]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 34 | * Idea by Alex Bligh ([email protected]) |
1da177e4 LT |
35 | * |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * ([email protected]) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
6e84f315 | 44 | #include <linux/sched/mm.h> |
f7ccbae4 | 45 | #include <linux/sched/coredump.h> |
6a3827d7 | 46 | #include <linux/sched/numa_balancing.h> |
29930025 | 47 | #include <linux/sched/task.h> |
1da177e4 LT |
48 | #include <linux/hugetlb.h> |
49 | #include <linux/mman.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/highmem.h> | |
52 | #include <linux/pagemap.h> | |
5042db43 | 53 | #include <linux/memremap.h> |
9a840895 | 54 | #include <linux/ksm.h> |
1da177e4 | 55 | #include <linux/rmap.h> |
b95f1b31 | 56 | #include <linux/export.h> |
0ff92245 | 57 | #include <linux/delayacct.h> |
1da177e4 | 58 | #include <linux/init.h> |
01c8f1c4 | 59 | #include <linux/pfn_t.h> |
edc79b2a | 60 | #include <linux/writeback.h> |
8a9f3ccd | 61 | #include <linux/memcontrol.h> |
cddb8a5c | 62 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
63 | #include <linux/swapops.h> |
64 | #include <linux/elf.h> | |
5a0e3ad6 | 65 | #include <linux/gfp.h> |
4daae3b4 | 66 | #include <linux/migrate.h> |
2fbc57c5 | 67 | #include <linux/string.h> |
0abdd7a8 | 68 | #include <linux/dma-debug.h> |
1592eef0 | 69 | #include <linux/debugfs.h> |
6b251fc9 | 70 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 71 | #include <linux/dax.h> |
6b31d595 | 72 | #include <linux/oom.h> |
98fa15f3 | 73 | #include <linux/numa.h> |
1da177e4 | 74 | |
6952b61d | 75 | #include <asm/io.h> |
33a709b2 | 76 | #include <asm/mmu_context.h> |
1da177e4 | 77 | #include <asm/pgalloc.h> |
7c0f6ba6 | 78 | #include <linux/uaccess.h> |
1da177e4 LT |
79 | #include <asm/tlb.h> |
80 | #include <asm/tlbflush.h> | |
81 | #include <asm/pgtable.h> | |
82 | ||
42b77728 JB |
83 | #include "internal.h" |
84 | ||
af27d940 | 85 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) |
90572890 | 86 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. |
75980e97 PZ |
87 | #endif |
88 | ||
d41dee36 | 89 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
90 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
91 | unsigned long max_mapnr; | |
1da177e4 | 92 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
93 | |
94 | struct page *mem_map; | |
1da177e4 LT |
95 | EXPORT_SYMBOL(mem_map); |
96 | #endif | |
97 | ||
1da177e4 LT |
98 | /* |
99 | * A number of key systems in x86 including ioremap() rely on the assumption | |
100 | * that high_memory defines the upper bound on direct map memory, then end | |
101 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
102 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
103 | * and ZONE_HIGHMEM. | |
104 | */ | |
166f61b9 | 105 | void *high_memory; |
1da177e4 | 106 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 107 | |
32a93233 IM |
108 | /* |
109 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
110 | * | |
111 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
112 | * as ancient (libc5 based) binaries can segfault. ) | |
113 | */ | |
114 | int randomize_va_space __read_mostly = | |
115 | #ifdef CONFIG_COMPAT_BRK | |
116 | 1; | |
117 | #else | |
118 | 2; | |
119 | #endif | |
a62eaf15 AK |
120 | |
121 | static int __init disable_randmaps(char *s) | |
122 | { | |
123 | randomize_va_space = 0; | |
9b41046c | 124 | return 1; |
a62eaf15 AK |
125 | } |
126 | __setup("norandmaps", disable_randmaps); | |
127 | ||
62eede62 | 128 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
129 | EXPORT_SYMBOL(zero_pfn); |
130 | ||
166f61b9 TH |
131 | unsigned long highest_memmap_pfn __read_mostly; |
132 | ||
a13ea5b7 HD |
133 | /* |
134 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
135 | */ | |
136 | static int __init init_zero_pfn(void) | |
137 | { | |
138 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
139 | return 0; | |
140 | } | |
141 | core_initcall(init_zero_pfn); | |
a62eaf15 | 142 | |
d559db08 | 143 | |
34e55232 KH |
144 | #if defined(SPLIT_RSS_COUNTING) |
145 | ||
ea48cf78 | 146 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
147 | { |
148 | int i; | |
149 | ||
150 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
151 | if (current->rss_stat.count[i]) { |
152 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
153 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
154 | } |
155 | } | |
05af2e10 | 156 | current->rss_stat.events = 0; |
34e55232 KH |
157 | } |
158 | ||
159 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
160 | { | |
161 | struct task_struct *task = current; | |
162 | ||
163 | if (likely(task->mm == mm)) | |
164 | task->rss_stat.count[member] += val; | |
165 | else | |
166 | add_mm_counter(mm, member, val); | |
167 | } | |
168 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
169 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
170 | ||
171 | /* sync counter once per 64 page faults */ | |
172 | #define TASK_RSS_EVENTS_THRESH (64) | |
173 | static void check_sync_rss_stat(struct task_struct *task) | |
174 | { | |
175 | if (unlikely(task != current)) | |
176 | return; | |
177 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 178 | sync_mm_rss(task->mm); |
34e55232 | 179 | } |
9547d01b | 180 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
181 | |
182 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
183 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
184 | ||
185 | static void check_sync_rss_stat(struct task_struct *task) | |
186 | { | |
187 | } | |
188 | ||
9547d01b PZ |
189 | #endif /* SPLIT_RSS_COUNTING */ |
190 | ||
1da177e4 LT |
191 | /* |
192 | * Note: this doesn't free the actual pages themselves. That | |
193 | * has been handled earlier when unmapping all the memory regions. | |
194 | */ | |
9e1b32ca BH |
195 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
196 | unsigned long addr) | |
1da177e4 | 197 | { |
2f569afd | 198 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 199 | pmd_clear(pmd); |
9e1b32ca | 200 | pte_free_tlb(tlb, token, addr); |
c4812909 | 201 | mm_dec_nr_ptes(tlb->mm); |
1da177e4 LT |
202 | } |
203 | ||
e0da382c HD |
204 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
205 | unsigned long addr, unsigned long end, | |
206 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
207 | { |
208 | pmd_t *pmd; | |
209 | unsigned long next; | |
e0da382c | 210 | unsigned long start; |
1da177e4 | 211 | |
e0da382c | 212 | start = addr; |
1da177e4 | 213 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
214 | do { |
215 | next = pmd_addr_end(addr, end); | |
216 | if (pmd_none_or_clear_bad(pmd)) | |
217 | continue; | |
9e1b32ca | 218 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
219 | } while (pmd++, addr = next, addr != end); |
220 | ||
e0da382c HD |
221 | start &= PUD_MASK; |
222 | if (start < floor) | |
223 | return; | |
224 | if (ceiling) { | |
225 | ceiling &= PUD_MASK; | |
226 | if (!ceiling) | |
227 | return; | |
1da177e4 | 228 | } |
e0da382c HD |
229 | if (end - 1 > ceiling - 1) |
230 | return; | |
231 | ||
232 | pmd = pmd_offset(pud, start); | |
233 | pud_clear(pud); | |
9e1b32ca | 234 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 235 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
236 | } |
237 | ||
c2febafc | 238 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
239 | unsigned long addr, unsigned long end, |
240 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
241 | { |
242 | pud_t *pud; | |
243 | unsigned long next; | |
e0da382c | 244 | unsigned long start; |
1da177e4 | 245 | |
e0da382c | 246 | start = addr; |
c2febafc | 247 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
248 | do { |
249 | next = pud_addr_end(addr, end); | |
250 | if (pud_none_or_clear_bad(pud)) | |
251 | continue; | |
e0da382c | 252 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
253 | } while (pud++, addr = next, addr != end); |
254 | ||
c2febafc KS |
255 | start &= P4D_MASK; |
256 | if (start < floor) | |
257 | return; | |
258 | if (ceiling) { | |
259 | ceiling &= P4D_MASK; | |
260 | if (!ceiling) | |
261 | return; | |
262 | } | |
263 | if (end - 1 > ceiling - 1) | |
264 | return; | |
265 | ||
266 | pud = pud_offset(p4d, start); | |
267 | p4d_clear(p4d); | |
268 | pud_free_tlb(tlb, pud, start); | |
b4e98d9a | 269 | mm_dec_nr_puds(tlb->mm); |
c2febafc KS |
270 | } |
271 | ||
272 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
273 | unsigned long addr, unsigned long end, | |
274 | unsigned long floor, unsigned long ceiling) | |
275 | { | |
276 | p4d_t *p4d; | |
277 | unsigned long next; | |
278 | unsigned long start; | |
279 | ||
280 | start = addr; | |
281 | p4d = p4d_offset(pgd, addr); | |
282 | do { | |
283 | next = p4d_addr_end(addr, end); | |
284 | if (p4d_none_or_clear_bad(p4d)) | |
285 | continue; | |
286 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
287 | } while (p4d++, addr = next, addr != end); | |
288 | ||
e0da382c HD |
289 | start &= PGDIR_MASK; |
290 | if (start < floor) | |
291 | return; | |
292 | if (ceiling) { | |
293 | ceiling &= PGDIR_MASK; | |
294 | if (!ceiling) | |
295 | return; | |
1da177e4 | 296 | } |
e0da382c HD |
297 | if (end - 1 > ceiling - 1) |
298 | return; | |
299 | ||
c2febafc | 300 | p4d = p4d_offset(pgd, start); |
e0da382c | 301 | pgd_clear(pgd); |
c2febafc | 302 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
303 | } |
304 | ||
305 | /* | |
e0da382c | 306 | * This function frees user-level page tables of a process. |
1da177e4 | 307 | */ |
42b77728 | 308 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
309 | unsigned long addr, unsigned long end, |
310 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
311 | { |
312 | pgd_t *pgd; | |
313 | unsigned long next; | |
e0da382c HD |
314 | |
315 | /* | |
316 | * The next few lines have given us lots of grief... | |
317 | * | |
318 | * Why are we testing PMD* at this top level? Because often | |
319 | * there will be no work to do at all, and we'd prefer not to | |
320 | * go all the way down to the bottom just to discover that. | |
321 | * | |
322 | * Why all these "- 1"s? Because 0 represents both the bottom | |
323 | * of the address space and the top of it (using -1 for the | |
324 | * top wouldn't help much: the masks would do the wrong thing). | |
325 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
326 | * the address space, but end 0 and ceiling 0 refer to the top | |
327 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
328 | * that end 0 case should be mythical). | |
329 | * | |
330 | * Wherever addr is brought up or ceiling brought down, we must | |
331 | * be careful to reject "the opposite 0" before it confuses the | |
332 | * subsequent tests. But what about where end is brought down | |
333 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
334 | * | |
335 | * Whereas we round start (addr) and ceiling down, by different | |
336 | * masks at different levels, in order to test whether a table | |
337 | * now has no other vmas using it, so can be freed, we don't | |
338 | * bother to round floor or end up - the tests don't need that. | |
339 | */ | |
1da177e4 | 340 | |
e0da382c HD |
341 | addr &= PMD_MASK; |
342 | if (addr < floor) { | |
343 | addr += PMD_SIZE; | |
344 | if (!addr) | |
345 | return; | |
346 | } | |
347 | if (ceiling) { | |
348 | ceiling &= PMD_MASK; | |
349 | if (!ceiling) | |
350 | return; | |
351 | } | |
352 | if (end - 1 > ceiling - 1) | |
353 | end -= PMD_SIZE; | |
354 | if (addr > end - 1) | |
355 | return; | |
07e32661 AK |
356 | /* |
357 | * We add page table cache pages with PAGE_SIZE, | |
358 | * (see pte_free_tlb()), flush the tlb if we need | |
359 | */ | |
ed6a7935 | 360 | tlb_change_page_size(tlb, PAGE_SIZE); |
42b77728 | 361 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
362 | do { |
363 | next = pgd_addr_end(addr, end); | |
364 | if (pgd_none_or_clear_bad(pgd)) | |
365 | continue; | |
c2febafc | 366 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 367 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
368 | } |
369 | ||
42b77728 | 370 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 371 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
372 | { |
373 | while (vma) { | |
374 | struct vm_area_struct *next = vma->vm_next; | |
375 | unsigned long addr = vma->vm_start; | |
376 | ||
8f4f8c16 | 377 | /* |
25d9e2d1 NP |
378 | * Hide vma from rmap and truncate_pagecache before freeing |
379 | * pgtables | |
8f4f8c16 | 380 | */ |
5beb4930 | 381 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
382 | unlink_file_vma(vma); |
383 | ||
9da61aef | 384 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 385 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 386 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
387 | } else { |
388 | /* | |
389 | * Optimization: gather nearby vmas into one call down | |
390 | */ | |
391 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 392 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
393 | vma = next; |
394 | next = vma->vm_next; | |
5beb4930 | 395 | unlink_anon_vmas(vma); |
8f4f8c16 | 396 | unlink_file_vma(vma); |
3bf5ee95 HD |
397 | } |
398 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 399 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 400 | } |
e0da382c HD |
401 | vma = next; |
402 | } | |
1da177e4 LT |
403 | } |
404 | ||
4cf58924 | 405 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) |
1da177e4 | 406 | { |
c4088ebd | 407 | spinlock_t *ptl; |
4cf58924 | 408 | pgtable_t new = pte_alloc_one(mm); |
1bb3630e HD |
409 | if (!new) |
410 | return -ENOMEM; | |
411 | ||
362a61ad NP |
412 | /* |
413 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
414 | * visible before the pte is made visible to other CPUs by being | |
415 | * put into page tables. | |
416 | * | |
417 | * The other side of the story is the pointer chasing in the page | |
418 | * table walking code (when walking the page table without locking; | |
419 | * ie. most of the time). Fortunately, these data accesses consist | |
420 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
421 | * being the notable exception) will already guarantee loads are | |
422 | * seen in-order. See the alpha page table accessors for the | |
423 | * smp_read_barrier_depends() barriers in page table walking code. | |
424 | */ | |
425 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
426 | ||
c4088ebd | 427 | ptl = pmd_lock(mm, pmd); |
8ac1f832 | 428 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
c4812909 | 429 | mm_inc_nr_ptes(mm); |
1da177e4 | 430 | pmd_populate(mm, pmd, new); |
2f569afd | 431 | new = NULL; |
4b471e88 | 432 | } |
c4088ebd | 433 | spin_unlock(ptl); |
2f569afd MS |
434 | if (new) |
435 | pte_free(mm, new); | |
1bb3630e | 436 | return 0; |
1da177e4 LT |
437 | } |
438 | ||
4cf58924 | 439 | int __pte_alloc_kernel(pmd_t *pmd) |
1da177e4 | 440 | { |
4cf58924 | 441 | pte_t *new = pte_alloc_one_kernel(&init_mm); |
1bb3630e HD |
442 | if (!new) |
443 | return -ENOMEM; | |
444 | ||
362a61ad NP |
445 | smp_wmb(); /* See comment in __pte_alloc */ |
446 | ||
1bb3630e | 447 | spin_lock(&init_mm.page_table_lock); |
8ac1f832 | 448 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
1bb3630e | 449 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 450 | new = NULL; |
4b471e88 | 451 | } |
1bb3630e | 452 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
453 | if (new) |
454 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 455 | return 0; |
1da177e4 LT |
456 | } |
457 | ||
d559db08 KH |
458 | static inline void init_rss_vec(int *rss) |
459 | { | |
460 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
461 | } | |
462 | ||
463 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 464 | { |
d559db08 KH |
465 | int i; |
466 | ||
34e55232 | 467 | if (current->mm == mm) |
05af2e10 | 468 | sync_mm_rss(mm); |
d559db08 KH |
469 | for (i = 0; i < NR_MM_COUNTERS; i++) |
470 | if (rss[i]) | |
471 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
472 | } |
473 | ||
b5810039 | 474 | /* |
6aab341e LT |
475 | * This function is called to print an error when a bad pte |
476 | * is found. For example, we might have a PFN-mapped pte in | |
477 | * a region that doesn't allow it. | |
b5810039 NP |
478 | * |
479 | * The calling function must still handle the error. | |
480 | */ | |
3dc14741 HD |
481 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
482 | pte_t pte, struct page *page) | |
b5810039 | 483 | { |
3dc14741 | 484 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
485 | p4d_t *p4d = p4d_offset(pgd, addr); |
486 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
487 | pmd_t *pmd = pmd_offset(pud, addr); |
488 | struct address_space *mapping; | |
489 | pgoff_t index; | |
d936cf9b HD |
490 | static unsigned long resume; |
491 | static unsigned long nr_shown; | |
492 | static unsigned long nr_unshown; | |
493 | ||
494 | /* | |
495 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
496 | * or allow a steady drip of one report per second. | |
497 | */ | |
498 | if (nr_shown == 60) { | |
499 | if (time_before(jiffies, resume)) { | |
500 | nr_unshown++; | |
501 | return; | |
502 | } | |
503 | if (nr_unshown) { | |
1170532b JP |
504 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
505 | nr_unshown); | |
d936cf9b HD |
506 | nr_unshown = 0; |
507 | } | |
508 | nr_shown = 0; | |
509 | } | |
510 | if (nr_shown++ == 0) | |
511 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
512 | |
513 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
514 | index = linear_page_index(vma, addr); | |
515 | ||
1170532b JP |
516 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
517 | current->comm, | |
518 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 519 | if (page) |
f0b791a3 | 520 | dump_page(page, "bad pte"); |
1170532b JP |
521 | pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
522 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
d75f773c | 523 | pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", |
2682582a KK |
524 | vma->vm_file, |
525 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
526 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
527 | mapping ? mapping->a_ops->readpage : NULL); | |
b5810039 | 528 | dump_stack(); |
373d4d09 | 529 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
530 | } |
531 | ||
ee498ed7 | 532 | /* |
7e675137 | 533 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 534 | * |
7e675137 NP |
535 | * "Special" mappings do not wish to be associated with a "struct page" (either |
536 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
537 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 538 | * |
7e675137 NP |
539 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
540 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
541 | * may not have a spare pte bit, which requires a more complicated scheme, | |
542 | * described below. | |
543 | * | |
544 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
545 | * special mapping (even if there are underlying and valid "struct pages"). | |
546 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 547 | * |
b379d790 JH |
548 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
549 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
550 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
551 | * mapping will always honor the rule | |
6aab341e LT |
552 | * |
553 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
554 | * | |
7e675137 NP |
555 | * And for normal mappings this is false. |
556 | * | |
557 | * This restricts such mappings to be a linear translation from virtual address | |
558 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
559 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
560 | * special (because none can have been COWed). | |
b379d790 | 561 | * |
b379d790 | 562 | * |
7e675137 | 563 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
564 | * |
565 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
566 | * page" backing, however the difference is that _all_ pages with a struct | |
567 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
568 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
569 | * (which can be slower and simply not an option for some PFNMAP users). The | |
570 | * advantage is that we don't have to follow the strict linearity rule of | |
571 | * PFNMAP mappings in order to support COWable mappings. | |
572 | * | |
ee498ed7 | 573 | */ |
df6ad698 JG |
574 | struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
575 | pte_t pte, bool with_public_device) | |
ee498ed7 | 576 | { |
22b31eec | 577 | unsigned long pfn = pte_pfn(pte); |
7e675137 | 578 | |
00b3a331 | 579 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { |
b38af472 | 580 | if (likely(!pte_special(pte))) |
22b31eec | 581 | goto check_pfn; |
667a0a06 DV |
582 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
583 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
584 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
585 | return NULL; | |
df6ad698 JG |
586 | if (is_zero_pfn(pfn)) |
587 | return NULL; | |
588 | ||
589 | /* | |
590 | * Device public pages are special pages (they are ZONE_DEVICE | |
591 | * pages but different from persistent memory). They behave | |
592 | * allmost like normal pages. The difference is that they are | |
593 | * not on the lru and thus should never be involve with any- | |
594 | * thing that involve lru manipulation (mlock, numa balancing, | |
595 | * ...). | |
596 | * | |
597 | * This is why we still want to return NULL for such page from | |
598 | * vm_normal_page() so that we do not have to special case all | |
599 | * call site of vm_normal_page(). | |
600 | */ | |
7d790d2d | 601 | if (likely(pfn <= highest_memmap_pfn)) { |
df6ad698 JG |
602 | struct page *page = pfn_to_page(pfn); |
603 | ||
604 | if (is_device_public_page(page)) { | |
605 | if (with_public_device) | |
606 | return page; | |
607 | return NULL; | |
608 | } | |
609 | } | |
e1fb4a08 DJ |
610 | |
611 | if (pte_devmap(pte)) | |
612 | return NULL; | |
613 | ||
df6ad698 | 614 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
615 | return NULL; |
616 | } | |
617 | ||
00b3a331 | 618 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ |
7e675137 | 619 | |
b379d790 JH |
620 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
621 | if (vma->vm_flags & VM_MIXEDMAP) { | |
622 | if (!pfn_valid(pfn)) | |
623 | return NULL; | |
624 | goto out; | |
625 | } else { | |
7e675137 NP |
626 | unsigned long off; |
627 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
628 | if (pfn == vma->vm_pgoff + off) |
629 | return NULL; | |
630 | if (!is_cow_mapping(vma->vm_flags)) | |
631 | return NULL; | |
632 | } | |
6aab341e LT |
633 | } |
634 | ||
b38af472 HD |
635 | if (is_zero_pfn(pfn)) |
636 | return NULL; | |
00b3a331 | 637 | |
22b31eec HD |
638 | check_pfn: |
639 | if (unlikely(pfn > highest_memmap_pfn)) { | |
640 | print_bad_pte(vma, addr, pte, NULL); | |
641 | return NULL; | |
642 | } | |
6aab341e LT |
643 | |
644 | /* | |
