]> Git Repo - linux.git/blame - mm/gup.c
Merge tag 'io_uring-6.11-20240802' of git://git.kernel.dk/linux
[linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
89c1905d 8#include <linux/memfd.h>
3565fce3 9#include <linux/memremap.h>
4bbd4c77
KS
10#include <linux/pagemap.h>
11#include <linux/rmap.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
1507f512 14#include <linux/secretmem.h>
4bbd4c77 15
174cd4b1 16#include <linux/sched/signal.h>
2667f50e 17#include <linux/rwsem.h>
f30c59e9 18#include <linux/hugetlb.h>
9a4e9f3b
AK
19#include <linux/migrate.h>
20#include <linux/mm_inline.h>
89c1905d 21#include <linux/pagevec.h>
9a4e9f3b 22#include <linux/sched/mm.h>
a6e79df9 23#include <linux/shmem_fs.h>
1027e443 24
33a709b2 25#include <asm/mmu_context.h>
1027e443 26#include <asm/tlbflush.h>
2667f50e 27
4bbd4c77
KS
28#include "internal.h"
29
df06b37f
KB
30struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
33};
34
b6a2619c
DH
35static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
37{
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
40
41 /*
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
45 *
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
52 */
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
56
c8070b78
DH
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
b6a2619c
DH
59 continue;
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 else
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
66 }
67}
68
cd1adf1b 69/*
ece1ed7b 70 * Return the folio with ref appropriately incremented,
cd1adf1b 71 * or NULL if that failed.
a707cdd5 72 */
ece1ed7b 73static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 74{
ece1ed7b 75 struct folio *folio;
a707cdd5 76
59409373 77retry:
ece1ed7b
MWO
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 80 return NULL;
fa2690af 81 if (unlikely(!folio_ref_try_add(folio, refs)))
a707cdd5 82 return NULL;
c24d3732
JH
83
84 /*
ece1ed7b
MWO
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
c24d3732 89 * we were given anymore.
ece1ed7b
MWO
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
c24d3732 92 */
ece1ed7b 93 if (unlikely(page_folio(page) != folio)) {
53e45c4f 94 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 95 folio_put_refs(folio, refs);
59409373 96 goto retry;
c24d3732
JH
97 }
98
ece1ed7b 99 return folio;
a707cdd5
JH
100}
101
d8ddc099 102static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
103{
104 if (flags & FOLL_PIN) {
c8070b78
DH
105 if (is_zero_folio(folio))
106 return;
d8ddc099
MWO
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
94688e8e 109 atomic_sub(refs, &folio->_pincount);
4509b42c
JG
110 else
111 refs *= GUP_PIN_COUNTING_BIAS;
112 }
113
53e45c4f 114 if (!put_devmap_managed_folio_refs(folio, refs))
f4f451a1 115 folio_put_refs(folio, refs);
4509b42c
JG
116}
117
3faa52c0 118/**
f442fa61
YS
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
3faa52c0
JH
123 *
124 * This might not do anything at all, depending on the flags argument.
125 *
126 * "grab" names in this file mean, "look at flags to decide whether to use
f442fa61 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0 128 *
3faa52c0 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
f442fa61 130 * time.
3faa52c0 131 *
0f089235
LG
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134 *
f442fa61 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
0f089235 136 * be grabbed.
f442fa61
YS
137 *
138 * It is called when we have a stable reference for the folio, typically in
139 * GUP slow path.
3faa52c0 140 */
f442fa61
YS
141int __must_check try_grab_folio(struct folio *folio, int refs,
142 unsigned int flags)
3faa52c0 143{
5fec0719 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
0f089235 145 return -ENOMEM;
3faa52c0 146
f442fa61 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
4003f107 148 return -EREMOTEIO;
3faa52c0 149
c36c04c2 150 if (flags & FOLL_GET)
f442fa61 151 folio_ref_add(folio, refs);
c36c04c2 152 else if (flags & FOLL_PIN) {
c8070b78
DH
153 /*
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
156 */
f442fa61 157 if (is_zero_folio(folio))
c8070b78
DH
158 return 0;
159
c36c04c2 160 /*
f442fa61 161 * Increment the normal page refcount field at least once,
78d9d6ce 162 * so that the page really is pinned.
c36c04c2 163 */
5fec0719 164 if (folio_test_large(folio)) {
f442fa61
YS
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
8ea2979c 167 } else {
f442fa61 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
8ea2979c 169 }
c36c04c2 170
f442fa61 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
c36c04c2
JH
172 }
173
0f089235 174 return 0;
3faa52c0
JH
175}
176
3faa52c0
JH
177/**
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
180 *
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
185 */
186void unpin_user_page(struct page *page)
187{
b6a2619c 188 sanity_check_pinned_pages(&page, 1);
d8ddc099 189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
190}
191EXPORT_SYMBOL(unpin_user_page);
192
6cc04054
VK
193/**
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
196 *
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
199 */
200void unpin_folio(struct folio *folio)
201{
202 gup_put_folio(folio, 1, FOLL_PIN);
203}
204EXPORT_SYMBOL_GPL(unpin_folio);
205
1101fb8f
DH
206/**
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
209 *
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
212 */
213void folio_add_pin(struct folio *folio)
214{
215 if (is_zero_folio(folio))
216 return;
217
218 /*
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
221 * pinned.
222 */
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
227 } else {
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 }
231}
232
659508f9 233static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 234 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 235{
659508f9
MWO
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
458a4f78
JM
238 unsigned int nr = 1;
239
659508f9 240 if (folio_test_large(folio))
4c654229 241 nr = min_t(unsigned int, npages - i,
659508f9 242 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 243
458a4f78 244 *ntails = nr;
659508f9 245 return folio;
458a4f78
JM
246}
247
12521c76 248static inline struct folio *gup_folio_next(struct page **list,
28297dbc 249 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 250{
12521c76 251 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
252 unsigned int nr;
253
8745d7f6 254 for (nr = i + 1; nr < npages; nr++) {
12521c76 255 if (page_folio(list[nr]) != folio)
8745d7f6
JM
256 break;
257 }
258
8745d7f6 259 *ntails = nr - i;
12521c76 260 return folio;
8745d7f6
JM
261}
262
fc1d8e7c 263/**
f1f6a7dd 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 265 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 266 * @npages: number of pages in the @pages array.
2d15eb31 267 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
268 *
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
271 *
272 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 273 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 276 *
f1f6a7dd 277 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 278 *
2d15eb31
AM
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 282 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
283 *
284 */
f1f6a7dd
JH
285void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 bool make_dirty)
fc1d8e7c 287{
12521c76
MWO
288 unsigned long i;
289 struct folio *folio;
290 unsigned int nr;
2d15eb31
AM
291
292 if (!make_dirty) {
f1f6a7dd 293 unpin_user_pages(pages, npages);
2d15eb31
AM
294 return;
295 }
296
b6a2619c 297 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
300 /*
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
303 * cases:
304 *
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
a929e0d1 308 * folio_mkclean(), followed by set_page_dirty().
2d15eb31
AM
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
313 * back.
314 *
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
319 */
12521c76
MWO
320 if (!folio_test_dirty(folio)) {
321 folio_lock(folio);
322 folio_mark_dirty(folio);
323 folio_unlock(folio);
324 }
325 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 326 }
fc1d8e7c 327}
f1f6a7dd 328EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 329
458a4f78
JM
330/**
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
333 *
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
337 *
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
340 *
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
344 *
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
349 *
350 */
351void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
353{
659508f9
MWO
354 unsigned long i;
355 struct folio *folio;
356 unsigned int nr;
357
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
361 folio_lock(folio);
362 folio_mark_dirty(folio);
363 folio_unlock(folio);
364 }
365 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
366 }
367}
368EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369
23babe19 370static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
b6a2619c
DH
371{
372 unsigned long i;
373 struct folio *folio;
374 unsigned int nr;
375
376 /*
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
380 */
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
384 }
385}
386
fc1d8e7c 387/**
f1f6a7dd 388 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
391 *
f1f6a7dd 392 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 393 *
f1f6a7dd 394 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 395 */
f1f6a7dd 396void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 397{
12521c76
MWO
398 unsigned long i;
399 struct folio *folio;
400 unsigned int nr;
fc1d8e7c 401
146608bb
JH
402 /*
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 */
407 if (WARN_ON(IS_ERR_VALUE(npages)))
408 return;
31b912de 409
b6a2619c 410 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 414 }
fc1d8e7c 415}
f1f6a7dd 416EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 417
6cc04054
VK
418/**
419 * unpin_folios() - release an array of gup-pinned folios.
420 * @folios: array of folios to be marked dirty and released.
421 * @nfolios: number of folios in the @folios array.
422 *
423 * For each folio in the @folios array, release the folio using gup_put_folio.
424 *
425 * Please see the unpin_folio() documentation for details.
426 */
427void unpin_folios(struct folio **folios, unsigned long nfolios)
428{
429 unsigned long i = 0, j;
430
431 /*
432 * If this WARN_ON() fires, then the system *might* be leaking folios
433 * (by leaving them pinned), but probably not. More likely, gup/pup
434 * returned a hard -ERRNO error to the caller, who erroneously passed
435 * it here.
436 */
437 if (WARN_ON(IS_ERR_VALUE(nfolios)))
438 return;
439
440 while (i < nfolios) {
441 for (j = i + 1; j < nfolios; j++)
442 if (folios[i] != folios[j])
443 break;
444
445 if (folios[i])
446 gup_put_folio(folios[i], j - i, FOLL_PIN);
447 i = j;
448 }
449}
450EXPORT_SYMBOL_GPL(unpin_folios);
451
a458b76a
AA
452/*
453 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
454 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
455 * cache bouncing on large SMP machines for concurrent pinned gups.
456 */
457static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
458{
459 if (!test_bit(MMF_HAS_PINNED, mm_flags))
460 set_bit(MMF_HAS_PINNED, mm_flags);
461}
462
050a9adc 463#ifdef CONFIG_MMU
a12083d7 464
8268614b 465#ifdef CONFIG_HAVE_GUP_FAST
a12083d7
PX
466static int record_subpages(struct page *page, unsigned long sz,
467 unsigned long addr, unsigned long end,
468 struct page **pages)
469{
470 struct page *start_page;
471 int nr;
472
473 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
474 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
475 pages[nr] = nth_page(start_page, nr);
476
477 return nr;
478}
f442fa61
YS
479
480/**
481 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
482 * @page: pointer to page to be grabbed
483 * @refs: the value to (effectively) add to the folio's refcount
484 * @flags: gup flags: these are the FOLL_* flag values.
485 *
486 * "grab" names in this file mean, "look at flags to decide whether to use
487 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
488 *
489 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
490 * same time. (That's true throughout the get_user_pages*() and
491 * pin_user_pages*() APIs.) Cases:
492 *
493 * FOLL_GET: folio's refcount will be incremented by @refs.
494 *
495 * FOLL_PIN on large folios: folio's refcount will be incremented by
496 * @refs, and its pincount will be incremented by @refs.
497 *
498 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
499 * @refs * GUP_PIN_COUNTING_BIAS.
500 *
501 * Return: The folio containing @page (with refcount appropriately
502 * incremented) for success, or NULL upon failure. If neither FOLL_GET
503 * nor FOLL_PIN was set, that's considered failure, and furthermore,
504 * a likely bug in the caller, so a warning is also emitted.
505 *
506 * It uses add ref unless zero to elevate the folio refcount and must be called
507 * in fast path only.
508 */
509static struct folio *try_grab_folio_fast(struct page *page, int refs,
510 unsigned int flags)
511{
512 struct folio *folio;
513
514 /* Raise warn if it is not called in fast GUP */
515 VM_WARN_ON_ONCE(!irqs_disabled());
516
517 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
518 return NULL;
519
520 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
521 return NULL;
522
523 if (flags & FOLL_GET)
524 return try_get_folio(page, refs);
525
526 /* FOLL_PIN is set */
527
528 /*
529 * Don't take a pin on the zero page - it's not going anywhere
530 * and it is used in a *lot* of places.
531 */
532 if (is_zero_page(page))
533 return page_folio(page);
534
535 folio = try_get_folio(page, refs);
536 if (!folio)
537 return NULL;
538
539 /*
540 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
541 * right zone, so fail and let the caller fall back to the slow
542 * path.
543 */
544 if (unlikely((flags & FOLL_LONGTERM) &&
545 !folio_is_longterm_pinnable(folio))) {
546 if (!put_devmap_managed_folio_refs(folio, refs))
547 folio_put_refs(folio, refs);
548 return NULL;
549 }
550
551 /*
552 * When pinning a large folio, use an exact count to track it.
553 *
554 * However, be sure to *also* increment the normal folio
555 * refcount field at least once, so that the folio really
556 * is pinned. That's why the refcount from the earlier
557 * try_get_folio() is left intact.
558 */
559 if (folio_test_large(folio))
560 atomic_add(refs, &folio->_pincount);
561 else
562 folio_ref_add(folio,
563 refs * (GUP_PIN_COUNTING_BIAS - 1));
564 /*
565 * Adjust the pincount before re-checking the PTE for changes.
566 * This is essentially a smp_mb() and is paired with a memory
567 * barrier in folio_try_share_anon_rmap_*().
568 */
569 smp_mb__after_atomic();
570
571 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
572
573 return folio;
574}
8268614b 575#endif /* CONFIG_HAVE_GUP_FAST */
a12083d7 576
69e68b4f 577static struct page *no_page_table(struct vm_area_struct *vma,
878b0c45 578 unsigned int flags, unsigned long address)
4bbd4c77 579{
878b0c45
PX
580 if (!(flags & FOLL_DUMP))
581 return NULL;
582
69e68b4f 583 /*
878b0c45 584 * When core dumping, we don't want to allocate unnecessary pages or
69e68b4f
KS
585 * page tables. Return error instead of NULL to skip handle_mm_fault,
586 * then get_dump_page() will return NULL to leave a hole in the dump.
587 * But we can only make this optimization where a hole would surely
588 * be zero-filled if handle_mm_fault() actually did handle it.
589 */
878b0c45
PX
590 if (is_vm_hugetlb_page(vma)) {
591 struct hstate *h = hstate_vma(vma);
592
593 if (!hugetlbfs_pagecache_present(h, vma, address))
594 return ERR_PTR(-EFAULT);
595 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
69e68b4f 596 return ERR_PTR(-EFAULT);
878b0c45
PX
597 }
598
69e68b4f
KS
599 return NULL;
600}
4bbd4c77 601
1b167618
PX
602#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
603static struct page *follow_huge_pud(struct vm_area_struct *vma,
604 unsigned long addr, pud_t *pudp,
605 int flags, struct follow_page_context *ctx)
606{
607 struct mm_struct *mm = vma->vm_mm;
608 struct page *page;
609 pud_t pud = *pudp;
610 unsigned long pfn = pud_pfn(pud);
611 int ret;
612
613 assert_spin_locked(pud_lockptr(mm, pudp));
614
615 if ((flags & FOLL_WRITE) && !pud_write(pud))
616 return NULL;
617
618 if (!pud_present(pud))
619 return NULL;
620
621 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
622
623 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
624 pud_devmap(pud)) {
625 /*
626 * device mapped pages can only be returned if the caller
627 * will manage the page reference count.
