetlb_unregister_node(&node_devices[nid]); | |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * Register hstate attributes for a single node sysdev. | |
1722 | * No-op if attributes already registered. | |
1723 | */ | |
1724 | void hugetlb_register_node(struct node *node) | |
1725 | { | |
1726 | struct hstate *h; | |
1727 | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | |
1728 | int err; | |
1729 | ||
1730 | if (nhs->hugepages_kobj) | |
1731 | return; /* already allocated */ | |
1732 | ||
1733 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
1734 | &node->sysdev.kobj); | |
1735 | if (!nhs->hugepages_kobj) | |
1736 | return; | |
1737 | ||
1738 | for_each_hstate(h) { | |
1739 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
1740 | nhs->hstate_kobjs, | |
1741 | &per_node_hstate_attr_group); | |
1742 | if (err) { | |
1743 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s" | |
1744 | " for node %d\n", | |
1745 | h->name, node->sysdev.id); | |
1746 | hugetlb_unregister_node(node); | |
1747 | break; | |
1748 | } | |
1749 | } | |
1750 | } | |
1751 | ||
1752 | /* | |
9b5e5d0f LS |
1753 | * hugetlb init time: register hstate attributes for all registered node |
1754 | * sysdevs of nodes that have memory. All on-line nodes should have | |
1755 | * registered their associated sysdev by this time. | |
9a305230 LS |
1756 | */ |
1757 | static void hugetlb_register_all_nodes(void) | |
1758 | { | |
1759 | int nid; | |
1760 | ||
9b5e5d0f | 1761 | for_each_node_state(nid, N_HIGH_MEMORY) { |
9a305230 LS |
1762 | struct node *node = &node_devices[nid]; |
1763 | if (node->sysdev.id == nid) | |
1764 | hugetlb_register_node(node); | |
1765 | } | |
1766 | ||
1767 | /* | |
1768 | * Let the node sysdev driver know we're here so it can | |
1769 | * [un]register hstate attributes on node hotplug. | |
1770 | */ | |
1771 | register_hugetlbfs_with_node(hugetlb_register_node, | |
1772 | hugetlb_unregister_node); | |
1773 | } | |
1774 | #else /* !CONFIG_NUMA */ | |
1775 | ||
1776 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1777 | { | |
1778 | BUG(); | |
1779 | if (nidp) | |
1780 | *nidp = -1; | |
1781 | return NULL; | |
1782 | } | |
1783 | ||
1784 | static void hugetlb_unregister_all_nodes(void) { } | |
1785 | ||
1786 | static void hugetlb_register_all_nodes(void) { } | |
1787 | ||
1788 | #endif | |
1789 | ||
a3437870 NA |
1790 | static void __exit hugetlb_exit(void) |
1791 | { | |
1792 | struct hstate *h; | |
1793 | ||
9a305230 LS |
1794 | hugetlb_unregister_all_nodes(); |
1795 | ||
a3437870 NA |
1796 | for_each_hstate(h) { |
1797 | kobject_put(hstate_kobjs[h - hstates]); | |
1798 | } | |
1799 | ||
1800 | kobject_put(hugepages_kobj); | |
1801 | } | |
1802 | module_exit(hugetlb_exit); | |
1803 | ||
1804 | static int __init hugetlb_init(void) | |
1805 | { | |
0ef89d25 BH |
1806 | /* Some platform decide whether they support huge pages at boot |
1807 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | |
1808 | * there is no such support | |
1809 | */ | |
1810 | if (HPAGE_SHIFT == 0) | |
1811 | return 0; | |
a3437870 | 1812 | |
e11bfbfc NP |
1813 | if (!size_to_hstate(default_hstate_size)) { |
1814 | default_hstate_size = HPAGE_SIZE; | |
1815 | if (!size_to_hstate(default_hstate_size)) | |
1816 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 1817 | } |
e11bfbfc NP |
1818 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; |
1819 | if (default_hstate_max_huge_pages) | |
1820 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
a3437870 NA |
1821 | |
1822 | hugetlb_init_hstates(); | |
1823 | ||
aa888a74 AK |
1824 | gather_bootmem_prealloc(); |
1825 | ||
a3437870 NA |
1826 | report_hugepages(); |
1827 | ||
1828 | hugetlb_sysfs_init(); | |
1829 | ||
9a305230 LS |
1830 | hugetlb_register_all_nodes(); |
1831 | ||
a3437870 NA |
1832 | return 0; |
1833 | } | |
1834 | module_init(hugetlb_init); | |
1835 | ||
1836 | /* Should be called on processing a hugepagesz=... option */ | |
1837 | void __init hugetlb_add_hstate(unsigned order) | |
1838 | { | |
1839 | struct hstate *h; | |
8faa8b07 AK |
1840 | unsigned long i; |
1841 | ||
a3437870 NA |
1842 | if (size_to_hstate(PAGE_SIZE << order)) { |
1843 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | |
1844 | return; | |
1845 | } | |
1846 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | |
1847 | BUG_ON(order == 0); | |
1848 | h = &hstates[max_hstate++]; | |
1849 | h->order = order; | |
1850 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
1851 | h->nr_huge_pages = 0; |
1852 | h->free_huge_pages = 0; | |
1853 | for (i = 0; i < MAX_NUMNODES; ++i) | |
1854 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
9b5e5d0f LS |
1855 | h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); |
1856 | h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); | |
a3437870 NA |
1857 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
1858 | huge_page_size(h)/1024); | |
8faa8b07 | 1859 | |
a3437870 NA |
1860 | parsed_hstate = h; |
1861 | } | |
1862 | ||
e11bfbfc | 1863 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
1864 | { |
1865 | unsigned long *mhp; | |
8faa8b07 | 1866 | static unsigned long *last_mhp; |
a3437870 NA |
1867 | |
1868 | /* | |
1869 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | |
1870 | * so this hugepages= parameter goes to the "default hstate". | |
1871 | */ | |
1872 | if (!max_hstate) | |
1873 | mhp = &default_hstate_max_huge_pages; | |
1874 | else | |
1875 | mhp = &parsed_hstate->max_huge_pages; | |
1876 | ||
8faa8b07 AK |
1877 | if (mhp == last_mhp) { |
1878 | printk(KERN_WARNING "hugepages= specified twice without " | |
1879 | "interleaving hugepagesz=, ignoring\n"); | |
1880 | return 1; | |
1881 | } | |
1882 | ||
a3437870 NA |
1883 | if (sscanf(s, "%lu", mhp) <= 0) |
1884 | *mhp = 0; | |
1885 | ||
8faa8b07 AK |
1886 | /* |
1887 | * Global state is always initialized later in hugetlb_init. | |
1888 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
1889 | * use the bootmem allocator. | |
1890 | */ | |
1891 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | |
1892 | hugetlb_hstate_alloc_pages(parsed_hstate); | |
1893 | ||
1894 | last_mhp = mhp; | |
1895 | ||
a3437870 NA |
1896 | return 1; |
1897 | } | |