7e675137 | 645 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 646 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 647 | */ |
b379d790 | 648 | out: |
6aab341e | 649 | return pfn_to_page(pfn); |
ee498ed7 HD |
650 | } |
651 | ||
28093f9f GS |
652 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
653 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
654 | pmd_t pmd) | |
655 | { | |
656 | unsigned long pfn = pmd_pfn(pmd); | |
657 | ||
658 | /* | |
659 | * There is no pmd_special() but there may be special pmds, e.g. | |
660 | * in a direct-access (dax) mapping, so let's just replicate the | |
00b3a331 | 661 | * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. |
28093f9f GS |
662 | */ |
663 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
664 | if (vma->vm_flags & VM_MIXEDMAP) { | |
665 | if (!pfn_valid(pfn)) | |
666 | return NULL; | |
667 | goto out; | |
668 | } else { | |
669 | unsigned long off; | |
670 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
671 | if (pfn == vma->vm_pgoff + off) | |
672 | return NULL; | |
673 | if (!is_cow_mapping(vma->vm_flags)) | |
674 | return NULL; | |
675 | } | |
676 | } | |
677 | ||
e1fb4a08 DJ |
678 | if (pmd_devmap(pmd)) |
679 | return NULL; | |
28093f9f GS |
680 | if (is_zero_pfn(pfn)) |
681 | return NULL; | |
682 | if (unlikely(pfn > highest_memmap_pfn)) | |
683 | return NULL; | |
684 | ||
685 | /* | |
686 | * NOTE! We still have PageReserved() pages in the page tables. | |
687 | * eg. VDSO mappings can cause them to exist. | |
688 | */ | |
689 | out: | |
690 | return pfn_to_page(pfn); | |
691 | } | |
692 | #endif | |
693 | ||
1da177e4 LT |
694 | /* |
695 | * copy one vm_area from one task to the other. Assumes the page tables | |
696 | * already present in the new task to be cleared in the whole range | |
697 | * covered by this vma. | |
1da177e4 LT |
698 | */ |
699 | ||
570a335b | 700 | static inline unsigned long |
1da177e4 | 701 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 702 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 703 | unsigned long addr, int *rss) |
1da177e4 | 704 | { |
b5810039 | 705 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
706 | pte_t pte = *src_pte; |
707 | struct page *page; | |
1da177e4 LT |
708 | |
709 | /* pte contains position in swap or file, so copy. */ | |
710 | if (unlikely(!pte_present(pte))) { | |
0661a336 KS |
711 | swp_entry_t entry = pte_to_swp_entry(pte); |
712 | ||
713 | if (likely(!non_swap_entry(entry))) { | |
714 | if (swap_duplicate(entry) < 0) | |
715 | return entry.val; | |
716 | ||
717 | /* make sure dst_mm is on swapoff's mmlist. */ | |
718 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
719 | spin_lock(&mmlist_lock); | |
720 | if (list_empty(&dst_mm->mmlist)) | |
721 | list_add(&dst_mm->mmlist, | |
722 | &src_mm->mmlist); | |
723 | spin_unlock(&mmlist_lock); | |
724 | } | |
725 | rss[MM_SWAPENTS]++; | |
726 | } else if (is_migration_entry(entry)) { | |
727 | page = migration_entry_to_page(entry); | |
728 | ||
eca56ff9 | 729 | rss[mm_counter(page)]++; |
0661a336 KS |
730 | |
731 | if (is_write_migration_entry(entry) && | |
732 | is_cow_mapping(vm_flags)) { | |
733 | /* | |
734 | * COW mappings require pages in both | |
735 | * parent and child to be set to read. | |
736 | */ | |
737 | make_migration_entry_read(&entry); | |
738 | pte = swp_entry_to_pte(entry); | |
739 | if (pte_swp_soft_dirty(*src_pte)) | |
740 | pte = pte_swp_mksoft_dirty(pte); | |
741 | set_pte_at(src_mm, addr, src_pte, pte); | |
0697212a | 742 | } |
5042db43 JG |
743 | } else if (is_device_private_entry(entry)) { |
744 | page = device_private_entry_to_page(entry); | |
745 | ||
746 | /* | |
747 | * Update rss count even for unaddressable pages, as | |
748 | * they should treated just like normal pages in this | |
749 | * respect. | |
750 | * | |
751 | * We will likely want to have some new rss counters | |
752 | * for unaddressable pages, at some point. But for now | |
753 | * keep things as they are. | |
754 | */ | |
755 | get_page(page); | |
756 | rss[mm_counter(page)]++; | |
757 | page_dup_rmap(page, false); | |
758 | ||
759 | /* | |
760 | * We do not preserve soft-dirty information, because so | |
761 | * far, checkpoint/restore is the only feature that | |
762 | * requires that. And checkpoint/restore does not work | |
763 | * when a device driver is involved (you cannot easily | |
764 | * save and restore device driver state). | |
765 | */ | |
766 | if (is_write_device_private_entry(entry) && | |
767 | is_cow_mapping(vm_flags)) { | |
768 | make_device_private_entry_read(&entry); | |
769 | pte = swp_entry_to_pte(entry); | |
770 | set_pte_at(src_mm, addr, src_pte, pte); | |
771 | } | |
1da177e4 | 772 | } |
ae859762 | 773 | goto out_set_pte; |
1da177e4 LT |
774 | } |
775 | ||
1da177e4 LT |
776 | /* |
777 | * If it's a COW mapping, write protect it both | |
778 | * in the parent and the child | |
779 | */ | |
1b2de5d0 | 780 | if (is_cow_mapping(vm_flags) && pte_write(pte)) { |
1da177e4 | 781 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 782 | pte = pte_wrprotect(pte); |
1da177e4 LT |
783 | } |
784 | ||
785 | /* | |
786 | * If it's a shared mapping, mark it clean in | |
787 | * the child | |
788 | */ | |
789 | if (vm_flags & VM_SHARED) | |
790 | pte = pte_mkclean(pte); | |
791 | pte = pte_mkold(pte); | |
6aab341e LT |
792 | |
793 | page = vm_normal_page(vma, addr, pte); | |
794 | if (page) { | |
795 | get_page(page); | |
53f9263b | 796 | page_dup_rmap(page, false); |
eca56ff9 | 797 | rss[mm_counter(page)]++; |
df6ad698 JG |
798 | } else if (pte_devmap(pte)) { |
799 | page = pte_page(pte); | |
800 | ||
801 | /* | |
802 | * Cache coherent device memory behave like regular page and | |
803 | * not like persistent memory page. For more informations see | |
804 | * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h | |
805 | */ | |
806 | if (is_device_public_page(page)) { | |
807 | get_page(page); | |
808 | page_dup_rmap(page, false); | |
809 | rss[mm_counter(page)]++; | |
810 | } | |
6aab341e | 811 | } |
ae859762 HD |
812 | |
813 | out_set_pte: | |
814 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 815 | return 0; |
1da177e4 LT |
816 | } |
817 | ||
21bda264 | 818 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
71e3aac0 AA |
819 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
820 | unsigned long addr, unsigned long end) | |
1da177e4 | 821 | { |
c36987e2 | 822 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 823 | pte_t *src_pte, *dst_pte; |
c74df32c | 824 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 825 | int progress = 0; |
d559db08 | 826 | int rss[NR_MM_COUNTERS]; |
570a335b | 827 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
828 | |
829 | again: | |
d559db08 KH |
830 | init_rss_vec(rss); |
831 | ||
c74df32c | 832 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
833 | if (!dst_pte) |
834 | return -ENOMEM; | |
ece0e2b6 | 835 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 836 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 837 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
838 | orig_src_pte = src_pte; |
839 | orig_dst_pte = dst_pte; | |
6606c3e0 | 840 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 841 | |
1da177e4 LT |
842 | do { |
843 | /* | |
844 | * We are holding two locks at this point - either of them | |
845 | * could generate latencies in another task on another CPU. | |
846 | */ | |
e040f218 HD |
847 | if (progress >= 32) { |
848 | progress = 0; | |
849 | if (need_resched() || | |
95c354fe | 850 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
851 | break; |
852 | } | |
1da177e4 LT |
853 | if (pte_none(*src_pte)) { |
854 | progress++; | |
855 | continue; | |
856 | } | |
570a335b HD |
857 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
858 | vma, addr, rss); | |
859 | if (entry.val) | |
860 | break; | |
1da177e4 LT |
861 | progress += 8; |
862 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 863 | |
6606c3e0 | 864 | arch_leave_lazy_mmu_mode(); |
c74df32c | 865 | spin_unlock(src_ptl); |
ece0e2b6 | 866 | pte_unmap(orig_src_pte); |
d559db08 | 867 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 868 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 869 | cond_resched(); |
570a335b HD |
870 | |
871 | if (entry.val) { | |
872 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
873 | return -ENOMEM; | |
874 | progress = 0; | |
875 | } | |
1da177e4 LT |
876 | if (addr != end) |
877 | goto again; | |
878 | return 0; | |
879 | } | |
880 | ||
881 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
882 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
883 | unsigned long addr, unsigned long end) | |
884 | { | |
885 | pmd_t *src_pmd, *dst_pmd; | |
886 | unsigned long next; | |
887 | ||
888 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
889 | if (!dst_pmd) | |
890 | return -ENOMEM; | |
891 | src_pmd = pmd_offset(src_pud, addr); | |
892 | do { | |
893 | next = pmd_addr_end(addr, end); | |
84c3fc4e ZY |
894 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) |
895 | || pmd_devmap(*src_pmd)) { | |
71e3aac0 | 896 | int err; |
a00cc7d9 | 897 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); |
71e3aac0 AA |
898 | err = copy_huge_pmd(dst_mm, src_mm, |
899 | dst_pmd, src_pmd, addr, vma); | |
900 | if (err == -ENOMEM) | |
901 | return -ENOMEM; | |
902 | if (!err) | |
903 | continue; | |
904 | /* fall through */ | |
905 | } | |
1da177e4 LT |
906 | if (pmd_none_or_clear_bad(src_pmd)) |
907 | continue; | |
908 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
909 | vma, addr, next)) | |
910 | return -ENOMEM; | |
911 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
912 | return 0; | |
913 | } | |
914 | ||
915 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
c2febafc | 916 | p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, |
1da177e4 LT |
917 | unsigned long addr, unsigned long end) |
918 | { | |
919 | pud_t *src_pud, *dst_pud; | |
920 | unsigned long next; | |
921 | ||
c2febafc | 922 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
923 | if (!dst_pud) |
924 | return -ENOMEM; | |
c2febafc | 925 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
926 | do { |
927 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
928 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
929 | int err; | |
930 | ||
931 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); | |
932 | err = copy_huge_pud(dst_mm, src_mm, | |
933 | dst_pud, src_pud, addr, vma); | |
934 | if (err == -ENOMEM) | |
935 | return -ENOMEM; | |
936 | if (!err) | |
937 | continue; | |
938 | /* fall through */ | |
939 | } | |
1da177e4 LT |
940 | if (pud_none_or_clear_bad(src_pud)) |
941 | continue; | |
942 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
943 | vma, addr, next)) | |
944 | return -ENOMEM; | |
945 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
946 | return 0; | |
947 | } | |
948 | ||
c2febafc KS |
949 | static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
950 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
951 | unsigned long addr, unsigned long end) | |
952 | { | |
953 | p4d_t *src_p4d, *dst_p4d; | |
954 | unsigned long next; | |
955 | ||
956 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
957 | if (!dst_p4d) | |
958 | return -ENOMEM; | |
959 | src_p4d = p4d_offset(src_pgd, addr); | |
960 | do { | |
961 | next = p4d_addr_end(addr, end); | |
962 | if (p4d_none_or_clear_bad(src_p4d)) | |
963 | continue; | |
964 | if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, | |
965 | vma, addr, next)) | |
966 | return -ENOMEM; | |
967 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
968 | return 0; | |
969 | } | |
970 | ||
1da177e4 LT |
971 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
972 | struct vm_area_struct *vma) | |
973 | { | |
974 | pgd_t *src_pgd, *dst_pgd; | |
975 | unsigned long next; | |
976 | unsigned long addr = vma->vm_start; | |
977 | unsigned long end = vma->vm_end; | |
ac46d4f3 | 978 | struct mmu_notifier_range range; |
2ec74c3e | 979 | bool is_cow; |
cddb8a5c | 980 | int ret; |
1da177e4 | 981 | |
d992895b NP |
982 | /* |
983 | * Don't copy ptes where a page fault will fill them correctly. | |
984 | * Fork becomes much lighter when there are big shared or private | |
985 | * readonly mappings. The tradeoff is that copy_page_range is more | |
986 | * efficient than faulting. | |
987 | */ | |
0661a336 KS |
988 | if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && |
989 | !vma->anon_vma) | |
990 | return 0; | |
d992895b | 991 | |
1da177e4 LT |
992 | if (is_vm_hugetlb_page(vma)) |
993 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
994 | ||
b3b9c293 | 995 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 996 | /* |
997 | * We do not free on error cases below as remove_vma | |
998 | * gets called on error from higher level routine | |
999 | */ | |
5180da41 | 1000 | ret = track_pfn_copy(vma); |
2ab64037 | 1001 | if (ret) |
1002 | return ret; | |
1003 | } | |
1004 | ||
cddb8a5c AA |
1005 | /* |
1006 | * We need to invalidate the secondary MMU mappings only when | |
1007 | * there could be a permission downgrade on the ptes of the | |
1008 | * parent mm. And a permission downgrade will only happen if | |
1009 | * is_cow_mapping() returns true. | |
1010 | */ | |
2ec74c3e | 1011 | is_cow = is_cow_mapping(vma->vm_flags); |
ac46d4f3 JG |
1012 | |
1013 | if (is_cow) { | |
7269f999 JG |
1014 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
1015 | 0, vma, src_mm, addr, end); | |
ac46d4f3 JG |
1016 | mmu_notifier_invalidate_range_start(&range); |
1017 | } | |
cddb8a5c AA |
1018 | |
1019 | ret = 0; | |
1da177e4 LT |
1020 | dst_pgd = pgd_offset(dst_mm, addr); |
1021 | src_pgd = pgd_offset(src_mm, addr); | |
1022 | do { | |
1023 | next = pgd_addr_end(addr, end); | |
1024 | if (pgd_none_or_clear_bad(src_pgd)) | |
1025 | continue; | |
c2febafc | 1026 | if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, |
cddb8a5c AA |
1027 | vma, addr, next))) { |
1028 | ret = -ENOMEM; | |
1029 | break; | |
1030 | } | |
1da177e4 | 1031 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1032 | |
2ec74c3e | 1033 | if (is_cow) |
ac46d4f3 | 1034 | mmu_notifier_invalidate_range_end(&range); |
cddb8a5c | 1035 | return ret; |
1da177e4 LT |
1036 | } |
1037 | ||
51c6f666 | 1038 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1039 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1040 | unsigned long addr, unsigned long end, |
97a89413 | 1041 | struct zap_details *details) |
1da177e4 | 1042 | { |
b5810039 | 1043 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1044 | int force_flush = 0; |
d559db08 | 1045 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1046 | spinlock_t *ptl; |
5f1a1907 | 1047 | pte_t *start_pte; |
97a89413 | 1048 | pte_t *pte; |
8a5f14a2 | 1049 | swp_entry_t entry; |
d559db08 | 1050 | |
ed6a7935 | 1051 | tlb_change_page_size(tlb, PAGE_SIZE); |
d16dfc55 | 1052 | again: |
e303297e | 1053 | init_rss_vec(rss); |
5f1a1907 SR |
1054 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1055 | pte = start_pte; | |
3ea27719 | 1056 | flush_tlb_batched_pending(mm); |
6606c3e0 | 1057 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1058 | do { |
1059 | pte_t ptent = *pte; | |
166f61b9 | 1060 | if (pte_none(ptent)) |
1da177e4 | 1061 | continue; |
6f5e6b9e | 1062 | |
1da177e4 | 1063 | if (pte_present(ptent)) { |
ee498ed7 | 1064 | struct page *page; |
51c6f666 | 1065 | |
df6ad698 | 1066 | page = _vm_normal_page(vma, addr, ptent, true); |
1da177e4 LT |
1067 | if (unlikely(details) && page) { |
1068 | /* | |
1069 | * unmap_shared_mapping_pages() wants to | |
1070 | * invalidate cache without truncating: | |
1071 | * unmap shared but keep private pages. | |
1072 | */ | |
1073 | if (details->check_mapping && | |
800d8c63 | 1074 | details->check_mapping != page_rmapping(page)) |
1da177e4 | 1075 | continue; |
1da177e4 | 1076 | } |
b5810039 | 1077 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1078 | tlb->fullmm); |
1da177e4 LT |
1079 | tlb_remove_tlb_entry(tlb, pte, addr); |
1080 | if (unlikely(!page)) | |
1081 | continue; | |
eca56ff9 JM |
1082 | |
1083 | if (!PageAnon(page)) { | |
1cf35d47 LT |
1084 | if (pte_dirty(ptent)) { |
1085 | force_flush = 1; | |
6237bcd9 | 1086 | set_page_dirty(page); |
1cf35d47 | 1087 | } |
4917e5d0 | 1088 | if (pte_young(ptent) && |
64363aad | 1089 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1090 | mark_page_accessed(page); |
6237bcd9 | 1091 | } |
eca56ff9 | 1092 | rss[mm_counter(page)]--; |
d281ee61 | 1093 | page_remove_rmap(page, false); |
3dc14741 HD |
1094 | if (unlikely(page_mapcount(page) < 0)) |
1095 | print_bad_pte(vma, addr, ptent, page); | |
e9d55e15 | 1096 | if (unlikely(__tlb_remove_page(tlb, page))) { |
1cf35d47 | 1097 | force_flush = 1; |
ce9ec37b | 1098 | addr += PAGE_SIZE; |
d16dfc55 | 1099 | break; |
1cf35d47 | 1100 | } |
1da177e4 LT |
1101 | continue; |
1102 | } | |
5042db43 JG |
1103 | |
1104 | entry = pte_to_swp_entry(ptent); | |
1105 | if (non_swap_entry(entry) && is_device_private_entry(entry)) { | |
1106 | struct page *page = device_private_entry_to_page(entry); | |
1107 | ||
1108 | if (unlikely(details && details->check_mapping)) { | |
1109 | /* | |
1110 | * unmap_shared_mapping_pages() wants to | |
1111 | * invalidate cache without truncating: | |
1112 | * unmap shared but keep private pages. | |
1113 | */ | |
1114 | if (details->check_mapping != | |
1115 | page_rmapping(page)) | |
1116 | continue; | |
1117 | } | |
1118 | ||
1119 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | |
1120 | rss[mm_counter(page)]--; | |
1121 | page_remove_rmap(page, false); | |
1122 | put_page(page); | |
1123 | continue; | |
1124 | } | |
1125 | ||
3e8715fd KS |
1126 | /* If details->check_mapping, we leave swap entries. */ |
1127 | if (unlikely(details)) | |
1da177e4 | 1128 | continue; |
b084d435 | 1129 | |
8a5f14a2 KS |
1130 | entry = pte_to_swp_entry(ptent); |
1131 | if (!non_swap_entry(entry)) | |
1132 | rss[MM_SWAPENTS]--; | |
1133 | else if (is_migration_entry(entry)) { | |
1134 | struct page *page; | |
9f9f1acd | 1135 | |
8a5f14a2 | 1136 | page = migration_entry_to_page(entry); |
eca56ff9 | 1137 | rss[mm_counter(page)]--; |
b084d435 | 1138 | } |
8a5f14a2 KS |
1139 | if (unlikely(!free_swap_and_cache(entry))) |
1140 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 1141 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
97a89413 | 1142 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1143 | |
d559db08 | 1144 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1145 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1146 | |
1cf35d47 | 1147 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1148 | if (force_flush) |
1cf35d47 | 1149 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1150 | pte_unmap_unlock(start_pte, ptl); |
1151 | ||
1152 | /* | |
1153 | * If we forced a TLB flush (either due to running out of | |
1154 | * batch buffers or because we needed to flush dirty TLB | |
1155 | * entries before releasing the ptl), free the batched | |
1156 | * memory too. Restart if we didn't do everything. | |
1157 | */ | |
1158 | if (force_flush) { | |
1159 | force_flush = 0; | |
fa0aafb8 | 1160 | tlb_flush_mmu(tlb); |
2b047252 | 1161 | if (addr != end) |
d16dfc55 PZ |
1162 | goto again; |
1163 | } | |
1164 | ||
51c6f666 | 1165 | return addr; |
1da177e4 LT |
1166 | } |
1167 | ||
51c6f666 | 1168 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1169 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1170 | unsigned long addr, unsigned long end, |
97a89413 | 1171 | struct zap_details *details) |
1da177e4 LT |
1172 | { |
1173 | pmd_t *pmd; | |
1174 | unsigned long next; | |
1175 | ||
1176 | pmd = pmd_offset(pud, addr); | |
1177 | do { | |
1178 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 1179 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
53406ed1 | 1180 | if (next - addr != HPAGE_PMD_SIZE) |
fd60775a | 1181 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
53406ed1 | 1182 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1183 | goto next; |
71e3aac0 AA |
1184 | /* fall through */ |
1185 | } | |
1a5a9906 AA |
1186 | /* |
1187 | * Here there can be other concurrent MADV_DONTNEED or | |
1188 | * trans huge page faults running, and if the pmd is | |
1189 | * none or trans huge it can change under us. This is | |
1190 | * because MADV_DONTNEED holds the mmap_sem in read | |
1191 | * mode. | |
1192 | */ | |
1193 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1194 | goto next; | |
97a89413 | 1195 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1196 | next: |
97a89413 PZ |
1197 | cond_resched(); |
1198 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1199 | |
1200 | return addr; | |
1da177e4 LT |
1201 | } |
1202 | ||
51c6f666 | 1203 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1204 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1205 | unsigned long addr, unsigned long end, |
97a89413 | 1206 | struct zap_details *details) |
1da177e4 LT |
1207 | { |
1208 | pud_t *pud; | |
1209 | unsigned long next; | |
1210 | ||
c2febafc | 1211 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1212 | do { |
1213 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1214 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1215 | if (next - addr != HPAGE_PUD_SIZE) { | |
1216 | VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); | |
1217 | split_huge_pud(vma, pud, addr); | |
1218 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1219 | goto next; | |
1220 | /* fall through */ | |
1221 | } | |
97a89413 | 1222 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1223 | continue; |
97a89413 | 1224 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1225 | next: |
1226 | cond_resched(); | |
97a89413 | 1227 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1228 | |
1229 | return addr; | |
1da177e4 LT |
1230 | } |
1231 | ||
c2febafc KS |
1232 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1233 | struct vm_area_struct *vma, pgd_t *pgd, | |
1234 | unsigned long addr, unsigned long end, | |
1235 | struct zap_details *details) | |
1236 | { | |
1237 | p4d_t *p4d; | |
1238 | unsigned long next; | |
1239 | ||
1240 | p4d = p4d_offset(pgd, addr); | |
1241 | do { | |
1242 | next = p4d_addr_end(addr, end); | |
1243 | if (p4d_none_or_clear_bad(p4d)) | |
1244 | continue; | |
1245 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1246 | } while (p4d++, addr = next, addr != end); | |
1247 | ||
1248 | return addr; | |
1249 | } | |
1250 | ||
aac45363 | 1251 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1252 | struct vm_area_struct *vma, |
1253 | unsigned long addr, unsigned long end, | |
1254 | struct zap_details *details) | |
1da177e4 LT |
1255 | { |
1256 | pgd_t *pgd; | |
1257 | unsigned long next; | |
1258 | ||
1da177e4 LT |
1259 | BUG_ON(addr >= end); |
1260 | tlb_start_vma(tlb, vma); | |
1261 | pgd = pgd_offset(vma->vm_mm, addr); | |
1262 | do { | |
1263 | next = pgd_addr_end(addr, end); | |
97a89413 | 1264 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1265 | continue; |
