]> Git Repo - linux.git/blame - kernel/time/hrtimer.c
hrtimer: Make remote enqueue decision less restrictive
[linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
174cd4b1 46#include <linux/sched/signal.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
370c9135 50#include <linux/sched/nohz.h>
b17b0153 51#include <linux/sched/debug.h>
eea08f32 52#include <linux/timer.h>
b0f8c44f 53#include <linux/freezer.h>
edbeda46 54#include <linux/compat.h>
c0a31329 55
7c0f6ba6 56#include <linux/uaccess.h>
c0a31329 57
c6a2a177
XG
58#include <trace/events/timer.h>
59
c1797baf 60#include "tick-internal.h"
8b094cd0 61
c0a31329
TG
62/*
63 * The timer bases:
7978672c 64 *
571af55a 65 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 69 */
54cdfdb4 70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 71{
84cc8fd2 72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 73 .clock_base =
c0a31329 74 {
3c8aa39d 75 {
ab8177bc
TG
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
3c8aa39d 78 .get_time = &ktime_get,
3c8aa39d 79 },
68fa61c0
TG
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
68fa61c0 84 },
70a08cca 85 {
ab8177bc
TG
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
70a08cca 88 .get_time = &ktime_get_boottime,
70a08cca 89 },
90adda98
JS
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
90adda98 94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
ce31332d
TG
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 106};
e06383db 107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
120 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
121};
122
123#define migration_base migration_cpu_base.clock_base[0]
124
c0a31329
TG
125/*
126 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
127 * means that all timers which are tied to this base via timer->base are
128 * locked, and the base itself is locked too.
129 *
130 * So __run_timers/migrate_timers can safely modify all timers which could
131 * be found on the lists/queues.
132 *
133 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
134 * possible to set timer->base = &migration_base and drop the lock: the timer
135 * remains locked.
c0a31329 136 */
3c8aa39d
TG
137static
138struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
139 unsigned long *flags)
c0a31329 140{
3c8aa39d 141 struct hrtimer_clock_base *base;
c0a31329
TG
142
143 for (;;) {
144 base = timer->base;
887d9dc9 145 if (likely(base != &migration_base)) {
ecb49d1a 146 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
147 if (likely(base == timer->base))
148 return base;
149 /* The timer has migrated to another CPU: */
ecb49d1a 150 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
151 }
152 cpu_relax();
153 }
154}
155
6ff7041d 156/*
07a9a7ea
AMG
157 * We do not migrate the timer when it is expiring before the next
158 * event on the target cpu. When high resolution is enabled, we cannot
159 * reprogram the target cpu hardware and we would cause it to fire
160 * late. To keep it simple, we handle the high resolution enabled and
161 * disabled case similar.
6ff7041d
TG
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165static int
166hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167{
6ff7041d
TG
168 ktime_t expires;
169
6ff7041d 170 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 171 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
172}
173
bc7a34b8
TG
174static inline
175struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
176 int pinned)
177{
ae67bada
TG
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
179 if (static_branch_likely(&timers_migration_enabled) && !pinned)
180 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
181#endif
662b3e19 182 return base;
bc7a34b8 183}
bc7a34b8 184
c0a31329 185/*
b48362d8
FW
186 * We switch the timer base to a power-optimized selected CPU target,
187 * if:
188 * - NO_HZ_COMMON is enabled
189 * - timer migration is enabled
190 * - the timer callback is not running
191 * - the timer is not the first expiring timer on the new target
192 *
193 * If one of the above requirements is not fulfilled we move the timer
194 * to the current CPU or leave it on the previously assigned CPU if
195 * the timer callback is currently running.
c0a31329 196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
b48362d8 201 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 202 struct hrtimer_clock_base *new_base;
ab8177bc 203 int basenum = base->index;
c0a31329 204
b48362d8
FW
205 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
206 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 207again:
e06383db 208 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
209
210 if (base != new_base) {
211 /*
6ff7041d 212 * We are trying to move timer to new_base.
c0a31329
TG
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
54cdfdb4 220 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
221 return base;
222
887d9dc9
PZ
223 /* See the comment in lock_hrtimer_base() */
224 timer->base = &migration_base;
ecb49d1a
TG
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 227
b48362d8 228 if (new_cpu_base != this_cpu_base &&
bc7a34b8 229 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
b48362d8 232 new_cpu_base = this_cpu_base;
6ff7041d
TG
233 timer->base = base;
234 goto again;
eea08f32 235 }
c0a31329 236 timer->base = new_base;
012a45e3 237 } else {
b48362d8 238 if (new_cpu_base != this_cpu_base &&
bc7a34b8 239 hrtimer_check_target(timer, new_base)) {
b48362d8 240 new_cpu_base = this_cpu_base;
012a45e3
LM
241 goto again;
242 }
c0a31329
TG
243 }
244 return new_base;
245}
246
247#else /* CONFIG_SMP */
248
3c8aa39d 249static inline struct hrtimer_clock_base *
c0a31329
TG
250lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
251{
3c8aa39d 252 struct hrtimer_clock_base *base = timer->base;
c0a31329 253
ecb49d1a 254 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
255
256 return base;
257}
258
eea08f32 259# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
260
261#endif /* !CONFIG_SMP */
262
263/*
264 * Functions for the union type storage format of ktime_t which are
265 * too large for inlining:
266 */
267#if BITS_PER_LONG < 64
c0a31329
TG
268/*
269 * Divide a ktime value by a nanosecond value
270 */
f7bcb70e 271s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 272{
c0a31329 273 int sft = 0;
f7bcb70e
JS
274 s64 dclc;
275 u64 tmp;
c0a31329 276
900cfa46 277 dclc = ktime_to_ns(kt);
f7bcb70e
JS
278 tmp = dclc < 0 ? -dclc : dclc;
279
c0a31329
TG
280 /* Make sure the divisor is less than 2^32: */
281 while (div >> 32) {
282 sft++;
283 div >>= 1;
284 }
f7bcb70e
JS
285 tmp >>= sft;
286 do_div(tmp, (unsigned long) div);
287 return dclc < 0 ? -tmp : tmp;
c0a31329 288}
8b618628 289EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
290#endif /* BITS_PER_LONG >= 64 */
291
5a7780e7
TG
292/*
293 * Add two ktime values and do a safety check for overflow:
294 */
295ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
296{
979515c5 297 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
298
299 /*
300 * We use KTIME_SEC_MAX here, the maximum timeout which we can
301 * return to user space in a timespec:
302 */
2456e855 303 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
304 res = ktime_set(KTIME_SEC_MAX, 0);
305
306 return res;
307}
308
8daa21e6
AB
309EXPORT_SYMBOL_GPL(ktime_add_safe);
310
237fc6e7
TG
311#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
312
313static struct debug_obj_descr hrtimer_debug_descr;
314
99777288
SG
315static void *hrtimer_debug_hint(void *addr)
316{
317 return ((struct hrtimer *) addr)->function;
318}
319
237fc6e7
TG
320/*
321 * fixup_init is called when:
322 * - an active object is initialized
323 */
e3252464 324static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
325{
326 struct hrtimer *timer = addr;
327
328 switch (state) {
329 case ODEBUG_STATE_ACTIVE:
330 hrtimer_cancel(timer);
331 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 332 return true;
237fc6e7 333 default:
e3252464 334 return false;
237fc6e7
TG
335 }
336}
337
338/*
339 * fixup_activate is called when:
340 * - an active object is activated
b9fdac7f 341 * - an unknown non-static object is activated
237fc6e7 342 */
e3252464 343static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
344{
345 switch (state) {
237fc6e7
TG
346 case ODEBUG_STATE_ACTIVE:
347 WARN_ON(1);
348
349 default:
e3252464 350 return false;
237fc6e7
TG
351 }
352}
353
354/*
355 * fixup_free is called when:
356 * - an active object is freed
357 */
e3252464 358static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
359{
360 struct hrtimer *timer = addr;
361
362 switch (state) {
363 case ODEBUG_STATE_ACTIVE:
364 hrtimer_cancel(timer);
365 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 366 return true;
237fc6e7 367 default:
e3252464 368 return false;
237fc6e7
TG
369 }
370}
371
372static struct debug_obj_descr hrtimer_debug_descr = {
373 .name = "hrtimer",
99777288 374 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
375 .fixup_init = hrtimer_fixup_init,
376 .fixup_activate = hrtimer_fixup_activate,
377 .fixup_free = hrtimer_fixup_free,
378};
379
380static inline void debug_hrtimer_init(struct hrtimer *timer)
381{
382 debug_object_init(timer, &hrtimer_debug_descr);
383}
384
385static inline void debug_hrtimer_activate(struct hrtimer *timer)
386{
387 debug_object_activate(timer, &hrtimer_debug_descr);
388}
389
390static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
391{
392 debug_object_deactivate(timer, &hrtimer_debug_descr);
393}
394
395static inline void debug_hrtimer_free(struct hrtimer *timer)
396{
397 debug_object_free(timer, &hrtimer_debug_descr);
398}
399
400static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
401 enum hrtimer_mode mode);
402
403void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
404 enum hrtimer_mode mode)
405{
406 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
407 __hrtimer_init(timer, clock_id, mode);
408}
2bc481cf 409EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
410
411void destroy_hrtimer_on_stack(struct hrtimer *timer)
412{
413 debug_object_free(timer, &hrtimer_debug_descr);
414}
c08376ac 415EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
416
417#else
418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421#endif
422
c6a2a177
XG
423static inline void
424debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
426{
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
429}
430
63e2ed36
AMG
431static inline void debug_activate(struct hrtimer *timer,
432 enum hrtimer_mode mode)
c6a2a177
XG
433{
434 debug_hrtimer_activate(timer);
63e2ed36 435 trace_hrtimer_start(timer, mode);
c6a2a177
XG
436}
437
438static inline void debug_deactivate(struct hrtimer *timer)
439{
440 debug_hrtimer_deactivate(timer);
441 trace_hrtimer_cancel(timer);
442}
443
c272ca58
AMG
444static struct hrtimer_clock_base *
445__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
446{
447 unsigned int idx;
448
449 if (!*active)
450 return NULL;
451
452 idx = __ffs(*active);
453 *active &= ~(1U << idx);
454
455 return &cpu_base->clock_base[idx];
456}
457
458#define for_each_active_base(base, cpu_base, active) \
459 while ((base = __next_base((cpu_base), &(active))))
460
4ebbda52 461static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919 462{
c272ca58 463 struct hrtimer_clock_base *base;
34aee88a 464 unsigned int active = cpu_base->active_bases;
2456e855 465 ktime_t expires, expires_next = KTIME_MAX;
9bc74919 466
eb27926b 467 cpu_base->next_timer = NULL;
c272ca58 468 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
469 struct timerqueue_node *next;
470 struct hrtimer *timer;
471
34aee88a 472 next = timerqueue_getnext(&base->active);
9bc74919
TG
473 timer = container_of(next, struct hrtimer, node);
474 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 475 if (expires < expires_next) {
9bc74919 476 expires_next = expires;
eb27926b 477 cpu_base->next_timer = timer;
895bdfa7 478 }
9bc74919
TG
479 }
480 /*
481 * clock_was_set() might have changed base->offset of any of
482 * the clock bases so the result might be negative. Fix it up
483 * to prevent a false positive in clockevents_program_event().
484 */
2456e855
TG
485 if (expires_next < 0)
486 expires_next = 0;
9bc74919
TG
487 return expires_next;
488}
9bc74919 489
21d6d52a
TG
490static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
491{
492 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
493 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
494 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
495
868a3e91
TG
496 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
497 offs_real, offs_boot, offs_tai);
21d6d52a
TG
498}
499
28bfd18b
AMG
500/*
501 * Is the high resolution mode active ?
502 */
503static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
504{
505 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
506 cpu_base->hres_active : 0;
507}
508
509static inline int hrtimer_hres_active(void)
510{
511 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
512}
513
54cdfdb4
TG
514/*
515 * Reprogram the event source with checking both queues for the
516 * next event
517 * Called with interrupts disabled and base->lock held
518 */
7403f41f
AC
519static void
520hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 521{
21d6d52a
TG
522 ktime_t expires_next;
523
21d6d52a 524 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 525
2456e855 526 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
527 return;
528
2456e855 529 cpu_base->expires_next = expires_next;
7403f41f 530
6c6c0d5a 531 /*
61bb4bcb
AMG
532 * If hres is not active, hardware does not have to be
533 * reprogrammed yet.
534 *
6c6c0d5a
SH
535 * If a hang was detected in the last timer interrupt then we
536 * leave the hang delay active in the hardware. We want the
537 * system to make progress. That also prevents the following
538 * scenario:
539 * T1 expires 50ms from now
540 * T2 expires 5s from now
541 *
542 * T1 is removed, so this code is called and would reprogram
543 * the hardware to 5s from now. Any hrtimer_start after that
544 * will not reprogram the hardware due to hang_detected being
545 * set. So we'd effectivly block all timers until the T2 event
546 * fires.
547 */
61bb4bcb 548 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
549 return;
550
d2540875 551 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
552}
553
ebba2c72
AMG
554/* High resolution timer related functions */
555#ifdef CONFIG_HIGH_RES_TIMERS
556
557/*
558 * High resolution timer enabled ?
559 */
560static bool hrtimer_hres_enabled __read_mostly = true;
561unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
562EXPORT_SYMBOL_GPL(hrtimer_resolution);
563
564/*
565 * Enable / Disable high resolution mode
566 */
567static int __init setup_hrtimer_hres(char *str)
568{
569 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
570}
571
572__setup("highres=", setup_hrtimer_hres);
573
574/*
575 * hrtimer_high_res_enabled - query, if the highres mode is enabled
576 */
577static inline int hrtimer_is_hres_enabled(void)
578{
579 return hrtimer_hres_enabled;
580}
581
9ec26907
TG
582/*
583 * Retrigger next event is called after clock was set
584 *
585 * Called with interrupts disabled via on_each_cpu()
586 */
587static void retrigger_next_event(void *arg)
588{
dc5df73b 589 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 590
851cff8c 591 if (!__hrtimer_hres_active(base))
9ec26907
TG
592 return;
593
9ec26907 594 raw_spin_lock(&base->lock);
5baefd6d 595 hrtimer_update_base(base);
9ec26907
TG
596 hrtimer_force_reprogram(base, 0);
597 raw_spin_unlock(&base->lock);
598}
b12a03ce 599
54cdfdb4
TG
600/*
601 * Switch to high resolution mode
602 */
75e3b37d 603static void hrtimer_switch_to_hres(void)
54cdfdb4 604{
c6eb3f70 605 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
606
607 if (tick_init_highres()) {
820de5c3 608 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 609 "mode on CPU %d\n", base->cpu);
85e1cd6e 610 return;
54cdfdb4
TG
611 }
612 base->hres_active = 1;
398ca17f 613 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
614
615 tick_setup_sched_timer();
54cdfdb4
TG
616 /* "Retrigger" the interrupt to get things going */
617 retrigger_next_event(NULL);
54cdfdb4
TG
618}
619
5ec2481b
TG
620static void clock_was_set_work(struct work_struct *work)
621{
622 clock_was_set();
623}
624
625static DECLARE_WORK(hrtimer_work, clock_was_set_work);
626
f55a6faa 627/*
b4d90e9f 628 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 629 * interrupt device on all cpus.
f55a6faa
JS
630 */
631void clock_was_set_delayed(void)
632{
5ec2481b 633 schedule_work(&hrtimer_work);
f55a6faa
JS
634}
635
54cdfdb4
TG
636#else
637
54cdfdb4 638static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 639static inline void hrtimer_switch_to_hres(void) { }
9ec26907 640static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
641
642#endif /* CONFIG_HIGH_RES_TIMERS */
643
11a9fe06
AMG
644/*
645 * When a timer is enqueued and expires earlier than the already enqueued
646 * timers, we have to check, whether it expires earlier than the timer for
647 * which the clock event device was armed.
648 *
649 * Called with interrupts disabled and base->cpu_base.lock held
650 */
651static void hrtimer_reprogram(struct hrtimer *timer,
652 struct hrtimer_clock_base *base)
653{
654 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
655 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
656
657 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
658
659 /*
660 * If the timer is not on the current cpu, we cannot reprogram
661 * the other cpus clock event device.
662 */
663 if (base->cpu_base != cpu_base)
664 return;
665
666 /*
667 * If the hrtimer interrupt is running, then it will
668 * reevaluate the clock bases and reprogram the clock event
669 * device. The callbacks are always executed in hard interrupt
670 * context so we don't need an extra check for a running
671 * callback.
672 */
673 if (cpu_base->in_hrtirq)
674 return;
675
676 /*
677 * CLOCK_REALTIME timer might be requested with an absolute
678 * expiry time which is less than base->offset. Set it to 0.
679 */
680 if (expires < 0)
681 expires = 0;
682
683 if (expires >= cpu_base->expires_next)
684 return;
685
686 /* Update the pointer to the next expiring timer */
687 cpu_base->next_timer = timer;
14c80341 688 cpu_base->expires_next = expires;
11a9fe06
AMG
689
690 /*
14c80341
AMG
691 * If hres is not active, hardware does not have to be
692 * programmed yet.
693 *
11a9fe06
AMG
694 * If a hang was detected in the last timer interrupt then we
695 * do not schedule a timer which is earlier than the expiry
696 * which we enforced in the hang detection. We want the system
697 * to make progress.
698 */
14c80341 699 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
700 return;
701
702 /*
703 * Program the timer hardware. We enforce the expiry for
704 * events which are already in the past.
705 */
11a9fe06
AMG
706 tick_program_event(expires, 1);
707}
708
b12a03ce
TG
709/*
710 * Clock realtime was set
711 *
712 * Change the offset of the realtime clock vs. the monotonic
713 * clock.
714 *
715 * We might have to reprogram the high resolution timer interrupt. On
716 * SMP we call the architecture specific code to retrigger _all_ high
717 * resolution timer interrupts. On UP we just disable interrupts and
718 * call the high resolution interrupt code.
719 */
720void clock_was_set(void)
721{
90ff1f30 722#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
723 /* Retrigger the CPU local events everywhere */
724 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
725#endif
726 timerfd_clock_was_set();
b12a03ce
TG
727}
728
729/*
730 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
731 * interrupt on all online CPUs. However, all other CPUs will be
732 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 733 * must be deferred.
b12a03ce
TG
734 */
735void hrtimers_resume(void)
736{
53bef3fd 737 lockdep_assert_irqs_disabled();
5ec2481b 738 /* Retrigger on the local CPU */
b12a03ce 739 retrigger_next_event(NULL);
5ec2481b
TG
740 /* And schedule a retrigger for all others */
741 clock_was_set_delayed();
b12a03ce
TG
742}
743
c0a31329 744/*
6506f2aa 745 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
746 */
747static inline
748void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
749{
ecb49d1a 750 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
751}
752
753/**
754 * hrtimer_forward - forward the timer expiry
c0a31329 755 * @timer: hrtimer to forward
44f21475 756 * @now: forward past this time
c0a31329
TG
757 * @interval: the interval to forward
758 *
759 * Forward the timer expiry so it will expire in the future.
8dca6f33 760 * Returns the number of overruns.
91e5a217
TG
761 *
762 * Can be safely called from the callback function of @timer. If
763 * called from other contexts @timer must neither be enqueued nor
764 * running the callback and the caller needs to take care of
765 * serialization.
766 *
767 * Note: This only updates the timer expiry value and does not requeue
768 * the timer.
c0a31329 769 */
4d672e7a 770u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 771{
4d672e7a 772 u64 orun = 1;
44f21475 773 ktime_t delta;
c0a31329 774
cc584b21 775 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 776
2456e855 777 if (delta < 0)
c0a31329
TG
778 return 0;
779
5de2755c
PZ
780 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
781 return 0;
782
2456e855
TG
783 if (interval < hrtimer_resolution)
784 interval = hrtimer_resolution;
c9db4fa1 785
2456e855 786 if (unlikely(delta >= interval)) {
df869b63 787 s64 incr = ktime_to_ns(interval);
c0a31329
TG
788
789 orun = ktime_divns(delta, incr);
cc584b21 790 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 791 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
792 return orun;
793 /*
794 * This (and the ktime_add() below) is the
795 * correction for exact:
796 */
797 orun++;
798 }
cc584b21 799 hrtimer_add_expires(timer, interval);
c0a31329
TG
800
801 return orun;
802}
6bdb6b62 803EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
804
805/*
806 * enqueue_hrtimer - internal function to (re)start a timer
807 *
808 * The timer is inserted in expiry order. Insertion into the
809 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
810 *
811 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 812 */
a6037b61 813static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
814 struct hrtimer_clock_base *base,
815 enum hrtimer_mode mode)
c0a31329 816{
63e2ed36 817 debug_activate(timer, mode);
237fc6e7 818
ab8177bc 819 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 820
887d9dc9 821 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 822
b97f44c9 823 return timerqueue_add(&base->active, &timer->node);
288867ec 824}
c0a31329
TG
825
826/*
827 * __remove_hrtimer - internal function to remove a timer
828 *
829 * Caller must hold the base lock.
54cdfdb4
TG
830 *
831 * High resolution timer mode reprograms the clock event device when the
832 * timer is the one which expires next. The caller can disable this by setting
833 * reprogram to zero. This is useful, when the context does a reprogramming
834 * anyway (e.g. timer interrupt)
c0a31329 835 */
3c8aa39d 836static void __remove_hrtimer(struct hrtimer *timer,
303e967f 837 struct hrtimer_clock_base *base,
203cbf77 838 u8 newstate, int reprogram)
c0a31329 839{
e19ffe8b 840 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 841 u8 state = timer->state;
e19ffe8b 842
895bdfa7
TG
843 timer->state = newstate;
844 if (!(state & HRTIMER_STATE_ENQUEUED))
845 return;
7403f41f 846
b97f44c9 847 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 848 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 849
895bdfa7
TG
850 /*
851 * Note: If reprogram is false we do not update
852 * cpu_base->next_timer. This happens when we remove the first
853 * timer on a remote cpu. No harm as we never dereference
854 * cpu_base->next_timer. So the worst thing what can happen is
855 * an superflous call to hrtimer_force_reprogram() on the
856 * remote cpu later on if the same timer gets enqueued again.
857 */
858 if (reprogram && timer == cpu_base->next_timer)
859 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
860}
861
862/*
863 * remove hrtimer, called with base lock held
864 */
865static inline int
8edfb036 866remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 867{
303e967f 868 if (hrtimer_is_queued(timer)) {
203cbf77 869 u8 state = timer->state;
54cdfdb4
TG
870 int reprogram;
871
872 /*
873 * Remove the timer and force reprogramming when high
874 * resolution mode is active and the timer is on the current
875 * CPU. If we remove a timer on another CPU, reprogramming is
876 * skipped. The interrupt event on this CPU is fired and
877 * reprogramming happens in the interrupt handler. This is a
878 * rare case and less expensive than a smp call.
879 */
c6a2a177 880 debug_deactivate(timer);
dc5df73b 881 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 882
887d9dc9
PZ
883 if (!restart)
884 state = HRTIMER_STATE_INACTIVE;
885
f13d4f97 886 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
887 return 1;
888 }
889 return 0;
890}
891
203cbf77
TG
892static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
893 const enum hrtimer_mode mode)
894{
895#ifdef CONFIG_TIME_LOW_RES
896 /*
897 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
898 * granular time values. For relative timers we add hrtimer_resolution
899 * (i.e. one jiffie) to prevent short timeouts.
900 */
901 timer->is_rel = mode & HRTIMER_MODE_REL;
902 if (timer->is_rel)
8b0e1953 903 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
904#endif
905 return tim;
906}
907
58f1f803 908/**
6de6250c 909 * hrtimer_start_range_ns - (re)start an hrtimer
58f1f803
TG
910 * @timer: the timer to be added
911 * @tim: expiry time
912 * @delta_ns: "slack" range for the timer
6de6250c
AMG
913 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
914 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
58f1f803 915 */
61699e13 916void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
da8b44d5 917 u64 delta_ns, const enum hrtimer_mode mode)
c0a31329 918{
3c8aa39d 919 struct hrtimer_clock_base *base, *new_base;
c0a31329 920 unsigned long flags;
61699e13 921 int leftmost;
c0a31329
TG
922
923 base = lock_hrtimer_base(timer, &flags);
924
925 /* Remove an active timer from the queue: */
8edfb036 926 remove_hrtimer(timer, base, true);
c0a31329 927
203cbf77 928 if (mode & HRTIMER_MODE_REL)
84ea7fe3 929 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
930
931 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 932
da8f2e17 933 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 934
84ea7fe3
VK
935 /* Switch the timer base, if necessary: */
936 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
937
63e2ed36 938 leftmost = enqueue_hrtimer(timer, new_base, mode);
61699e13
TG
939 if (!leftmost)
940 goto unlock;
49a2a075 941
14c80341 942 hrtimer_reprogram(timer, new_base);
61699e13 943unlock:
c0a31329 944 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 945}
da8f2e17
AV
946EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
947
c0a31329
TG
948/**
949 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
950 * @timer: hrtimer to stop
951 *
952 * Returns:
953 * 0 when the timer was not active
954 * 1 when the timer was active
0ba42a59 955 * -1 when the timer is currently executing the callback function and
fa9799e3 956 * cannot be stopped
c0a31329
TG
957 */
958int hrtimer_try_to_cancel(struct hrtimer *timer)
959{
3c8aa39d 960 struct hrtimer_clock_base *base;
c0a31329
TG
961 unsigned long flags;
962 int ret = -1;
963
19d9f422
TG
964 /*
965 * Check lockless first. If the timer is not active (neither
966 * enqueued nor running the callback, nothing to do here. The
967 * base lock does not serialize against a concurrent enqueue,
968 * so we can avoid taking it.
969 */
970 if (!hrtimer_active(timer))
971 return 0;
972
c0a31329
TG
973 base = lock_hrtimer_base(timer, &flags);
974
303e967f 975 if (!hrtimer_callback_running(timer))
8edfb036 976 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
977
978 unlock_hrtimer_base(timer, &flags);
979
980 return ret;
981
982}
8d16b764 983EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
984
985/**
986 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
987 * @timer: the timer to be cancelled
988 *
989 * Returns:
990 * 0 when the timer was not active
991 * 1 when the timer was active
992 */
993int hrtimer_cancel(struct hrtimer *timer)
994{
995 for (;;) {
996 int ret = hrtimer_try_to_cancel(timer);
997
998 if (ret >= 0)
999 return ret;
5ef37b19 1000 cpu_relax();
c0a31329
TG
1001 }
1002}
8d16b764 1003EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1004
1005/**
1006 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1007 * @timer: the timer to read
203cbf77 1008 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1009 */
203cbf77 1010ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1011{
c0a31329
TG
1012 unsigned long flags;
1013 ktime_t rem;
1014
b3bd3de6 1015 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1016 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1017 rem = hrtimer_expires_remaining_adjusted(timer);
1018 else
1019 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1020 unlock_hrtimer_base(timer, &flags);
1021
1022 return rem;
1023}
203cbf77 1024EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1025
3451d024 1026#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1027/**
1028 * hrtimer_get_next_event - get the time until next expiry event
1029 *
c1ad348b 1030 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1031 */
c1ad348b 1032u64 hrtimer_get_next_event(void)
69239749 1033{
dc5df73b 1034 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1035 u64 expires = KTIME_MAX;
69239749 1036 unsigned long flags;
69239749 1037
ecb49d1a 1038 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1039
e19ffe8b 1040 if (!__hrtimer_hres_active(cpu_base))
2456e855 1041 expires = __hrtimer_get_next_event(cpu_base);
3c8aa39d 1042
ecb49d1a 1043 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1044
c1ad348b 1045 return expires;
69239749
TL
1046}
1047#endif
1048
336a9cde
MZ
1049static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1050{
1051 if (likely(clock_id < MAX_CLOCKS)) {
1052 int base = hrtimer_clock_to_base_table[clock_id];
1053
1054 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1055 return base;
1056 }
1057 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1058 return HRTIMER_BASE_MONOTONIC;
1059}
1060
237fc6e7
TG
1061static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1062 enum hrtimer_mode mode)
c0a31329 1063{
3c8aa39d 1064 struct hrtimer_cpu_base *cpu_base;
e06383db 1065 int base;
c0a31329 1066
7978672c
GA
1067 memset(timer, 0, sizeof(struct hrtimer));
1068
22127e93 1069 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1070
48d0c9be
AMG
1071 /*
1072 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1073 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1074 * ensure POSIX compliance.
1075 */
1076 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1077 clock_id = CLOCK_MONOTONIC;
1078
e06383db
JS
1079 base = hrtimer_clockid_to_base(clock_id);
1080 timer->base = &cpu_base->clock_base[base];
998adc3d 1081 timerqueue_init(&timer->node);
c0a31329 1082}
237fc6e7
TG
1083
1084/**
1085 * hrtimer_init - initialize a timer to the given clock
1086 * @timer: the timer to be initialized
1087 * @clock_id: the clock to be used
6de6250c
AMG
1088 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1089 * relative (HRTIMER_MODE_REL); pinned is not considered here!
237fc6e7
TG
1090 */
1091void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1092 enum hrtimer_mode mode)
1093{
c6a2a177 1094 debug_init(timer, clock_id, mode);
237fc6e7
TG
1095 __hrtimer_init(timer, clock_id, mode);
1096}
8d16b764 1097EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1098
887d9dc9
PZ
1099/*
1100 * A timer is active, when it is enqueued into the rbtree or the
1101 * callback function is running or it's in the state of being migrated
1102 * to another cpu.
c0a31329 1103 *
887d9dc9 1104 * It is important for this function to not return a false negative.
c0a31329 1105 */
887d9dc9 1106bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1107{
3f0b9e8e 1108 struct hrtimer_clock_base *base;
887d9dc9 1109 unsigned int seq;
c0a31329 1110
887d9dc9 1111 do {
3f0b9e8e
AMG
1112 base = READ_ONCE(timer->base);
1113 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1114
887d9dc9 1115 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1116 base->running == timer)
887d9dc9
PZ
1117 return true;
1118
3f0b9e8e
AMG
1119 } while (read_seqcount_retry(&base->seq, seq) ||
1120 base != READ_ONCE(timer->base));
887d9dc9
PZ
1121
1122 return false;
c0a31329 1123}
887d9dc9 1124EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1125
887d9dc9
PZ
1126/*
1127 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1128 * distinct sections:
1129 *
1130 * - queued: the timer is queued
1131 * - callback: the timer is being ran
1132 * - post: the timer is inactive or (re)queued
1133 *
1134 * On the read side we ensure we observe timer->state and cpu_base->running
1135 * from the same section, if anything changed while we looked at it, we retry.
1136 * This includes timer->base changing because sequence numbers alone are
1137 * insufficient for that.
1138 *
1139 * The sequence numbers are required because otherwise we could still observe
1140 * a false negative if the read side got smeared over multiple consequtive
1141 * __run_hrtimer() invocations.
1142 */
1143
21d6d52a
TG
1144static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1145 struct hrtimer_clock_base *base,
1146 struct hrtimer *timer, ktime_t *now)
d3d74453 1147{
d3d74453
PZ
1148 enum hrtimer_restart (*fn)(struct hrtimer *);
1149 int restart;
1150
887d9dc9 1151 lockdep_assert_held(&cpu_base->lock);
ca109491 1152
c6a2a177 1153 debug_deactivate(timer);
3f0b9e8e 1154 base->running = timer;
887d9dc9
PZ
1155
1156 /*
1157 * Separate the ->running assignment from the ->state assignment.
1158 *
1159 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1160 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1161 * timer->state == INACTIVE.
1162 */
3f0b9e8e 1163 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1164
1165 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1166 fn = timer->function;
ca109491 1167
203cbf77
TG
1168 /*
1169 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1170 * timer is restarted with a period then it becomes an absolute
1171 * timer. If its not restarted it does not matter.
1172 */
1173 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1174 timer->is_rel = false;
1175
ca109491 1176 /*
d05ca13b
TG
1177 * The timer is marked as running in the CPU base, so it is
1178 * protected against migration to a different CPU even if the lock
1179 * is dropped.
ca109491 1180 */
ecb49d1a 1181 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1182 trace_hrtimer_expire_entry(timer, now);
ca109491 1183 restart = fn(timer);
c6a2a177 1184 trace_hrtimer_expire_exit(timer);
ecb49d1a 1185 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1186
1187 /*
887d9dc9 1188 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1189 * we do not reprogram the event hardware. Happens either in
e3f1d883 1190 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1191 *
1192 * Note: Because we dropped the cpu_base->lock above,
1193 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1194 * for us already.
d3d74453 1195 */
5de2755c
PZ
1196 if (restart != HRTIMER_NORESTART &&
1197 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1198 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1199
887d9dc9
PZ
1200 /*
1201 * Separate the ->running assignment from the ->state assignment.
1202 *
1203 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1204 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1205 * timer->state == INACTIVE.
1206 */
3f0b9e8e 1207 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1208
3f0b9e8e
AMG
1209 WARN_ON_ONCE(base->running != timer);
1210 base->running = NULL;
d3d74453
PZ
1211}
1212
21d6d52a 1213static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1214{
c272ca58 1215 struct hrtimer_clock_base *base;
34aee88a 1216 unsigned int active = cpu_base->active_bases;
6ff7041d 1217
c272ca58 1218 for_each_active_base(base, cpu_base, active) {
998adc3d 1219 struct timerqueue_node *node;
ab8177bc
TG
1220 ktime_t basenow;
1221
54cdfdb4
TG
1222 basenow = ktime_add(now, base->offset);
1223
998adc3d 1224 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1225 struct hrtimer *timer;
1226
998adc3d 1227 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1228
654c8e0b
AV
1229 /*
1230 * The immediate goal for using the softexpires is
1231 * minimizing wakeups, not running timers at the
1232 * earliest interrupt after their soft expiration.
1233 * This allows us to avoid using a Priority Search
1234 * Tree, which can answer a stabbing querry for
1235 * overlapping intervals and instead use the simple
1236 * BST we already have.
1237 * We don't add extra wakeups by delaying timers that
1238 * are right-of a not yet expired timer, because that
1239 * timer will have to trigger a wakeup anyway.
1240 */
2456e855 1241 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1242 break;
54cdfdb4 1243
21d6d52a 1244 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1245 }
54cdfdb4 1246 }
21d6d52a
TG
1247}
1248
1249#ifdef CONFIG_HIGH_RES_TIMERS
1250
1251/*
1252 * High resolution timer interrupt
1253 * Called with interrupts disabled
1254 */
1255void hrtimer_interrupt(struct clock_event_device *dev)
1256{
1257 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1258 ktime_t expires_next, now, entry_time, delta;
1259 int retries = 0;
1260
1261 BUG_ON(!cpu_base->hres_active);
1262 cpu_base->nr_events++;
2456e855 1263 dev->next_event = KTIME_MAX;
21d6d52a
TG
1264
1265 raw_spin_lock(&cpu_base->lock);
1266 entry_time = now = hrtimer_update_base(cpu_base);
1267retry:
1268 cpu_base->in_hrtirq = 1;
1269 /*
1270 * We set expires_next to KTIME_MAX here with cpu_base->lock
1271 * held to prevent that a timer is enqueued in our queue via
1272 * the migration code. This does not affect enqueueing of
1273 * timers which run their callback and need to be requeued on
1274 * this CPU.
1275 */
2456e855 1276 cpu_base->expires_next = KTIME_MAX;
21d6d52a
TG
1277
1278 __hrtimer_run_queues(cpu_base, now);
1279
9bc74919
TG
1280 /* Reevaluate the clock bases for the next expiry */
1281 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1282 /*
1283 * Store the new expiry value so the migration code can verify
1284 * against it.
1285 */
54cdfdb4 1286 cpu_base->expires_next = expires_next;
9bc74919 1287 cpu_base->in_hrtirq = 0;
ecb49d1a 1288 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1289
1290 /* Reprogramming necessary ? */
d2540875 1291 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1292 cpu_base->hang_detected = 0;
1293 return;
54cdfdb4 1294 }
41d2e494
TG
1295
1296 /*
1297 * The next timer was already expired due to:
1298 * - tracing
1299 * - long lasting callbacks
1300 * - being scheduled away when running in a VM
1301 *
1302 * We need to prevent that we loop forever in the hrtimer
1303 * interrupt routine. We give it 3 attempts to avoid
1304 * overreacting on some spurious event.
5baefd6d
JS
1305 *
1306 * Acquire base lock for updating the offsets and retrieving
1307 * the current time.
41d2e494 1308 */
196951e9 1309 raw_spin_lock(&cpu_base->lock);
5baefd6d 1310 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1311 cpu_base->nr_retries++;
1312 if (++retries < 3)
1313 goto retry;
1314 /*
1315 * Give the system a chance to do something else than looping
1316 * here. We stored the entry time, so we know exactly how long
1317 * we spent here. We schedule the next event this amount of
1318 * time away.
1319 */
1320 cpu_base->nr_hangs++;
1321 cpu_base->hang_detected = 1;
196951e9 1322 raw_spin_unlock(&cpu_base->lock);
41d2e494 1323 delta = ktime_sub(now, entry_time);
2456e855
TG
1324 if ((unsigned int)delta > cpu_base->max_hang_time)
1325 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1326 /*
1327 * Limit it to a sensible value as we enforce a longer
1328 * delay. Give the CPU at least 100ms to catch up.
1329 */
2456e855 1330 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1331 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1332 else
1333 expires_next = ktime_add(now, delta);
1334 tick_program_event(expires_next, 1);
1335 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1336 ktime_to_ns(delta));
54cdfdb4
TG
1337}
1338
016da201 1339/* called with interrupts disabled */
c6eb3f70 1340static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1341{
1342 struct tick_device *td;
1343
1344 if (!hrtimer_hres_active())
1345 return;
1346
22127e93 1347 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1348 if (td && td->evtdev)
1349 hrtimer_interrupt(td->evtdev);
1350}
1351
82c5b7b5
IM
1352#else /* CONFIG_HIGH_RES_TIMERS */
1353
1354static inline void __hrtimer_peek_ahead_timers(void) { }
1355
1356#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1357
d3d74453 1358/*
c6eb3f70 1359 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1360 */
833883d9 1361void hrtimer_run_queues(void)
d3d74453 1362{
dc5df73b 1363 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1364 ktime_t now;
c0a31329 1365
e19ffe8b 1366 if (__hrtimer_hres_active(cpu_base))
d3d74453 1367 return;
54cdfdb4 1368
d3d74453 1369 /*
c6eb3f70
TG
1370 * This _is_ ugly: We have to check periodically, whether we
1371 * can switch to highres and / or nohz mode. The clocksource
1372 * switch happens with xtime_lock held. Notification from
1373 * there only sets the check bit in the tick_oneshot code,
1374 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1375 */
c6eb3f70 1376 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1377 hrtimer_switch_to_hres();
3055adda 1378 return;
833883d9 1379 }
c6eb3f70 1380
21d6d52a
TG
1381 raw_spin_lock(&cpu_base->lock);
1382 now = hrtimer_update_base(cpu_base);
1383 __hrtimer_run_queues(cpu_base, now);
1384 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1385}
1386
10c94ec1
TG
1387/*
1388 * Sleep related functions:
1389 */
c9cb2e3d 1390static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1391{
1392 struct hrtimer_sleeper *t =
1393 container_of(timer, struct hrtimer_sleeper, timer);
1394 struct task_struct *task = t->task;
1395
1396 t->task = NULL;
1397 if (task)
1398 wake_up_process(task);
1399
1400 return HRTIMER_NORESTART;
1401}
1402
36c8b586 1403void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1404{
1405 sl->timer.function = hrtimer_wakeup;
1406 sl->task = task;
1407}
2bc481cf 1408EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1409
c0edd7c9 1410int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1411{
1412 switch(restart->nanosleep.type) {
1413#ifdef CONFIG_COMPAT
1414 case TT_COMPAT:
c0edd7c9 1415 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1416 return -EFAULT;
1417 break;
1418#endif
1419 case TT_NATIVE:
c0edd7c9 1420 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1421 return -EFAULT;
1422 break;
1423 default:
1424 BUG();
1425 }
1426 return -ERESTART_RESTARTBLOCK;
1427}
1428
669d7868 1429static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1430{
edbeda46
AV
1431 struct restart_block *restart;
1432
669d7868 1433 hrtimer_init_sleeper(t, current);
10c94ec1 1434
432569bb
RZ
1435 do {
1436 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1437 hrtimer_start_expires(&t->timer, mode);
432569bb 1438
54cdfdb4 1439 if (likely(t->task))
b0f8c44f 1440 freezable_schedule();
432569bb 1441
669d7868 1442 hrtimer_cancel(&t->timer);
c9cb2e3d 1443 mode = HRTIMER_MODE_ABS;
669d7868
TG
1444
1445 } while (t->task && !signal_pending(current));
432569bb 1446
3588a085
PZ
1447 __set_current_state(TASK_RUNNING);
1448
a7602681 1449 if (!t->task)
080344b9 1450 return 0;
080344b9 1451
edbeda46
AV
1452 restart = &current->restart_block;
1453 if (restart->nanosleep.type != TT_NONE) {
a7602681 1454 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1455 struct timespec64 rmt;
edbeda46 1456
a7602681
AV
1457 if (rem <= 0)
1458 return 0;
c0edd7c9 1459 rmt = ktime_to_timespec64(rem);
a7602681 1460
ce41aaf4 1461 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1462 }
1463 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1464}
1465
fb923c4a 1466static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1467{
669d7868 1468 struct hrtimer_sleeper t;
a7602681 1469 int ret;
10c94ec1 1470
ab8177bc 1471 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1472 HRTIMER_MODE_ABS);
cc584b21 1473 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1474
a7602681 1475 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1476 destroy_hrtimer_on_stack(&t.timer);
1477 return ret;
10c94ec1
TG
1478}
1479
938e7cf2 1480long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1481 const enum hrtimer_mode mode, const clockid_t clockid)
1482{
a7602681 1483 struct restart_block *restart;
669d7868 1484 struct hrtimer_sleeper t;
237fc6e7 1485 int ret = 0;
da8b44d5 1486 u64 slack;
3bd01206
AV
1487
1488 slack = current->timer_slack_ns;
aab03e05 1489 if (dl_task(current) || rt_task(current))
3bd01206 1490 slack = 0;
10c94ec1 1491
237fc6e7 1492 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1493 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1494 ret = do_nanosleep(&t, mode);
1495 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1496 goto out;
10c94ec1 1497
7978672c 1498 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1499 if (mode == HRTIMER_MODE_ABS) {
1500 ret = -ERESTARTNOHAND;
1501 goto out;
1502 }
10c94ec1 1503
a7602681 1504 restart = &current->restart_block;
1711ef38 1505 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1506 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1507 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1508out:
1509 destroy_hrtimer_on_stack(&t.timer);
1510 return ret;
10c94ec1
TG
1511}
1512
58fd3aa2
HC
1513SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1514 struct timespec __user *, rmtp)
6ba1b912 1515{
c0edd7c9 1516 struct timespec64 tu;
6ba1b912 1517
c0edd7c9 1518 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1519 return -EFAULT;
1520
c0edd7c9 1521 if (!timespec64_valid(&tu))
6ba1b912
TG
1522 return -EINVAL;
1523
edbeda46 1524 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1525 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1526 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1527}
1528
edbeda46
AV
1529#ifdef CONFIG_COMPAT
1530
1531COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1532 struct compat_timespec __user *, rmtp)
1533{
c0edd7c9 1534 struct timespec64 tu;
edbeda46 1535
c0edd7c9 1536 if (compat_get_timespec64(&tu, rqtp))
edbeda46
AV
1537 return -EFAULT;
1538
c0edd7c9 1539 if (!timespec64_valid(&tu))
edbeda46
AV
1540 return -EINVAL;
1541
1542 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1543 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1544 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1545}
1546#endif
1547
c0a31329
TG
1548/*
1549 * Functions related to boot-time initialization:
1550 */
27590dc1 1551int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1552{
3c8aa39d 1553 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1554 int i;
1555
998adc3d 1556 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1557 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1558 timerqueue_init_head(&cpu_base->clock_base[i].active);
1559 }
3c8aa39d 1560
cddd0248 1561 cpu_base->cpu = cpu;
28bfd18b 1562 cpu_base->hres_active = 0;
07a9a7ea 1563 cpu_base->expires_next = KTIME_MAX;
27590dc1 1564 return 0;
c0a31329
TG
1565}
1566
1567#ifdef CONFIG_HOTPLUG_CPU
1568
ca109491 1569static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1570 struct hrtimer_clock_base *new_base)
c0a31329
TG
1571{
1572 struct hrtimer *timer;
998adc3d 1573 struct timerqueue_node *node;
c0a31329 1574
998adc3d
JS
1575 while ((node = timerqueue_getnext(&old_base->active))) {
1576 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1577 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1578 debug_deactivate(timer);
b00c1a99
TG
1579
1580 /*
c04dca02 1581 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1582 * timer could be seen as !active and just vanish away
1583 * under us on another CPU
1584 */
c04dca02 1585 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1586 timer->base = new_base;
54cdfdb4 1587 /*
e3f1d883
TG
1588 * Enqueue the timers on the new cpu. This does not
1589 * reprogram the event device in case the timer
1590 * expires before the earliest on this CPU, but we run
1591 * hrtimer_interrupt after we migrated everything to
1592 * sort out already expired timers and reprogram the
1593 * event device.
54cdfdb4 1594 */
63e2ed36 1595 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1596 }
1597}
1598
27590dc1 1599int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1600{
3c8aa39d 1601 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1602 int i;
c0a31329 1603
37810659 1604 BUG_ON(cpu_online(scpu));
37810659 1605 tick_cancel_sched_timer(scpu);
731a55ba
TG
1606
1607 local_irq_disable();
1608 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1609 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1610 /*
1611 * The caller is globally serialized and nobody else
1612 * takes two locks at once, deadlock is not possible.
1613 */
ecb49d1a
TG
1614 raw_spin_lock(&new_base->lock);
1615 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1616
3c8aa39d 1617 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1618 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1619 &new_base->clock_base[i]);
c0a31329
TG
1620 }
1621
ecb49d1a
TG
1622 raw_spin_unlock(&old_base->lock);
1623 raw_spin_unlock(&new_base->lock);
37810659 1624
731a55ba
TG
1625 /* Check, if we got expired work to do */
1626 __hrtimer_peek_ahead_timers();
1627 local_irq_enable();
27590dc1 1628 return 0;
c0a31329 1629}
37810659 1630
c0a31329
TG
1631#endif /* CONFIG_HOTPLUG_CPU */
1632
c0a31329
TG
1633void __init hrtimers_init(void)
1634{
27590dc1 1635 hrtimers_prepare_cpu(smp_processor_id());
c0a31329
TG
1636}
1637
7bb67439 1638/**
351b3f7a 1639 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1640 * @expires: timeout value (ktime_t)
654c8e0b 1641 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1642 * @mode: timer mode
1643 * @clock_id: timer clock to be used
7bb67439 1644 */
351b3f7a 1645int __sched
da8b44d5 1646schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1647 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1648{
1649 struct hrtimer_sleeper t;
1650
1651 /*
1652 * Optimize when a zero timeout value is given. It does not
1653 * matter whether this is an absolute or a relative time.
1654 */
2456e855 1655 if (expires && *expires == 0) {
7bb67439
AV
1656 __set_current_state(TASK_RUNNING);
1657 return 0;
1658 }
1659
1660 /*
43b21013 1661 * A NULL parameter means "infinite"
7bb67439
AV
1662 */
1663 if (!expires) {
1664 schedule();
7bb67439
AV
1665 return -EINTR;
1666 }
1667
90777713 1668 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1669 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1670
1671 hrtimer_init_sleeper(&t, current);
1672
cc584b21 1673 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1674
1675 if (likely(t.task))
1676 schedule();
1677
1678 hrtimer_cancel(&t.timer);
1679 destroy_hrtimer_on_stack(&t.timer);
1680
1681 __set_current_state(TASK_RUNNING);
1682
1683 return !t.task ? 0 : -EINTR;
1684}
351b3f7a
CE
1685
1686/**
1687 * schedule_hrtimeout_range - sleep until timeout
1688 * @expires: timeout value (ktime_t)
1689 * @delta: slack in expires timeout (ktime_t)
90777713 1690 * @mode: timer mode
351b3f7a
CE
1691 *
1692 * Make the current task sleep until the given expiry time has
1693 * elapsed. The routine will return immediately unless
1694 * the current task state has been set (see set_current_state()).
1695 *
1696 * The @delta argument gives the kernel the freedom to schedule the
1697 * actual wakeup to a time that is both power and performance friendly.
1698 * The kernel give the normal best effort behavior for "@expires+@delta",
1699 * but may decide to fire the timer earlier, but no earlier than @expires.
1700 *
1701 * You can set the task state as follows -
1702 *
1703 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1704 * pass before the routine returns unless the current task is explicitly
1705 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1706 *
1707 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1708 * delivered to the current task or the current task is explicitly woken
1709 * up.
351b3f7a
CE
1710 *
1711 * The current task state is guaranteed to be TASK_RUNNING when this
1712 * routine returns.
1713 *
4b7e9cf9
DA
1714 * Returns 0 when the timer has expired. If the task was woken before the
1715 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1716 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1717 */
da8b44d5 1718int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1719 const enum hrtimer_mode mode)
1720{
1721 return schedule_hrtimeout_range_clock(expires, delta, mode,
1722 CLOCK_MONOTONIC);
1723}
654c8e0b
AV
1724EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1725
1726/**
1727 * schedule_hrtimeout - sleep until timeout
1728 * @expires: timeout value (ktime_t)
90777713 1729 * @mode: timer mode
654c8e0b
AV
1730 *
1731 * Make the current task sleep until the given expiry time has
1732 * elapsed. The routine will return immediately unless
1733 * the current task state has been set (see set_current_state()).
1734 *
1735 * You can set the task state as follows -
1736 *
1737 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1738 * pass before the routine returns unless the current task is explicitly
1739 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
1740 *
1741 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1742 * delivered to the current task or the current task is explicitly woken
1743 * up.
654c8e0b
AV
1744 *
1745 * The current task state is guaranteed to be TASK_RUNNING when this
1746 * routine returns.
1747 *
4b7e9cf9
DA
1748 * Returns 0 when the timer has expired. If the task was woken before the
1749 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1750 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
1751 */
1752int __sched schedule_hrtimeout(ktime_t *expires,
1753 const enum hrtimer_mode mode)
1754{
1755 return schedule_hrtimeout_range(expires, 0, mode);
1756}
7bb67439 1757EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 1.175695 seconds and 4 git commands to generate.