628 *
629 * At least one of FOLL_GET | FOLL_PIN must be set, so
630 * assert that here:
631 */
632 if (!(flags & (FOLL_GET | FOLL_PIN)))
633 return ERR_PTR(-EEXIST);
634
635 if (flags & FOLL_TOUCH)
636 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
637
638 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
639 if (!ctx->pgmap)
640 return ERR_PTR(-EFAULT);
641 }
642
643 page = pfn_to_page(pfn);
644
645 if (!pud_devmap(pud) && !pud_write(pud) &&
646 gup_must_unshare(vma, flags, page))
647 return ERR_PTR(-EMLINK);
648
f442fa61 649 ret = try_grab_folio(page_folio(page), 1, flags);
1b167618
PX
650 if (ret)
651 page = ERR_PTR(ret);
652 else
653 ctx->page_mask = HPAGE_PUD_NR - 1;
654
655 return page;
656}
4418c522
PX
657
658/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
659static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
660 struct vm_area_struct *vma,
661 unsigned int flags)
662{
663 /* If the pmd is writable, we can write to the page. */
664 if (pmd_write(pmd))
665 return true;
666
667 /* Maybe FOLL_FORCE is set to override it? */
668 if (!(flags & FOLL_FORCE))
669 return false;
670
671 /* But FOLL_FORCE has no effect on shared mappings */
672 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
673 return false;
674
675 /* ... or read-only private ones */
676 if (!(vma->vm_flags & VM_MAYWRITE))
677 return false;
678
679 /* ... or already writable ones that just need to take a write fault */
680 if (vma->vm_flags & VM_WRITE)
681 return false;
682
683 /*
684 * See can_change_pte_writable(): we broke COW and could map the page
685 * writable if we have an exclusive anonymous page ...
686 */
687 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
688 return false;
689
690 /* ... and a write-fault isn't required for other reasons. */
f38ee285 691 if (pmd_needs_soft_dirty_wp(vma, pmd))
4418c522
PX
692 return false;
693 return !userfaultfd_huge_pmd_wp(vma, pmd);
694}
695
696static struct page *follow_huge_pmd(struct vm_area_struct *vma,
697 unsigned long addr, pmd_t *pmd,
698 unsigned int flags,
699 struct follow_page_context *ctx)
700{
701 struct mm_struct *mm = vma->vm_mm;
702 pmd_t pmdval = *pmd;
703 struct page *page;
704 int ret;
705
706 assert_spin_locked(pmd_lockptr(mm, pmd));
707
708 page = pmd_page(pmdval);
709 if ((flags & FOLL_WRITE) &&
710 !can_follow_write_pmd(pmdval, page, vma, flags))
711 return NULL;
712
713 /* Avoid dumping huge zero page */
714 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
715 return ERR_PTR(-EFAULT);
716
717 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
718 return NULL;
719
720 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
721 return ERR_PTR(-EMLINK);
722
723 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
724 !PageAnonExclusive(page), page);
725
f442fa61 726 ret = try_grab_folio(page_folio(page), 1, flags);
4418c522
PX
727 if (ret)
728 return ERR_PTR(ret);
729
730#ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
732 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
733#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
734
735 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
736 ctx->page_mask = HPAGE_PMD_NR - 1;
737
738 return page;
739}
740
1b167618
PX
741#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
742static struct page *follow_huge_pud(struct vm_area_struct *vma,
743 unsigned long addr, pud_t *pudp,
744 int flags, struct follow_page_context *ctx)
745{
746 return NULL;
747}
4418c522
PX
748
749static struct page *follow_huge_pmd(struct vm_area_struct *vma,
750 unsigned long addr, pmd_t *pmd,
751 unsigned int flags,
752 struct follow_page_context *ctx)
753{
754 return NULL;
755}
1b167618
PX
756#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
757
1027e443
KS
758static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
759 pte_t *pte, unsigned int flags)
760{
1027e443 761 if (flags & FOLL_TOUCH) {
c33c7948
RR
762 pte_t orig_entry = ptep_get(pte);
763 pte_t entry = orig_entry;
1027e443
KS
764
765 if (flags & FOLL_WRITE)
766 entry = pte_mkdirty(entry);
767 entry = pte_mkyoung(entry);
768
c33c7948 769 if (!pte_same(orig_entry, entry)) {
1027e443
KS
770 set_pte_at(vma->vm_mm, address, pte, entry);
771 update_mmu_cache(vma, address, pte);
772 }
773 }
774
775 /* Proper page table entry exists, but no corresponding struct page */
776 return -EEXIST;
777}
778
5535be30
DH
779/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
780static inline bool can_follow_write_pte(pte_t pte, struct page *page,
781 struct vm_area_struct *vma,
782 unsigned int flags)
19be0eaf 783{
5535be30
DH
784 /* If the pte is writable, we can write to the page. */
785 if (pte_write(pte))
786 return true;
787
788 /* Maybe FOLL_FORCE is set to override it? */
789 if (!(flags & FOLL_FORCE))
790 return false;
791
792 /* But FOLL_FORCE has no effect on shared mappings */
793 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
794 return false;
795
796 /* ... or read-only private ones */
797 if (!(vma->vm_flags & VM_MAYWRITE))
798 return false;
799
800 /* ... or already writable ones that just need to take a write fault */
801 if (vma->vm_flags & VM_WRITE)
802 return false;
803
804 /*
805 * See can_change_pte_writable(): we broke COW and could map the page
806 * writable if we have an exclusive anonymous page ...
807 */
808 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
809 return false;
810
811 /* ... and a write-fault isn't required for other reasons. */
f38ee285 812 if (pte_needs_soft_dirty_wp(vma, pte))
5535be30
DH
813 return false;
814 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
815}
816
69e68b4f 817static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
818 unsigned long address, pmd_t *pmd, unsigned int flags,
819 struct dev_pagemap **pgmap)
69e68b4f
KS
820{
821 struct mm_struct *mm = vma->vm_mm;
822 struct page *page;
823 spinlock_t *ptl;
824 pte_t *ptep, pte;
f28d4363 825 int ret;
4bbd4c77 826
eddb1c22
JH
827 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
828 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
829 (FOLL_PIN | FOLL_GET)))
830 return ERR_PTR(-EINVAL);
4bbd4c77
KS
831
832 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
04dee9e8 833 if (!ptep)
878b0c45 834 return no_page_table(vma, flags, address);
c33c7948 835 pte = ptep_get(ptep);
f7355e99
DH
836 if (!pte_present(pte))
837 goto no_page;
d74943a2 838 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
4bbd4c77 839 goto no_page;
4bbd4c77
KS
840
841 page = vm_normal_page(vma, address, pte);
5535be30
DH
842
843 /*
844 * We only care about anon pages in can_follow_write_pte() and don't
845 * have to worry about pte_devmap() because they are never anon.
846 */
847 if ((flags & FOLL_WRITE) &&
848 !can_follow_write_pte(pte, page, vma, flags)) {
849 page = NULL;
850 goto out;
851 }
852
3faa52c0 853 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 854 /*
3faa52c0
JH
855 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
856 * case since they are only valid while holding the pgmap
857 * reference.
3565fce3 858 */
df06b37f
KB
859 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
860 if (*pgmap)
3565fce3
DW
861 page = pte_page(pte);
862 else
863 goto no_page;
864 } else if (unlikely(!page)) {
1027e443
KS
865 if (flags & FOLL_DUMP) {
866 /* Avoid special (like zero) pages in core dumps */
867 page = ERR_PTR(-EFAULT);
868 goto out;
869 }
870
871 if (is_zero_pfn(pte_pfn(pte))) {
872 page = pte_page(pte);
873 } else {
1027e443
KS
874 ret = follow_pfn_pte(vma, address, ptep, flags);
875 page = ERR_PTR(ret);
876 goto out;
877 }
4bbd4c77
KS
878 }
879
84209e87 880 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
a7f22660
DH
881 page = ERR_PTR(-EMLINK);
882 goto out;
883 }
b6a2619c
DH
884
885 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
886 !PageAnonExclusive(page), page);
887
f442fa61
YS
888 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
889 ret = try_grab_folio(page_folio(page), 1, flags);
0f089235
LG
890 if (unlikely(ret)) {
891 page = ERR_PTR(ret);
3faa52c0 892 goto out;
8fde12ca 893 }
4003f107 894
f28d4363
CI
895 /*
896 * We need to make the page accessible if and only if we are going
897 * to access its content (the FOLL_PIN case). Please see
898 * Documentation/core-api/pin_user_pages.rst for details.
899 */
900 if (flags & FOLL_PIN) {
901 ret = arch_make_page_accessible(page);
902 if (ret) {
903 unpin_user_page(page);
904 page = ERR_PTR(ret);
905 goto out;
906 }
907 }
4bbd4c77
KS
908 if (flags & FOLL_TOUCH) {
909 if ((flags & FOLL_WRITE) &&
910 !pte_dirty(pte) && !PageDirty(page))
911 set_page_dirty(page);
912 /*
913 * pte_mkyoung() would be more correct here, but atomic care
914 * is needed to avoid losing the dirty bit: it is easier to use
915 * mark_page_accessed().
916 */
917 mark_page_accessed(page);
918 }
1027e443 919out:
4bbd4c77 920 pte_unmap_unlock(ptep, ptl);
4bbd4c77 921 return page;
4bbd4c77
KS
922no_page:
923 pte_unmap_unlock(ptep, ptl);
924 if (!pte_none(pte))
69e68b4f 925 return NULL;
878b0c45 926 return no_page_table(vma, flags, address);
69e68b4f
KS
927}
928
080dbb61
AK
929static struct page *follow_pmd_mask(struct vm_area_struct *vma,
930 unsigned long address, pud_t *pudp,
df06b37f
KB
931 unsigned int flags,
932 struct follow_page_context *ctx)
69e68b4f 933{
68827280 934 pmd_t *pmd, pmdval;
69e68b4f
KS
935 spinlock_t *ptl;
936 struct page *page;
937 struct mm_struct *mm = vma->vm_mm;
938
080dbb61 939 pmd = pmd_offset(pudp, address);
26e1a0c3 940 pmdval = pmdp_get_lockless(pmd);
68827280 941 if (pmd_none(pmdval))
878b0c45 942 return no_page_table(vma, flags, address);
f7355e99 943 if (!pmd_present(pmdval))
878b0c45 944 return no_page_table(vma, flags, address);
68827280 945 if (pmd_devmap(pmdval)) {
3565fce3 946 ptl = pmd_lock(mm, pmd);
df06b37f 947 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
948 spin_unlock(ptl);
949 if (page)
950 return page;
878b0c45 951 return no_page_table(vma, flags, address);
3565fce3 952 }
4418c522 953 if (likely(!pmd_leaf(pmdval)))
df06b37f 954 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 955
d74943a2 956 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
878b0c45 957 return no_page_table(vma, flags, address);
db08f203 958
6742d293 959 ptl = pmd_lock(mm, pmd);
4418c522
PX
960 pmdval = *pmd;
961 if (unlikely(!pmd_present(pmdval))) {
84c3fc4e 962 spin_unlock(ptl);
878b0c45 963 return no_page_table(vma, flags, address);
84c3fc4e 964 }
4418c522 965 if (unlikely(!pmd_leaf(pmdval))) {
6742d293 966 spin_unlock(ptl);
df06b37f 967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 968 }
4418c522 969 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
2378118b
HD
970 spin_unlock(ptl);
971 split_huge_pmd(vma, pmd, address);
972 /* If pmd was left empty, stuff a page table in there quickly */
973 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
df06b37f 974 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 975 }
4418c522 976 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
6742d293 977 spin_unlock(ptl);
6742d293 978 return page;
4bbd4c77
KS
979}
980
080dbb61
AK
981static struct page *follow_pud_mask(struct vm_area_struct *vma,
982 unsigned long address, p4d_t *p4dp,
df06b37f
KB
983 unsigned int flags,
984 struct follow_page_context *ctx)
080dbb61 985{
caf8cab7 986 pud_t *pudp, pud;
080dbb61
AK
987 spinlock_t *ptl;
988 struct page *page;
989 struct mm_struct *mm = vma->vm_mm;
990
caf8cab7
PX
991 pudp = pud_offset(p4dp, address);
992 pud = READ_ONCE(*pudp);
1b167618 993 if (!pud_present(pud))
878b0c45 994 return no_page_table(vma, flags, address);
1b167618 995 if (pud_leaf(pud)) {
caf8cab7 996 ptl = pud_lock(mm, pudp);
1b167618 997 page = follow_huge_pud(vma, address, pudp, flags, ctx);
080dbb61
AK
998 spin_unlock(ptl);
999 if (page)
1000 return page;
878b0c45 1001 return no_page_table(vma, flags, address);
080dbb61 1002 }
caf8cab7 1003 if (unlikely(pud_bad(pud)))
878b0c45 1004 return no_page_table(vma, flags, address);
080dbb61 1005
caf8cab7 1006 return follow_pmd_mask(vma, address, pudp, flags, ctx);
080dbb61
AK
1007}
1008
080dbb61
AK
1009static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1010 unsigned long address, pgd_t *pgdp,
df06b37f
KB
1011 unsigned int flags,
1012 struct follow_page_context *ctx)
080dbb61 1013{
e6fd5564 1014 p4d_t *p4dp, p4d;
080dbb61 1015
e6fd5564
PX
1016 p4dp = p4d_offset(pgdp, address);
1017 p4d = READ_ONCE(*p4dp);
1965e933 1018 BUILD_BUG_ON(p4d_leaf(p4d));
a12083d7 1019
a12083d7 1020 if (!p4d_present(p4d) || p4d_bad(p4d))
878b0c45 1021 return no_page_table(vma, flags, address);
080dbb61 1022
e6fd5564 1023 return follow_pud_mask(vma, address, p4dp, flags, ctx);
080dbb61
AK
1024}
1025
1026/**
1027 * follow_page_mask - look up a page descriptor from a user-virtual address
1028 * @vma: vm_area_struct mapping @address
1029 * @address: virtual address to look up
1030 * @flags: flags modifying lookup behaviour
78179556
MR
1031 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1032 * pointer to output page_mask
080dbb61
AK
1033 *
1034 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1035 *
78179556
MR
1036 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1037 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1038 *
a7f22660
DH
1039 * When getting an anonymous page and the caller has to trigger unsharing
1040 * of a shared anonymous page first, -EMLINK is returned. The caller should
1041 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1042 * relevant with FOLL_PIN and !FOLL_WRITE.
1043 *
78179556
MR
1044 * On output, the @ctx->page_mask is set according to the size of the page.
1045 *
1046 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
1047 * an error pointer if there is a mapping to something not represented
1048 * by a page descriptor (see also vm_normal_page()).
1049 */
a7030aea 1050static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 1051 unsigned long address, unsigned int flags,
df06b37f 1052 struct follow_page_context *ctx)
080dbb61
AK
1053{
1054 pgd_t *pgd;
080dbb61 1055 struct mm_struct *mm = vma->vm_mm;
9cb28da5 1056 struct page *page;
080dbb61 1057
9cb28da5 1058 vma_pgtable_walk_begin(vma);
080dbb61 1059
9cb28da5 1060 ctx->page_mask = 0;
080dbb61
AK
1061 pgd = pgd_offset(mm, address);
1062
8268614b 1063 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
a12083d7
PX
1064 page = no_page_table(vma, flags, address);
1065 else
1066 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
080dbb61 1067
9cb28da5
PX
1068 vma_pgtable_walk_end(vma);
1069
a12083d7 1070 return page;
df06b37f
KB
1071}
1072
1073struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1074 unsigned int foll_flags)
1075{
1076 struct follow_page_context ctx = { NULL };
1077 struct page *page;
1078
1507f512
MR
1079 if (vma_is_secretmem(vma))
1080 return NULL;
1081
d64e2dbc 1082 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
8909691b
DH
1083 return NULL;
1084
d74943a2
DH
1085 /*
1086 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1087 * to fail on PROT_NONE-mapped pages.
