]>
Commit | Line | Data |
---|---|---|
c0a31329 TG |
1 | /* |
2 | * linux/kernel/hrtimer.c | |
3 | * | |
3c8aa39d | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
7 | * |
8 | * High-resolution kernel timers | |
9 | * | |
10 | * In contrast to the low-resolution timeout API implemented in | |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | |
12 | * depending on system configuration and capabilities. | |
13 | * | |
14 | * These timers are currently used for: | |
15 | * - itimers | |
16 | * - POSIX timers | |
17 | * - nanosleep | |
18 | * - precise in-kernel timing | |
19 | * | |
20 | * Started by: Thomas Gleixner and Ingo Molnar | |
21 | * | |
22 | * Credits: | |
23 | * based on kernel/timer.c | |
24 | * | |
66188fae TG |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: | |
27 | * | |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
29 | * et. al. | |
30 | * | |
c0a31329 TG |
31 | * For licencing details see kernel-base/COPYING |
32 | */ | |
33 | ||
34 | #include <linux/cpu.h> | |
9984de1a | 35 | #include <linux/export.h> |
c0a31329 TG |
36 | #include <linux/percpu.h> |
37 | #include <linux/hrtimer.h> | |
38 | #include <linux/notifier.h> | |
39 | #include <linux/syscalls.h> | |
54cdfdb4 | 40 | #include <linux/kallsyms.h> |
c0a31329 | 41 | #include <linux/interrupt.h> |
79bf2bb3 | 42 | #include <linux/tick.h> |
54cdfdb4 TG |
43 | #include <linux/seq_file.h> |
44 | #include <linux/err.h> | |
237fc6e7 | 45 | #include <linux/debugobjects.h> |
174cd4b1 | 46 | #include <linux/sched/signal.h> |
cf4aebc2 | 47 | #include <linux/sched/sysctl.h> |
8bd75c77 | 48 | #include <linux/sched/rt.h> |
aab03e05 | 49 | #include <linux/sched/deadline.h> |
370c9135 | 50 | #include <linux/sched/nohz.h> |
b17b0153 | 51 | #include <linux/sched/debug.h> |
eea08f32 | 52 | #include <linux/timer.h> |
b0f8c44f | 53 | #include <linux/freezer.h> |
edbeda46 | 54 | #include <linux/compat.h> |
c0a31329 | 55 | |
7c0f6ba6 | 56 | #include <linux/uaccess.h> |
c0a31329 | 57 | |
c6a2a177 XG |
58 | #include <trace/events/timer.h> |
59 | ||
c1797baf | 60 | #include "tick-internal.h" |
8b094cd0 | 61 | |
c0a31329 TG |
62 | /* |
63 | * The timer bases: | |
7978672c | 64 | * |
571af55a | 65 | * There are more clockids than hrtimer bases. Thus, we index |
e06383db JS |
66 | * into the timer bases by the hrtimer_base_type enum. When trying |
67 | * to reach a base using a clockid, hrtimer_clockid_to_base() | |
68 | * is used to convert from clockid to the proper hrtimer_base_type. | |
c0a31329 | 69 | */ |
54cdfdb4 | 70 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 71 | { |
84cc8fd2 | 72 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
3c8aa39d | 73 | .clock_base = |
c0a31329 | 74 | { |
3c8aa39d | 75 | { |
ab8177bc TG |
76 | .index = HRTIMER_BASE_MONOTONIC, |
77 | .clockid = CLOCK_MONOTONIC, | |
3c8aa39d | 78 | .get_time = &ktime_get, |
3c8aa39d | 79 | }, |
68fa61c0 TG |
80 | { |
81 | .index = HRTIMER_BASE_REALTIME, | |
82 | .clockid = CLOCK_REALTIME, | |
83 | .get_time = &ktime_get_real, | |
68fa61c0 | 84 | }, |
70a08cca | 85 | { |
ab8177bc TG |
86 | .index = HRTIMER_BASE_BOOTTIME, |
87 | .clockid = CLOCK_BOOTTIME, | |
70a08cca | 88 | .get_time = &ktime_get_boottime, |
70a08cca | 89 | }, |
90adda98 JS |
90 | { |
91 | .index = HRTIMER_BASE_TAI, | |
92 | .clockid = CLOCK_TAI, | |
93 | .get_time = &ktime_get_clocktai, | |
90adda98 | 94 | }, |
3c8aa39d | 95 | } |
c0a31329 TG |
96 | }; |
97 | ||
942c3c5c | 98 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
336a9cde MZ |
99 | /* Make sure we catch unsupported clockids */ |
100 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, | |
101 | ||
ce31332d TG |
102 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
103 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, | |
104 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, | |
90adda98 | 105 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
ce31332d | 106 | }; |
e06383db | 107 | |
c0a31329 TG |
108 | /* |
109 | * Functions and macros which are different for UP/SMP systems are kept in a | |
110 | * single place | |
111 | */ | |
112 | #ifdef CONFIG_SMP | |
113 | ||
887d9dc9 PZ |
114 | /* |
115 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() | |
116 | * such that hrtimer_callback_running() can unconditionally dereference | |
117 | * timer->base->cpu_base | |
118 | */ | |
119 | static struct hrtimer_cpu_base migration_cpu_base = { | |
887d9dc9 PZ |
120 | .clock_base = { { .cpu_base = &migration_cpu_base, }, }, |
121 | }; | |
122 | ||
123 | #define migration_base migration_cpu_base.clock_base[0] | |
124 | ||
c0a31329 TG |
125 | /* |
126 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
127 | * means that all timers which are tied to this base via timer->base are | |
128 | * locked, and the base itself is locked too. | |
129 | * | |
130 | * So __run_timers/migrate_timers can safely modify all timers which could | |
131 | * be found on the lists/queues. | |
132 | * | |
133 | * When the timer's base is locked, and the timer removed from list, it is | |
887d9dc9 PZ |
134 | * possible to set timer->base = &migration_base and drop the lock: the timer |
135 | * remains locked. | |
c0a31329 | 136 | */ |
3c8aa39d TG |
137 | static |
138 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
139 | unsigned long *flags) | |
c0a31329 | 140 | { |
3c8aa39d | 141 | struct hrtimer_clock_base *base; |
c0a31329 TG |
142 | |
143 | for (;;) { | |
144 | base = timer->base; | |
887d9dc9 | 145 | if (likely(base != &migration_base)) { |
ecb49d1a | 146 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
147 | if (likely(base == timer->base)) |
148 | return base; | |
149 | /* The timer has migrated to another CPU: */ | |
ecb49d1a | 150 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
151 | } |
152 | cpu_relax(); | |
153 | } | |
154 | } | |
155 | ||
6ff7041d | 156 | /* |
07a9a7ea AMG |
157 | * We do not migrate the timer when it is expiring before the next |
158 | * event on the target cpu. When high resolution is enabled, we cannot | |
159 | * reprogram the target cpu hardware and we would cause it to fire | |
160 | * late. To keep it simple, we handle the high resolution enabled and | |
161 | * disabled case similar. | |
6ff7041d TG |
162 | * |
163 | * Called with cpu_base->lock of target cpu held. | |
164 | */ | |
165 | static int | |
166 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | |
167 | { | |
6ff7041d TG |
168 | ktime_t expires; |
169 | ||
6ff7041d | 170 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
2ac2dccc | 171 | return expires < new_base->cpu_base->expires_next; |
6ff7041d TG |
172 | } |
173 | ||
bc7a34b8 TG |
174 | static inline |
175 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, | |
176 | int pinned) | |
177 | { | |
ae67bada TG |
178 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
179 | if (static_branch_likely(&timers_migration_enabled) && !pinned) | |
180 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); | |
181 | #endif | |
662b3e19 | 182 | return base; |
bc7a34b8 | 183 | } |
bc7a34b8 | 184 | |
c0a31329 | 185 | /* |
b48362d8 FW |
186 | * We switch the timer base to a power-optimized selected CPU target, |
187 | * if: | |
188 | * - NO_HZ_COMMON is enabled | |
189 | * - timer migration is enabled | |
190 | * - the timer callback is not running | |
191 | * - the timer is not the first expiring timer on the new target | |
192 | * | |
193 | * If one of the above requirements is not fulfilled we move the timer | |
194 | * to the current CPU or leave it on the previously assigned CPU if | |
195 | * the timer callback is currently running. | |
c0a31329 | 196 | */ |
3c8aa39d | 197 | static inline struct hrtimer_clock_base * |
597d0275 AB |
198 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
199 | int pinned) | |
c0a31329 | 200 | { |
b48362d8 | 201 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
3c8aa39d | 202 | struct hrtimer_clock_base *new_base; |
ab8177bc | 203 | int basenum = base->index; |
c0a31329 | 204 | |
b48362d8 FW |
205 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
206 | new_cpu_base = get_target_base(this_cpu_base, pinned); | |
eea08f32 | 207 | again: |
e06383db | 208 | new_base = &new_cpu_base->clock_base[basenum]; |
c0a31329 TG |
209 | |
210 | if (base != new_base) { | |
211 | /* | |
6ff7041d | 212 | * We are trying to move timer to new_base. |
c0a31329 TG |
213 | * However we can't change timer's base while it is running, |
214 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
215 | * the event source in the high resolution case. The softirq | |
216 | * code will take care of this when the timer function has | |
217 | * completed. There is no conflict as we hold the lock until | |
218 | * the timer is enqueued. | |
219 | */ | |
54cdfdb4 | 220 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
221 | return base; |
222 | ||
887d9dc9 PZ |
223 | /* See the comment in lock_hrtimer_base() */ |
224 | timer->base = &migration_base; | |
ecb49d1a TG |
225 | raw_spin_unlock(&base->cpu_base->lock); |
226 | raw_spin_lock(&new_base->cpu_base->lock); | |
eea08f32 | 227 | |
b48362d8 | 228 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 229 | hrtimer_check_target(timer, new_base)) { |
ecb49d1a TG |
230 | raw_spin_unlock(&new_base->cpu_base->lock); |
231 | raw_spin_lock(&base->cpu_base->lock); | |
b48362d8 | 232 | new_cpu_base = this_cpu_base; |
6ff7041d TG |
233 | timer->base = base; |
234 | goto again; | |
eea08f32 | 235 | } |
c0a31329 | 236 | timer->base = new_base; |
012a45e3 | 237 | } else { |
b48362d8 | 238 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 239 | hrtimer_check_target(timer, new_base)) { |
b48362d8 | 240 | new_cpu_base = this_cpu_base; |
012a45e3 LM |
241 | goto again; |
242 | } | |
c0a31329 TG |
243 | } |
244 | return new_base; | |
245 | } | |
246 | ||
247 | #else /* CONFIG_SMP */ | |
248 | ||
3c8aa39d | 249 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
250 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
251 | { | |
3c8aa39d | 252 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 253 | |
ecb49d1a | 254 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
255 | |
256 | return base; | |
257 | } | |
258 | ||
eea08f32 | 259 | # define switch_hrtimer_base(t, b, p) (b) |
c0a31329 TG |
260 | |
261 | #endif /* !CONFIG_SMP */ | |
262 | ||
263 | /* | |
264 | * Functions for the union type storage format of ktime_t which are | |
265 | * too large for inlining: | |
266 | */ | |
267 | #if BITS_PER_LONG < 64 | |
c0a31329 TG |
268 | /* |
269 | * Divide a ktime value by a nanosecond value | |
270 | */ | |
f7bcb70e | 271 | s64 __ktime_divns(const ktime_t kt, s64 div) |
c0a31329 | 272 | { |
c0a31329 | 273 | int sft = 0; |
f7bcb70e JS |
274 | s64 dclc; |
275 | u64 tmp; | |
c0a31329 | 276 | |
900cfa46 | 277 | dclc = ktime_to_ns(kt); |
f7bcb70e JS |
278 | tmp = dclc < 0 ? -dclc : dclc; |
279 | ||
c0a31329 TG |
280 | /* Make sure the divisor is less than 2^32: */ |
281 | while (div >> 32) { | |
282 | sft++; | |
283 | div >>= 1; | |
284 | } | |
f7bcb70e JS |
285 | tmp >>= sft; |
286 | do_div(tmp, (unsigned long) div); | |
287 | return dclc < 0 ? -tmp : tmp; | |
c0a31329 | 288 | } |
8b618628 | 289 | EXPORT_SYMBOL_GPL(__ktime_divns); |
c0a31329 TG |
290 | #endif /* BITS_PER_LONG >= 64 */ |
291 | ||
5a7780e7 TG |
292 | /* |
293 | * Add two ktime values and do a safety check for overflow: | |
294 | */ | |
295 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
296 | { | |
979515c5 | 297 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
5a7780e7 TG |
298 | |
299 | /* | |
300 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
301 | * return to user space in a timespec: | |
302 | */ | |
2456e855 | 303 | if (res < 0 || res < lhs || res < rhs) |
5a7780e7 TG |
304 | res = ktime_set(KTIME_SEC_MAX, 0); |
305 | ||
306 | return res; | |
307 | } | |
308 | ||
8daa21e6 AB |
309 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
310 | ||
237fc6e7 TG |
311 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
312 | ||
313 | static struct debug_obj_descr hrtimer_debug_descr; | |
314 | ||
99777288 SG |
315 | static void *hrtimer_debug_hint(void *addr) |
316 | { | |
317 | return ((struct hrtimer *) addr)->function; | |
318 | } | |
319 | ||
237fc6e7 TG |
320 | /* |
321 | * fixup_init is called when: | |
322 | * - an active object is initialized | |
323 | */ | |
e3252464 | 324 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
325 | { |
326 | struct hrtimer *timer = addr; | |
327 | ||
328 | switch (state) { | |
329 | case ODEBUG_STATE_ACTIVE: | |
330 | hrtimer_cancel(timer); | |
331 | debug_object_init(timer, &hrtimer_debug_descr); | |
e3252464 | 332 | return true; |
237fc6e7 | 333 | default: |
e3252464 | 334 | return false; |
237fc6e7 TG |
335 | } |
336 | } | |
337 | ||
338 | /* | |
339 | * fixup_activate is called when: | |
340 | * - an active object is activated | |
b9fdac7f | 341 | * - an unknown non-static object is activated |
237fc6e7 | 342 | */ |
e3252464 | 343 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
344 | { |
345 | switch (state) { | |
237fc6e7 TG |
346 | case ODEBUG_STATE_ACTIVE: |
347 | WARN_ON(1); | |
348 | ||
349 | default: | |
e3252464 | 350 | return false; |
237fc6e7 TG |
351 | } |
352 | } | |
353 | ||
354 | /* | |
355 | * fixup_free is called when: | |
356 | * - an active object is freed | |
357 | */ | |
e3252464 | 358 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
359 | { |
360 | struct hrtimer *timer = addr; | |
361 | ||
362 | switch (state) { | |
363 | case ODEBUG_STATE_ACTIVE: | |
364 | hrtimer_cancel(timer); | |
365 | debug_object_free(timer, &hrtimer_debug_descr); | |
e3252464 | 366 | return true; |
237fc6e7 | 367 | default: |
e3252464 | 368 | return false; |
237fc6e7 TG |
369 | } |
370 | } | |
371 | ||
372 | static struct debug_obj_descr hrtimer_debug_descr = { | |
373 | .name = "hrtimer", | |
99777288 | 374 | .debug_hint = hrtimer_debug_hint, |
237fc6e7 TG |
375 | .fixup_init = hrtimer_fixup_init, |
376 | .fixup_activate = hrtimer_fixup_activate, | |
377 | .fixup_free = hrtimer_fixup_free, | |
378 | }; | |
379 | ||
380 | static inline void debug_hrtimer_init(struct hrtimer *timer) | |
381 | { | |
382 | debug_object_init(timer, &hrtimer_debug_descr); | |
383 | } | |
384 | ||
385 | static inline void debug_hrtimer_activate(struct hrtimer *timer) | |
386 | { | |
387 | debug_object_activate(timer, &hrtimer_debug_descr); | |
388 | } | |
389 | ||
390 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | |
391 | { | |
392 | debug_object_deactivate(timer, &hrtimer_debug_descr); | |
393 | } | |
394 | ||
395 | static inline void debug_hrtimer_free(struct hrtimer *timer) | |
396 | { | |
397 | debug_object_free(timer, &hrtimer_debug_descr); | |
398 | } | |
399 | ||
400 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
401 | enum hrtimer_mode mode); | |
402 | ||
403 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |
404 | enum hrtimer_mode mode) | |
405 | { | |
406 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | |
407 | __hrtimer_init(timer, clock_id, mode); | |
408 | } | |
2bc481cf | 409 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7 TG |
410 | |
411 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | |
412 | { | |
413 | debug_object_free(timer, &hrtimer_debug_descr); | |
414 | } | |
c08376ac | 415 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
237fc6e7 TG |
416 | |
417 | #else | |
418 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | |
419 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |
420 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | |
421 | #endif | |
422 | ||
c6a2a177 XG |
423 | static inline void |
424 | debug_init(struct hrtimer *timer, clockid_t clockid, | |
425 | enum hrtimer_mode mode) | |
426 | { | |
427 | debug_hrtimer_init(timer); | |
428 | trace_hrtimer_init(timer, clockid, mode); | |
429 | } | |
430 | ||
63e2ed36 AMG |
431 | static inline void debug_activate(struct hrtimer *timer, |
432 | enum hrtimer_mode mode) | |
c6a2a177 XG |
433 | { |
434 | debug_hrtimer_activate(timer); | |
63e2ed36 | 435 | trace_hrtimer_start(timer, mode); |
c6a2a177 XG |
436 | } |
437 | ||
438 | static inline void debug_deactivate(struct hrtimer *timer) | |
439 | { | |
440 | debug_hrtimer_deactivate(timer); | |
441 | trace_hrtimer_cancel(timer); | |
442 | } | |
443 | ||
c272ca58 AMG |
444 | static struct hrtimer_clock_base * |
445 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) | |
446 | { | |
447 | unsigned int idx; | |
448 | ||
449 | if (!*active) | |
450 | return NULL; | |
451 | ||
452 | idx = __ffs(*active); | |
453 | *active &= ~(1U << idx); | |
454 | ||
455 | return &cpu_base->clock_base[idx]; | |
456 | } | |
457 | ||
458 | #define for_each_active_base(base, cpu_base, active) \ | |
459 | while ((base = __next_base((cpu_base), &(active)))) | |
460 | ||
4ebbda52 | 461 | static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) |
9bc74919 | 462 | { |
c272ca58 | 463 | struct hrtimer_clock_base *base; |
34aee88a | 464 | unsigned int active = cpu_base->active_bases; |
2456e855 | 465 | ktime_t expires, expires_next = KTIME_MAX; |
9bc74919 | 466 | |
eb27926b | 467 | cpu_base->next_timer = NULL; |
c272ca58 | 468 | for_each_active_base(base, cpu_base, active) { |
9bc74919 TG |
469 | struct timerqueue_node *next; |
470 | struct hrtimer *timer; | |
471 | ||
34aee88a | 472 | next = timerqueue_getnext(&base->active); |
9bc74919 TG |
473 | timer = container_of(next, struct hrtimer, node); |
474 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | |
2456e855 | 475 | if (expires < expires_next) { |
9bc74919 | 476 | expires_next = expires; |
eb27926b | 477 | cpu_base->next_timer = timer; |
895bdfa7 | 478 | } |
9bc74919 TG |
479 | } |
480 | /* | |
481 | * clock_was_set() might have changed base->offset of any of | |
482 | * the clock bases so the result might be negative. Fix it up | |
483 | * to prevent a false positive in clockevents_program_event(). | |
484 | */ | |
2456e855 TG |
485 | if (expires_next < 0) |
486 | expires_next = 0; | |
9bc74919 TG |
487 | return expires_next; |
488 | } | |
9bc74919 | 489 | |
21d6d52a TG |
490 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
491 | { | |
492 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; | |
493 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; | |
494 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; | |
495 | ||
868a3e91 TG |
496 | return ktime_get_update_offsets_now(&base->clock_was_set_seq, |
497 | offs_real, offs_boot, offs_tai); | |
21d6d52a TG |
498 | } |
499 | ||
28bfd18b AMG |
500 | /* |
501 | * Is the high resolution mode active ? | |
502 | */ | |
503 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) | |
504 | { | |
505 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? | |
506 | cpu_base->hres_active : 0; | |
507 | } | |
508 | ||
509 | static inline int hrtimer_hres_active(void) | |
510 | { | |
511 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); | |
512 | } | |
513 | ||
54cdfdb4 TG |
514 | /* |
515 | * Reprogram the event source with checking both queues for the | |
516 | * next event | |
517 | * Called with interrupts disabled and base->lock held | |
518 | */ | |
7403f41f AC |
519 | static void |
520 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | |
54cdfdb4 | 521 | { |
21d6d52a TG |
522 | ktime_t expires_next; |
523 | ||
21d6d52a | 524 | expires_next = __hrtimer_get_next_event(cpu_base); |
54cdfdb4 | 525 | |
2456e855 | 526 | if (skip_equal && expires_next == cpu_base->expires_next) |
7403f41f AC |
527 | return; |
528 | ||
2456e855 | 529 | cpu_base->expires_next = expires_next; |
7403f41f | 530 | |
6c6c0d5a | 531 | /* |
61bb4bcb AMG |
532 | * If hres is not active, hardware does not have to be |
533 | * reprogrammed yet. | |
534 | * | |
6c6c0d5a SH |
535 | * If a hang was detected in the last timer interrupt then we |
536 | * leave the hang delay active in the hardware. We want the | |
537 | * system to make progress. That also prevents the following | |
538 | * scenario: | |
539 | * T1 expires 50ms from now | |
540 | * T2 expires 5s from now | |
541 | * | |
542 | * T1 is removed, so this code is called and would reprogram | |
543 | * the hardware to 5s from now. Any hrtimer_start after that | |
544 | * will not reprogram the hardware due to hang_detected being | |
545 | * set. So we'd effectivly block all timers until the T2 event | |
546 | * fires. | |
547 | */ | |
61bb4bcb | 548 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
6c6c0d5a SH |
549 | return; |
550 | ||
d2540875 | 551 | tick_program_event(cpu_base->expires_next, 1); |
54cdfdb4 TG |
552 | } |
553 | ||
ebba2c72 AMG |
554 | /* High resolution timer related functions */ |
555 | #ifdef CONFIG_HIGH_RES_TIMERS | |
556 | ||
557 | /* | |
558 | * High resolution timer enabled ? | |
559 | */ | |
560 | static bool hrtimer_hres_enabled __read_mostly = true; | |
561 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; | |
562 | EXPORT_SYMBOL_GPL(hrtimer_resolution); | |
563 | ||
564 | /* | |
565 | * Enable / Disable high resolution mode | |
566 | */ | |
567 | static int __init setup_hrtimer_hres(char *str) | |
568 | { | |
569 | return (kstrtobool(str, &hrtimer_hres_enabled) == 0); | |
570 | } | |
571 | ||
572 | __setup("highres=", setup_hrtimer_hres); | |
573 | ||
574 | /* | |
575 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
576 | */ | |
577 | static inline int hrtimer_is_hres_enabled(void) | |
578 | { | |
579 | return hrtimer_hres_enabled; | |
580 | } | |
581 | ||
9ec26907 TG |
582 | /* |
583 | * Retrigger next event is called after clock was set | |
584 | * | |
585 | * Called with interrupts disabled via on_each_cpu() | |
586 | */ | |
587 | static void retrigger_next_event(void *arg) | |
588 | { | |
dc5df73b | 589 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
9ec26907 | 590 | |
851cff8c | 591 | if (!__hrtimer_hres_active(base)) |
9ec26907 TG |
592 | return; |
593 | ||
9ec26907 | 594 | raw_spin_lock(&base->lock); |
5baefd6d | 595 | hrtimer_update_base(base); |
9ec26907 TG |
596 | hrtimer_force_reprogram(base, 0); |
597 | raw_spin_unlock(&base->lock); | |
598 | } | |
b12a03ce | 599 | |
54cdfdb4 TG |
600 | /* |
601 | * Switch to high resolution mode | |
602 | */ | |
75e3b37d | 603 | static void hrtimer_switch_to_hres(void) |
54cdfdb4 | 604 | { |
c6eb3f70 | 605 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
54cdfdb4 TG |
606 | |
607 | if (tick_init_highres()) { | |
820de5c3 | 608 | printk(KERN_WARNING "Could not switch to high resolution " |
c6eb3f70 | 609 | "mode on CPU %d\n", base->cpu); |
85e1cd6e | 610 | return; |
54cdfdb4 TG |
611 | } |
612 | base->hres_active = 1; | |
398ca17f | 613 | hrtimer_resolution = HIGH_RES_NSEC; |
54cdfdb4 TG |
614 | |
615 | tick_setup_sched_timer(); | |
54cdfdb4 TG |
616 | /* "Retrigger" the interrupt to get things going */ |
617 | retrigger_next_event(NULL); | |
54cdfdb4 TG |
618 | } |
619 | ||
5ec2481b TG |
620 | static void clock_was_set_work(struct work_struct *work) |
621 | { | |
622 | clock_was_set(); | |
623 | } | |
624 | ||
625 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); | |
626 | ||
f55a6faa | 627 | /* |
b4d90e9f | 628 | * Called from timekeeping and resume code to reprogram the hrtimer |
5ec2481b | 629 | * interrupt device on all cpus. |
f55a6faa JS |
630 | */ |
631 | void clock_was_set_delayed(void) | |
632 | { | |
5ec2481b | 633 | schedule_work(&hrtimer_work); |
f55a6faa JS |
634 | } |
635 | ||
54cdfdb4 TG |
636 | #else |
637 | ||
54cdfdb4 | 638 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
75e3b37d | 639 | static inline void hrtimer_switch_to_hres(void) { } |
9ec26907 | 640 | static inline void retrigger_next_event(void *arg) { } |
54cdfdb4 TG |
641 | |
642 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
643 | ||
11a9fe06 AMG |
644 | /* |
645 | * When a timer is enqueued and expires earlier than the already enqueued | |
646 | * timers, we have to check, whether it expires earlier than the timer for | |
647 | * which the clock event device was armed. | |
648 | * | |
649 | * Called with interrupts disabled and base->cpu_base.lock held | |
650 | */ | |
651 | static void hrtimer_reprogram(struct hrtimer *timer, | |
652 | struct hrtimer_clock_base *base) | |
653 | { | |
654 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
655 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | |
656 | ||
657 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | |
658 | ||
659 | /* | |
660 | * If the timer is not on the current cpu, we cannot reprogram | |
661 | * the other cpus clock event device. | |
662 | */ | |
663 | if (base->cpu_base != cpu_base) | |
664 | return; | |
665 | ||
666 | /* | |
667 | * If the hrtimer interrupt is running, then it will | |
668 | * reevaluate the clock bases and reprogram the clock event | |
669 | * device. The callbacks are always executed in hard interrupt | |
670 | * context so we don't need an extra check for a running | |
671 | * callback. | |
672 | */ | |
673 | if (cpu_base->in_hrtirq) | |
674 | return; | |
675 | ||
676 | /* | |
677 | * CLOCK_REALTIME timer might be requested with an absolute | |
678 | * expiry time which is less than base->offset. Set it to 0. | |
679 | */ | |
680 | if (expires < 0) | |
681 | expires = 0; | |
682 | ||
683 | if (expires >= cpu_base->expires_next) | |
684 | return; | |
685 | ||
686 | /* Update the pointer to the next expiring timer */ | |
687 | cpu_base->next_timer = timer; | |
14c80341 | 688 | cpu_base->expires_next = expires; |
11a9fe06 AMG |
689 | |
690 | /* | |
14c80341 AMG |
691 | * If hres is not active, hardware does not have to be |
692 | * programmed yet. | |
693 | * | |
11a9fe06 AMG |
694 | * If a hang was detected in the last timer interrupt then we |
695 | * do not schedule a timer which is earlier than the expiry | |
696 | * which we enforced in the hang detection. We want the system | |
697 | * to make progress. | |
698 | */ | |
14c80341 | 699 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
11a9fe06 AMG |
700 | return; |
701 | ||
702 | /* | |
703 | * Program the timer hardware. We enforce the expiry for | |
704 | * events which are already in the past. | |
705 | */ | |
11a9fe06 AMG |
706 | tick_program_event(expires, 1); |
707 | } | |
708 | ||
b12a03ce TG |
709 | /* |
710 | * Clock realtime was set | |
711 | * | |
712 | * Change the offset of the realtime clock vs. the monotonic | |
713 | * clock. | |
714 | * | |
715 | * We might have to reprogram the high resolution timer interrupt. On | |
716 | * SMP we call the architecture specific code to retrigger _all_ high | |
717 | * resolution timer interrupts. On UP we just disable interrupts and | |
718 | * call the high resolution interrupt code. | |
719 | */ | |
720 | void clock_was_set(void) | |
721 | { | |
90ff1f30 | 722 | #ifdef CONFIG_HIGH_RES_TIMERS |
b12a03ce TG |
723 | /* Retrigger the CPU local events everywhere */ |
724 | on_each_cpu(retrigger_next_event, NULL, 1); | |
9ec26907 TG |
725 | #endif |
726 | timerfd_clock_was_set(); | |
b12a03ce TG |
727 | } |
728 | ||
729 | /* | |
730 | * During resume we might have to reprogram the high resolution timer | |
7c4c3a0f DV |
731 | * interrupt on all online CPUs. However, all other CPUs will be |
732 | * stopped with IRQs interrupts disabled so the clock_was_set() call | |
5ec2481b | 733 | * must be deferred. |
b12a03ce TG |
734 | */ |
735 | void hrtimers_resume(void) | |
736 | { | |
53bef3fd | 737 | lockdep_assert_irqs_disabled(); |
5ec2481b | 738 | /* Retrigger on the local CPU */ |
b12a03ce | 739 | retrigger_next_event(NULL); |
5ec2481b TG |
740 | /* And schedule a retrigger for all others */ |
741 | clock_was_set_delayed(); | |
b12a03ce TG |
742 | } |
743 | ||
c0a31329 | 744 | /* |
6506f2aa | 745 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
746 | */ |
747 | static inline | |
748 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
749 | { | |
ecb49d1a | 750 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
751 | } |
752 | ||
753 | /** | |
754 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 755 | * @timer: hrtimer to forward |
44f21475 | 756 | * @now: forward past this time |
c0a31329 TG |
757 | * @interval: the interval to forward |
758 | * | |
759 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 760 | * Returns the number of overruns. |
91e5a217 TG |
761 | * |
762 | * Can be safely called from the callback function of @timer. If | |
763 | * called from other contexts @timer must neither be enqueued nor | |
764 | * running the callback and the caller needs to take care of | |
765 | * serialization. | |
766 | * | |
767 | * Note: This only updates the timer expiry value and does not requeue | |
768 | * the timer. | |
c0a31329 | 769 | */ |
4d672e7a | 770 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 771 | { |
4d672e7a | 772 | u64 orun = 1; |
44f21475 | 773 | ktime_t delta; |
c0a31329 | 774 | |
cc584b21 | 775 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a31329 | 776 | |
2456e855 | 777 | if (delta < 0) |
c0a31329 TG |
778 | return 0; |
779 | ||
5de2755c PZ |
780 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
781 | return 0; | |
782 | ||
2456e855 TG |
783 | if (interval < hrtimer_resolution) |
784 | interval = hrtimer_resolution; | |
c9db4fa1 | 785 | |
2456e855 | 786 | if (unlikely(delta >= interval)) { |
df869b63 | 787 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
788 | |
789 | orun = ktime_divns(delta, incr); | |
cc584b21 | 790 | hrtimer_add_expires_ns(timer, incr * orun); |
2456e855 | 791 | if (hrtimer_get_expires_tv64(timer) > now) |
c0a31329 TG |
792 | return orun; |
793 | /* | |
794 | * This (and the ktime_add() below) is the | |
795 | * correction for exact: | |
796 | */ | |
797 | orun++; | |
798 | } | |
cc584b21 | 799 | hrtimer_add_expires(timer, interval); |
c0a31329 TG |
800 | |
801 | return orun; | |
802 | } | |
6bdb6b62 | 803 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
804 | |
805 | /* | |
806 | * enqueue_hrtimer - internal function to (re)start a timer | |
807 | * | |
808 | * The timer is inserted in expiry order. Insertion into the | |
809 | * red black tree is O(log(n)). Must hold the base lock. | |
a6037b61 PZ |
810 | * |
811 | * Returns 1 when the new timer is the leftmost timer in the tree. | |
c0a31329 | 812 | */ |
a6037b61 | 813 | static int enqueue_hrtimer(struct hrtimer *timer, |
63e2ed36 AMG |
814 | struct hrtimer_clock_base *base, |
815 | enum hrtimer_mode mode) | |
c0a31329 | 816 | { |
63e2ed36 | 817 | debug_activate(timer, mode); |
237fc6e7 | 818 | |
ab8177bc | 819 | base->cpu_base->active_bases |= 1 << base->index; |
54cdfdb4 | 820 | |
887d9dc9 | 821 | timer->state = HRTIMER_STATE_ENQUEUED; |
a6037b61 | 822 | |
b97f44c9 | 823 | return timerqueue_add(&base->active, &timer->node); |
288867ec | 824 | } |
c0a31329 TG |
825 | |
826 | /* | |
827 | * __remove_hrtimer - internal function to remove a timer | |
828 | * | |
829 | * Caller must hold the base lock. | |
54cdfdb4 TG |
830 | * |
831 | * High resolution timer mode reprograms the clock event device when the | |
832 | * timer is the one which expires next. The caller can disable this by setting | |
833 | * reprogram to zero. This is useful, when the context does a reprogramming | |
834 | * anyway (e.g. timer interrupt) | |
c0a31329 | 835 | */ |
3c8aa39d | 836 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 837 | struct hrtimer_clock_base *base, |
203cbf77 | 838 | u8 newstate, int reprogram) |
c0a31329 | 839 | { |
e19ffe8b | 840 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
203cbf77 | 841 | u8 state = timer->state; |
e19ffe8b | 842 | |
895bdfa7 TG |
843 | timer->state = newstate; |
844 | if (!(state & HRTIMER_STATE_ENQUEUED)) | |
845 | return; | |
7403f41f | 846 | |
b97f44c9 | 847 | if (!timerqueue_del(&base->active, &timer->node)) |
e19ffe8b | 848 | cpu_base->active_bases &= ~(1 << base->index); |
7403f41f | 849 | |
895bdfa7 TG |
850 | /* |
851 | * Note: If reprogram is false we do not update | |
852 | * cpu_base->next_timer. This happens when we remove the first | |
853 | * timer on a remote cpu. No harm as we never dereference | |
854 | * cpu_base->next_timer. So the worst thing what can happen is | |
855 | * an superflous call to hrtimer_force_reprogram() on the | |
856 | * remote cpu later on if the same timer gets enqueued again. | |
857 | */ | |
858 | if (reprogram && timer == cpu_base->next_timer) | |
859 | hrtimer_force_reprogram(cpu_base, 1); | |
c0a31329 TG |
860 | } |
861 | ||
862 | /* | |
863 | * remove hrtimer, called with base lock held | |
864 | */ | |
865 | static inline int | |
8edfb036 | 866 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
c0a31329 | 867 | { |
303e967f | 868 | if (hrtimer_is_queued(timer)) { |
203cbf77 | 869 | u8 state = timer->state; |
54cdfdb4 TG |
870 | int reprogram; |
871 | ||
872 | /* | |
873 | * Remove the timer and force reprogramming when high | |
874 | * resolution mode is active and the timer is on the current | |
875 | * CPU. If we remove a timer on another CPU, reprogramming is | |
876 | * skipped. The interrupt event on this CPU is fired and | |
877 | * reprogramming happens in the interrupt handler. This is a | |
878 | * rare case and less expensive than a smp call. | |
879 | */ | |
c6a2a177 | 880 | debug_deactivate(timer); |
dc5df73b | 881 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
8edfb036 | 882 | |
887d9dc9 PZ |
883 | if (!restart) |
884 | state = HRTIMER_STATE_INACTIVE; | |
885 | ||
f13d4f97 | 886 | __remove_hrtimer(timer, base, state, reprogram); |
c0a31329 TG |
887 | return 1; |
888 | } | |
889 | return 0; | |
890 | } | |
891 | ||
203cbf77 TG |
892 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
893 | const enum hrtimer_mode mode) | |
894 | { | |
895 | #ifdef CONFIG_TIME_LOW_RES | |
896 | /* | |
897 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return | |
898 | * granular time values. For relative timers we add hrtimer_resolution | |
899 | * (i.e. one jiffie) to prevent short timeouts. | |
900 | */ | |
901 | timer->is_rel = mode & HRTIMER_MODE_REL; | |
902 | if (timer->is_rel) | |
8b0e1953 | 903 | tim = ktime_add_safe(tim, hrtimer_resolution); |
203cbf77 TG |
904 | #endif |
905 | return tim; | |
906 | } | |
907 | ||
58f1f803 | 908 | /** |
6de6250c | 909 | * hrtimer_start_range_ns - (re)start an hrtimer |
58f1f803 TG |