e11bfbfc NP |
1898 | __setup("hugepages=", hugetlb_nrpages_setup); |
1899 | ||
1900 | static int __init hugetlb_default_setup(char *s) | |
1901 | { | |
1902 | default_hstate_size = memparse(s, &s); | |
1903 | return 1; | |
1904 | } | |
1905 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 1906 | |
8a213460 NA |
1907 | static unsigned int cpuset_mems_nr(unsigned int *array) |
1908 | { | |
1909 | int node; | |
1910 | unsigned int nr = 0; | |
1911 | ||
1912 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
1913 | nr += array[node]; | |
1914 | ||
1915 | return nr; | |
1916 | } | |
1917 | ||
1918 | #ifdef CONFIG_SYSCTL | |
06808b08 LS |
1919 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
1920 | struct ctl_table *table, int write, | |
1921 | void __user *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 1922 | { |
e5ff2159 AK |
1923 | struct hstate *h = &default_hstate; |
1924 | unsigned long tmp; | |
1925 | ||
1926 | if (!write) | |
1927 | tmp = h->max_huge_pages; | |
1928 | ||
1929 | table->data = &tmp; | |
1930 | table->maxlen = sizeof(unsigned long); | |
8d65af78 | 1931 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
e5ff2159 | 1932 | |
06808b08 | 1933 | if (write) { |
bad44b5b DR |
1934 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, |
1935 | GFP_KERNEL | __GFP_NORETRY); | |
06808b08 LS |
1936 | if (!(obey_mempolicy && |
1937 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1938 | NODEMASK_FREE(nodes_allowed); | |
1939 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1940 | } | |
1941 | h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); | |
1942 | ||
1943 | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | |
1944 | NODEMASK_FREE(nodes_allowed); | |
1945 | } | |
e5ff2159 | 1946 | |
1da177e4 LT |
1947 | return 0; |
1948 | } | |
396faf03 | 1949 | |
06808b08 LS |
1950 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
1951 | void __user *buffer, size_t *length, loff_t *ppos) | |
1952 | { | |
1953 | ||
1954 | return hugetlb_sysctl_handler_common(false, table, write, | |
1955 | buffer, length, ppos); | |
1956 | } | |
1957 | ||
1958 | #ifdef CONFIG_NUMA | |
1959 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
1960 | void __user *buffer, size_t *length, loff_t *ppos) | |
1961 | { | |
1962 | return hugetlb_sysctl_handler_common(true, table, write, | |
1963 | buffer, length, ppos); | |
1964 | } | |
1965 | #endif /* CONFIG_NUMA */ | |
1966 | ||
396faf03 | 1967 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, |
8d65af78 | 1968 | void __user *buffer, |
396faf03 MG |
1969 | size_t *length, loff_t *ppos) |
1970 | { | |
8d65af78 | 1971 | proc_dointvec(table, write, buffer, length, ppos); |
396faf03 MG |
1972 | if (hugepages_treat_as_movable) |
1973 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
1974 | else | |
1975 | htlb_alloc_mask = GFP_HIGHUSER; | |
1976 | return 0; | |
1977 | } | |
1978 | ||
a3d0c6aa | 1979 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
8d65af78 | 1980 | void __user *buffer, |
a3d0c6aa NA |
1981 | size_t *length, loff_t *ppos) |
1982 | { | |
a5516438 | 1983 | struct hstate *h = &default_hstate; |
e5ff2159 AK |
1984 | unsigned long tmp; |
1985 | ||
1986 | if (!write) | |
1987 | tmp = h->nr_overcommit_huge_pages; | |
1988 | ||
1989 | table->data = &tmp; | |
1990 | table->maxlen = sizeof(unsigned long); | |
8d65af78 | 1991 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
e5ff2159 AK |
1992 | |
1993 | if (write) { | |
1994 | spin_lock(&hugetlb_lock); | |
1995 | h->nr_overcommit_huge_pages = tmp; | |
1996 | spin_unlock(&hugetlb_lock); | |
1997 | } | |
1998 | ||
a3d0c6aa NA |
1999 | return 0; |
2000 | } | |
2001 | ||
1da177e4 LT |
2002 | #endif /* CONFIG_SYSCTL */ |
2003 | ||
e1759c21 | 2004 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 2005 | { |
a5516438 | 2006 | struct hstate *h = &default_hstate; |
e1759c21 | 2007 | seq_printf(m, |
4f98a2fe RR |
2008 | "HugePages_Total: %5lu\n" |
2009 | "HugePages_Free: %5lu\n" | |
2010 | "HugePages_Rsvd: %5lu\n" | |
2011 | "HugePages_Surp: %5lu\n" | |
2012 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
2013 | h->nr_huge_pages, |
2014 | h->free_huge_pages, | |
2015 | h->resv_huge_pages, | |
2016 | h->surplus_huge_pages, | |
2017 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
2018 | } |
2019 | ||
2020 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
2021 | { | |
a5516438 | 2022 | struct hstate *h = &default_hstate; |
1da177e4 LT |
2023 | return sprintf(buf, |
2024 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
2025 | "Node %d HugePages_Free: %5u\n" |
2026 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
2027 | nid, h->nr_huge_pages_node[nid], |
2028 | nid, h->free_huge_pages_node[nid], | |
2029 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
2030 | } |
2031 | ||
1da177e4 LT |
2032 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
2033 | unsigned long hugetlb_total_pages(void) | |
2034 | { | |
a5516438 AK |
2035 | struct hstate *h = &default_hstate; |
2036 | return h->nr_huge_pages * pages_per_huge_page(h); | |
1da177e4 | 2037 | } |
1da177e4 | 2038 | |
a5516438 | 2039 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
2040 | { |
2041 | int ret = -ENOMEM; | |
2042 | ||
2043 | spin_lock(&hugetlb_lock); | |
2044 | /* | |
2045 | * When cpuset is configured, it breaks the strict hugetlb page | |
2046 | * reservation as the accounting is done on a global variable. Such | |
2047 | * reservation is completely rubbish in the presence of cpuset because | |
2048 | * the reservation is not checked against page availability for the | |
2049 | * current cpuset. Application can still potentially OOM'ed by kernel | |
2050 | * with lack of free htlb page in cpuset that the task is in. | |
2051 | * Attempt to enforce strict accounting with cpuset is almost | |
2052 | * impossible (or too ugly) because cpuset is too fluid that | |
2053 | * task or memory node can be dynamically moved between cpusets. | |
2054 | * | |
2055 | * The change of semantics for shared hugetlb mapping with cpuset is | |
2056 | * undesirable. However, in order to preserve some of the semantics, | |
2057 | * we fall back to check against current free page availability as | |
2058 | * a best attempt and hopefully to minimize the impact of changing | |
2059 | * semantics that cpuset has. | |
2060 | */ | |
2061 | if (delta > 0) { | |
a5516438 | 2062 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
2063 | goto out; |
2064 | ||
a5516438 AK |
2065 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
2066 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
2067 | goto out; |
2068 | } | |
2069 | } | |
2070 | ||
2071 | ret = 0; | |
2072 | if (delta < 0) | |
a5516438 | 2073 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
2074 | |
2075 | out: | |
2076 | spin_unlock(&hugetlb_lock); | |
2077 | return ret; | |
2078 | } | |
2079 | ||
84afd99b AW |
2080 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
2081 | { | |
2082 | struct resv_map *reservations = vma_resv_map(vma); | |
2083 | ||
2084 | /* | |
2085 | * This new VMA should share its siblings reservation map if present. | |
2086 | * The VMA will only ever have a valid reservation map pointer where | |
2087 | * it is being copied for another still existing VMA. As that VMA | |
2088 | * has a reference to the reservation map it cannot dissappear until | |
2089 | * after this open call completes. It is therefore safe to take a | |
2090 | * new reference here without additional locking. | |
2091 | */ | |
2092 | if (reservations) | |
2093 | kref_get(&reservations->refs); | |
2094 | } | |
2095 | ||
a1e78772 MG |
2096 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
2097 | { | |
a5516438 | 2098 | struct hstate *h = hstate_vma(vma); |
84afd99b AW |
2099 | struct resv_map *reservations = vma_resv_map(vma); |
2100 | unsigned long reserve; | |
2101 | unsigned long start; | |
2102 | unsigned long end; | |
2103 | ||
2104 | if (reservations) { | |
a5516438 AK |
2105 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
2106 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b AW |
2107 | |
2108 | reserve = (end - start) - | |
2109 | region_count(&reservations->regions, start, end); | |
2110 | ||
2111 | kref_put(&reservations->refs, resv_map_release); | |
2112 | ||
7251ff78 | 2113 | if (reserve) { |
a5516438 | 2114 | hugetlb_acct_memory(h, -reserve); |
7251ff78 AL |
2115 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); |
2116 | } | |
84afd99b | 2117 | } |
a1e78772 MG |
2118 | } |
2119 | ||
1da177e4 LT |
2120 | /* |
2121 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
2122 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
2123 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
2124 | * this far. | |
2125 | */ | |
d0217ac0 | 2126 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
2127 | { |
2128 | BUG(); | |
d0217ac0 | 2129 | return 0; |
1da177e4 LT |
2130 | } |
2131 | ||
f0f37e2f | 2132 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 2133 | .fault = hugetlb_vm_op_fault, |
84afd99b | 2134 | .open = hugetlb_vm_op_open, |
a1e78772 | 2135 | .close = hugetlb_vm_op_close, |
1da177e4 LT |
2136 | }; |
2137 | ||
1e8f889b DG |
2138 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
2139 | int writable) | |
63551ae0 DG |
2140 | { |
2141 | pte_t entry; | |
2142 | ||
1e8f889b | 2143 | if (writable) { |
63551ae0 DG |
2144 | entry = |
2145 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | |
2146 | } else { | |
7f2e9525 | 2147 | entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); |
63551ae0 DG |
2148 | } |
2149 | entry = pte_mkyoung(entry); | |
2150 | entry = pte_mkhuge(entry); | |
2151 | ||
2152 | return entry; | |
2153 | } | |
2154 | ||
1e8f889b DG |
2155 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
2156 | unsigned long address, pte_t *ptep) | |
2157 | { | |
2158 | pte_t entry; | |
2159 | ||
7f2e9525 GS |
2160 | entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); |
2161 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { | |
4b3073e1 | 2162 | update_mmu_cache(vma, address, ptep); |
8dab5241 | 2163 | } |
1e8f889b DG |
2164 | } |
2165 | ||
2166 | ||
63551ae0 DG |
2167 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
2168 | struct vm_area_struct *vma) | |
2169 | { | |
2170 | pte_t *src_pte, *dst_pte, entry; | |
2171 | struct page *ptepage; | |
1c59827d | 2172 | unsigned long addr; |
1e8f889b | 2173 | int cow; |
a5516438 AK |
2174 | struct hstate *h = hstate_vma(vma); |
2175 | unsigned long sz = huge_page_size(h); | |
1e8f889b DG |
2176 | |
2177 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 2178 | |
a5516438 | 2179 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
c74df32c HD |
2180 | src_pte = huge_pte_offset(src, addr); |
2181 | if (!src_pte) | |
2182 | continue; | |
a5516438 | 2183 | dst_pte = huge_pte_alloc(dst, addr, sz); |
63551ae0 DG |
2184 | if (!dst_pte) |
2185 | goto nomem; | |
c5c99429 LW |
2186 | |
2187 | /* If the pagetables are shared don't copy or take references */ | |
2188 | if (dst_pte == src_pte) | |
2189 | continue; | |
2190 | ||
c74df32c | 2191 | spin_lock(&dst->page_table_lock); |
46478758 | 2192 | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); |
7f2e9525 | 2193 | if (!huge_pte_none(huge_ptep_get(src_pte))) { |
1e8f889b | 2194 | if (cow) |
7f2e9525 GS |
2195 | huge_ptep_set_wrprotect(src, addr, src_pte); |
2196 | entry = huge_ptep_get(src_pte); | |
1c59827d HD |
2197 | ptepage = pte_page(entry); |
2198 | get_page(ptepage); | |
0fe6e20b | 2199 | page_dup_rmap(ptepage); |
1c59827d HD |
2200 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2201 | } | |
2202 | spin_unlock(&src->page_table_lock); | |
c74df32c | 2203 | spin_unlock(&dst->page_table_lock); |
63551ae0 DG |
2204 | } |
2205 | return 0; | |
2206 | ||
2207 | nomem: | |
2208 | return -ENOMEM; | |
2209 | } | |
2210 | ||
290408d4 NH |
2211 | static int is_hugetlb_entry_migration(pte_t pte) |
2212 | { | |
2213 | swp_entry_t swp; | |
2214 | ||
2215 | if (huge_pte_none(pte) || pte_present(pte)) | |
2216 | return 0; | |
2217 | swp = pte_to_swp_entry(pte); | |
2218 | if (non_swap_entry(swp) && is_migration_entry(swp)) { | |
2219 | return 1; | |
2220 | } else | |
2221 | return 0; | |
2222 | } | |
2223 | ||
fd6a03ed NH |
2224 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) |
2225 | { | |
2226 | swp_entry_t swp; | |
2227 | ||
2228 | if (huge_pte_none(pte) || pte_present(pte)) | |
2229 | return 0; | |
2230 | swp = pte_to_swp_entry(pte); | |
2231 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { | |
2232 | return 1; | |
2233 | } else | |
2234 | return 0; | |
2235 | } | |
2236 | ||
502717f4 | 2237 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2238 | unsigned long end, struct page *ref_page) |
63551ae0 DG |
2239 | { |
2240 | struct mm_struct *mm = vma->vm_mm; | |
2241 | unsigned long address; | |
c7546f8f | 2242 | pte_t *ptep; |
63551ae0 DG |
2243 | pte_t pte; |
2244 | struct page *page; | |
fe1668ae | 2245 | struct page *tmp; |
a5516438 AK |
2246 | struct hstate *h = hstate_vma(vma); |
2247 | unsigned long sz = huge_page_size(h); | |
2248 | ||
c0a499c2 KC |
2249 | /* |
2250 | * A page gathering list, protected by per file i_mmap_lock. The | |
2251 | * lock is used to avoid list corruption from multiple unmapping | |
2252 | * of the same page since we are using page->lru. | |
2253 | */ | |
fe1668ae | 2254 | LIST_HEAD(page_list); |
63551ae0 DG |
2255 | |
2256 | WARN_ON(!is_vm_hugetlb_page(vma)); | |
a5516438 AK |
2257 | BUG_ON(start & ~huge_page_mask(h)); |
2258 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 2259 | |
cddb8a5c | 2260 | mmu_notifier_invalidate_range_start(mm, start, end); |
508034a3 | 2261 | spin_lock(&mm->page_table_lock); |
a5516438 | 2262 | for (address = start; address < end; address += sz) { |
c7546f8f | 2263 | ptep = huge_pte_offset(mm, address); |
4c887265 | 2264 | if (!ptep) |
c7546f8f DG |
2265 | continue; |
2266 | ||
39dde65c KC |
2267 | if (huge_pmd_unshare(mm, &address, ptep)) |
2268 | continue; | |
2269 | ||
04f2cbe3 MG |
2270 | /* |
2271 | * If a reference page is supplied, it is because a specific | |
2272 | * page is being unmapped, not a range. Ensure the page we | |
2273 | * are about to unmap is the actual page of interest. | |
2274 | */ | |
2275 | if (ref_page) { | |
2276 | pte = huge_ptep_get(ptep); | |
2277 | if (huge_pte_none(pte)) | |
2278 | continue; | |
2279 | page = pte_page(pte); | |
2280 | if (page != ref_page) | |
2281 | continue; | |
2282 | ||
2283 | /* | |
2284 | * Mark the VMA as having unmapped its page so that | |
2285 | * future faults in this VMA will fail rather than | |
2286 | * looking like data was lost | |
2287 | */ | |
2288 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
2289 | } | |
2290 | ||
c7546f8f | 2291 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
7f2e9525 | 2292 | if (huge_pte_none(pte)) |
63551ae0 | 2293 | continue; |
c7546f8f | 2294 | |
fd6a03ed NH |
2295 | /* |
2296 | * HWPoisoned hugepage is already unmapped and dropped reference | |
2297 | */ | |
2298 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | |
2299 | continue; | |
2300 | ||
63551ae0 | 2301 | page = pte_page(pte); |
6649a386 KC |
2302 | if (pte_dirty(pte)) |
2303 | set_page_dirty(page); | |
fe1668ae | 2304 | list_add(&page->lru, &page_list); |
63551ae0 | 2305 | } |
1da177e4 | 2306 | spin_unlock(&mm->page_table_lock); |
508034a3 | 2307 | flush_tlb_range(vma, start, end); |
cddb8a5c | 2308 | mmu_notifier_invalidate_range_end(mm, start, end); |
fe1668ae | 2309 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
0fe6e20b | 2310 | page_remove_rmap(page); |
fe1668ae KC |
2311 | list_del(&page->lru); |
2312 | put_page(page); | |
2313 | } | |
1da177e4 | 2314 | } |
63551ae0 | 2315 | |
502717f4 | 2316 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2317 | unsigned long end, struct page *ref_page) |
502717f4 | 2318 | { |
a137e1cc AK |
2319 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
2320 | __unmap_hugepage_range(vma, start, end, ref_page); | |
2321 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
502717f4 KC |
2322 | } |
2323 | ||
04f2cbe3 MG |
2324 | /* |
2325 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
2326 | * mappping it owns the reserve page for. The intention is to unmap the page | |
2327 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
2328 | * same region. | |
2329 | */ | |
2a4b3ded HH |
2330 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
2331 | struct page *page, unsigned long address) | |
04f2cbe3 | 2332 | { |
7526674d | 2333 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
2334 | struct vm_area_struct *iter_vma; |
2335 | struct address_space *mapping; | |
2336 | struct prio_tree_iter iter; | |
2337 | pgoff_t pgoff; | |
2338 | ||
2339 | /* | |
2340 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
2341 | * from page cache lookup which is in HPAGE_SIZE units. | |
2342 | */ | |
7526674d | 2343 | address = address & huge_page_mask(h); |
04f2cbe3 MG |
2344 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
2345 | + (vma->vm_pgoff >> PAGE_SHIFT); | |
2346 | mapping = (struct address_space *)page_private(page); | |
2347 | ||
4eb2b1dc MG |
2348 | /* |
2349 | * Take the mapping lock for the duration of the table walk. As | |
2350 | * this mapping should be shared between all the VMAs, | |
2351 | * __unmap_hugepage_range() is called as the lock is already held | |
2352 | */ | |
2353 | spin_lock(&mapping->i_mmap_lock); | |
04f2cbe3 MG |
2354 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
2355 | /* Do not unmap the current VMA */ | |
2356 | if (iter_vma == vma) | |
2357 | continue; | |
2358 | ||
2359 | /* | |
2360 | * Unmap the page from other VMAs without their own reserves. | |
2361 | * They get marked to be SIGKILLed if they fault in these | |
2362 | * areas. This is because a future no-page fault on this VMA | |
2363 | * could insert a zeroed page instead of the data existing | |
2364 | * from the time of fork. This would look like data corruption | |
2365 | */ | |
2366 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
4eb2b1dc | 2367 | __unmap_hugepage_range(iter_vma, |
7526674d | 2368 | address, address + huge_page_size(h), |
04f2cbe3 MG |
2369 | page); |
2370 | } | |
4eb2b1dc | 2371 | spin_unlock(&mapping->i_mmap_lock); |
04f2cbe3 MG |
2372 | |
2373 | return 1; | |
2374 | } | |
2375 | ||
0fe6e20b NH |
2376 | /* |
2377 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | |
2378 | */ | |
1e8f889b | 2379 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
04f2cbe3 MG |
2380 | unsigned long address, pte_t *ptep, pte_t pte, |
2381 | struct page *pagecache_page) | |
1e8f889b | 2382 | { |
a5516438 | 2383 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 2384 | struct page *old_page, *new_page; |
79ac6ba4 | 2385 | int avoidcopy; |
04f2cbe3 | 2386 | int outside_reserve = 0; |
1e8f889b DG |
2387 | |
2388 | old_page = pte_page(pte); | |
2389 | ||
04f2cbe3 | 2390 | retry_avoidcopy: |
1e8f889b DG |
2391 | /* If no-one else is actually using this page, avoid the copy |
2392 | * and just make the page writable */ | |
0fe6e20b | 2393 | avoidcopy = (page_mapcount(old_page) == 1); |
1e8f889b | 2394 | if (avoidcopy) { |
56c9cfb1 NH |
2395 | if (PageAnon(old_page)) |
2396 | page_move_anon_rmap(old_page, vma, address); | |
1e8f889b | 2397 | set_huge_ptep_writable(vma, address, ptep); |
83c54070 | 2398 | return 0; |
1e8f889b DG |
2399 | } |
2400 | ||
04f2cbe3 MG |
2401 | /* |
2402 | * If the process that created a MAP_PRIVATE mapping is about to | |
2403 | * perform a COW due to a shared page count, attempt to satisfy | |
2404 | * the allocation without using the existing reserves. The pagecache | |
2405 | * page is used to determine if the reserve at this address was | |
2406 | * consumed or not. If reserves were used, a partial faulted mapping | |
2407 | * at the time of fork() could consume its reserves on COW instead | |
2408 | * of the full address range. | |
2409 | */ | |
f83a275d | 2410 | if (!(vma->vm_flags & VM_MAYSHARE) && |
04f2cbe3 MG |
2411 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
2412 | old_page != pagecache_page) | |
2413 | outside_reserve = 1; | |
2414 | ||
1e8f889b | 2415 | page_cache_get(old_page); |
b76c8cfb LW |
2416 | |
2417 | /* Drop page_table_lock as buddy allocator may be called */ | |
2418 | spin_unlock(&mm->page_table_lock); | |
04f2cbe3 | 2419 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 2420 | |
2fc39cec | 2421 | if (IS_ERR(new_page)) { |
1e8f889b | 2422 | page_cache_release(old_page); |
04f2cbe3 MG |
2423 | |
2424 | /* | |
2425 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
2426 | * it is due to references held by a child and an insufficient | |
2427 | * huge page pool. To guarantee the original mappers | |
2428 | * reliability, unmap the page from child processes. The child | |
2429 | * may get SIGKILLed if it later faults. | |
2430 | */ | |
2431 | if (outside_reserve) { | |
2432 | BUG_ON(huge_pte_none(pte)); | |
2433 | if (unmap_ref_private(mm, vma, old_page, address)) { | |
2434 | BUG_ON(page_count(old_page) != 1); | |
2435 | BUG_ON(huge_pte_none(pte)); | |
b76c8cfb | 2436 | spin_lock(&mm->page_table_lock); |
04f2cbe3 MG |
2437 | goto retry_avoidcopy; |
2438 | } | |
2439 | WARN_ON_ONCE(1); | |
2440 | } | |
2441 | ||
b76c8cfb LW |
2442 | /* Caller expects lock to be held */ |
2443 | spin_lock(&mm->page_table_lock); | |
2fc39cec | 2444 | return -PTR_ERR(new_page); |
1e8f889b DG |
2445 | } |
2446 | ||
0fe6e20b NH |
2447 | /* |
2448 | * When the original hugepage is shared one, it does not have | |
2449 | * anon_vma prepared. | |
2450 | */ | |
44e2aa93 DN |
2451 | if (unlikely(anon_vma_prepare(vma))) { |
2452 | /* Caller expects lock to be held */ | |
2453 | spin_lock(&mm->page_table_lock); | |
0fe6e20b | 2454 | return VM_FAULT_OOM; |
44e2aa93 | 2455 | } |
0fe6e20b | 2456 | |
0ebabb41 | 2457 | copy_user_huge_page(new_page, old_page, address, vma); |
0ed361de | 2458 | __SetPageUptodate(new_page); |
1e8f889b | 2459 | |
b76c8cfb LW |
2460 | /* |
2461 | * Retake the page_table_lock to check for racing updates | |
2462 | * before the page tables are altered | |
2463 | */ | |
2464 | spin_lock(&mm->page_table_lock); | |
a5516438 | 2465 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
7f2e9525 | 2466 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
1e8f889b | 2467 | /* Break COW */ |
3edd4fc9 DD |
2468 | mmu_notifier_invalidate_range_start(mm, |
2469 | address & huge_page_mask(h), | |
2470 | (address & huge_page_mask(h)) + huge_page_size(h)); | |
8fe627ec | 2471 | huge_ptep_clear_flush(vma, address, ptep); |
1e8f889b DG |
2472 | set_huge_pte_at(mm, address, ptep, |
2473 | make_huge_pte(vma, new_page, 1)); | |
0fe6e20b | 2474 | page_remove_rmap(old_page); |
cd67f0d2 | 2475 | hugepage_add_new_anon_rmap(new_page, vma, address); |
1e8f889b DG |
2476 | /* Make the old page be freed below */ |
2477 | new_page = old_page; | |
3edd4fc9 DD |
2478 | mmu_notifier_invalidate_range_end(mm, |
2479 | address & huge_page_mask(h), | |
2480 | (address & huge_page_mask(h)) + huge_page_size(h)); | |
1e8f889b DG |
2481 | } |
2482 | page_cache_release(new_page); | |
2483 | page_cache_release(old_page); | |
83c54070 | 2484 | return 0; |
1e8f889b DG |
2485 | } |
2486 | ||
04f2cbe3 | 2487 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
2488 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
2489 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
2490 | { |
2491 | struct address_space *mapping; | |
e7c4b0bf | 2492 | pgoff_t idx; |
04f2cbe3 MG |
2493 | |
2494 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 2495 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
2496 | |
2497 | return find_lock_page(mapping, idx); | |
2498 | } | |
2499 | ||
3ae77f43 HD |
2500 | /* |
2501 | * Return whether there is a pagecache page to back given address within VMA. | |
2502 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
2503 | */ | |
2504 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
2505 | struct vm_area_struct *vma, unsigned long address) |
2506 | { | |
2507 | struct address_space *mapping; | |
2508 | pgoff_t idx; | |
2509 | struct page *page; | |
2510 | ||
2511 | mapping = vma->vm_file->f_mapping; | |
2512 | idx = vma_hugecache_offset(h, vma, address); | |
2513 | ||
2514 | page = find_get_page(mapping, idx); | |
2515 | if (page) | |
2516 | put_page(page); | |
2517 | return page != NULL; | |
2518 | } | |
2519 | ||
a1ed3dda | 2520 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2521 | unsigned long address, pte_t *ptep, unsigned int flags) |
ac9b9c66 | 2522 | { |
a5516438 | 2523 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 2524 | int ret = VM_FAULT_SIGBUS; |
e7c4b0bf | 2525 | pgoff_t idx; |
4c887265 | 2526 | unsigned long size; |
4c887265 AL |
2527 | struct page *page; |
2528 | struct address_space *mapping; | |
1e8f889b | 2529 | pte_t new_pte; |
4c887265 | 2530 | |
04f2cbe3 MG |
2531 | /* |
2532 | * Currently, we are forced to kill the process in the event the | |
2533 | * original mapper has unmapped pages from the child due to a failed | |
2534 | * COW. Warn that such a situation has occured as it may not be obvious | |
2535 | */ | |
2536 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
2537 | printk(KERN_WARNING | |
2538 | "PID %d killed due to inadequate hugepage pool\n", | |
2539 | current->pid); | |
2540 | return ret; | |
2541 | } | |
2542 | ||
4c887265 | 2543 | mapping = vma->vm_file->f_mapping; |
a5516438 | 2544 | idx = vma_hugecache_offset(h, vma, address); |
4c887265 AL |
2545 | |
2546 | /* | |
2547 | * Use page lock to guard against racing truncation | |
2548 | * before we get page_table_lock. | |
2549 | */ | |
6bda666a CL |
2550 | retry: |
2551 | page = find_lock_page(mapping, idx); | |
2552 | if (!page) { | |
a5516438 | 2553 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
2554 | if (idx >= size) |
2555 | goto out; | |
04f2cbe3 | 2556 | page = alloc_huge_page(vma, address, 0); |
2fc39cec AL |
2557 | if (IS_ERR(page)) { |
2558 | ret = -PTR_ERR(page); | |
6bda666a CL |
2559 | goto out; |
2560 | } | |
a5516438 | 2561 | clear_huge_page(page, address, huge_page_size(h)); |
0ed361de | 2562 | __SetPageUptodate(page); |
ac9b9c66 | 2563 | |
f83a275d | 2564 | if (vma->vm_flags & VM_MAYSHARE) { |
6bda666a | 2565 | int err; |
45c682a6 | 2566 | struct inode *inode = mapping->host; |
6bda666a CL |
2567 | |
2568 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
2569 | if (err) { | |
2570 | put_page(page); | |
6bda666a CL |
2571 | if (err == -EEXIST) |
2572 | goto retry; | |
2573 | goto out; | |
2574 | } | |
45c682a6 KC |
2575 | |
2576 | spin_lock(&inode->i_lock); | |
a5516438 | 2577 | inode->i_blocks += blocks_per_huge_page(h); |
45c682a6 | 2578 | spin_unlock(&inode->i_lock); |
0fe6e20b | 2579 | page_dup_rmap(page); |
23be7468 | 2580 | } else { |
6bda666a | 2581 | lock_page(page); |
0fe6e20b NH |
2582 | if (unlikely(anon_vma_prepare(vma))) { |
2583 | ret = VM_FAULT_OOM; | |
2584 | goto backout_unlocked; | |
2585 | } | |
2586 | hugepage_add_new_anon_rmap(page, vma, address); | |
23be7468 | 2587 | } |
0fe6e20b | 2588 | } else { |
998b4382 NH |
2589 | /* |
2590 | * If memory error occurs between mmap() and fault, some process | |
2591 | * don't have hwpoisoned swap entry for errored virtual address. | |
2592 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
2593 | */ | |
2594 | if (unlikely(PageHWPoison(page))) { | |
aa50d3a7 AK |
2595 | ret = VM_FAULT_HWPOISON | |
2596 | VM_FAULT_SET_HINDEX(h - hstates); | |
998b4382 NH |
2597 | goto backout_unlocked; |
2598 | } | |
0fe6e20b | 2599 | page_dup_rmap(page); |
6bda666a | 2600 | } |
1e8f889b | 2601 | |
57303d80 AW |
2602 | /* |
2603 | * If we are going to COW a private mapping later, we examine the | |
2604 | * pending reservations for this page now. This will ensure that | |
2605 | * any allocations necessary to record that reservation occur outside | |
2606 | * the spinlock. | |
2607 | */ | |
788c7df4 | 2608 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
2b26736c AW |
2609 | if (vma_needs_reservation(h, vma, address) < 0) { |
2610 | ret = VM_FAULT_OOM; | |
2611 | goto backout_unlocked; | |
2612 | } | |
57303d80 | 2613 | |
ac9b9c66 | 2614 | spin_lock(&mm->page_table_lock); |
a5516438 | 2615 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
2616 | if (idx >= size) |
2617 | goto backout; | |
2618 | ||
83c54070 | 2619 | ret = 0; |
7f2e9525 | 2620 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
2621 | goto backout; |
2622 | ||
1e8f889b DG |
2623 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
2624 | && (vma->vm_flags & VM_SHARED))); | |
2625 | set_huge_pte_at(mm, address, ptep, new_pte); | |
2626 | ||
788c7df4 | 2627 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 2628 | /* Optimization, do the COW without a second fault */ |
04f2cbe3 | 2629 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
1e8f889b DG |
2630 | } |
2631 | ||
ac9b9c66 | 2632 | spin_unlock(&mm->page_table_lock); |
4c887265 AL |
2633 | unlock_page(page); |
2634 | out: | |
ac9b9c66 | 2635 | return ret; |
4c887265 AL |
2636 | |
2637 | backout: | |
2638 | spin_unlock(&mm->page_table_lock); | |
2b26736c | 2639 | backout_unlocked: |
4c887265 AL |
2640 | unlock_page(page); |
2641 | put_page(page); | |
2642 | goto out; | |
ac9b9c66 HD |
2643 | } |
2644 | ||
86e5216f | 2645 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2646 | unsigned long address, unsigned int flags) |
86e5216f AL |
2647 | { |
2648 | pte_t *ptep; | |
2649 | pte_t entry; | |
1e8f889b | 2650 | int ret; |
0fe6e20b | 2651 | struct page *page = NULL; |
57303d80 | 2652 | struct page *pagecache_page = NULL; |
3935baa9 | 2653 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
a5516438 | 2654 | struct hstate *h = hstate_vma(vma); |
86e5216f | 2655 | |
fd6a03ed NH |
2656 | ptep = huge_pte_offset(mm, address); |
2657 | if (ptep) { | |
2658 | entry = huge_ptep_get(ptep); | |
290408d4 NH |
2659 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
2660 | migration_entry_wait(mm, (pmd_t *)ptep, address); | |
2661 | return 0; | |
2662 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
aa50d3a7 AK |
2663 | return VM_FAULT_HWPOISON_LARGE | |
2664 | VM_FAULT_SET_HINDEX(h - hstates); | |
fd6a03ed NH |
2665 | } |
2666 | ||
a5516438 | 2667 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
86e5216f AL |
2668 | if (!ptep) |
2669 | return VM_FAULT_OOM; | |
2670 | ||
3935baa9 DG |
2671 | /* |
2672 | * Serialize hugepage allocation and instantiation, so that we don't | |
2673 | * get spurious allocation failures if two CPUs race to instantiate | |
2674 | * the same page in the page cache. | |
2675 | */ | |
2676 | mutex_lock(&hugetlb_instantiation_mutex); | |
7f2e9525 GS |
2677 | entry = huge_ptep_get(ptep); |
2678 | if (huge_pte_none(entry)) { | |
788c7df4 | 2679 | ret = hugetlb_no_page(mm, vma, address, ptep, flags); |
b4d1d99f | 2680 | goto out_mutex; |
3935baa9 | 2681 | } |
86e5216f | 2682 | |
83c54070 | 2683 | ret = 0; |
1e8f889b | 2684 | |
57303d80 AW |
2685 | /* |
2686 | * If we are going to COW the mapping later, we examine the pending | |
2687 | * reservations for this page now. This will ensure that any | |
2688 | * allocations necessary to record that reservation occur outside the | |
2689 | * spinlock. For private mappings, we also lookup the pagecache | |
2690 | * page now as it is used to determine if a reservation has been | |
2691 | * consumed. | |
2692 | */ | |
788c7df4 | 2693 | if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { |
2b26736c AW |
2694 | if (vma_needs_reservation(h, vma, address) < 0) { |
2695 | ret = VM_FAULT_OOM; | |
b4d1d99f | 2696 | goto out_mutex; |
2b26736c | 2697 | } |
57303d80 | 2698 | |
f83a275d | 2699 | if (!(vma->vm_flags & VM_MAYSHARE)) |
57303d80 AW |
2700 | pagecache_page = hugetlbfs_pagecache_page(h, |
2701 | vma, address); | |
2702 | } | |
2703 | ||
56c9cfb1 NH |
2704 | /* |
2705 | * hugetlb_cow() requires page locks of pte_page(entry) and | |
2706 | * pagecache_page, so here we need take the former one | |
2707 | * when page != pagecache_page or !pagecache_page. | |
2708 | * Note that locking order is always pagecache_page -> page, | |
2709 | * so no worry about deadlock. | |
2710 | */ | |
2711 | page = pte_page(entry); | |
2712 | if (page != pagecache_page) | |
0fe6e20b | 2713 | lock_page(page); |
0fe6e20b | 2714 | |
1e8f889b DG |
2715 | spin_lock(&mm->page_table_lock); |
2716 | /* Check for a racing update before calling hugetlb_cow */ | |
b4d1d99f DG |
2717 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2718 | goto out_page_table_lock; | |
2719 | ||
2720 | ||
788c7df4 | 2721 | if (flags & FAULT_FLAG_WRITE) { |
b4d1d99f | 2722 | if (!pte_write(entry)) { |
57303d80 AW |
2723 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2724 | pagecache_page); | |
b4d1d99f DG |
2725 | goto out_page_table_lock; |
2726 | } | |
2727 | entry = pte_mkdirty(entry); | |
2728 | } | |
2729 | entry = pte_mkyoung(entry); | |
788c7df4 HD |
2730 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
2731 | flags & FAULT_FLAG_WRITE)) | |
4b3073e1 | 2732 | update_mmu_cache(vma, address, ptep); |
b4d1d99f DG |
2733 | |
2734 | out_page_table_lock: | |
1e8f889b | 2735 | spin_unlock(&mm->page_table_lock); |
57303d80 AW |
2736 | |
2737 | if (pagecache_page) { | |
2738 | unlock_page(pagecache_page); | |
2739 | put_page(pagecache_page); | |
2740 | } | |
56c9cfb1 | 2741 | unlock_page(page); |
57303d80 | 2742 | |
b4d1d99f | 2743 | out_mutex: |
3935baa9 | 2744 | mutex_unlock(&hugetlb_instantiation_mutex); |
1e8f889b DG |
2745 | |
2746 | return ret; | |
86e5216f AL |
2747 | } |
2748 | ||
ceb86879 AK |
2749 | /* Can be overriden by architectures */ |
2750 | __attribute__((weak)) struct page * | |
2751 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | |
2752 | pud_t *pud, int write) | |
2753 | { | |
2754 | BUG(); | |
2755 | return NULL; | |
2756 | } | |
2757 | ||
63551ae0 DG |
2758 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2759 | struct page **pages, struct vm_area_struct **vmas, | |
5b23dbe8 | 2760 | unsigned long *position, int *length, int i, |
2a15efc9 | 2761 | unsigned int flags) |
63551ae0 | 2762 | { |
d5d4b0aa KC |
2763 | unsigned long pfn_offset; |
2764 | unsigned long vaddr = *position; | |
63551ae0 | 2765 | int remainder = *length; |
a5516438 | 2766 | struct hstate *h = hstate_vma(vma); |
63551ae0 | 2767 | |
1c59827d | 2768 | spin_lock(&mm->page_table_lock); |
63551ae0 | 2769 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 2770 | pte_t *pte; |
2a15efc9 | 2771 | int absent; |
4c887265 | 2772 | struct page *page; |
63551ae0 | 2773 | |
4c887265 AL |
2774 | /* |
2775 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 2776 | * each hugepage. We have to make sure we get the |
4c887265 AL |
2777 | * first, for the page indexing below to work. |
2778 | */ | |
a5516438 | 2779 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
2a15efc9 HD |
2780 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
2781 | ||
2782 | /* | |
2783 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
2784 | * an error where there's an empty slot with no huge pagecache |
2785 | * to back it. This way, we avoid allocating a hugepage, and | |
2786 | * the sparse dumpfile avoids allocating disk blocks, but its | |
2787 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 2788 | */ |
3ae77f43 HD |
2789 | if (absent && (flags & FOLL_DUMP) && |
2790 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
2a15efc9 HD |
2791 | remainder = 0; |
2792 | break; | |
2793 | } | |
63551ae0 | 2794 | |
2a15efc9 HD |
2795 | if (absent || |
2796 | ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 2797 | int ret; |
63551ae0 | 2798 | |
4c887265 | 2799 | spin_unlock(&mm->page_table_lock); |
2a15efc9 HD |
2800 | ret = hugetlb_fault(mm, vma, vaddr, |
2801 | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | |
4c887265 | 2802 | spin_lock(&mm->page_table_lock); |
a89182c7 | 2803 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 2804 | continue; |
63551ae0 | 2805 | |
4c887265 | 2806 | remainder = 0; |
4c887265 AL |
2807 | break; |
2808 | } | |
2809 | ||
a5516438 | 2810 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 2811 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 2812 | same_page: |
d6692183 | 2813 | if (pages) { |
2a15efc9 | 2814 | pages[i] = mem_map_offset(page, pfn_offset); |
4b2e38ad | 2815 | get_page(pages[i]); |
d6692183 | 2816 | } |
63551ae0 DG |
2817 | |
2818 | if (vmas) | |
2819 | vmas[i] = vma; | |
2820 | ||
2821 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 2822 | ++pfn_offset; |
63551ae0 DG |
2823 | --remainder; |
2824 | ++i; | |
d5d4b0aa | 2825 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 2826 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa KC |
2827 | /* |
2828 | * We use pfn_offset to avoid touching the pageframes | |
2829 | * of this compound page. | |
2830 | */ | |
2831 | goto same_page; | |
2832 | } | |
63551ae0 | 2833 | } |
1c59827d | 2834 | spin_unlock(&mm->page_table_lock); |
63551ae0 DG |
2835 | *length = remainder; |
2836 | *position = vaddr; | |
2837 | ||
2a15efc9 | 2838 | return i ? i : -EFAULT; |
63551ae0 | 2839 | } |
8f860591 ZY |
2840 | |
2841 | void hugetlb_change_protection(struct vm_area_struct *vma, | |
2842 | unsigned long address, unsigned long end, pgprot_t newprot) | |
2843 | { | |
2844 | struct mm_struct *mm = vma->vm_mm; | |
2845 | unsigned long start = address; | |
2846 | pte_t *ptep; | |
2847 | pte_t pte; | |
a5516438 | 2848 | struct hstate *h = hstate_vma(vma); |
8f860591 ZY |
2849 | |
2850 | BUG_ON(address >= end); | |
2851 | flush_cache_range(vma, address, end); | |
2852 | ||
39dde65c | 2853 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 | 2854 | spin_lock(&mm->page_table_lock); |
a5516438 | 2855 | for (; address < end; address += huge_page_size(h)) { |
8f860591 ZY |
2856 | ptep = huge_pte_offset(mm, address); |
2857 | if (!ptep) | |
2858 | continue; | |
39dde65c KC |
2859 | if (huge_pmd_unshare(mm, &address, ptep)) |
2860 | continue; | |
7f2e9525 | 2861 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
8f860591 ZY |
2862 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
2863 | pte = pte_mkhuge(pte_modify(pte, newprot)); | |
2864 | set_huge_pte_at(mm, address, ptep, pte); | |
8f860591 ZY |
2865 | } |
2866 | } | |
2867 | spin_unlock(&mm->page_table_lock); | |
39dde65c | 2868 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 ZY |
2869 | |
2870 | flush_tlb_range(vma, start, end); | |
2871 | } | |
2872 | ||
a1e78772 MG |
2873 | int hugetlb_reserve_pages(struct inode *inode, |
2874 | long from, long to, | |
5a6fe125 MG |
2875 | struct vm_area_struct *vma, |
2876 | int acctflag) | |
e4e574b7 | 2877 | { |
17c9d12e | 2878 | long ret, chg; |
a5516438 | 2879 | struct hstate *h = hstate_inode(inode); |
e4e574b7 | 2880 | |
17c9d12e MG |
2881 | /* |
2882 | * Only apply hugepage reservation if asked. At fault time, an | |
2883 | * attempt will be made for VM_NORESERVE to allocate a page | |
2884 | * and filesystem quota without using reserves | |
2885 | */ | |
2886 | if (acctflag & VM_NORESERVE) | |
2887 | return 0; | |
2888 | ||
a1e78772 MG |
2889 | /* |
2890 | * Shared mappings base their reservation on the number of pages that | |
2891 | * are already allocated on behalf of the file. Private mappings need | |
2892 | * to reserve the full area even if read-only as mprotect() may be | |
2893 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
2894 | */ | |
f83a275d | 2895 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 2896 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
17c9d12e MG |
2897 | else { |
2898 | struct resv_map *resv_map = resv_map_alloc(); | |
2899 | if (!resv_map) | |
2900 | return -ENOMEM; | |
2901 | ||
a1e78772 | 2902 | chg = to - from; |
84afd99b | 2903 | |
17c9d12e MG |
2904 | set_vma_resv_map(vma, resv_map); |
2905 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
2906 | } | |
2907 | ||
e4e574b7 AL |
2908 | if (chg < 0) |
2909 | return chg; | |
8a630112 | 2910 | |
17c9d12e | 2911 | /* There must be enough filesystem quota for the mapping */ |
90d8b7e6 AL |
2912 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
2913 | return -ENOSPC; | |
5a6fe125 MG |
2914 | |
2915 | /* | |
17c9d12e MG |
2916 | * Check enough hugepages are available for the reservation. |
2917 | * Hand back the quota if there are not | |
5a6fe125 | 2918 | */ |
a5516438 | 2919 | ret = hugetlb_acct_memory(h, chg); |
68842c9b KC |
2920 | if (ret < 0) { |
2921 | hugetlb_put_quota(inode->i_mapping, chg); | |
a43a8c39 | 2922 | return ret; |
68842c9b | 2923 | } |
17c9d12e MG |
2924 | |
2925 | /* | |
2926 | * Account for the reservations made. Shared mappings record regions | |
2927 | * that have reservations as they are shared by multiple VMAs. | |
2928 | * When the last VMA disappears, the region map says how much | |
2929 | * the reservation was and the page cache tells how much of | |
2930 | * the reservation was consumed. Private mappings are per-VMA and | |
2931 | * only the consumed reservations are tracked. When the VMA | |
2932 | * disappears, the original reservation is the VMA size and the | |
2933 | * consumed reservations are stored in the map. Hence, nothing | |
2934 | * else has to be done for private mappings here | |
2935 | */ | |
f83a275d | 2936 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 2937 | region_add(&inode->i_mapping->private_list, from, to); |
a43a8c39 KC |
2938 | return 0; |
2939 | } | |
2940 | ||
2941 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
2942 | { | |
a5516438 | 2943 | struct hstate *h = hstate_inode(inode); |
a43a8c39 | 2944 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
45c682a6 KC |
2945 | |
2946 | spin_lock(&inode->i_lock); | |
e4c6f8be | 2947 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
2948 | spin_unlock(&inode->i_lock); |
2949 | ||
90d8b7e6 | 2950 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
a5516438 | 2951 | hugetlb_acct_memory(h, -(chg - freed)); |
a43a8c39 | 2952 | } |
93f70f90 | 2953 | |
d5bd9106 AK |
2954 | #ifdef CONFIG_MEMORY_FAILURE |
2955 | ||
6de2b1aa NH |
2956 | /* Should be called in hugetlb_lock */ |
2957 | static int is_hugepage_on_freelist(struct page *hpage) | |
2958 | { | |
2959 | struct page *page; | |
2960 | struct page *tmp; | |
2961 | struct hstate *h = page_hstate(hpage); | |
2962 | int nid = page_to_nid(hpage); | |
2963 | ||
2964 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | |
2965 | if (page == hpage) | |
2966 | return 1; | |
2967 | return 0; | |
2968 | } | |
2969 | ||
93f70f90 NH |
2970 | /* |
2971 | * This function is called from memory failure code. | |
2972 | * Assume the caller holds page lock of the head page. | |
2973 | */ | |
6de2b1aa | 2974 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
93f70f90 NH |
2975 | { |
2976 | struct hstate *h = page_hstate(hpage); | |
2977 | int nid = page_to_nid(hpage); | |
6de2b1aa | 2978 | int ret = -EBUSY; |
93f70f90 NH |
2979 | |
2980 | spin_lock(&hugetlb_lock); | |
6de2b1aa NH |
2981 | if (is_hugepage_on_freelist(hpage)) { |
2982 | list_del(&hpage->lru); | |
8c6c2ecb | 2983 | set_page_refcounted(hpage); |
6de2b1aa NH |
2984 | h->free_huge_pages--; |
2985 | h->free_huge_pages_node[nid]--; | |
2986 | ret = 0; | |
2987 | } | |
93f70f90 | 2988 | spin_unlock(&hugetlb_lock); |
6de2b1aa | 2989 | return ret; |
93f70f90 | 2990 | } |
6de2b1aa | 2991 | #endif |