c2febafc | 1266 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1267 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1268 | tlb_end_vma(tlb, vma); |
1269 | } | |
51c6f666 | 1270 | |
f5cc4eef AV |
1271 | |
1272 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1273 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1274 | unsigned long end_addr, |
f5cc4eef AV |
1275 | struct zap_details *details) |
1276 | { | |
1277 | unsigned long start = max(vma->vm_start, start_addr); | |
1278 | unsigned long end; | |
1279 | ||
1280 | if (start >= vma->vm_end) | |
1281 | return; | |
1282 | end = min(vma->vm_end, end_addr); | |
1283 | if (end <= vma->vm_start) | |
1284 | return; | |
1285 | ||
cbc91f71 SD |
1286 | if (vma->vm_file) |
1287 | uprobe_munmap(vma, start, end); | |
1288 | ||
b3b9c293 | 1289 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1290 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1291 | |
1292 | if (start != end) { | |
1293 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1294 | /* | |
1295 | * It is undesirable to test vma->vm_file as it | |
1296 | * should be non-null for valid hugetlb area. | |
1297 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1298 | * cleanup path of mmap_region. When |
f5cc4eef | 1299 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1300 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1301 | * before calling this function to clean up. |
1302 | * Since no pte has actually been setup, it is | |
1303 | * safe to do nothing in this case. | |
1304 | */ | |
24669e58 | 1305 | if (vma->vm_file) { |
83cde9e8 | 1306 | i_mmap_lock_write(vma->vm_file->f_mapping); |
d833352a | 1307 | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); |
83cde9e8 | 1308 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1309 | } |
f5cc4eef AV |
1310 | } else |
1311 | unmap_page_range(tlb, vma, start, end, details); | |
1312 | } | |
1da177e4 LT |
1313 | } |
1314 | ||
1da177e4 LT |
1315 | /** |
1316 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1317 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1318 | * @vma: the starting vma |
1319 | * @start_addr: virtual address at which to start unmapping | |
1320 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1321 | * |
508034a3 | 1322 | * Unmap all pages in the vma list. |
1da177e4 | 1323 | * |
1da177e4 LT |
1324 | * Only addresses between `start' and `end' will be unmapped. |
1325 | * | |
1326 | * The VMA list must be sorted in ascending virtual address order. | |
1327 | * | |
1328 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1329 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1330 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1331 | * drops the lock and schedules. | |
1332 | */ | |
6e8bb019 | 1333 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1334 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1335 | unsigned long end_addr) |
1da177e4 | 1336 | { |
ac46d4f3 | 1337 | struct mmu_notifier_range range; |
1da177e4 | 1338 | |
6f4f13e8 JG |
1339 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, |
1340 | start_addr, end_addr); | |
ac46d4f3 | 1341 | mmu_notifier_invalidate_range_start(&range); |
f5cc4eef | 1342 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
4f74d2c8 | 1343 | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); |
ac46d4f3 | 1344 | mmu_notifier_invalidate_range_end(&range); |
1da177e4 LT |
1345 | } |
1346 | ||
1347 | /** | |
1348 | * zap_page_range - remove user pages in a given range | |
1349 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1350 | * @start: starting address of pages to zap |
1da177e4 | 1351 | * @size: number of bytes to zap |
f5cc4eef AV |
1352 | * |
1353 | * Caller must protect the VMA list | |
1da177e4 | 1354 | */ |
7e027b14 | 1355 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
ecf1385d | 1356 | unsigned long size) |
1da177e4 | 1357 | { |
ac46d4f3 | 1358 | struct mmu_notifier_range range; |
d16dfc55 | 1359 | struct mmu_gather tlb; |
1da177e4 | 1360 | |
1da177e4 | 1361 | lru_add_drain(); |
7269f999 | 1362 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1363 | start, start + size); |
ac46d4f3 JG |
1364 | tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); |
1365 | update_hiwater_rss(vma->vm_mm); | |
1366 | mmu_notifier_invalidate_range_start(&range); | |
1367 | for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) | |
1368 | unmap_single_vma(&tlb, vma, start, range.end, NULL); | |
1369 | mmu_notifier_invalidate_range_end(&range); | |
1370 | tlb_finish_mmu(&tlb, start, range.end); | |
1da177e4 LT |
1371 | } |
1372 | ||
f5cc4eef AV |
1373 | /** |
1374 | * zap_page_range_single - remove user pages in a given range | |
1375 | * @vma: vm_area_struct holding the applicable pages | |
1376 | * @address: starting address of pages to zap | |
1377 | * @size: number of bytes to zap | |
8a5f14a2 | 1378 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1379 | * |
1380 | * The range must fit into one VMA. | |
1da177e4 | 1381 | */ |
f5cc4eef | 1382 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1383 | unsigned long size, struct zap_details *details) |
1384 | { | |
ac46d4f3 | 1385 | struct mmu_notifier_range range; |
d16dfc55 | 1386 | struct mmu_gather tlb; |
1da177e4 | 1387 | |
1da177e4 | 1388 | lru_add_drain(); |
7269f999 | 1389 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1390 | address, address + size); |
ac46d4f3 JG |
1391 | tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); |
1392 | update_hiwater_rss(vma->vm_mm); | |
1393 | mmu_notifier_invalidate_range_start(&range); | |
1394 | unmap_single_vma(&tlb, vma, address, range.end, details); | |
1395 | mmu_notifier_invalidate_range_end(&range); | |
1396 | tlb_finish_mmu(&tlb, address, range.end); | |
1da177e4 LT |
1397 | } |
1398 | ||
c627f9cc JS |
1399 | /** |
1400 | * zap_vma_ptes - remove ptes mapping the vma | |
1401 | * @vma: vm_area_struct holding ptes to be zapped | |
1402 | * @address: starting address of pages to zap | |
1403 | * @size: number of bytes to zap | |
1404 | * | |
1405 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1406 | * | |
1407 | * The entire address range must be fully contained within the vma. | |
1408 | * | |
c627f9cc | 1409 | */ |
27d036e3 | 1410 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
c627f9cc JS |
1411 | unsigned long size) |
1412 | { | |
1413 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1414 | !(vma->vm_flags & VM_PFNMAP)) | |
27d036e3 LR |
1415 | return; |
1416 | ||
f5cc4eef | 1417 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1418 | } |
1419 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1420 | ||
25ca1d6c | 1421 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
920c7a5d | 1422 | spinlock_t **ptl) |
c9cfcddf | 1423 | { |
c2febafc KS |
1424 | pgd_t *pgd; |
1425 | p4d_t *p4d; | |
1426 | pud_t *pud; | |
1427 | pmd_t *pmd; | |
1428 | ||
1429 | pgd = pgd_offset(mm, addr); | |
1430 | p4d = p4d_alloc(mm, pgd, addr); | |
1431 | if (!p4d) | |
1432 | return NULL; | |
1433 | pud = pud_alloc(mm, p4d, addr); | |
1434 | if (!pud) | |
1435 | return NULL; | |
1436 | pmd = pmd_alloc(mm, pud, addr); | |
1437 | if (!pmd) | |
1438 | return NULL; | |
1439 | ||
1440 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
1441 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
c9cfcddf LT |
1442 | } |
1443 | ||
238f58d8 LT |
1444 | /* |
1445 | * This is the old fallback for page remapping. | |
1446 | * | |
1447 | * For historical reasons, it only allows reserved pages. Only | |
1448 | * old drivers should use this, and they needed to mark their | |
1449 | * pages reserved for the old functions anyway. | |
1450 | */ | |
423bad60 NP |
1451 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1452 | struct page *page, pgprot_t prot) | |
238f58d8 | 1453 | { |
423bad60 | 1454 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1455 | int retval; |
c9cfcddf | 1456 | pte_t *pte; |
8a9f3ccd BS |
1457 | spinlock_t *ptl; |
1458 | ||
238f58d8 | 1459 | retval = -EINVAL; |
0ee930e6 | 1460 | if (PageAnon(page) || PageSlab(page) || page_has_type(page)) |
5b4e655e | 1461 | goto out; |
238f58d8 LT |
1462 | retval = -ENOMEM; |
1463 | flush_dcache_page(page); | |
c9cfcddf | 1464 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1465 | if (!pte) |
5b4e655e | 1466 | goto out; |
238f58d8 LT |
1467 | retval = -EBUSY; |
1468 | if (!pte_none(*pte)) | |
1469 | goto out_unlock; | |
1470 | ||
1471 | /* Ok, finally just insert the thing.. */ | |
1472 | get_page(page); | |
eca56ff9 | 1473 | inc_mm_counter_fast(mm, mm_counter_file(page)); |
dd78fedd | 1474 | page_add_file_rmap(page, false); |
238f58d8 LT |
1475 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); |
1476 | ||
1477 | retval = 0; | |
1478 | out_unlock: | |
1479 | pte_unmap_unlock(pte, ptl); | |
1480 | out: | |
1481 | return retval; | |
1482 | } | |
1483 | ||
bfa5bf6d REB |
1484 | /** |
1485 | * vm_insert_page - insert single page into user vma | |
1486 | * @vma: user vma to map to | |
1487 | * @addr: target user address of this page | |
1488 | * @page: source kernel page | |
1489 | * | |
a145dd41 LT |
1490 | * This allows drivers to insert individual pages they've allocated |
1491 | * into a user vma. | |
1492 | * | |
1493 | * The page has to be a nice clean _individual_ kernel allocation. | |
1494 | * If you allocate a compound page, you need to have marked it as | |
1495 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1496 | * (see split_page()). |
a145dd41 LT |
1497 | * |
1498 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1499 | * took an arbitrary page protection parameter. This doesn't allow | |
1500 | * that. Your vma protection will have to be set up correctly, which | |
1501 | * means that if you want a shared writable mapping, you'd better | |
1502 | * ask for a shared writable mapping! | |
1503 | * | |
1504 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1505 | * |
1506 | * Usually this function is called from f_op->mmap() handler | |
1507 | * under mm->mmap_sem write-lock, so it can change vma->vm_flags. | |
1508 | * Caller must set VM_MIXEDMAP on vma if it wants to call this | |
1509 | * function from other places, for example from page-fault handler. | |
a862f68a MR |
1510 | * |
1511 | * Return: %0 on success, negative error code otherwise. | |
a145dd41 | 1512 | */ |
423bad60 NP |
1513 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1514 | struct page *page) | |
a145dd41 LT |
1515 | { |
1516 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1517 | return -EFAULT; | |
1518 | if (!page_count(page)) | |
1519 | return -EINVAL; | |
4b6e1e37 KK |
1520 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
1521 | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | |
1522 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
1523 | vma->vm_flags |= VM_MIXEDMAP; | |
1524 | } | |
423bad60 | 1525 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1526 | } |
e3c3374f | 1527 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1528 | |
a667d745 SJ |
1529 | /* |
1530 | * __vm_map_pages - maps range of kernel pages into user vma | |
1531 | * @vma: user vma to map to | |
1532 | * @pages: pointer to array of source kernel pages | |
1533 | * @num: number of pages in page array | |
1534 | * @offset: user's requested vm_pgoff | |
1535 | * | |
1536 | * This allows drivers to map range of kernel pages into a user vma. | |
1537 | * | |
1538 | * Return: 0 on success and error code otherwise. | |
1539 | */ | |
1540 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1541 | unsigned long num, unsigned long offset) | |
1542 | { | |
1543 | unsigned long count = vma_pages(vma); | |
1544 | unsigned long uaddr = vma->vm_start; | |
1545 | int ret, i; | |
1546 | ||
1547 | /* Fail if the user requested offset is beyond the end of the object */ | |
96756fcb | 1548 | if (offset >= num) |
a667d745 SJ |
1549 | return -ENXIO; |
1550 | ||
1551 | /* Fail if the user requested size exceeds available object size */ | |
1552 | if (count > num - offset) | |
1553 | return -ENXIO; | |
1554 | ||
1555 | for (i = 0; i < count; i++) { | |
1556 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
1557 | if (ret < 0) | |
1558 | return ret; | |
1559 | uaddr += PAGE_SIZE; | |
1560 | } | |
1561 | ||
1562 | return 0; | |
1563 | } | |
1564 | ||
1565 | /** | |
1566 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
1567 | * @vma: user vma to map to | |
1568 | * @pages: pointer to array of source kernel pages | |
1569 | * @num: number of pages in page array | |
1570 | * | |
1571 | * Maps an object consisting of @num pages, catering for the user's | |
1572 | * requested vm_pgoff | |
1573 | * | |
1574 | * If we fail to insert any page into the vma, the function will return | |
1575 | * immediately leaving any previously inserted pages present. Callers | |
1576 | * from the mmap handler may immediately return the error as their caller | |
1577 | * will destroy the vma, removing any successfully inserted pages. Other | |
1578 | * callers should make their own arrangements for calling unmap_region(). | |
1579 | * | |
1580 | * Context: Process context. Called by mmap handlers. | |
1581 | * Return: 0 on success and error code otherwise. | |
1582 | */ | |
1583 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
1584 | unsigned long num) | |
1585 | { | |
1586 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
1587 | } | |
1588 | EXPORT_SYMBOL(vm_map_pages); | |
1589 | ||
1590 | /** | |
1591 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
1592 | * @vma: user vma to map to | |
1593 | * @pages: pointer to array of source kernel pages | |
1594 | * @num: number of pages in page array | |
1595 | * | |
1596 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
1597 | * to 0. This function is intended for the drivers that did not consider | |
1598 | * vm_pgoff. | |
1599 | * | |
1600 | * Context: Process context. Called by mmap handlers. | |
1601 | * Return: 0 on success and error code otherwise. | |
1602 | */ | |
1603 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
1604 | unsigned long num) | |
1605 | { | |
1606 | return __vm_map_pages(vma, pages, num, 0); | |
1607 | } | |
1608 | EXPORT_SYMBOL(vm_map_pages_zero); | |
1609 | ||
9b5a8e00 | 1610 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
b2770da6 | 1611 | pfn_t pfn, pgprot_t prot, bool mkwrite) |
423bad60 NP |
1612 | { |
1613 | struct mm_struct *mm = vma->vm_mm; | |
423bad60 NP |
1614 | pte_t *pte, entry; |
1615 | spinlock_t *ptl; | |
1616 | ||
423bad60 NP |
1617 | pte = get_locked_pte(mm, addr, &ptl); |
1618 | if (!pte) | |
9b5a8e00 | 1619 | return VM_FAULT_OOM; |
b2770da6 RZ |
1620 | if (!pte_none(*pte)) { |
1621 | if (mkwrite) { | |
1622 | /* | |
1623 | * For read faults on private mappings the PFN passed | |
1624 | * in may not match the PFN we have mapped if the | |
1625 | * mapped PFN is a writeable COW page. In the mkwrite | |
1626 | * case we are creating a writable PTE for a shared | |
f2c57d91 JK |
1627 | * mapping and we expect the PFNs to match. If they |
1628 | * don't match, we are likely racing with block | |
1629 | * allocation and mapping invalidation so just skip the | |
1630 | * update. | |
b2770da6 | 1631 | */ |
f2c57d91 JK |
1632 | if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { |
1633 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); | |
b2770da6 | 1634 | goto out_unlock; |
f2c57d91 | 1635 | } |
cae85cb8 JK |
1636 | entry = pte_mkyoung(*pte); |
1637 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1638 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
1639 | update_mmu_cache(vma, addr, pte); | |
1640 | } | |
1641 | goto out_unlock; | |
b2770da6 | 1642 | } |
423bad60 NP |
1643 | |
1644 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
1645 | if (pfn_t_devmap(pfn)) |
1646 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
1647 | else | |
1648 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
b2770da6 | 1649 | |
b2770da6 RZ |
1650 | if (mkwrite) { |
1651 | entry = pte_mkyoung(entry); | |
1652 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1653 | } | |
1654 | ||
423bad60 | 1655 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 1656 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 | 1657 | |
423bad60 NP |
1658 | out_unlock: |
1659 | pte_unmap_unlock(pte, ptl); | |
9b5a8e00 | 1660 | return VM_FAULT_NOPAGE; |
423bad60 NP |
1661 | } |
1662 | ||
f5e6d1d5 MW |
1663 | /** |
1664 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
1665 | * @vma: user vma to map to | |
1666 | * @addr: target user address of this page | |
1667 | * @pfn: source kernel pfn | |
1668 | * @pgprot: pgprot flags for the inserted page | |
1669 | * | |
1670 | * This is exactly like vmf_insert_pfn(), except that it allows drivers to | |
1671 | * to override pgprot on a per-page basis. | |
1672 | * | |
1673 | * This only makes sense for IO mappings, and it makes no sense for | |
1674 | * COW mappings. In general, using multiple vmas is preferable; | |
ae2b01f3 | 1675 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is |
f5e6d1d5 MW |
1676 | * impractical. |
1677 | * | |
ae2b01f3 | 1678 | * Context: Process context. May allocate using %GFP_KERNEL. |
f5e6d1d5 MW |
1679 | * Return: vm_fault_t value. |
1680 | */ | |
1681 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
1682 | unsigned long pfn, pgprot_t pgprot) | |
1683 | { | |
6d958546 MW |
1684 | /* |
1685 | * Technically, architectures with pte_special can avoid all these | |
1686 | * restrictions (same for remap_pfn_range). However we would like | |
1687 | * consistency in testing and feature parity among all, so we should | |
1688 | * try to keep these invariants in place for everybody. | |
1689 | */ | |
1690 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
1691 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1692 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1693 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1694 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
1695 | ||
1696 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1697 | return VM_FAULT_SIGBUS; | |
1698 | ||
1699 | if (!pfn_modify_allowed(pfn, pgprot)) | |
1700 | return VM_FAULT_SIGBUS; | |
1701 | ||
1702 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
1703 | ||
9b5a8e00 | 1704 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, |
6d958546 | 1705 | false); |
f5e6d1d5 MW |
1706 | } |
1707 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
e0dc0d8f | 1708 | |
ae2b01f3 MW |
1709 | /** |
1710 | * vmf_insert_pfn - insert single pfn into user vma | |
1711 | * @vma: user vma to map to | |
1712 | * @addr: target user address of this page | |
1713 | * @pfn: source kernel pfn | |
1714 | * | |
1715 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
1716 | * they've allocated into a user vma. Same comments apply. | |
1717 | * | |
1718 | * This function should only be called from a vm_ops->fault handler, and | |
1719 | * in that case the handler should return the result of this function. | |
1720 | * | |
1721 | * vma cannot be a COW mapping. | |
1722 | * | |
1723 | * As this is called only for pages that do not currently exist, we | |
1724 | * do not need to flush old virtual caches or the TLB. | |
1725 | * | |
1726 | * Context: Process context. May allocate using %GFP_KERNEL. | |
1727 | * Return: vm_fault_t value. | |
1728 | */ | |
1729 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
1730 | unsigned long pfn) | |
1731 | { | |
1732 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
1733 | } | |
1734 | EXPORT_SYMBOL(vmf_insert_pfn); | |
1735 | ||
785a3fab DW |
1736 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) |
1737 | { | |
1738 | /* these checks mirror the abort conditions in vm_normal_page */ | |
1739 | if (vma->vm_flags & VM_MIXEDMAP) | |
1740 | return true; | |
1741 | if (pfn_t_devmap(pfn)) | |
1742 | return true; | |
1743 | if (pfn_t_special(pfn)) | |
1744 | return true; | |
1745 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
1746 | return true; | |
1747 | return false; | |
1748 | } | |
1749 | ||
79f3aa5b MW |
1750 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, |
1751 | unsigned long addr, pfn_t pfn, bool mkwrite) | |
423bad60 | 1752 | { |
87744ab3 | 1753 | pgprot_t pgprot = vma->vm_page_prot; |
79f3aa5b | 1754 | int err; |
87744ab3 | 1755 | |
785a3fab | 1756 | BUG_ON(!vm_mixed_ok(vma, pfn)); |
e0dc0d8f | 1757 | |
423bad60 | 1758 | if (addr < vma->vm_start || addr >= vma->vm_end) |
79f3aa5b | 1759 | return VM_FAULT_SIGBUS; |
308a047c BP |
1760 | |
1761 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 1762 | |
42e4089c | 1763 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) |
79f3aa5b | 1764 | return VM_FAULT_SIGBUS; |
42e4089c | 1765 | |
423bad60 NP |
1766 | /* |
1767 | * If we don't have pte special, then we have to use the pfn_valid() | |
1768 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1769 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1770 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1771 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 1772 | */ |
00b3a331 LD |
1773 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && |
1774 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
423bad60 NP |
1775 | struct page *page; |
1776 | ||
03fc2da6 DW |
1777 | /* |
1778 | * At this point we are committed to insert_page() | |
1779 | * regardless of whether the caller specified flags that | |
1780 | * result in pfn_t_has_page() == false. | |
1781 | */ | |
1782 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
79f3aa5b MW |
1783 | err = insert_page(vma, addr, page, pgprot); |
1784 | } else { | |
9b5a8e00 | 1785 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); |
423bad60 | 1786 | } |
b2770da6 | 1787 | |
5d747637 MW |
1788 | if (err == -ENOMEM) |
1789 | return VM_FAULT_OOM; | |
1790 | if (err < 0 && err != -EBUSY) | |
1791 | return VM_FAULT_SIGBUS; | |
1792 | ||
1793 | return VM_FAULT_NOPAGE; | |
e0dc0d8f | 1794 | } |
79f3aa5b MW |
1795 | |
1796 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | |
1797 | pfn_t pfn) | |
1798 | { | |
1799 | return __vm_insert_mixed(vma, addr, pfn, false); | |
1800 | } | |
5d747637 | 1801 | EXPORT_SYMBOL(vmf_insert_mixed); |
e0dc0d8f | 1802 | |
ab77dab4 SJ |
1803 | /* |
1804 | * If the insertion of PTE failed because someone else already added a | |
1805 | * different entry in the mean time, we treat that as success as we assume | |
1806 | * the same entry was actually inserted. | |
1807 | */ | |
ab77dab4 SJ |
1808 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
1809 | unsigned long addr, pfn_t pfn) | |
b2770da6 | 1810 | { |
79f3aa5b | 1811 | return __vm_insert_mixed(vma, addr, pfn, true); |
b2770da6 | 1812 | } |
ab77dab4 | 1813 | EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); |
b2770da6 | 1814 | |
1da177e4 LT |
1815 | /* |
1816 | * maps a range of physical memory into the requested pages. the old | |
1817 | * mappings are removed. any references to nonexistent pages results | |
1818 | * in null mappings (currently treated as "copy-on-access") | |
1819 | */ | |