910 | * @timer: the timer to be added |
911 | * @tim: expiry time | |
912 | * @delta_ns: "slack" range for the timer | |
6de6250c AMG |
913 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
914 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED) | |
58f1f803 | 915 | */ |
61699e13 | 916 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
da8b44d5 | 917 | u64 delta_ns, const enum hrtimer_mode mode) |
c0a31329 | 918 | { |
3c8aa39d | 919 | struct hrtimer_clock_base *base, *new_base; |
c0a31329 | 920 | unsigned long flags; |
61699e13 | 921 | int leftmost; |
c0a31329 TG |
922 | |
923 | base = lock_hrtimer_base(timer, &flags); | |
924 | ||
925 | /* Remove an active timer from the queue: */ | |
8edfb036 | 926 | remove_hrtimer(timer, base, true); |
c0a31329 | 927 | |
203cbf77 | 928 | if (mode & HRTIMER_MODE_REL) |
84ea7fe3 | 929 | tim = ktime_add_safe(tim, base->get_time()); |
203cbf77 TG |
930 | |
931 | tim = hrtimer_update_lowres(timer, tim, mode); | |
237fc6e7 | 932 | |
da8f2e17 | 933 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a31329 | 934 | |
84ea7fe3 VK |
935 | /* Switch the timer base, if necessary: */ |
936 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); | |
937 | ||
63e2ed36 | 938 | leftmost = enqueue_hrtimer(timer, new_base, mode); |
61699e13 TG |
939 | if (!leftmost) |
940 | goto unlock; | |
49a2a075 | 941 | |
14c80341 | 942 | hrtimer_reprogram(timer, new_base); |
61699e13 | 943 | unlock: |
c0a31329 | 944 | unlock_hrtimer_base(timer, &flags); |
7f1e2ca9 | 945 | } |
da8f2e17 AV |
946 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
947 | ||
c0a31329 TG |
948 | /** |
949 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
950 | * @timer: hrtimer to stop |
951 | * | |
952 | * Returns: | |
953 | * 0 when the timer was not active | |
954 | * 1 when the timer was active | |
0ba42a59 | 955 | * -1 when the timer is currently executing the callback function and |
fa9799e3 | 956 | * cannot be stopped |
c0a31329 TG |
957 | */ |
958 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
959 | { | |
3c8aa39d | 960 | struct hrtimer_clock_base *base; |
c0a31329 TG |
961 | unsigned long flags; |
962 | int ret = -1; | |
963 | ||
19d9f422 TG |
964 | /* |
965 | * Check lockless first. If the timer is not active (neither | |
966 | * enqueued nor running the callback, nothing to do here. The | |
967 | * base lock does not serialize against a concurrent enqueue, | |
968 | * so we can avoid taking it. | |
969 | */ | |
970 | if (!hrtimer_active(timer)) | |
971 | return 0; | |
972 | ||
c0a31329 TG |
973 | base = lock_hrtimer_base(timer, &flags); |
974 | ||
303e967f | 975 | if (!hrtimer_callback_running(timer)) |
8edfb036 | 976 | ret = remove_hrtimer(timer, base, false); |
c0a31329 TG |
977 | |
978 | unlock_hrtimer_base(timer, &flags); | |
979 | ||
980 | return ret; | |
981 | ||
982 | } | |
8d16b764 | 983 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 TG |
984 | |
985 | /** | |
986 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
987 | * @timer: the timer to be cancelled |
988 | * | |
989 | * Returns: | |
990 | * 0 when the timer was not active | |
991 | * 1 when the timer was active | |
992 | */ | |
993 | int hrtimer_cancel(struct hrtimer *timer) | |
994 | { | |
995 | for (;;) { | |
996 | int ret = hrtimer_try_to_cancel(timer); | |
997 | ||
998 | if (ret >= 0) | |
999 | return ret; | |
5ef37b19 | 1000 | cpu_relax(); |
c0a31329 TG |
1001 | } |
1002 | } | |
8d16b764 | 1003 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
1004 | |
1005 | /** | |
1006 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 | 1007 | * @timer: the timer to read |
203cbf77 | 1008 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
c0a31329 | 1009 | */ |
203cbf77 | 1010 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
c0a31329 | 1011 | { |
c0a31329 TG |
1012 | unsigned long flags; |
1013 | ktime_t rem; | |
1014 | ||
b3bd3de6 | 1015 | lock_hrtimer_base(timer, &flags); |
203cbf77 TG |
1016 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
1017 | rem = hrtimer_expires_remaining_adjusted(timer); | |
1018 | else | |
1019 | rem = hrtimer_expires_remaining(timer); | |
c0a31329 TG |
1020 | unlock_hrtimer_base(timer, &flags); |
1021 | ||
1022 | return rem; | |
1023 | } | |
203cbf77 | 1024 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
c0a31329 | 1025 | |
3451d024 | 1026 | #ifdef CONFIG_NO_HZ_COMMON |
69239749 TL |
1027 | /** |
1028 | * hrtimer_get_next_event - get the time until next expiry event | |
1029 | * | |
c1ad348b | 1030 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
69239749 | 1031 | */ |
c1ad348b | 1032 | u64 hrtimer_get_next_event(void) |
69239749 | 1033 | { |
dc5df73b | 1034 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
c1ad348b | 1035 | u64 expires = KTIME_MAX; |
69239749 | 1036 | unsigned long flags; |
69239749 | 1037 | |
ecb49d1a | 1038 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d | 1039 | |
e19ffe8b | 1040 | if (!__hrtimer_hres_active(cpu_base)) |
2456e855 | 1041 | expires = __hrtimer_get_next_event(cpu_base); |
3c8aa39d | 1042 | |
ecb49d1a | 1043 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d | 1044 | |
c1ad348b | 1045 | return expires; |
69239749 TL |
1046 | } |
1047 | #endif | |
1048 | ||
336a9cde MZ |
1049 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
1050 | { | |
1051 | if (likely(clock_id < MAX_CLOCKS)) { | |
1052 | int base = hrtimer_clock_to_base_table[clock_id]; | |
1053 | ||
1054 | if (likely(base != HRTIMER_MAX_CLOCK_BASES)) | |
1055 | return base; | |
1056 | } | |
1057 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); | |
1058 | return HRTIMER_BASE_MONOTONIC; | |
1059 | } | |
1060 | ||
237fc6e7 TG |
1061 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1062 | enum hrtimer_mode mode) | |
c0a31329 | 1063 | { |
3c8aa39d | 1064 | struct hrtimer_cpu_base *cpu_base; |
e06383db | 1065 | int base; |
c0a31329 | 1066 | |
7978672c GA |
1067 | memset(timer, 0, sizeof(struct hrtimer)); |
1068 | ||
22127e93 | 1069 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
c0a31329 | 1070 | |
48d0c9be AMG |
1071 | /* |
1072 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by | |
1073 | * clock modifications, so they needs to become CLOCK_MONOTONIC to | |
1074 | * ensure POSIX compliance. | |
1075 | */ | |
1076 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) | |
7978672c GA |
1077 | clock_id = CLOCK_MONOTONIC; |
1078 | ||
e06383db JS |
1079 | base = hrtimer_clockid_to_base(clock_id); |
1080 | timer->base = &cpu_base->clock_base[base]; | |
998adc3d | 1081 | timerqueue_init(&timer->node); |
c0a31329 | 1082 | } |
237fc6e7 TG |
1083 | |
1084 | /** | |
1085 | * hrtimer_init - initialize a timer to the given clock | |
1086 | * @timer: the timer to be initialized | |
1087 | * @clock_id: the clock to be used | |
6de6250c AMG |
1088 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
1089 | * relative (HRTIMER_MODE_REL); pinned is not considered here! | |
237fc6e7 TG |
1090 | */ |
1091 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
1092 | enum hrtimer_mode mode) | |
1093 | { | |
c6a2a177 | 1094 | debug_init(timer, clock_id, mode); |
237fc6e7 TG |
1095 | __hrtimer_init(timer, clock_id, mode); |
1096 | } | |
8d16b764 | 1097 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 | 1098 | |
887d9dc9 PZ |
1099 | /* |
1100 | * A timer is active, when it is enqueued into the rbtree or the | |
1101 | * callback function is running or it's in the state of being migrated | |
1102 | * to another cpu. | |
c0a31329 | 1103 | * |
887d9dc9 | 1104 | * It is important for this function to not return a false negative. |
c0a31329 | 1105 | */ |
887d9dc9 | 1106 | bool hrtimer_active(const struct hrtimer *timer) |
c0a31329 | 1107 | { |
3f0b9e8e | 1108 | struct hrtimer_clock_base *base; |
887d9dc9 | 1109 | unsigned int seq; |
c0a31329 | 1110 | |
887d9dc9 | 1111 | do { |
3f0b9e8e AMG |
1112 | base = READ_ONCE(timer->base); |
1113 | seq = raw_read_seqcount_begin(&base->seq); | |
c0a31329 | 1114 | |
887d9dc9 | 1115 | if (timer->state != HRTIMER_STATE_INACTIVE || |
3f0b9e8e | 1116 | base->running == timer) |
887d9dc9 PZ |
1117 | return true; |
1118 | ||
3f0b9e8e AMG |
1119 | } while (read_seqcount_retry(&base->seq, seq) || |
1120 | base != READ_ONCE(timer->base)); | |
887d9dc9 PZ |
1121 | |
1122 | return false; | |
c0a31329 | 1123 | } |
887d9dc9 | 1124 | EXPORT_SYMBOL_GPL(hrtimer_active); |
c0a31329 | 1125 | |
887d9dc9 PZ |
1126 | /* |
1127 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 | |
1128 | * distinct sections: | |
1129 | * | |
1130 | * - queued: the timer is queued | |
1131 | * - callback: the timer is being ran | |
1132 | * - post: the timer is inactive or (re)queued | |
1133 | * | |
1134 | * On the read side we ensure we observe timer->state and cpu_base->running | |
1135 | * from the same section, if anything changed while we looked at it, we retry. | |
1136 | * This includes timer->base changing because sequence numbers alone are | |
1137 | * insufficient for that. | |
1138 | * | |
1139 | * The sequence numbers are required because otherwise we could still observe | |
1140 | * a false negative if the read side got smeared over multiple consequtive | |
1141 | * __run_hrtimer() invocations. | |
1142 | */ | |
1143 | ||
21d6d52a TG |
1144 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
1145 | struct hrtimer_clock_base *base, | |
1146 | struct hrtimer *timer, ktime_t *now) | |
d3d74453 | 1147 | { |
d3d74453 PZ |
1148 | enum hrtimer_restart (*fn)(struct hrtimer *); |
1149 | int restart; | |
1150 | ||
887d9dc9 | 1151 | lockdep_assert_held(&cpu_base->lock); |
ca109491 | 1152 | |
c6a2a177 | 1153 | debug_deactivate(timer); |
3f0b9e8e | 1154 | base->running = timer; |
887d9dc9 PZ |
1155 | |
1156 | /* | |
1157 | * Separate the ->running assignment from the ->state assignment. | |
1158 | * | |
1159 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1160 | * hrtimer_active() cannot observe base->running == NULL && |
887d9dc9 PZ |
1161 | * timer->state == INACTIVE. |
1162 | */ | |
3f0b9e8e | 1163 | raw_write_seqcount_barrier(&base->seq); |
887d9dc9 PZ |
1164 | |
1165 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); | |
d3d74453 | 1166 | fn = timer->function; |
ca109491 | 1167 | |
203cbf77 TG |
1168 | /* |
1169 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the | |
1170 | * timer is restarted with a period then it becomes an absolute | |
1171 | * timer. If its not restarted it does not matter. | |
1172 | */ | |
1173 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) | |
1174 | timer->is_rel = false; | |
1175 | ||
ca109491 | 1176 | /* |
d05ca13b TG |
1177 | * The timer is marked as running in the CPU base, so it is |
1178 | * protected against migration to a different CPU even if the lock | |
1179 | * is dropped. | |
ca109491 | 1180 | */ |
ecb49d1a | 1181 | raw_spin_unlock(&cpu_base->lock); |
c6a2a177 | 1182 | trace_hrtimer_expire_entry(timer, now); |
ca109491 | 1183 | restart = fn(timer); |
c6a2a177 | 1184 | trace_hrtimer_expire_exit(timer); |
ecb49d1a | 1185 | raw_spin_lock(&cpu_base->lock); |
d3d74453 PZ |
1186 | |
1187 | /* | |
887d9dc9 | 1188 | * Note: We clear the running state after enqueue_hrtimer and |
b4d90e9f | 1189 | * we do not reprogram the event hardware. Happens either in |
e3f1d883 | 1190 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
5de2755c PZ |
1191 | * |
1192 | * Note: Because we dropped the cpu_base->lock above, | |
1193 | * hrtimer_start_range_ns() can have popped in and enqueued the timer | |
1194 | * for us already. | |
d3d74453 | 1195 | */ |
5de2755c PZ |
1196 | if (restart != HRTIMER_NORESTART && |
1197 | !(timer->state & HRTIMER_STATE_ENQUEUED)) | |
63e2ed36 | 1198 | enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); |
f13d4f97 | 1199 | |
887d9dc9 PZ |
1200 | /* |
1201 | * Separate the ->running assignment from the ->state assignment. | |
1202 | * | |
1203 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1204 | * hrtimer_active() cannot observe base->running.timer == NULL && |
887d9dc9 PZ |
1205 | * timer->state == INACTIVE. |
1206 | */ | |
3f0b9e8e | 1207 | raw_write_seqcount_barrier(&base->seq); |
f13d4f97 | 1208 | |
3f0b9e8e AMG |
1209 | WARN_ON_ONCE(base->running != timer); |
1210 | base->running = NULL; | |
d3d74453 PZ |
1211 | } |
1212 | ||
21d6d52a | 1213 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) |
54cdfdb4 | 1214 | { |
c272ca58 | 1215 | struct hrtimer_clock_base *base; |
34aee88a | 1216 | unsigned int active = cpu_base->active_bases; |
6ff7041d | 1217 | |
c272ca58 | 1218 | for_each_active_base(base, cpu_base, active) { |
998adc3d | 1219 | struct timerqueue_node *node; |
ab8177bc TG |
1220 | ktime_t basenow; |
1221 | ||
54cdfdb4 TG |
1222 | basenow = ktime_add(now, base->offset); |
1223 | ||
998adc3d | 1224 | while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb4 TG |
1225 | struct hrtimer *timer; |
1226 | ||
998adc3d | 1227 | timer = container_of(node, struct hrtimer, node); |
54cdfdb4 | 1228 | |
654c8e0b AV |
1229 | /* |
1230 | * The immediate goal for using the softexpires is | |
1231 | * minimizing wakeups, not running timers at the | |
1232 | * earliest interrupt after their soft expiration. | |
1233 | * This allows us to avoid using a Priority Search | |
1234 | * Tree, which can answer a stabbing querry for | |
1235 | * overlapping intervals and instead use the simple | |
1236 | * BST we already have. | |
1237 | * We don't add extra wakeups by delaying timers that | |
1238 | * are right-of a not yet expired timer, because that | |
1239 | * timer will have to trigger a wakeup anyway. | |
1240 | */ | |
2456e855 | 1241 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
54cdfdb4 | 1242 | break; |
54cdfdb4 | 1243 | |
21d6d52a | 1244 | __run_hrtimer(cpu_base, base, timer, &basenow); |
54cdfdb4 | 1245 | } |
54cdfdb4 | 1246 | } |
21d6d52a TG |
1247 | } |
1248 | ||
1249 | #ifdef CONFIG_HIGH_RES_TIMERS | |
1250 | ||
1251 | /* | |
1252 | * High resolution timer interrupt | |
1253 | * Called with interrupts disabled | |
1254 | */ | |
1255 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1256 | { | |
1257 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1258 | ktime_t expires_next, now, entry_time, delta; | |
1259 | int retries = 0; | |
1260 | ||
1261 | BUG_ON(!cpu_base->hres_active); | |
1262 | cpu_base->nr_events++; | |
2456e855 | 1263 | dev->next_event = KTIME_MAX; |
21d6d52a TG |
1264 | |
1265 | raw_spin_lock(&cpu_base->lock); | |
1266 | entry_time = now = hrtimer_update_base(cpu_base); | |
1267 | retry: | |
1268 | cpu_base->in_hrtirq = 1; | |
1269 | /* | |
1270 | * We set expires_next to KTIME_MAX here with cpu_base->lock | |
1271 | * held to prevent that a timer is enqueued in our queue via | |
1272 | * the migration code. This does not affect enqueueing of | |
1273 | * timers which run their callback and need to be requeued on | |
1274 | * this CPU. | |
1275 | */ | |
2456e855 | 1276 | cpu_base->expires_next = KTIME_MAX; |
21d6d52a TG |
1277 | |
1278 | __hrtimer_run_queues(cpu_base, now); | |
1279 | ||
9bc74919 TG |
1280 | /* Reevaluate the clock bases for the next expiry */ |
1281 | expires_next = __hrtimer_get_next_event(cpu_base); | |
6ff7041d TG |
1282 | /* |
1283 | * Store the new expiry value so the migration code can verify | |
1284 | * against it. | |
1285 | */ | |
54cdfdb4 | 1286 | cpu_base->expires_next = expires_next; |
9bc74919 | 1287 | cpu_base->in_hrtirq = 0; |
ecb49d1a | 1288 | raw_spin_unlock(&cpu_base->lock); |
54cdfdb4 TG |
1289 | |
1290 | /* Reprogramming necessary ? */ | |
d2540875 | 1291 | if (!tick_program_event(expires_next, 0)) { |
41d2e494 TG |
1292 | cpu_base->hang_detected = 0; |
1293 | return; | |
54cdfdb4 | 1294 | } |
41d2e494 TG |
1295 | |
1296 | /* | |
1297 | * The next timer was already expired due to: | |
1298 | * - tracing | |
1299 | * - long lasting callbacks | |
1300 | * - being scheduled away when running in a VM | |
1301 | * | |
1302 | * We need to prevent that we loop forever in the hrtimer | |
1303 | * interrupt routine. We give it 3 attempts to avoid | |
1304 | * overreacting on some spurious event. | |
5baefd6d JS |
1305 | * |
1306 | * Acquire base lock for updating the offsets and retrieving | |
1307 | * the current time. | |
41d2e494 | 1308 | */ |
196951e9 | 1309 | raw_spin_lock(&cpu_base->lock); |
5baefd6d | 1310 | now = hrtimer_update_base(cpu_base); |
41d2e494 TG |
1311 | cpu_base->nr_retries++; |
1312 | if (++retries < 3) | |
1313 | goto retry; | |
1314 | /* | |
1315 | * Give the system a chance to do something else than looping | |
1316 | * here. We stored the entry time, so we know exactly how long | |
1317 | * we spent here. We schedule the next event this amount of | |
1318 | * time away. | |
1319 | */ | |
1320 | cpu_base->nr_hangs++; | |
1321 | cpu_base->hang_detected = 1; | |
196951e9 | 1322 | raw_spin_unlock(&cpu_base->lock); |
41d2e494 | 1323 | delta = ktime_sub(now, entry_time); |
2456e855 TG |
1324 | if ((unsigned int)delta > cpu_base->max_hang_time) |
1325 | cpu_base->max_hang_time = (unsigned int) delta; | |
41d2e494 TG |
1326 | /* |
1327 | * Limit it to a sensible value as we enforce a longer | |
1328 | * delay. Give the CPU at least 100ms to catch up. | |
1329 | */ | |
2456e855 | 1330 | if (delta > 100 * NSEC_PER_MSEC) |
41d2e494 TG |
1331 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1332 | else | |
1333 | expires_next = ktime_add(now, delta); | |
1334 | tick_program_event(expires_next, 1); | |
1335 | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", | |
1336 | ktime_to_ns(delta)); | |
54cdfdb4 TG |
1337 | } |
1338 | ||
016da201 | 1339 | /* called with interrupts disabled */ |
c6eb3f70 | 1340 | static inline void __hrtimer_peek_ahead_timers(void) |
8bdec955 TG |
1341 | { |
1342 | struct tick_device *td; | |
1343 | ||
1344 | if (!hrtimer_hres_active()) | |
1345 | return; | |
1346 | ||
22127e93 | 1347 | td = this_cpu_ptr(&tick_cpu_device); |
8bdec955 TG |
1348 | if (td && td->evtdev) |
1349 | hrtimer_interrupt(td->evtdev); | |
1350 | } | |
1351 | ||
82c5b7b5 IM |
1352 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1353 | ||
1354 | static inline void __hrtimer_peek_ahead_timers(void) { } | |
1355 | ||
1356 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | |
82f67cd9 | 1357 | |
d3d74453 | 1358 | /* |
c6eb3f70 | 1359 | * Called from run_local_timers in hardirq context every jiffy |
d3d74453 | 1360 | */ |
833883d9 | 1361 | void hrtimer_run_queues(void) |
d3d74453 | 1362 | { |
dc5df73b | 1363 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
21d6d52a | 1364 | ktime_t now; |
c0a31329 | 1365 | |
e19ffe8b | 1366 | if (__hrtimer_hres_active(cpu_base)) |
d3d74453 | 1367 | return; |
54cdfdb4 | 1368 | |
d3d74453 | 1369 | /* |
c6eb3f70 TG |
1370 | * This _is_ ugly: We have to check periodically, whether we |
1371 | * can switch to highres and / or nohz mode. The clocksource | |
1372 | * switch happens with xtime_lock held. Notification from | |
1373 | * there only sets the check bit in the tick_oneshot code, | |
1374 | * otherwise we might deadlock vs. xtime_lock. | |
d3d74453 | 1375 | */ |
c6eb3f70 | 1376 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
d3d74453 | 1377 | hrtimer_switch_to_hres(); |
3055adda | 1378 | return; |
833883d9 | 1379 | } |
c6eb3f70 | 1380 | |
21d6d52a TG |
1381 | raw_spin_lock(&cpu_base->lock); |
1382 | now = hrtimer_update_base(cpu_base); | |
1383 | __hrtimer_run_queues(cpu_base, now); | |
1384 | raw_spin_unlock(&cpu_base->lock); | |
c0a31329 TG |
1385 | } |
1386 | ||
10c94ec1 TG |
1387 | /* |
1388 | * Sleep related functions: | |
1389 | */ | |
c9cb2e3d | 1390 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1391 | { |
1392 | struct hrtimer_sleeper *t = | |
1393 | container_of(timer, struct hrtimer_sleeper, timer); | |
1394 | struct task_struct *task = t->task; | |
1395 | ||
1396 | t->task = NULL; | |
1397 | if (task) | |
1398 | wake_up_process(task); | |
1399 | ||
1400 | return HRTIMER_NORESTART; | |
1401 | } | |
1402 | ||
36c8b586 | 1403 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33 TG |
1404 | { |
1405 | sl->timer.function = hrtimer_wakeup; | |
1406 | sl->task = task; | |
1407 | } | |
2bc481cf | 1408 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33 | 1409 | |
c0edd7c9 | 1410 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
ce41aaf4 AV |
1411 | { |
1412 | switch(restart->nanosleep.type) { | |
1413 | #ifdef CONFIG_COMPAT | |
1414 | case TT_COMPAT: | |
c0edd7c9 | 1415 | if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp)) |
ce41aaf4 AV |
1416 | return -EFAULT; |
1417 | break; | |
1418 | #endif | |
1419 | case TT_NATIVE: | |
c0edd7c9 | 1420 | if (put_timespec64(ts, restart->nanosleep.rmtp)) |
ce41aaf4 AV |
1421 | return -EFAULT; |
1422 | break; | |
1423 | default: | |
1424 | BUG(); | |
1425 | } | |
1426 | return -ERESTART_RESTARTBLOCK; | |
1427 | } | |
1428 | ||
669d7868 | 1429 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1430 | { |
edbeda46 AV |
1431 | struct restart_block *restart; |
1432 | ||
669d7868 | 1433 | hrtimer_init_sleeper(t, current); |
10c94ec1 | 1434 | |
432569bb RZ |
1435 | do { |
1436 | set_current_state(TASK_INTERRUPTIBLE); | |
cc584b21 | 1437 | hrtimer_start_expires(&t->timer, mode); |
432569bb | 1438 | |
54cdfdb4 | 1439 | if (likely(t->task)) |
b0f8c44f | 1440 | freezable_schedule(); |
432569bb | 1441 | |
669d7868 | 1442 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1443 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1444 | |
1445 | } while (t->task && !signal_pending(current)); | |
432569bb | 1446 | |
3588a085 PZ |
1447 | __set_current_state(TASK_RUNNING); |
1448 | ||
a7602681 | 1449 | if (!t->task) |
080344b9 | 1450 | return 0; |
080344b9 | 1451 | |
edbeda46 AV |
1452 | restart = ¤t->restart_block; |
1453 | if (restart->nanosleep.type != TT_NONE) { | |
a7602681 | 1454 | ktime_t rem = hrtimer_expires_remaining(&t->timer); |
c0edd7c9 | 1455 | struct timespec64 rmt; |
edbeda46 | 1456 | |
a7602681 AV |
1457 | if (rem <= 0) |
1458 | return 0; | |
c0edd7c9 | 1459 | rmt = ktime_to_timespec64(rem); |
a7602681 | 1460 | |
ce41aaf4 | 1461 | return nanosleep_copyout(restart, &rmt); |
a7602681 AV |
1462 | } |
1463 | return -ERESTART_RESTARTBLOCK; | |
080344b9 ON |
1464 | } |
1465 | ||
fb923c4a | 1466 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1467 | { |
669d7868 | 1468 | struct hrtimer_sleeper t; |
a7602681 | 1469 | int ret; |
10c94ec1 | 1470 | |
ab8177bc | 1471 | hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, |
237fc6e7 | 1472 | HRTIMER_MODE_ABS); |
cc584b21 | 1473 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
10c94ec1 | 1474 | |
a7602681 | 1475 | ret = do_nanosleep(&t, HRTIMER_MODE_ABS); |
237fc6e7 TG |
1476 | destroy_hrtimer_on_stack(&t.timer); |
1477 | return ret; | |
10c94ec1 TG |
1478 | } |
1479 | ||
938e7cf2 | 1480 | long hrtimer_nanosleep(const struct timespec64 *rqtp, |
10c94ec1 TG |
1481 | const enum hrtimer_mode mode, const clockid_t clockid) |
1482 | { | |
a7602681 | 1483 | struct restart_block *restart; |
669d7868 | 1484 | struct hrtimer_sleeper t; |
237fc6e7 | 1485 | int ret = 0; |
da8b44d5 | 1486 | u64 slack; |
3bd01206 AV |
1487 | |
1488 | slack = current->timer_slack_ns; | |
aab03e05 | 1489 | if (dl_task(current) || rt_task(current)) |
3bd01206 | 1490 | slack = 0; |
10c94ec1 | 1491 | |
237fc6e7 | 1492 | hrtimer_init_on_stack(&t.timer, clockid, mode); |
ad196384 | 1493 | hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); |
a7602681 AV |
1494 | ret = do_nanosleep(&t, mode); |
1495 | if (ret != -ERESTART_RESTARTBLOCK) | |
237fc6e7 | 1496 | goto out; |
10c94ec1 | 1497 | |
7978672c | 1498 | /* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7 TG |
1499 | if (mode == HRTIMER_MODE_ABS) { |
1500 | ret = -ERESTARTNOHAND; | |
1501 | goto out; | |
1502 | } | |
10c94ec1 | 1503 | |
a7602681 | 1504 | restart = ¤t->restart_block; |
1711ef38 | 1505 | restart->fn = hrtimer_nanosleep_restart; |
ab8177bc | 1506 | restart->nanosleep.clockid = t.timer.base->clockid; |
cc584b21 | 1507 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
237fc6e7 TG |
1508 | out: |
1509 | destroy_hrtimer_on_stack(&t.timer); | |
1510 | return ret; | |
10c94ec1 TG |
1511 | } |
1512 | ||
58fd3aa2 HC |
1513 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, |
1514 | struct timespec __user *, rmtp) | |
6ba1b912 | 1515 | { |
c0edd7c9 | 1516 | struct timespec64 tu; |
6ba1b912 | 1517 | |
c0edd7c9 | 1518 | if (get_timespec64(&tu, rqtp)) |
6ba1b912 TG |
1519 | return -EFAULT; |
1520 | ||
c0edd7c9 | 1521 | if (!timespec64_valid(&tu)) |
6ba1b912 TG |
1522 | return -EINVAL; |
1523 | ||
edbeda46 | 1524 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
192a82f9 | 1525 | current->restart_block.nanosleep.rmtp = rmtp; |
c0edd7c9 | 1526 | return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b912 TG |
1527 | } |
1528 | ||
edbeda46 AV |
1529 | #ifdef CONFIG_COMPAT |
1530 | ||
1531 | COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp, | |
1532 | struct compat_timespec __user *, rmtp) | |
1533 | { | |
c0edd7c9 | 1534 | struct timespec64 tu; |
edbeda46 | 1535 | |
c0edd7c9 | 1536 | if (compat_get_timespec64(&tu, rqtp)) |
edbeda46 AV |
1537 | return -EFAULT; |
1538 | ||
c0edd7c9 | 1539 | if (!timespec64_valid(&tu)) |
edbeda46 AV |
1540 | return -EINVAL; |
1541 | ||
1542 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | |
1543 | current->restart_block.nanosleep.compat_rmtp = rmtp; | |
c0edd7c9 | 1544 | return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
edbeda46 AV |
1545 | } |
1546 | #endif | |
1547 | ||
c0a31329 TG |
1548 | /* |
1549 | * Functions related to boot-time initialization: | |
1550 | */ | |
27590dc1 | 1551 | int hrtimers_prepare_cpu(unsigned int cpu) |
c0a31329 | 1552 | { |
3c8aa39d | 1553 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1554 | int i; |
1555 | ||
998adc3d | 1556 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d | 1557 | cpu_base->clock_base[i].cpu_base = cpu_base; |
998adc3d JS |
1558 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
1559 | } | |
3c8aa39d | 1560 | |
cddd0248 | 1561 | cpu_base->cpu = cpu; |
28bfd18b | 1562 | cpu_base->hres_active = 0; |
07a9a7ea | 1563 | cpu_base->expires_next = KTIME_MAX; |
27590dc1 | 1564 | return 0; |
c0a31329 TG |
1565 | } |
1566 | ||
1567 | #ifdef CONFIG_HOTPLUG_CPU | |
1568 | ||
ca109491 | 1569 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659 | 1570 | struct hrtimer_clock_base *new_base) |
c0a31329 TG |
1571 | { |
1572 | struct hrtimer *timer; | |
998adc3d | 1573 | struct timerqueue_node *node; |
c0a31329 | 1574 | |
998adc3d JS |
1575 | while ((node = timerqueue_getnext(&old_base->active))) { |
1576 | timer = container_of(node, struct hrtimer, node); | |
54cdfdb4 | 1577 | BUG_ON(hrtimer_callback_running(timer)); |
c6a2a177 | 1578 | debug_deactivate(timer); |
b00c1a99 TG |
1579 | |
1580 | /* | |
c04dca02 | 1581 | * Mark it as ENQUEUED not INACTIVE otherwise the |
b00c1a99 TG |
1582 | * timer could be seen as !active and just vanish away |
1583 | * under us on another CPU | |
1584 | */ | |
c04dca02 | 1585 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
c0a31329 | 1586 | timer->base = new_base; |
54cdfdb4 | 1587 | /* |
e3f1d883 TG |
1588 | * Enqueue the timers on the new cpu. This does not |
1589 | * reprogram the event device in case the timer | |
1590 | * expires before the earliest on this CPU, but we run | |
1591 | * hrtimer_interrupt after we migrated everything to | |
1592 | * sort out already expired timers and reprogram the | |
1593 | * event device. | |
54cdfdb4 | 1594 | */ |
63e2ed36 | 1595 | enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); |
c0a31329 TG |
1596 | } |
1597 | } | |
1598 | ||
27590dc1 | 1599 | int hrtimers_dead_cpu(unsigned int scpu) |
c0a31329 | 1600 | { |
3c8aa39d | 1601 | struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba | 1602 | int i; |
c0a31329 | 1603 | |
37810659 | 1604 | BUG_ON(cpu_online(scpu)); |
37810659 | 1605 | tick_cancel_sched_timer(scpu); |
731a55ba TG |
1606 | |
1607 | local_irq_disable(); | |
1608 | old_base = &per_cpu(hrtimer_bases, scpu); | |
dc5df73b | 1609 | new_base = this_cpu_ptr(&hrtimer_bases); |
d82f0b0f ON |
1610 | /* |
1611 | * The caller is globally serialized and nobody else | |
1612 | * takes two locks at once, deadlock is not possible. | |
1613 | */ | |
ecb49d1a TG |
1614 | raw_spin_lock(&new_base->lock); |
1615 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
c0a31329 | 1616 | |
3c8aa39d | 1617 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491 | 1618 | migrate_hrtimer_list(&old_base->clock_base[i], |
37810659 | 1619 | &new_base->clock_base[i]); |
c0a31329 TG |
1620 | } |
1621 | ||
ecb49d1a TG |
1622 | raw_spin_unlock(&old_base->lock); |
1623 | raw_spin_unlock(&new_base->lock); | |
37810659 | 1624 | |
731a55ba TG |
1625 | /* Check, if we got expired work to do */ |
1626 | __hrtimer_peek_ahead_timers(); | |
1627 | local_irq_enable(); | |
27590dc1 | 1628 | return 0; |
c0a31329 | 1629 | } |
37810659 | 1630 | |
c0a31329 TG |
1631 | #endif /* CONFIG_HOTPLUG_CPU */ |
1632 | ||
c0a31329 TG |
1633 | void __init hrtimers_init(void) |
1634 | { | |
27590dc1 | 1635 | hrtimers_prepare_cpu(smp_processor_id()); |
c0a31329 TG |
1636 | } |
1637 | ||
7bb67439 | 1638 | /** |
351b3f7a | 1639 | * schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439 | 1640 | * @expires: timeout value (ktime_t) |
654c8e0b | 1641 | * @delta: slack in expires timeout (ktime_t) |
90777713 AMG |
1642 | * @mode: timer mode |
1643 | * @clock_id: timer clock to be used | |
7bb67439 | 1644 | */ |
351b3f7a | 1645 | int __sched |
da8b44d5 | 1646 | schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
90777713 | 1647 | const enum hrtimer_mode mode, clockid_t clock_id) |
7bb67439 AV |
1648 | { |
1649 | struct hrtimer_sleeper t; | |
1650 | ||
1651 | /* | |
1652 | * Optimize when a zero timeout value is given. It does not | |
1653 | * matter whether this is an absolute or a relative time. | |
1654 | */ | |
2456e855 | 1655 | if (expires && *expires == 0) { |
7bb67439 AV |
1656 | __set_current_state(TASK_RUNNING); |
1657 | return 0; | |
1658 | } | |
1659 | ||
1660 | /* | |
43b21013 | 1661 | * A NULL parameter means "infinite" |
7bb67439 AV |
1662 | */ |
1663 | if (!expires) { | |
1664 | schedule(); | |
7bb67439 AV |
1665 | return -EINTR; |
1666 | } | |
1667 | ||
90777713 | 1668 | hrtimer_init_on_stack(&t.timer, clock_id, mode); |
654c8e0b | 1669 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
7bb67439 AV |
1670 | |
1671 | hrtimer_init_sleeper(&t, current); | |
1672 | ||
cc584b21 | 1673 | hrtimer_start_expires(&t.timer, mode); |
7bb67439 AV |
1674 | |
1675 | if (likely(t.task)) | |
1676 | schedule(); | |
1677 | ||
1678 | hrtimer_cancel(&t.timer); | |
1679 | destroy_hrtimer_on_stack(&t.timer); | |
1680 | ||
1681 | __set_current_state(TASK_RUNNING); | |
1682 | ||
1683 | return !t.task ? 0 : -EINTR; | |
1684 | } | |
351b3f7a CE |
1685 | |
1686 | /** | |
1687 | * schedule_hrtimeout_range - sleep until timeout | |
1688 | * @expires: timeout value (ktime_t) | |
1689 | * @delta: slack in expires timeout (ktime_t) | |
90777713 | 1690 | * @mode: timer mode |
351b3f7a CE |
1691 | * |
1692 | * Make the current task sleep until the given expiry time has | |
1693 | * elapsed. The routine will return immediately unless | |
1694 | * the current task state has been set (see set_current_state()). | |
1695 | * | |
1696 | * The @delta argument gives the kernel the freedom to schedule the | |
1697 | * actual wakeup to a time that is both power and performance friendly. | |
1698 | * The kernel give the normal best effort behavior for "@expires+@delta", | |
1699 | * but may decide to fire the timer earlier, but no earlier than @expires. | |
1700 | * | |
1701 | * You can set the task state as follows - | |
1702 | * | |
1703 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
1704 | * pass before the routine returns unless the current task is explicitly |
1705 | * woken up, (e.g. by wake_up_process()). | |
351b3f7a CE |
1706 | * |
1707 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
1708 | * delivered to the current task or the current task is explicitly woken |
1709 | * up. | |
351b3f7a CE |
1710 | * |
1711 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1712 | * routine returns. | |
1713 | * | |
4b7e9cf9 DA |
1714 | * Returns 0 when the timer has expired. If the task was woken before the |
1715 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
1716 | * by an explicit wakeup, it returns -EINTR. | |
351b3f7a | 1717 | */ |
da8b44d5 | 1718 | int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
351b3f7a CE |
1719 | const enum hrtimer_mode mode) |
1720 | { | |
1721 | return schedule_hrtimeout_range_clock(expires, delta, mode, | |
1722 | CLOCK_MONOTONIC); | |
1723 | } | |
654c8e0b AV |
1724 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1725 | ||
1726 | /** | |
1727 | * schedule_hrtimeout - sleep until timeout | |
1728 | * @expires: timeout value (ktime_t) | |
90777713 | 1729 | * @mode: timer mode |
654c8e0b AV |
1730 | * |
1731 | * Make the current task sleep until the given expiry time has | |
1732 | * elapsed. The routine will return immediately unless | |
1733 | * the current task state has been set (see set_current_state()). | |
1734 | * | |
1735 | * You can set the task state as follows - | |
1736 | * | |
1737 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
1738 | * pass before the routine returns unless the current task is explicitly |
1739 | * woken up, (e.g. by wake_up_process()). | |
654c8e0b AV |
1740 | * |
1741 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
1742 | * delivered to the current task or the current task is explicitly woken |
1743 | * up. | |
654c8e0b AV |
1744 | * |
1745 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1746 | * routine returns. | |
1747 | * | |
4b7e9cf9 DA |
1748 | * Returns 0 when the timer has expired. If the task was woken before the |
1749 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
1750 | * by an explicit wakeup, it returns -EINTR. | |
654c8e0b AV |
1751 | */ |
1752 | int __sched schedule_hrtimeout(ktime_t *expires, | |
1753 | const enum hrtimer_mode mode) | |
1754 | { | |
1755 | return schedule_hrtimeout_range(expires, 0, mode); | |
1756 | } | |
7bb67439 | 1757 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |