]>
Commit | Line | Data |
---|---|---|
35728b82 | 1 | // SPDX-License-Identifier: GPL-2.0 |
c0a31329 | 2 | /* |
3c8aa39d | 3 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 4 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 5 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
6 | * |
7 | * High-resolution kernel timers | |
8 | * | |
58c5fc2b TG |
9 | * In contrast to the low-resolution timeout API, aka timer wheel, |
10 | * hrtimers provide finer resolution and accuracy depending on system | |
11 | * configuration and capabilities. | |
c0a31329 TG |
12 | * |
13 | * Started by: Thomas Gleixner and Ingo Molnar | |
14 | * | |
15 | * Credits: | |
58c5fc2b | 16 | * Based on the original timer wheel code |
c0a31329 | 17 | * |
66188fae TG |
18 | * Help, testing, suggestions, bugfixes, improvements were |
19 | * provided by: | |
20 | * | |
21 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
22 | * et. al. | |
c0a31329 TG |
23 | */ |
24 | ||
25 | #include <linux/cpu.h> | |
9984de1a | 26 | #include <linux/export.h> |
c0a31329 TG |
27 | #include <linux/percpu.h> |
28 | #include <linux/hrtimer.h> | |
29 | #include <linux/notifier.h> | |
30 | #include <linux/syscalls.h> | |
31 | #include <linux/interrupt.h> | |
79bf2bb3 | 32 | #include <linux/tick.h> |
54cdfdb4 | 33 | #include <linux/err.h> |
237fc6e7 | 34 | #include <linux/debugobjects.h> |
174cd4b1 | 35 | #include <linux/sched/signal.h> |
cf4aebc2 | 36 | #include <linux/sched/sysctl.h> |
8bd75c77 | 37 | #include <linux/sched/rt.h> |
aab03e05 | 38 | #include <linux/sched/deadline.h> |
370c9135 | 39 | #include <linux/sched/nohz.h> |
b17b0153 | 40 | #include <linux/sched/debug.h> |
eea08f32 | 41 | #include <linux/timer.h> |
b0f8c44f | 42 | #include <linux/freezer.h> |
edbeda46 | 43 | #include <linux/compat.h> |
c0a31329 | 44 | |
7c0f6ba6 | 45 | #include <linux/uaccess.h> |
c0a31329 | 46 | |
c6a2a177 XG |
47 | #include <trace/events/timer.h> |
48 | ||
c1797baf | 49 | #include "tick-internal.h" |
8b094cd0 | 50 | |
c458b1d1 AMG |
51 | /* |
52 | * Masks for selecting the soft and hard context timers from | |
53 | * cpu_base->active | |
54 | */ | |
55 | #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) | |
56 | #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) | |
57 | #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) | |
58 | #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) | |
59 | ||
c0a31329 TG |
60 | /* |
61 | * The timer bases: | |
7978672c | 62 | * |
571af55a | 63 | * There are more clockids than hrtimer bases. Thus, we index |
e06383db JS |
64 | * into the timer bases by the hrtimer_base_type enum. When trying |
65 | * to reach a base using a clockid, hrtimer_clockid_to_base() | |
66 | * is used to convert from clockid to the proper hrtimer_base_type. | |
c0a31329 | 67 | */ |
54cdfdb4 | 68 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 69 | { |
84cc8fd2 | 70 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
3c8aa39d | 71 | .clock_base = |
c0a31329 | 72 | { |
3c8aa39d | 73 | { |
ab8177bc TG |
74 | .index = HRTIMER_BASE_MONOTONIC, |
75 | .clockid = CLOCK_MONOTONIC, | |
3c8aa39d | 76 | .get_time = &ktime_get, |
3c8aa39d | 77 | }, |
68fa61c0 TG |
78 | { |
79 | .index = HRTIMER_BASE_REALTIME, | |
80 | .clockid = CLOCK_REALTIME, | |
81 | .get_time = &ktime_get_real, | |
68fa61c0 | 82 | }, |
a3ed0e43 TG |
83 | { |
84 | .index = HRTIMER_BASE_BOOTTIME, | |
85 | .clockid = CLOCK_BOOTTIME, | |
86 | .get_time = &ktime_get_boottime, | |
87 | }, | |
90adda98 JS |
88 | { |
89 | .index = HRTIMER_BASE_TAI, | |
90 | .clockid = CLOCK_TAI, | |
91 | .get_time = &ktime_get_clocktai, | |
90adda98 | 92 | }, |
98ecadd4 AMG |
93 | { |
94 | .index = HRTIMER_BASE_MONOTONIC_SOFT, | |
95 | .clockid = CLOCK_MONOTONIC, | |
96 | .get_time = &ktime_get, | |
97 | }, | |
98 | { | |
99 | .index = HRTIMER_BASE_REALTIME_SOFT, | |
100 | .clockid = CLOCK_REALTIME, | |
101 | .get_time = &ktime_get_real, | |
102 | }, | |
a3ed0e43 TG |
103 | { |
104 | .index = HRTIMER_BASE_BOOTTIME_SOFT, | |
105 | .clockid = CLOCK_BOOTTIME, | |
106 | .get_time = &ktime_get_boottime, | |
107 | }, | |
98ecadd4 AMG |
108 | { |
109 | .index = HRTIMER_BASE_TAI_SOFT, | |
110 | .clockid = CLOCK_TAI, | |
111 | .get_time = &ktime_get_clocktai, | |
112 | }, | |
3c8aa39d | 113 | } |
c0a31329 TG |
114 | }; |
115 | ||
942c3c5c | 116 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
336a9cde MZ |
117 | /* Make sure we catch unsupported clockids */ |
118 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, | |
119 | ||
ce31332d TG |
120 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
121 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, | |
a3ed0e43 | 122 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
90adda98 | 123 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
ce31332d | 124 | }; |
e06383db | 125 | |
c0a31329 TG |
126 | /* |
127 | * Functions and macros which are different for UP/SMP systems are kept in a | |
128 | * single place | |
129 | */ | |
130 | #ifdef CONFIG_SMP | |
131 | ||
887d9dc9 PZ |
132 | /* |
133 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() | |
134 | * such that hrtimer_callback_running() can unconditionally dereference | |
135 | * timer->base->cpu_base | |
136 | */ | |
137 | static struct hrtimer_cpu_base migration_cpu_base = { | |
af5a06b5 AD |
138 | .clock_base = { { |
139 | .cpu_base = &migration_cpu_base, | |
140 | .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, | |
141 | &migration_cpu_base.lock), | |
142 | }, }, | |
887d9dc9 PZ |
143 | }; |
144 | ||
145 | #define migration_base migration_cpu_base.clock_base[0] | |
146 | ||
5d2295f3 SAS |
147 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
148 | { | |
149 | return base == &migration_base; | |
150 | } | |
151 | ||
c0a31329 TG |
152 | /* |
153 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
154 | * means that all timers which are tied to this base via timer->base are | |
155 | * locked, and the base itself is locked too. | |
156 | * | |
157 | * So __run_timers/migrate_timers can safely modify all timers which could | |
158 | * be found on the lists/queues. | |
159 | * | |
160 | * When the timer's base is locked, and the timer removed from list, it is | |
887d9dc9 PZ |
161 | * possible to set timer->base = &migration_base and drop the lock: the timer |
162 | * remains locked. | |
c0a31329 | 163 | */ |
3c8aa39d TG |
164 | static |
165 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
166 | unsigned long *flags) | |
c0a31329 | 167 | { |
3c8aa39d | 168 | struct hrtimer_clock_base *base; |
c0a31329 TG |
169 | |
170 | for (;;) { | |
ff229eee | 171 | base = READ_ONCE(timer->base); |
887d9dc9 | 172 | if (likely(base != &migration_base)) { |
ecb49d1a | 173 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
174 | if (likely(base == timer->base)) |
175 | return base; | |
176 | /* The timer has migrated to another CPU: */ | |
ecb49d1a | 177 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
178 | } |
179 | cpu_relax(); | |
180 | } | |
181 | } | |
182 | ||
6ff7041d | 183 | /* |
07a9a7ea AMG |
184 | * We do not migrate the timer when it is expiring before the next |
185 | * event on the target cpu. When high resolution is enabled, we cannot | |
186 | * reprogram the target cpu hardware and we would cause it to fire | |
187 | * late. To keep it simple, we handle the high resolution enabled and | |
188 | * disabled case similar. | |
6ff7041d TG |
189 | * |
190 | * Called with cpu_base->lock of target cpu held. | |
191 | */ | |
192 | static int | |
193 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | |
194 | { | |
6ff7041d TG |
195 | ktime_t expires; |
196 | ||
6ff7041d | 197 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
2ac2dccc | 198 | return expires < new_base->cpu_base->expires_next; |
6ff7041d TG |
199 | } |
200 | ||
bc7a34b8 TG |
201 | static inline |
202 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, | |
203 | int pinned) | |
204 | { | |
ae67bada TG |
205 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
206 | if (static_branch_likely(&timers_migration_enabled) && !pinned) | |
207 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); | |
208 | #endif | |
662b3e19 | 209 | return base; |
bc7a34b8 | 210 | } |
bc7a34b8 | 211 | |
c0a31329 | 212 | /* |
b48362d8 FW |
213 | * We switch the timer base to a power-optimized selected CPU target, |
214 | * if: | |
215 | * - NO_HZ_COMMON is enabled | |
216 | * - timer migration is enabled | |
217 | * - the timer callback is not running | |
218 | * - the timer is not the first expiring timer on the new target | |
219 | * | |
220 | * If one of the above requirements is not fulfilled we move the timer | |
221 | * to the current CPU or leave it on the previously assigned CPU if | |
222 | * the timer callback is currently running. | |
c0a31329 | 223 | */ |
3c8aa39d | 224 | static inline struct hrtimer_clock_base * |
597d0275 AB |
225 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
226 | int pinned) | |
c0a31329 | 227 | { |
b48362d8 | 228 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
3c8aa39d | 229 | struct hrtimer_clock_base *new_base; |
ab8177bc | 230 | int basenum = base->index; |
c0a31329 | 231 | |
b48362d8 FW |
232 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
233 | new_cpu_base = get_target_base(this_cpu_base, pinned); | |
eea08f32 | 234 | again: |
e06383db | 235 | new_base = &new_cpu_base->clock_base[basenum]; |
c0a31329 TG |
236 | |
237 | if (base != new_base) { | |
238 | /* | |
6ff7041d | 239 | * We are trying to move timer to new_base. |
c0a31329 TG |
240 | * However we can't change timer's base while it is running, |
241 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
242 | * the event source in the high resolution case. The softirq | |
243 | * code will take care of this when the timer function has | |
244 | * completed. There is no conflict as we hold the lock until | |
245 | * the timer is enqueued. | |
246 | */ | |
54cdfdb4 | 247 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
248 | return base; |
249 | ||
887d9dc9 | 250 | /* See the comment in lock_hrtimer_base() */ |
ff229eee | 251 | WRITE_ONCE(timer->base, &migration_base); |
ecb49d1a TG |
252 | raw_spin_unlock(&base->cpu_base->lock); |
253 | raw_spin_lock(&new_base->cpu_base->lock); | |
eea08f32 | 254 | |
b48362d8 | 255 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 256 | hrtimer_check_target(timer, new_base)) { |
ecb49d1a TG |
257 | raw_spin_unlock(&new_base->cpu_base->lock); |
258 | raw_spin_lock(&base->cpu_base->lock); | |
b48362d8 | 259 | new_cpu_base = this_cpu_base; |
ff229eee | 260 | WRITE_ONCE(timer->base, base); |
6ff7041d | 261 | goto again; |
eea08f32 | 262 | } |
ff229eee | 263 | WRITE_ONCE(timer->base, new_base); |
012a45e3 | 264 | } else { |
b48362d8 | 265 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 266 | hrtimer_check_target(timer, new_base)) { |
b48362d8 | 267 | new_cpu_base = this_cpu_base; |
012a45e3 LM |
268 | goto again; |
269 | } | |
c0a31329 TG |
270 | } |
271 | return new_base; | |
272 | } | |
273 | ||
274 | #else /* CONFIG_SMP */ | |
275 | ||
5d2295f3 SAS |
276 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
277 | { | |
278 | return false; | |
279 | } | |
280 | ||
3c8aa39d | 281 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
282 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
283 | { | |
3c8aa39d | 284 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 285 | |
ecb49d1a | 286 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
287 | |
288 | return base; | |
289 | } | |
290 | ||
eea08f32 | 291 | # define switch_hrtimer_base(t, b, p) (b) |
c0a31329 TG |
292 | |
293 | #endif /* !CONFIG_SMP */ | |
294 | ||
295 | /* | |
296 | * Functions for the union type storage format of ktime_t which are | |
297 | * too large for inlining: | |
298 | */ | |
299 | #if BITS_PER_LONG < 64 | |
c0a31329 TG |
300 | /* |
301 | * Divide a ktime value by a nanosecond value | |
302 | */ | |
f7bcb70e | 303 | s64 __ktime_divns(const ktime_t kt, s64 div) |
c0a31329 | 304 | { |
c0a31329 | 305 | int sft = 0; |
f7bcb70e JS |
306 | s64 dclc; |
307 | u64 tmp; | |
c0a31329 | 308 | |
900cfa46 | 309 | dclc = ktime_to_ns(kt); |
f7bcb70e JS |
310 | tmp = dclc < 0 ? -dclc : dclc; |
311 | ||
c0a31329 TG |
312 | /* Make sure the divisor is less than 2^32: */ |
313 | while (div >> 32) { | |
314 | sft++; | |
315 | div >>= 1; | |
316 | } | |
f7bcb70e | 317 | tmp >>= sft; |
38f7b0b1 | 318 | do_div(tmp, (u32) div); |
f7bcb70e | 319 | return dclc < 0 ? -tmp : tmp; |
c0a31329 | 320 | } |
8b618628 | 321 | EXPORT_SYMBOL_GPL(__ktime_divns); |
c0a31329 TG |
322 | #endif /* BITS_PER_LONG >= 64 */ |
323 | ||
5a7780e7 TG |
324 | /* |
325 | * Add two ktime values and do a safety check for overflow: | |
326 | */ | |
327 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
328 | { | |
979515c5 | 329 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
5a7780e7 TG |
330 | |
331 | /* | |
332 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
333 | * return to user space in a timespec: | |
334 | */ | |
2456e855 | 335 | if (res < 0 || res < lhs || res < rhs) |
5a7780e7 TG |
336 | res = ktime_set(KTIME_SEC_MAX, 0); |
337 | ||
338 | return res; | |
339 | } | |
340 | ||
8daa21e6 AB |
341 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
342 | ||
237fc6e7 TG |
343 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
344 | ||
f9e62f31 | 345 | static const struct debug_obj_descr hrtimer_debug_descr; |
237fc6e7 | 346 | |
99777288 SG |
347 | static void *hrtimer_debug_hint(void *addr) |
348 | { | |
349 | return ((struct hrtimer *) addr)->function; | |
350 | } | |
351 | ||
237fc6e7 TG |
352 | /* |
353 | * fixup_init is called when: | |
354 | * - an active object is initialized | |
355 | */ | |
e3252464 | 356 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
357 | { |
358 | struct hrtimer *timer = addr; | |
359 | ||
360 | switch (state) { | |
361 | case ODEBUG_STATE_ACTIVE: | |
362 | hrtimer_cancel(timer); | |
363 | debug_object_init(timer, &hrtimer_debug_descr); | |
e3252464 | 364 | return true; |
237fc6e7 | 365 | default: |
e3252464 | 366 | return false; |
237fc6e7 TG |
367 | } |
368 | } | |
369 | ||
370 | /* | |
371 | * fixup_activate is called when: | |
372 | * - an active object is activated | |
b9fdac7f | 373 | * - an unknown non-static object is activated |
237fc6e7 | 374 | */ |
e3252464 | 375 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
376 | { |
377 | switch (state) { | |
237fc6e7 TG |
378 | case ODEBUG_STATE_ACTIVE: |
379 | WARN_ON(1); | |
df561f66 | 380 | fallthrough; |
237fc6e7 | 381 | default: |
e3252464 | 382 | return false; |
237fc6e7 TG |
383 | } |
384 | } | |
385 | ||
386 | /* | |
387 | * fixup_free is called when: | |
388 | * - an active object is freed | |
389 | */ | |
e3252464 | 390 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
391 | { |
392 | struct hrtimer *timer = addr; | |
393 | ||
394 | switch (state) { | |
395 | case ODEBUG_STATE_ACTIVE: | |
396 | hrtimer_cancel(timer); | |
397 | debug_object_free(timer, &hrtimer_debug_descr); | |
e3252464 | 398 | return true; |
237fc6e7 | 399 | default: |
e3252464 | 400 | return false; |
237fc6e7 TG |
401 | } |
402 | } | |
403 | ||
f9e62f31 | 404 | static const struct debug_obj_descr hrtimer_debug_descr = { |
237fc6e7 | 405 | .name = "hrtimer", |
99777288 | 406 | .debug_hint = hrtimer_debug_hint, |
237fc6e7 TG |
407 | .fixup_init = hrtimer_fixup_init, |
408 | .fixup_activate = hrtimer_fixup_activate, | |
409 | .fixup_free = hrtimer_fixup_free, | |
410 | }; | |
411 | ||
412 | static inline void debug_hrtimer_init(struct hrtimer *timer) | |
413 | { | |
414 | debug_object_init(timer, &hrtimer_debug_descr); | |
415 | } | |
416 | ||
5da70160 AMG |
417 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
418 | enum hrtimer_mode mode) | |
237fc6e7 TG |
419 | { |
420 | debug_object_activate(timer, &hrtimer_debug_descr); | |
421 | } | |
422 | ||
423 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | |
424 | { | |
425 | debug_object_deactivate(timer, &hrtimer_debug_descr); | |
426 | } | |
427 | ||
237fc6e7 TG |
428 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
429 | enum hrtimer_mode mode); | |
430 | ||
431 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |
432 | enum hrtimer_mode mode) | |
433 | { | |
434 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | |
435 | __hrtimer_init(timer, clock_id, mode); | |
436 | } | |
2bc481cf | 437 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7 | 438 | |
dbc1625f SAS |
439 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
440 | clockid_t clock_id, enum hrtimer_mode mode); | |
441 | ||
442 | void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, | |
443 | clockid_t clock_id, enum hrtimer_mode mode) | |
444 | { | |
445 | debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); | |
446 | __hrtimer_init_sleeper(sl, clock_id, mode); | |
447 | } | |
448 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); | |
449 | ||
237fc6e7 TG |
450 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
451 | { | |
452 | debug_object_free(timer, &hrtimer_debug_descr); | |
453 | } | |
c08376ac | 454 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
237fc6e7 TG |
455 | |
456 | #else | |
5da70160 | 457 | |
237fc6e7 | 458 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
5da70160 AMG |
459 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
460 | enum hrtimer_mode mode) { } | |
237fc6e7 TG |
461 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
462 | #endif | |
463 | ||
c6a2a177 XG |
464 | static inline void |
465 | debug_init(struct hrtimer *timer, clockid_t clockid, | |
466 | enum hrtimer_mode mode) | |
467 | { | |
468 | debug_hrtimer_init(timer); | |
469 | trace_hrtimer_init(timer, clockid, mode); | |
470 | } | |
471 | ||
63e2ed36 AMG |
472 | static inline void debug_activate(struct hrtimer *timer, |
473 | enum hrtimer_mode mode) | |
c6a2a177 | 474 | { |
5da70160 | 475 | debug_hrtimer_activate(timer, mode); |
63e2ed36 | 476 | trace_hrtimer_start(timer, mode); |
c6a2a177 XG |
477 | } |
478 | ||
479 | static inline void debug_deactivate(struct hrtimer *timer) | |
480 | { | |
481 | debug_hrtimer_deactivate(timer); | |
482 | trace_hrtimer_cancel(timer); | |
483 | } | |
484 | ||
c272ca58 AMG |
485 | static struct hrtimer_clock_base * |
486 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) | |
487 | { | |
488 | unsigned int idx; | |
489 | ||
490 | if (!*active) | |
491 | return NULL; | |
492 | ||
493 | idx = __ffs(*active); | |
494 | *active &= ~(1U << idx); | |
495 | ||
496 | return &cpu_base->clock_base[idx]; | |
497 | } | |
498 | ||
499 | #define for_each_active_base(base, cpu_base, active) \ | |
500 | while ((base = __next_base((cpu_base), &(active)))) | |
501 | ||
ad38f596 | 502 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
a59855cd | 503 | const struct hrtimer *exclude, |
ad38f596 AMG |
504 | unsigned int active, |
505 | ktime_t expires_next) | |
9bc74919 | 506 | { |
c272ca58 | 507 | struct hrtimer_clock_base *base; |
ad38f596 | 508 | ktime_t expires; |
9bc74919 | 509 | |
c272ca58 | 510 | for_each_active_base(base, cpu_base, active) { |
9bc74919 TG |
511 | struct timerqueue_node *next; |
512 | struct hrtimer *timer; | |
513 | ||
34aee88a | 514 | next = timerqueue_getnext(&base->active); |
9bc74919 | 515 | timer = container_of(next, struct hrtimer, node); |
a59855cd RW |
516 | if (timer == exclude) { |
517 | /* Get to the next timer in the queue. */ | |
7d2f6abb | 518 | next = timerqueue_iterate_next(next); |
a59855cd RW |
519 | if (!next) |
520 | continue; | |
521 | ||
522 | timer = container_of(next, struct hrtimer, node); | |
523 | } | |
9bc74919 | 524 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
2456e855 | 525 | if (expires < expires_next) { |
9bc74919 | 526 | expires_next = expires; |
a59855cd RW |
527 | |
528 | /* Skip cpu_base update if a timer is being excluded. */ | |
529 | if (exclude) | |
530 | continue; | |
531 | ||
5da70160 AMG |
532 | if (timer->is_soft) |
533 | cpu_base->softirq_next_timer = timer; | |
534 | else | |
535 | cpu_base->next_timer = timer; | |
895bdfa7 | 536 | } |
9bc74919 TG |
537 | } |
538 | /* | |
539 | * clock_was_set() might have changed base->offset of any of | |
540 | * the clock bases so the result might be negative. Fix it up | |
541 | * to prevent a false positive in clockevents_program_event(). | |
542 | */ | |
2456e855 TG |
543 | if (expires_next < 0) |
544 | expires_next = 0; | |
9bc74919 TG |
545 | return expires_next; |
546 | } | |
9bc74919 | 547 | |
c458b1d1 AMG |
548 | /* |
549 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next but | |
550 | * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. | |
551 | * | |
5da70160 AMG |
552 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
553 | * those timers will get run whenever the softirq gets handled, at the end of | |
554 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. | |
555 | * | |
556 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. | |
557 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual | |
558 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. | |
559 | * | |
c458b1d1 | 560 | * @active_mask must be one of: |
5da70160 | 561 | * - HRTIMER_ACTIVE_ALL, |
c458b1d1 AMG |
562 | * - HRTIMER_ACTIVE_SOFT, or |
563 | * - HRTIMER_ACTIVE_HARD. | |
564 | */ | |
5da70160 AMG |
565 | static ktime_t |
566 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) | |
ad38f596 | 567 | { |
c458b1d1 | 568 | unsigned int active; |
5da70160 | 569 | struct hrtimer *next_timer = NULL; |
ad38f596 AMG |
570 | ktime_t expires_next = KTIME_MAX; |
571 | ||
5da70160 AMG |
572 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
573 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | |
574 | cpu_base->softirq_next_timer = NULL; | |
a59855cd RW |
575 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
576 | active, KTIME_MAX); | |
5da70160 AMG |
577 | |
578 | next_timer = cpu_base->softirq_next_timer; | |
579 | } | |
ad38f596 | 580 | |
5da70160 AMG |
581 | if (active_mask & HRTIMER_ACTIVE_HARD) { |
582 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | |
583 | cpu_base->next_timer = next_timer; | |