1088 */
df06b37f
KB
1089 page = follow_page_mask(vma, address, foll_flags, &ctx);
1090 if (ctx.pgmap)
1091 put_dev_pagemap(ctx.pgmap);
1092 return page;
080dbb61
AK
1093}
1094
f2b495ca
KS
1095static int get_gate_page(struct mm_struct *mm, unsigned long address,
1096 unsigned int gup_flags, struct vm_area_struct **vma,
1097 struct page **page)
1098{
1099 pgd_t *pgd;
c2febafc 1100 p4d_t *p4d;
f2b495ca
KS
1101 pud_t *pud;
1102 pmd_t *pmd;
1103 pte_t *pte;
c33c7948 1104 pte_t entry;
f2b495ca
KS
1105 int ret = -EFAULT;
1106
1107 /* user gate pages are read-only */
1108 if (gup_flags & FOLL_WRITE)
1109 return -EFAULT;
1110 if (address > TASK_SIZE)
1111 pgd = pgd_offset_k(address);
1112 else
1113 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
1114 if (pgd_none(*pgd))
1115 return -EFAULT;
c2febafc 1116 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
1117 if (p4d_none(*p4d))
1118 return -EFAULT;
c2febafc 1119 pud = pud_offset(p4d, address);
b5d1c39f
AL
1120 if (pud_none(*pud))
1121 return -EFAULT;
f2b495ca 1122 pmd = pmd_offset(pud, address);
84c3fc4e 1123 if (!pmd_present(*pmd))
f2b495ca 1124 return -EFAULT;
f2b495ca 1125 pte = pte_offset_map(pmd, address);
04dee9e8
HD
1126 if (!pte)
1127 return -EFAULT;
c33c7948
RR
1128 entry = ptep_get(pte);
1129 if (pte_none(entry))
f2b495ca
KS
1130 goto unmap;
1131 *vma = get_gate_vma(mm);
1132 if (!page)
1133 goto out;
c33c7948 1134 *page = vm_normal_page(*vma, address, entry);
f2b495ca 1135 if (!*page) {
c33c7948 1136 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
f2b495ca 1137 goto unmap;
c33c7948 1138 *page = pte_page(entry);
f2b495ca 1139 }
f442fa61 1140 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
0f089235 1141 if (unlikely(ret))
8fde12ca 1142 goto unmap;
f2b495ca
KS
1143out:
1144 ret = 0;
1145unmap:
1146 pte_unmap(pte);
1147 return ret;
1148}
1149
9a95f3cf 1150/*
9a863a6a
JG
1151 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1152 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1153 * to 0 and -EBUSY returned.
9a95f3cf 1154 */
64019a2e 1155static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
1156 unsigned long address, unsigned int *flags, bool unshare,
1157 int *locked)
16744483 1158{
16744483 1159 unsigned int fault_flags = 0;
2b740303 1160 vm_fault_t ret;
16744483 1161
55b8fe70
AG
1162 if (*flags & FOLL_NOFAULT)
1163 return -EFAULT;
16744483
KS
1164 if (*flags & FOLL_WRITE)
1165 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
1166 if (*flags & FOLL_REMOTE)
1167 fault_flags |= FAULT_FLAG_REMOTE;
f04740f5 1168 if (*flags & FOLL_UNLOCKABLE) {
71335f37 1169 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
93c5c61d
PX
1170 /*
1171 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1172 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1173 * That's because some callers may not be prepared to
1174 * handle early exits caused by non-fatal signals.
1175 */
1176 if (*flags & FOLL_INTERRUPTIBLE)
1177 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1178 }
16744483
KS
1179 if (*flags & FOLL_NOWAIT)
1180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 1181 if (*flags & FOLL_TRIED) {
4426e945
PX
1182 /*
1183 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1184 * can co-exist
1185 */
234b239b
ALC
1186 fault_flags |= FAULT_FLAG_TRIED;
1187 }
a7f22660
DH
1188 if (unshare) {
1189 fault_flags |= FAULT_FLAG_UNSHARE;
1190 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1191 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1192 }
16744483 1193
bce617ed 1194 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1195
1196 if (ret & VM_FAULT_COMPLETED) {
1197 /*
1198 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1199 * mmap lock in the page fault handler. Sanity check this.
1200 */
1201 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
9a863a6a
JG
1202 *locked = 0;
1203
d9272525
PX
1204 /*
1205 * We should do the same as VM_FAULT_RETRY, but let's not
1206 * return -EBUSY since that's not reflecting the reality of
1207 * what has happened - we've just fully completed a page
1208 * fault, with the mmap lock released. Use -EAGAIN to show
1209 * that we want to take the mmap lock _again_.
1210 */
1211 return -EAGAIN;
1212 }
1213
16744483 1214 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1215 int err = vm_fault_to_errno(ret, *flags);
1216
1217 if (err)
1218 return err;
16744483
KS
1219 BUG();
1220 }
1221
16744483 1222 if (ret & VM_FAULT_RETRY) {
9a863a6a 1223 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 1224 *locked = 0;
16744483
KS
1225 return -EBUSY;
1226 }
1227
16744483
KS
1228 return 0;
1229}
1230
8ac26843
LS
1231/*
1232 * Writing to file-backed mappings which require folio dirty tracking using GUP
1233 * is a fundamentally broken operation, as kernel write access to GUP mappings
1234 * do not adhere to the semantics expected by a file system.
1235 *
1236 * Consider the following scenario:-
1237 *
1238 * 1. A folio is written to via GUP which write-faults the memory, notifying
1239 * the file system and dirtying the folio.
1240 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1241 * the PTE being marked read-only.
1242 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1243 * direct mapping.
1244 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1245 * (though it does not have to).
1246 *
1247 * This results in both data being written to a folio without writenotify, and
1248 * the folio being dirtied unexpectedly (if the caller decides to do so).
1249 */
1250static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1251 unsigned long gup_flags)
1252{
1253 /*
1254 * If we aren't pinning then no problematic write can occur. A long term
1255 * pin is the most egregious case so this is the case we disallow.
1256 */
1257 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1258 (FOLL_PIN | FOLL_LONGTERM))
1259 return true;
1260
1261 /*
1262 * If the VMA does not require dirty tracking then no problematic write
1263 * can occur either.
1264 */
1265 return !vma_needs_dirty_tracking(vma);
1266}
1267
fa5bb209
KS
1268static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1269{
1270 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1271 int write = (gup_flags & FOLL_WRITE);
1272 int foreign = (gup_flags & FOLL_REMOTE);
8ac26843 1273 bool vma_anon = vma_is_anonymous(vma);
fa5bb209
KS
1274
1275 if (vm_flags & (VM_IO | VM_PFNMAP))
1276 return -EFAULT;
1277
8ac26843 1278 if ((gup_flags & FOLL_ANON) && !vma_anon)
7f7ccc2c
WT
1279 return -EFAULT;
1280
52650c8b
JG
1281 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1282 return -EOPNOTSUPP;
1283
1507f512
MR
1284 if (vma_is_secretmem(vma))
1285 return -EFAULT;
1286
1b2ee126 1287 if (write) {
8ac26843
LS
1288 if (!vma_anon &&
1289 !writable_file_mapping_allowed(vma, gup_flags))
1290 return -EFAULT;
1291
6beb9958 1292 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
fa5bb209
KS
1293 if (!(gup_flags & FOLL_FORCE))
1294 return -EFAULT;
f347454d
DH
1295 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1296 if (is_vm_hugetlb_page(vma))
1297 return -EFAULT;
fa5bb209
KS
1298 /*
1299 * We used to let the write,force case do COW in a
1300 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1301 * set a breakpoint in a read-only mapping of an
1302 * executable, without corrupting the file (yet only
1303 * when that file had been opened for writing!).
1304 * Anon pages in shared mappings are surprising: now
1305 * just reject it.
1306 */
46435364 1307 if (!is_cow_mapping(vm_flags))
fa5bb209 1308 return -EFAULT;
fa5bb209
KS
1309 }
1310 } else if (!(vm_flags & VM_READ)) {
1311 if (!(gup_flags & FOLL_FORCE))
1312 return -EFAULT;
1313 /*
1314 * Is there actually any vma we can reach here which does not
1315 * have VM_MAYREAD set?
1316 */
1317 if (!(vm_flags & VM_MAYREAD))
1318 return -EFAULT;
1319 }
d61172b4
DH
1320 /*
1321 * gups are always data accesses, not instruction
1322 * fetches, so execute=false here
1323 */
1324 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1325 return -EFAULT;
fa5bb209
KS
1326 return 0;
1327}
1328
6cd06ab1
LT
1329/*
1330 * This is "vma_lookup()", but with a warning if we would have
1331 * historically expanded the stack in the GUP code.
1332 */
1333static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1334 unsigned long addr)
1335{
1336#ifdef CONFIG_STACK_GROWSUP
1337 return vma_lookup(mm, addr);
1338#else
1339 static volatile unsigned long next_warn;
1340 struct vm_area_struct *vma;
1341 unsigned long now, next;
1342
1343 vma = find_vma(mm, addr);
1344 if (!vma || (addr >= vma->vm_start))
1345 return vma;
1346
1347 /* Only warn for half-way relevant accesses */
1348 if (!(vma->vm_flags & VM_GROWSDOWN))
1349 return NULL;
1350 if (vma->vm_start - addr > 65536)
1351 return NULL;
1352
1353 /* Let's not warn more than once an hour.. */
1354 now = jiffies; next = next_warn;
1355 if (next && time_before(now, next))
1356 return NULL;
1357 next_warn = now + 60*60*HZ;
1358
1359 /* Let people know things may have changed. */
1360 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1361 current->comm, task_pid_nr(current),
1362 vma->vm_start, vma->vm_end, addr);
1363 dump_stack();
1364 return NULL;
1365#endif
1366}
1367
4bbd4c77
KS
1368/**
1369 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1370 * @mm: mm_struct of target mm
1371 * @start: starting user address
1372 * @nr_pages: number of pages from start to pin
1373 * @gup_flags: flags modifying pin behaviour
1374 * @pages: array that receives pointers to the pages pinned.
1375 * Should be at least nr_pages long. Or NULL, if caller
1376 * only intends to ensure the pages are faulted in.
c1e8d7c6 1377 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1378 *
d2dfbe47
LX
1379 * Returns either number of pages pinned (which may be less than the
1380 * number requested), or an error. Details about the return value:
1381 *
1382 * -- If nr_pages is 0, returns 0.
1383 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1384 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1385 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1386 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1387 *
1388 * The caller is responsible for releasing returned @pages, via put_page().
1389 *
c1e8d7c6 1390 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1391 *
1392 * __get_user_pages walks a process's page tables and takes a reference to
1393 * each struct page that each user address corresponds to at a given
1394 * instant. That is, it takes the page that would be accessed if a user
1395 * thread accesses the given user virtual address at that instant.
1396 *
1397 * This does not guarantee that the page exists in the user mappings when
1398 * __get_user_pages returns, and there may even be a completely different
1399 * page there in some cases (eg. if mmapped pagecache has been invalidated
c5acf1f6 1400 * and subsequently re-faulted). However it does guarantee that the page
4bbd4c77
KS
1401 * won't be freed completely. And mostly callers simply care that the page
1402 * contains data that was valid *at some point in time*. Typically, an IO
1403 * or similar operation cannot guarantee anything stronger anyway because
1404 * locks can't be held over the syscall boundary.
1405 *
1406 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1407 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1408 * appropriate) must be called after the page is finished with, and
1409 * before put_page is called.
1410 *
9a863a6a
JG
1411 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1412 * be released. If this happens *@locked will be set to 0 on return.
9a95f3cf 1413 *
9a863a6a
JG
1414 * A caller using such a combination of @gup_flags must therefore hold the
1415 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1416 * it must be held for either reading or writing and will not be released.
4bbd4c77
KS
1417 *
1418 * In most cases, get_user_pages or get_user_pages_fast should be used
1419 * instead of __get_user_pages. __get_user_pages should be used only if
1420 * you need some special @gup_flags.
1421 */
64019a2e 1422static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1423 unsigned long start, unsigned long nr_pages,
1424 unsigned int gup_flags, struct page **pages,
b2cac248 1425 int *locked)
4bbd4c77 1426{
df06b37f 1427 long ret = 0, i = 0;
fa5bb209 1428 struct vm_area_struct *vma = NULL;
df06b37f 1429 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1430
1431 if (!nr_pages)
1432 return 0;
1433
428e106a 1434 start = untagged_addr_remote(mm, start);
f9652594 1435
eddb1c22 1436 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77 1437
4bbd4c77 1438 do {
fa5bb209
KS
1439 struct page *page;
1440 unsigned int foll_flags = gup_flags;
1441 unsigned int page_increm;
1442
1443 /* first iteration or cross vma bound */
1444 if (!vma || start >= vma->vm_end) {
631426ba
DH
1445 /*
1446 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1447 * lookups+error reporting differently.
1448 */
1449 if (gup_flags & FOLL_MADV_POPULATE) {
1450 vma = vma_lookup(mm, start);
1451 if (!vma) {
1452 ret = -ENOMEM;
1453 goto out;
1454 }
1455 if (check_vma_flags(vma, gup_flags)) {
1456 ret = -EINVAL;
1457 goto out;
1458 }
1459 goto retry;
1460 }
6cd06ab1 1461 vma = gup_vma_lookup(mm, start);
fa5bb209 1462 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1463 ret = get_gate_page(mm, start & PAGE_MASK,
1464 gup_flags, &vma,
ffe1e786 1465 pages ? &page : NULL);
fa5bb209 1466 if (ret)
08be37b7 1467 goto out;
df06b37f 1468 ctx.page_mask = 0;
fa5bb209
KS
1469 goto next_page;
1470 }
4bbd4c77 1471
52650c8b 1472 if (!vma) {
df06b37f
KB
1473 ret = -EFAULT;
1474 goto out;
1475 }
52650c8b
JG
1476 ret = check_vma_flags(vma, gup_flags);
1477 if (ret)
1478 goto out;
fa5bb209
KS
1479 }
1480retry:
1481 /*
1482 * If we have a pending SIGKILL, don't keep faulting pages and
1483 * potentially allocating memory.
1484 */
fa45f116 1485 if (fatal_signal_pending(current)) {
d180870d 1486 ret = -EINTR;
df06b37f
KB
1487 goto out;
1488 }
fa5bb209 1489 cond_resched();
df06b37f
KB
1490
1491 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1492 if (!page || PTR_ERR(page) == -EMLINK) {
1493 ret = faultin_page(vma, start, &foll_flags,
1494 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1495 switch (ret) {
1496 case 0:
1497 goto retry;
df06b37f 1498 case -EBUSY:
d9272525 1499 case -EAGAIN:
df06b37f 1500 ret = 0;
e4a9bc58 1501 fallthrough;
fa5bb209
KS
1502 case -EFAULT:
1503 case -ENOMEM:
1504 case -EHWPOISON:
df06b37f 1505 goto out;
4bbd4c77 1506 }
fa5bb209 1507 BUG();
1027e443
KS
1508 } else if (PTR_ERR(page) == -EEXIST) {
1509 /*
1510 * Proper page table entry exists, but no corresponding
65462462
JH
1511 * struct page. If the caller expects **pages to be
1512 * filled in, bail out now, because that can't be done
1513 * for this page.
1027e443 1514 */
65462462
JH
1515 if (pages) {
1516 ret = PTR_ERR(page);
1517 goto out;
1518 }
1027e443 1519 } else if (IS_ERR(page)) {
df06b37f
KB
1520 ret = PTR_ERR(page);
1521 goto out;
1027e443 1522 }
ffe1e786 1523next_page:
df06b37f 1524 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1525 if (page_increm > nr_pages)
1526 page_increm = nr_pages;
57edfcfd
PX
1527
1528 if (pages) {
1529 struct page *subpage;
1530 unsigned int j;
1531
1532 /*
1533 * This must be a large folio (and doesn't need to
1534 * be the whole folio; it can be part of it), do
1535 * the refcount work for all the subpages too.
1536 *
1537 * NOTE: here the page may not be the head page
1538 * e.g. when start addr is not thp-size aligned.
1539 * try_grab_folio() should have taken care of tail
1540 * pages.
1541 */
1542 if (page_increm > 1) {
f442fa61 1543 struct folio *folio = page_folio(page);
57edfcfd
PX
1544
1545 /*
1546 * Since we already hold refcount on the
1547 * large folio, this should never fail.
1548 */
f442fa61
YS
1549 if (try_grab_folio(folio, page_increm - 1,
1550 foll_flags)) {
57edfcfd
PX
1551 /*
1552 * Release the 1st page ref if the
1553 * folio is problematic, fail hard.
1554 */
f442fa61 1555 gup_put_folio(folio, 1,
57edfcfd
PX
1556 foll_flags);
1557 ret = -EFAULT;
1558 goto out;
1559 }
1560 }
1561
1562 for (j = 0; j < page_increm; j++) {
1563 subpage = nth_page(page, j);
1564 pages[i + j] = subpage;
1565 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1566 flush_dcache_page(subpage);
1567 }
1568 }
1569
fa5bb209
KS
1570 i += page_increm;
1571 start += page_increm * PAGE_SIZE;
1572 nr_pages -= page_increm;
4bbd4c77 1573 } while (nr_pages);
df06b37f
KB
1574out:
1575 if (ctx.pgmap)
1576 put_dev_pagemap(ctx.pgmap);
1577 return i ? i : ret;
4bbd4c77 1578}
4bbd4c77 1579
771ab430
TK
1580static bool vma_permits_fault(struct vm_area_struct *vma,
1581 unsigned int fault_flags)
d4925e00 1582{
1b2ee126
DH
1583 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1584 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1585 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1586
1587 if (!(vm_flags & vma->vm_flags))
1588 return false;
1589
33a709b2
DH
1590 /*
1591 * The architecture might have a hardware protection
1b2ee126 1592 * mechanism other than read/write that can deny access.
d61172b4
DH
1593 *
1594 * gup always represents data access, not instruction
1595 * fetches, so execute=false here:
33a709b2 1596 */
d61172b4 1597 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1598 return false;
1599
d4925e00
DH
1600 return true;
1601}
1602
adc8cb40 1603/**
4bbd4c77 1604 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1605 * @mm: mm_struct of target mm
1606 * @address: user address
1607 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1609 * does not allow retry. If NULL, the caller must guarantee
1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1611 *
1612 * This is meant to be called in the specific scenario where for locking reasons
1613 * we try to access user memory in atomic context (within a pagefault_disable()
1614 * section), this returns -EFAULT, and we want to resolve the user fault before
1615 * trying again.
1616 *
1617 * Typically this is meant to be used by the futex code.
1618 *
1619 * The main difference with get_user_pages() is that this function will
1620 * unconditionally call handle_mm_fault() which will in turn perform all the
1621 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1622 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1623 *
1624 * This is important for some architectures where those bits also gate the
1625 * access permission to the page because they are maintained in software. On
1626 * such architectures, gup() will not be enough to make a subsequent access
1627 * succeed.
1628 *
c1e8d7c6
ML
1629 * This function will not return with an unlocked mmap_lock. So it has not the
1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1631 */
64019a2e 1632int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1633 unsigned long address, unsigned int fault_flags,
1634 bool *unlocked)
4bbd4c77
KS
1635{
1636 struct vm_area_struct *vma;
8fed2f3c 1637 vm_fault_t ret;
4a9e1cda 1638
428e106a 1639 address = untagged_addr_remote(mm, address);
f9652594 1640
4a9e1cda 1641 if (unlocked)
71335f37 1642 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1643
4a9e1cda 1644retry:
6cd06ab1 1645 vma = gup_vma_lookup(mm, address);
8d7071af 1646 if (!vma)
4bbd4c77
KS
1647 return -EFAULT;
1648
d4925e00 1649 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1650 return -EFAULT;
1651
475f4dfc
PX
1652 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1653 fatal_signal_pending(current))
1654 return -EINTR;
1655
bce617ed 1656 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1657
1658 if (ret & VM_FAULT_COMPLETED) {
1659 /*
1660 * NOTE: it's a pity that we need to retake the lock here
1661 * to pair with the unlock() in the callers. Ideally we
1662 * could tell the callers so they do not need to unlock.
1663 */
1664 mmap_read_lock(mm);
1665 *unlocked = true;
1666 return 0;
1667 }
1668
4bbd4c77 1669 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1670 int err = vm_fault_to_errno(ret, 0);
1671
1672 if (err)
1673 return err;
4bbd4c77
KS
1674 BUG();
1675 }
4a9e1cda
DD
1676
1677 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1678 mmap_read_lock(mm);
475f4dfc
PX
1679 *unlocked = true;
1680 fault_flags |= FAULT_FLAG_TRIED;
1681 goto retry;
4a9e1cda
DD
1682 }
1683
4bbd4c77
KS
1684 return 0;
1685}
add6a0cd 1686EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1687
93c5c61d
PX
1688/*
1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1690 * specified, it'll also respond to generic signals. The caller of GUP
1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1692 */
1693static bool gup_signal_pending(unsigned int flags)
1694{
1695 if (fatal_signal_pending(current))
1696 return true;
1697
1698 if (!(flags & FOLL_INTERRUPTIBLE))
1699 return false;
1700
1701 return signal_pending(current);
1702}
1703
2d3a36a4 1704/*
b2a72dff
JG
1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706 * the caller. This function may drop the mmap_lock. If it does so, then it will
1707 * set (*locked = 0).
1708 *
1709 * (*locked == 0) means that the caller expects this function to acquire and
1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711 * the function returns, even though it may have changed temporarily during
1712 * function execution.
1713 *
1714 * Please note that this function, unlike __get_user_pages(), will not return 0
1715 * for nr_pages > 0, unless FOLL_NOWAIT is used.
2d3a36a4 1716 */
64019a2e 1717static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1718 unsigned long start,
1719 unsigned long nr_pages,
f0818f47 1720 struct page **pages,
e716712f 1721 int *locked,
0fd71a56 1722 unsigned int flags)
f0818f47 1723{
f0818f47 1724 long ret, pages_done;
b2a72dff 1725 bool must_unlock = false;
f0818f47 1726
9c4b2142
LS
1727 if (!nr_pages)
1728 return 0;
1729
b2a72dff
JG
1730 /*
1731 * The internal caller expects GUP to manage the lock internally and the
1732 * lock must be released when this returns.
1733 */
9a863a6a 1734 if (!*locked) {
b2a72dff
JG
1735 if (mmap_read_lock_killable(mm))
1736 return -EAGAIN;
1737 must_unlock = true;
1738 *locked = 1;
f0818f47 1739 }
961ba472
JG
1740 else
1741 mmap_assert_locked(mm);
f0818f47 1742
a458b76a
AA
1743 if (flags & FOLL_PIN)
1744 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1745
eddb1c22
JH
1746 /*
1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 * for FOLL_GET, not for the newer FOLL_PIN.
1751 *
1752 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 * that here, as any failures will be obvious enough.
1754 */
1755 if (pages && !(flags & FOLL_PIN))
f0818f47 1756 flags |= FOLL_GET;
f0818f47
AA
1757
1758 pages_done = 0;
f0818f47 1759 for (;;) {
64019a2e 1760 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
b2cac248 1761 locked);
f04740f5 1762 if (!(flags & FOLL_UNLOCKABLE)) {
f0818f47 1763 /* VM_FAULT_RETRY couldn't trigger, bypass */
f04740f5
JG
1764 pages_done = ret;
1765 break;
1766 }
f0818f47 1767
d9272525 1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1769 if (!*locked) {
1770 BUG_ON(ret < 0);
1771 BUG_ON(ret >= nr_pages);
1772 }
1773
f0818f47
AA
1774 if (ret > 0) {
1775 nr_pages -= ret;
1776 pages_done += ret;
1777 if (!nr_pages)
1778 break;
1779 }
1780 if (*locked) {
96312e61
AA
1781 /*
1782 * VM_FAULT_RETRY didn't trigger or it was a
1783 * FOLL_NOWAIT.
1784 */
f0818f47
AA
1785 if (!pages_done)
1786 pages_done = ret;
1787 break;
1788 }
df17277b
MR
1789 /*
1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 * For the prefault case (!pages) we only update counts.
1792 */
1793 if (likely(pages))
1794 pages += ret;
f0818f47 1795 start += ret << PAGE_SHIFT;
b2a72dff
JG
1796
1797 /* The lock was temporarily dropped, so we must unlock later */
1798 must_unlock = true;
f0818f47 1799
4426e945 1800retry:
f0818f47
AA
1801 /*
1802 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1803 * with both FAULT_FLAG_ALLOW_RETRY and
1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
93c5c61d
PX
1805 * by fatal signals of even common signals, depending on
1806 * the caller's request. So we need to check it before we
4426e945 1807 * start trying again otherwise it can loop forever.
f0818f47 1808 */
93c5c61d 1809 if (gup_signal_pending(flags)) {
ae46d2aa
HD
1810 if (!pages_done)
1811 pages_done = -EINTR;
4426e945 1812 break;
ae46d2aa 1813 }
4426e945 1814
d8ed45c5 1815 ret = mmap_read_lock_killable(mm);
71335f37
PX
1816 if (ret) {
1817 BUG_ON(ret > 0);
1818 if (!pages_done)
1819 pages_done = ret;
1820 break;
1821 }
4426e945 1822
c7b6a566 1823 *locked = 1;
64019a2e 1824 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
b2cac248 1825 pages, locked);
4426e945
PX
1826 if (!*locked) {
1827 /* Continue to retry until we succeeded */
1828 BUG_ON(ret != 0);
1829 goto retry;
1830 }
f0818f47
AA
1831 if (ret != 1) {
1832 BUG_ON(ret > 1);
1833 if (!pages_done)
1834 pages_done = ret;
1835 break;
1836 }
1837 nr_pages--;
1838 pages_done++;
1839 if (!nr_pages)
1840 break;
df17277b
MR
1841 if (likely(pages))
1842 pages++;
f0818f47
AA
1843 start += PAGE_SIZE;
1844 }
b2a72dff 1845 if (must_unlock && *locked) {
f0818f47 1846 /*
b2a72dff
JG
1847 * We either temporarily dropped the lock, or the caller
1848 * requested that we both acquire and drop the lock. Either way,
1849 * we must now unlock, and notify the caller of that state.
f0818f47 1850 */
d8ed45c5 1851 mmap_read_unlock(mm);
f0818f47
AA
1852 *locked = 0;
1853 }
9c4b2142
LS
1854
1855 /*
1856 * Failing to pin anything implies something has gone wrong (except when
1857 * FOLL_NOWAIT is specified).
1858 */
1859 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1860 return -EFAULT;
1861
f0818f47
AA
1862 return pages_done;
1863}
1864
d3649f68
CH
1865/**
1866 * populate_vma_page_range() - populate a range of pages in the vma.
1867 * @vma: target vma
1868 * @start: start address
1869 * @end: end address
c1e8d7c6 1870 * @locked: whether the mmap_lock is still held
d3649f68
CH
1871 *
1872 * This takes care of mlocking the pages too if VM_LOCKED is set.
1873 *
0a36f7f8
TY
1874 * Return either number of pages pinned in the vma, or a negative error
1875 * code on error.
d3649f68 1876 *
c1e8d7c6 1877 * vma->vm_mm->mmap_lock must be held.
d3649f68 1878 *
4f6da934 1879 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1880 * be unperturbed.
1881 *
4f6da934
PX
1882 * If @locked is non-NULL, it must held for read only and may be
1883 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1884 */
1885long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1886 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1887{
1888 struct mm_struct *mm = vma->vm_mm;
1889 unsigned long nr_pages = (end - start) / PAGE_SIZE;
9a863a6a 1890 int local_locked = 1;
d3649f68 1891 int gup_flags;
ece369c7 1892 long ret;
d3649f68 1893
be51eb18
ML
1894 VM_BUG_ON(!PAGE_ALIGNED(start));
1895 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1896 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1897 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1898 mmap_assert_locked(mm);
d3649f68 1899
b67bf49c
HD
1900 /*
1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 * faultin_page() to break COW, so it has no work to do here.
1903 */
d3649f68 1904 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1905 return nr_pages;
1906
1096bc93
LT
1907 /* ... similarly, we've never faulted in PROT_NONE pages */
1908 if (!vma_is_accessible(vma))
1909 return -EFAULT;
1910
b67bf49c 1911 gup_flags = FOLL_TOUCH;
d3649f68
CH
1912 /*
1913 * We want to touch writable mappings with a write fault in order
1914 * to break COW, except for shared mappings because these don't COW
1915 * and we would not want to dirty them for nothing.
1096bc93
LT
1916 *
1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 * readable (ie write-only or executable).
d3649f68
CH
1919 */
1920 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1921 gup_flags |= FOLL_WRITE;
1096bc93 1922 else
d3649f68
CH
1923 gup_flags |= FOLL_FORCE;
1924
f04740f5
JG
1925 if (locked)
1926 gup_flags |= FOLL_UNLOCKABLE;
1927
d3649f68
CH
1928 /*
1929 * We made sure addr is within a VMA, so the following will
1930 * not result in a stack expansion that recurses back here.
1931 */
ece369c7 1932 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
b2cac248 1933 NULL, locked ? locked : &local_locked);
ece369c7
HD
1934 lru_add_drain();
1935 return ret;
d3649f68
CH
1936}
1937
4ca9b385 1938/*
631426ba
DH
1939 * faultin_page_range() - populate (prefault) page tables inside the
1940 * given range readable/writable
4ca9b385
DH
1941 *
1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1943 *
631426ba 1944 * @mm: the mm to populate page tables in
4ca9b385
DH
1945 * @start: start address
1946 * @end: end address
1947 * @write: whether to prefault readable or writable
1948 * @locked: whether the mmap_lock is still held
1949 *
631426ba
DH
1950 * Returns either number of processed pages in the MM, or a negative error
1951 * code on error (see __get_user_pages()). Note that this function reports
1952 * errors related to VMAs, such as incompatible mappings, as expected by
1953 * MADV_POPULATE_(READ|WRITE).
4ca9b385 1954 *
631426ba
DH
1955 * The range must be page-aligned.
1956 *
1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
4ca9b385 1958 */
631426ba
DH
1959long faultin_page_range(struct mm_struct *mm, unsigned long start,
1960 unsigned long end, bool write, int *locked)
4ca9b385 1961{
4ca9b385
DH
1962 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1963 int gup_flags;
ece369c7 1964 long ret;
4ca9b385
DH
1965
1966 VM_BUG_ON(!PAGE_ALIGNED(start));
1967 VM_BUG_ON(!PAGE_ALIGNED(end));
4ca9b385
DH
1968 mmap_assert_locked(mm);
1969
1970 /*
1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 * the page dirty with FOLL_WRITE -- which doesn't make a
1973 * difference with !FOLL_FORCE, because the page is writable
1974 * in the page table.
1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1976 * a poisoned page.
4ca9b385
DH
1977 * !FOLL_FORCE: Require proper access permissions.
1978 */
631426ba
DH
1979 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1980 FOLL_MADV_POPULATE;
4ca9b385
DH
1981 if (write)
1982 gup_flags |= FOLL_WRITE;
1983
631426ba
DH
1984 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1985 gup_flags);
ece369c7
HD
1986 lru_add_drain();
1987 return ret;
4ca9b385
DH
1988}
1989
d3649f68
CH
1990/*
1991 * __mm_populate - populate and/or mlock pages within a range of address space.
1992 *
1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1995 * mmap_lock must not be held.
d3649f68
CH
1996 */
1997int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1998{
1999 struct mm_struct *mm = current->mm;
2000 unsigned long end, nstart, nend;
2001 struct vm_area_struct *vma = NULL;
2002 int locked = 0;
2003 long ret = 0;
2004
2005 end = start + len;
2006
2007 for (nstart = start; nstart < end; nstart = nend) {
2008 /*
2009 * We want to fault in pages for [nstart; end) address range.
2010 * Find first corresponding VMA.
2011 */
2012 if (!locked) {
2013 locked = 1;
d8ed45c5 2014 mmap_read_lock(mm);
c4d1a92d 2015 vma = find_vma_intersection(mm, nstart, end);
d3649f68 2016 } else if (nstart >= vma->vm_end)
c4d1a92d
LH
2017 vma = find_vma_intersection(mm, vma->vm_end, end);
2018
2019 if (!vma)
d3649f68
CH
2020 break;
2021 /*
2022 * Set [nstart; nend) to intersection of desired address
2023 * range with the first VMA. Also, skip undesirable VMA types.
2024 */
2025 nend = min(end, vma->vm_end);
2026 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2027 continue;
2028 if (nstart < vma->vm_start)
2029 nstart = vma->vm_start;
2030 /*
2031 * Now fault in a range of pages. populate_vma_page_range()
2032 * double checks the vma flags, so that it won't mlock pages
2033 * if the vma was already munlocked.
2034 */
2035 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2036 if (ret < 0) {
2037 if (ignore_errors) {
2038 ret = 0;
2039 continue; /* continue at next VMA */
2040 }
2041 break;
2042 }
2043 nend = nstart + ret * PAGE_SIZE;
2044 ret = 0;
2045 }
2046 if (locked)
d8ed45c5 2047 mmap_read_unlock(mm);
d3649f68
CH
2048 return ret; /* 0 or negative error code */
2049}
050a9adc 2050#else /* CONFIG_MMU */
64019a2e 2051static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc 2052 unsigned long nr_pages, struct page **pages,
b2cac248 2053 int *locked, unsigned int foll_flags)
050a9adc
CH
2054{
2055 struct vm_area_struct *vma;
b2a72dff 2056 bool must_unlock = false;
050a9adc 2057 unsigned long vm_flags;
24dc20c7 2058 long i;
050a9adc 2059
b2a72dff
JG
2060 if (!nr_pages)
2061 return 0;
2062
2063 /*
2064 * The internal caller expects GUP to manage the lock internally and the
2065 * lock must be released when this returns.
2066 */
9a863a6a 2067 if (!*locked) {
b2a72dff
JG
2068 if (mmap_read_lock_killable(mm))
2069 return -EAGAIN;
2070 must_unlock = true;
2071 *locked = 1;
2072 }
2073
050a9adc
CH
2074 /* calculate required read or write permissions.
2075 * If FOLL_FORCE is set, we only require the "MAY" flags.
2076 */
2077 vm_flags = (foll_flags & FOLL_WRITE) ?
2078 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2079 vm_flags &= (foll_flags & FOLL_FORCE) ?
2080 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2081
2082 for (i = 0; i < nr_pages; i++) {
2083 vma = find_vma(mm, start);
2084 if (!vma)
b2a72dff 2085 break;
050a9adc
CH
2086
2087 /* protect what we can, including chardevs */
2088 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2089 !(vm_flags & vma->vm_flags))
b2a72dff 2090 break;
050a9adc
CH
2091
2092 if (pages) {
396a400b 2093 pages[i] = virt_to_page((void *)start);
050a9adc
CH
2094 if (pages[i])
2095 get_page(pages[i]);
2096 }
b2cac248 2097
050a9adc
CH
2098 start = (start + PAGE_SIZE) & PAGE_MASK;
2099 }
2100
b2a72dff
JG
2101 if (must_unlock && *locked) {
2102 mmap_read_unlock(mm);
2103 *locked = 0;
2104 }
050a9adc 2105
050a9adc
CH
2106 return i ? : -EFAULT;
2107}
2108#endif /* !CONFIG_MMU */
d3649f68 2109
bb523b40
AG
2110/**
2111 * fault_in_writeable - fault in userspace address range for writing
2112 * @uaddr: start of address range
2113 * @size: size of address range
2114 *
2115 * Returns the number of bytes not faulted in (like copy_to_user() and
2116 * copy_from_user()).
2117 */
2118size_t fault_in_writeable(char __user *uaddr, size_t size)
2119{
2120 char __user *start = uaddr, *end;
2121
2122 if (unlikely(size == 0))
2123 return 0;
677b2a8c
CL
2124 if (!user_write_access_begin(uaddr, size))
2125 return size;
bb523b40 2126 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2127 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2128 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2129 }
2130 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2131 if (unlikely(end < start))
2132 end = NULL;
2133 while (uaddr != end) {
677b2a8c 2134 unsafe_put_user(0, uaddr, out);
bb523b40
AG
2135 uaddr += PAGE_SIZE;
2136 }
2137
2138out:
677b2a8c 2139 user_write_access_end();
bb523b40
AG
2140 if (size > uaddr - start)
2141 return size - (uaddr - start);
2142 return 0;
2143}
2144EXPORT_SYMBOL(fault_in_writeable);
2145
da32b581
CM
2146/**
2147 * fault_in_subpage_writeable - fault in an address range for writing
2148 * @uaddr: start of address range
2149 * @size: size of address range
2150 *
2151 * Fault in a user address range for writing while checking for permissions at
2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2154 *
2155 * Returns the number of bytes not faulted in (like copy_to_user() and
2156 * copy_from_user()).
2157 */
2158size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2159{
2160 size_t faulted_in;
2161
2162 /*
2163 * Attempt faulting in at page granularity first for page table
2164 * permission checking. The arch-specific probe_subpage_writeable()
2165 * functions may not check for this.
2166 */
2167 faulted_in = size - fault_in_writeable(uaddr, size);
2168 if (faulted_in)
2169 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2170
2171 return size - faulted_in;
2172}
2173EXPORT_SYMBOL(fault_in_subpage_writeable);
2174
cdd591fc
AG
2175/*
2176 * fault_in_safe_writeable - fault in an address range for writing
2177 * @uaddr: start of address range
2178 * @size: length of address range
2179 *
fe673d3f
LT
2180 * Faults in an address range for writing. This is primarily useful when we
2181 * already know that some or all of the pages in the address range aren't in
2182 * memory.
cdd591fc 2183 *
fe673d3f 2184 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
2185 *
2186 * Note that we don't pin or otherwise hold the pages referenced that we fault
2187 * in. There's no guarantee that they'll stay in memory for any duration of
2188 * time.
2189 *
2190 * Returns the number of bytes not faulted in, like copy_to_user() and
2191 * copy_from_user().
2192 */
2193size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2194{
fe673d3f 2195 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 2196 struct mm_struct *mm = current->mm;
fe673d3f 2197 bool unlocked = false;
cdd591fc 2198
fe673d3f
LT
2199 if (unlikely(size == 0))
2200 return 0;
cdd591fc 2201 end = PAGE_ALIGN(start + size);
fe673d3f 2202 if (end < start)
cdd591fc 2203 end = 0;
cdd591fc 2204
fe673d3f
LT
2205 mmap_read_lock(mm);
2206 do {
2207 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 2208 break;
fe673d3f
LT
2209 start = (start + PAGE_SIZE) & PAGE_MASK;
2210 } while (start != end);
2211 mmap_read_unlock(mm);
2212
2213 if (size > (unsigned long)uaddr - start)
2214 return size - ((unsigned long)uaddr - start);
2215 return 0;
cdd591fc
AG
2216}
2217EXPORT_SYMBOL(fault_in_safe_writeable);
2218
bb523b40
AG
2219/**
2220 * fault_in_readable - fault in userspace address range for reading
2221 * @uaddr: start of user address range
2222 * @size: size of user address range
2223 *
2224 * Returns the number of bytes not faulted in (like copy_to_user() and
2225 * copy_from_user()).
2226 */
2227size_t fault_in_readable(const char __user *uaddr, size_t size)
2228{
2229 const char __user *start = uaddr, *end;
2230 volatile char c;
2231
2232 if (unlikely(size == 0))
2233 return 0;
677b2a8c
CL
2234 if (!user_read_access_begin(uaddr, size))
2235 return size;
bb523b40 2236 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 2237 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2238 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2239 }
2240 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2241 if (unlikely(end < start))
2242 end = NULL;
2243 while (uaddr != end) {
677b2a8c 2244 unsafe_get_user(c, uaddr, out);
bb523b40
AG
2245 uaddr += PAGE_SIZE;
2246 }
2247
2248out:
677b2a8c 2249 user_read_access_end();
bb523b40
AG
2250 (void)c;
2251 if (size > uaddr - start)
2252 return size - (uaddr - start);
2253 return 0;
2254}
2255EXPORT_SYMBOL(fault_in_readable);
2256
8f942eea
JH
2257/**
2258 * get_dump_page() - pin user page in memory while writing it to core dump
2259 * @addr: user address
2260 *
2261 * Returns struct page pointer of user page pinned for dump,
2262 * to be freed afterwards by put_page().
2263 *
2264 * Returns NULL on any kind of failure - a hole must then be inserted into
2265 * the corefile, to preserve alignment with its headers; and also returns
2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 2267 * allowing a hole to be left in the corefile to save disk space.
8f942eea 2268 *
7f3bfab5 2269 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
2270 */
2271#ifdef CONFIG_ELF_CORE
2272struct page *get_dump_page(unsigned long addr)
2273{
8f942eea 2274 struct page *page;
b2a72dff 2275 int locked = 0;
7f3bfab5 2276 int ret;
8f942eea 2277
b2cac248 2278 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
7f3bfab5 2279 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
7f3bfab5 2280 return (ret == 1) ? page : NULL;
8f942eea
JH
2281}
2282#endif /* CONFIG_ELF_CORE */
2283
d1e153fe 2284#ifdef CONFIG_MIGRATION
f68749ec 2285/*
53ba78de 2286 * Returns the number of collected folios. Return value is always >= 0.
f68749ec 2287 */
53ba78de
VK
2288static unsigned long collect_longterm_unpinnable_folios(
2289 struct list_head *movable_folio_list,
2290 unsigned long nr_folios,
2291 struct folio **folios)
9a4e9f3b 2292{
67e139b0 2293 unsigned long i, collected = 0;
1b7f7e58 2294 struct folio *prev_folio = NULL;
67e139b0 2295 bool drain_allow = true;
9a4e9f3b 2296
53ba78de
VK
2297 for (i = 0; i < nr_folios; i++) {
2298 struct folio *folio = folios[i];
f9f38f78 2299
1b7f7e58 2300 if (folio == prev_folio)
83c02c23 2301 continue;
1b7f7e58 2302 prev_folio = folio;
f9f38f78 2303
67e139b0
AP
2304 if (folio_is_longterm_pinnable(folio))
2305 continue;
b05a79d4 2306
67e139b0 2307 collected++;
b05a79d4 2308
67e139b0 2309 if (folio_is_device_coherent(folio))
f9f38f78
CH
2310 continue;
2311
1b7f7e58 2312 if (folio_test_hugetlb(folio)) {
53ba78de 2313 isolate_hugetlb(folio, movable_folio_list);
f9f38f78
CH
2314 continue;
2315 }
9a4e9f3b 2316
1b7f7e58 2317 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
2318 lru_add_drain_all();
2319 drain_allow = false;
2320 }
2321
be2d5756 2322 if (!folio_isolate_lru(folio))
f9f38f78 2323 continue;
67e139b0 2324
53ba78de 2325 list_add_tail(&folio->lru, movable_folio_list);
1b7f7e58
MWO
2326 node_stat_mod_folio(folio,
2327 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2328 folio_nr_pages(folio));
9a4e9f3b
AK
2329 }
2330
67e139b0
AP
2331 return collected;
2332}
2333
2334/*
53ba78de
VK
2335 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2336 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2337 * failure (or partial success).
67e139b0 2338 */
53ba78de
VK
2339static int migrate_longterm_unpinnable_folios(
2340 struct list_head *movable_folio_list,
2341 unsigned long nr_folios,
2342 struct folio **folios)
67e139b0
AP
2343{
2344 int ret;
2345 unsigned long i;
6e7f34eb 2346
53ba78de
VK
2347 for (i = 0; i < nr_folios; i++) {
2348 struct folio *folio = folios[i];
67e139b0
AP
2349
2350 if (folio_is_device_coherent(folio)) {
2351 /*
53ba78de
VK
2352 * Migration will fail if the folio is pinned, so
2353 * convert the pin on the source folio to a normal
2354 * reference.
67e139b0 2355 */
53ba78de 2356 folios[i] = NULL;
67e139b0
AP
2357 folio_get(folio);
2358 gup_put_folio(folio, 1, FOLL_PIN);
2359
2360 if (migrate_device_coherent_page(&folio->page)) {
2361 ret = -EBUSY;
2362 goto err;
2363 }
2364
b05a79d4 2365 continue;
67e139b0 2366 }
b05a79d4 2367
67e139b0 2368 /*
53ba78de 2369 * We can't migrate folios with unexpected references, so drop
67e139b0 2370 * the reference obtained by __get_user_pages_locked().
53ba78de 2371 * Migrating folios have been added to movable_folio_list after
67e139b0 2372 * calling folio_isolate_lru() which takes a reference so the
53ba78de 2373 * folio won't be freed if it's migrating.
67e139b0 2374 */
53ba78de
VK
2375 unpin_folio(folios[i]);
2376 folios[i] = NULL;
f68749ec 2377 }
f9f38f78 2378
53ba78de 2379 if (!list_empty(movable_folio_list)) {
f9f38f78
CH
2380 struct migration_target_control mtc = {
2381 .nid = NUMA_NO_NODE,
2382 .gfp_mask = GFP_USER | __GFP_NOWARN,
e42dfe4e 2383 .reason = MR_LONGTERM_PIN,
f9f38f78
CH
2384 };
2385
53ba78de 2386 if (migrate_pages(movable_folio_list, alloc_migration_target,
67e139b0
AP
2387 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2388 MR_LONGTERM_PIN, NULL)) {
f9f38f78 2389 ret = -ENOMEM;
67e139b0
AP
2390 goto err;
2391 }
9a4e9f3b
AK
2392 }
2393
53ba78de 2394 putback_movable_pages(movable_folio_list);
67e139b0
AP
2395
2396 return -EAGAIN;
2397
2398err:
53ba78de
VK
2399 unpin_folios(folios, nr_folios);
2400 putback_movable_pages(movable_folio_list);
24a95998 2401
67e139b0
AP
2402 return ret;
2403}
2404
2405/*
53ba78de
VK
2406 * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2407 * Rather confusingly, all folios in the range are required to be pinned via
2408 * FOLL_PIN, before calling this routine.
67e139b0 2409 *
53ba78de
VK
2410 * If any folios in the range are not allowed to be pinned, then this routine
2411 * will migrate those folios away, unpin all the folios in the range and return
67e139b0
AP
2412 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2413 * call this routine again.
2414 *
2415 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2416 * The caller should give up, and propagate the error back up the call stack.
2417 *
53ba78de
VK
2418 * If everything is OK and all folios in the range are allowed to be pinned,
2419 * then this routine leaves all folios pinned and returns zero for success.
67e139b0 2420 */
53ba78de
VK
2421static long check_and_migrate_movable_folios(unsigned long nr_folios,
2422 struct folio **folios)
67e139b0
AP
2423{
2424 unsigned long collected;
53ba78de 2425 LIST_HEAD(movable_folio_list);
67e139b0 2426
53ba78de
VK
2427 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2428 nr_folios, folios);
67e139b0
AP
2429 if (!collected)
2430 return 0;
2431
53ba78de
VK
2432 return migrate_longterm_unpinnable_folios(&movable_folio_list,
2433 nr_folios, folios);
2434}
2435
2436/*
2437 * This routine just converts all the pages in the @pages array to folios and
2438 * calls check_and_migrate_movable_folios() to do the heavy lifting.
2439 *
2440 * Please see the check_and_migrate_movable_folios() documentation for details.
2441 */
2442static long check_and_migrate_movable_pages(unsigned long nr_pages,
2443 struct page **pages)
2444{
2445 struct folio **folios;
2446 long i, ret;
2447
2448 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2449 if (!folios)
2450 return -ENOMEM;
2451
2452 for (i = 0; i < nr_pages; i++)
2453 folios[i] = page_folio(pages[i]);
2454
2455 ret = check_and_migrate_movable_folios(nr_pages, folios);
2456
2457 kfree(folios);
2458 return ret;
9a4e9f3b
AK
2459}
2460#else
f68749ec 2461static long check_and_migrate_movable_pages(unsigned long nr_pages,
f6d299ec 2462 struct page **pages)
9a4e9f3b 2463{
24a95998 2464 return 0;
9a4e9f3b 2465}
53ba78de
VK
2466
2467static long check_and_migrate_movable_folios(unsigned long nr_folios,
2468 struct folio **folios)
2469{
2470 return 0;
2471}
d1e153fe 2472#endif /* CONFIG_MIGRATION */
9a4e9f3b 2473
2bb6d283 2474/*
932f4a63
IW
2475 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2476 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2477 */
64019a2e 2478static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2479 unsigned long start,
2480 unsigned long nr_pages,
2481 struct page **pages,
53b2d09b 2482 int *locked,
932f4a63 2483 unsigned int gup_flags)
2bb6d283 2484{
f68749ec 2485 unsigned int flags;
24a95998 2486 long rc, nr_pinned_pages;
2bb6d283 2487
f68749ec 2488 if (!(gup_flags & FOLL_LONGTERM))
b2cac248 2489 return __get_user_pages_locked(mm, start, nr_pages, pages,
53b2d09b 2490 locked, gup_flags);
67e139b0 2491
f68749ec
PT
2492 flags = memalloc_pin_save();
2493 do {
24a95998 2494 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
b2cac248 2495 pages, locked,
24a95998
AP
2496 gup_flags);
2497 if (nr_pinned_pages <= 0) {
2498 rc = nr_pinned_pages;
f68749ec 2499 break;
24a95998 2500 }
d64e2dbc
JG
2501
2502 /* FOLL_LONGTERM implies FOLL_PIN */
f6d299ec 2503 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
24a95998 2504 } while (rc == -EAGAIN);
f68749ec 2505 memalloc_pin_restore(flags);
24a95998 2506 return rc ? rc : nr_pinned_pages;
2bb6d283 2507}
932f4a63 2508
d64e2dbc
JG
2509/*
2510 * Check that the given flags are valid for the exported gup/pup interface, and
2511 * update them with the required flags that the caller must have set.
2512 */
b2cac248
LS
2513static bool is_valid_gup_args(struct page **pages, int *locked,
2514 unsigned int *gup_flags_p, unsigned int to_set)
447f3e45 2515{
d64e2dbc
JG
2516 unsigned int gup_flags = *gup_flags_p;
2517
447f3e45 2518 /*
d64e2dbc
JG
2519 * These flags not allowed to be specified externally to the gup
2520 * interfaces:
0f20bba1 2521 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
d64e2dbc 2522 * - FOLL_REMOTE is internal only and used on follow_page()
f04740f5 2523 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
447f3e45 2524 */
0f20bba1 2525 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
d64e2dbc
JG
2526 return false;
2527
2528 gup_flags |= to_set;
f04740f5
JG
2529 if (locked) {
2530 /* At the external interface locked must be set */
2531 if (WARN_ON_ONCE(*locked != 1))
2532 return false;
2533
2534 gup_flags |= FOLL_UNLOCKABLE;
2535 }
d64e2dbc
JG
2536
2537 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2538 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2539 (FOLL_PIN | FOLL_GET)))
2540 return false;
2541
2542 /* LONGTERM can only be specified when pinning */
2543 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2544 return false;
2545
2546 /* Pages input must be given if using GET/PIN */
2547 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
447f3e45 2548 return false;
d64e2dbc 2549
d64e2dbc
JG
2550 /* We want to allow the pgmap to be hot-unplugged at all times */
2551 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2552 (gup_flags & FOLL_PCI_P2PDMA)))
2553 return false;
2554
d64e2dbc 2555 *gup_flags_p = gup_flags;
447f3e45
BS
2556 return true;
2557}
2558
22bf29b6 2559#ifdef CONFIG_MMU
adc8cb40 2560/**
c4237f8b 2561 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2562 * @mm: mm_struct of target mm
2563 * @start: starting user address
2564 * @nr_pages: number of pages from start to pin
2565 * @gup_flags: flags modifying lookup behaviour
2566 * @pages: array that receives pointers to the pages pinned.
2567 * Should be at least nr_pages long. Or NULL, if caller
2568 * only intends to ensure the pages are faulted in.
c4237f8b
JH
2569 * @locked: pointer to lock flag indicating whether lock is held and
2570 * subsequently whether VM_FAULT_RETRY functionality can be
2571 * utilised. Lock must initially be held.
2572 *
2573 * Returns either number of pages pinned (which may be less than the
2574 * number requested), or an error. Details about the return value:
2575 *
2576 * -- If nr_pages is 0, returns 0.
2577 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2578 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2579 * pages pinned. Again, this may be less than nr_pages.
2580 *
2581 * The caller is responsible for releasing returned @pages, via put_page().
2582 *
c1e8d7c6 2583 * Must be called with mmap_lock held for read or write.
c4237f8b 2584 *
adc8cb40
SJ
2585 * get_user_pages_remote walks a process's page tables and takes a reference
2586 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2587 * instant. That is, it takes the page that would be accessed if a user
2588 * thread accesses the given user virtual address at that instant.
2589 *
2590 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2591 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b 2592 * page there in some cases (eg. if mmapped pagecache has been invalidated
5da1a868 2593 * and subsequently re-faulted). However it does guarantee that the page
c4237f8b
JH
2594 * won't be freed completely. And mostly callers simply care that the page
2595 * contains data that was valid *at some point in time*. Typically, an IO
2596 * or similar operation cannot guarantee anything stronger anyway because
2597 * locks can't be held over the syscall boundary.
2598 *
2599 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2600 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2601 * be called after the page is finished with, and before put_page is called.
2602 *
adc8cb40
SJ
2603 * get_user_pages_remote is typically used for fewer-copy IO operations,
2604 * to get a handle on the memory by some means other than accesses
2605 * via the user virtual addresses. The pages may be submitted for
2606 * DMA to devices or accessed via their kernel linear mapping (via the
2607 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2608 *
2609 * See also get_user_pages_fast, for performance critical applications.
2610 *
adc8cb40 2611 * get_user_pages_remote should be phased out in favor of
c4237f8b 2612 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2613 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2614 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2615 */
64019a2e 2616long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2617 unsigned long start, unsigned long nr_pages,
2618 unsigned int gup_flags, struct page **pages,
ca5e8632 2619 int *locked)
c4237f8b 2620{
9a863a6a
JG
2621 int local_locked = 1;
2622
b2cac248 2623 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc 2624 FOLL_TOUCH | FOLL_REMOTE))
eddb1c22
JH
2625 return -EINVAL;
2626
b2cac248 2627 return __get_user_pages_locked(mm, start, nr_pages, pages,
9a863a6a 2628 locked ? locked : &local_locked,
d64e2dbc 2629 gup_flags);
c4237f8b
JH
2630}
2631EXPORT_SYMBOL(get_user_pages_remote);
2632
eddb1c22 2633#else /* CONFIG_MMU */
64019a2e 2634long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2635 unsigned long start, unsigned long nr_pages,
2636 unsigned int gup_flags, struct page **pages,
ca5e8632 2637 int *locked)
eddb1c22
JH
2638{
2639 return 0;
2640}
2641#endif /* !CONFIG_MMU */
2642
adc8cb40
SJ
2643/**
2644 * get_user_pages() - pin user pages in memory
2645 * @start: starting user address
2646 * @nr_pages: number of pages from start to pin
2647 * @gup_flags: flags modifying lookup behaviour
2648 * @pages: array that receives pointers to the pages pinned.
2649 * Should be at least nr_pages long. Or NULL, if caller
2650 * only intends to ensure the pages are faulted in.
adc8cb40 2651 *
64019a2e
PX
2652 * This is the same as get_user_pages_remote(), just with a less-flexible
2653 * calling convention where we assume that the mm being operated on belongs to
2654 * the current task, and doesn't allow passing of a locked parameter. We also
2655 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2656 */
2657long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2658 unsigned int gup_flags, struct page **pages)
932f4a63 2659{
9a863a6a
JG
2660 int locked = 1;
2661
b2cac248 2662 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
eddb1c22
JH
2663 return -EINVAL;
2664
afa3c33e 2665 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2666 &locked, gup_flags);
932f4a63
IW
2667}
2668EXPORT_SYMBOL(get_user_pages);
2bb6d283 2669
acc3c8d1 2670/*
d3649f68 2671 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2672 *
3e4e28c5 2673 * mmap_read_lock(mm);
64019a2e 2674 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2675 * mmap_read_unlock(mm);
d3649f68
CH
2676 *
2677 * with:
2678 *
64019a2e 2679 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2680 *
2681 * It is functionally equivalent to get_user_pages_fast so
2682 * get_user_pages_fast should be used instead if specific gup_flags
2683 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2684 */
d3649f68
CH
2685long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2686 struct page **pages, unsigned int gup_flags)
acc3c8d1 2687{
b2a72dff 2688 int locked = 0;
acc3c8d1 2689
b2cac248 2690 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 2691 FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc
JG
2692 return -EINVAL;
2693
afa3c33e 2694 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
b2cac248 2695 &locked, gup_flags);
4bbd4c77 2696}
d3649f68 2697EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2698
2699/*
23babe19 2700 * GUP-fast
2667f50e
SC
2701 *
2702 * get_user_pages_fast attempts to pin user pages by walking the page
2703 * tables directly and avoids taking locks. Thus the walker needs to be
2704 * protected from page table pages being freed from under it, and should
2705 * block any THP splits.
2706 *
2707 * One way to achieve this is to have the walker disable interrupts, and
2708 * rely on IPIs from the TLB flushing code blocking before the page table
2709 * pages are freed. This is unsuitable for architectures that do not need
2710 * to broadcast an IPI when invalidating TLBs.
2711 *
2712 * Another way to achieve this is to batch up page table containing pages
2713 * belonging to more than one mm_user, then rcu_sched a callback to free those
23babe19 2714 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2667f50e
SC
2715 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2716 * (which is a relatively rare event). The code below adopts this strategy.
2717 *
2718 * Before activating this code, please be aware that the following assumptions
2719 * are currently made:
2720 *
ff2e6d72 2721 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2722 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2723 *
2667f50e
SC
2724 * *) ptes can be read atomically by the architecture.
2725 *
2726 * *) access_ok is sufficient to validate userspace address ranges.
2727 *
2728 * The last two assumptions can be relaxed by the addition of helper functions.
2729 *
2730 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2731 */
25176ad0 2732#ifdef CONFIG_HAVE_GUP_FAST
a6e79df9 2733/*
f002882c
DH
2734 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2735 * a specific folio.
a6e79df9
LS
2736 *
2737 * This call assumes the caller has pinned the folio, that the lowest page table
2738 * level still points to this folio, and that interrupts have been disabled.
2739 *
f002882c
DH
2740 * GUP-fast must reject all secretmem folios.
2741 *
a6e79df9
LS
2742 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2743 * (see comment describing the writable_file_mapping_allowed() function). We
2744 * therefore try to avoid the most egregious case of a long-term mapping doing
2745 * so.
2746 *
2747 * This function cannot be as thorough as that one as the VMA is not available
2748 * in the fast path, so instead we whitelist known good cases and if in doubt,
2749 * fall back to the slow path.
2750 */
f002882c 2751static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
a6e79df9 2752{
f002882c 2753 bool reject_file_backed = false;
a6e79df9 2754 struct address_space *mapping;
f002882c 2755 bool check_secretmem = false;
a6e79df9
LS
2756 unsigned long mapping_flags;
2757
2758 /*
2759 * If we aren't pinning then no problematic write can occur. A long term
2760 * pin is the most egregious case so this is the one we disallow.
2761 */
f002882c 2762 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
a6e79df9 2763 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
f002882c
DH
2764 reject_file_backed = true;
2765
2766 /* We hold a folio reference, so we can safely access folio fields. */
a6e79df9 2767
f002882c
DH
2768 /* secretmem folios are always order-0 folios. */
2769 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2770 check_secretmem = true;
2771
2772 if (!reject_file_backed && !check_secretmem)
2773 return true;
a6e79df9
LS
2774
2775 if (WARN_ON_ONCE(folio_test_slab(folio)))
2776 return false;
2777
f002882c 2778 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
a6e79df9
LS
2779 if (folio_test_hugetlb(folio))
2780 return true;
2781
2782 /*
2783 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2784 * cannot proceed, which means no actions performed under RCU can
2785 * proceed either.
2786 *
2787 * inodes and thus their mappings are freed under RCU, which means the
2788 * mapping cannot be freed beneath us and thus we can safely dereference
2789 * it.
2790 */
2791 lockdep_assert_irqs_disabled();
2792
2793 /*
2794 * However, there may be operations which _alter_ the mapping, so ensure
2795 * we read it once and only once.
2796 */
2797 mapping = READ_ONCE(folio->mapping);
2798
2799 /*
2800 * The mapping may have been truncated, in any case we cannot determine
2801 * if this mapping is safe - fall back to slow path to determine how to
2802 * proceed.
2803 */
2804 if (!mapping)
2805 return false;
2806
2807 /* Anonymous folios pose no problem. */
2808 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2809 if (mapping_flags)
2810 return mapping_flags & PAGE_MAPPING_ANON;
2811
2812 /*
2813 * At this point, we know the mapping is non-null and points to an
f002882c 2814 * address_space object.
a6e79df9 2815 */
f002882c
DH
2816 if (check_secretmem && secretmem_mapping(mapping))
2817 return false;
2818 /* The only remaining allowed file system is shmem. */
2819 return !reject_file_backed || shmem_mapping(mapping);
a6e79df9
LS
2820}
2821
23babe19
DH
2822static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2823 unsigned int flags, struct page **pages)
b59f65fa
KS
2824{
2825 while ((*nr) - nr_start) {
9cbe4954 2826 struct folio *folio = page_folio(pages[--(*nr)]);
b59f65fa 2827
9cbe4954
MWO
2828 folio_clear_referenced(folio);
2829 gup_put_folio(folio, 1, flags);
b59f65fa
KS
2830 }
2831}
2832
3010a5ea 2833#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc 2834/*
23babe19 2835 * GUP-fast relies on pte change detection to avoid concurrent pgtable
70cbc3cc
YS
2836 * operations.
2837 *
23babe19 2838 * To pin the page, GUP-fast needs to do below in order:
70cbc3cc
YS
2839 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2840 *
2841 * For the rest of pgtable operations where pgtable updates can be racy
23babe19 2842 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
70cbc3cc
YS
2843 * is pinned.
2844 *
2845 * Above will work for all pte-level operations, including THP split.
2846 *
23babe19 2847 * For THP collapse, it's a bit more complicated because GUP-fast may be
70cbc3cc
YS
2848 * walking a pgtable page that is being freed (pte is still valid but pmd
2849 * can be cleared already). To avoid race in such condition, we need to
2850 * also check pmd here to make sure pmd doesn't change (corresponds to
2851 * pmdp_collapse_flush() in the THP collapse code path).
2852 */
23babe19
DH
2853static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2854 unsigned long end, unsigned int flags, struct page **pages,
2855 int *nr)
2667f50e 2856{
b59f65fa
KS
2857 struct dev_pagemap *pgmap = NULL;
2858 int nr_start = *nr, ret = 0;
2667f50e 2859 pte_t *ptep, *ptem;
2667f50e
SC
2860
2861 ptem = ptep = pte_offset_map(&pmd, addr);
04dee9e8
HD
2862 if (!ptep)
2863 return 0;
2667f50e 2864 do {
2a4a06da 2865 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2866 struct page *page;
2867 struct folio *folio;
2667f50e 2868
d74943a2
DH
2869 /*
2870 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2871 * pte_access_permitted() better should reject these pages
2872 * either way: otherwise, GUP-fast might succeed in
2873 * cases where ordinary GUP would fail due to VMA access
2874 * permissions.
2875 */
2876 if (pte_protnone(pte))
e7884f8e
KS
2877 goto pte_unmap;
2878
b798bec4 2879 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2880 goto pte_unmap;
2881
b59f65fa 2882 if (pte_devmap(pte)) {
7af75561
IW
2883 if (unlikely(flags & FOLL_LONGTERM))
2884 goto pte_unmap;
2885
b59f65fa
KS
2886 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2887 if (unlikely(!pgmap)) {
23babe19 2888 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2889 goto pte_unmap;
2890 }
2891 } else if (pte_special(pte))
2667f50e
SC
2892 goto pte_unmap;
2893
2894 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2895 page = pte_page(pte);
2896
f442fa61 2897 folio = try_grab_folio_fast(page, 1, flags);
b0496fe4 2898 if (!folio)
2667f50e
SC
2899 goto pte_unmap;
2900
70cbc3cc 2901 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
c33c7948 2902 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
b0496fe4 2903 gup_put_folio(folio, 1, flags);
2667f50e
SC
2904 goto pte_unmap;
2905 }
2906
f002882c 2907 if (!gup_fast_folio_allowed(folio, flags)) {
b0496fe4 2908 gup_put_folio(folio, 1, flags);
2667f50e
SC
2909 goto pte_unmap;
2910 }
2911
84209e87 2912 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
a7f22660
DH
2913 gup_put_folio(folio, 1, flags);
2914 goto pte_unmap;
2915 }
2916
f28d4363
CI
2917 /*
2918 * We need to make the page accessible if and only if we are
2919 * going to access its content (the FOLL_PIN case). Please
2920 * see Documentation/core-api/pin_user_pages.rst for
2921 * details.
2922 */
2923 if (flags & FOLL_PIN) {
2924 ret = arch_make_page_accessible(page);
2925 if (ret) {
b0496fe4 2926 gup_put_folio(folio, 1, flags);
f28d4363
CI
2927 goto pte_unmap;
2928 }
2929 }
b0496fe4 2930 folio_set_referenced(folio);
2667f50e
SC
2931 pages[*nr] = page;
2932 (*nr)++;
2667f50e
SC
2933 } while (ptep++, addr += PAGE_SIZE, addr != end);
2934
2935 ret = 1;
2936
2937pte_unmap:
832d7aa0
CH
2938 if (pgmap)
2939 put_dev_pagemap(pgmap);
2667f50e
SC
2940 pte_unmap(ptem);
2941 return ret;
2942}
2943#else
2944
2945/*
2946 * If we can't determine whether or not a pte is special, then fail immediately
2947 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2948 * to be special.
2949 *
2950 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2951 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
23babe19 2952 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2667f50e 2953 */
23babe19
DH
2954static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2955 unsigned long end, unsigned int flags, struct page **pages,
2956 int *nr)
2667f50e
SC
2957{
2958 return 0;
2959}
3010a5ea 2960#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2961
17596731 2962#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
23babe19
DH
2963static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2964 unsigned long end, unsigned int flags, struct page **pages, int *nr)
b59f65fa
KS
2965{
2966 int nr_start = *nr;
2967 struct dev_pagemap *pgmap = NULL;
2968
2969 do {
9cbe4954 2970 struct folio *folio;
b59f65fa
KS
2971 struct page *page = pfn_to_page(pfn);
2972
2973 pgmap = get_dev_pagemap(pfn, pgmap);
2974 if (unlikely(!pgmap)) {
23babe19 2975 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2976 break;
b59f65fa 2977 }
4003f107
LG
2978
2979 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
23babe19 2980 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
4003f107
LG
2981 break;
2982 }
2983
f442fa61 2984 folio = try_grab_folio_fast(page, 1, flags);
9cbe4954 2985 if (!folio) {
23babe19 2986 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2987 break;
3faa52c0 2988 }
9cbe4954
MWO
2989 folio_set_referenced(folio);
2990 pages[*nr] = page;
b59f65fa
KS
2991 (*nr)++;
2992 pfn++;
2993 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2994
6401c4eb 2995 put_dev_pagemap(pgmap);
20b7fee7 2996 return addr == end;
b59f65fa
KS
2997}
2998
23babe19
DH
2999static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3000 unsigned long end, unsigned int flags, struct page **pages,
3001 int *nr)
b59f65fa
KS
3002{
3003 unsigned long fault_pfn;
a9b6de77
DW
3004 int nr_start = *nr;
3005
3006 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
23babe19 3007 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3008 return 0;
b59f65fa 3009
a9b6de77 3010 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
23babe19 3011 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3012 return 0;
3013 }
3014 return 1;
b59f65fa
KS
3015}
3016
23babe19
DH
3017static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3018 unsigned long end, unsigned int flags, struct page **pages,
3019 int *nr)
b59f65fa
KS
3020{
3021 unsigned long fault_pfn;
a9b6de77
DW
3022 int nr_start = *nr;
3023
3024 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
23babe19 3025 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 3026 return 0;
b59f65fa 3027
a9b6de77 3028 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
23babe19 3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
3030 return 0;
3031 }
3032 return 1;
b59f65fa
KS
3033}
3034#else
23babe19
DH
3035static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3036 unsigned long end, unsigned int flags, struct page **pages,
3037 int *nr)
b59f65fa
KS
3038{
3039 BUILD_BUG();
3040 return 0;
3041}
3042
23babe19
DH
3043static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3044 unsigned long end, unsigned int flags, struct page **pages,
3045 int *nr)
b59f65fa
KS
3046{
3047 BUILD_BUG();
3048 return 0;
3049}
3050#endif
3051
23babe19
DH
3052static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3053 unsigned long end, unsigned int flags, struct page **pages,
3054 int *nr)
2667f50e 3055{
667ed1f7
MWO
3056 struct page *page;
3057 struct folio *folio;
2667f50e
SC
3058 int refs;
3059
b798bec4 3060 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3061 return 0;
3062
7af75561
IW
3063 if (pmd_devmap(orig)) {
3064 if (unlikely(flags & FOLL_LONGTERM))
3065 return 0;
23babe19
DH
3066 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3067 pages, nr);
7af75561 3068 }
b59f65fa 3069
f3c94c62
PX
3070 page = pmd_page(orig);
3071 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2667f50e 3072
f442fa61 3073 folio = try_grab_folio_fast(page, refs, flags);
667ed1f7 3074 if (!folio)
2667f50e 3075 return 0;
2667f50e
SC
3076
3077 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 3078 gup_put_folio(folio, refs, flags);
2667f50e
SC
3079 return 0;
3080 }
3081
f002882c 3082 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3083 gup_put_folio(folio, refs, flags);
3084 return 0;
3085 }
84209e87 3086 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3087 gup_put_folio(folio, refs, flags);
3088 return 0;
3089 }
3090
a43e9820 3091 *nr += refs;
667ed1f7 3092 folio_set_referenced(folio);
2667f50e
SC
3093 return 1;
3094}
3095
23babe19
DH
3096static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3097 unsigned long end, unsigned int flags, struct page **pages,
3098 int *nr)
2667f50e 3099{
83afb52e
MWO
3100 struct page *page;
3101 struct folio *folio;
2667f50e
SC
3102 int refs;
3103
b798bec4 3104 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
3105 return 0;
3106
7af75561
IW
3107 if (pud_devmap(orig)) {
3108 if (unlikely(flags & FOLL_LONGTERM))
3109 return 0;
23babe19
DH
3110 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3111 pages, nr);
7af75561 3112 }
b59f65fa 3113
f3c94c62
PX
3114 page = pud_page(orig);
3115 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
2667f50e 3116
f442fa61 3117 folio = try_grab_folio_fast(page, refs, flags);
83afb52e 3118 if (!folio)
2667f50e 3119 return 0;
2667f50e
SC
3120
3121 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 3122 gup_put_folio(folio, refs, flags);
2667f50e
SC
3123 return 0;
3124 }
3125
f002882c 3126 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3127 gup_put_folio(folio, refs, flags);
3128 return 0;
3129 }
3130
84209e87 3131 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
a7f22660
DH
3132 gup_put_folio(folio, refs, flags);
3133 return 0;
3134 }
3135
a43e9820 3136 *nr += refs;
83afb52e 3137 folio_set_referenced(folio);
2667f50e
SC
3138 return 1;
3139}
3140
23babe19
DH
3141static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3142 unsigned long end, unsigned int flags, struct page **pages,
3143 int *nr)
f30c59e9
AK
3144{
3145 int refs;
2d7919a2
MWO
3146 struct page *page;
3147 struct folio *folio;
f30c59e9 3148
b798bec4 3149 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
3150 return 0;
3151
b59f65fa 3152 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 3153
f3c94c62
PX
3154 page = pgd_page(orig);
3155 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
f30c59e9 3156
f442fa61 3157 folio = try_grab_folio_fast(page, refs, flags);
2d7919a2 3158 if (!folio)
f30c59e9 3159 return 0;
f30c59e9
AK
3160
3161 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 3162 gup_put_folio(folio, refs, flags);
f30c59e9
AK
3163 return 0;
3164 }
3165
31115034
LS
3166 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3167 gup_put_folio(folio, refs, flags);
3168 return 0;
3169 }
3170
f002882c 3171 if (!gup_fast_folio_allowed(folio, flags)) {
a6e79df9
LS
3172 gup_put_folio(folio, refs, flags);
3173 return 0;
3174 }
3175
a43e9820 3176 *nr += refs;
2d7919a2 3177 folio_set_referenced(folio);
f30c59e9
AK
3178 return 1;
3179}
3180
23babe19
DH
3181static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3182 unsigned long end, unsigned int flags, struct page **pages,
3183 int *nr)
2667f50e
SC
3184{
3185 unsigned long next;
3186 pmd_t *pmdp;
3187
d3f7b1bb 3188 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 3189 do {
1180e732 3190 pmd_t pmd = pmdp_get_lockless(pmdp);
2667f50e
SC
3191
3192 next = pmd_addr_end(addr, end);
84c3fc4e 3193 if (!pmd_present(pmd))
2667f50e
SC
3194 return 0;
3195
7db86dc3 3196 if (unlikely(pmd_leaf(pmd))) {
23babe19 3197 /* See gup_fast_pte_range() */
d74943a2 3198 if (pmd_protnone(pmd))
2667f50e
SC
3199 return 0;
3200
23babe19 3201 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
2667f50e
SC
3202 pages, nr))
3203 return 0;
3204
23babe19
DH
3205 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3206 pages, nr))
2923117b 3207 return 0;
2667f50e
SC
3208 } while (pmdp++, addr = next, addr != end);
3209
3210 return 1;
3211}
3212
23babe19
DH
3213static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3214 unsigned long end, unsigned int flags, struct page **pages,
3215 int *nr)
2667f50e
SC
3216{
3217 unsigned long next;
3218 pud_t *pudp;
3219
d3f7b1bb 3220 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 3221 do {
e37c6982 3222 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
3223
3224 next = pud_addr_end(addr, end);
15494520 3225 if (unlikely(!pud_present(pud)))
2667f50e 3226 return 0;
7db86dc3 3227 if (unlikely(pud_leaf(pud))) {
23babe19
DH
3228 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3229 pages, nr))
f30c59e9 3230 return 0;
23babe19
DH
3231 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3232 pages, nr))
2667f50e
SC
3233 return 0;
3234 } while (pudp++, addr = next, addr != end);
3235
3236 return 1;
3237}
3238
23babe19
DH
3239static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3240 unsigned long end, unsigned int flags, struct page **pages,
3241 int *nr)
c2febafc
KS
3242{
3243 unsigned long next;
3244 p4d_t *p4dp;
3245
d3f7b1bb 3246 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
3247 do {
3248 p4d_t p4d = READ_ONCE(*p4dp);
3249
3250 next = p4d_addr_end(addr, end);
089f9214 3251 if (!p4d_present(p4d))
c2febafc 3252 return 0;
1965e933 3253 BUILD_BUG_ON(p4d_leaf(p4d));
8268614b
CL
3254 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3255 pages, nr))
c2febafc
KS
3256 return 0;
3257 } while (p4dp++, addr = next, addr != end);
3258
3259 return 1;
3260}
3261
23babe19 3262static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
b798bec4 3263 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
3264{
3265 unsigned long next;
3266 pgd_t *pgdp;
3267
3268 pgdp = pgd_offset(current->mm, addr);
3269 do {
3270 pgd_t pgd = READ_ONCE(*pgdp);
3271
3272 next = pgd_addr_end(addr, end);
3273 if (pgd_none(pgd))
3274 return;
7db86dc3 3275 if (unlikely(pgd_leaf(pgd))) {
23babe19
DH
3276 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3277 pages, nr))
5b65c467 3278 return;
23babe19
DH
3279 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3280 pages, nr))
5b65c467
KS
3281 return;
3282 } while (pgdp++, addr = next, addr != end);
3283}
050a9adc 3284#else
23babe19 3285static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
050a9adc
CH
3286 unsigned int flags, struct page **pages, int *nr)
3287{
3288}
25176ad0 3289#endif /* CONFIG_HAVE_GUP_FAST */
5b65c467
KS
3290
3291#ifndef gup_fast_permitted
3292/*
dadbb612 3293 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
3294 * we need to fall back to the slow version:
3295 */
26f4c328 3296static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 3297{
26f4c328 3298 return true;
5b65c467
KS
3299}
3300#endif
3301
23babe19
DH
3302static unsigned long gup_fast(unsigned long start, unsigned long end,
3303 unsigned int gup_flags, struct page **pages)
c28b1fc7
JG
3304{
3305 unsigned long flags;
3306 int nr_pinned = 0;
57efa1fe 3307 unsigned seq;
c28b1fc7 3308
25176ad0 3309 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
c28b1fc7
JG
3310 !gup_fast_permitted(start, end))
3311 return 0;
3312
57efa1fe
JG
3313 if (gup_flags & FOLL_PIN) {
3314 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3315 if (seq & 1)
3316 return 0;
3317 }
3318
c28b1fc7
JG
3319 /*
3320 * Disable interrupts. The nested form is used, in order to allow full,
3321 * general purpose use of this routine.
3322 *
3323 * With interrupts disabled, we block page table pages from being freed
3324 * from under us. See struct mmu_table_batch comments in
3325 * include/asm-generic/tlb.h for more details.
3326 *
3327 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3328 * that come from THPs splitting.
3329 */
3330 local_irq_save(flags);
23babe19 3331 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
c28b1fc7 3332 local_irq_restore(flags);
57efa1fe
JG
3333
3334 /*
3335 * When pinning pages for DMA there could be a concurrent write protect
23babe19 3336 * from fork() via copy_page_range(), in this case always fail GUP-fast.
57efa1fe
JG
3337 */
3338 if (gup_flags & FOLL_PIN) {
3339 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
23babe19 3340 gup_fast_unpin_user_pages(pages, nr_pinned);
57efa1fe 3341 return 0;
b6a2619c
DH
3342 } else {
3343 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
3344 }
3345 }
c28b1fc7
JG
3346 return nr_pinned;
3347}
3348
23babe19
DH
3349static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3350 unsigned int gup_flags, struct page **pages)
2667f50e 3351{
c28b1fc7
JG
3352 unsigned long len, end;
3353 unsigned long nr_pinned;
b2a72dff 3354 int locked = 0;
c28b1fc7 3355 int ret;
2667f50e 3356
f4000fdf 3357 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 3358 FOLL_FORCE | FOLL_PIN | FOLL_GET |
4003f107 3359 FOLL_FAST_ONLY | FOLL_NOFAULT |
d74943a2 3360 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
817be129
CH
3361 return -EINVAL;
3362
a458b76a
AA
3363 if (gup_flags & FOLL_PIN)
3364 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 3365
f81cd178 3366 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 3367 might_lock_read(&current->mm->mmap_lock);
f81cd178 3368
f455c854 3369 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
3370 len = nr_pages << PAGE_SHIFT;
3371 if (check_add_overflow(start, len, &end))
9883c7f8 3372 return -EOVERFLOW;
6014bc27
LT
3373 if (end > TASK_SIZE_MAX)
3374 return -EFAULT;
96d4f267 3375 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 3376 return -EFAULT;
73e10a61 3377
23babe19 3378 nr_pinned = gup_fast(start, end, gup_flags, pages);
c28b1fc7
JG
3379 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3380 return nr_pinned;
2667f50e 3381
c28b1fc7
JG
3382 /* Slow path: try to get the remaining pages with get_user_pages */
3383 start += nr_pinned << PAGE_SHIFT;
3384 pages += nr_pinned;
b2a72dff 3385 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
b2cac248 3386 pages, &locked,
f04740f5 3387 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
c28b1fc7
JG
3388 if (ret < 0) {
3389 /*
3390 * The caller has to unpin the pages we already pinned so
3391 * returning -errno is not an option
3392 */
3393 if (nr_pinned)
3394 return nr_pinned;
3395 return ret;
2667f50e 3396 }
c28b1fc7 3397 return ret + nr_pinned;
2667f50e 3398}
c28b1fc7 3399
dadbb612
SJ
3400/**
3401 * get_user_pages_fast_only() - pin user pages in memory
3402 * @start: starting user address
3403 * @nr_pages: number of pages from start to pin
3404 * @gup_flags: flags modifying pin behaviour
3405 * @pages: array that receives pointers to the pages pinned.
3406 * Should be at least nr_pages long.
3407 *
9e1f0580
JH
3408 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3409 * the regular GUP.
9e1f0580
JH
3410 *
3411 * If the architecture does not support this function, simply return with no
3412 * pages pinned.
3413 *
3414 * Careful, careful! COW breaking can go either way, so a non-write
3415 * access can get ambiguous page results. If you call this function without
3416 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3417 */
dadbb612
SJ
3418int get_user_pages_fast_only(unsigned long start, int nr_pages,
3419 unsigned int gup_flags, struct page **pages)
9e1f0580 3420{
9e1f0580
JH
3421 /*
3422 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3423 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3424 *
3425 * FOLL_FAST_ONLY is required in order to match the API description of
3426 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3427 */
b2cac248 3428 if (!is_valid_gup_args(pages, NULL, &gup_flags,
d64e2dbc
JG
3429 FOLL_GET | FOLL_FAST_ONLY))
3430 return -EINVAL;
9e1f0580 3431
23babe19 3432 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
9e1f0580 3433}
dadbb612 3434EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3435
eddb1c22
JH
3436/**
3437 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3438 * @start: starting user address
3439 * @nr_pages: number of pages from start to pin
3440 * @gup_flags: flags modifying pin behaviour
3441 * @pages: array that receives pointers to the pages pinned.
3442 * Should be at least nr_pages long.
eddb1c22 3443 *
c1e8d7c6 3444 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3445 * If not successful, it will fall back to taking the lock and
3446 * calling get_user_pages().
3447 *
3448 * Returns number of pages pinned. This may be fewer than the number requested.
3449 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3450 * -errno.
3451 */
3452int get_user_pages_fast(unsigned long start, int nr_pages,
3453 unsigned int gup_flags, struct page **pages)
3454{
94202f12
JH
3455 /*
3456 * The caller may or may not have explicitly set FOLL_GET; either way is
3457 * OK. However, internally (within mm/gup.c), gup fast variants must set
3458 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3459 * request.
3460 */
b2cac248 3461 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
d64e2dbc 3462 return -EINVAL;
23babe19 3463 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22 3464}
050a9adc 3465EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3466
3467/**
3468 * pin_user_pages_fast() - pin user pages in memory without taking locks
3469 *
3faa52c0
JH
3470 * @start: starting user address
3471 * @nr_pages: number of pages from start to pin
3472 * @gup_flags: flags modifying pin behaviour
3473 * @pages: array that receives pointers to the pages pinned.
3474 * Should be at least nr_pages long.
3475 *
3476 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3477 * get_user_pages_fast() for documentation on the function arguments, because
3478 * the arguments here are identical.
3479 *
3480 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3481 * see Documentation/core-api/pin_user_pages.rst for further details.
c8070b78
DH
3482 *
3483 * Note that if a zero_page is amongst the returned pages, it will not have
3484 * pins in it and unpin_user_page() will not remove pins from it.
eddb1c22
JH
3485 */
3486int pin_user_pages_fast(unsigned long start, int nr_pages,
3487 unsigned int gup_flags, struct page **pages)
3488{
b2cac248 3489 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3faa52c0 3490 return -EINVAL;
23babe19 3491 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3492}
3493EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3494
3495/**
64019a2e 3496 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3497 *
3faa52c0
JH
3498 * @mm: mm_struct of target mm
3499 * @start: starting user address
3500 * @nr_pages: number of pages from start to pin
3501 * @gup_flags: flags modifying lookup behaviour
3502 * @pages: array that receives pointers to the pages pinned.
0768c8de 3503 * Should be at least nr_pages long.
3faa52c0
JH
3504 * @locked: pointer to lock flag indicating whether lock is held and
3505 * subsequently whether VM_FAULT_RETRY functionality can be
3506 * utilised. Lock must initially be held.
3507 *
3508 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3509 * get_user_pages_remote() for documentation on the function arguments, because
3510 * the arguments here are identical.
3511 *
3512 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3513 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3514 *
3515 * Note that if a zero_page is amongst the returned pages, it will not have
3516 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22 3517 */
64019a2e 3518long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3519 unsigned long start, unsigned long nr_pages,
3520 unsigned int gup_flags, struct page **pages,
0b295316 3521 int *locked)
eddb1c22 3522{
9a863a6a
JG
3523 int local_locked = 1;
3524
b2cac248 3525 if (!is_valid_gup_args(pages, locked, &gup_flags,
d64e2dbc
JG
3526 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3527 return 0;
b2cac248 3528 return __gup_longterm_locked(mm, start, nr_pages, pages,
9a863a6a 3529 locked ? locked : &local_locked,
d64e2dbc 3530 gup_flags);
eddb1c22
JH
3531}
3532EXPORT_SYMBOL(pin_user_pages_remote);
3533
3534/**
3535 * pin_user_pages() - pin user pages in memory for use by other devices
3536 *
3faa52c0
JH
3537 * @start: starting user address
3538 * @nr_pages: number of pages from start to pin
3539 * @gup_flags: flags modifying lookup behaviour
3540 * @pages: array that receives pointers to the pages pinned.
0768c8de 3541 * Should be at least nr_pages long.
3faa52c0
JH
3542 *
3543 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3544 * FOLL_PIN is set.
3545 *
3546 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3547 * see Documentation/core-api/pin_user_pages.rst for details.
c8070b78
DH
3548 *
3549 * Note that if a zero_page is amongst the returned pages, it will not have
3550 * pins in it and unpin_user_page*() will not remove pins from it.
eddb1c22
JH
3551 */
3552long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 3553 unsigned int gup_flags, struct page **pages)
eddb1c22 3554{
9a863a6a
JG
3555 int locked = 1;
3556
b2cac248 3557 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
d64e2dbc 3558 return 0;
64019a2e 3559 return __gup_longterm_locked(current->mm, start, nr_pages,
b2cac248 3560 pages, &locked, gup_flags);
eddb1c22
JH
3561}
3562EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3563
3564/*
3565 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3566 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3567 * FOLL_PIN and rejects FOLL_GET.
c8070b78
DH
3568 *
3569 * Note that if a zero_page is amongst the returned pages, it will not have
3570 * pins in it and unpin_user_page*() will not remove pins from it.
91429023
JH
3571 */
3572long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3573 struct page **pages, unsigned int gup_flags)
3574{
b2a72dff 3575 int locked = 0;
91429023 3576
b2cac248 3577 if (!is_valid_gup_args(pages, NULL, &gup_flags,
f04740f5 3578 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
d64e2dbc 3579 return 0;
0768c8de 3580
b2cac248 3581 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
b2a72dff 3582 &locked, gup_flags);
91429023
JH
3583}
3584EXPORT_SYMBOL(pin_user_pages_unlocked);
89c1905d
VK
3585
3586/**
3587 * memfd_pin_folios() - pin folios associated with a memfd
3588 * @memfd: the memfd whose folios are to be pinned
3589 * @start: the first memfd offset
3590 * @end: the last memfd offset (inclusive)
3591 * @folios: array that receives pointers to the folios pinned
3592 * @max_folios: maximum number of entries in @folios
3593 * @offset: the offset into the first folio
3594 *
3595 * Attempt to pin folios associated with a memfd in the contiguous range
3596 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3597 * the folios can either be found in the page cache or need to be allocated
3598 * if necessary. Once the folios are located, they are all pinned via
3599 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3600 * And, eventually, these pinned folios must be released either using
3601 * unpin_folios() or unpin_folio().
3602 *
3603 * It must be noted that the folios may be pinned for an indefinite amount
3604 * of time. And, in most cases, the duration of time they may stay pinned
3605 * would be controlled by the userspace. This behavior is effectively the
3606 * same as using FOLL_LONGTERM with other GUP APIs.
3607 *
3608 * Returns number of folios pinned, which could be less than @max_folios
3609 * as it depends on the folio sizes that cover the range [start, end].
3610 * If no folios were pinned, it returns -errno.
3611 */
3612long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3613 struct folio **folios, unsigned int max_folios,
3614 pgoff_t *offset)
3615{
3616 unsigned int flags, nr_folios, nr_found;
3617 unsigned int i, pgshift = PAGE_SHIFT;
3618 pgoff_t start_idx, end_idx, next_idx;
3619 struct folio *folio = NULL;
3620 struct folio_batch fbatch;
3621 struct hstate *h;
3622 long ret = -EINVAL;
3623
3624 if (start < 0 || start > end || !max_folios)
3625 return -EINVAL;
3626
3627 if (!memfd)
3628 return -EINVAL;
3629
3630 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3631 return -EINVAL;
3632
3633 if (end >= i_size_read(file_inode(memfd)))
3634 return -EINVAL;
3635
3636 if (is_file_hugepages(memfd)) {
3637 h = hstate_file(memfd);
3638 pgshift = huge_page_shift(h);
3639 }
3640
3641 flags = memalloc_pin_save();
3642 do {
3643 nr_folios = 0;
3644 start_idx = start >> pgshift;
3645 end_idx = end >> pgshift;
3646 if (is_file_hugepages(memfd)) {
3647 start_idx <<= huge_page_order(h);
3648 end_idx <<= huge_page_order(h);
3649 }
3650
3651 folio_batch_init(&fbatch);
3652 while (start_idx <= end_idx && nr_folios < max_folios) {
3653 /*
3654 * In most cases, we should be able to find the folios
3655 * in the page cache. If we cannot find them for some
3656 * reason, we try to allocate them and add them to the
3657 * page cache.
3658 */
3659 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3660 &start_idx,
3661 end_idx,
3662 &fbatch);
3663 if (folio) {
3664 folio_put(folio);
3665 folio = NULL;
3666 }
3667
3668 next_idx = 0;
3669 for (i = 0; i < nr_found; i++) {
3670 /*
3671 * As there can be multiple entries for a
3672 * given folio in the batch returned by
3673 * filemap_get_folios_contig(), the below
3674 * check is to ensure that we pin and return a
3675 * unique set of folios between start and end.
3676 */
3677 if (next_idx &&
3678 next_idx != folio_index(fbatch.folios[i]))
3679 continue;
3680
3681 folio = page_folio(&fbatch.folios[i]->page);
3682
3683 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3684 folio_batch_release(&fbatch);
3685 ret = -EINVAL;
3686 goto err;
3687 }
3688
3689 if (nr_folios == 0)
3690 *offset = offset_in_folio(folio, start);
3691
3692 folios[nr_folios] = folio;
3693 next_idx = folio_next_index(folio);
3694 if (++nr_folios == max_folios)
3695 break;
3696 }
3697
3698 folio = NULL;
3699 folio_batch_release(&fbatch);
3700 if (!nr_found) {
3701 folio = memfd_alloc_folio(memfd, start_idx);
3702 if (IS_ERR(folio)) {
3703 ret = PTR_ERR(folio);
3704 if (ret != -EEXIST)
3705 goto err;
3706 }
3707 }
3708 }
3709
3710 ret = check_and_migrate_movable_folios(nr_folios, folios);
3711 } while (ret == -EAGAIN);
3712
3713 memalloc_pin_restore(flags);
3714 return ret ? ret : nr_folios;
3715err:
3716 memalloc_pin_restore(flags);
3717 unpin_folios(folios, nr_folios);
3718
3719 return ret;
3720}
3721EXPORT_SYMBOL_GPL(memfd_pin_folios);
This page took 1.465911 seconds and 4 git commands to generate.