1820 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1821 | unsigned long addr, unsigned long end, | |
1822 | unsigned long pfn, pgprot_t prot) | |
1823 | { | |
1824 | pte_t *pte; | |
c74df32c | 1825 | spinlock_t *ptl; |
42e4089c | 1826 | int err = 0; |
1da177e4 | 1827 | |
c74df32c | 1828 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1829 | if (!pte) |
1830 | return -ENOMEM; | |
6606c3e0 | 1831 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1832 | do { |
1833 | BUG_ON(!pte_none(*pte)); | |
42e4089c AK |
1834 | if (!pfn_modify_allowed(pfn, prot)) { |
1835 | err = -EACCES; | |
1836 | break; | |
1837 | } | |
7e675137 | 1838 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1839 | pfn++; |
1840 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1841 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1842 | pte_unmap_unlock(pte - 1, ptl); |
42e4089c | 1843 | return err; |
1da177e4 LT |
1844 | } |
1845 | ||
1846 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1847 | unsigned long addr, unsigned long end, | |
1848 | unsigned long pfn, pgprot_t prot) | |
1849 | { | |
1850 | pmd_t *pmd; | |
1851 | unsigned long next; | |
42e4089c | 1852 | int err; |
1da177e4 LT |
1853 | |
1854 | pfn -= addr >> PAGE_SHIFT; | |
1855 | pmd = pmd_alloc(mm, pud, addr); | |
1856 | if (!pmd) | |
1857 | return -ENOMEM; | |
f66055ab | 1858 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
1859 | do { |
1860 | next = pmd_addr_end(addr, end); | |
42e4089c AK |
1861 | err = remap_pte_range(mm, pmd, addr, next, |
1862 | pfn + (addr >> PAGE_SHIFT), prot); | |
1863 | if (err) | |
1864 | return err; | |
1da177e4 LT |
1865 | } while (pmd++, addr = next, addr != end); |
1866 | return 0; | |
1867 | } | |
1868 | ||
c2febafc | 1869 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
1870 | unsigned long addr, unsigned long end, |
1871 | unsigned long pfn, pgprot_t prot) | |
1872 | { | |
1873 | pud_t *pud; | |
1874 | unsigned long next; | |
42e4089c | 1875 | int err; |
1da177e4 LT |
1876 | |
1877 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 1878 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
1879 | if (!pud) |
1880 | return -ENOMEM; | |
1881 | do { | |
1882 | next = pud_addr_end(addr, end); | |
42e4089c AK |
1883 | err = remap_pmd_range(mm, pud, addr, next, |
1884 | pfn + (addr >> PAGE_SHIFT), prot); | |
1885 | if (err) | |
1886 | return err; | |
1da177e4 LT |
1887 | } while (pud++, addr = next, addr != end); |
1888 | return 0; | |
1889 | } | |
1890 | ||
c2febafc KS |
1891 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
1892 | unsigned long addr, unsigned long end, | |
1893 | unsigned long pfn, pgprot_t prot) | |
1894 | { | |
1895 | p4d_t *p4d; | |
1896 | unsigned long next; | |
42e4089c | 1897 | int err; |
c2febafc KS |
1898 | |
1899 | pfn -= addr >> PAGE_SHIFT; | |
1900 | p4d = p4d_alloc(mm, pgd, addr); | |
1901 | if (!p4d) | |
1902 | return -ENOMEM; | |
1903 | do { | |
1904 | next = p4d_addr_end(addr, end); | |
42e4089c AK |
1905 | err = remap_pud_range(mm, p4d, addr, next, |
1906 | pfn + (addr >> PAGE_SHIFT), prot); | |
1907 | if (err) | |
1908 | return err; | |
c2febafc KS |
1909 | } while (p4d++, addr = next, addr != end); |
1910 | return 0; | |
1911 | } | |
1912 | ||
bfa5bf6d REB |
1913 | /** |
1914 | * remap_pfn_range - remap kernel memory to userspace | |
1915 | * @vma: user vma to map to | |
1916 | * @addr: target user address to start at | |
1917 | * @pfn: physical address of kernel memory | |
1918 | * @size: size of map area | |
1919 | * @prot: page protection flags for this mapping | |
1920 | * | |
a862f68a MR |
1921 | * Note: this is only safe if the mm semaphore is held when called. |
1922 | * | |
1923 | * Return: %0 on success, negative error code otherwise. | |
bfa5bf6d | 1924 | */ |
1da177e4 LT |
1925 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1926 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1927 | { | |
1928 | pgd_t *pgd; | |
1929 | unsigned long next; | |
2d15cab8 | 1930 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 | 1931 | struct mm_struct *mm = vma->vm_mm; |
d5957d2f | 1932 | unsigned long remap_pfn = pfn; |
1da177e4 LT |
1933 | int err; |
1934 | ||
1935 | /* | |
1936 | * Physically remapped pages are special. Tell the | |
1937 | * rest of the world about it: | |
1938 | * VM_IO tells people not to look at these pages | |
1939 | * (accesses can have side effects). | |
6aab341e LT |
1940 | * VM_PFNMAP tells the core MM that the base pages are just |
1941 | * raw PFN mappings, and do not have a "struct page" associated | |
1942 | * with them. | |
314e51b9 KK |
1943 | * VM_DONTEXPAND |
1944 | * Disable vma merging and expanding with mremap(). | |
1945 | * VM_DONTDUMP | |
1946 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
1947 | * |
1948 | * There's a horrible special case to handle copy-on-write | |
1949 | * behaviour that some programs depend on. We mark the "original" | |
1950 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 1951 | * See vm_normal_page() for details. |
1da177e4 | 1952 | */ |
b3b9c293 KK |
1953 | if (is_cow_mapping(vma->vm_flags)) { |
1954 | if (addr != vma->vm_start || end != vma->vm_end) | |
1955 | return -EINVAL; | |
fb155c16 | 1956 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
1957 | } |
1958 | ||
d5957d2f | 1959 | err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); |
b3b9c293 | 1960 | if (err) |
3c8bb73a | 1961 | return -EINVAL; |
fb155c16 | 1962 | |
314e51b9 | 1963 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
1964 | |
1965 | BUG_ON(addr >= end); | |
1966 | pfn -= addr >> PAGE_SHIFT; | |
1967 | pgd = pgd_offset(mm, addr); | |
1968 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1969 | do { |
1970 | next = pgd_addr_end(addr, end); | |
c2febafc | 1971 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
1972 | pfn + (addr >> PAGE_SHIFT), prot); |
1973 | if (err) | |
1974 | break; | |
1975 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1976 | |
1977 | if (err) | |
d5957d2f | 1978 | untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); |
2ab64037 | 1979 | |
1da177e4 LT |
1980 | return err; |
1981 | } | |
1982 | EXPORT_SYMBOL(remap_pfn_range); | |
1983 | ||
b4cbb197 LT |
1984 | /** |
1985 | * vm_iomap_memory - remap memory to userspace | |
1986 | * @vma: user vma to map to | |
1987 | * @start: start of area | |
1988 | * @len: size of area | |
1989 | * | |
1990 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
1991 | * driver just needs to give us the physical memory range to be mapped, | |
1992 | * we'll figure out the rest from the vma information. | |
1993 | * | |
1994 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
1995 | * whatever write-combining details or similar. | |
a862f68a MR |
1996 | * |
1997 | * Return: %0 on success, negative error code otherwise. | |
b4cbb197 LT |
1998 | */ |
1999 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2000 | { | |
2001 | unsigned long vm_len, pfn, pages; | |
2002 | ||
2003 | /* Check that the physical memory area passed in looks valid */ | |
2004 | if (start + len < start) | |
2005 | return -EINVAL; | |
2006 | /* | |
2007 | * You *really* shouldn't map things that aren't page-aligned, | |
2008 | * but we've historically allowed it because IO memory might | |
2009 | * just have smaller alignment. | |
2010 | */ | |
2011 | len += start & ~PAGE_MASK; | |
2012 | pfn = start >> PAGE_SHIFT; | |
2013 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2014 | if (pfn + pages < pfn) | |
2015 | return -EINVAL; | |
2016 | ||
2017 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2018 | if (vma->vm_pgoff > pages) | |
2019 | return -EINVAL; | |
2020 | pfn += vma->vm_pgoff; | |
2021 | pages -= vma->vm_pgoff; | |
2022 | ||
2023 | /* Can we fit all of the mapping? */ | |
2024 | vm_len = vma->vm_end - vma->vm_start; | |
2025 | if (vm_len >> PAGE_SHIFT > pages) | |
2026 | return -EINVAL; | |
2027 | ||
2028 | /* Ok, let it rip */ | |
2029 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
2030 | } | |
2031 | EXPORT_SYMBOL(vm_iomap_memory); | |
2032 | ||
aee16b3c JF |
2033 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
2034 | unsigned long addr, unsigned long end, | |
2035 | pte_fn_t fn, void *data) | |
2036 | { | |
2037 | pte_t *pte; | |
2038 | int err; | |
94909914 | 2039 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
2040 | |
2041 | pte = (mm == &init_mm) ? | |
2042 | pte_alloc_kernel(pmd, addr) : | |
2043 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
2044 | if (!pte) | |
2045 | return -ENOMEM; | |
2046 | ||
2047 | BUG_ON(pmd_huge(*pmd)); | |
2048 | ||
38e0edb1 JF |
2049 | arch_enter_lazy_mmu_mode(); |
2050 | ||
aee16b3c | 2051 | do { |
8b1e0f81 | 2052 | err = fn(pte++, addr, data); |
aee16b3c JF |
2053 | if (err) |
2054 | break; | |
c36987e2 | 2055 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 2056 | |
38e0edb1 JF |
2057 | arch_leave_lazy_mmu_mode(); |
2058 | ||
aee16b3c JF |
2059 | if (mm != &init_mm) |
2060 | pte_unmap_unlock(pte-1, ptl); | |
2061 | return err; | |
2062 | } | |
2063 | ||
2064 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2065 | unsigned long addr, unsigned long end, | |
2066 | pte_fn_t fn, void *data) | |
2067 | { | |
2068 | pmd_t *pmd; | |
2069 | unsigned long next; | |
2070 | int err; | |
2071 | ||
ceb86879 AK |
2072 | BUG_ON(pud_huge(*pud)); |
2073 | ||
aee16b3c JF |
2074 | pmd = pmd_alloc(mm, pud, addr); |
2075 | if (!pmd) | |
2076 | return -ENOMEM; | |
2077 | do { | |
2078 | next = pmd_addr_end(addr, end); | |
2079 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
2080 | if (err) | |
2081 | break; | |
2082 | } while (pmd++, addr = next, addr != end); | |
2083 | return err; | |
2084 | } | |
2085 | ||
c2febafc | 2086 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c JF |
2087 | unsigned long addr, unsigned long end, |
2088 | pte_fn_t fn, void *data) | |
2089 | { | |
2090 | pud_t *pud; | |
2091 | unsigned long next; | |
2092 | int err; | |
2093 | ||
c2febafc | 2094 | pud = pud_alloc(mm, p4d, addr); |
aee16b3c JF |
2095 | if (!pud) |
2096 | return -ENOMEM; | |
2097 | do { | |
2098 | next = pud_addr_end(addr, end); | |
2099 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
2100 | if (err) | |
2101 | break; | |
2102 | } while (pud++, addr = next, addr != end); | |
2103 | return err; | |
2104 | } | |
2105 | ||
c2febafc KS |
2106 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2107 | unsigned long addr, unsigned long end, | |
2108 | pte_fn_t fn, void *data) | |
2109 | { | |
2110 | p4d_t *p4d; | |
2111 | unsigned long next; | |
2112 | int err; | |
2113 | ||
2114 | p4d = p4d_alloc(mm, pgd, addr); | |
2115 | if (!p4d) | |
2116 | return -ENOMEM; | |
2117 | do { | |
2118 | next = p4d_addr_end(addr, end); | |
2119 | err = apply_to_pud_range(mm, p4d, addr, next, fn, data); | |
2120 | if (err) | |
2121 | break; | |
2122 | } while (p4d++, addr = next, addr != end); | |
2123 | return err; | |
2124 | } | |
2125 | ||
aee16b3c JF |
2126 | /* |
2127 | * Scan a region of virtual memory, filling in page tables as necessary | |
2128 | * and calling a provided function on each leaf page table. | |
2129 | */ | |
2130 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2131 | unsigned long size, pte_fn_t fn, void *data) | |
2132 | { | |
2133 | pgd_t *pgd; | |
2134 | unsigned long next; | |
57250a5b | 2135 | unsigned long end = addr + size; |
aee16b3c JF |
2136 | int err; |
2137 | ||
9cb65bc3 MP |
2138 | if (WARN_ON(addr >= end)) |
2139 | return -EINVAL; | |
2140 | ||
aee16b3c JF |
2141 | pgd = pgd_offset(mm, addr); |
2142 | do { | |
2143 | next = pgd_addr_end(addr, end); | |
c2febafc | 2144 | err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); |
aee16b3c JF |
2145 | if (err) |
2146 | break; | |
2147 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2148 | |
aee16b3c JF |
2149 | return err; |
2150 | } | |
2151 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
2152 | ||
8f4e2101 | 2153 | /* |
9b4bdd2f KS |
2154 | * handle_pte_fault chooses page fault handler according to an entry which was |
2155 | * read non-atomically. Before making any commitment, on those architectures | |
2156 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2157 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2158 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2159 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2160 | */ |
4c21e2f2 | 2161 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
2162 | pte_t *page_table, pte_t orig_pte) |
2163 | { | |
2164 | int same = 1; | |
2165 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
2166 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
2167 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2168 | spin_lock(ptl); | |
8f4e2101 | 2169 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 2170 | spin_unlock(ptl); |
8f4e2101 HD |
2171 | } |
2172 | #endif | |
2173 | pte_unmap(page_table); | |
2174 | return same; | |
2175 | } | |
2176 | ||
9de455b2 | 2177 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e | 2178 | { |
0abdd7a8 DW |
2179 | debug_dma_assert_idle(src); |
2180 | ||
6aab341e LT |
2181 | /* |
2182 | * If the source page was a PFN mapping, we don't have | |
2183 | * a "struct page" for it. We do a best-effort copy by | |
2184 | * just copying from the original user address. If that | |
2185 | * fails, we just zero-fill it. Live with it. | |
2186 | */ | |
2187 | if (unlikely(!src)) { | |
9b04c5fe | 2188 | void *kaddr = kmap_atomic(dst); |
5d2a2dbb LT |
2189 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
2190 | ||
2191 | /* | |
2192 | * This really shouldn't fail, because the page is there | |
2193 | * in the page tables. But it might just be unreadable, | |
2194 | * in which case we just give up and fill the result with | |
2195 | * zeroes. | |
2196 | */ | |
2197 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
3ecb01df | 2198 | clear_page(kaddr); |
9b04c5fe | 2199 | kunmap_atomic(kaddr); |
c4ec7b0d | 2200 | flush_dcache_page(dst); |
0ed361de NP |
2201 | } else |
2202 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
2203 | } |
2204 | ||
c20cd45e MH |
2205 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2206 | { | |
2207 | struct file *vm_file = vma->vm_file; | |
2208 | ||
2209 | if (vm_file) | |
2210 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2211 | ||
2212 | /* | |
2213 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2214 | * a default GFP_KERNEL for them. | |
2215 | */ | |
2216 | return GFP_KERNEL; | |
2217 | } | |
2218 | ||
fb09a464 KS |
2219 | /* |
2220 | * Notify the address space that the page is about to become writable so that | |
2221 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2222 | * | |
2223 | * We do this without the lock held, so that it can sleep if it needs to. | |
2224 | */ | |
2b740303 | 2225 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2226 | { |
2b740303 | 2227 | vm_fault_t ret; |
38b8cb7f JK |
2228 | struct page *page = vmf->page; |
2229 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2230 | |
38b8cb7f | 2231 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2232 | |
11bac800 | 2233 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2234 | /* Restore original flags so that caller is not surprised */ |
2235 | vmf->flags = old_flags; | |
fb09a464 KS |
2236 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2237 | return ret; | |
2238 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2239 | lock_page(page); | |
2240 | if (!page->mapping) { | |
2241 | unlock_page(page); | |
2242 | return 0; /* retry */ | |
2243 | } | |
2244 | ret |= VM_FAULT_LOCKED; | |
2245 | } else | |
2246 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2247 | return ret; | |
2248 | } | |
2249 | ||
97ba0c2b JK |
2250 | /* |
2251 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2252 | * | |
2253 | * The function expects the page to be locked and unlocks it. | |
2254 | */ | |
2255 | static void fault_dirty_shared_page(struct vm_area_struct *vma, | |
2256 | struct page *page) | |
2257 | { | |
2258 | struct address_space *mapping; | |
2259 | bool dirtied; | |
2260 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2261 | ||
2262 | dirtied = set_page_dirty(page); | |
2263 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2264 | /* | |
2265 | * Take a local copy of the address_space - page.mapping may be zeroed | |
2266 | * by truncate after unlock_page(). The address_space itself remains | |
2267 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
2268 | * release semantics to prevent the compiler from undoing this copying. | |
2269 | */ | |
2270 | mapping = page_rmapping(page); | |
2271 | unlock_page(page); | |
2272 | ||
2273 | if ((dirtied || page_mkwrite) && mapping) { | |
2274 | /* | |
2275 | * Some device drivers do not set page.mapping | |
2276 | * but still dirty their pages | |
2277 | */ | |
2278 | balance_dirty_pages_ratelimited(mapping); | |
2279 | } | |
2280 | ||
2281 | if (!page_mkwrite) | |
2282 | file_update_time(vma->vm_file); | |
2283 | } | |
2284 | ||
4e047f89 SR |
2285 | /* |
2286 | * Handle write page faults for pages that can be reused in the current vma | |
2287 | * | |
2288 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2289 | * or due to us being the last reference standing to the page. In either | |
2290 | * case, all we need to do here is to mark the page as writable and update | |
2291 | * any related book-keeping. | |
2292 | */ | |
997dd98d | 2293 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 2294 | __releases(vmf->ptl) |
4e047f89 | 2295 | { |
82b0f8c3 | 2296 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 2297 | struct page *page = vmf->page; |
4e047f89 SR |
2298 | pte_t entry; |
2299 | /* | |
2300 | * Clear the pages cpupid information as the existing | |
2301 | * information potentially belongs to a now completely | |
2302 | * unrelated process. | |
2303 | */ | |
2304 | if (page) | |
2305 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
2306 | ||
2994302b JK |
2307 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2308 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 2309 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
2310 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
2311 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2312 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4e047f89 SR |
2313 | } |
2314 | ||
2f38ab2c SR |
2315 | /* |
2316 | * Handle the case of a page which we actually need to copy to a new page. | |
2317 | * | |
2318 | * Called with mmap_sem locked and the old page referenced, but | |
2319 | * without the ptl held. | |
2320 | * | |
2321 | * High level logic flow: | |
2322 | * | |
2323 | * - Allocate a page, copy the content of the old page to the new one. | |
2324 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
2325 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
2326 | * - If the pte is still the way we remember it, update the page table and all | |
2327 | * relevant references. This includes dropping the reference the page-table | |
2328 | * held to the old page, as well as updating the rmap. | |
2329 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
2330 | */ | |
2b740303 | 2331 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 2332 | { |
82b0f8c3 | 2333 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2334 | struct mm_struct *mm = vma->vm_mm; |
a41b70d6 | 2335 | struct page *old_page = vmf->page; |
2f38ab2c | 2336 | struct page *new_page = NULL; |
2f38ab2c SR |
2337 | pte_t entry; |
2338 | int page_copied = 0; | |
2f38ab2c | 2339 | struct mem_cgroup *memcg; |
ac46d4f3 | 2340 | struct mmu_notifier_range range; |
2f38ab2c SR |
2341 | |
2342 | if (unlikely(anon_vma_prepare(vma))) | |
2343 | goto oom; | |
2344 | ||
2994302b | 2345 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
82b0f8c3 JK |
2346 | new_page = alloc_zeroed_user_highpage_movable(vma, |
2347 | vmf->address); | |
2f38ab2c SR |
2348 | if (!new_page) |
2349 | goto oom; | |
2350 | } else { | |
bae473a4 | 2351 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
82b0f8c3 | 2352 | vmf->address); |
2f38ab2c SR |
2353 | if (!new_page) |
2354 | goto oom; | |
82b0f8c3 | 2355 | cow_user_page(new_page, old_page, vmf->address, vma); |
2f38ab2c | 2356 | } |
2f38ab2c | 2357 | |
2cf85583 | 2358 | if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) |
2f38ab2c SR |
2359 | goto oom_free_new; |
2360 | ||
eb3c24f3 MG |
2361 | __SetPageUptodate(new_page); |
2362 | ||
7269f999 | 2363 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, |
6f4f13e8 | 2364 | vmf->address & PAGE_MASK, |
ac46d4f3 JG |
2365 | (vmf->address & PAGE_MASK) + PAGE_SIZE); |
2366 | mmu_notifier_invalidate_range_start(&range); | |
2f38ab2c SR |
2367 | |
2368 | /* | |
2369 | * Re-check the pte - we dropped the lock | |
2370 | */ | |
82b0f8c3 | 2371 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 2372 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2f38ab2c SR |
2373 | if (old_page) { |
2374 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
2375 | dec_mm_counter_fast(mm, |
2376 | mm_counter_file(old_page)); | |
2f38ab2c SR |
2377 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2378 | } | |
2379 | } else { | |
2380 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
2381 | } | |
2994302b | 2382 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2f38ab2c SR |
2383 | entry = mk_pte(new_page, vma->vm_page_prot); |
2384 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2385 | /* | |
2386 | * Clear the pte entry and flush it first, before updating the | |
2387 | * pte with the new entry. This will avoid a race condition | |
2388 | * seen in the presence of one thread doing SMC and another | |
2389 | * thread doing COW. | |
2390 | */ | |
82b0f8c3 JK |
2391 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
2392 | page_add_new_anon_rmap(new_page, vma, vmf->address, false); | |
f627c2f5 | 2393 | mem_cgroup_commit_charge(new_page, memcg, false, false); |
2f38ab2c SR |
2394 | lru_cache_add_active_or_unevictable(new_page, vma); |
2395 | /* | |
2396 | * We call the notify macro here because, when using secondary | |
2397 | * mmu page tables (such as kvm shadow page tables), we want the | |
2398 | * new page to be mapped directly into the secondary page table. | |
2399 | */ | |
82b0f8c3 JK |
2400 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
2401 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2f38ab2c SR |
2402 | if (old_page) { |
2403 | /* | |
2404 | * Only after switching the pte to the new page may | |
2405 | * we remove the mapcount here. Otherwise another | |
2406 | * process may come and find the rmap count decremented | |
2407 | * before the pte is switched to the new page, and | |
2408 | * "reuse" the old page writing into it while our pte | |
2409 | * here still points into it and can be read by other | |
2410 | * threads. | |
2411 | * | |
2412 | * The critical issue is to order this | |
2413 | * page_remove_rmap with the ptp_clear_flush above. | |
2414 | * Those stores are ordered by (if nothing else,) | |
2415 | * the barrier present in the atomic_add_negative | |
2416 | * in page_remove_rmap. | |
2417 | * | |
2418 | * Then the TLB flush in ptep_clear_flush ensures that | |
2419 | * no process can access the old page before the | |
2420 | * decremented mapcount is visible. And the old page | |
2421 | * cannot be reused until after the decremented | |
2422 | * mapcount is visible. So transitively, TLBs to | |
2423 | * old page will be flushed before it can be reused. | |
2424 | */ | |
d281ee61 | 2425 | page_remove_rmap(old_page, false); |
2f38ab2c SR |
2426 | } |
2427 | ||
2428 | /* Free the old page.. */ | |
2429 | new_page = old_page; | |
2430 | page_copied = 1; | |
2431 | } else { | |
f627c2f5 | 2432 | mem_cgroup_cancel_charge(new_page, memcg, false); |
2f38ab2c SR |
2433 | } |
2434 | ||
2435 | if (new_page) | |
09cbfeaf | 2436 | put_page(new_page); |
2f38ab2c | 2437 | |
82b0f8c3 | 2438 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4645b9fe JG |
2439 | /* |
2440 | * No need to double call mmu_notifier->invalidate_range() callback as | |
2441 | * the above ptep_clear_flush_notify() did already call it. | |
2442 | */ | |
ac46d4f3 | 2443 | mmu_notifier_invalidate_range_only_end(&range); |
2f38ab2c SR |
2444 | if (old_page) { |
2445 | /* | |
2446 | * Don't let another task, with possibly unlocked vma, | |
2447 | * keep the mlocked page. | |
2448 | */ | |
2449 | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | |
2450 | lock_page(old_page); /* LRU manipulation */ | |
e90309c9 KS |
2451 | if (PageMlocked(old_page)) |
2452 | munlock_vma_page(old_page); | |
2f38ab2c SR |
2453 | unlock_page(old_page); |
2454 | } | |
09cbfeaf | 2455 | put_page(old_page); |
2f38ab2c SR |
2456 | } |
2457 | return page_copied ? VM_FAULT_WRITE : 0; | |
2458 | oom_free_new: | |
09cbfeaf | 2459 | put_page(new_page); |
2f38ab2c SR |
2460 | oom: |
2461 | if (old_page) | |
09cbfeaf | 2462 | put_page(old_page); |
2f38ab2c SR |
2463 | return VM_FAULT_OOM; |
2464 | } | |
2465 | ||
66a6197c JK |
2466 | /** |
2467 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
2468 | * writeable once the page is prepared | |
2469 | * | |
2470 | * @vmf: structure describing the fault | |
2471 | * | |
2472 | * This function handles all that is needed to finish a write page fault in a | |
2473 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
a862f68a | 2474 | * It handles locking of PTE and modifying it. |
66a6197c JK |
2475 | * |
2476 | * The function expects the page to be locked or other protection against | |
2477 | * concurrent faults / writeback (such as DAX radix tree locks). | |
a862f68a MR |
2478 | * |
2479 | * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before | |
2480 | * we acquired PTE lock. | |
66a6197c | 2481 | */ |
2b740303 | 2482 | vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) |
66a6197c JK |
2483 | { |
2484 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
2485 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
2486 | &vmf->ptl); | |
2487 | /* | |
2488 | * We might have raced with another page fault while we released the | |
2489 | * pte_offset_map_lock. | |
2490 | */ | |
2491 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
2492 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
a19e2553 | 2493 | return VM_FAULT_NOPAGE; |
66a6197c JK |
2494 | } |
2495 | wp_page_reuse(vmf); | |
a19e2553 | 2496 | return 0; |
66a6197c JK |
2497 | } |
2498 | ||
dd906184 BH |
2499 | /* |
2500 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
2501 | * mapping | |
2502 | */ | |
2b740303 | 2503 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 2504 | { |
82b0f8c3 | 2505 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2506 | |
dd906184 | 2507 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
2b740303 | 2508 | vm_fault_t ret; |
dd906184 | 2509 | |
82b0f8c3 | 2510 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 2511 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 2512 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 2513 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 2514 | return ret; |
66a6197c | 2515 | return finish_mkwrite_fault(vmf); |
dd906184 | 2516 | } |
997dd98d JK |
2517 | wp_page_reuse(vmf); |
2518 | return VM_FAULT_WRITE; | |
dd906184 BH |
2519 | } |
2520 | ||
2b740303 | 2521 | static vm_fault_t wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 2522 | __releases(vmf->ptl) |
93e478d4 | 2523 | { |
82b0f8c3 | 2524 | struct vm_area_struct *vma = vmf->vma; |
93e478d4 | 2525 | |
a41b70d6 | 2526 | get_page(vmf->page); |
93e478d4 | 2527 | |
93e478d4 | 2528 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2b740303 | 2529 | vm_fault_t tmp; |
93e478d4 | 2530 | |
82b0f8c3 | 2531 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 2532 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
2533 | if (unlikely(!tmp || (tmp & |
2534 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 2535 | put_page(vmf->page); |
93e478d4 SR |
2536 | return tmp; |
2537 | } | |
66a6197c | 2538 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 2539 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 2540 | unlock_page(vmf->page); |
a41b70d6 | 2541 | put_page(vmf->page); |
66a6197c | 2542 | return tmp; |
93e478d4 | 2543 | } |
66a6197c JK |
2544 | } else { |
2545 | wp_page_reuse(vmf); | |
997dd98d | 2546 | lock_page(vmf->page); |
93e478d4 | 2547 | } |
997dd98d JK |
2548 | fault_dirty_shared_page(vma, vmf->page); |
2549 | put_page(vmf->page); | |
93e478d4 | 2550 | |
997dd98d | 2551 | return VM_FAULT_WRITE; |
93e478d4 SR |
2552 | } |
2553 | ||
1da177e4 LT |
2554 | /* |
2555 | * This routine handles present pages, when users try to write | |
2556 | * to a shared page. It is done by copying the page to a new address | |
2557 | * and decrementing the shared-page counter for the old page. | |
2558 | * | |
1da177e4 LT |
2559 | * Note that this routine assumes that the protection checks have been |
2560 | * done by the caller (the low-level page fault routine in most cases). | |
2561 | * Thus we can safely just mark it writable once we've done any necessary | |
2562 | * COW. | |
2563 | * | |
2564 | * We also mark the page dirty at this point even though the page will | |
2565 | * change only once the write actually happens. This avoids a few races, | |
2566 | * and potentially makes it more efficient. | |
2567 | * | |
8f4e2101 HD |
2568 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2569 | * but allow concurrent faults), with pte both mapped and locked. | |
2570 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2571 | */ |
2b740303 | 2572 | static vm_fault_t do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 2573 | __releases(vmf->ptl) |
1da177e4 | 2574 | { |
82b0f8c3 | 2575 | struct vm_area_struct *vma = vmf->vma; |
1da177e4 | 2576 | |
a41b70d6 JK |
2577 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
2578 | if (!vmf->page) { | |
251b97f5 | 2579 | /* |
64e45507 PF |
2580 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
2581 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
2582 | * |
2583 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 2584 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
2585 | */ |
2586 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2587 | (VM_WRITE|VM_SHARED)) | |
2994302b | 2588 | return wp_pfn_shared(vmf); |
2f38ab2c | 2589 | |
82b0f8c3 | 2590 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2591 | return wp_page_copy(vmf); |
251b97f5 | 2592 | } |
1da177e4 | 2593 | |
d08b3851 | 2594 | /* |
ee6a6457 PZ |
2595 | * Take out anonymous pages first, anonymous shared vmas are |
2596 | * not dirty accountable. | |
d08b3851 | 2597 | */ |
52d1e606 | 2598 | if (PageAnon(vmf->page)) { |
ba3c4ce6 | 2599 | int total_map_swapcount; |
52d1e606 KT |
2600 | if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || |
2601 | page_count(vmf->page) != 1)) | |
2602 | goto copy; | |
a41b70d6 JK |
2603 | if (!trylock_page(vmf->page)) { |
2604 | get_page(vmf->page); | |
82b0f8c3 | 2605 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2606 | lock_page(vmf->page); |
82b0f8c3 JK |
2607 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2608 | vmf->address, &vmf->ptl); | |
2994302b | 2609 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { |
a41b70d6 | 2610 | unlock_page(vmf->page); |
82b0f8c3 | 2611 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2612 | put_page(vmf->page); |
28766805 | 2613 | return 0; |
ab967d86 | 2614 | } |
a41b70d6 | 2615 | put_page(vmf->page); |
ee6a6457 | 2616 | } |
52d1e606 KT |
2617 | if (PageKsm(vmf->page)) { |
2618 | bool reused = reuse_ksm_page(vmf->page, vmf->vma, | |
2619 | vmf->address); | |
2620 | unlock_page(vmf->page); | |
2621 | if (!reused) | |
2622 | goto copy; | |
2623 | wp_page_reuse(vmf); | |
2624 | return VM_FAULT_WRITE; | |
2625 | } | |
ba3c4ce6 YH |
2626 | if (reuse_swap_page(vmf->page, &total_map_swapcount)) { |
2627 | if (total_map_swapcount == 1) { | |
6d0a07ed AA |
2628 | /* |
2629 | * The page is all ours. Move it to | |
2630 | * our anon_vma so the rmap code will | |
2631 | * not search our parent or siblings. | |
2632 | * Protected against the rmap code by | |
2633 | * the page lock. | |
2634 | */ | |
a41b70d6 | 2635 | page_move_anon_rmap(vmf->page, vma); |
6d0a07ed | 2636 | } |
a41b70d6 | 2637 | unlock_page(vmf->page); |
997dd98d JK |
2638 | wp_page_reuse(vmf); |
2639 | return VM_FAULT_WRITE; | |
b009c024 | 2640 | } |
a41b70d6 | 2641 | unlock_page(vmf->page); |
ee6a6457 | 2642 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2643 | (VM_WRITE|VM_SHARED))) { |
a41b70d6 | 2644 | return wp_page_shared(vmf); |
1da177e4 | 2645 | } |
52d1e606 | 2646 | copy: |
1da177e4 LT |
2647 | /* |
2648 | * Ok, we need to copy. Oh, well.. | |
2649 | */ | |
a41b70d6 | 2650 | get_page(vmf->page); |
28766805 | 2651 | |
82b0f8c3 | 2652 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2653 | return wp_page_copy(vmf); |
1da177e4 LT |
2654 | } |
2655 | ||
97a89413 | 2656 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
2657 | unsigned long start_addr, unsigned long end_addr, |
2658 | struct zap_details *details) | |
2659 | { | |
f5cc4eef | 2660 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
2661 | } |
2662 | ||
f808c13f | 2663 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, |
1da177e4 LT |
2664 | struct zap_details *details) |
2665 | { | |
2666 | struct vm_area_struct *vma; | |
1da177e4 LT |
2667 | pgoff_t vba, vea, zba, zea; |
2668 | ||
6b2dbba8 | 2669 | vma_interval_tree_foreach(vma, root, |
1da177e4 | 2670 | details->first_index, details->last_index) { |
1da177e4 LT |
2671 | |
2672 | vba = vma->vm_pgoff; | |
d6e93217 | 2673 | vea = vba + vma_pages(vma) - 1; |
1da177e4 LT |
2674 | zba = details->first_index; |
2675 | if (zba < vba) | |
2676 | zba = vba; | |
2677 | zea = details->last_index; | |
2678 | if (zea > vea) | |
2679 | zea = vea; | |
2680 | ||
97a89413 | 2681 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
2682 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
2683 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 2684 | details); |
1da177e4 LT |
2685 | } |
2686 | } | |
2687 | ||
977fbdcd MW |
2688 | /** |
2689 | * unmap_mapping_pages() - Unmap pages from processes. | |
2690 | * @mapping: The address space containing pages to be unmapped. | |
2691 | * @start: Index of first page to be unmapped. | |
2692 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
2693 | * @even_cows: Whether to unmap even private COWed pages. | |
2694 | * | |
2695 | * Unmap the pages in this address space from any userspace process which | |
2696 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
2697 | * a file is being truncated, but not when invalidating pages from the page | |
2698 | * cache. | |
2699 | */ | |
2700 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
2701 | pgoff_t nr, bool even_cows) | |
2702 | { | |
2703 | struct zap_details details = { }; | |
2704 | ||
2705 | details.check_mapping = even_cows ? NULL : mapping; | |
2706 | details.first_index = start; | |
2707 | details.last_index = start + nr - 1; | |
2708 | if (details.last_index < details.first_index) | |
2709 | details.last_index = ULONG_MAX; | |
2710 | ||
2711 | i_mmap_lock_write(mapping); | |
2712 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | |
2713 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2714 | i_mmap_unlock_write(mapping); | |
2715 | } | |
2716 | ||
1da177e4 | 2717 | /** |
8a5f14a2 | 2718 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
977fbdcd | 2719 | * address_space corresponding to the specified byte range in the underlying |
8a5f14a2 KS |
2720 | * file. |
2721 | * | |
3d41088f | 2722 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2723 | * @holebegin: byte in first page to unmap, relative to the start of |
2724 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 2725 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
2726 | * must keep the partial page. In contrast, we must get rid of |
2727 | * partial pages. | |
2728 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2729 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2730 | * end of the file. | |
2731 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2732 | * but 0 when invalidating pagecache, don't throw away private data. | |
2733 | */ | |
2734 | void unmap_mapping_range(struct address_space *mapping, | |
2735 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2736 | { | |
1da177e4 LT |
2737 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
2738 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2739 | ||
2740 | /* Check for overflow. */ | |
2741 | if (sizeof(holelen) > sizeof(hlen)) { | |
2742 | long long holeend = | |
2743 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2744 | if (holeend & ~(long long)ULONG_MAX) | |
2745 | hlen = ULONG_MAX - hba + 1; | |
2746 | } | |
2747 | ||
977fbdcd | 2748 | unmap_mapping_pages(mapping, hba, hlen, even_cows); |
1da177e4 LT |
2749 | } |
2750 | EXPORT_SYMBOL(unmap_mapping_range); | |
2751 | ||
1da177e4 | 2752 | /* |
8f4e2101 HD |
2753 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2754 | * but allow concurrent faults), and pte mapped but not yet locked. | |
9a95f3cf PC |
2755 | * We return with pte unmapped and unlocked. |
2756 | * | |
2757 | * We return with the mmap_sem locked or unlocked in the same cases | |
2758 | * as does filemap_fault(). | |
1da177e4 | 2759 | */ |
2b740303 | 2760 | vm_fault_t do_swap_page(struct vm_fault *vmf) |
1da177e4 | 2761 | { |
82b0f8c3 | 2762 | struct vm_area_struct *vma = vmf->vma; |
eaf649eb | 2763 | struct page *page = NULL, *swapcache; |
00501b53 | 2764 | struct mem_cgroup *memcg; |
65500d23 | 2765 | swp_entry_t entry; |
1da177e4 | 2766 | pte_t pte; |
d065bd81 | 2767 | int locked; |
ad8c2ee8 | 2768 | int exclusive = 0; |
2b740303 | 2769 | vm_fault_t ret = 0; |
1da177e4 | 2770 | |
eaf649eb | 2771 | if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) |
8f4e2101 | 2772 | goto out; |
65500d23 | 2773 | |
2994302b | 2774 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
2775 | if (unlikely(non_swap_entry(entry))) { |
2776 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
2777 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
2778 | vmf->address); | |
5042db43 JG |
2779 | } else if (is_device_private_entry(entry)) { |
2780 | /* | |
2781 | * For un-addressable device memory we call the pgmap | |
2782 | * fault handler callback. The callback must migrate | |
2783 | * the page back to some CPU accessible page. | |
2784 | */ | |
2785 | ret = device_private_entry_fault(vma, vmf->address, entry, | |
2786 | vmf->flags, vmf->pmd); | |
d1737fdb AK |
2787 | } else if (is_hwpoison_entry(entry)) { |
2788 | ret = VM_FAULT_HWPOISON; | |
2789 | } else { | |
2994302b | 2790 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 2791 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 2792 | } |
0697212a CL |
2793 | goto out; |
2794 | } | |
0bcac06f MK |
2795 | |
2796 | ||
0ff92245 | 2797 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
eaf649eb MK |
2798 | page = lookup_swap_cache(entry, vma, vmf->address); |
2799 | swapcache = page; | |
f8020772 | 2800 | |
1da177e4 | 2801 | if (!page) { |
0bcac06f MK |
2802 | struct swap_info_struct *si = swp_swap_info(entry); |
2803 | ||
aa8d22a1 | 2804 | if (si->flags & SWP_SYNCHRONOUS_IO && |
eb085574 | 2805 | __swap_count(entry) == 1) { |
0bcac06f | 2806 | /* skip swapcache */ |
e9e9b7ec MK |
2807 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
2808 | vmf->address); | |
0bcac06f MK |
2809 | if (page) { |
2810 | __SetPageLocked(page); | |
2811 | __SetPageSwapBacked(page); | |
2812 | set_page_private(page, entry.val); | |
2813 | lru_cache_add_anon(page); | |
2814 | swap_readpage(page, true); | |
2815 | } | |
aa8d22a1 | 2816 | } else { |
e9e9b7ec MK |
2817 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
2818 | vmf); | |
aa8d22a1 | 2819 | swapcache = page; |
0bcac06f MK |
2820 | } |
2821 | ||
1da177e4 LT |
2822 | if (!page) { |
2823 | /* | |
8f4e2101 HD |
2824 | * Back out if somebody else faulted in this pte |
2825 | * while we released the pte lock. | |
1da177e4 | 2826 | */ |
82b0f8c3 JK |
2827 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2828 | vmf->address, &vmf->ptl); | |
2994302b | 2829 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 2830 | ret = VM_FAULT_OOM; |
0ff92245 | 2831 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2832 | goto unlock; |
1da177e4 LT |
2833 | } |
2834 | ||
2835 | /* Had to read the page from swap area: Major fault */ | |
2836 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2837 | count_vm_event(PGMAJFAULT); |
2262185c | 2838 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 2839 | } else if (PageHWPoison(page)) { |
71f72525 WF |
2840 | /* |
2841 | * hwpoisoned dirty swapcache pages are kept for killing | |
2842 | * owner processes (which may be unknown at hwpoison time) | |
2843 | */ | |
d1737fdb AK |
2844 | ret = VM_FAULT_HWPOISON; |
2845 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
4779cb31 | 2846 | goto out_release; |
1da177e4 LT |
2847 | } |
2848 | ||
82b0f8c3 | 2849 | locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); |
e709ffd6 | 2850 | |
073e587e | 2851 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
d065bd81 ML |
2852 | if (!locked) { |
2853 | ret |= VM_FAULT_RETRY; | |
2854 | goto out_release; | |
2855 | } | |
073e587e | 2856 | |
4969c119 | 2857 | /* |
31c4a3d3 HD |
2858 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
2859 | * release the swapcache from under us. The page pin, and pte_same | |
2860 | * test below, are not enough to exclude that. Even if it is still | |
2861 | * swapcache, we need to check that the page's swap has not changed. | |
4969c119 | 2862 | */ |
0bcac06f MK |
2863 | if (unlikely((!PageSwapCache(page) || |
2864 | page_private(page) != entry.val)) && swapcache) | |
4969c119 AA |
2865 | goto out_page; |
2866 | ||
82b0f8c3 | 2867 | page = ksm_might_need_to_copy(page, vma, vmf->address); |
cbf86cfe HD |
2868 | if (unlikely(!page)) { |
2869 | ret = VM_FAULT_OOM; | |
2870 | page = swapcache; | |
cbf86cfe | 2871 | goto out_page; |
5ad64688 HD |
2872 | } |
2873 | ||
2cf85583 TH |
2874 | if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, |
2875 | &memcg, false)) { | |
8a9f3ccd | 2876 | ret = VM_FAULT_OOM; |
bc43f75c | 2877 | goto out_page; |
8a9f3ccd BS |
2878 | } |
2879 | ||
1da177e4 | 2880 | /* |
8f4e2101 | 2881 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2882 | */ |
82b0f8c3 JK |
2883 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
2884 | &vmf->ptl); | |
2994302b | 2885 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 2886 | goto out_nomap; |
b8107480 KK |
2887 | |
2888 | if (unlikely(!PageUptodate(page))) { | |
2889 | ret = VM_FAULT_SIGBUS; | |
2890 | goto out_nomap; | |
1da177e4 LT |
2891 | } |
2892 | ||
8c7c6e34 KH |
2893 | /* |
2894 | * The page isn't present yet, go ahead with the fault. | |
2895 | * | |
2896 | * Be careful about the sequence of operations here. | |
2897 | * To get its accounting right, reuse_swap_page() must be called | |
2898 | * while the page is counted on swap but not yet in mapcount i.e. | |
2899 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2900 | * must be called after the swap_free(), or it will never succeed. | |
8c7c6e34 | 2901 | */ |
1da177e4 | 2902 | |
bae473a4 KS |
2903 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
2904 | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 2905 | pte = mk_pte(page, vma->vm_page_prot); |
82b0f8c3 | 2906 | if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { |
1da177e4 | 2907 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
82b0f8c3 | 2908 | vmf->flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 2909 | ret |= VM_FAULT_WRITE; |
d281ee61 | 2910 | exclusive = RMAP_EXCLUSIVE; |
1da177e4 | 2911 | } |
1da177e4 | 2912 | flush_icache_page(vma, page); |
2994302b | 2913 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 2914 | pte = pte_mksoft_dirty(pte); |
82b0f8c3 | 2915 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
ca827d55 | 2916 | arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); |
2994302b | 2917 | vmf->orig_pte = pte; |
0bcac06f MK |
2918 | |
2919 | /* ksm created a completely new copy */ | |
2920 | if (unlikely(page != swapcache && swapcache)) { | |
82b0f8c3 | 2921 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
f627c2f5 | 2922 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 | 2923 | lru_cache_add_active_or_unevictable(page, vma); |
0bcac06f MK |
2924 | } else { |
2925 | do_page_add_anon_rmap(page, vma, vmf->address, exclusive); | |
2926 | mem_cgroup_commit_charge(page, memcg, true, false); | |
2927 | activate_page(page); | |
00501b53 | 2928 | } |
1da177e4 | 2929 | |
c475a8ab | 2930 | swap_free(entry); |
5ccc5aba VD |
2931 | if (mem_cgroup_swap_full(page) || |
2932 | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | |
a2c43eed | 2933 | try_to_free_swap(page); |
c475a8ab | 2934 | unlock_page(page); |
0bcac06f | 2935 | if (page != swapcache && swapcache) { |
4969c119 AA |
2936 | /* |
2937 | * Hold the lock to avoid the swap entry to be reused | |
2938 | * until we take the PT lock for the pte_same() check | |
2939 | * (to avoid false positives from pte_same). For | |
2940 | * further safety release the lock after the swap_free | |
2941 | * so that the swap count won't change under a | |
2942 | * parallel locked swapcache. | |
2943 | */ | |
2944 | unlock_page(swapcache); | |
09cbfeaf | 2945 | put_page(swapcache); |
4969c119 | 2946 | } |
c475a8ab | 2947 | |
82b0f8c3 | 2948 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 2949 | ret |= do_wp_page(vmf); |
61469f1d HD |
2950 | if (ret & VM_FAULT_ERROR) |
2951 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2952 | goto out; |
2953 | } | |
2954 | ||
2955 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 2956 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 2957 | unlock: |
82b0f8c3 | 2958 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 LT |
2959 | out: |
2960 | return ret; | |
b8107480 | 2961 | out_nomap: |
f627c2f5 | 2962 | mem_cgroup_cancel_charge(page, memcg, false); |
82b0f8c3 | 2963 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 2964 | out_page: |
b8107480 | 2965 | unlock_page(page); |
4779cb31 | 2966 | out_release: |
09cbfeaf | 2967 | put_page(page); |
0bcac06f | 2968 | if (page != swapcache && swapcache) { |
4969c119 | 2969 | unlock_page(swapcache); |
09cbfeaf | 2970 | put_page(swapcache); |
4969c119 | 2971 | } |
65500d23 | 2972 | return ret; |
1da177e4 LT |
2973 | } |
2974 | ||
2975 | /* | |
8f4e2101 HD |
2976 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2977 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2978 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2979 | */ |
2b740303 | 2980 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 2981 | { |
82b0f8c3 | 2982 | struct vm_area_struct *vma = vmf->vma; |
00501b53 | 2983 | struct mem_cgroup *memcg; |
8f4e2101 | 2984 | struct page *page; |
2b740303 | 2985 | vm_fault_t ret = 0; |
1da177e4 | 2986 | pte_t entry; |
1da177e4 | 2987 | |
6b7339f4 KS |
2988 | /* File mapping without ->vm_ops ? */ |
2989 | if (vma->vm_flags & VM_SHARED) | |
2990 | return VM_FAULT_SIGBUS; | |
2991 | ||
7267ec00 KS |
2992 | /* |
2993 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
2994 | * pte_offset_map() on pmds where a huge pmd might be created | |
2995 | * from a different thread. | |
2996 | * | |
2997 | * pte_alloc_map() is safe to use under down_write(mmap_sem) or when | |
2998 | * parallel threads are excluded by other means. | |
2999 | * | |
3000 | * Here we only have down_read(mmap_sem). | |
3001 | */ | |
4cf58924 | 3002 | if (pte_alloc(vma->vm_mm, vmf->pmd)) |
7267ec00 KS |
3003 | return VM_FAULT_OOM; |
3004 | ||
3005 | /* See the comment in pte_alloc_one_map() */ | |
82b0f8c3 | 3006 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
3007 | return 0; |
3008 | ||
11ac5524 | 3009 | /* Use the zero-page for reads */ |
82b0f8c3 | 3010 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 3011 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 3012 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 3013 | vma->vm_page_prot)); |
82b0f8c3 JK |
3014 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
3015 | vmf->address, &vmf->ptl); | |
3016 | if (!pte_none(*vmf->pte)) | |
a13ea5b7 | 3017 | goto unlock; |
6b31d595 MH |
3018 | ret = check_stable_address_space(vma->vm_mm); |
3019 | if (ret) | |
3020 | goto unlock; | |
6b251fc9 AA |
3021 | /* Deliver the page fault to userland, check inside PT lock */ |
3022 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
3023 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
3024 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 3025 | } |
a13ea5b7 HD |
3026 | goto setpte; |
3027 | } | |
3028 | ||
557ed1fa | 3029 | /* Allocate our own private page. */ |
557ed1fa NP |
3030 | if (unlikely(anon_vma_prepare(vma))) |
3031 | goto oom; | |
82b0f8c3 | 3032 | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); |
557ed1fa NP |
3033 | if (!page) |
3034 | goto oom; | |
eb3c24f3 | 3035 | |
2cf85583 TH |
3036 | if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, |
3037 | false)) | |
eb3c24f3 MG |
3038 | goto oom_free_page; |
3039 | ||
52f37629 MK |
3040 | /* |
3041 | * The memory barrier inside __SetPageUptodate makes sure that | |
3042 | * preceeding stores to the page contents become visible before | |
3043 | * the set_pte_at() write. | |
3044 | */ | |
0ed361de | 3045 | __SetPageUptodate(page); |
8f4e2101 | 3046 | |
557ed1fa | 3047 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
3048 | if (vma->vm_flags & VM_WRITE) |
3049 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 3050 | |
82b0f8c3 JK |
3051 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3052 | &vmf->ptl); | |
3053 | if (!pte_none(*vmf->pte)) | |
557ed1fa | 3054 | goto release; |
9ba69294 | 3055 | |
6b31d595 MH |
3056 | ret = check_stable_address_space(vma->vm_mm); |
3057 | if (ret) | |
3058 | goto release; | |
3059 | ||
6b251fc9 AA |
3060 | /* Deliver the page fault to userland, check inside PT lock */ |
3061 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 3062 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
f627c2f5 | 3063 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 3064 | put_page(page); |
82b0f8c3 | 3065 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
3066 | } |
3067 | ||
bae473a4 | 3068 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
82b0f8c3 | 3069 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
f627c2f5 | 3070 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 | 3071 | lru_cache_add_active_or_unevictable(page, vma); |
a13ea5b7 | 3072 | setpte: |
82b0f8c3 | 3073 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
3074 | |
3075 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 3076 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 3077 | unlock: |
82b0f8c3 | 3078 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
6b31d595 | 3079 | return ret; |
8f4e2101 | 3080 | release: |
f627c2f5 | 3081 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 3082 | put_page(page); |
8f4e2101 | 3083 | goto unlock; |
8a9f3ccd | 3084 | oom_free_page: |
09cbfeaf | 3085 | put_page(page); |
65500d23 | 3086 | oom: |
1da177e4 LT |
3087 | return VM_FAULT_OOM; |
3088 | } | |
3089 | ||
9a95f3cf PC |
3090 | /* |
3091 | * The mmap_sem must have been held on entry, and may have been | |
3092 | * released depending on flags and vma->vm_ops->fault() return value. | |
3093 | * See filemap_fault() and __lock_page_retry(). | |
3094 | */ | |
2b740303 | 3095 | static vm_fault_t __do_fault(struct vm_fault *vmf) |
7eae74af | 3096 | { |
82b0f8c3 | 3097 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3098 | vm_fault_t ret; |
7eae74af | 3099 | |
63f3655f MH |
3100 | /* |
3101 | * Preallocate pte before we take page_lock because this might lead to | |
3102 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
3103 | * lock_page(A) | |
3104 | * SetPageWriteback(A) | |
3105 | * unlock_page(A) | |
3106 | * lock_page(B) | |
3107 | * lock_page(B) | |
3108 | * pte_alloc_pne | |
3109 | * shrink_page_list | |
3110 | * wait_on_page_writeback(A) | |
3111 | * SetPageWriteback(B) | |
3112 | * unlock_page(B) | |
3113 | * # flush A, B to clear the writeback | |
3114 | */ | |
3115 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
3116 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); | |
3117 | if (!vmf->prealloc_pte) | |
3118 | return VM_FAULT_OOM; | |
3119 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3120 | } | |
3121 | ||
11bac800 | 3122 | ret = vma->vm_ops->fault(vmf); |
3917048d | 3123 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 3124 | VM_FAULT_DONE_COW))) |
bc2466e4 | 3125 | return ret; |
7eae74af | 3126 | |
667240e0 | 3127 | if (unlikely(PageHWPoison(vmf->page))) { |
7eae74af | 3128 | if (ret & VM_FAULT_LOCKED) |
667240e0 JK |
3129 | unlock_page(vmf->page); |
3130 | put_page(vmf->page); | |
936ca80d | 3131 | vmf->page = NULL; |
7eae74af KS |
3132 | return VM_FAULT_HWPOISON; |
3133 | } | |
3134 | ||
3135 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 3136 | lock_page(vmf->page); |
7eae74af | 3137 | else |
667240e0 | 3138 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 3139 | |
7eae74af KS |
3140 | return ret; |
3141 | } | |
3142 | ||
d0f0931d RZ |
3143 | /* |
3144 | * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. | |
3145 | * If we check pmd_trans_unstable() first we will trip the bad_pmd() check | |
3146 | * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly | |
3147 | * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. | |
3148 | */ | |
3149 | static int pmd_devmap_trans_unstable(pmd_t *pmd) | |
3150 | { | |
3151 | return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); | |
3152 | } | |
3153 | ||
2b740303 | 3154 | static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) |
7267ec00 | 3155 | { |
82b0f8c3 | 3156 | struct vm_area_struct *vma = vmf->vma; |
7267ec00 | 3157 | |
82b0f8c3 | 3158 | if (!pmd_none(*vmf->pmd)) |
7267ec00 | 3159 | goto map_pte; |
82b0f8c3 JK |
3160 | if (vmf->prealloc_pte) { |
3161 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | |
3162 | if (unlikely(!pmd_none(*vmf->pmd))) { | |
3163 | spin_unlock(vmf->ptl); | |
7267ec00 KS |
3164 | goto map_pte; |
3165 | } | |
3166 | ||
c4812909 | 3167 | mm_inc_nr_ptes(vma->vm_mm); |
82b0f8c3 JK |
3168 | pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
3169 | spin_unlock(vmf->ptl); | |
7f2b6ce8 | 3170 | vmf->prealloc_pte = NULL; |
4cf58924 | 3171 | } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { |
7267ec00 KS |
3172 | return VM_FAULT_OOM; |
3173 | } | |
3174 | map_pte: | |
3175 | /* | |
3176 | * If a huge pmd materialized under us just retry later. Use | |
d0f0931d RZ |
3177 | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of |
3178 | * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge | |
3179 | * under us and then back to pmd_none, as a result of MADV_DONTNEED | |
3180 | * running immediately after a huge pmd fault in a different thread of | |
3181 | * this mm, in turn leading to a misleading pmd_trans_huge() retval. | |
3182 | * All we have to ensure is that it is a regular pmd that we can walk | |
3183 | * with pte_offset_map() and we can do that through an atomic read in | |
3184 | * C, which is what pmd_trans_unstable() provides. | |
7267ec00 | 3185 | */ |
d0f0931d | 3186 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
3187 | return VM_FAULT_NOPAGE; |
3188 | ||
d0f0931d RZ |
3189 | /* |
3190 | * At this point we know that our vmf->pmd points to a page of ptes | |
3191 | * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() | |
3192 | * for the duration of the fault. If a racing MADV_DONTNEED runs and | |
3193 | * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still | |
3194 | * be valid and we will re-check to make sure the vmf->pte isn't | |
3195 | * pte_none() under vmf->ptl protection when we return to | |
3196 | * alloc_set_pte(). | |
3197 | */ | |
82b0f8c3 JK |
3198 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3199 | &vmf->ptl); | |
7267ec00 KS |
3200 | return 0; |
3201 | } | |
3202 | ||
e496cf3d | 3203 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE |
10102459 KS |
3204 | |
3205 | #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) | |
3206 | static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, | |
3207 | unsigned long haddr) | |
3208 | { | |
3209 | if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != | |
3210 | (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) | |
3211 | return false; | |
3212 | if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) | |
3213 | return false; | |
3214 | return true; | |
3215 | } | |
3216 | ||
82b0f8c3 | 3217 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 3218 | { |
82b0f8c3 | 3219 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 3220 | |
82b0f8c3 | 3221 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
3222 | /* |
3223 | * We are going to consume the prealloc table, | |
3224 | * count that as nr_ptes. | |
3225 | */ | |
c4812909 | 3226 | mm_inc_nr_ptes(vma->vm_mm); |
7f2b6ce8 | 3227 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
3228 | } |
3229 | ||
2b740303 | 3230 | static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 3231 | { |
82b0f8c3 JK |
3232 | struct vm_area_struct *vma = vmf->vma; |
3233 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3234 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 | 3235 | pmd_t entry; |
2b740303 SJ |
3236 | int i; |
3237 | vm_fault_t ret; | |
10102459 KS |
3238 | |
3239 | if (!transhuge_vma_suitable(vma, haddr)) | |
3240 | return VM_FAULT_FALLBACK; | |
3241 | ||
3242 | ret = VM_FAULT_FALLBACK; | |
3243 | page = compound_head(page); | |
3244 | ||
953c66c2 AK |
3245 | /* |
3246 | * Archs like ppc64 need additonal space to store information | |
3247 | * related to pte entry. Use the preallocated table for that. | |
3248 | */ | |
82b0f8c3 | 3249 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
4cf58924 | 3250 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); |
82b0f8c3 | 3251 | if (!vmf->prealloc_pte) |
953c66c2 AK |
3252 | return VM_FAULT_OOM; |
3253 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3254 | } | |
3255 | ||
82b0f8c3 JK |
3256 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
3257 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
3258 | goto out; |
3259 | ||
3260 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
3261 | flush_icache_page(vma, page + i); | |
3262 | ||
3263 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
3264 | if (write) | |
f55e1014 | 3265 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
10102459 | 3266 | |
fadae295 | 3267 | add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); |
10102459 | 3268 | page_add_file_rmap(page, true); |
953c66c2 AK |
3269 | /* |
3270 | * deposit and withdraw with pmd lock held | |
3271 | */ | |
3272 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 3273 | deposit_prealloc_pte(vmf); |
10102459 | 3274 | |
82b0f8c3 | 3275 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 3276 | |
82b0f8c3 | 3277 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
3278 | |
3279 | /* fault is handled */ | |
3280 | ret = 0; | |
95ecedcd | 3281 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 3282 | out: |
82b0f8c3 | 3283 | spin_unlock(vmf->ptl); |
10102459 KS |
3284 | return ret; |
3285 | } | |
3286 | #else | |
2b740303 | 3287 | static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 KS |
3288 | { |
3289 | BUILD_BUG(); | |
3290 | return 0; | |
3291 | } | |
3292 | #endif | |
3293 | ||
8c6e50b0 | 3294 | /** |
7267ec00 KS |
3295 | * alloc_set_pte - setup new PTE entry for given page and add reverse page |
3296 | * mapping. If needed, the fucntion allocates page table or use pre-allocated. | |
8c6e50b0 | 3297 | * |
82b0f8c3 | 3298 | * @vmf: fault environment |
7267ec00 | 3299 | * @memcg: memcg to charge page (only for private mappings) |
8c6e50b0 | 3300 | * @page: page to map |
8c6e50b0 | 3301 | * |
82b0f8c3 JK |
3302 | * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on |
3303 | * return. | |
8c6e50b0 KS |
3304 | * |
3305 | * Target users are page handler itself and implementations of | |
3306 | * vm_ops->map_pages. | |
a862f68a MR |
3307 | * |
3308 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
8c6e50b0 | 3309 | */ |
2b740303 | 3310 | vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, |
7267ec00 | 3311 | struct page *page) |
3bb97794 | 3312 | { |
82b0f8c3 JK |
3313 | struct vm_area_struct *vma = vmf->vma; |
3314 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3bb97794 | 3315 | pte_t entry; |
2b740303 | 3316 | vm_fault_t ret; |
10102459 | 3317 | |
82b0f8c3 | 3318 | if (pmd_none(*vmf->pmd) && PageTransCompound(page) && |
e496cf3d | 3319 | IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { |
10102459 KS |
3320 | /* THP on COW? */ |
3321 | VM_BUG_ON_PAGE(memcg, page); | |
3322 | ||
82b0f8c3 | 3323 | ret = do_set_pmd(vmf, page); |
10102459 | 3324 | if (ret != VM_FAULT_FALLBACK) |
b0b9b3df | 3325 | return ret; |
10102459 | 3326 | } |
3bb97794 | 3327 | |
82b0f8c3 JK |
3328 | if (!vmf->pte) { |
3329 | ret = pte_alloc_one_map(vmf); | |
7267ec00 | 3330 | if (ret) |
b0b9b3df | 3331 | return ret; |
7267ec00 KS |
3332 | } |
3333 | ||
3334 | /* Re-check under ptl */ | |
b0b9b3df HD |
3335 | if (unlikely(!pte_none(*vmf->pte))) |
3336 | return VM_FAULT_NOPAGE; | |
7267ec00 | 3337 | |
3bb97794 KS |
3338 | flush_icache_page(vma, page); |
3339 | entry = mk_pte(page, vma->vm_page_prot); | |
3340 | if (write) | |
3341 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
bae473a4 KS |
3342 | /* copy-on-write page */ |
3343 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bb97794 | 3344 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
82b0f8c3 | 3345 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
7267ec00 KS |
3346 | mem_cgroup_commit_charge(page, memcg, false, false); |
3347 | lru_cache_add_active_or_unevictable(page, vma); | |
3bb97794 | 3348 | } else { |
eca56ff9 | 3349 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
dd78fedd | 3350 | page_add_file_rmap(page, false); |
3bb97794 | 3351 | } |
82b0f8c3 | 3352 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
3bb97794 KS |
3353 | |
3354 | /* no need to invalidate: a not-present page won't be cached */ | |
82b0f8c3 | 3355 | update_mmu_cache(vma, vmf->address, vmf->pte); |
7267ec00 | 3356 | |
b0b9b3df | 3357 | return 0; |
3bb97794 KS |
3358 | } |
3359 | ||
9118c0cb JK |
3360 | |
3361 | /** | |
3362 | * finish_fault - finish page fault once we have prepared the page to fault | |
3363 | * | |
3364 | * @vmf: structure describing the fault | |
3365 | * | |
3366 | * This function handles all that is needed to finish a page fault once the | |
3367 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
3368 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
a862f68a | 3369 | * addition. |
9118c0cb JK |
3370 | * |
3371 | * The function expects the page to be locked and on success it consumes a | |
3372 | * reference of a page being mapped (for the PTE which maps it). | |
a862f68a MR |
3373 | * |
3374 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
9118c0cb | 3375 | */ |
2b740303 | 3376 | vm_fault_t finish_fault(struct vm_fault *vmf) |
9118c0cb JK |
3377 | { |
3378 | struct page *page; | |
2b740303 | 3379 | vm_fault_t ret = 0; |
9118c0cb JK |
3380 | |
3381 | /* Did we COW the page? */ | |
3382 | if ((vmf->flags & FAULT_FLAG_WRITE) && | |
3383 | !(vmf->vma->vm_flags & VM_SHARED)) | |
3384 | page = vmf->cow_page; | |
3385 | else | |
3386 | page = vmf->page; | |
6b31d595 MH |
3387 | |
3388 | /* | |
3389 | * check even for read faults because we might have lost our CoWed | |
3390 | * page | |
3391 | */ | |
3392 | if (!(vmf->vma->vm_flags & VM_SHARED)) | |
3393 | ret = check_stable_address_space(vmf->vma->vm_mm); | |
3394 | if (!ret) | |
3395 | ret = alloc_set_pte(vmf, vmf->memcg, page); | |
9118c0cb JK |
3396 | if (vmf->pte) |
3397 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3398 | return ret; | |
3399 | } | |
3400 | ||
3a91053a KS |
3401 | static unsigned long fault_around_bytes __read_mostly = |
3402 | rounddown_pow_of_two(65536); | |
a9b0f861 | 3403 | |
a9b0f861 KS |
3404 | #ifdef CONFIG_DEBUG_FS |
3405 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 3406 | { |
a9b0f861 | 3407 | *val = fault_around_bytes; |
1592eef0 KS |
3408 | return 0; |
3409 | } | |
3410 | ||
b4903d6e | 3411 | /* |
da391d64 WK |
3412 | * fault_around_bytes must be rounded down to the nearest page order as it's |
3413 | * what do_fault_around() expects to see. | |
b4903d6e | 3414 | */ |
a9b0f861 | 3415 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 3416 | { |
a9b0f861 | 3417 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 3418 | return -EINVAL; |
b4903d6e AR |
3419 | if (val > PAGE_SIZE) |
3420 | fault_around_bytes = rounddown_pow_of_two(val); | |
3421 | else | |
3422 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
3423 | return 0; |
3424 | } | |
0a1345f8 | 3425 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, |
a9b0f861 | 3426 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); |
1592eef0 KS |
3427 | |
3428 | static int __init fault_around_debugfs(void) | |
3429 | { | |
d9f7979c GKH |
3430 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, |
3431 | &fault_around_bytes_fops); | |
1592eef0 KS |
3432 | return 0; |
3433 | } | |
3434 | late_initcall(fault_around_debugfs); | |
1592eef0 | 3435 | #endif |
8c6e50b0 | 3436 | |
1fdb412b KS |
3437 | /* |
3438 | * do_fault_around() tries to map few pages around the fault address. The hope | |
3439 | * is that the pages will be needed soon and this will lower the number of | |
3440 | * faults to handle. | |
3441 | * | |
3442 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
3443 | * not ready to be mapped: not up-to-date, locked, etc. | |
3444 | * | |
3445 | * This function is called with the page table lock taken. In the split ptlock | |
3446 | * case the page table lock only protects only those entries which belong to | |
3447 | * the page table corresponding to the fault address. | |
3448 | * | |
3449 | * This function doesn't cross the VMA boundaries, in order to call map_pages() | |
3450 | * only once. | |
3451 | * | |
da391d64 WK |
3452 | * fault_around_bytes defines how many bytes we'll try to map. |
3453 | * do_fault_around() expects it to be set to a power of two less than or equal | |
3454 | * to PTRS_PER_PTE. | |
1fdb412b | 3455 | * |
da391d64 WK |
3456 | * The virtual address of the area that we map is naturally aligned to |
3457 | * fault_around_bytes rounded down to the machine page size | |
3458 | * (and therefore to page order). This way it's easier to guarantee | |
3459 | * that we don't cross page table boundaries. | |
1fdb412b | 3460 | */ |
2b740303 | 3461 | static vm_fault_t do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 3462 | { |
82b0f8c3 | 3463 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 3464 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 3465 | pgoff_t end_pgoff; |
2b740303 SJ |
3466 | int off; |
3467 | vm_fault_t ret = 0; | |
8c6e50b0 | 3468 | |
4db0c3c2 | 3469 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
3470 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
3471 | ||
82b0f8c3 JK |
3472 | vmf->address = max(address & mask, vmf->vma->vm_start); |
3473 | off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 3474 | start_pgoff -= off; |
8c6e50b0 KS |
3475 | |
3476 | /* | |
da391d64 WK |
3477 | * end_pgoff is either the end of the page table, the end of |
3478 | * the vma or nr_pages from start_pgoff, depending what is nearest. | |
8c6e50b0 | 3479 | */ |
bae473a4 | 3480 | end_pgoff = start_pgoff - |
82b0f8c3 | 3481 | ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 3482 | PTRS_PER_PTE - 1; |
82b0f8c3 | 3483 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 3484 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 3485 | |
82b0f8c3 | 3486 | if (pmd_none(*vmf->pmd)) { |
4cf58924 | 3487 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); |
82b0f8c3 | 3488 | if (!vmf->prealloc_pte) |
c5f88bd2 | 3489 | goto out; |
7267ec00 | 3490 | smp_wmb(); /* See comment in __pte_alloc() */ |
8c6e50b0 KS |
3491 | } |
3492 | ||
82b0f8c3 | 3493 | vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
7267ec00 | 3494 | |
7267ec00 | 3495 | /* Huge page is mapped? Page fault is solved */ |
82b0f8c3 | 3496 | if (pmd_trans_huge(*vmf->pmd)) { |
7267ec00 KS |
3497 | ret = VM_FAULT_NOPAGE; |
3498 | goto out; | |
3499 | } | |
3500 | ||
3501 | /* ->map_pages() haven't done anything useful. Cold page cache? */ | |
82b0f8c3 | 3502 | if (!vmf->pte) |
7267ec00 KS |
3503 | goto out; |
3504 | ||
3505 | /* check if the page fault is solved */ | |
82b0f8c3 JK |
3506 | vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); |
3507 | if (!pte_none(*vmf->pte)) | |
7267ec00 | 3508 | ret = VM_FAULT_NOPAGE; |
82b0f8c3 | 3509 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bae473a4 | 3510 | out: |
82b0f8c3 JK |
3511 | vmf->address = address; |
3512 | vmf->pte = NULL; | |
7267ec00 | 3513 | return ret; |
8c6e50b0 KS |
3514 | } |
3515 | ||
2b740303 | 3516 | static vm_fault_t do_read_fault(struct vm_fault *vmf) |
e655fb29 | 3517 | { |
82b0f8c3 | 3518 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3519 | vm_fault_t ret = 0; |
8c6e50b0 KS |
3520 | |
3521 | /* | |
3522 | * Let's call ->map_pages() first and use ->fault() as fallback | |
3523 | * if page by the offset is not ready to be mapped (cold cache or | |
3524 | * something). | |
3525 | */ | |
9b4bdd2f | 3526 | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { |
0721ec8b | 3527 | ret = do_fault_around(vmf); |
7267ec00 KS |
3528 | if (ret) |
3529 | return ret; | |
8c6e50b0 | 3530 | } |
e655fb29 | 3531 | |
936ca80d | 3532 | ret = __do_fault(vmf); |
e655fb29 KS |
3533 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3534 | return ret; | |
3535 | ||
9118c0cb | 3536 | ret |= finish_fault(vmf); |
936ca80d | 3537 | unlock_page(vmf->page); |
7267ec00 | 3538 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 3539 | put_page(vmf->page); |
e655fb29 KS |
3540 | return ret; |
3541 | } | |
3542 | ||
2b740303 | 3543 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 3544 | { |
82b0f8c3 | 3545 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3546 | vm_fault_t ret; |
ec47c3b9 KS |
3547 | |
3548 | if (unlikely(anon_vma_prepare(vma))) | |
3549 | return VM_FAULT_OOM; | |
3550 | ||
936ca80d JK |
3551 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
3552 | if (!vmf->cow_page) | |
ec47c3b9 KS |
3553 | return VM_FAULT_OOM; |
3554 | ||
2cf85583 | 3555 | if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, |
3917048d | 3556 | &vmf->memcg, false)) { |
936ca80d | 3557 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3558 | return VM_FAULT_OOM; |
3559 | } | |
3560 | ||
936ca80d | 3561 | ret = __do_fault(vmf); |
ec47c3b9 KS |
3562 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3563 | goto uncharge_out; | |
3917048d JK |
3564 | if (ret & VM_FAULT_DONE_COW) |
3565 | return ret; | |
ec47c3b9 | 3566 | |
b1aa812b | 3567 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 3568 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 3569 | |
9118c0cb | 3570 | ret |= finish_fault(vmf); |
b1aa812b JK |
3571 | unlock_page(vmf->page); |
3572 | put_page(vmf->page); | |
7267ec00 KS |
3573 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3574 | goto uncharge_out; | |
ec47c3b9 KS |
3575 | return ret; |
3576 | uncharge_out: | |
3917048d | 3577 | mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); |
936ca80d | 3578 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3579 | return ret; |
3580 | } | |
3581 | ||
2b740303 | 3582 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 3583 | { |
82b0f8c3 | 3584 | struct vm_area_struct *vma = vmf->vma; |
2b740303 | 3585 | vm_fault_t ret, tmp; |
1d65f86d | 3586 | |
936ca80d | 3587 | ret = __do_fault(vmf); |
7eae74af | 3588 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 3589 | return ret; |
1da177e4 LT |
3590 | |
3591 | /* | |
f0c6d4d2 KS |
3592 | * Check if the backing address space wants to know that the page is |
3593 | * about to become writable | |
1da177e4 | 3594 | */ |
fb09a464 | 3595 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 3596 | unlock_page(vmf->page); |
38b8cb7f | 3597 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
3598 | if (unlikely(!tmp || |
3599 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 3600 | put_page(vmf->page); |
fb09a464 | 3601 | return tmp; |
4294621f | 3602 | } |
fb09a464 KS |
3603 | } |
3604 | ||
9118c0cb | 3605 | ret |= finish_fault(vmf); |
7267ec00 KS |
3606 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
3607 | VM_FAULT_RETRY))) { | |
936ca80d JK |
3608 | unlock_page(vmf->page); |
3609 | put_page(vmf->page); | |
f0c6d4d2 | 3610 | return ret; |
1da177e4 | 3611 | } |
b827e496 | 3612 | |
97ba0c2b | 3613 | fault_dirty_shared_page(vma, vmf->page); |
1d65f86d | 3614 | return ret; |
54cb8821 | 3615 | } |
d00806b1 | 3616 | |
9a95f3cf PC |
3617 | /* |
3618 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
3619 | * but allow concurrent faults). | |
3620 | * The mmap_sem may have been released depending on flags and our | |
3621 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
fc8efd2d JS |
3622 | * If mmap_sem is released, vma may become invalid (for example |
3623 | * by other thread calling munmap()). | |
9a95f3cf | 3624 | */ |
2b740303 | 3625 | static vm_fault_t do_fault(struct vm_fault *vmf) |
54cb8821 | 3626 | { |
82b0f8c3 | 3627 | struct vm_area_struct *vma = vmf->vma; |
fc8efd2d | 3628 | struct mm_struct *vm_mm = vma->vm_mm; |
2b740303 | 3629 | vm_fault_t ret; |
54cb8821 | 3630 | |
ff09d7ec AK |
3631 | /* |
3632 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
3633 | */ | |
3634 | if (!vma->vm_ops->fault) { | |
3635 | /* | |
3636 | * If we find a migration pmd entry or a none pmd entry, which | |
3637 | * should never happen, return SIGBUS | |
3638 | */ | |
3639 | if (unlikely(!pmd_present(*vmf->pmd))) | |
3640 | ret = VM_FAULT_SIGBUS; | |
3641 | else { | |
3642 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, | |
3643 | vmf->pmd, | |
3644 | vmf->address, | |
3645 | &vmf->ptl); | |
3646 | /* | |
3647 | * Make sure this is not a temporary clearing of pte | |
3648 | * by holding ptl and checking again. A R/M/W update | |
3649 | * of pte involves: take ptl, clearing the pte so that | |
3650 | * we don't have concurrent modification by hardware | |
3651 | * followed by an update. | |
3652 | */ | |
3653 | if (unlikely(pte_none(*vmf->pte))) | |
3654 | ret = VM_FAULT_SIGBUS; | |
3655 | else | |
3656 | ret = VM_FAULT_NOPAGE; | |
3657 | ||
3658 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3659 | } | |
3660 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
b0b9b3df HD |
3661 | ret = do_read_fault(vmf); |
3662 | else if (!(vma->vm_flags & VM_SHARED)) | |
3663 | ret = do_cow_fault(vmf); | |
3664 | else | |
3665 | ret = do_shared_fault(vmf); | |
3666 | ||
3667 | /* preallocated pagetable is unused: free it */ | |
3668 | if (vmf->prealloc_pte) { | |
fc8efd2d | 3669 | pte_free(vm_mm, vmf->prealloc_pte); |
7f2b6ce8 | 3670 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
3671 | } |
3672 | return ret; | |
54cb8821 NP |
3673 | } |
3674 | ||
b19a9939 | 3675 | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
04bb2f94 RR |
3676 | unsigned long addr, int page_nid, |
3677 | int *flags) | |
9532fec1 MG |
3678 | { |
3679 | get_page(page); | |
3680 | ||
3681 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 3682 | if (page_nid == numa_node_id()) { |
9532fec1 | 3683 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
3684 | *flags |= TNF_FAULT_LOCAL; |
3685 | } | |
9532fec1 MG |
3686 | |
3687 | return mpol_misplaced(page, vma, addr); | |
3688 | } | |
3689 | ||
2b740303 | 3690 | static vm_fault_t do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 3691 | { |
82b0f8c3 | 3692 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 3693 | struct page *page = NULL; |
98fa15f3 | 3694 | int page_nid = NUMA_NO_NODE; |
90572890 | 3695 | int last_cpupid; |
cbee9f88 | 3696 | int target_nid; |
b8593bfd | 3697 | bool migrated = false; |
04a86453 | 3698 | pte_t pte, old_pte; |
288bc549 | 3699 | bool was_writable = pte_savedwrite(vmf->orig_pte); |
6688cc05 | 3700 | int flags = 0; |
d10e63f2 MG |
3701 | |
3702 | /* | |
166f61b9 TH |
3703 | * The "pte" at this point cannot be used safely without |
3704 | * validation through pte_unmap_same(). It's of NUMA type but | |
3705 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 3706 | */ |
82b0f8c3 JK |
3707 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
3708 | spin_lock(vmf->ptl); | |
cee216a6 | 3709 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 3710 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
3711 | goto out; |
3712 | } | |
3713 | ||
cee216a6 AK |
3714 | /* |
3715 | * Make it present again, Depending on how arch implementes non | |
3716 | * accessible ptes, some can allow access by kernel mode. | |
3717 | */ | |
04a86453 AK |
3718 | old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); |
3719 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
4d942466 | 3720 | pte = pte_mkyoung(pte); |
b191f9b1 MG |
3721 | if (was_writable) |
3722 | pte = pte_mkwrite(pte); | |
04a86453 | 3723 | ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); |
82b0f8c3 | 3724 | update_mmu_cache(vma, vmf->address, vmf->pte); |
d10e63f2 | 3725 | |
82b0f8c3 | 3726 | page = vm_normal_page(vma, vmf->address, pte); |
d10e63f2 | 3727 | if (!page) { |
82b0f8c3 | 3728 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
d10e63f2 MG |
3729 | return 0; |
3730 | } | |
3731 | ||
e81c4802 KS |
3732 | /* TODO: handle PTE-mapped THP */ |
3733 | if (PageCompound(page)) { | |
82b0f8c3 | 3734 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
e81c4802 KS |
3735 | return 0; |
3736 | } | |
3737 | ||
6688cc05 | 3738 | /* |
bea66fbd MG |
3739 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
3740 | * much anyway since they can be in shared cache state. This misses | |
3741 | * the case where a mapping is writable but the process never writes | |
3742 | * to it but pte_write gets cleared during protection updates and | |
3743 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
3744 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 3745 | */ |
d59dc7bc | 3746 | if (!pte_write(pte)) |
6688cc05 PZ |
3747 | flags |= TNF_NO_GROUP; |
3748 | ||
dabe1d99 RR |
3749 | /* |
3750 | * Flag if the page is shared between multiple address spaces. This | |
3751 | * is later used when determining whether to group tasks together | |
3752 | */ | |
3753 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
3754 | flags |= TNF_SHARED; | |
3755 | ||
90572890 | 3756 | last_cpupid = page_cpupid_last(page); |
8191acbd | 3757 | page_nid = page_to_nid(page); |
82b0f8c3 | 3758 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 3759 | &flags); |
82b0f8c3 | 3760 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
98fa15f3 | 3761 | if (target_nid == NUMA_NO_NODE) { |
4daae3b4 MG |
3762 | put_page(page); |
3763 | goto out; | |
3764 | } | |
3765 | ||
3766 | /* Migrate to the requested node */ | |
1bc115d8 | 3767 | migrated = migrate_misplaced_page(page, vma, target_nid); |
6688cc05 | 3768 | if (migrated) { |
8191acbd | 3769 | page_nid = target_nid; |
6688cc05 | 3770 | flags |= TNF_MIGRATED; |
074c2381 MG |
3771 | } else |
3772 | flags |= TNF_MIGRATE_FAIL; | |
4daae3b4 MG |
3773 | |
3774 | out: | |
98fa15f3 | 3775 | if (page_nid != NUMA_NO_NODE) |
6688cc05 | 3776 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 MG |
3777 | return 0; |
3778 | } | |
3779 | ||
2b740303 | 3780 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 3781 | { |
f4200391 | 3782 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 3783 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 3784 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 3785 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
3786 | return VM_FAULT_FALLBACK; |
3787 | } | |
3788 | ||
183f24aa | 3789 | /* `inline' is required to avoid gcc 4.1.2 build error */ |
2b740303 | 3790 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) |
b96375f7 | 3791 | { |
82b0f8c3 JK |
3792 | if (vma_is_anonymous(vmf->vma)) |
3793 | return do_huge_pmd_wp_page(vmf, orig_pmd); | |
a2d58167 | 3794 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 3795 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
af9e4d5f KS |
3796 | |
3797 | /* COW handled on pte level: split pmd */ | |
82b0f8c3 JK |
3798 | VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); |
3799 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); | |
af9e4d5f | 3800 | |
b96375f7 MW |
3801 | return VM_FAULT_FALLBACK; |
3802 | } | |
3803 | ||
38e08854 LS |
3804 | static inline bool vma_is_accessible(struct vm_area_struct *vma) |
3805 | { | |
3806 | return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); | |
3807 | } | |
3808 | ||
2b740303 | 3809 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) |
a00cc7d9 MW |
3810 | { |
3811 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3812 | /* No support for anonymous transparent PUD pages yet */ | |
3813 | if (vma_is_anonymous(vmf->vma)) | |
3814 | return VM_FAULT_FALLBACK; | |
3815 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 3816 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
3817 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
3818 | return VM_FAULT_FALLBACK; | |
3819 | } | |
3820 | ||
2b740303 | 3821 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) |
a00cc7d9 MW |
3822 | { |
3823 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3824 | /* No support for anonymous transparent PUD pages yet */ | |
3825 | if (vma_is_anonymous(vmf->vma)) | |
3826 | return VM_FAULT_FALLBACK; | |
3827 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 3828 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
3829 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
3830 | return VM_FAULT_FALLBACK; | |
3831 | } | |
3832 | ||
1da177e4 LT |
3833 | /* |
3834 | * These routines also need to handle stuff like marking pages dirty | |
3835 | * and/or accessed for architectures that don't do it in hardware (most | |
3836 | * RISC architectures). The early dirtying is also good on the i386. | |
3837 | * | |
3838 | * There is also a hook called "update_mmu_cache()" that architectures | |
3839 | * with external mmu caches can use to update those (ie the Sparc or | |
3840 | * PowerPC hashed page tables that act as extended TLBs). | |
3841 | * | |
7267ec00 KS |
3842 | * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow |
3843 | * concurrent faults). | |
9a95f3cf | 3844 | * |
7267ec00 KS |
3845 | * The mmap_sem may have been released depending on flags and our return value. |
3846 | * See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3847 | */ |
2b740303 | 3848 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
3849 | { |
3850 | pte_t entry; | |
3851 | ||
82b0f8c3 | 3852 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
3853 | /* |
3854 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
3855 | * want to allocate huge page, and if we expose page table | |
3856 | * for an instant, it will be difficult to retract from | |
3857 | * concurrent faults and from rmap lookups. | |
3858 | */ | |
82b0f8c3 | 3859 | vmf->pte = NULL; |
7267ec00 KS |
3860 | } else { |
3861 | /* See comment in pte_alloc_one_map() */ | |
d0f0931d | 3862 | if (pmd_devmap_trans_unstable(vmf->pmd)) |
7267ec00 KS |
3863 | return 0; |
3864 | /* | |
3865 | * A regular pmd is established and it can't morph into a huge | |
3866 | * pmd from under us anymore at this point because we hold the | |
3867 | * mmap_sem read mode and khugepaged takes it in write mode. | |
3868 | * So now it's safe to run pte_offset_map(). | |
3869 | */ | |
82b0f8c3 | 3870 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 3871 | vmf->orig_pte = *vmf->pte; |
7267ec00 KS |
3872 | |
3873 | /* | |
3874 | * some architectures can have larger ptes than wordsize, | |
3875 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
b03a0fe0 PM |
3876 | * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic |
3877 | * accesses. The code below just needs a consistent view | |
3878 | * for the ifs and we later double check anyway with the | |
7267ec00 KS |
3879 | * ptl lock held. So here a barrier will do. |
3880 | */ | |
3881 | barrier(); | |
2994302b | 3882 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
3883 | pte_unmap(vmf->pte); |
3884 | vmf->pte = NULL; | |
65500d23 | 3885 | } |
1da177e4 LT |
3886 | } |
3887 | ||
82b0f8c3 JK |
3888 | if (!vmf->pte) { |
3889 | if (vma_is_anonymous(vmf->vma)) | |
3890 | return do_anonymous_page(vmf); | |
7267ec00 | 3891 | else |
82b0f8c3 | 3892 | return do_fault(vmf); |
7267ec00 KS |
3893 | } |
3894 | ||
2994302b JK |
3895 | if (!pte_present(vmf->orig_pte)) |
3896 | return do_swap_page(vmf); | |
7267ec00 | 3897 | |
2994302b JK |
3898 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
3899 | return do_numa_page(vmf); | |
d10e63f2 | 3900 | |
82b0f8c3 JK |
3901 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
3902 | spin_lock(vmf->ptl); | |
2994302b | 3903 | entry = vmf->orig_pte; |
82b0f8c3 | 3904 | if (unlikely(!pte_same(*vmf->pte, entry))) |
8f4e2101 | 3905 | goto unlock; |
82b0f8c3 | 3906 | if (vmf->flags & FAULT_FLAG_WRITE) { |
f6f37321 | 3907 | if (!pte_write(entry)) |
2994302b | 3908 | return do_wp_page(vmf); |
1da177e4 LT |
3909 | entry = pte_mkdirty(entry); |
3910 | } | |
3911 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
3912 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
3913 | vmf->flags & FAULT_FLAG_WRITE)) { | |
3914 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 AA |
3915 | } else { |
3916 | /* | |
3917 | * This is needed only for protection faults but the arch code | |
3918 | * is not yet telling us if this is a protection fault or not. | |
3919 | * This still avoids useless tlb flushes for .text page faults | |
3920 | * with threads. | |
3921 | */ | |
82b0f8c3 JK |
3922 | if (vmf->flags & FAULT_FLAG_WRITE) |
3923 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 3924 | } |
8f4e2101 | 3925 | unlock: |
82b0f8c3 | 3926 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 3927 | return 0; |
1da177e4 LT |
3928 | } |
3929 | ||
3930 | /* | |
3931 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf PC |
3932 | * |
3933 | * The mmap_sem may have been released depending on flags and our | |
3934 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3935 | */ |
2b740303 SJ |
3936 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, |
3937 | unsigned long address, unsigned int flags) | |
1da177e4 | 3938 | { |
82b0f8c3 | 3939 | struct vm_fault vmf = { |
bae473a4 | 3940 | .vma = vma, |
1a29d85e | 3941 | .address = address & PAGE_MASK, |
bae473a4 | 3942 | .flags = flags, |
0721ec8b | 3943 | .pgoff = linear_page_index(vma, address), |
667240e0 | 3944 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 3945 | }; |
fde26bed | 3946 | unsigned int dirty = flags & FAULT_FLAG_WRITE; |
dcddffd4 | 3947 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 3948 | pgd_t *pgd; |
c2febafc | 3949 | p4d_t *p4d; |
2b740303 | 3950 | vm_fault_t ret; |
1da177e4 | 3951 | |
1da177e4 | 3952 | pgd = pgd_offset(mm, address); |
c2febafc KS |
3953 | p4d = p4d_alloc(mm, pgd, address); |
3954 | if (!p4d) | |
3955 | return VM_FAULT_OOM; | |
a00cc7d9 | 3956 | |
c2febafc | 3957 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 3958 | if (!vmf.pud) |
c74df32c | 3959 | return VM_FAULT_OOM; |
7635d9cb | 3960 | if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { |
a00cc7d9 MW |
3961 | ret = create_huge_pud(&vmf); |
3962 | if (!(ret & VM_FAULT_FALLBACK)) | |
3963 | return ret; | |
3964 | } else { | |
3965 | pud_t orig_pud = *vmf.pud; | |
3966 | ||
3967 | barrier(); | |
3968 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
a00cc7d9 | 3969 | |
a00cc7d9 MW |
3970 | /* NUMA case for anonymous PUDs would go here */ |
3971 | ||
f6f37321 | 3972 | if (dirty && !pud_write(orig_pud)) { |
a00cc7d9 MW |
3973 | ret = wp_huge_pud(&vmf, orig_pud); |
3974 | if (!(ret & VM_FAULT_FALLBACK)) | |
3975 | return ret; | |
3976 | } else { | |
3977 | huge_pud_set_accessed(&vmf, orig_pud); | |
3978 | return 0; | |
3979 | } | |
3980 | } | |
3981 | } | |
3982 | ||
3983 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 3984 | if (!vmf.pmd) |
c74df32c | 3985 | return VM_FAULT_OOM; |
7635d9cb | 3986 | if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { |
a2d58167 | 3987 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
3988 | if (!(ret & VM_FAULT_FALLBACK)) |
3989 | return ret; | |
71e3aac0 | 3990 | } else { |
82b0f8c3 | 3991 | pmd_t orig_pmd = *vmf.pmd; |
1f1d06c3 | 3992 | |
71e3aac0 | 3993 | barrier(); |
84c3fc4e ZY |
3994 | if (unlikely(is_swap_pmd(orig_pmd))) { |
3995 | VM_BUG_ON(thp_migration_supported() && | |
3996 | !is_pmd_migration_entry(orig_pmd)); | |
3997 | if (is_pmd_migration_entry(orig_pmd)) | |
3998 | pmd_migration_entry_wait(mm, vmf.pmd); | |
3999 | return 0; | |
4000 | } | |
5c7fb56e | 4001 | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { |
38e08854 | 4002 | if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) |
82b0f8c3 | 4003 | return do_huge_pmd_numa_page(&vmf, orig_pmd); |
d10e63f2 | 4004 | |
f6f37321 | 4005 | if (dirty && !pmd_write(orig_pmd)) { |
82b0f8c3 | 4006 | ret = wp_huge_pmd(&vmf, orig_pmd); |
9845cbbd KS |
4007 | if (!(ret & VM_FAULT_FALLBACK)) |
4008 | return ret; | |
a1dd450b | 4009 | } else { |
82b0f8c3 | 4010 | huge_pmd_set_accessed(&vmf, orig_pmd); |
9845cbbd | 4011 | return 0; |
1f1d06c3 | 4012 | } |
71e3aac0 AA |
4013 | } |
4014 | } | |
4015 | ||
82b0f8c3 | 4016 | return handle_pte_fault(&vmf); |
1da177e4 LT |
4017 | } |
4018 | ||
9a95f3cf PC |
4019 | /* |
4020 | * By the time we get here, we already hold the mm semaphore | |
4021 | * | |
4022 | * The mmap_sem may have been released depending on flags and our | |
4023 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
4024 | */ | |
2b740303 | 4025 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
dcddffd4 | 4026 | unsigned int flags) |
519e5247 | 4027 | { |
2b740303 | 4028 | vm_fault_t ret; |
519e5247 JW |
4029 | |
4030 | __set_current_state(TASK_RUNNING); | |
4031 | ||
4032 | count_vm_event(PGFAULT); | |
2262185c | 4033 | count_memcg_event_mm(vma->vm_mm, PGFAULT); |
519e5247 JW |
4034 | |
4035 | /* do counter updates before entering really critical section. */ | |
4036 | check_sync_rss_stat(current); | |
4037 | ||
de0c799b LD |
4038 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
4039 | flags & FAULT_FLAG_INSTRUCTION, | |
4040 | flags & FAULT_FLAG_REMOTE)) | |
4041 | return VM_FAULT_SIGSEGV; | |
4042 | ||
519e5247 JW |
4043 | /* |
4044 | * Enable the memcg OOM handling for faults triggered in user | |
4045 | * space. Kernel faults are handled more gracefully. | |
4046 | */ | |
4047 | if (flags & FAULT_FLAG_USER) | |
29ef680a | 4048 | mem_cgroup_enter_user_fault(); |
519e5247 | 4049 | |
bae473a4 KS |
4050 | if (unlikely(is_vm_hugetlb_page(vma))) |
4051 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
4052 | else | |
4053 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 4054 | |
49426420 | 4055 | if (flags & FAULT_FLAG_USER) { |
29ef680a | 4056 | mem_cgroup_exit_user_fault(); |
166f61b9 TH |
4057 | /* |
4058 | * The task may have entered a memcg OOM situation but | |
4059 | * if the allocation error was handled gracefully (no | |
4060 | * VM_FAULT_OOM), there is no need to kill anything. | |
4061 | * Just clean up the OOM state peacefully. | |
4062 | */ | |
4063 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
4064 | mem_cgroup_oom_synchronize(false); | |
49426420 | 4065 | } |
3812c8c8 | 4066 | |
519e5247 JW |
4067 | return ret; |
4068 | } | |
e1d6d01a | 4069 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 4070 | |
90eceff1 KS |
4071 | #ifndef __PAGETABLE_P4D_FOLDED |
4072 | /* | |
4073 | * Allocate p4d page table. | |
4074 | * We've already handled the fast-path in-line. | |
4075 | */ | |
4076 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
4077 | { | |
4078 | p4d_t *new = p4d_alloc_one(mm, address); | |
4079 | if (!new) | |
4080 | return -ENOMEM; | |
4081 | ||
4082 | smp_wmb(); /* See comment in __pte_alloc */ | |
4083 | ||
4084 | spin_lock(&mm->page_table_lock); | |
4085 | if (pgd_present(*pgd)) /* Another has populated it */ | |
4086 | p4d_free(mm, new); | |
4087 | else | |
4088 | pgd_populate(mm, pgd, new); | |
4089 | spin_unlock(&mm->page_table_lock); | |
4090 | return 0; | |
4091 | } | |
4092 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
4093 | ||
1da177e4 LT |
4094 | #ifndef __PAGETABLE_PUD_FOLDED |
4095 | /* | |
4096 | * Allocate page upper directory. | |
872fec16 | 4097 | * We've already handled the fast-path in-line. |
1da177e4 | 4098 | */ |
c2febafc | 4099 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 4100 | { |
c74df32c HD |
4101 | pud_t *new = pud_alloc_one(mm, address); |
4102 | if (!new) | |
1bb3630e | 4103 | return -ENOMEM; |
1da177e4 | 4104 | |
362a61ad NP |
4105 | smp_wmb(); /* See comment in __pte_alloc */ |
4106 | ||
872fec16 | 4107 | spin_lock(&mm->page_table_lock); |
c2febafc | 4108 | #ifndef __ARCH_HAS_5LEVEL_HACK |
b4e98d9a KS |
4109 | if (!p4d_present(*p4d)) { |
4110 | mm_inc_nr_puds(mm); | |
c2febafc | 4111 | p4d_populate(mm, p4d, new); |
b4e98d9a | 4112 | } else /* Another has populated it */ |
5e541973 | 4113 | pud_free(mm, new); |
b4e98d9a KS |
4114 | #else |
4115 | if (!pgd_present(*p4d)) { | |
4116 | mm_inc_nr_puds(mm); | |
c2febafc | 4117 | pgd_populate(mm, p4d, new); |
b4e98d9a KS |
4118 | } else /* Another has populated it */ |
4119 | pud_free(mm, new); | |
c2febafc | 4120 | #endif /* __ARCH_HAS_5LEVEL_HACK */ |
c74df32c | 4121 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 4122 | return 0; |
1da177e4 LT |
4123 | } |
4124 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
4125 | ||
4126 | #ifndef __PAGETABLE_PMD_FOLDED | |
4127 | /* | |
4128 | * Allocate page middle directory. | |
872fec16 | 4129 | * We've already handled the fast-path in-line. |
1da177e4 | 4130 | */ |
1bb3630e | 4131 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 4132 | { |
a00cc7d9 | 4133 | spinlock_t *ptl; |
c74df32c HD |
4134 | pmd_t *new = pmd_alloc_one(mm, address); |
4135 | if (!new) | |
1bb3630e | 4136 | return -ENOMEM; |
1da177e4 | 4137 | |
362a61ad NP |
4138 | smp_wmb(); /* See comment in __pte_alloc */ |
4139 | ||
a00cc7d9 | 4140 | ptl = pud_lock(mm, pud); |
1da177e4 | 4141 | #ifndef __ARCH_HAS_4LEVEL_HACK |
dc6c9a35 KS |
4142 | if (!pud_present(*pud)) { |
4143 | mm_inc_nr_pmds(mm); | |
1bb3630e | 4144 | pud_populate(mm, pud, new); |
dc6c9a35 | 4145 | } else /* Another has populated it */ |
5e541973 | 4146 | pmd_free(mm, new); |
dc6c9a35 KS |
4147 | #else |
4148 | if (!pgd_present(*pud)) { | |
4149 | mm_inc_nr_pmds(mm); | |
1bb3630e | 4150 | pgd_populate(mm, pud, new); |
dc6c9a35 KS |
4151 | } else /* Another has populated it */ |
4152 | pmd_free(mm, new); | |
1da177e4 | 4153 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
a00cc7d9 | 4154 | spin_unlock(ptl); |
1bb3630e | 4155 | return 0; |
e0f39591 | 4156 | } |
1da177e4 LT |
4157 | #endif /* __PAGETABLE_PMD_FOLDED */ |
4158 | ||
09796395 | 4159 | static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, |
ac46d4f3 | 4160 | struct mmu_notifier_range *range, |
a4d1a885 | 4161 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) |
f8ad0f49 JW |
4162 | { |
4163 | pgd_t *pgd; | |
c2febafc | 4164 | p4d_t *p4d; |
f8ad0f49 JW |
4165 | pud_t *pud; |
4166 | pmd_t *pmd; | |
4167 | pte_t *ptep; | |
4168 | ||
4169 | pgd = pgd_offset(mm, address); | |
4170 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
4171 | goto out; | |
4172 | ||
c2febafc KS |
4173 | p4d = p4d_offset(pgd, address); |
4174 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
4175 | goto out; | |
4176 | ||
4177 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
4178 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
4179 | goto out; | |
4180 | ||
4181 | pmd = pmd_offset(pud, address); | |
f66055ab | 4182 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 4183 | |
09796395 RZ |
4184 | if (pmd_huge(*pmd)) { |
4185 | if (!pmdpp) | |
4186 | goto out; | |
4187 | ||
ac46d4f3 | 4188 | if (range) { |
7269f999 | 4189 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, |
6f4f13e8 JG |
4190 | NULL, mm, address & PMD_MASK, |
4191 | (address & PMD_MASK) + PMD_SIZE); | |
ac46d4f3 | 4192 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4193 | } |
09796395 RZ |
4194 | *ptlp = pmd_lock(mm, pmd); |
4195 | if (pmd_huge(*pmd)) { | |
4196 | *pmdpp = pmd; | |
4197 | return 0; | |
4198 | } | |
4199 | spin_unlock(*ptlp); | |
ac46d4f3 JG |
4200 | if (range) |
4201 | mmu_notifier_invalidate_range_end(range); | |
09796395 RZ |
4202 | } |
4203 | ||
4204 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
f8ad0f49 JW |
4205 | goto out; |
4206 | ||
ac46d4f3 | 4207 | if (range) { |
7269f999 | 4208 | mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, |
6f4f13e8 JG |
4209 | address & PAGE_MASK, |
4210 | (address & PAGE_MASK) + PAGE_SIZE); | |
ac46d4f3 | 4211 | mmu_notifier_invalidate_range_start(range); |
a4d1a885 | 4212 | } |
f8ad0f49 | 4213 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); |
f8ad0f49 JW |
4214 | if (!pte_present(*ptep)) |
4215 | goto unlock; | |
4216 | *ptepp = ptep; | |
4217 | return 0; | |
4218 | unlock: | |
4219 | pte_unmap_unlock(ptep, *ptlp); | |
ac46d4f3 JG |
4220 | if (range) |
4221 | mmu_notifier_invalidate_range_end(range); | |
f8ad0f49 JW |
4222 | out: |
4223 | return -EINVAL; | |
4224 | } | |
4225 | ||
f729c8c9 RZ |
4226 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, |
4227 | pte_t **ptepp, spinlock_t **ptlp) | |
1b36ba81 NK |
4228 | { |
4229 | int res; | |
4230 | ||
4231 | /* (void) is needed to make gcc happy */ | |
4232 | (void) __cond_lock(*ptlp, | |
ac46d4f3 | 4233 | !(res = __follow_pte_pmd(mm, address, NULL, |
a4d1a885 | 4234 | ptepp, NULL, ptlp))); |
09796395 RZ |
4235 | return res; |
4236 | } | |
4237 | ||
4238 | int follow_pte_pmd(struct mm_struct *mm, unsigned long address, | |
ac46d4f3 JG |
4239 | struct mmu_notifier_range *range, |
4240 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | |
09796395 RZ |
4241 | { |
4242 | int res; | |
4243 | ||
4244 | /* (void) is needed to make gcc happy */ | |
4245 | (void) __cond_lock(*ptlp, | |
ac46d4f3 | 4246 | !(res = __follow_pte_pmd(mm, address, range, |
a4d1a885 | 4247 | ptepp, pmdpp, ptlp))); |
1b36ba81 NK |
4248 | return res; |
4249 | } | |
09796395 | 4250 | EXPORT_SYMBOL(follow_pte_pmd); |
1b36ba81 | 4251 | |
3b6748e2 JW |
4252 | /** |
4253 | * follow_pfn - look up PFN at a user virtual address | |
4254 | * @vma: memory mapping | |
4255 | * @address: user virtual address | |
4256 | * @pfn: location to store found PFN | |
4257 | * | |
4258 | * Only IO mappings and raw PFN mappings are allowed. | |
4259 | * | |
a862f68a | 4260 | * Return: zero and the pfn at @pfn on success, -ve otherwise. |
3b6748e2 JW |
4261 | */ |
4262 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
4263 | unsigned long *pfn) | |
4264 | { | |
4265 | int ret = -EINVAL; | |
4266 | spinlock_t *ptl; | |
4267 | pte_t *ptep; | |
4268 | ||
4269 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
4270 | return ret; | |
4271 | ||
4272 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
4273 | if (ret) | |
4274 | return ret; | |
4275 | *pfn = pte_pfn(*ptep); | |
4276 | pte_unmap_unlock(ptep, ptl); | |
4277 | return 0; | |
4278 | } | |
4279 | EXPORT_SYMBOL(follow_pfn); | |
4280 | ||
28b2ee20 | 4281 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 4282 | int follow_phys(struct vm_area_struct *vma, |
4283 | unsigned long address, unsigned int flags, | |
4284 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 4285 | { |
03668a4d | 4286 | int ret = -EINVAL; |
28b2ee20 RR |
4287 | pte_t *ptep, pte; |
4288 | spinlock_t *ptl; | |
28b2ee20 | 4289 | |
d87fe660 | 4290 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
4291 | goto out; | |
28b2ee20 | 4292 | |
03668a4d | 4293 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 4294 | goto out; |
28b2ee20 | 4295 | pte = *ptep; |
03668a4d | 4296 | |
f6f37321 | 4297 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
28b2ee20 | 4298 | goto unlock; |
28b2ee20 RR |
4299 | |
4300 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 4301 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 4302 | |
03668a4d | 4303 | ret = 0; |
28b2ee20 RR |
4304 | unlock: |
4305 | pte_unmap_unlock(ptep, ptl); | |
4306 | out: | |
d87fe660 | 4307 | return ret; |
28b2ee20 RR |
4308 | } |
4309 | ||
4310 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
4311 | void *buf, int len, int write) | |
4312 | { | |
4313 | resource_size_t phys_addr; | |
4314 | unsigned long prot = 0; | |
2bc7273b | 4315 | void __iomem *maddr; |
28b2ee20 RR |
4316 | int offset = addr & (PAGE_SIZE-1); |
4317 | ||
d87fe660 | 4318 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
4319 | return -EINVAL; |
4320 | ||
9cb12d7b | 4321 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
24eee1e4 | 4322 | if (!maddr) |
4323 | return -ENOMEM; | |
4324 | ||
28b2ee20 RR |
4325 | if (write) |
4326 | memcpy_toio(maddr + offset, buf, len); | |
4327 | else | |
4328 | memcpy_fromio(buf, maddr + offset, len); | |
4329 | iounmap(maddr); | |
4330 | ||
4331 | return len; | |
4332 | } | |
5a73633e | 4333 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
4334 | #endif |
4335 | ||
0ec76a11 | 4336 | /* |
206cb636 SW |
4337 | * Access another process' address space as given in mm. If non-NULL, use the |
4338 | * given task for page fault accounting. | |
0ec76a11 | 4339 | */ |
84d77d3f | 4340 | int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
442486ec | 4341 | unsigned long addr, void *buf, int len, unsigned int gup_flags) |
0ec76a11 | 4342 | { |
0ec76a11 | 4343 | struct vm_area_struct *vma; |
0ec76a11 | 4344 | void *old_buf = buf; |
442486ec | 4345 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 4346 | |
1e426fe2 KK |
4347 | if (down_read_killable(&mm->mmap_sem)) |
4348 | return 0; | |
4349 | ||
183ff22b | 4350 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
4351 | while (len) { |
4352 | int bytes, ret, offset; | |
4353 | void *maddr; | |
28b2ee20 | 4354 | struct page *page = NULL; |
0ec76a11 | 4355 | |
1e987790 | 4356 | ret = get_user_pages_remote(tsk, mm, addr, 1, |
5b56d49f | 4357 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 4358 | if (ret <= 0) { |
dbffcd03 RR |
4359 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
4360 | break; | |
4361 | #else | |
28b2ee20 RR |
4362 | /* |
4363 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
4364 | * we can access using slightly different code. | |
4365 | */ | |
28b2ee20 | 4366 | vma = find_vma(mm, addr); |
fe936dfc | 4367 | if (!vma || vma->vm_start > addr) |
28b2ee20 RR |
4368 | break; |
4369 | if (vma->vm_ops && vma->vm_ops->access) | |
4370 | ret = vma->vm_ops->access(vma, addr, buf, | |
4371 | len, write); | |
4372 | if (ret <= 0) | |
28b2ee20 RR |
4373 | break; |
4374 | bytes = ret; | |
dbffcd03 | 4375 | #endif |
0ec76a11 | 4376 | } else { |
28b2ee20 RR |
4377 | bytes = len; |
4378 | offset = addr & (PAGE_SIZE-1); | |
4379 | if (bytes > PAGE_SIZE-offset) | |
4380 | bytes = PAGE_SIZE-offset; | |
4381 | ||
4382 | maddr = kmap(page); | |
4383 | if (write) { | |
4384 | copy_to_user_page(vma, page, addr, | |
4385 | maddr + offset, buf, bytes); | |
4386 | set_page_dirty_lock(page); | |
4387 | } else { | |
4388 | copy_from_user_page(vma, page, addr, | |
4389 | buf, maddr + offset, bytes); | |
4390 | } | |
4391 | kunmap(page); | |
09cbfeaf | 4392 | put_page(page); |
0ec76a11 | 4393 | } |
0ec76a11 DH |
4394 | len -= bytes; |
4395 | buf += bytes; | |
4396 | addr += bytes; | |
4397 | } | |
4398 | up_read(&mm->mmap_sem); | |
0ec76a11 DH |
4399 | |
4400 | return buf - old_buf; | |
4401 | } | |
03252919 | 4402 | |
5ddd36b9 | 4403 | /** |
ae91dbfc | 4404 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
4405 | * @mm: the mm_struct of the target address space |
4406 | * @addr: start address to access | |
4407 | * @buf: source or destination buffer | |
4408 | * @len: number of bytes to transfer | |
6347e8d5 | 4409 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
4410 | * |
4411 | * The caller must hold a reference on @mm. | |
a862f68a MR |
4412 | * |
4413 | * Return: number of bytes copied from source to destination. | |
5ddd36b9 SW |
4414 | */ |
4415 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 4416 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 4417 | { |
6347e8d5 | 4418 | return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
4419 | } |
4420 | ||
206cb636 SW |
4421 | /* |
4422 | * Access another process' address space. | |
4423 | * Source/target buffer must be kernel space, | |
4424 | * Do not walk the page table directly, use get_user_pages | |
4425 | */ | |
4426 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 4427 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
4428 | { |
4429 | struct mm_struct *mm; | |
4430 | int ret; | |
4431 | ||
4432 | mm = get_task_mm(tsk); | |
4433 | if (!mm) | |
4434 | return 0; | |
4435 | ||
f307ab6d | 4436 | ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); |
442486ec | 4437 | |
206cb636 SW |
4438 | mmput(mm); |
4439 | ||
4440 | return ret; | |
4441 | } | |
fcd35857 | 4442 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 4443 | |
03252919 AK |
4444 | /* |
4445 | * Print the name of a VMA. | |
4446 | */ | |
4447 | void print_vma_addr(char *prefix, unsigned long ip) | |
4448 | { | |
4449 | struct mm_struct *mm = current->mm; | |
4450 | struct vm_area_struct *vma; | |
4451 | ||
e8bff74a | 4452 | /* |
0a7f682d | 4453 | * we might be running from an atomic context so we cannot sleep |
e8bff74a | 4454 | */ |
0a7f682d | 4455 | if (!down_read_trylock(&mm->mmap_sem)) |
e8bff74a IM |
4456 | return; |
4457 | ||
03252919 AK |
4458 | vma = find_vma(mm, ip); |
4459 | if (vma && vma->vm_file) { | |
4460 | struct file *f = vma->vm_file; | |
0a7f682d | 4461 | char *buf = (char *)__get_free_page(GFP_NOWAIT); |
03252919 | 4462 | if (buf) { |
2fbc57c5 | 4463 | char *p; |
03252919 | 4464 | |
9bf39ab2 | 4465 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
4466 | if (IS_ERR(p)) |
4467 | p = "?"; | |
2fbc57c5 | 4468 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
4469 | vma->vm_start, |
4470 | vma->vm_end - vma->vm_start); | |
4471 | free_page((unsigned long)buf); | |
4472 | } | |
4473 | } | |
51a07e50 | 4474 | up_read(&mm->mmap_sem); |
03252919 | 4475 | } |
3ee1afa3 | 4476 | |
662bbcb2 | 4477 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 4478 | void __might_fault(const char *file, int line) |
3ee1afa3 | 4479 | { |
95156f00 PZ |
4480 | /* |
4481 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
4482 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
4483 | * get paged out, therefore we'll never actually fault, and the | |
4484 | * below annotations will generate false positives. | |
4485 | */ | |
db68ce10 | 4486 | if (uaccess_kernel()) |
95156f00 | 4487 | return; |
9ec23531 | 4488 | if (pagefault_disabled()) |
662bbcb2 | 4489 | return; |
9ec23531 DH |
4490 | __might_sleep(file, line, 0); |
4491 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
662bbcb2 | 4492 | if (current->mm) |
3ee1afa3 | 4493 | might_lock_read(¤t->mm->mmap_sem); |
9ec23531 | 4494 | #endif |
3ee1afa3 | 4495 | } |
9ec23531 | 4496 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 4497 | #endif |
47ad8475 AA |
4498 | |
4499 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
c6ddfb6c YH |
4500 | /* |
4501 | * Process all subpages of the specified huge page with the specified | |
4502 | * operation. The target subpage will be processed last to keep its | |
4503 | * cache lines hot. | |
4504 | */ | |
4505 | static inline void process_huge_page( | |
4506 | unsigned long addr_hint, unsigned int pages_per_huge_page, | |
4507 | void (*process_subpage)(unsigned long addr, int idx, void *arg), | |
4508 | void *arg) | |
47ad8475 | 4509 | { |
c79b57e4 YH |
4510 | int i, n, base, l; |
4511 | unsigned long addr = addr_hint & | |
4512 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
47ad8475 | 4513 | |
c6ddfb6c | 4514 | /* Process target subpage last to keep its cache lines hot */ |
47ad8475 | 4515 | might_sleep(); |
c79b57e4 YH |
4516 | n = (addr_hint - addr) / PAGE_SIZE; |
4517 | if (2 * n <= pages_per_huge_page) { | |
c6ddfb6c | 4518 | /* If target subpage in first half of huge page */ |
c79b57e4 YH |
4519 | base = 0; |
4520 | l = n; | |
c6ddfb6c | 4521 | /* Process subpages at the end of huge page */ |
c79b57e4 YH |
4522 | for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { |
4523 | cond_resched(); | |
c6ddfb6c | 4524 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
4525 | } |
4526 | } else { | |
c6ddfb6c | 4527 | /* If target subpage in second half of huge page */ |
c79b57e4 YH |
4528 | base = pages_per_huge_page - 2 * (pages_per_huge_page - n); |
4529 | l = pages_per_huge_page - n; | |
c6ddfb6c | 4530 | /* Process subpages at the begin of huge page */ |
c79b57e4 YH |
4531 | for (i = 0; i < base; i++) { |
4532 | cond_resched(); | |
c6ddfb6c | 4533 | process_subpage(addr + i * PAGE_SIZE, i, arg); |
c79b57e4 YH |
4534 | } |
4535 | } | |
4536 | /* | |
c6ddfb6c YH |
4537 | * Process remaining subpages in left-right-left-right pattern |
4538 | * towards the target subpage | |
c79b57e4 YH |
4539 | */ |
4540 | for (i = 0; i < l; i++) { | |
4541 | int left_idx = base + i; | |
4542 | int right_idx = base + 2 * l - 1 - i; | |
4543 | ||
4544 | cond_resched(); | |
c6ddfb6c | 4545 | process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); |
47ad8475 | 4546 | cond_resched(); |
c6ddfb6c | 4547 | process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); |
47ad8475 AA |
4548 | } |
4549 | } | |
4550 | ||
c6ddfb6c YH |
4551 | static void clear_gigantic_page(struct page *page, |
4552 | unsigned long addr, | |
4553 | unsigned int pages_per_huge_page) | |
4554 | { | |
4555 | int i; | |
4556 | struct page *p = page; | |
4557 | ||
4558 | might_sleep(); | |
4559 | for (i = 0; i < pages_per_huge_page; | |
4560 | i++, p = mem_map_next(p, page, i)) { | |
4561 | cond_resched(); | |
4562 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
4563 | } | |
4564 | } | |
4565 | ||
4566 | static void clear_subpage(unsigned long addr, int idx, void *arg) | |
4567 | { | |
4568 | struct page *page = arg; | |
4569 | ||
4570 | clear_user_highpage(page + idx, addr); | |
4571 | } | |
4572 | ||
4573 | void clear_huge_page(struct page *page, | |
4574 | unsigned long addr_hint, unsigned int pages_per_huge_page) | |
4575 | { | |
4576 | unsigned long addr = addr_hint & | |
4577 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
4578 | ||
4579 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4580 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
4581 | return; | |
4582 | } | |
4583 | ||
4584 | process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); | |
4585 | } | |
4586 | ||
47ad8475 AA |
4587 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
4588 | unsigned long addr, | |
4589 | struct vm_area_struct *vma, | |
4590 | unsigned int pages_per_huge_page) | |
4591 | { | |
4592 | int i; | |
4593 | struct page *dst_base = dst; | |
4594 | struct page *src_base = src; | |
4595 | ||
4596 | for (i = 0; i < pages_per_huge_page; ) { | |
4597 | cond_resched(); | |
4598 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
4599 | ||
4600 | i++; | |
4601 | dst = mem_map_next(dst, dst_base, i); | |
4602 | src = mem_map_next(src, src_base, i); | |
4603 | } | |
4604 | } | |
4605 | ||
c9f4cd71 YH |
4606 | struct copy_subpage_arg { |
4607 | struct page *dst; | |
4608 | struct page *src; | |
4609 | struct vm_area_struct *vma; | |
4610 | }; | |
4611 | ||
4612 | static void copy_subpage(unsigned long addr, int idx, void *arg) | |
4613 | { | |
4614 | struct copy_subpage_arg *copy_arg = arg; | |
4615 | ||
4616 | copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, | |
4617 | addr, copy_arg->vma); | |
4618 | } | |
4619 | ||
47ad8475 | 4620 | void copy_user_huge_page(struct page *dst, struct page *src, |
c9f4cd71 | 4621 | unsigned long addr_hint, struct vm_area_struct *vma, |
47ad8475 AA |
4622 | unsigned int pages_per_huge_page) |
4623 | { | |
c9f4cd71 YH |
4624 | unsigned long addr = addr_hint & |
4625 | ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); | |
4626 | struct copy_subpage_arg arg = { | |
4627 | .dst = dst, | |
4628 | .src = src, | |
4629 | .vma = vma, | |
4630 | }; | |
47ad8475 AA |
4631 | |
4632 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4633 | copy_user_gigantic_page(dst, src, addr, vma, | |
4634 | pages_per_huge_page); | |
4635 | return; | |
4636 | } | |
4637 | ||
c9f4cd71 | 4638 | process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); |
47ad8475 | 4639 | } |
fa4d75c1 MK |
4640 | |
4641 | long copy_huge_page_from_user(struct page *dst_page, | |
4642 | const void __user *usr_src, | |
810a56b9 MK |
4643 | unsigned int pages_per_huge_page, |
4644 | bool allow_pagefault) | |
fa4d75c1 MK |
4645 | { |
4646 | void *src = (void *)usr_src; | |
4647 | void *page_kaddr; | |
4648 | unsigned long i, rc = 0; | |
4649 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
4650 | ||
4651 | for (i = 0; i < pages_per_huge_page; i++) { | |
810a56b9 MK |
4652 | if (allow_pagefault) |
4653 | page_kaddr = kmap(dst_page + i); | |
4654 | else | |
4655 | page_kaddr = kmap_atomic(dst_page + i); | |
fa4d75c1 MK |
4656 | rc = copy_from_user(page_kaddr, |
4657 | (const void __user *)(src + i * PAGE_SIZE), | |
4658 | PAGE_SIZE); | |
810a56b9 MK |
4659 | if (allow_pagefault) |
4660 | kunmap(dst_page + i); | |
4661 | else | |
4662 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
4663 | |
4664 | ret_val -= (PAGE_SIZE - rc); | |
4665 | if (rc) | |
4666 | break; | |
4667 | ||
4668 | cond_resched(); | |
4669 | } | |
4670 | return ret_val; | |
4671 | } | |
47ad8475 | 4672 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 4673 | |
40b64acd | 4674 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
4675 | |
4676 | static struct kmem_cache *page_ptl_cachep; | |
4677 | ||
4678 | void __init ptlock_cache_init(void) | |
4679 | { | |
4680 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
4681 | SLAB_PANIC, NULL); | |
4682 | } | |
4683 | ||
539edb58 | 4684 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
4685 | { |
4686 | spinlock_t *ptl; | |
4687 | ||
b35f1819 | 4688 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
4689 | if (!ptl) |
4690 | return false; | |
539edb58 | 4691 | page->ptl = ptl; |
49076ec2 KS |
4692 | return true; |
4693 | } | |
4694 | ||
539edb58 | 4695 | void ptlock_free(struct page *page) |
49076ec2 | 4696 | { |
b35f1819 | 4697 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
4698 | } |
4699 | #endif |