a59855cd RW |
584 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
585 | expires_next); | |
5da70160 | 586 | } |
ad38f596 AMG |
587 | |
588 | return expires_next; | |
589 | } | |
590 | ||
21d6d52a TG |
591 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
592 | { | |
593 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; | |
a3ed0e43 | 594 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
21d6d52a TG |
595 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
596 | ||
5da70160 | 597 | ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, |
a3ed0e43 | 598 | offs_real, offs_boot, offs_tai); |
5da70160 AMG |
599 | |
600 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; | |
a3ed0e43 | 601 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
5da70160 AMG |
602 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
603 | ||
604 | return now; | |
21d6d52a TG |
605 | } |
606 | ||
28bfd18b AMG |
607 | /* |
608 | * Is the high resolution mode active ? | |
609 | */ | |
610 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) | |
611 | { | |
612 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? | |
613 | cpu_base->hres_active : 0; | |
614 | } | |
615 | ||
616 | static inline int hrtimer_hres_active(void) | |
617 | { | |
618 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); | |
619 | } | |
620 | ||
54cdfdb4 TG |
621 | /* |
622 | * Reprogram the event source with checking both queues for the | |
623 | * next event | |
624 | * Called with interrupts disabled and base->lock held | |
625 | */ | |
7403f41f AC |
626 | static void |
627 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | |
54cdfdb4 | 628 | { |
21d6d52a TG |
629 | ktime_t expires_next; |
630 | ||
5da70160 AMG |
631 | /* |
632 | * Find the current next expiration time. | |
633 | */ | |
634 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); | |
635 | ||
636 | if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { | |
637 | /* | |
638 | * When the softirq is activated, hrtimer has to be | |
639 | * programmed with the first hard hrtimer because soft | |
640 | * timer interrupt could occur too late. | |
641 | */ | |
642 | if (cpu_base->softirq_activated) | |
643 | expires_next = __hrtimer_get_next_event(cpu_base, | |
644 | HRTIMER_ACTIVE_HARD); | |
645 | else | |
646 | cpu_base->softirq_expires_next = expires_next; | |
647 | } | |
54cdfdb4 | 648 | |
2456e855 | 649 | if (skip_equal && expires_next == cpu_base->expires_next) |
7403f41f AC |
650 | return; |
651 | ||
2456e855 | 652 | cpu_base->expires_next = expires_next; |
7403f41f | 653 | |
6c6c0d5a | 654 | /* |
61bb4bcb AMG |
655 | * If hres is not active, hardware does not have to be |
656 | * reprogrammed yet. | |
657 | * | |
6c6c0d5a SH |
658 | * If a hang was detected in the last timer interrupt then we |
659 | * leave the hang delay active in the hardware. We want the | |
660 | * system to make progress. That also prevents the following | |
661 | * scenario: | |
662 | * T1 expires 50ms from now | |
663 | * T2 expires 5s from now | |
664 | * | |
665 | * T1 is removed, so this code is called and would reprogram | |
666 | * the hardware to 5s from now. Any hrtimer_start after that | |
667 | * will not reprogram the hardware due to hang_detected being | |
668 | * set. So we'd effectivly block all timers until the T2 event | |
669 | * fires. | |
670 | */ | |
61bb4bcb | 671 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
6c6c0d5a SH |
672 | return; |
673 | ||
d2540875 | 674 | tick_program_event(cpu_base->expires_next, 1); |
54cdfdb4 TG |
675 | } |
676 | ||
ebba2c72 AMG |
677 | /* High resolution timer related functions */ |
678 | #ifdef CONFIG_HIGH_RES_TIMERS | |
679 | ||
680 | /* | |
681 | * High resolution timer enabled ? | |
682 | */ | |
683 | static bool hrtimer_hres_enabled __read_mostly = true; | |
684 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; | |
685 | EXPORT_SYMBOL_GPL(hrtimer_resolution); | |
686 | ||
687 | /* | |
688 | * Enable / Disable high resolution mode | |
689 | */ | |
690 | static int __init setup_hrtimer_hres(char *str) | |
691 | { | |
692 | return (kstrtobool(str, &hrtimer_hres_enabled) == 0); | |
693 | } | |
694 | ||
695 | __setup("highres=", setup_hrtimer_hres); | |
696 | ||
697 | /* | |
698 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
699 | */ | |
700 | static inline int hrtimer_is_hres_enabled(void) | |
701 | { | |
702 | return hrtimer_hres_enabled; | |
703 | } | |
704 | ||
9ec26907 TG |
705 | /* |
706 | * Retrigger next event is called after clock was set | |
707 | * | |
708 | * Called with interrupts disabled via on_each_cpu() | |
709 | */ | |
710 | static void retrigger_next_event(void *arg) | |
711 | { | |
dc5df73b | 712 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
9ec26907 | 713 | |
851cff8c | 714 | if (!__hrtimer_hres_active(base)) |
9ec26907 TG |
715 | return; |
716 | ||
9ec26907 | 717 | raw_spin_lock(&base->lock); |
5baefd6d | 718 | hrtimer_update_base(base); |
9ec26907 TG |
719 | hrtimer_force_reprogram(base, 0); |
720 | raw_spin_unlock(&base->lock); | |
721 | } | |
b12a03ce | 722 | |
54cdfdb4 TG |
723 | /* |
724 | * Switch to high resolution mode | |
725 | */ | |
75e3b37d | 726 | static void hrtimer_switch_to_hres(void) |
54cdfdb4 | 727 | { |
c6eb3f70 | 728 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
54cdfdb4 TG |
729 | |
730 | if (tick_init_highres()) { | |
7a6e5537 GU |
731 | pr_warn("Could not switch to high resolution mode on CPU %u\n", |
732 | base->cpu); | |
85e1cd6e | 733 | return; |
54cdfdb4 TG |
734 | } |
735 | base->hres_active = 1; | |
398ca17f | 736 | hrtimer_resolution = HIGH_RES_NSEC; |
54cdfdb4 TG |
737 | |
738 | tick_setup_sched_timer(); | |
54cdfdb4 TG |
739 | /* "Retrigger" the interrupt to get things going */ |
740 | retrigger_next_event(NULL); | |
54cdfdb4 TG |
741 | } |
742 | ||
5ec2481b TG |
743 | static void clock_was_set_work(struct work_struct *work) |
744 | { | |
745 | clock_was_set(); | |
746 | } | |
747 | ||
748 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); | |
749 | ||
f55a6faa | 750 | /* |
b4d90e9f | 751 | * Called from timekeeping and resume code to reprogram the hrtimer |
5ec2481b | 752 | * interrupt device on all cpus. |
f55a6faa JS |
753 | */ |
754 | void clock_was_set_delayed(void) | |
755 | { | |
5ec2481b | 756 | schedule_work(&hrtimer_work); |
f55a6faa JS |
757 | } |
758 | ||
54cdfdb4 TG |
759 | #else |
760 | ||
54cdfdb4 | 761 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
75e3b37d | 762 | static inline void hrtimer_switch_to_hres(void) { } |
9ec26907 | 763 | static inline void retrigger_next_event(void *arg) { } |
54cdfdb4 TG |
764 | |
765 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
766 | ||
11a9fe06 AMG |
767 | /* |
768 | * When a timer is enqueued and expires earlier than the already enqueued | |
769 | * timers, we have to check, whether it expires earlier than the timer for | |
770 | * which the clock event device was armed. | |
771 | * | |
772 | * Called with interrupts disabled and base->cpu_base.lock held | |
773 | */ | |
5da70160 | 774 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
11a9fe06 AMG |
775 | { |
776 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
3ec7a3ee | 777 | struct hrtimer_clock_base *base = timer->base; |
11a9fe06 AMG |
778 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
779 | ||
780 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | |
781 | ||
5da70160 AMG |
782 | /* |
783 | * CLOCK_REALTIME timer might be requested with an absolute | |
784 | * expiry time which is less than base->offset. Set it to 0. | |
785 | */ | |
786 | if (expires < 0) | |
787 | expires = 0; | |
788 | ||
789 | if (timer->is_soft) { | |
790 | /* | |
791 | * soft hrtimer could be started on a remote CPU. In this | |
792 | * case softirq_expires_next needs to be updated on the | |
793 | * remote CPU. The soft hrtimer will not expire before the | |
794 | * first hard hrtimer on the remote CPU - | |
795 | * hrtimer_check_target() prevents this case. | |
796 | */ | |
797 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; | |
798 | ||
799 | if (timer_cpu_base->softirq_activated) | |
800 | return; | |
801 | ||
802 | if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) | |
803 | return; | |
804 | ||
805 | timer_cpu_base->softirq_next_timer = timer; | |
806 | timer_cpu_base->softirq_expires_next = expires; | |
807 | ||
808 | if (!ktime_before(expires, timer_cpu_base->expires_next) || | |
809 | !reprogram) | |
810 | return; | |
811 | } | |
812 | ||
11a9fe06 AMG |
813 | /* |
814 | * If the timer is not on the current cpu, we cannot reprogram | |
815 | * the other cpus clock event device. | |
816 | */ | |
817 | if (base->cpu_base != cpu_base) | |
818 | return; | |
819 | ||
820 | /* | |
821 | * If the hrtimer interrupt is running, then it will | |
822 | * reevaluate the clock bases and reprogram the clock event | |
823 | * device. The callbacks are always executed in hard interrupt | |
824 | * context so we don't need an extra check for a running | |
825 | * callback. | |
826 | */ | |
827 | if (cpu_base->in_hrtirq) | |
828 | return; | |
829 | ||
11a9fe06 AMG |
830 | if (expires >= cpu_base->expires_next) |
831 | return; | |
832 | ||
833 | /* Update the pointer to the next expiring timer */ | |
834 | cpu_base->next_timer = timer; | |
14c80341 | 835 | cpu_base->expires_next = expires; |
11a9fe06 AMG |
836 | |
837 | /* | |
14c80341 AMG |
838 | * If hres is not active, hardware does not have to be |
839 | * programmed yet. | |
840 | * | |
11a9fe06 AMG |
841 | * If a hang was detected in the last timer interrupt then we |
842 | * do not schedule a timer which is earlier than the expiry | |
843 | * which we enforced in the hang detection. We want the system | |
844 | * to make progress. | |
845 | */ | |
14c80341 | 846 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
11a9fe06 AMG |
847 | return; |
848 | ||
849 | /* | |
850 | * Program the timer hardware. We enforce the expiry for | |
851 | * events which are already in the past. | |
852 | */ | |
11a9fe06 AMG |
853 | tick_program_event(expires, 1); |
854 | } | |
855 | ||
b12a03ce TG |
856 | /* |
857 | * Clock realtime was set | |
858 | * | |
859 | * Change the offset of the realtime clock vs. the monotonic | |
860 | * clock. | |
861 | * | |
862 | * We might have to reprogram the high resolution timer interrupt. On | |
863 | * SMP we call the architecture specific code to retrigger _all_ high | |
864 | * resolution timer interrupts. On UP we just disable interrupts and | |
865 | * call the high resolution interrupt code. | |
866 | */ | |
867 | void clock_was_set(void) | |
868 | { | |
90ff1f30 | 869 | #ifdef CONFIG_HIGH_RES_TIMERS |
b12a03ce TG |
870 | /* Retrigger the CPU local events everywhere */ |
871 | on_each_cpu(retrigger_next_event, NULL, 1); | |
9ec26907 TG |
872 | #endif |
873 | timerfd_clock_was_set(); | |
b12a03ce TG |
874 | } |
875 | ||
876 | /* | |
877 | * During resume we might have to reprogram the high resolution timer | |
7c4c3a0f DV |
878 | * interrupt on all online CPUs. However, all other CPUs will be |
879 | * stopped with IRQs interrupts disabled so the clock_was_set() call | |
5ec2481b | 880 | * must be deferred. |
b12a03ce TG |
881 | */ |
882 | void hrtimers_resume(void) | |
883 | { | |
53bef3fd | 884 | lockdep_assert_irqs_disabled(); |
5ec2481b | 885 | /* Retrigger on the local CPU */ |
b12a03ce | 886 | retrigger_next_event(NULL); |
5ec2481b TG |
887 | /* And schedule a retrigger for all others */ |
888 | clock_was_set_delayed(); | |
b12a03ce TG |
889 | } |
890 | ||
c0a31329 | 891 | /* |
6506f2aa | 892 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
893 | */ |
894 | static inline | |
895 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
896 | { | |
ecb49d1a | 897 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
898 | } |
899 | ||
900 | /** | |
901 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 902 | * @timer: hrtimer to forward |
44f21475 | 903 | * @now: forward past this time |
c0a31329 TG |
904 | * @interval: the interval to forward |
905 | * | |
906 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 907 | * Returns the number of overruns. |
91e5a217 TG |
908 | * |
909 | * Can be safely called from the callback function of @timer. If | |
910 | * called from other contexts @timer must neither be enqueued nor | |
911 | * running the callback and the caller needs to take care of | |
912 | * serialization. | |
913 | * | |
914 | * Note: This only updates the timer expiry value and does not requeue | |
915 | * the timer. | |
c0a31329 | 916 | */ |
4d672e7a | 917 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 918 | { |
4d672e7a | 919 | u64 orun = 1; |
44f21475 | 920 | ktime_t delta; |
c0a31329 | 921 | |
cc584b21 | 922 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a31329 | 923 | |
2456e855 | 924 | if (delta < 0) |
c0a31329 TG |
925 | return 0; |
926 | ||
5de2755c PZ |
927 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
928 | return 0; | |
929 | ||
2456e855 TG |
930 | if (interval < hrtimer_resolution) |
931 | interval = hrtimer_resolution; | |
c9db4fa1 | 932 | |
2456e855 | 933 | if (unlikely(delta >= interval)) { |
df869b63 | 934 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
935 | |
936 | orun = ktime_divns(delta, incr); | |
cc584b21 | 937 | hrtimer_add_expires_ns(timer, incr * orun); |
2456e855 | 938 | if (hrtimer_get_expires_tv64(timer) > now) |
c0a31329 TG |
939 | return orun; |
940 | /* | |
941 | * This (and the ktime_add() below) is the | |
942 | * correction for exact: | |
943 | */ | |
944 | orun++; | |
945 | } | |
cc584b21 | 946 | hrtimer_add_expires(timer, interval); |
c0a31329 TG |
947 | |
948 | return orun; | |
949 | } | |
6bdb6b62 | 950 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
951 | |
952 | /* | |
953 | * enqueue_hrtimer - internal function to (re)start a timer | |
954 | * | |
955 | * The timer is inserted in expiry order. Insertion into the | |
956 | * red black tree is O(log(n)). Must hold the base lock. | |
a6037b61 PZ |
957 | * |
958 | * Returns 1 when the new timer is the leftmost timer in the tree. | |
c0a31329 | 959 | */ |
a6037b61 | 960 | static int enqueue_hrtimer(struct hrtimer *timer, |
63e2ed36 AMG |
961 | struct hrtimer_clock_base *base, |
962 | enum hrtimer_mode mode) | |
c0a31329 | 963 | { |
63e2ed36 | 964 | debug_activate(timer, mode); |
237fc6e7 | 965 | |
ab8177bc | 966 | base->cpu_base->active_bases |= 1 << base->index; |
54cdfdb4 | 967 | |
56144737 ED |
968 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
969 | WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); | |
a6037b61 | 970 | |
b97f44c9 | 971 | return timerqueue_add(&base->active, &timer->node); |
288867ec | 972 | } |
c0a31329 TG |
973 | |
974 | /* | |
975 | * __remove_hrtimer - internal function to remove a timer | |
976 | * | |
977 | * Caller must hold the base lock. | |
54cdfdb4 TG |
978 | * |
979 | * High resolution timer mode reprograms the clock event device when the | |
980 | * timer is the one which expires next. The caller can disable this by setting | |
981 | * reprogram to zero. This is useful, when the context does a reprogramming | |
982 | * anyway (e.g. timer interrupt) | |
c0a31329 | 983 | */ |
3c8aa39d | 984 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 985 | struct hrtimer_clock_base *base, |
203cbf77 | 986 | u8 newstate, int reprogram) |
c0a31329 | 987 | { |
e19ffe8b | 988 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
203cbf77 | 989 | u8 state = timer->state; |
e19ffe8b | 990 | |
56144737 ED |
991 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
992 | WRITE_ONCE(timer->state, newstate); | |
895bdfa7 TG |
993 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
994 | return; | |
7403f41f | 995 | |
b97f44c9 | 996 | if (!timerqueue_del(&base->active, &timer->node)) |
e19ffe8b | 997 | cpu_base->active_bases &= ~(1 << base->index); |
7403f41f | 998 | |
895bdfa7 TG |
999 | /* |
1000 | * Note: If reprogram is false we do not update | |
1001 | * cpu_base->next_timer. This happens when we remove the first | |
1002 | * timer on a remote cpu. No harm as we never dereference | |
1003 | * cpu_base->next_timer. So the worst thing what can happen is | |
1004 | * an superflous call to hrtimer_force_reprogram() on the | |
1005 | * remote cpu later on if the same timer gets enqueued again. | |
1006 | */ | |
1007 | if (reprogram && timer == cpu_base->next_timer) | |
1008 | hrtimer_force_reprogram(cpu_base, 1); | |
c0a31329 TG |
1009 | } |
1010 | ||
1011 | /* | |
1012 | * remove hrtimer, called with base lock held | |
1013 | */ | |
1014 | static inline int | |
8edfb036 | 1015 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
c0a31329 | 1016 | { |
56144737 ED |
1017 | u8 state = timer->state; |
1018 | ||
1019 | if (state & HRTIMER_STATE_ENQUEUED) { | |
54cdfdb4 TG |
1020 | int reprogram; |
1021 | ||
1022 | /* | |
1023 | * Remove the timer and force reprogramming when high | |
1024 | * resolution mode is active and the timer is on the current | |
1025 | * CPU. If we remove a timer on another CPU, reprogramming is | |
1026 | * skipped. The interrupt event on this CPU is fired and | |
1027 | * reprogramming happens in the interrupt handler. This is a | |
1028 | * rare case and less expensive than a smp call. | |
1029 | */ | |
c6a2a177 | 1030 | debug_deactivate(timer); |
dc5df73b | 1031 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
8edfb036 | 1032 | |
887d9dc9 PZ |
1033 | if (!restart) |
1034 | state = HRTIMER_STATE_INACTIVE; | |
1035 | ||
f13d4f97 | 1036 | __remove_hrtimer(timer, base, state, reprogram); |
c0a31329 TG |
1037 | return 1; |
1038 | } | |
1039 | return 0; | |
1040 | } | |
1041 | ||
203cbf77 TG |
1042 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
1043 | const enum hrtimer_mode mode) | |
1044 | { | |
1045 | #ifdef CONFIG_TIME_LOW_RES | |
1046 | /* | |
1047 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return | |
1048 | * granular time values. For relative timers we add hrtimer_resolution | |
1049 | * (i.e. one jiffie) to prevent short timeouts. | |
1050 | */ | |
1051 | timer->is_rel = mode & HRTIMER_MODE_REL; | |
1052 | if (timer->is_rel) | |
8b0e1953 | 1053 | tim = ktime_add_safe(tim, hrtimer_resolution); |
203cbf77 TG |
1054 | #endif |
1055 | return tim; | |
1056 | } | |
1057 | ||
5da70160 AMG |
1058 | static void |
1059 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) | |
1060 | { | |
1061 | ktime_t expires; | |
1062 | ||
1063 | /* | |
1064 | * Find the next SOFT expiration. | |
1065 | */ | |
1066 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); | |
1067 | ||
1068 | /* | |
1069 | * reprogramming needs to be triggered, even if the next soft | |
1070 | * hrtimer expires at the same time than the next hard | |
1071 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! | |
1072 | */ | |
1073 | if (expires == KTIME_MAX) | |
1074 | return; | |
1075 | ||
1076 | /* | |
1077 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() | |
1078 | * cpu_base->*expires_next is only set by hrtimer_reprogram() | |
1079 | */ | |
1080 | hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); | |
1081 | } | |
1082 | ||
138a6b7a AMG |
1083 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1084 | u64 delta_ns, const enum hrtimer_mode mode, | |
1085 | struct hrtimer_clock_base *base) | |
c0a31329 | 1086 | { |
138a6b7a | 1087 | struct hrtimer_clock_base *new_base; |
c0a31329 TG |
1088 | |
1089 | /* Remove an active timer from the queue: */ | |
8edfb036 | 1090 | remove_hrtimer(timer, base, true); |
c0a31329 | 1091 | |
203cbf77 | 1092 | if (mode & HRTIMER_MODE_REL) |
84ea7fe3 | 1093 | tim = ktime_add_safe(tim, base->get_time()); |
203cbf77 TG |
1094 | |
1095 | tim = hrtimer_update_lowres(timer, tim, mode); | |
237fc6e7 | 1096 | |
da8f2e17 | 1097 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a31329 | 1098 | |
84ea7fe3 VK |
1099 | /* Switch the timer base, if necessary: */ |
1100 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); | |
1101 | ||
138a6b7a AMG |
1102 | return enqueue_hrtimer(timer, new_base, mode); |
1103 | } | |
5da70160 | 1104 | |
138a6b7a AMG |
1105 | /** |
1106 | * hrtimer_start_range_ns - (re)start an hrtimer | |
1107 | * @timer: the timer to be added | |
1108 | * @tim: expiry time | |
1109 | * @delta_ns: "slack" range for the timer | |
1110 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or | |
5da70160 AMG |
1111 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
1112 | * softirq based mode is considered for debug purpose only! | |
138a6b7a AMG |
1113 | */ |
1114 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | |
1115 | u64 delta_ns, const enum hrtimer_mode mode) | |
1116 | { | |
1117 | struct hrtimer_clock_base *base; | |
1118 | unsigned long flags; | |
1119 | ||
5da70160 AMG |
1120 | /* |
1121 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft | |
0ab6a3dd TG |
1122 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
1123 | * expiry mode because unmarked timers are moved to softirq expiry. | |
5da70160 | 1124 | */ |
0ab6a3dd TG |
1125 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
1126 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); | |
1127 | else | |
1128 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); | |
5da70160 | 1129 | |
138a6b7a AMG |
1130 | base = lock_hrtimer_base(timer, &flags); |
1131 | ||
1132 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) | |
5da70160 | 1133 | hrtimer_reprogram(timer, true); |
49a2a075 | 1134 | |
c0a31329 | 1135 | unlock_hrtimer_base(timer, &flags); |
7f1e2ca9 | 1136 | } |
da8f2e17 AV |
1137 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1138 | ||
c0a31329 TG |
1139 | /** |
1140 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
1141 | * @timer: hrtimer to stop |
1142 | * | |
1143 | * Returns: | |
51633704 MCC |
1144 | * |
1145 | * * 0 when the timer was not active | |
1146 | * * 1 when the timer was active | |
1147 | * * -1 when the timer is currently executing the callback function and | |
fa9799e3 | 1148 | * cannot be stopped |
c0a31329 TG |
1149 | */ |
1150 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
1151 | { | |
3c8aa39d | 1152 | struct hrtimer_clock_base *base; |
c0a31329 TG |
1153 | unsigned long flags; |
1154 | int ret = -1; | |
1155 | ||
19d9f422 TG |
1156 | /* |
1157 | * Check lockless first. If the timer is not active (neither | |
1158 | * enqueued nor running the callback, nothing to do here. The | |
1159 | * base lock does not serialize against a concurrent enqueue, | |
1160 | * so we can avoid taking it. | |
1161 | */ | |
1162 | if (!hrtimer_active(timer)) | |
1163 | return 0; | |
1164 | ||
c0a31329 TG |
1165 | base = lock_hrtimer_base(timer, &flags); |
1166 | ||
303e967f | 1167 | if (!hrtimer_callback_running(timer)) |
8edfb036 | 1168 | ret = remove_hrtimer(timer, base, false); |
c0a31329 TG |
1169 | |
1170 | unlock_hrtimer_base(timer, &flags); | |
1171 | ||
1172 | return ret; | |
1173 | ||
1174 | } | |
8d16b764 | 1175 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 | 1176 | |
f61eff83 AMG |
1177 | #ifdef CONFIG_PREEMPT_RT |
1178 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) | |
1179 | { | |
1180 | spin_lock_init(&base->softirq_expiry_lock); | |
1181 | } | |
1182 | ||
1183 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) | |
1184 | { | |
1185 | spin_lock(&base->softirq_expiry_lock); | |
1186 | } | |
1187 | ||
1188 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) | |
1189 | { | |
1190 | spin_unlock(&base->softirq_expiry_lock); | |
1191 | } | |
1192 | ||
1193 | /* | |
1194 | * The counterpart to hrtimer_cancel_wait_running(). | |
1195 | * | |
1196 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for | |
1197 | * the timer callback to finish. Drop expiry_lock and reaquire it. That | |
1198 | * allows the waiter to acquire the lock and make progress. | |
1199 | */ | |
1200 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, | |
1201 | unsigned long flags) | |
1202 | { | |
1203 | if (atomic_read(&cpu_base->timer_waiters)) { | |
1204 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
1205 | spin_unlock(&cpu_base->softirq_expiry_lock); | |
1206 | spin_lock(&cpu_base->softirq_expiry_lock); | |
1207 | raw_spin_lock_irq(&cpu_base->lock); | |
1208 | } | |
1209 | } | |
1210 | ||
1211 | /* | |
1212 | * This function is called on PREEMPT_RT kernels when the fast path | |
1213 | * deletion of a timer failed because the timer callback function was | |
1214 | * running. | |
1215 | * | |
0bee3b60 FW |
1216 | * This prevents priority inversion: if the soft irq thread is preempted |
1217 | * in the middle of a timer callback, then calling del_timer_sync() can | |
1218 | * lead to two issues: | |
1219 | * | |
1220 | * - If the caller is on a remote CPU then it has to spin wait for the timer | |
1221 | * handler to complete. This can result in unbound priority inversion. | |
1222 | * | |
1223 | * - If the caller originates from the task which preempted the timer | |
1224 | * handler on the same CPU, then spin waiting for the timer handler to | |
1225 | * complete is never going to end. | |
f61eff83 AMG |
1226 | */ |
1227 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) | |
1228 | { | |
dd2261ed JG |
1229 | /* Lockless read. Prevent the compiler from reloading it below */ |
1230 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); | |
f61eff83 | 1231 | |
68b2c8c1 JG |
1232 | /* |
1233 | * Just relax if the timer expires in hard interrupt context or if | |
1234 | * it is currently on the migration base. | |
1235 | */ | |
5d2295f3 | 1236 | if (!timer->is_soft || is_migration_base(base)) { |
f61eff83 AMG |
1237 | cpu_relax(); |
1238 | return; | |
1239 | } | |
1240 | ||
1241 | /* | |
1242 | * Mark the base as contended and grab the expiry lock, which is | |
1243 | * held by the softirq across the timer callback. Drop the lock | |
1244 | * immediately so the softirq can expire the next timer. In theory | |
1245 | * the timer could already be running again, but that's more than | |
1246 | * unlikely and just causes another wait loop. | |
1247 | */ | |
1248 | atomic_inc(&base->cpu_base->timer_waiters); | |
1249 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); | |
1250 | atomic_dec(&base->cpu_base->timer_waiters); | |
1251 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); | |
1252 | } | |
1253 | #else | |
1254 | static inline void | |
1255 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } | |
1256 | static inline void | |
1257 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } | |
1258 | static inline void | |
1259 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } | |
1260 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, | |
1261 | unsigned long flags) { } | |
1262 | #endif | |
1263 | ||
c0a31329 TG |
1264 | /** |
1265 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
1266 | * @timer: the timer to be cancelled |
1267 | * | |
1268 | * Returns: | |
1269 | * 0 when the timer was not active | |
1270 | * 1 when the timer was active | |
1271 | */ | |
1272 | int hrtimer_cancel(struct hrtimer *timer) | |
1273 | { | |
f61eff83 | 1274 | int ret; |
c0a31329 | 1275 | |
f61eff83 AMG |
1276 | do { |
1277 | ret = hrtimer_try_to_cancel(timer); | |
1278 | ||
1279 | if (ret < 0) | |
1280 | hrtimer_cancel_wait_running(timer); | |
1281 | } while (ret < 0); | |
1282 | return ret; | |
c0a31329 | 1283 | } |
8d16b764 | 1284 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
1285 | |
1286 | /** | |
66981c37 | 1287 | * __hrtimer_get_remaining - get remaining time for the timer |
c0a31329 | 1288 | * @timer: the timer to read |
203cbf77 | 1289 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
c0a31329 | 1290 | */ |
203cbf77 | 1291 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
c0a31329 | 1292 | { |
c0a31329 TG |
1293 | unsigned long flags; |
1294 | ktime_t rem; | |
1295 | ||
b3bd3de6 | 1296 | lock_hrtimer_base(timer, &flags); |
203cbf77 TG |
1297 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
1298 | rem = hrtimer_expires_remaining_adjusted(timer); | |
1299 | else | |
1300 | rem = hrtimer_expires_remaining(timer); | |
c0a31329 TG |
1301 | unlock_hrtimer_base(timer, &flags); |
1302 | ||
1303 | return rem; | |
1304 | } | |
203cbf77 | 1305 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
c0a31329 | 1306 | |
3451d024 | 1307 | #ifdef CONFIG_NO_HZ_COMMON |
69239749 TL |
1308 | /** |
1309 | * hrtimer_get_next_event - get the time until next expiry event | |
1310 | * | |
c1ad348b | 1311 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
69239749 | 1312 | */ |
c1ad348b | 1313 | u64 hrtimer_get_next_event(void) |
69239749 | 1314 | { |
dc5df73b | 1315 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
c1ad348b | 1316 | u64 expires = KTIME_MAX; |
69239749 | 1317 | unsigned long flags; |
69239749 | 1318 | |
ecb49d1a | 1319 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d | 1320 | |
e19ffe8b | 1321 | if (!__hrtimer_hres_active(cpu_base)) |
5da70160 | 1322 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
3c8aa39d | 1323 | |
ecb49d1a | 1324 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d | 1325 | |
c1ad348b | 1326 | return expires; |
69239749 | 1327 | } |
a59855cd RW |
1328 | |
1329 | /** | |
1330 | * hrtimer_next_event_without - time until next expiry event w/o one timer | |
1331 | * @exclude: timer to exclude | |
1332 | * | |
1333 | * Returns the next expiry time over all timers except for the @exclude one or | |
1334 | * KTIME_MAX if none of them is pending. | |
1335 | */ | |
1336 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) | |
1337 | { | |
1338 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1339 | u64 expires = KTIME_MAX; | |
1340 | unsigned long flags; | |
1341 | ||
1342 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | |
1343 | ||
1344 | if (__hrtimer_hres_active(cpu_base)) { | |
1345 | unsigned int active; | |
1346 | ||
1347 | if (!cpu_base->softirq_activated) { | |
1348 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | |
1349 | expires = __hrtimer_next_event_base(cpu_base, exclude, | |
1350 | active, KTIME_MAX); | |
1351 | } | |
1352 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | |
1353 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, | |
1354 | expires); | |
1355 | } | |
1356 | ||
1357 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
1358 | ||
1359 | return expires; | |
1360 | } | |
69239749 TL |
1361 | #endif |
1362 | ||
336a9cde MZ |
1363 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
1364 | { | |
1365 | if (likely(clock_id < MAX_CLOCKS)) { | |
1366 | int base = hrtimer_clock_to_base_table[clock_id]; | |
1367 | ||
1368 | if (likely(base != HRTIMER_MAX_CLOCK_BASES)) | |
1369 | return base; | |
1370 | } | |
1371 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); | |
1372 | return HRTIMER_BASE_MONOTONIC; | |
1373 | } | |
1374 | ||
237fc6e7 TG |
1375 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1376 | enum hrtimer_mode mode) | |
c0a31329 | 1377 | { |
42f42da4 | 1378 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
3c8aa39d | 1379 | struct hrtimer_cpu_base *cpu_base; |
f5c2f021 SAS |
1380 | int base; |
1381 | ||
1382 | /* | |
1383 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely | |
1384 | * marked for hard interrupt expiry mode are moved into soft | |
1385 | * interrupt context for latency reasons and because the callbacks | |
1386 | * can invoke functions which might sleep on RT, e.g. spin_lock(). | |
1387 | */ | |
1388 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) | |
1389 | softtimer = true; | |
c0a31329 | 1390 | |
7978672c GA |
1391 | memset(timer, 0, sizeof(struct hrtimer)); |
1392 | ||
22127e93 | 1393 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
c0a31329 | 1394 | |
48d0c9be AMG |
1395 | /* |
1396 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by | |
1397 | * clock modifications, so they needs to become CLOCK_MONOTONIC to | |
1398 | * ensure POSIX compliance. | |
1399 | */ | |
1400 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) | |
7978672c GA |
1401 | clock_id = CLOCK_MONOTONIC; |
1402 | ||
f5c2f021 | 1403 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
42f42da4 AMG |
1404 | base += hrtimer_clockid_to_base(clock_id); |
1405 | timer->is_soft = softtimer; | |
40db1739 | 1406 | timer->is_hard = !!(mode & HRTIMER_MODE_HARD); |
e06383db | 1407 | timer->base = &cpu_base->clock_base[base]; |
998adc3d | 1408 | timerqueue_init(&timer->node); |
c0a31329 | 1409 | } |
237fc6e7 TG |
1410 | |
1411 | /** | |
1412 | * hrtimer_init - initialize a timer to the given clock | |
1413 | * @timer: the timer to be initialized | |
1414 | * @clock_id: the clock to be used | |
42f42da4 AMG |
1415 | * @mode: The modes which are relevant for intitialization: |
1416 | * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, | |
1417 | * HRTIMER_MODE_REL_SOFT | |
1418 | * | |
1419 | * The PINNED variants of the above can be handed in, | |
1420 | * but the PINNED bit is ignored as pinning happens | |
1421 | * when the hrtimer is started | |
237fc6e7 TG |
1422 | */ |
1423 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
1424 | enum hrtimer_mode mode) | |
1425 | { | |
c6a2a177 | 1426 | debug_init(timer, clock_id, mode); |
237fc6e7 TG |
1427 | __hrtimer_init(timer, clock_id, mode); |
1428 | } | |
8d16b764 | 1429 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 | 1430 | |
887d9dc9 PZ |
1431 | /* |
1432 | * A timer is active, when it is enqueued into the rbtree or the | |
1433 | * callback function is running or it's in the state of being migrated | |
1434 | * to another cpu. | |
c0a31329 | 1435 | * |
887d9dc9 | 1436 | * It is important for this function to not return a false negative. |
c0a31329 | 1437 | */ |
887d9dc9 | 1438 | bool hrtimer_active(const struct hrtimer *timer) |
c0a31329 | 1439 | { |
3f0b9e8e | 1440 | struct hrtimer_clock_base *base; |
887d9dc9 | 1441 | unsigned int seq; |
c0a31329 | 1442 | |
887d9dc9 | 1443 | do { |
3f0b9e8e AMG |
1444 | base = READ_ONCE(timer->base); |
1445 | seq = raw_read_seqcount_begin(&base->seq); | |
c0a31329 | 1446 | |
887d9dc9 | 1447 | if (timer->state != HRTIMER_STATE_INACTIVE || |
3f0b9e8e | 1448 | base->running == timer) |
887d9dc9 PZ |
1449 | return true; |
1450 | ||
3f0b9e8e AMG |
1451 | } while (read_seqcount_retry(&base->seq, seq) || |
1452 | base != READ_ONCE(timer->base)); | |
887d9dc9 PZ |
1453 | |
1454 | return false; | |
c0a31329 | 1455 | } |
887d9dc9 | 1456 | EXPORT_SYMBOL_GPL(hrtimer_active); |
c0a31329 | 1457 | |
887d9dc9 PZ |
1458 | /* |
1459 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 | |
1460 | * distinct sections: | |
1461 | * | |
1462 | * - queued: the timer is queued | |
1463 | * - callback: the timer is being ran | |
1464 | * - post: the timer is inactive or (re)queued | |
1465 | * | |
1466 | * On the read side we ensure we observe timer->state and cpu_base->running | |
1467 | * from the same section, if anything changed while we looked at it, we retry. | |
1468 | * This includes timer->base changing because sequence numbers alone are | |
1469 | * insufficient for that. | |
1470 | * | |
1471 | * The sequence numbers are required because otherwise we could still observe | |
1472 | * a false negative if the read side got smeared over multiple consequtive | |
1473 | * __run_hrtimer() invocations. | |
1474 | */ | |
1475 | ||
21d6d52a TG |
1476 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
1477 | struct hrtimer_clock_base *base, | |
dd934aa8 | 1478 | struct hrtimer *timer, ktime_t *now, |
eb5a4d0a | 1479 | unsigned long flags) __must_hold(&cpu_base->lock) |
d3d74453 | 1480 | { |
d3d74453 | 1481 | enum hrtimer_restart (*fn)(struct hrtimer *); |
73d20564 | 1482 | bool expires_in_hardirq; |
d3d74453 PZ |
1483 | int restart; |
1484 | ||
887d9dc9 | 1485 | lockdep_assert_held(&cpu_base->lock); |
ca109491 | 1486 | |
c6a2a177 | 1487 | debug_deactivate(timer); |
3f0b9e8e | 1488 | base->running = timer; |
887d9dc9 PZ |
1489 | |
1490 | /* | |
1491 | * Separate the ->running assignment from the ->state assignment. | |
1492 | * | |
1493 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1494 | * hrtimer_active() cannot observe base->running == NULL && |
887d9dc9 PZ |
1495 | * timer->state == INACTIVE. |
1496 | */ | |
3f0b9e8e | 1497 | raw_write_seqcount_barrier(&base->seq); |
887d9dc9 PZ |
1498 | |
1499 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); | |
d3d74453 | 1500 | fn = timer->function; |
ca109491 | 1501 | |
203cbf77 TG |
1502 | /* |
1503 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the | |
1504 | * timer is restarted with a period then it becomes an absolute | |
1505 | * timer. If its not restarted it does not matter. | |
1506 | */ | |
1507 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) | |
1508 | timer->is_rel = false; | |
1509 | ||
ca109491 | 1510 | /* |
d05ca13b TG |
1511 | * The timer is marked as running in the CPU base, so it is |
1512 | * protected against migration to a different CPU even if the lock | |
1513 | * is dropped. | |
ca109491 | 1514 | */ |
dd934aa8 | 1515 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
c6a2a177 | 1516 | trace_hrtimer_expire_entry(timer, now); |
73d20564 | 1517 | expires_in_hardirq = lockdep_hrtimer_enter(timer); |
40db1739 | 1518 | |
ca109491 | 1519 | restart = fn(timer); |
40db1739 | 1520 | |
73d20564 | 1521 | lockdep_hrtimer_exit(expires_in_hardirq); |
c6a2a177 | 1522 | trace_hrtimer_expire_exit(timer); |
dd934aa8 | 1523 | raw_spin_lock_irq(&cpu_base->lock); |
d3d74453 PZ |
1524 | |
1525 | /* | |
887d9dc9 | 1526 | * Note: We clear the running state after enqueue_hrtimer and |
b4d90e9f | 1527 | * we do not reprogram the event hardware. Happens either in |
e3f1d883 | 1528 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
5de2755c PZ |
1529 | * |
1530 | * Note: Because we dropped the cpu_base->lock above, | |
1531 | * hrtimer_start_range_ns() can have popped in and enqueued the timer | |
1532 | * for us already. | |
d3d74453 | 1533 | */ |
5de2755c PZ |
1534 | if (restart != HRTIMER_NORESTART && |
1535 | !(timer->state & HRTIMER_STATE_ENQUEUED)) | |
63e2ed36 | 1536 | enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); |
f13d4f97 | 1537 | |
887d9dc9 PZ |
1538 | /* |
1539 | * Separate the ->running assignment from the ->state assignment. | |
1540 | * | |
1541 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1542 | * hrtimer_active() cannot observe base->running.timer == NULL && |
887d9dc9 PZ |
1543 | * timer->state == INACTIVE. |
1544 | */ | |
3f0b9e8e | 1545 | raw_write_seqcount_barrier(&base->seq); |
f13d4f97 | 1546 | |
3f0b9e8e AMG |
1547 | WARN_ON_ONCE(base->running != timer); |
1548 | base->running = NULL; | |
d3d74453 PZ |
1549 | } |
1550 | ||
dd934aa8 | 1551 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
c458b1d1 | 1552 | unsigned long flags, unsigned int active_mask) |
54cdfdb4 | 1553 | { |
c272ca58 | 1554 | struct hrtimer_clock_base *base; |
c458b1d1 | 1555 | unsigned int active = cpu_base->active_bases & active_mask; |
6ff7041d | 1556 | |
c272ca58 | 1557 | for_each_active_base(base, cpu_base, active) { |
998adc3d | 1558 | struct timerqueue_node *node; |
ab8177bc TG |
1559 | ktime_t basenow; |
1560 | ||
54cdfdb4 TG |
1561 | basenow = ktime_add(now, base->offset); |
1562 | ||
998adc3d | 1563 | while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb4 TG |
1564 | struct hrtimer *timer; |
1565 | ||
998adc3d | 1566 | timer = container_of(node, struct hrtimer, node); |
54cdfdb4 | 1567 | |
654c8e0b AV |
1568 | /* |
1569 | * The immediate goal for using the softexpires is | |
1570 | * minimizing wakeups, not running timers at the | |
1571 | * earliest interrupt after their soft expiration. | |
1572 | * This allows us to avoid using a Priority Search | |
1573 | * Tree, which can answer a stabbing querry for | |
1574 | * overlapping intervals and instead use the simple | |
1575 | * BST we already have. | |
1576 | * We don't add extra wakeups by delaying timers that | |
1577 | * are right-of a not yet expired timer, because that | |
1578 | * timer will have to trigger a wakeup anyway. | |
1579 | */ | |
2456e855 | 1580 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
54cdfdb4 | 1581 | break; |
54cdfdb4 | 1582 | |
dd934aa8 | 1583 | __run_hrtimer(cpu_base, base, timer, &basenow, flags); |
f61eff83 AMG |
1584 | if (active_mask == HRTIMER_ACTIVE_SOFT) |
1585 | hrtimer_sync_wait_running(cpu_base, flags); | |
54cdfdb4 | 1586 | } |
54cdfdb4 | 1587 | } |
21d6d52a TG |
1588 | } |
1589 | ||
5da70160 AMG |
1590 | static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) |
1591 | { | |
1592 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1593 | unsigned long flags; | |
1594 | ktime_t now; | |
1595 | ||
f61eff83 | 1596 | hrtimer_cpu_base_lock_expiry(cpu_base); |
5da70160 AMG |
1597 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1598 | ||
1599 | now = hrtimer_update_base(cpu_base); | |
1600 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); | |
1601 | ||
1602 | cpu_base->softirq_activated = 0; | |
1603 | hrtimer_update_softirq_timer(cpu_base, true); | |
1604 | ||
1605 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
f61eff83 | 1606 | hrtimer_cpu_base_unlock_expiry(cpu_base); |
5da70160 AMG |
1607 | } |
1608 | ||
21d6d52a TG |
1609 | #ifdef CONFIG_HIGH_RES_TIMERS |
1610 | ||
1611 | /* | |
1612 | * High resolution timer interrupt | |
1613 | * Called with interrupts disabled | |
1614 | */ | |
1615 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1616 | { | |
1617 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1618 | ktime_t expires_next, now, entry_time, delta; | |
dd934aa8 | 1619 | unsigned long flags; |
21d6d52a TG |
1620 | int retries = 0; |
1621 | ||
1622 | BUG_ON(!cpu_base->hres_active); | |
1623 | cpu_base->nr_events++; | |
2456e855 | 1624 | dev->next_event = KTIME_MAX; |
21d6d52a | 1625 | |
dd934aa8 | 1626 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
21d6d52a TG |
1627 | entry_time = now = hrtimer_update_base(cpu_base); |
1628 | retry: | |
1629 | cpu_base->in_hrtirq = 1; | |
1630 | /* | |
1631 | * We set expires_next to KTIME_MAX here with cpu_base->lock | |
1632 | * held to prevent that a timer is enqueued in our queue via | |
1633 | * the migration code. This does not affect enqueueing of | |
1634 | * timers which run their callback and need to be requeued on | |
1635 | * this CPU. | |
1636 | */ | |
2456e855 | 1637 | cpu_base->expires_next = KTIME_MAX; |
21d6d52a | 1638 | |
5da70160 AMG |
1639 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
1640 | cpu_base->softirq_expires_next = KTIME_MAX; | |
1641 | cpu_base->softirq_activated = 1; | |
1642 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1643 | } | |
1644 | ||
c458b1d1 | 1645 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
21d6d52a | 1646 | |
9bc74919 | 1647 | /* Reevaluate the clock bases for the next expiry */ |
5da70160 | 1648 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
6ff7041d TG |
1649 | /* |
1650 | * Store the new expiry value so the migration code can verify | |
1651 | * against it. | |
1652 | */ | |
54cdfdb4 | 1653 | cpu_base->expires_next = expires_next; |
9bc74919 | 1654 | cpu_base->in_hrtirq = 0; |
dd934aa8 | 1655 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
54cdfdb4 TG |
1656 | |
1657 | /* Reprogramming necessary ? */ | |
d2540875 | 1658 | if (!tick_program_event(expires_next, 0)) { |
41d2e494 TG |
1659 | cpu_base->hang_detected = 0; |
1660 | return; | |
54cdfdb4 | 1661 | } |
41d2e494 TG |
1662 | |
1663 | /* | |
1664 | * The next timer was already expired due to: | |
1665 | * - tracing | |
1666 | * - long lasting callbacks | |
1667 | * - being scheduled away when running in a VM | |
1668 | * | |
1669 | * We need to prevent that we loop forever in the hrtimer | |
1670 | * interrupt routine. We give it 3 attempts to avoid | |
1671 | * overreacting on some spurious event. | |
5baefd6d JS |
1672 | * |
1673 | * Acquire base lock for updating the offsets and retrieving | |
1674 | * the current time. | |
41d2e494 | 1675 | */ |
dd934aa8 | 1676 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
5baefd6d | 1677 | now = hrtimer_update_base(cpu_base); |
41d2e494 TG |
1678 | cpu_base->nr_retries++; |
1679 | if (++retries < 3) | |
1680 | goto retry; | |
1681 | /* | |
1682 | * Give the system a chance to do something else than looping | |
1683 | * here. We stored the entry time, so we know exactly how long | |
1684 | * we spent here. We schedule the next event this amount of | |
1685 | * time away. | |
1686 | */ | |
1687 | cpu_base->nr_hangs++; | |
1688 | cpu_base->hang_detected = 1; | |
dd934aa8 AMG |
1689 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1690 | ||
41d2e494 | 1691 | delta = ktime_sub(now, entry_time); |
2456e855 TG |
1692 | if ((unsigned int)delta > cpu_base->max_hang_time) |
1693 | cpu_base->max_hang_time = (unsigned int) delta; | |
41d2e494 TG |
1694 | /* |
1695 | * Limit it to a sensible value as we enforce a longer | |
1696 | * delay. Give the CPU at least 100ms to catch up. | |
1697 | */ | |
2456e855 | 1698 | if (delta > 100 * NSEC_PER_MSEC) |
41d2e494 TG |
1699 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1700 | else | |
1701 | expires_next = ktime_add(now, delta); | |
1702 | tick_program_event(expires_next, 1); | |
7a6e5537 | 1703 | pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
54cdfdb4 TG |
1704 | } |
1705 | ||
016da201 | 1706 | /* called with interrupts disabled */ |
c6eb3f70 | 1707 | static inline void __hrtimer_peek_ahead_timers(void) |
8bdec955 TG |
1708 | { |
1709 | struct tick_device *td; | |
1710 | ||
1711 | if (!hrtimer_hres_active()) | |
1712 | return; | |
1713 | ||
22127e93 | 1714 | td = this_cpu_ptr(&tick_cpu_device); |
8bdec955 TG |
1715 | if (td && td->evtdev) |
1716 | hrtimer_interrupt(td->evtdev); | |
1717 | } | |
1718 | ||
82c5b7b5 IM |
1719 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1720 | ||
1721 | static inline void __hrtimer_peek_ahead_timers(void) { } | |
1722 | ||
1723 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | |
82f67cd9 | 1724 | |
d3d74453 | 1725 | /* |
c6eb3f70 | 1726 | * Called from run_local_timers in hardirq context every jiffy |
d3d74453 | 1727 | */ |
833883d9 | 1728 | void hrtimer_run_queues(void) |
d3d74453 | 1729 | { |
dc5df73b | 1730 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
dd934aa8 | 1731 | unsigned long flags; |
21d6d52a | 1732 | ktime_t now; |
c0a31329 | 1733 | |
e19ffe8b | 1734 | if (__hrtimer_hres_active(cpu_base)) |
d3d74453 | 1735 | return; |
54cdfdb4 | 1736 | |
d3d74453 | 1737 | /* |
c6eb3f70 TG |
1738 | * This _is_ ugly: We have to check periodically, whether we |
1739 | * can switch to highres and / or nohz mode. The clocksource | |
1740 | * switch happens with xtime_lock held. Notification from | |
1741 | * there only sets the check bit in the tick_oneshot code, | |
1742 | * otherwise we might deadlock vs. xtime_lock. | |
d3d74453 | 1743 | */ |
c6eb3f70 | 1744 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
d3d74453 | 1745 | hrtimer_switch_to_hres(); |
3055adda | 1746 | return; |
833883d9 | 1747 | } |
c6eb3f70 | 1748 | |
dd934aa8 | 1749 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
21d6d52a | 1750 | now = hrtimer_update_base(cpu_base); |
5da70160 AMG |
1751 | |
1752 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { | |
1753 | cpu_base->softirq_expires_next = KTIME_MAX; | |
1754 | cpu_base->softirq_activated = 1; | |
1755 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1756 | } | |
1757 | ||
c458b1d1 | 1758 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
dd934aa8 | 1759 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
c0a31329 TG |
1760 | } |
1761 | ||
10c94ec1 TG |
1762 | /* |
1763 | * Sleep related functions: | |
1764 | */ | |
c9cb2e3d | 1765 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1766 | { |
1767 | struct hrtimer_sleeper *t = | |
1768 | container_of(timer, struct hrtimer_sleeper, timer); | |
1769 | struct task_struct *task = t->task; | |
1770 | ||
1771 | t->task = NULL; | |
1772 | if (task) | |
1773 | wake_up_process(task); | |
1774 | ||
1775 | return HRTIMER_NORESTART; | |
1776 | } | |
1777 | ||
01656464 TG |
1778 | /** |
1779 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer | |
1780 | * @sl: sleeper to be started | |
1781 | * @mode: timer mode abs/rel | |
1782 | * | |
1783 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers | |
1784 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) | |
1785 | */ | |
1786 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, | |
1787 | enum hrtimer_mode mode) | |
1788 | { | |
1842f5a4 SAS |
1789 | /* |
1790 | * Make the enqueue delivery mode check work on RT. If the sleeper | |
1791 | * was initialized for hard interrupt delivery, force the mode bit. | |
1792 | * This is a special case for hrtimer_sleepers because | |
1793 | * hrtimer_init_sleeper() determines the delivery mode on RT so the | |
1794 | * fiddling with this decision is avoided at the call sites. | |
1795 | */ | |
1796 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) | |
1797 | mode |= HRTIMER_MODE_HARD; | |
1798 | ||
01656464 TG |
1799 | hrtimer_start_expires(&sl->timer, mode); |
1800 | } | |
1801 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); | |
1802 | ||
dbc1625f SAS |
1803 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
1804 | clockid_t clock_id, enum hrtimer_mode mode) | |
00362e33 | 1805 | { |
1842f5a4 SAS |
1806 | /* |
1807 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely | |
1808 | * marked for hard interrupt expiry mode are moved into soft | |
1809 | * interrupt context either for latency reasons or because the | |
1810 | * hrtimer callback takes regular spinlocks or invokes other | |
1811 | * functions which are not suitable for hard interrupt context on | |
1812 | * PREEMPT_RT. | |
1813 | * | |
1814 | * The hrtimer_sleeper callback is RT compatible in hard interrupt | |
1815 | * context, but there is a latency concern: Untrusted userspace can | |
1816 | * spawn many threads which arm timers for the same expiry time on | |
1817 | * the same CPU. That causes a latency spike due to the wakeup of | |
1818 | * a gazillion threads. | |
1819 | * | |
1820 | * OTOH, priviledged real-time user space applications rely on the | |
1821 | * low latency of hard interrupt wakeups. If the current task is in | |
1822 | * a real-time scheduling class, mark the mode for hard interrupt | |
1823 | * expiry. | |
1824 | */ | |
1825 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { | |
1826 | if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) | |
1827 | mode |= HRTIMER_MODE_HARD; | |
1828 | } | |
1829 | ||
dbc1625f | 1830 | __hrtimer_init(&sl->timer, clock_id, mode); |
00362e33 | 1831 | sl->timer.function = hrtimer_wakeup; |
b7449487 | 1832 | sl->task = current; |
00362e33 | 1833 | } |
dbc1625f SAS |
1834 | |
1835 | /** | |
1836 | * hrtimer_init_sleeper - initialize sleeper to the given clock | |
1837 | * @sl: sleeper to be initialized | |
1838 | * @clock_id: the clock to be used | |
1839 | * @mode: timer mode abs/rel | |
1840 | */ | |
1841 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, | |
1842 | enum hrtimer_mode mode) | |
1843 | { | |
1844 | debug_init(&sl->timer, clock_id, mode); | |
1845 | __hrtimer_init_sleeper(sl, clock_id, mode); | |
1846 | ||
1847 | } | |
2bc481cf | 1848 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33 | 1849 | |
c0edd7c9 | 1850 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
ce41aaf4 AV |
1851 | { |
1852 | switch(restart->nanosleep.type) { | |
0fe27955 | 1853 | #ifdef CONFIG_COMPAT_32BIT_TIME |
ce41aaf4 | 1854 | case TT_COMPAT: |
9afc5eee | 1855 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
ce41aaf4 AV |
1856 | return -EFAULT; |
1857 | break; | |
1858 | #endif | |
1859 | case TT_NATIVE: | |
c0edd7c9 | 1860 | if (put_timespec64(ts, restart->nanosleep.rmtp)) |
ce41aaf4 AV |
1861 | return -EFAULT; |
1862 | break; | |
1863 | default: | |
1864 | BUG(); | |
1865 | } | |
1866 | return -ERESTART_RESTARTBLOCK; | |
1867 | } | |
1868 | ||
669d7868 | 1869 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1870 | { |
edbeda46 AV |
1871 | struct restart_block *restart; |
1872 | ||
432569bb RZ |
1873 | do { |
1874 | set_current_state(TASK_INTERRUPTIBLE); | |
01656464 | 1875 | hrtimer_sleeper_start_expires(t, mode); |
432569bb | 1876 | |
54cdfdb4 | 1877 | if (likely(t->task)) |
b0f8c44f | 1878 | freezable_schedule(); |
432569bb | 1879 | |
669d7868 | 1880 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1881 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1882 | |
1883 | } while (t->task && !signal_pending(current)); | |
432569bb | 1884 | |
3588a085 PZ |
1885 | __set_current_state(TASK_RUNNING); |
1886 | ||
a7602681 | 1887 | if (!t->task) |
080344b9 | 1888 | return 0; |
080344b9 | 1889 | |
edbeda46 AV |
1890 | restart = ¤t->restart_block; |
1891 | if (restart->nanosleep.type != TT_NONE) { | |
a7602681 | 1892 | ktime_t rem = hrtimer_expires_remaining(&t->timer); |
c0edd7c9 | 1893 | struct timespec64 rmt; |
edbeda46 | 1894 | |
a7602681 AV |
1895 | if (rem <= 0) |
1896 | return 0; | |
c0edd7c9 | 1897 | rmt = ktime_to_timespec64(rem); |
a7602681 | 1898 | |
ce41aaf4 | 1899 | return nanosleep_copyout(restart, &rmt); |
a7602681 AV |
1900 | } |
1901 | return -ERESTART_RESTARTBLOCK; | |
080344b9 ON |
1902 | } |
1903 | ||
fb923c4a | 1904 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1905 | { |
669d7868 | 1906 | struct hrtimer_sleeper t; |
a7602681 | 1907 | int ret; |
10c94ec1 | 1908 | |
dbc1625f SAS |
1909 | hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, |
1910 | HRTIMER_MODE_ABS); | |
cc584b21 | 1911 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
a7602681 | 1912 | ret = do_nanosleep(&t, HRTIMER_MODE_ABS); |
237fc6e7 TG |
1913 | destroy_hrtimer_on_stack(&t.timer); |
1914 | return ret; | |
10c94ec1 TG |
1915 | } |
1916 | ||
ea2d1f7f AV |
1917 | long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, |
1918 | const clockid_t clockid) | |
10c94ec1 | 1919 | { |
a7602681 | 1920 | struct restart_block *restart; |
669d7868 | 1921 | struct hrtimer_sleeper t; |
237fc6e7 | 1922 | int ret = 0; |
da8b44d5 | 1923 | u64 slack; |
3bd01206 AV |
1924 | |
1925 | slack = current->timer_slack_ns; | |
aab03e05 | 1926 | if (dl_task(current) || rt_task(current)) |
3bd01206 | 1927 | slack = 0; |
10c94ec1 | 1928 | |
dbc1625f | 1929 | hrtimer_init_sleeper_on_stack(&t, clockid, mode); |
ea2d1f7f | 1930 | hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); |
a7602681 AV |
1931 | ret = do_nanosleep(&t, mode); |
1932 | if (ret != -ERESTART_RESTARTBLOCK) | |
237fc6e7 | 1933 | goto out; |
10c94ec1 | 1934 | |
7978672c | 1935 | /* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7 TG |
1936 | if (mode == HRTIMER_MODE_ABS) { |
1937 | ret = -ERESTARTNOHAND; | |
1938 | goto out; | |
1939 | } | |
10c94ec1 | 1940 | |
a7602681 | 1941 | restart = ¤t->restart_block; |
1711ef38 | 1942 | restart->fn = hrtimer_nanosleep_restart; |
ab8177bc | 1943 | restart->nanosleep.clockid = t.timer.base->clockid; |
cc584b21 | 1944 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
237fc6e7 TG |
1945 | out: |
1946 | destroy_hrtimer_on_stack(&t.timer); | |
1947 | return ret; | |
10c94ec1 TG |
1948 | } |
1949 | ||
3ca47e95 | 1950 | #ifdef CONFIG_64BIT |
01909974 DD |
1951 | |
1952 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, | |
1953 | struct __kernel_timespec __user *, rmtp) | |
6ba1b912 | 1954 | { |
c0edd7c9 | 1955 | struct timespec64 tu; |
6ba1b912 | 1956 | |
c0edd7c9 | 1957 | if (get_timespec64(&tu, rqtp)) |
6ba1b912 TG |
1958 | return -EFAULT; |
1959 | ||
c0edd7c9 | 1960 | if (!timespec64_valid(&tu)) |
6ba1b912 TG |
1961 | return -EINVAL; |
1962 | ||
edbeda46 | 1963 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
192a82f9 | 1964 | current->restart_block.nanosleep.rmtp = rmtp; |
ea2d1f7f AV |
1965 | return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
1966 | CLOCK_MONOTONIC); | |
6ba1b912 TG |
1967 | } |
1968 | ||
01909974 DD |
1969 | #endif |
1970 | ||
b5793b0d | 1971 | #ifdef CONFIG_COMPAT_32BIT_TIME |
edbeda46 | 1972 | |
8dabe724 | 1973 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
9afc5eee | 1974 | struct old_timespec32 __user *, rmtp) |
edbeda46 | 1975 | { |
c0edd7c9 | 1976 | struct timespec64 tu; |
edbeda46 | 1977 | |
9afc5eee | 1978 | if (get_old_timespec32(&tu, rqtp)) |
edbeda46 AV |
1979 | return -EFAULT; |
1980 | ||
c0edd7c9 | 1981 | if (!timespec64_valid(&tu)) |
edbeda46 AV |
1982 | return -EINVAL; |
1983 | ||
1984 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | |
1985 | current->restart_block.nanosleep.compat_rmtp = rmtp; | |
ea2d1f7f AV |
1986 | return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
1987 | CLOCK_MONOTONIC); | |
edbeda46 AV |
1988 | } |
1989 | #endif | |
1990 | ||
c0a31329 TG |
1991 | /* |
1992 | * Functions related to boot-time initialization: | |
1993 | */ | |
27590dc1 | 1994 | int hrtimers_prepare_cpu(unsigned int cpu) |
c0a31329 | 1995 | { |
3c8aa39d | 1996 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1997 | int i; |
1998 | ||
998adc3d | 1999 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
af5a06b5 AD |
2000 | struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; |
2001 | ||
2002 | clock_b->cpu_base = cpu_base; | |
2003 | seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); | |
2004 | timerqueue_init_head(&clock_b->active); | |
998adc3d | 2005 | } |
3c8aa39d | 2006 | |
cddd0248 | 2007 | cpu_base->cpu = cpu; |
303c146d | 2008 | cpu_base->active_bases = 0; |
28bfd18b | 2009 | cpu_base->hres_active = 0; |
303c146d TG |
2010 | cpu_base->hang_detected = 0; |
2011 | cpu_base->next_timer = NULL; | |
2012 | cpu_base->softirq_next_timer = NULL; | |
07a9a7ea | 2013 | cpu_base->expires_next = KTIME_MAX; |
5da70160 | 2014 | cpu_base->softirq_expires_next = KTIME_MAX; |
f61eff83 | 2015 | hrtimer_cpu_base_init_expiry_lock(cpu_base); |
27590dc1 | 2016 | return 0; |
c0a31329 TG |
2017 | } |
2018 | ||
2019 | #ifdef CONFIG_HOTPLUG_CPU | |
2020 | ||
ca109491 | 2021 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659 | 2022 | struct hrtimer_clock_base *new_base) |
c0a31329 TG |
2023 | { |
2024 | struct hrtimer *timer; | |
998adc3d | 2025 | struct timerqueue_node *node; |
c0a31329 | 2026 | |
998adc3d JS |
2027 | while ((node = timerqueue_getnext(&old_base->active))) { |
2028 | timer = container_of(node, struct hrtimer, node); | |
54cdfdb4 | 2029 | BUG_ON(hrtimer_callback_running(timer)); |
c6a2a177 | 2030 | debug_deactivate(timer); |
b00c1a99 TG |
2031 | |
2032 | /* | |
c04dca02 | 2033 | * Mark it as ENQUEUED not INACTIVE otherwise the |
b00c1a99 TG |
2034 | * timer could be seen as !active and just vanish away |
2035 | * under us on another CPU | |
2036 | */ | |
c04dca02 | 2037 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
c0a31329 | 2038 | timer->base = new_base; |
54cdfdb4 | 2039 | /* |
e3f1d883 TG |
2040 | * Enqueue the timers on the new cpu. This does not |
2041 | * reprogram the event device in case the timer | |
2042 | * expires before the earliest on this CPU, but we run | |
2043 | * hrtimer_interrupt after we migrated everything to | |
2044 | * sort out already expired timers and reprogram the | |
2045 | * event device. | |
54cdfdb4 | 2046 | */ |
63e2ed36 | 2047 | enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); |
c0a31329 TG |
2048 | } |
2049 | } | |
2050 | ||
27590dc1 | 2051 | int hrtimers_dead_cpu(unsigned int scpu) |
c0a31329 | 2052 | { |
3c8aa39d | 2053 | struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba | 2054 | int i; |
c0a31329 | 2055 | |
37810659 | 2056 | BUG_ON(cpu_online(scpu)); |
37810659 | 2057 | tick_cancel_sched_timer(scpu); |
731a55ba | 2058 | |
5da70160 AMG |
2059 | /* |
2060 | * this BH disable ensures that raise_softirq_irqoff() does | |
2061 | * not wakeup ksoftirqd (and acquire the pi-lock) while | |
2062 | * holding the cpu_base lock | |
2063 | */ | |
2064 | local_bh_disable(); | |
731a55ba TG |
2065 | local_irq_disable(); |
2066 | old_base = &per_cpu(hrtimer_bases, scpu); | |
dc5df73b | 2067 | new_base = this_cpu_ptr(&hrtimer_bases); |
d82f0b0f ON |
2068 | /* |
2069 | * The caller is globally serialized and nobody else | |
2070 | * takes two locks at once, deadlock is not possible. | |
2071 | */ | |
ecb49d1a TG |
2072 | raw_spin_lock(&new_base->lock); |
2073 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
c0a31329 | 2074 | |
3c8aa39d | 2075 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491 | 2076 | migrate_hrtimer_list(&old_base->clock_base[i], |
37810659 | 2077 | &new_base->clock_base[i]); |
c0a31329 TG |
2078 | } |
2079 | ||
5da70160 AMG |
2080 | /* |
2081 | * The migration might have changed the first expiring softirq | |
2082 | * timer on this CPU. Update it. | |
2083 | */ | |
2084 | hrtimer_update_softirq_timer(new_base, false); | |
2085 | ||
ecb49d1a TG |
2086 | raw_spin_unlock(&old_base->lock); |
2087 | raw_spin_unlock(&new_base->lock); | |
37810659 | 2088 | |
731a55ba TG |
2089 | /* Check, if we got expired work to do */ |
2090 | __hrtimer_peek_ahead_timers(); | |
2091 | local_irq_enable(); | |
5da70160 | 2092 | local_bh_enable(); |
27590dc1 | 2093 | return 0; |
c0a31329 | 2094 | } |
37810659 | 2095 | |
c0a31329 TG |
2096 | #endif /* CONFIG_HOTPLUG_CPU */ |
2097 | ||
c0a31329 TG |
2098 | void __init hrtimers_init(void) |
2099 | { | |
27590dc1 | 2100 | hrtimers_prepare_cpu(smp_processor_id()); |
5da70160 | 2101 | open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); |
c0a31329 TG |
2102 | } |
2103 | ||
7bb67439 | 2104 | /** |
351b3f7a | 2105 | * schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439 | 2106 | * @expires: timeout value (ktime_t) |
654c8e0b | 2107 | * @delta: slack in expires timeout (ktime_t) |
90777713 AMG |
2108 | * @mode: timer mode |
2109 | * @clock_id: timer clock to be used | |
7bb67439 | 2110 | */ |
351b3f7a | 2111 | int __sched |
da8b44d5 | 2112 | schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
90777713 | 2113 | const enum hrtimer_mode mode, clockid_t clock_id) |
7bb67439 AV |
2114 | { |
2115 | struct hrtimer_sleeper t; | |
2116 | ||
2117 | /* | |
2118 | * Optimize when a zero timeout value is given. It does not | |
2119 | * matter whether this is an absolute or a relative time. | |
2120 | */ | |
2456e855 | 2121 | if (expires && *expires == 0) { |
7bb67439 AV |
2122 | __set_current_state(TASK_RUNNING); |
2123 | return 0; | |
2124 | } | |
2125 | ||
2126 | /* | |
43b21013 | 2127 | * A NULL parameter means "infinite" |
7bb67439 AV |
2128 | */ |
2129 | if (!expires) { | |
2130 | schedule(); | |
7bb67439 AV |
2131 | return -EINTR; |
2132 | } | |
2133 | ||
dbc1625f | 2134 | hrtimer_init_sleeper_on_stack(&t, clock_id, mode); |
654c8e0b | 2135 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
01656464 | 2136 | hrtimer_sleeper_start_expires(&t, mode); |
7bb67439 AV |
2137 | |
2138 | if (likely(t.task)) | |
2139 | schedule(); | |
2140 | ||
2141 | hrtimer_cancel(&t.timer); | |
2142 | destroy_hrtimer_on_stack(&t.timer); | |
2143 | ||
2144 | __set_current_state(TASK_RUNNING); | |
2145 | ||
2146 | return !t.task ? 0 : -EINTR; | |
2147 | } | |
351b3f7a CE |
2148 | |
2149 | /** | |
2150 | * schedule_hrtimeout_range - sleep until timeout | |
2151 | * @expires: timeout value (ktime_t) | |
2152 | * @delta: slack in expires timeout (ktime_t) | |
90777713 | 2153 | * @mode: timer mode |
351b3f7a CE |
2154 | * |
2155 | * Make the current task sleep until the given expiry time has | |
2156 | * elapsed. The routine will return immediately unless | |
2157 | * the current task state has been set (see set_current_state()). | |
2158 | * | |
2159 | * The @delta argument gives the kernel the freedom to schedule the | |
2160 | * actual wakeup to a time that is both power and performance friendly. | |
2161 | * The kernel give the normal best effort behavior for "@expires+@delta", | |
2162 | * but may decide to fire the timer earlier, but no earlier than @expires. | |
2163 | * | |
2164 | * You can set the task state as follows - | |
2165 | * | |
2166 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
2167 | * pass before the routine returns unless the current task is explicitly |
2168 | * woken up, (e.g. by wake_up_process()). | |
351b3f7a CE |
2169 | * |
2170 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
2171 | * delivered to the current task or the current task is explicitly woken |
2172 | * up. | |
351b3f7a CE |
2173 | * |
2174 | * The current task state is guaranteed to be TASK_RUNNING when this | |
2175 | * routine returns. | |
2176 | * | |
4b7e9cf9 DA |
2177 | * Returns 0 when the timer has expired. If the task was woken before the |
2178 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
2179 | * by an explicit wakeup, it returns -EINTR. | |
351b3f7a | 2180 | */ |
da8b44d5 | 2181 | int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
351b3f7a CE |
2182 | const enum hrtimer_mode mode) |
2183 | { | |
2184 | return schedule_hrtimeout_range_clock(expires, delta, mode, | |
2185 | CLOCK_MONOTONIC); | |
2186 | } | |
654c8e0b AV |
2187 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
2188 | ||
2189 | /** | |
2190 | * schedule_hrtimeout - sleep until timeout | |
2191 | * @expires: timeout value (ktime_t) | |
90777713 | 2192 | * @mode: timer mode |
654c8e0b AV |
2193 | * |
2194 | * Make the current task sleep until the given expiry time has | |
2195 | * elapsed. The routine will return immediately unless | |
2196 | * the current task state has been set (see set_current_state()). | |
2197 | * | |
2198 | * You can set the task state as follows - | |
2199 | * | |
2200 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
2201 | * pass before the routine returns unless the current task is explicitly |
2202 | * woken up, (e.g. by wake_up_process()). | |
654c8e0b AV |
2203 | * |
2204 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
2205 | * delivered to the current task or the current task is explicitly woken |
2206 | * up. | |
654c8e0b AV |
2207 | * |
2208 | * The current task state is guaranteed to be TASK_RUNNING when this | |
2209 | * routine returns. | |
2210 | * | |
4b7e9cf9 DA |
2211 | * Returns 0 when the timer has expired. If the task was woken before the |
2212 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
2213 | * by an explicit wakeup, it returns -EINTR. | |
654c8e0b AV |
2214 | */ |
2215 | int __sched schedule_hrtimeout(ktime_t *expires, | |
2216 | const enum hrtimer_mode mode) | |
2217 | { | |
2218 | return schedule_hrtimeout_range(expires, 0, mode); | |
2219 | } | |
7bb67439 | 2220 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |