]>
Commit | Line | Data |
---|---|---|
35728b82 | 1 | // SPDX-License-Identifier: GPL-2.0 |
c0a31329 | 2 | /* |
3c8aa39d | 3 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 4 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 5 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
6 | * |
7 | * High-resolution kernel timers | |
8 | * | |
58c5fc2b TG |
9 | * In contrast to the low-resolution timeout API, aka timer wheel, |
10 | * hrtimers provide finer resolution and accuracy depending on system | |
11 | * configuration and capabilities. | |
c0a31329 TG |
12 | * |
13 | * Started by: Thomas Gleixner and Ingo Molnar | |
14 | * | |
15 | * Credits: | |
58c5fc2b | 16 | * Based on the original timer wheel code |
c0a31329 | 17 | * |
66188fae TG |
18 | * Help, testing, suggestions, bugfixes, improvements were |
19 | * provided by: | |
20 | * | |
21 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
22 | * et. al. | |
c0a31329 TG |
23 | */ |
24 | ||
25 | #include <linux/cpu.h> | |
9984de1a | 26 | #include <linux/export.h> |
c0a31329 TG |
27 | #include <linux/percpu.h> |
28 | #include <linux/hrtimer.h> | |
29 | #include <linux/notifier.h> | |
30 | #include <linux/syscalls.h> | |
31 | #include <linux/interrupt.h> | |
79bf2bb3 | 32 | #include <linux/tick.h> |
54cdfdb4 | 33 | #include <linux/err.h> |
237fc6e7 | 34 | #include <linux/debugobjects.h> |
174cd4b1 | 35 | #include <linux/sched/signal.h> |
cf4aebc2 | 36 | #include <linux/sched/sysctl.h> |
8bd75c77 | 37 | #include <linux/sched/rt.h> |
aab03e05 | 38 | #include <linux/sched/deadline.h> |
370c9135 | 39 | #include <linux/sched/nohz.h> |
b17b0153 | 40 | #include <linux/sched/debug.h> |
eea08f32 | 41 | #include <linux/timer.h> |
b0f8c44f | 42 | #include <linux/freezer.h> |
edbeda46 | 43 | #include <linux/compat.h> |
c0a31329 | 44 | |
7c0f6ba6 | 45 | #include <linux/uaccess.h> |
c0a31329 | 46 | |
c6a2a177 XG |
47 | #include <trace/events/timer.h> |
48 | ||
c1797baf | 49 | #include "tick-internal.h" |
8b094cd0 | 50 | |
c458b1d1 AMG |
51 | /* |
52 | * Masks for selecting the soft and hard context timers from | |
53 | * cpu_base->active | |
54 | */ | |
55 | #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) | |
56 | #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) | |
57 | #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) | |
58 | #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) | |
59 | ||
c0a31329 TG |
60 | /* |
61 | * The timer bases: | |
7978672c | 62 | * |
571af55a | 63 | * There are more clockids than hrtimer bases. Thus, we index |
e06383db JS |
64 | * into the timer bases by the hrtimer_base_type enum. When trying |
65 | * to reach a base using a clockid, hrtimer_clockid_to_base() | |
66 | * is used to convert from clockid to the proper hrtimer_base_type. | |
c0a31329 | 67 | */ |
54cdfdb4 | 68 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 69 | { |
84cc8fd2 | 70 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
3c8aa39d | 71 | .clock_base = |
c0a31329 | 72 | { |
3c8aa39d | 73 | { |
ab8177bc TG |
74 | .index = HRTIMER_BASE_MONOTONIC, |
75 | .clockid = CLOCK_MONOTONIC, | |
3c8aa39d | 76 | .get_time = &ktime_get, |
3c8aa39d | 77 | }, |
68fa61c0 TG |
78 | { |
79 | .index = HRTIMER_BASE_REALTIME, | |
80 | .clockid = CLOCK_REALTIME, | |
81 | .get_time = &ktime_get_real, | |
68fa61c0 | 82 | }, |
a3ed0e43 TG |
83 | { |
84 | .index = HRTIMER_BASE_BOOTTIME, | |
85 | .clockid = CLOCK_BOOTTIME, | |
86 | .get_time = &ktime_get_boottime, | |
87 | }, | |
90adda98 JS |
88 | { |
89 | .index = HRTIMER_BASE_TAI, | |
90 | .clockid = CLOCK_TAI, | |
91 | .get_time = &ktime_get_clocktai, | |
90adda98 | 92 | }, |
98ecadd4 AMG |
93 | { |
94 | .index = HRTIMER_BASE_MONOTONIC_SOFT, | |
95 | .clockid = CLOCK_MONOTONIC, | |
96 | .get_time = &ktime_get, | |
97 | }, | |
98 | { | |
99 | .index = HRTIMER_BASE_REALTIME_SOFT, | |
100 | .clockid = CLOCK_REALTIME, | |
101 | .get_time = &ktime_get_real, | |
102 | }, | |
a3ed0e43 TG |
103 | { |
104 | .index = HRTIMER_BASE_BOOTTIME_SOFT, | |
105 | .clockid = CLOCK_BOOTTIME, | |
106 | .get_time = &ktime_get_boottime, | |
107 | }, | |
98ecadd4 AMG |
108 | { |
109 | .index = HRTIMER_BASE_TAI_SOFT, | |
110 | .clockid = CLOCK_TAI, | |
111 | .get_time = &ktime_get_clocktai, | |
112 | }, | |
3c8aa39d | 113 | } |
c0a31329 TG |
114 | }; |
115 | ||
942c3c5c | 116 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
336a9cde MZ |
117 | /* Make sure we catch unsupported clockids */ |
118 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, | |
119 | ||
ce31332d TG |
120 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
121 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, | |
a3ed0e43 | 122 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
90adda98 | 123 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
ce31332d | 124 | }; |
e06383db | 125 | |
c0a31329 TG |
126 | /* |
127 | * Functions and macros which are different for UP/SMP systems are kept in a | |
128 | * single place | |
129 | */ | |
130 | #ifdef CONFIG_SMP | |
131 | ||
887d9dc9 PZ |
132 | /* |
133 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() | |
134 | * such that hrtimer_callback_running() can unconditionally dereference | |
135 | * timer->base->cpu_base | |
136 | */ | |
137 | static struct hrtimer_cpu_base migration_cpu_base = { | |
887d9dc9 PZ |
138 | .clock_base = { { .cpu_base = &migration_cpu_base, }, }, |
139 | }; | |
140 | ||
141 | #define migration_base migration_cpu_base.clock_base[0] | |
142 | ||
5d2295f3 SAS |
143 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
144 | { | |
145 | return base == &migration_base; | |
146 | } | |
147 | ||
c0a31329 TG |
148 | /* |
149 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
150 | * means that all timers which are tied to this base via timer->base are | |
151 | * locked, and the base itself is locked too. | |
152 | * | |
153 | * So __run_timers/migrate_timers can safely modify all timers which could | |
154 | * be found on the lists/queues. | |
155 | * | |
156 | * When the timer's base is locked, and the timer removed from list, it is | |
887d9dc9 PZ |
157 | * possible to set timer->base = &migration_base and drop the lock: the timer |
158 | * remains locked. | |
c0a31329 | 159 | */ |
3c8aa39d TG |
160 | static |
161 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
162 | unsigned long *flags) | |
c0a31329 | 163 | { |
3c8aa39d | 164 | struct hrtimer_clock_base *base; |
c0a31329 TG |
165 | |
166 | for (;;) { | |
ff229eee | 167 | base = READ_ONCE(timer->base); |
887d9dc9 | 168 | if (likely(base != &migration_base)) { |
ecb49d1a | 169 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
170 | if (likely(base == timer->base)) |
171 | return base; | |
172 | /* The timer has migrated to another CPU: */ | |
ecb49d1a | 173 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
174 | } |
175 | cpu_relax(); | |
176 | } | |
177 | } | |
178 | ||
6ff7041d | 179 | /* |
07a9a7ea AMG |
180 | * We do not migrate the timer when it is expiring before the next |
181 | * event on the target cpu. When high resolution is enabled, we cannot | |
182 | * reprogram the target cpu hardware and we would cause it to fire | |
183 | * late. To keep it simple, we handle the high resolution enabled and | |
184 | * disabled case similar. | |
6ff7041d TG |
185 | * |
186 | * Called with cpu_base->lock of target cpu held. | |
187 | */ | |
188 | static int | |
189 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | |
190 | { | |
6ff7041d TG |
191 | ktime_t expires; |
192 | ||
6ff7041d | 193 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
2ac2dccc | 194 | return expires < new_base->cpu_base->expires_next; |
6ff7041d TG |
195 | } |
196 | ||
bc7a34b8 TG |
197 | static inline |
198 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, | |
199 | int pinned) | |
200 | { | |
ae67bada TG |
201 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
202 | if (static_branch_likely(&timers_migration_enabled) && !pinned) | |
203 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); | |
204 | #endif | |
662b3e19 | 205 | return base; |
bc7a34b8 | 206 | } |
bc7a34b8 | 207 | |
c0a31329 | 208 | /* |
b48362d8 FW |
209 | * We switch the timer base to a power-optimized selected CPU target, |
210 | * if: | |
211 | * - NO_HZ_COMMON is enabled | |
212 | * - timer migration is enabled | |
213 | * - the timer callback is not running | |
214 | * - the timer is not the first expiring timer on the new target | |
215 | * | |
216 | * If one of the above requirements is not fulfilled we move the timer | |
217 | * to the current CPU or leave it on the previously assigned CPU if | |
218 | * the timer callback is currently running. | |
c0a31329 | 219 | */ |
3c8aa39d | 220 | static inline struct hrtimer_clock_base * |
597d0275 AB |
221 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
222 | int pinned) | |
c0a31329 | 223 | { |
b48362d8 | 224 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
3c8aa39d | 225 | struct hrtimer_clock_base *new_base; |
ab8177bc | 226 | int basenum = base->index; |
c0a31329 | 227 | |
b48362d8 FW |
228 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
229 | new_cpu_base = get_target_base(this_cpu_base, pinned); | |
eea08f32 | 230 | again: |
e06383db | 231 | new_base = &new_cpu_base->clock_base[basenum]; |
c0a31329 TG |
232 | |
233 | if (base != new_base) { | |
234 | /* | |
6ff7041d | 235 | * We are trying to move timer to new_base. |
c0a31329 TG |
236 | * However we can't change timer's base while it is running, |
237 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
238 | * the event source in the high resolution case. The softirq | |
239 | * code will take care of this when the timer function has | |
240 | * completed. There is no conflict as we hold the lock until | |
241 | * the timer is enqueued. | |
242 | */ | |
54cdfdb4 | 243 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
244 | return base; |
245 | ||
887d9dc9 | 246 | /* See the comment in lock_hrtimer_base() */ |
ff229eee | 247 | WRITE_ONCE(timer->base, &migration_base); |
ecb49d1a TG |
248 | raw_spin_unlock(&base->cpu_base->lock); |
249 | raw_spin_lock(&new_base->cpu_base->lock); | |
eea08f32 | 250 | |
b48362d8 | 251 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 252 | hrtimer_check_target(timer, new_base)) { |
ecb49d1a TG |
253 | raw_spin_unlock(&new_base->cpu_base->lock); |
254 | raw_spin_lock(&base->cpu_base->lock); | |
b48362d8 | 255 | new_cpu_base = this_cpu_base; |
ff229eee | 256 | WRITE_ONCE(timer->base, base); |
6ff7041d | 257 | goto again; |
eea08f32 | 258 | } |
ff229eee | 259 | WRITE_ONCE(timer->base, new_base); |
012a45e3 | 260 | } else { |
b48362d8 | 261 | if (new_cpu_base != this_cpu_base && |
bc7a34b8 | 262 | hrtimer_check_target(timer, new_base)) { |
b48362d8 | 263 | new_cpu_base = this_cpu_base; |
012a45e3 LM |
264 | goto again; |
265 | } | |
c0a31329 TG |
266 | } |
267 | return new_base; | |
268 | } | |
269 | ||
270 | #else /* CONFIG_SMP */ | |
271 | ||
5d2295f3 SAS |
272 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
273 | { | |
274 | return false; | |
275 | } | |
276 | ||
3c8aa39d | 277 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
278 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
279 | { | |
3c8aa39d | 280 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 281 | |
ecb49d1a | 282 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
283 | |
284 | return base; | |
285 | } | |
286 | ||
eea08f32 | 287 | # define switch_hrtimer_base(t, b, p) (b) |
c0a31329 TG |
288 | |
289 | #endif /* !CONFIG_SMP */ | |
290 | ||
291 | /* | |
292 | * Functions for the union type storage format of ktime_t which are | |
293 | * too large for inlining: | |
294 | */ | |
295 | #if BITS_PER_LONG < 64 | |
c0a31329 TG |
296 | /* |
297 | * Divide a ktime value by a nanosecond value | |
298 | */ | |
f7bcb70e | 299 | s64 __ktime_divns(const ktime_t kt, s64 div) |
c0a31329 | 300 | { |
c0a31329 | 301 | int sft = 0; |
f7bcb70e JS |
302 | s64 dclc; |
303 | u64 tmp; | |
c0a31329 | 304 | |
900cfa46 | 305 | dclc = ktime_to_ns(kt); |
f7bcb70e JS |
306 | tmp = dclc < 0 ? -dclc : dclc; |
307 | ||
c0a31329 TG |
308 | /* Make sure the divisor is less than 2^32: */ |
309 | while (div >> 32) { | |
310 | sft++; | |
311 | div >>= 1; | |
312 | } | |
f7bcb70e JS |
313 | tmp >>= sft; |
314 | do_div(tmp, (unsigned long) div); | |
315 | return dclc < 0 ? -tmp : tmp; | |
c0a31329 | 316 | } |
8b618628 | 317 | EXPORT_SYMBOL_GPL(__ktime_divns); |
c0a31329 TG |
318 | #endif /* BITS_PER_LONG >= 64 */ |
319 | ||
5a7780e7 TG |
320 | /* |
321 | * Add two ktime values and do a safety check for overflow: | |
322 | */ | |
323 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
324 | { | |
979515c5 | 325 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
5a7780e7 TG |
326 | |
327 | /* | |
328 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
329 | * return to user space in a timespec: | |
330 | */ | |
2456e855 | 331 | if (res < 0 || res < lhs || res < rhs) |
5a7780e7 TG |
332 | res = ktime_set(KTIME_SEC_MAX, 0); |
333 | ||
334 | return res; | |
335 | } | |
336 | ||
8daa21e6 AB |
337 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
338 | ||
237fc6e7 TG |
339 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
340 | ||
341 | static struct debug_obj_descr hrtimer_debug_descr; | |
342 | ||
99777288 SG |
343 | static void *hrtimer_debug_hint(void *addr) |
344 | { | |
345 | return ((struct hrtimer *) addr)->function; | |
346 | } | |
347 | ||
237fc6e7 TG |
348 | /* |
349 | * fixup_init is called when: | |
350 | * - an active object is initialized | |
351 | */ | |
e3252464 | 352 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
353 | { |
354 | struct hrtimer *timer = addr; | |
355 | ||
356 | switch (state) { | |
357 | case ODEBUG_STATE_ACTIVE: | |
358 | hrtimer_cancel(timer); | |
359 | debug_object_init(timer, &hrtimer_debug_descr); | |
e3252464 | 360 | return true; |
237fc6e7 | 361 | default: |
e3252464 | 362 | return false; |
237fc6e7 TG |
363 | } |
364 | } | |
365 | ||
366 | /* | |
367 | * fixup_activate is called when: | |
368 | * - an active object is activated | |
b9fdac7f | 369 | * - an unknown non-static object is activated |
237fc6e7 | 370 | */ |
e3252464 | 371 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
372 | { |
373 | switch (state) { | |
237fc6e7 TG |
374 | case ODEBUG_STATE_ACTIVE: |
375 | WARN_ON(1); | |
75b710af | 376 | /* fall through */ |
237fc6e7 | 377 | default: |
e3252464 | 378 | return false; |
237fc6e7 TG |
379 | } |
380 | } | |
381 | ||
382 | /* | |
383 | * fixup_free is called when: | |
384 | * - an active object is freed | |
385 | */ | |
e3252464 | 386 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
237fc6e7 TG |
387 | { |
388 | struct hrtimer *timer = addr; | |
389 | ||
390 | switch (state) { | |
391 | case ODEBUG_STATE_ACTIVE: | |
392 | hrtimer_cancel(timer); | |
393 | debug_object_free(timer, &hrtimer_debug_descr); | |
e3252464 | 394 | return true; |
237fc6e7 | 395 | default: |
e3252464 | 396 | return false; |
237fc6e7 TG |
397 | } |
398 | } | |
399 | ||
400 | static struct debug_obj_descr hrtimer_debug_descr = { | |
401 | .name = "hrtimer", | |
99777288 | 402 | .debug_hint = hrtimer_debug_hint, |
237fc6e7 TG |
403 | .fixup_init = hrtimer_fixup_init, |
404 | .fixup_activate = hrtimer_fixup_activate, | |
405 | .fixup_free = hrtimer_fixup_free, | |
406 | }; | |
407 | ||
408 | static inline void debug_hrtimer_init(struct hrtimer *timer) | |
409 | { | |
410 | debug_object_init(timer, &hrtimer_debug_descr); | |
411 | } | |
412 | ||
5da70160 AMG |
413 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
414 | enum hrtimer_mode mode) | |
237fc6e7 TG |
415 | { |
416 | debug_object_activate(timer, &hrtimer_debug_descr); | |
417 | } | |
418 | ||
419 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | |
420 | { | |
421 | debug_object_deactivate(timer, &hrtimer_debug_descr); | |
422 | } | |
423 | ||
424 | static inline void debug_hrtimer_free(struct hrtimer *timer) | |
425 | { | |
426 | debug_object_free(timer, &hrtimer_debug_descr); | |
427 | } | |
428 | ||
429 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
430 | enum hrtimer_mode mode); | |
431 | ||
432 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |
433 | enum hrtimer_mode mode) | |
434 | { | |
435 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | |
436 | __hrtimer_init(timer, clock_id, mode); | |
437 | } | |
2bc481cf | 438 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7 | 439 | |
dbc1625f SAS |
440 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
441 | clockid_t clock_id, enum hrtimer_mode mode); | |
442 | ||
443 | void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, | |
444 | clockid_t clock_id, enum hrtimer_mode mode) | |
445 | { | |
446 | debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); | |
447 | __hrtimer_init_sleeper(sl, clock_id, mode); | |
448 | } | |
449 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); | |
450 | ||
237fc6e7 TG |
451 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
452 | { | |
453 | debug_object_free(timer, &hrtimer_debug_descr); | |
454 | } | |
c08376ac | 455 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
237fc6e7 TG |
456 | |
457 | #else | |
5da70160 | 458 | |
237fc6e7 | 459 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
5da70160 AMG |
460 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
461 | enum hrtimer_mode mode) { } | |
237fc6e7 TG |
462 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
463 | #endif | |
464 | ||
c6a2a177 XG |
465 | static inline void |
466 | debug_init(struct hrtimer *timer, clockid_t clockid, | |
467 | enum hrtimer_mode mode) | |
468 | { | |
469 | debug_hrtimer_init(timer); | |
470 | trace_hrtimer_init(timer, clockid, mode); | |
471 | } | |
472 | ||
63e2ed36 AMG |
473 | static inline void debug_activate(struct hrtimer *timer, |
474 | enum hrtimer_mode mode) | |
c6a2a177 | 475 | { |
5da70160 | 476 | debug_hrtimer_activate(timer, mode); |
63e2ed36 | 477 | trace_hrtimer_start(timer, mode); |
c6a2a177 XG |
478 | } |
479 | ||
480 | static inline void debug_deactivate(struct hrtimer *timer) | |
481 | { | |
482 | debug_hrtimer_deactivate(timer); | |
483 | trace_hrtimer_cancel(timer); | |
484 | } | |
485 | ||
c272ca58 AMG |
486 | static struct hrtimer_clock_base * |
487 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) | |
488 | { | |
489 | unsigned int idx; | |
490 | ||
491 | if (!*active) | |
492 | return NULL; | |
493 | ||
494 | idx = __ffs(*active); | |
495 | *active &= ~(1U << idx); | |
496 | ||
497 | return &cpu_base->clock_base[idx]; | |
498 | } | |
499 | ||
500 | #define for_each_active_base(base, cpu_base, active) \ | |
501 | while ((base = __next_base((cpu_base), &(active)))) | |
502 | ||
ad38f596 | 503 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
a59855cd | 504 | const struct hrtimer *exclude, |
ad38f596 AMG |
505 | unsigned int active, |
506 | ktime_t expires_next) | |
9bc74919 | 507 | { |
c272ca58 | 508 | struct hrtimer_clock_base *base; |
ad38f596 | 509 | ktime_t expires; |
9bc74919 | 510 | |
c272ca58 | 511 | for_each_active_base(base, cpu_base, active) { |
9bc74919 TG |
512 | struct timerqueue_node *next; |
513 | struct hrtimer *timer; | |
514 | ||
34aee88a | 515 | next = timerqueue_getnext(&base->active); |
9bc74919 | 516 | timer = container_of(next, struct hrtimer, node); |
a59855cd RW |
517 | if (timer == exclude) { |
518 | /* Get to the next timer in the queue. */ | |
7d2f6abb | 519 | next = timerqueue_iterate_next(next); |
a59855cd RW |
520 | if (!next) |
521 | continue; | |
522 | ||
523 | timer = container_of(next, struct hrtimer, node); | |
524 | } | |
9bc74919 | 525 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
2456e855 | 526 | if (expires < expires_next) { |
9bc74919 | 527 | expires_next = expires; |
a59855cd RW |
528 | |
529 | /* Skip cpu_base update if a timer is being excluded. */ | |
530 | if (exclude) | |
531 | continue; | |
532 | ||
5da70160 AMG |
533 | if (timer->is_soft) |
534 | cpu_base->softirq_next_timer = timer; | |
535 | else | |
536 | cpu_base->next_timer = timer; | |
895bdfa7 | 537 | } |
9bc74919 TG |
538 | } |
539 | /* | |
540 | * clock_was_set() might have changed base->offset of any of | |
541 | * the clock bases so the result might be negative. Fix it up | |
542 | * to prevent a false positive in clockevents_program_event(). | |
543 | */ | |
2456e855 TG |
544 | if (expires_next < 0) |
545 | expires_next = 0; | |
9bc74919 TG |
546 | return expires_next; |
547 | } | |
9bc74919 | 548 | |
c458b1d1 AMG |
549 | /* |
550 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next but | |
551 | * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. | |
552 | * | |
5da70160 AMG |
553 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
554 | * those timers will get run whenever the softirq gets handled, at the end of | |
555 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. | |
556 | * | |
557 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. | |
558 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual | |
559 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. | |
560 | * | |
c458b1d1 | 561 | * @active_mask must be one of: |
5da70160 | 562 | * - HRTIMER_ACTIVE_ALL, |
c458b1d1 AMG |
563 | * - HRTIMER_ACTIVE_SOFT, or |
564 | * - HRTIMER_ACTIVE_HARD. | |
565 | */ | |
5da70160 AMG |
566 | static ktime_t |
567 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) | |
ad38f596 | 568 | { |
c458b1d1 | 569 | unsigned int active; |
5da70160 | 570 | struct hrtimer *next_timer = NULL; |
ad38f596 AMG |
571 | ktime_t expires_next = KTIME_MAX; |
572 | ||
5da70160 AMG |
573 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
574 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | |
575 | cpu_base->softirq_next_timer = NULL; | |
a59855cd RW |
576 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
577 | active, KTIME_MAX); | |
5da70160 AMG |
578 | |
579 | next_timer = cpu_base->softirq_next_timer; | |
580 | } | |
ad38f596 | 581 | |
5da70160 AMG |
582 | if (active_mask & HRTIMER_ACTIVE_HARD) { |
583 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | |
584 | cpu_base->next_timer = next_timer; | |
a59855cd RW |
585 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
586 | expires_next); | |
5da70160 | 587 | } |
ad38f596 AMG |
588 | |
589 | return expires_next; | |
590 | } | |
591 | ||
21d6d52a TG |
592 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
593 | { | |
594 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; | |
a3ed0e43 | 595 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
21d6d52a TG |
596 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
597 | ||
5da70160 | 598 | ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, |
a3ed0e43 | 599 | offs_real, offs_boot, offs_tai); |
5da70160 AMG |
600 | |
601 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; | |
a3ed0e43 | 602 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
5da70160 AMG |
603 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
604 | ||
605 | return now; | |
21d6d52a TG |
606 | } |
607 | ||
28bfd18b AMG |
608 | /* |
609 | * Is the high resolution mode active ? | |
610 | */ | |
611 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) | |
612 | { | |
613 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? | |
614 | cpu_base->hres_active : 0; | |
615 | } | |
616 | ||
617 | static inline int hrtimer_hres_active(void) | |
618 | { | |
619 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); | |
620 | } | |
621 | ||
54cdfdb4 TG |
622 | /* |
623 | * Reprogram the event source with checking both queues for the | |
624 | * next event | |
625 | * Called with interrupts disabled and base->lock held | |
626 | */ | |
7403f41f AC |
627 | static void |
628 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | |
54cdfdb4 | 629 | { |
21d6d52a TG |
630 | ktime_t expires_next; |
631 | ||
5da70160 AMG |
632 | /* |
633 | * Find the current next expiration time. | |
634 | */ | |
635 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); | |
636 | ||
637 | if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { | |
638 | /* | |
639 | * When the softirq is activated, hrtimer has to be | |
640 | * programmed with the first hard hrtimer because soft | |
641 | * timer interrupt could occur too late. | |
642 | */ | |
643 | if (cpu_base->softirq_activated) | |
644 | expires_next = __hrtimer_get_next_event(cpu_base, | |
645 | HRTIMER_ACTIVE_HARD); | |
646 | else | |
647 | cpu_base->softirq_expires_next = expires_next; | |
648 | } | |
54cdfdb4 | 649 | |
2456e855 | 650 | if (skip_equal && expires_next == cpu_base->expires_next) |
7403f41f AC |
651 | return; |
652 | ||
2456e855 | 653 | cpu_base->expires_next = expires_next; |
7403f41f | 654 | |
6c6c0d5a | 655 | /* |
61bb4bcb AMG |
656 | * If hres is not active, hardware does not have to be |
657 | * reprogrammed yet. | |
658 | * | |
6c6c0d5a SH |
659 | * If a hang was detected in the last timer interrupt then we |
660 | * leave the hang delay active in the hardware. We want the | |
661 | * system to make progress. That also prevents the following | |
662 | * scenario: | |
663 | * T1 expires 50ms from now | |
664 | * T2 expires 5s from now | |
665 | * | |
666 | * T1 is removed, so this code is called and would reprogram | |
667 | * the hardware to 5s from now. Any hrtimer_start after that | |
668 | * will not reprogram the hardware due to hang_detected being | |
669 | * set. So we'd effectivly block all timers until the T2 event | |
670 | * fires. | |
671 | */ | |
61bb4bcb | 672 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
6c6c0d5a SH |
673 | return; |
674 | ||
d2540875 | 675 | tick_program_event(cpu_base->expires_next, 1); |
54cdfdb4 TG |
676 | } |
677 | ||
ebba2c72 AMG |
678 | /* High resolution timer related functions */ |
679 | #ifdef CONFIG_HIGH_RES_TIMERS | |
680 | ||
681 | /* | |
682 | * High resolution timer enabled ? | |
683 | */ | |
684 | static bool hrtimer_hres_enabled __read_mostly = true; | |
685 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; | |
686 | EXPORT_SYMBOL_GPL(hrtimer_resolution); | |
687 | ||
688 | /* | |
689 | * Enable / Disable high resolution mode | |
690 | */ | |
691 | static int __init setup_hrtimer_hres(char *str) | |
692 | { | |
693 | return (kstrtobool(str, &hrtimer_hres_enabled) == 0); | |
694 | } | |
695 | ||
696 | __setup("highres=", setup_hrtimer_hres); | |
697 | ||
698 | /* | |
699 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
700 | */ | |
701 | static inline int hrtimer_is_hres_enabled(void) | |
702 | { | |
703 | return hrtimer_hres_enabled; | |
704 | } | |
705 | ||
9ec26907 TG |
706 | /* |
707 | * Retrigger next event is called after clock was set | |
708 | * | |
709 | * Called with interrupts disabled via on_each_cpu() | |
710 | */ | |
711 | static void retrigger_next_event(void *arg) | |
712 | { | |
dc5df73b | 713 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
9ec26907 | 714 | |
851cff8c | 715 | if (!__hrtimer_hres_active(base)) |
9ec26907 TG |
716 | return; |
717 | ||
9ec26907 | 718 | raw_spin_lock(&base->lock); |
5baefd6d | 719 | hrtimer_update_base(base); |
9ec26907 TG |
720 | hrtimer_force_reprogram(base, 0); |
721 | raw_spin_unlock(&base->lock); | |
722 | } | |
b12a03ce | 723 | |
54cdfdb4 TG |
724 | /* |
725 | * Switch to high resolution mode | |
726 | */ | |
75e3b37d | 727 | static void hrtimer_switch_to_hres(void) |
54cdfdb4 | 728 | { |
c6eb3f70 | 729 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
54cdfdb4 TG |
730 | |
731 | if (tick_init_highres()) { | |
7a6e5537 GU |
732 | pr_warn("Could not switch to high resolution mode on CPU %u\n", |
733 | base->cpu); | |
85e1cd6e | 734 | return; |
54cdfdb4 TG |
735 | } |
736 | base->hres_active = 1; | |
398ca17f | 737 | hrtimer_resolution = HIGH_RES_NSEC; |
54cdfdb4 TG |
738 | |
739 | tick_setup_sched_timer(); | |
54cdfdb4 TG |
740 | /* "Retrigger" the interrupt to get things going */ |
741 | retrigger_next_event(NULL); | |
54cdfdb4 TG |
742 | } |
743 | ||
5ec2481b TG |
744 | static void clock_was_set_work(struct work_struct *work) |
745 | { | |
746 | clock_was_set(); | |
747 | } | |
748 | ||
749 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); | |
750 | ||
f55a6faa | 751 | /* |
b4d90e9f | 752 | * Called from timekeeping and resume code to reprogram the hrtimer |
5ec2481b | 753 | * interrupt device on all cpus. |
f55a6faa JS |
754 | */ |
755 | void clock_was_set_delayed(void) | |
756 | { | |
5ec2481b | 757 | schedule_work(&hrtimer_work); |
f55a6faa JS |
758 | } |
759 | ||
54cdfdb4 TG |
760 | #else |
761 | ||
54cdfdb4 | 762 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
75e3b37d | 763 | static inline void hrtimer_switch_to_hres(void) { } |
9ec26907 | 764 | static inline void retrigger_next_event(void *arg) { } |
54cdfdb4 TG |
765 | |
766 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
767 | ||
11a9fe06 AMG |
768 | /* |
769 | * When a timer is enqueued and expires earlier than the already enqueued | |
770 | * timers, we have to check, whether it expires earlier than the timer for | |
771 | * which the clock event device was armed. | |
772 | * | |
773 | * Called with interrupts disabled and base->cpu_base.lock held | |
774 | */ | |
5da70160 | 775 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
11a9fe06 AMG |
776 | { |
777 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
3ec7a3ee | 778 | struct hrtimer_clock_base *base = timer->base; |
11a9fe06 AMG |
779 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
780 | ||
781 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | |
782 | ||
5da70160 AMG |
783 | /* |
784 | * CLOCK_REALTIME timer might be requested with an absolute | |
785 | * expiry time which is less than base->offset. Set it to 0. | |
786 | */ | |
787 | if (expires < 0) | |
788 | expires = 0; | |
789 | ||
790 | if (timer->is_soft) { | |
791 | /* | |
792 | * soft hrtimer could be started on a remote CPU. In this | |
793 | * case softirq_expires_next needs to be updated on the | |
794 | * remote CPU. The soft hrtimer will not expire before the | |
795 | * first hard hrtimer on the remote CPU - | |
796 | * hrtimer_check_target() prevents this case. | |
797 | */ | |
798 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; | |
799 | ||
800 | if (timer_cpu_base->softirq_activated) | |
801 | return; | |
802 | ||
803 | if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) | |
804 | return; | |
805 | ||
806 | timer_cpu_base->softirq_next_timer = timer; | |
807 | timer_cpu_base->softirq_expires_next = expires; | |
808 | ||
809 | if (!ktime_before(expires, timer_cpu_base->expires_next) || | |
810 | !reprogram) | |
811 | return; | |
812 | } | |
813 | ||
11a9fe06 AMG |
814 | /* |
815 | * If the timer is not on the current cpu, we cannot reprogram | |
816 | * the other cpus clock event device. | |
817 | */ | |
818 | if (base->cpu_base != cpu_base) | |
819 | return; | |
820 | ||
821 | /* | |
822 | * If the hrtimer interrupt is running, then it will | |
823 | * reevaluate the clock bases and reprogram the clock event | |
824 | * device. The callbacks are always executed in hard interrupt | |
825 | * context so we don't need an extra check for a running | |
826 | * callback. | |
827 | */ | |
828 | if (cpu_base->in_hrtirq) | |
829 | return; | |
830 | ||
11a9fe06 AMG |
831 | if (expires >= cpu_base->expires_next) |
832 | return; | |
833 | ||
834 | /* Update the pointer to the next expiring timer */ | |
835 | cpu_base->next_timer = timer; | |
14c80341 | 836 | cpu_base->expires_next = expires; |
11a9fe06 AMG |
837 | |
838 | /* | |
14c80341 AMG |
839 | * If hres is not active, hardware does not have to be |
840 | * programmed yet. | |
841 | * | |
11a9fe06 AMG |
842 | * If a hang was detected in the last timer interrupt then we |
843 | * do not schedule a timer which is earlier than the expiry | |
844 | * which we enforced in the hang detection. We want the system | |
845 | * to make progress. | |
846 | */ | |
14c80341 | 847 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
11a9fe06 AMG |
848 | return; |
849 | ||
850 | /* | |
851 | * Program the timer hardware. We enforce the expiry for | |
852 | * events which are already in the past. | |
853 | */ | |
11a9fe06 AMG |
854 | tick_program_event(expires, 1); |
855 | } | |
856 | ||
b12a03ce TG |
857 | /* |
858 | * Clock realtime was set | |
859 | * | |
860 | * Change the offset of the realtime clock vs. the monotonic | |
861 | * clock. | |
862 | * | |
863 | * We might have to reprogram the high resolution timer interrupt. On | |
864 | * SMP we call the architecture specific code to retrigger _all_ high | |
865 | * resolution timer interrupts. On UP we just disable interrupts and | |
866 | * call the high resolution interrupt code. | |
867 | */ | |
868 | void clock_was_set(void) | |
869 | { | |
90ff1f30 | 870 | #ifdef CONFIG_HIGH_RES_TIMERS |
b12a03ce TG |
871 | /* Retrigger the CPU local events everywhere */ |
872 | on_each_cpu(retrigger_next_event, NULL, 1); | |
9ec26907 TG |
873 | #endif |
874 | timerfd_clock_was_set(); | |
b12a03ce TG |
875 | } |
876 | ||
877 | /* | |
878 | * During resume we might have to reprogram the high resolution timer | |
7c4c3a0f DV |
879 | * interrupt on all online CPUs. However, all other CPUs will be |
880 | * stopped with IRQs interrupts disabled so the clock_was_set() call | |
5ec2481b | 881 | * must be deferred. |
b12a03ce TG |
882 | */ |
883 | void hrtimers_resume(void) | |
884 | { | |
53bef3fd | 885 | lockdep_assert_irqs_disabled(); |
5ec2481b | 886 | /* Retrigger on the local CPU */ |
b12a03ce | 887 | retrigger_next_event(NULL); |
5ec2481b TG |
888 | /* And schedule a retrigger for all others */ |
889 | clock_was_set_delayed(); | |
b12a03ce TG |
890 | } |
891 | ||
c0a31329 | 892 | /* |
6506f2aa | 893 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
894 | */ |
895 | static inline | |
896 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
897 | { | |
ecb49d1a | 898 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
899 | } |
900 | ||
901 | /** | |
902 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 903 | * @timer: hrtimer to forward |
44f21475 | 904 | * @now: forward past this time |
c0a31329 TG |
905 | * @interval: the interval to forward |
906 | * | |
907 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 908 | * Returns the number of overruns. |
91e5a217 TG |
909 | * |
910 | * Can be safely called from the callback function of @timer. If | |
911 | * called from other contexts @timer must neither be enqueued nor | |
912 | * running the callback and the caller needs to take care of | |
913 | * serialization. | |
914 | * | |
915 | * Note: This only updates the timer expiry value and does not requeue | |
916 | * the timer. | |
c0a31329 | 917 | */ |
4d672e7a | 918 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 919 | { |
4d672e7a | 920 | u64 orun = 1; |
44f21475 | 921 | ktime_t delta; |
c0a31329 | 922 | |
cc584b21 | 923 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a31329 | 924 | |
2456e855 | 925 | if (delta < 0) |
c0a31329 TG |
926 | return 0; |
927 | ||
5de2755c PZ |
928 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
929 | return 0; | |
930 | ||
2456e855 TG |
931 | if (interval < hrtimer_resolution) |
932 | interval = hrtimer_resolution; | |
c9db4fa1 | 933 | |
2456e855 | 934 | if (unlikely(delta >= interval)) { |
df869b63 | 935 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
936 | |
937 | orun = ktime_divns(delta, incr); | |
cc584b21 | 938 | hrtimer_add_expires_ns(timer, incr * orun); |
2456e855 | 939 | if (hrtimer_get_expires_tv64(timer) > now) |
c0a31329 TG |
940 | return orun; |
941 | /* | |
942 | * This (and the ktime_add() below) is the | |
943 | * correction for exact: | |
944 | */ | |
945 | orun++; | |
946 | } | |
cc584b21 | 947 | hrtimer_add_expires(timer, interval); |
c0a31329 TG |
948 | |
949 | return orun; | |
950 | } | |
6bdb6b62 | 951 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
952 | |
953 | /* | |
954 | * enqueue_hrtimer - internal function to (re)start a timer | |
955 | * | |
956 | * The timer is inserted in expiry order. Insertion into the | |
957 | * red black tree is O(log(n)). Must hold the base lock. | |
a6037b61 PZ |
958 | * |
959 | * Returns 1 when the new timer is the leftmost timer in the tree. | |
c0a31329 | 960 | */ |
a6037b61 | 961 | static int enqueue_hrtimer(struct hrtimer *timer, |
63e2ed36 AMG |
962 | struct hrtimer_clock_base *base, |
963 | enum hrtimer_mode mode) | |
c0a31329 | 964 | { |
63e2ed36 | 965 | debug_activate(timer, mode); |
237fc6e7 | 966 | |
ab8177bc | 967 | base->cpu_base->active_bases |= 1 << base->index; |
54cdfdb4 | 968 | |
56144737 ED |
969 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
970 | WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); | |
a6037b61 | 971 | |
b97f44c9 | 972 | return timerqueue_add(&base->active, &timer->node); |
288867ec | 973 | } |
c0a31329 TG |
974 | |
975 | /* | |
976 | * __remove_hrtimer - internal function to remove a timer | |
977 | * | |
978 | * Caller must hold the base lock. | |
54cdfdb4 TG |
979 | * |
980 | * High resolution timer mode reprograms the clock event device when the | |
981 | * timer is the one which expires next. The caller can disable this by setting | |
982 | * reprogram to zero. This is useful, when the context does a reprogramming | |
983 | * anyway (e.g. timer interrupt) | |
c0a31329 | 984 | */ |
3c8aa39d | 985 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 986 | struct hrtimer_clock_base *base, |
203cbf77 | 987 | u8 newstate, int reprogram) |
c0a31329 | 988 | { |
e19ffe8b | 989 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
203cbf77 | 990 | u8 state = timer->state; |
e19ffe8b | 991 | |
56144737 ED |
992 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
993 | WRITE_ONCE(timer->state, newstate); | |
895bdfa7 TG |
994 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
995 | return; | |
7403f41f | 996 | |
b97f44c9 | 997 | if (!timerqueue_del(&base->active, &timer->node)) |
e19ffe8b | 998 | cpu_base->active_bases &= ~(1 << base->index); |
7403f41f | 999 | |
895bdfa7 TG |
1000 | /* |
1001 | * Note: If reprogram is false we do not update | |
1002 | * cpu_base->next_timer. This happens when we remove the first | |
1003 | * timer on a remote cpu. No harm as we never dereference | |
1004 | * cpu_base->next_timer. So the worst thing what can happen is | |
1005 | * an superflous call to hrtimer_force_reprogram() on the | |
1006 | * remote cpu later on if the same timer gets enqueued again. | |
1007 | */ | |
1008 | if (reprogram && timer == cpu_base->next_timer) | |
1009 | hrtimer_force_reprogram(cpu_base, 1); | |
c0a31329 TG |
1010 | } |
1011 | ||
1012 | /* | |
1013 | * remove hrtimer, called with base lock held | |
1014 | */ | |
1015 | static inline int | |
8edfb036 | 1016 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) |
c0a31329 | 1017 | { |
56144737 ED |
1018 | u8 state = timer->state; |
1019 | ||
1020 | if (state & HRTIMER_STATE_ENQUEUED) { | |
54cdfdb4 TG |
1021 | int reprogram; |
1022 | ||
1023 | /* | |
1024 | * Remove the timer and force reprogramming when high | |
1025 | * resolution mode is active and the timer is on the current | |
1026 | * CPU. If we remove a timer on another CPU, reprogramming is | |
1027 | * skipped. The interrupt event on this CPU is fired and | |
1028 | * reprogramming happens in the interrupt handler. This is a | |
1029 | * rare case and less expensive than a smp call. | |
1030 | */ | |
c6a2a177 | 1031 | debug_deactivate(timer); |
dc5df73b | 1032 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
8edfb036 | 1033 | |
887d9dc9 PZ |
1034 | if (!restart) |
1035 | state = HRTIMER_STATE_INACTIVE; | |
1036 | ||
f13d4f97 | 1037 | __remove_hrtimer(timer, base, state, reprogram); |
c0a31329 TG |
1038 | return 1; |
1039 | } | |
1040 | return 0; | |
1041 | } | |
1042 | ||
203cbf77 TG |
1043 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
1044 | const enum hrtimer_mode mode) | |
1045 | { | |
1046 | #ifdef CONFIG_TIME_LOW_RES | |
1047 | /* | |
1048 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return | |
1049 | * granular time values. For relative timers we add hrtimer_resolution | |
1050 | * (i.e. one jiffie) to prevent short timeouts. | |
1051 | */ | |
1052 | timer->is_rel = mode & HRTIMER_MODE_REL; | |
1053 | if (timer->is_rel) | |
8b0e1953 | 1054 | tim = ktime_add_safe(tim, hrtimer_resolution); |
203cbf77 TG |
1055 | #endif |
1056 | return tim; | |
1057 | } | |
1058 | ||
5da70160 AMG |
1059 | static void |
1060 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) | |
1061 | { | |
1062 | ktime_t expires; | |
1063 | ||
1064 | /* | |
1065 | * Find the next SOFT expiration. | |
1066 | */ | |
1067 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); | |
1068 | ||
1069 | /* | |
1070 | * reprogramming needs to be triggered, even if the next soft | |
1071 | * hrtimer expires at the same time than the next hard | |
1072 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! | |
1073 | */ | |
1074 | if (expires == KTIME_MAX) | |
1075 | return; | |
1076 | ||
1077 | /* | |
1078 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() | |
1079 | * cpu_base->*expires_next is only set by hrtimer_reprogram() | |
1080 | */ | |
1081 | hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); | |
1082 | } | |
1083 | ||
138a6b7a AMG |
1084 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1085 | u64 delta_ns, const enum hrtimer_mode mode, | |
1086 | struct hrtimer_clock_base *base) | |
c0a31329 | 1087 | { |
138a6b7a | 1088 | struct hrtimer_clock_base *new_base; |
c0a31329 TG |
1089 | |
1090 | /* Remove an active timer from the queue: */ | |
8edfb036 | 1091 | remove_hrtimer(timer, base, true); |
c0a31329 | 1092 | |
203cbf77 | 1093 | if (mode & HRTIMER_MODE_REL) |
84ea7fe3 | 1094 | tim = ktime_add_safe(tim, base->get_time()); |
203cbf77 TG |
1095 | |
1096 | tim = hrtimer_update_lowres(timer, tim, mode); | |
237fc6e7 | 1097 | |
da8f2e17 | 1098 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a31329 | 1099 | |
84ea7fe3 VK |
1100 | /* Switch the timer base, if necessary: */ |
1101 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); | |
1102 | ||
138a6b7a AMG |
1103 | return enqueue_hrtimer(timer, new_base, mode); |
1104 | } | |
5da70160 | 1105 | |
138a6b7a AMG |
1106 | /** |
1107 | * hrtimer_start_range_ns - (re)start an hrtimer | |
1108 | * @timer: the timer to be added | |
1109 | * @tim: expiry time | |
1110 | * @delta_ns: "slack" range for the timer | |
1111 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or | |
5da70160 AMG |
1112 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
1113 | * softirq based mode is considered for debug purpose only! | |
138a6b7a AMG |
1114 | */ |
1115 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | |
1116 | u64 delta_ns, const enum hrtimer_mode mode) | |
1117 | { | |
1118 | struct hrtimer_clock_base *base; | |
1119 | unsigned long flags; | |
1120 | ||
5da70160 AMG |
1121 | /* |
1122 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft | |
0ab6a3dd TG |
1123 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
1124 | * expiry mode because unmarked timers are moved to softirq expiry. | |
5da70160 | 1125 | */ |
0ab6a3dd TG |
1126 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
1127 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); | |
1128 | else | |
1129 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); | |
5da70160 | 1130 | |
138a6b7a AMG |
1131 | base = lock_hrtimer_base(timer, &flags); |
1132 | ||
1133 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) | |
5da70160 | 1134 | hrtimer_reprogram(timer, true); |
49a2a075 | 1135 | |
c0a31329 | 1136 | unlock_hrtimer_base(timer, &flags); |
7f1e2ca9 | 1137 | } |
da8f2e17 AV |
1138 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1139 | ||
c0a31329 TG |
1140 | /** |
1141 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
1142 | * @timer: hrtimer to stop |
1143 | * | |
1144 | * Returns: | |
51633704 MCC |
1145 | * |
1146 | * * 0 when the timer was not active | |
1147 | * * 1 when the timer was active | |
1148 | * * -1 when the timer is currently executing the callback function and | |
fa9799e3 | 1149 | * cannot be stopped |
c0a31329 TG |
1150 | */ |
1151 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
1152 | { | |
3c8aa39d | 1153 | struct hrtimer_clock_base *base; |
c0a31329 TG |
1154 | unsigned long flags; |
1155 | int ret = -1; | |
1156 | ||
19d9f422 TG |
1157 | /* |
1158 | * Check lockless first. If the timer is not active (neither | |
1159 | * enqueued nor running the callback, nothing to do here. The | |
1160 | * base lock does not serialize against a concurrent enqueue, | |
1161 | * so we can avoid taking it. | |
1162 | */ | |
1163 | if (!hrtimer_active(timer)) | |
1164 | return 0; | |
1165 | ||
c0a31329 TG |
1166 | base = lock_hrtimer_base(timer, &flags); |
1167 | ||
303e967f | 1168 | if (!hrtimer_callback_running(timer)) |
8edfb036 | 1169 | ret = remove_hrtimer(timer, base, false); |
c0a31329 TG |
1170 | |
1171 | unlock_hrtimer_base(timer, &flags); | |
1172 | ||
1173 | return ret; | |
1174 | ||
1175 | } | |
8d16b764 | 1176 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 | 1177 | |
f61eff83 AMG |
1178 | #ifdef CONFIG_PREEMPT_RT |
1179 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) | |
1180 | { | |
1181 | spin_lock_init(&base->softirq_expiry_lock); | |
1182 | } | |
1183 | ||
1184 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) | |
1185 | { | |
1186 | spin_lock(&base->softirq_expiry_lock); | |
1187 | } | |
1188 | ||
1189 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) | |
1190 | { | |
1191 | spin_unlock(&base->softirq_expiry_lock); | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | * The counterpart to hrtimer_cancel_wait_running(). | |
1196 | * | |
1197 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for | |
1198 | * the timer callback to finish. Drop expiry_lock and reaquire it. That | |
1199 | * allows the waiter to acquire the lock and make progress. | |
1200 | */ | |
1201 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, | |
1202 | unsigned long flags) | |
1203 | { | |
1204 | if (atomic_read(&cpu_base->timer_waiters)) { | |
1205 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
1206 | spin_unlock(&cpu_base->softirq_expiry_lock); | |
1207 | spin_lock(&cpu_base->softirq_expiry_lock); | |
1208 | raw_spin_lock_irq(&cpu_base->lock); | |
1209 | } | |
1210 | } | |
1211 | ||
1212 | /* | |
1213 | * This function is called on PREEMPT_RT kernels when the fast path | |
1214 | * deletion of a timer failed because the timer callback function was | |
1215 | * running. | |
1216 | * | |
0bee3b60 FW |
1217 | * This prevents priority inversion: if the soft irq thread is preempted |
1218 | * in the middle of a timer callback, then calling del_timer_sync() can | |
1219 | * lead to two issues: | |
1220 | * | |
1221 | * - If the caller is on a remote CPU then it has to spin wait for the timer | |
1222 | * handler to complete. This can result in unbound priority inversion. | |
1223 | * | |
1224 | * - If the caller originates from the task which preempted the timer | |
1225 | * handler on the same CPU, then spin waiting for the timer handler to | |
1226 | * complete is never going to end. | |
f61eff83 AMG |
1227 | */ |
1228 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) | |
1229 | { | |
dd2261ed JG |
1230 | /* Lockless read. Prevent the compiler from reloading it below */ |
1231 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); | |
f61eff83 | 1232 | |
68b2c8c1 JG |
1233 | /* |
1234 | * Just relax if the timer expires in hard interrupt context or if | |
1235 | * it is currently on the migration base. | |
1236 | */ | |
5d2295f3 | 1237 | if (!timer->is_soft || is_migration_base(base)) { |
f61eff83 AMG |
1238 | cpu_relax(); |
1239 | return; | |
1240 | } | |
1241 | ||
1242 | /* | |
1243 | * Mark the base as contended and grab the expiry lock, which is | |
1244 | * held by the softirq across the timer callback. Drop the lock | |
1245 | * immediately so the softirq can expire the next timer. In theory | |
1246 | * the timer could already be running again, but that's more than | |
1247 | * unlikely and just causes another wait loop. | |
1248 | */ | |
1249 | atomic_inc(&base->cpu_base->timer_waiters); | |
1250 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); | |
1251 | atomic_dec(&base->cpu_base->timer_waiters); | |
1252 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); | |
1253 | } | |
1254 | #else | |
1255 | static inline void | |
1256 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } | |
1257 | static inline void | |
1258 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } | |
1259 | static inline void | |
1260 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } | |
1261 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, | |
1262 | unsigned long flags) { } | |
1263 | #endif | |
1264 | ||
c0a31329 TG |
1265 | /** |
1266 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
1267 | * @timer: the timer to be cancelled |
1268 | * | |
1269 | * Returns: | |
1270 | * 0 when the timer was not active | |
1271 | * 1 when the timer was active | |
1272 | */ | |
1273 | int hrtimer_cancel(struct hrtimer *timer) | |
1274 | { | |
f61eff83 | 1275 | int ret; |
c0a31329 | 1276 | |
f61eff83 AMG |
1277 | do { |
1278 | ret = hrtimer_try_to_cancel(timer); | |
1279 | ||
1280 | if (ret < 0) | |
1281 | hrtimer_cancel_wait_running(timer); | |
1282 | } while (ret < 0); | |
1283 | return ret; | |
c0a31329 | 1284 | } |
8d16b764 | 1285 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
1286 | |
1287 | /** | |
1288 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 | 1289 | * @timer: the timer to read |
203cbf77 | 1290 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
c0a31329 | 1291 | */ |
203cbf77 | 1292 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
c0a31329 | 1293 | { |
c0a31329 TG |
1294 | unsigned long flags; |
1295 | ktime_t rem; | |
1296 | ||
b3bd3de6 | 1297 | lock_hrtimer_base(timer, &flags); |
203cbf77 TG |
1298 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
1299 | rem = hrtimer_expires_remaining_adjusted(timer); | |
1300 | else | |
1301 | rem = hrtimer_expires_remaining(timer); | |
c0a31329 TG |
1302 | unlock_hrtimer_base(timer, &flags); |
1303 | ||
1304 | return rem; | |
1305 | } | |
203cbf77 | 1306 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
c0a31329 | 1307 | |
3451d024 | 1308 | #ifdef CONFIG_NO_HZ_COMMON |
69239749 TL |
1309 | /** |
1310 | * hrtimer_get_next_event - get the time until next expiry event | |
1311 | * | |
c1ad348b | 1312 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
69239749 | 1313 | */ |
c1ad348b | 1314 | u64 hrtimer_get_next_event(void) |
69239749 | 1315 | { |
dc5df73b | 1316 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
c1ad348b | 1317 | u64 expires = KTIME_MAX; |
69239749 | 1318 | unsigned long flags; |
69239749 | 1319 | |
ecb49d1a | 1320 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d | 1321 | |
e19ffe8b | 1322 | if (!__hrtimer_hres_active(cpu_base)) |
5da70160 | 1323 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
3c8aa39d | 1324 | |
ecb49d1a | 1325 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d | 1326 | |
c1ad348b | 1327 | return expires; |
69239749 | 1328 | } |
a59855cd RW |
1329 | |
1330 | /** | |
1331 | * hrtimer_next_event_without - time until next expiry event w/o one timer | |
1332 | * @exclude: timer to exclude | |
1333 | * | |
1334 | * Returns the next expiry time over all timers except for the @exclude one or | |
1335 | * KTIME_MAX if none of them is pending. | |
1336 | */ | |
1337 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) | |
1338 | { | |
1339 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1340 | u64 expires = KTIME_MAX; | |
1341 | unsigned long flags; | |
1342 | ||
1343 | raw_spin_lock_irqsave(&cpu_base->lock, flags); | |
1344 | ||
1345 | if (__hrtimer_hres_active(cpu_base)) { | |
1346 | unsigned int active; | |
1347 | ||
1348 | if (!cpu_base->softirq_activated) { | |
1349 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; | |
1350 | expires = __hrtimer_next_event_base(cpu_base, exclude, | |
1351 | active, KTIME_MAX); | |
1352 | } | |
1353 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; | |
1354 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, | |
1355 | expires); | |
1356 | } | |
1357 | ||
1358 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
1359 | ||
1360 | return expires; | |
1361 | } | |
69239749 TL |
1362 | #endif |
1363 | ||
336a9cde MZ |
1364 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
1365 | { | |
1366 | if (likely(clock_id < MAX_CLOCKS)) { | |
1367 | int base = hrtimer_clock_to_base_table[clock_id]; | |
1368 | ||
1369 | if (likely(base != HRTIMER_MAX_CLOCK_BASES)) | |
1370 | return base; | |
1371 | } | |
1372 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); | |
1373 | return HRTIMER_BASE_MONOTONIC; | |
1374 | } | |
1375 | ||
237fc6e7 TG |
1376 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1377 | enum hrtimer_mode mode) | |
c0a31329 | 1378 | { |
42f42da4 | 1379 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
3c8aa39d | 1380 | struct hrtimer_cpu_base *cpu_base; |
f5c2f021 SAS |
1381 | int base; |
1382 | ||
1383 | /* | |
1384 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely | |
1385 | * marked for hard interrupt expiry mode are moved into soft | |
1386 | * interrupt context for latency reasons and because the callbacks | |
1387 | * can invoke functions which might sleep on RT, e.g. spin_lock(). | |
1388 | */ | |
1389 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) | |
1390 | softtimer = true; | |
c0a31329 | 1391 | |
7978672c GA |
1392 | memset(timer, 0, sizeof(struct hrtimer)); |
1393 | ||
22127e93 | 1394 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
c0a31329 | 1395 | |
48d0c9be AMG |
1396 | /* |
1397 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by | |
1398 | * clock modifications, so they needs to become CLOCK_MONOTONIC to | |
1399 | * ensure POSIX compliance. | |
1400 | */ | |
1401 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) | |
7978672c GA |
1402 | clock_id = CLOCK_MONOTONIC; |
1403 | ||
f5c2f021 | 1404 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
42f42da4 AMG |
1405 | base += hrtimer_clockid_to_base(clock_id); |
1406 | timer->is_soft = softtimer; | |
0ab6a3dd | 1407 | timer->is_hard = !softtimer; |
e06383db | 1408 | timer->base = &cpu_base->clock_base[base]; |
998adc3d | 1409 | timerqueue_init(&timer->node); |
c0a31329 | 1410 | } |
237fc6e7 TG |
1411 | |
1412 | /** | |
1413 | * hrtimer_init - initialize a timer to the given clock | |
1414 | * @timer: the timer to be initialized | |
1415 | * @clock_id: the clock to be used | |
42f42da4 AMG |
1416 | * @mode: The modes which are relevant for intitialization: |
1417 | * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, | |
1418 | * HRTIMER_MODE_REL_SOFT | |
1419 | * | |
1420 | * The PINNED variants of the above can be handed in, | |
1421 | * but the PINNED bit is ignored as pinning happens | |
1422 | * when the hrtimer is started | |
237fc6e7 TG |
1423 | */ |
1424 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
1425 | enum hrtimer_mode mode) | |
1426 | { | |
c6a2a177 | 1427 | debug_init(timer, clock_id, mode); |
237fc6e7 TG |
1428 | __hrtimer_init(timer, clock_id, mode); |
1429 | } | |
8d16b764 | 1430 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 | 1431 | |
887d9dc9 PZ |
1432 | /* |
1433 | * A timer is active, when it is enqueued into the rbtree or the | |
1434 | * callback function is running or it's in the state of being migrated | |
1435 | * to another cpu. | |
c0a31329 | 1436 | * |
887d9dc9 | 1437 | * It is important for this function to not return a false negative. |
c0a31329 | 1438 | */ |
887d9dc9 | 1439 | bool hrtimer_active(const struct hrtimer *timer) |
c0a31329 | 1440 | { |
3f0b9e8e | 1441 | struct hrtimer_clock_base *base; |
887d9dc9 | 1442 | unsigned int seq; |
c0a31329 | 1443 | |
887d9dc9 | 1444 | do { |
3f0b9e8e AMG |
1445 | base = READ_ONCE(timer->base); |
1446 | seq = raw_read_seqcount_begin(&base->seq); | |
c0a31329 | 1447 | |
887d9dc9 | 1448 | if (timer->state != HRTIMER_STATE_INACTIVE || |
3f0b9e8e | 1449 | base->running == timer) |
887d9dc9 PZ |
1450 | return true; |
1451 | ||
3f0b9e8e AMG |
1452 | } while (read_seqcount_retry(&base->seq, seq) || |
1453 | base != READ_ONCE(timer->base)); | |
887d9dc9 PZ |
1454 | |
1455 | return false; | |
c0a31329 | 1456 | } |
887d9dc9 | 1457 | EXPORT_SYMBOL_GPL(hrtimer_active); |
c0a31329 | 1458 | |
887d9dc9 PZ |
1459 | /* |
1460 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 | |
1461 | * distinct sections: | |
1462 | * | |
1463 | * - queued: the timer is queued | |
1464 | * - callback: the timer is being ran | |
1465 | * - post: the timer is inactive or (re)queued | |
1466 | * | |
1467 | * On the read side we ensure we observe timer->state and cpu_base->running | |
1468 | * from the same section, if anything changed while we looked at it, we retry. | |
1469 | * This includes timer->base changing because sequence numbers alone are | |
1470 | * insufficient for that. | |
1471 | * | |
1472 | * The sequence numbers are required because otherwise we could still observe | |
1473 | * a false negative if the read side got smeared over multiple consequtive | |
1474 | * __run_hrtimer() invocations. | |
1475 | */ | |
1476 | ||
21d6d52a TG |
1477 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
1478 | struct hrtimer_clock_base *base, | |
dd934aa8 AMG |
1479 | struct hrtimer *timer, ktime_t *now, |
1480 | unsigned long flags) | |
d3d74453 | 1481 | { |
d3d74453 PZ |
1482 | enum hrtimer_restart (*fn)(struct hrtimer *); |
1483 | int restart; | |
1484 | ||
887d9dc9 | 1485 | lockdep_assert_held(&cpu_base->lock); |
ca109491 | 1486 | |
c6a2a177 | 1487 | debug_deactivate(timer); |
3f0b9e8e | 1488 | base->running = timer; |
887d9dc9 PZ |
1489 | |
1490 | /* | |
1491 | * Separate the ->running assignment from the ->state assignment. | |
1492 | * | |
1493 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1494 | * hrtimer_active() cannot observe base->running == NULL && |
887d9dc9 PZ |
1495 | * timer->state == INACTIVE. |
1496 | */ | |
3f0b9e8e | 1497 | raw_write_seqcount_barrier(&base->seq); |
887d9dc9 PZ |
1498 | |
1499 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); | |
d3d74453 | 1500 | fn = timer->function; |
ca109491 | 1501 | |
203cbf77 TG |
1502 | /* |
1503 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the | |
1504 | * timer is restarted with a period then it becomes an absolute | |
1505 | * timer. If its not restarted it does not matter. | |
1506 | */ | |
1507 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) | |
1508 | timer->is_rel = false; | |
1509 | ||
ca109491 | 1510 | /* |
d05ca13b TG |
1511 | * The timer is marked as running in the CPU base, so it is |
1512 | * protected against migration to a different CPU even if the lock | |
1513 | * is dropped. | |
ca109491 | 1514 | */ |
dd934aa8 | 1515 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
c6a2a177 | 1516 | trace_hrtimer_expire_entry(timer, now); |
ca109491 | 1517 | restart = fn(timer); |
c6a2a177 | 1518 | trace_hrtimer_expire_exit(timer); |
dd934aa8 | 1519 | raw_spin_lock_irq(&cpu_base->lock); |
d3d74453 PZ |
1520 | |
1521 | /* | |
887d9dc9 | 1522 | * Note: We clear the running state after enqueue_hrtimer and |
b4d90e9f | 1523 | * we do not reprogram the event hardware. Happens either in |
e3f1d883 | 1524 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
5de2755c PZ |
1525 | * |
1526 | * Note: Because we dropped the cpu_base->lock above, | |
1527 | * hrtimer_start_range_ns() can have popped in and enqueued the timer | |
1528 | * for us already. | |
d3d74453 | 1529 | */ |
5de2755c PZ |
1530 | if (restart != HRTIMER_NORESTART && |
1531 | !(timer->state & HRTIMER_STATE_ENQUEUED)) | |
63e2ed36 | 1532 | enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); |
f13d4f97 | 1533 | |
887d9dc9 PZ |
1534 | /* |
1535 | * Separate the ->running assignment from the ->state assignment. | |
1536 | * | |
1537 | * As with a regular write barrier, this ensures the read side in | |
3f0b9e8e | 1538 | * hrtimer_active() cannot observe base->running.timer == NULL && |
887d9dc9 PZ |
1539 | * timer->state == INACTIVE. |
1540 | */ | |
3f0b9e8e | 1541 | raw_write_seqcount_barrier(&base->seq); |
f13d4f97 | 1542 | |
3f0b9e8e AMG |
1543 | WARN_ON_ONCE(base->running != timer); |
1544 | base->running = NULL; | |
d3d74453 PZ |
1545 | } |
1546 | ||
dd934aa8 | 1547 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
c458b1d1 | 1548 | unsigned long flags, unsigned int active_mask) |
54cdfdb4 | 1549 | { |
c272ca58 | 1550 | struct hrtimer_clock_base *base; |
c458b1d1 | 1551 | unsigned int active = cpu_base->active_bases & active_mask; |
6ff7041d | 1552 | |
c272ca58 | 1553 | for_each_active_base(base, cpu_base, active) { |
998adc3d | 1554 | struct timerqueue_node *node; |
ab8177bc TG |
1555 | ktime_t basenow; |
1556 | ||
54cdfdb4 TG |
1557 | basenow = ktime_add(now, base->offset); |
1558 | ||
998adc3d | 1559 | while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb4 TG |
1560 | struct hrtimer *timer; |
1561 | ||
998adc3d | 1562 | timer = container_of(node, struct hrtimer, node); |
54cdfdb4 | 1563 | |
654c8e0b AV |
1564 | /* |
1565 | * The immediate goal for using the softexpires is | |
1566 | * minimizing wakeups, not running timers at the | |
1567 | * earliest interrupt after their soft expiration. | |
1568 | * This allows us to avoid using a Priority Search | |
1569 | * Tree, which can answer a stabbing querry for | |
1570 | * overlapping intervals and instead use the simple | |
1571 | * BST we already have. | |
1572 | * We don't add extra wakeups by delaying timers that | |
1573 | * are right-of a not yet expired timer, because that | |
1574 | * timer will have to trigger a wakeup anyway. | |
1575 | */ | |
2456e855 | 1576 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
54cdfdb4 | 1577 | break; |
54cdfdb4 | 1578 | |
dd934aa8 | 1579 | __run_hrtimer(cpu_base, base, timer, &basenow, flags); |
f61eff83 AMG |
1580 | if (active_mask == HRTIMER_ACTIVE_SOFT) |
1581 | hrtimer_sync_wait_running(cpu_base, flags); | |
54cdfdb4 | 1582 | } |
54cdfdb4 | 1583 | } |
21d6d52a TG |
1584 | } |
1585 | ||
5da70160 AMG |
1586 | static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) |
1587 | { | |
1588 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1589 | unsigned long flags; | |
1590 | ktime_t now; | |
1591 | ||
f61eff83 | 1592 | hrtimer_cpu_base_lock_expiry(cpu_base); |
5da70160 AMG |
1593 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1594 | ||
1595 | now = hrtimer_update_base(cpu_base); | |
1596 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); | |
1597 | ||
1598 | cpu_base->softirq_activated = 0; | |
1599 | hrtimer_update_softirq_timer(cpu_base, true); | |
1600 | ||
1601 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); | |
f61eff83 | 1602 | hrtimer_cpu_base_unlock_expiry(cpu_base); |
5da70160 AMG |
1603 | } |
1604 | ||
21d6d52a TG |
1605 | #ifdef CONFIG_HIGH_RES_TIMERS |
1606 | ||
1607 | /* | |
1608 | * High resolution timer interrupt | |
1609 | * Called with interrupts disabled | |
1610 | */ | |
1611 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1612 | { | |
1613 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); | |
1614 | ktime_t expires_next, now, entry_time, delta; | |
dd934aa8 | 1615 | unsigned long flags; |
21d6d52a TG |
1616 | int retries = 0; |
1617 | ||
1618 | BUG_ON(!cpu_base->hres_active); | |
1619 | cpu_base->nr_events++; | |
2456e855 | 1620 | dev->next_event = KTIME_MAX; |
21d6d52a | 1621 | |
dd934aa8 | 1622 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
21d6d52a TG |
1623 | entry_time = now = hrtimer_update_base(cpu_base); |
1624 | retry: | |
1625 | cpu_base->in_hrtirq = 1; | |
1626 | /* | |
1627 | * We set expires_next to KTIME_MAX here with cpu_base->lock | |
1628 | * held to prevent that a timer is enqueued in our queue via | |
1629 | * the migration code. This does not affect enqueueing of | |
1630 | * timers which run their callback and need to be requeued on | |
1631 | * this CPU. | |
1632 | */ | |
2456e855 | 1633 | cpu_base->expires_next = KTIME_MAX; |
21d6d52a | 1634 | |
5da70160 AMG |
1635 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { |
1636 | cpu_base->softirq_expires_next = KTIME_MAX; | |
1637 | cpu_base->softirq_activated = 1; | |
1638 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1639 | } | |
1640 | ||
c458b1d1 | 1641 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
21d6d52a | 1642 | |
9bc74919 | 1643 | /* Reevaluate the clock bases for the next expiry */ |
5da70160 | 1644 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
6ff7041d TG |
1645 | /* |
1646 | * Store the new expiry value so the migration code can verify | |
1647 | * against it. | |
1648 | */ | |
54cdfdb4 | 1649 | cpu_base->expires_next = expires_next; |
9bc74919 | 1650 | cpu_base->in_hrtirq = 0; |
dd934aa8 | 1651 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
54cdfdb4 TG |
1652 | |
1653 | /* Reprogramming necessary ? */ | |
d2540875 | 1654 | if (!tick_program_event(expires_next, 0)) { |
41d2e494 TG |
1655 | cpu_base->hang_detected = 0; |
1656 | return; | |
54cdfdb4 | 1657 | } |
41d2e494 TG |
1658 | |
1659 | /* | |
1660 | * The next timer was already expired due to: | |
1661 | * - tracing | |
1662 | * - long lasting callbacks | |
1663 | * - being scheduled away when running in a VM | |
1664 | * | |
1665 | * We need to prevent that we loop forever in the hrtimer | |
1666 | * interrupt routine. We give it 3 attempts to avoid | |
1667 | * overreacting on some spurious event. | |
5baefd6d JS |
1668 | * |
1669 | * Acquire base lock for updating the offsets and retrieving | |
1670 | * the current time. | |
41d2e494 | 1671 | */ |
dd934aa8 | 1672 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
5baefd6d | 1673 | now = hrtimer_update_base(cpu_base); |
41d2e494 TG |
1674 | cpu_base->nr_retries++; |
1675 | if (++retries < 3) | |
1676 | goto retry; | |
1677 | /* | |
1678 | * Give the system a chance to do something else than looping | |
1679 | * here. We stored the entry time, so we know exactly how long | |
1680 | * we spent here. We schedule the next event this amount of | |
1681 | * time away. | |
1682 | */ | |
1683 | cpu_base->nr_hangs++; | |
1684 | cpu_base->hang_detected = 1; | |
dd934aa8 AMG |
1685 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1686 | ||
41d2e494 | 1687 | delta = ktime_sub(now, entry_time); |
2456e855 TG |
1688 | if ((unsigned int)delta > cpu_base->max_hang_time) |
1689 | cpu_base->max_hang_time = (unsigned int) delta; | |
41d2e494 TG |
1690 | /* |
1691 | * Limit it to a sensible value as we enforce a longer | |
1692 | * delay. Give the CPU at least 100ms to catch up. | |
1693 | */ | |
2456e855 | 1694 | if (delta > 100 * NSEC_PER_MSEC) |
41d2e494 TG |
1695 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1696 | else | |
1697 | expires_next = ktime_add(now, delta); | |
1698 | tick_program_event(expires_next, 1); | |
7a6e5537 | 1699 | pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
54cdfdb4 TG |
1700 | } |
1701 | ||
016da201 | 1702 | /* called with interrupts disabled */ |
c6eb3f70 | 1703 | static inline void __hrtimer_peek_ahead_timers(void) |
8bdec955 TG |
1704 | { |
1705 | struct tick_device *td; | |
1706 | ||
1707 | if (!hrtimer_hres_active()) | |
1708 | return; | |
1709 | ||
22127e93 | 1710 | td = this_cpu_ptr(&tick_cpu_device); |
8bdec955 TG |
1711 | if (td && td->evtdev) |
1712 | hrtimer_interrupt(td->evtdev); | |
1713 | } | |
1714 | ||
82c5b7b5 IM |
1715 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1716 | ||
1717 | static inline void __hrtimer_peek_ahead_timers(void) { } | |
1718 | ||
1719 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | |
82f67cd9 | 1720 | |
d3d74453 | 1721 | /* |
c6eb3f70 | 1722 | * Called from run_local_timers in hardirq context every jiffy |
d3d74453 | 1723 | */ |
833883d9 | 1724 | void hrtimer_run_queues(void) |
d3d74453 | 1725 | { |
dc5df73b | 1726 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
dd934aa8 | 1727 | unsigned long flags; |
21d6d52a | 1728 | ktime_t now; |
c0a31329 | 1729 | |
e19ffe8b | 1730 | if (__hrtimer_hres_active(cpu_base)) |
d3d74453 | 1731 | return; |
54cdfdb4 | 1732 | |
d3d74453 | 1733 | /* |
c6eb3f70 TG |
1734 | * This _is_ ugly: We have to check periodically, whether we |
1735 | * can switch to highres and / or nohz mode. The clocksource | |
1736 | * switch happens with xtime_lock held. Notification from | |
1737 | * there only sets the check bit in the tick_oneshot code, | |
1738 | * otherwise we might deadlock vs. xtime_lock. | |
d3d74453 | 1739 | */ |
c6eb3f70 | 1740 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { |
d3d74453 | 1741 | hrtimer_switch_to_hres(); |
3055adda | 1742 | return; |
833883d9 | 1743 | } |
c6eb3f70 | 1744 | |
dd934aa8 | 1745 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
21d6d52a | 1746 | now = hrtimer_update_base(cpu_base); |
5da70160 AMG |
1747 | |
1748 | if (!ktime_before(now, cpu_base->softirq_expires_next)) { | |
1749 | cpu_base->softirq_expires_next = KTIME_MAX; | |
1750 | cpu_base->softirq_activated = 1; | |
1751 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1752 | } | |
1753 | ||
c458b1d1 | 1754 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
dd934aa8 | 1755 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
c0a31329 TG |
1756 | } |
1757 | ||
10c94ec1 TG |
1758 | /* |
1759 | * Sleep related functions: | |
1760 | */ | |
c9cb2e3d | 1761 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1762 | { |
1763 | struct hrtimer_sleeper *t = | |
1764 | container_of(timer, struct hrtimer_sleeper, timer); | |
1765 | struct task_struct *task = t->task; | |
1766 | ||
1767 | t->task = NULL; | |
1768 | if (task) | |
1769 | wake_up_process(task); | |
1770 | ||
1771 | return HRTIMER_NORESTART; | |
1772 | } | |
1773 | ||
01656464 TG |
1774 | /** |
1775 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer | |
1776 | * @sl: sleeper to be started | |
1777 | * @mode: timer mode abs/rel | |
1778 | * | |
1779 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers | |
1780 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) | |
1781 | */ | |
1782 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, | |
1783 | enum hrtimer_mode mode) | |
1784 | { | |
1842f5a4 SAS |
1785 | /* |
1786 | * Make the enqueue delivery mode check work on RT. If the sleeper | |
1787 | * was initialized for hard interrupt delivery, force the mode bit. | |
1788 | * This is a special case for hrtimer_sleepers because | |
1789 | * hrtimer_init_sleeper() determines the delivery mode on RT so the | |
1790 | * fiddling with this decision is avoided at the call sites. | |
1791 | */ | |
1792 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) | |
1793 | mode |= HRTIMER_MODE_HARD; | |
1794 | ||
01656464 TG |
1795 | hrtimer_start_expires(&sl->timer, mode); |
1796 | } | |
1797 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); | |
1798 | ||
dbc1625f SAS |
1799 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
1800 | clockid_t clock_id, enum hrtimer_mode mode) | |
00362e33 | 1801 | { |
1842f5a4 SAS |
1802 | /* |
1803 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitely | |
1804 | * marked for hard interrupt expiry mode are moved into soft | |
1805 | * interrupt context either for latency reasons or because the | |
1806 | * hrtimer callback takes regular spinlocks or invokes other | |
1807 | * functions which are not suitable for hard interrupt context on | |
1808 | * PREEMPT_RT. | |
1809 | * | |
1810 | * The hrtimer_sleeper callback is RT compatible in hard interrupt | |
1811 | * context, but there is a latency concern: Untrusted userspace can | |
1812 | * spawn many threads which arm timers for the same expiry time on | |
1813 | * the same CPU. That causes a latency spike due to the wakeup of | |
1814 | * a gazillion threads. | |
1815 | * | |
1816 | * OTOH, priviledged real-time user space applications rely on the | |
1817 | * low latency of hard interrupt wakeups. If the current task is in | |
1818 | * a real-time scheduling class, mark the mode for hard interrupt | |
1819 | * expiry. | |
1820 | */ | |
1821 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { | |
1822 | if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) | |
1823 | mode |= HRTIMER_MODE_HARD; | |
1824 | } | |
1825 | ||
dbc1625f | 1826 | __hrtimer_init(&sl->timer, clock_id, mode); |
00362e33 | 1827 | sl->timer.function = hrtimer_wakeup; |
b7449487 | 1828 | sl->task = current; |
00362e33 | 1829 | } |
dbc1625f SAS |
1830 | |
1831 | /** | |
1832 | * hrtimer_init_sleeper - initialize sleeper to the given clock | |
1833 | * @sl: sleeper to be initialized | |
1834 | * @clock_id: the clock to be used | |
1835 | * @mode: timer mode abs/rel | |
1836 | */ | |
1837 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, | |
1838 | enum hrtimer_mode mode) | |
1839 | { | |
1840 | debug_init(&sl->timer, clock_id, mode); | |
1841 | __hrtimer_init_sleeper(sl, clock_id, mode); | |
1842 | ||
1843 | } | |
2bc481cf | 1844 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33 | 1845 | |
c0edd7c9 | 1846 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
ce41aaf4 AV |
1847 | { |
1848 | switch(restart->nanosleep.type) { | |
0fe27955 | 1849 | #ifdef CONFIG_COMPAT_32BIT_TIME |
ce41aaf4 | 1850 | case TT_COMPAT: |
9afc5eee | 1851 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
ce41aaf4 AV |
1852 | return -EFAULT; |
1853 | break; | |
1854 | #endif | |
1855 | case TT_NATIVE: | |
c0edd7c9 | 1856 | if (put_timespec64(ts, restart->nanosleep.rmtp)) |
ce41aaf4 AV |
1857 | return -EFAULT; |
1858 | break; | |
1859 | default: | |
1860 | BUG(); | |
1861 | } | |
1862 | return -ERESTART_RESTARTBLOCK; | |
1863 | } | |
1864 | ||
669d7868 | 1865 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1866 | { |
edbeda46 AV |
1867 | struct restart_block *restart; |
1868 | ||
432569bb RZ |
1869 | do { |
1870 | set_current_state(TASK_INTERRUPTIBLE); | |
01656464 | 1871 | hrtimer_sleeper_start_expires(t, mode); |
432569bb | 1872 | |
54cdfdb4 | 1873 | if (likely(t->task)) |
b0f8c44f | 1874 | freezable_schedule(); |
432569bb | 1875 | |
669d7868 | 1876 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1877 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1878 | |
1879 | } while (t->task && !signal_pending(current)); | |
432569bb | 1880 | |
3588a085 PZ |
1881 | __set_current_state(TASK_RUNNING); |
1882 | ||
a7602681 | 1883 | if (!t->task) |
080344b9 | 1884 | return 0; |
080344b9 | 1885 | |
edbeda46 AV |
1886 | restart = ¤t->restart_block; |
1887 | if (restart->nanosleep.type != TT_NONE) { | |
a7602681 | 1888 | ktime_t rem = hrtimer_expires_remaining(&t->timer); |
c0edd7c9 | 1889 | struct timespec64 rmt; |
edbeda46 | 1890 | |
a7602681 AV |
1891 | if (rem <= 0) |
1892 | return 0; | |
c0edd7c9 | 1893 | rmt = ktime_to_timespec64(rem); |
a7602681 | 1894 | |
ce41aaf4 | 1895 | return nanosleep_copyout(restart, &rmt); |
a7602681 AV |
1896 | } |
1897 | return -ERESTART_RESTARTBLOCK; | |
080344b9 ON |
1898 | } |
1899 | ||
fb923c4a | 1900 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1901 | { |
669d7868 | 1902 | struct hrtimer_sleeper t; |
a7602681 | 1903 | int ret; |
10c94ec1 | 1904 | |
dbc1625f SAS |
1905 | hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, |
1906 | HRTIMER_MODE_ABS); | |
cc584b21 | 1907 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
a7602681 | 1908 | ret = do_nanosleep(&t, HRTIMER_MODE_ABS); |
237fc6e7 TG |
1909 | destroy_hrtimer_on_stack(&t.timer); |
1910 | return ret; | |
10c94ec1 TG |
1911 | } |
1912 | ||
ea2d1f7f AV |
1913 | long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, |
1914 | const clockid_t clockid) | |
10c94ec1 | 1915 | { |
a7602681 | 1916 | struct restart_block *restart; |
669d7868 | 1917 | struct hrtimer_sleeper t; |
237fc6e7 | 1918 | int ret = 0; |
da8b44d5 | 1919 | u64 slack; |
3bd01206 AV |
1920 | |
1921 | slack = current->timer_slack_ns; | |
aab03e05 | 1922 | if (dl_task(current) || rt_task(current)) |
3bd01206 | 1923 | slack = 0; |
10c94ec1 | 1924 | |
dbc1625f | 1925 | hrtimer_init_sleeper_on_stack(&t, clockid, mode); |
ea2d1f7f | 1926 | hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); |
a7602681 AV |
1927 | ret = do_nanosleep(&t, mode); |
1928 | if (ret != -ERESTART_RESTARTBLOCK) | |
237fc6e7 | 1929 | goto out; |
10c94ec1 | 1930 | |
7978672c | 1931 | /* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7 TG |
1932 | if (mode == HRTIMER_MODE_ABS) { |
1933 | ret = -ERESTARTNOHAND; | |
1934 | goto out; | |
1935 | } | |
10c94ec1 | 1936 | |
a7602681 | 1937 | restart = ¤t->restart_block; |
1711ef38 | 1938 | restart->fn = hrtimer_nanosleep_restart; |
ab8177bc | 1939 | restart->nanosleep.clockid = t.timer.base->clockid; |
cc584b21 | 1940 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
237fc6e7 TG |
1941 | out: |
1942 | destroy_hrtimer_on_stack(&t.timer); | |
1943 | return ret; | |
10c94ec1 TG |
1944 | } |
1945 | ||
3ca47e95 | 1946 | #ifdef CONFIG_64BIT |
01909974 DD |
1947 | |
1948 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, | |
1949 | struct __kernel_timespec __user *, rmtp) | |
6ba1b912 | 1950 | { |
c0edd7c9 | 1951 | struct timespec64 tu; |
6ba1b912 | 1952 | |
c0edd7c9 | 1953 | if (get_timespec64(&tu, rqtp)) |
6ba1b912 TG |
1954 | return -EFAULT; |
1955 | ||
c0edd7c9 | 1956 | if (!timespec64_valid(&tu)) |
6ba1b912 TG |
1957 | return -EINVAL; |
1958 | ||
edbeda46 | 1959 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
192a82f9 | 1960 | current->restart_block.nanosleep.rmtp = rmtp; |
ea2d1f7f AV |
1961 | return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
1962 | CLOCK_MONOTONIC); | |
6ba1b912 TG |
1963 | } |
1964 | ||
01909974 DD |
1965 | #endif |
1966 | ||
b5793b0d | 1967 | #ifdef CONFIG_COMPAT_32BIT_TIME |
edbeda46 | 1968 | |
8dabe724 | 1969 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
9afc5eee | 1970 | struct old_timespec32 __user *, rmtp) |
edbeda46 | 1971 | { |
c0edd7c9 | 1972 | struct timespec64 tu; |
edbeda46 | 1973 | |
9afc5eee | 1974 | if (get_old_timespec32(&tu, rqtp)) |
edbeda46 AV |
1975 | return -EFAULT; |
1976 | ||
c0edd7c9 | 1977 | if (!timespec64_valid(&tu)) |
edbeda46 AV |
1978 | return -EINVAL; |
1979 | ||
1980 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | |
1981 | current->restart_block.nanosleep.compat_rmtp = rmtp; | |
ea2d1f7f AV |
1982 | return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, |
1983 | CLOCK_MONOTONIC); | |
edbeda46 AV |
1984 | } |
1985 | #endif | |
1986 | ||
c0a31329 TG |
1987 | /* |
1988 | * Functions related to boot-time initialization: | |
1989 | */ | |
27590dc1 | 1990 | int hrtimers_prepare_cpu(unsigned int cpu) |
c0a31329 | 1991 | { |
3c8aa39d | 1992 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1993 | int i; |
1994 | ||
998adc3d | 1995 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d | 1996 | cpu_base->clock_base[i].cpu_base = cpu_base; |
998adc3d JS |
1997 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
1998 | } | |
3c8aa39d | 1999 | |
cddd0248 | 2000 | cpu_base->cpu = cpu; |
303c146d | 2001 | cpu_base->active_bases = 0; |
28bfd18b | 2002 | cpu_base->hres_active = 0; |
303c146d TG |
2003 | cpu_base->hang_detected = 0; |
2004 | cpu_base->next_timer = NULL; | |
2005 | cpu_base->softirq_next_timer = NULL; | |
07a9a7ea | 2006 | cpu_base->expires_next = KTIME_MAX; |
5da70160 | 2007 | cpu_base->softirq_expires_next = KTIME_MAX; |
f61eff83 | 2008 | hrtimer_cpu_base_init_expiry_lock(cpu_base); |
27590dc1 | 2009 | return 0; |
c0a31329 TG |
2010 | } |
2011 | ||
2012 | #ifdef CONFIG_HOTPLUG_CPU | |
2013 | ||
ca109491 | 2014 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659 | 2015 | struct hrtimer_clock_base *new_base) |
c0a31329 TG |
2016 | { |
2017 | struct hrtimer *timer; | |
998adc3d | 2018 | struct timerqueue_node *node; |
c0a31329 | 2019 | |
998adc3d JS |
2020 | while ((node = timerqueue_getnext(&old_base->active))) { |
2021 | timer = container_of(node, struct hrtimer, node); | |
54cdfdb4 | 2022 | BUG_ON(hrtimer_callback_running(timer)); |
c6a2a177 | 2023 | debug_deactivate(timer); |
b00c1a99 TG |
2024 | |
2025 | /* | |
c04dca02 | 2026 | * Mark it as ENQUEUED not INACTIVE otherwise the |
b00c1a99 TG |
2027 | * timer could be seen as !active and just vanish away |
2028 | * under us on another CPU | |
2029 | */ | |
c04dca02 | 2030 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); |
c0a31329 | 2031 | timer->base = new_base; |
54cdfdb4 | 2032 | /* |
e3f1d883 TG |
2033 | * Enqueue the timers on the new cpu. This does not |
2034 | * reprogram the event device in case the timer | |
2035 | * expires before the earliest on this CPU, but we run | |
2036 | * hrtimer_interrupt after we migrated everything to | |
2037 | * sort out already expired timers and reprogram the | |
2038 | * event device. | |
54cdfdb4 | 2039 | */ |
63e2ed36 | 2040 | enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); |
c0a31329 TG |
2041 | } |
2042 | } | |
2043 | ||
27590dc1 | 2044 | int hrtimers_dead_cpu(unsigned int scpu) |
c0a31329 | 2045 | { |
3c8aa39d | 2046 | struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba | 2047 | int i; |
c0a31329 | 2048 | |
37810659 | 2049 | BUG_ON(cpu_online(scpu)); |
37810659 | 2050 | tick_cancel_sched_timer(scpu); |
731a55ba | 2051 | |
5da70160 AMG |
2052 | /* |
2053 | * this BH disable ensures that raise_softirq_irqoff() does | |
2054 | * not wakeup ksoftirqd (and acquire the pi-lock) while | |
2055 | * holding the cpu_base lock | |
2056 | */ | |
2057 | local_bh_disable(); | |
731a55ba TG |
2058 | local_irq_disable(); |
2059 | old_base = &per_cpu(hrtimer_bases, scpu); | |
dc5df73b | 2060 | new_base = this_cpu_ptr(&hrtimer_bases); |
d82f0b0f ON |
2061 | /* |
2062 | * The caller is globally serialized and nobody else | |
2063 | * takes two locks at once, deadlock is not possible. | |
2064 | */ | |
ecb49d1a TG |
2065 | raw_spin_lock(&new_base->lock); |
2066 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
c0a31329 | 2067 | |
3c8aa39d | 2068 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491 | 2069 | migrate_hrtimer_list(&old_base->clock_base[i], |
37810659 | 2070 | &new_base->clock_base[i]); |
c0a31329 TG |
2071 | } |
2072 | ||
5da70160 AMG |
2073 | /* |
2074 | * The migration might have changed the first expiring softirq | |
2075 | * timer on this CPU. Update it. | |
2076 | */ | |
2077 | hrtimer_update_softirq_timer(new_base, false); | |
2078 | ||
ecb49d1a TG |
2079 | raw_spin_unlock(&old_base->lock); |
2080 | raw_spin_unlock(&new_base->lock); | |
37810659 | 2081 | |
731a55ba TG |
2082 | /* Check, if we got expired work to do */ |
2083 | __hrtimer_peek_ahead_timers(); | |
2084 | local_irq_enable(); | |
5da70160 | 2085 | local_bh_enable(); |
27590dc1 | 2086 | return 0; |
c0a31329 | 2087 | } |
37810659 | 2088 | |
c0a31329 TG |
2089 | #endif /* CONFIG_HOTPLUG_CPU */ |
2090 | ||
c0a31329 TG |
2091 | void __init hrtimers_init(void) |
2092 | { | |
27590dc1 | 2093 | hrtimers_prepare_cpu(smp_processor_id()); |
5da70160 | 2094 | open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); |
c0a31329 TG |
2095 | } |
2096 | ||
7bb67439 | 2097 | /** |
351b3f7a | 2098 | * schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439 | 2099 | * @expires: timeout value (ktime_t) |
654c8e0b | 2100 | * @delta: slack in expires timeout (ktime_t) |
90777713 AMG |
2101 | * @mode: timer mode |
2102 | * @clock_id: timer clock to be used | |
7bb67439 | 2103 | */ |
351b3f7a | 2104 | int __sched |
da8b44d5 | 2105 | schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
90777713 | 2106 | const enum hrtimer_mode mode, clockid_t clock_id) |
7bb67439 AV |
2107 | { |
2108 | struct hrtimer_sleeper t; | |
2109 | ||
2110 | /* | |
2111 | * Optimize when a zero timeout value is given. It does not | |
2112 | * matter whether this is an absolute or a relative time. | |
2113 | */ | |
2456e855 | 2114 | if (expires && *expires == 0) { |
7bb67439 AV |
2115 | __set_current_state(TASK_RUNNING); |
2116 | return 0; | |
2117 | } | |
2118 | ||
2119 | /* | |
43b21013 | 2120 | * A NULL parameter means "infinite" |
7bb67439 AV |
2121 | */ |
2122 | if (!expires) { | |
2123 | schedule(); | |
7bb67439 AV |
2124 | return -EINTR; |
2125 | } | |
2126 | ||
dbc1625f | 2127 | hrtimer_init_sleeper_on_stack(&t, clock_id, mode); |
654c8e0b | 2128 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
01656464 | 2129 | hrtimer_sleeper_start_expires(&t, mode); |
7bb67439 AV |
2130 | |
2131 | if (likely(t.task)) | |
2132 | schedule(); | |
2133 | ||
2134 | hrtimer_cancel(&t.timer); | |
2135 | destroy_hrtimer_on_stack(&t.timer); | |
2136 | ||
2137 | __set_current_state(TASK_RUNNING); | |
2138 | ||
2139 | return !t.task ? 0 : -EINTR; | |
2140 | } | |
351b3f7a CE |
2141 | |
2142 | /** | |
2143 | * schedule_hrtimeout_range - sleep until timeout | |
2144 | * @expires: timeout value (ktime_t) | |
2145 | * @delta: slack in expires timeout (ktime_t) | |
90777713 | 2146 | * @mode: timer mode |
351b3f7a CE |
2147 | * |
2148 | * Make the current task sleep until the given expiry time has | |
2149 | * elapsed. The routine will return immediately unless | |
2150 | * the current task state has been set (see set_current_state()). | |
2151 | * | |
2152 | * The @delta argument gives the kernel the freedom to schedule the | |
2153 | * actual wakeup to a time that is both power and performance friendly. | |
2154 | * The kernel give the normal best effort behavior for "@expires+@delta", | |
2155 | * but may decide to fire the timer earlier, but no earlier than @expires. | |
2156 | * | |
2157 | * You can set the task state as follows - | |
2158 | * | |
2159 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
2160 | * pass before the routine returns unless the current task is explicitly |
2161 | * woken up, (e.g. by wake_up_process()). | |
351b3f7a CE |
2162 | * |
2163 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
2164 | * delivered to the current task or the current task is explicitly woken |
2165 | * up. | |
351b3f7a CE |
2166 | * |
2167 | * The current task state is guaranteed to be TASK_RUNNING when this | |
2168 | * routine returns. | |
2169 | * | |
4b7e9cf9 DA |
2170 | * Returns 0 when the timer has expired. If the task was woken before the |
2171 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
2172 | * by an explicit wakeup, it returns -EINTR. | |
351b3f7a | 2173 | */ |
da8b44d5 | 2174 | int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
351b3f7a CE |
2175 | const enum hrtimer_mode mode) |
2176 | { | |
2177 | return schedule_hrtimeout_range_clock(expires, delta, mode, | |
2178 | CLOCK_MONOTONIC); | |
2179 | } | |
654c8e0b AV |
2180 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
2181 | ||
2182 | /** | |
2183 | * schedule_hrtimeout - sleep until timeout | |
2184 | * @expires: timeout value (ktime_t) | |
90777713 | 2185 | * @mode: timer mode |
654c8e0b AV |
2186 | * |
2187 | * Make the current task sleep until the given expiry time has | |
2188 | * elapsed. The routine will return immediately unless | |
2189 | * the current task state has been set (see set_current_state()). | |
2190 | * | |
2191 | * You can set the task state as follows - | |
2192 | * | |
2193 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
4b7e9cf9 DA |
2194 | * pass before the routine returns unless the current task is explicitly |
2195 | * woken up, (e.g. by wake_up_process()). | |
654c8e0b AV |
2196 | * |
2197 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
4b7e9cf9 DA |
2198 | * delivered to the current task or the current task is explicitly woken |
2199 | * up. | |
654c8e0b AV |
2200 | * |
2201 | * The current task state is guaranteed to be TASK_RUNNING when this | |
2202 | * routine returns. | |
2203 | * | |
4b7e9cf9 DA |
2204 | * Returns 0 when the timer has expired. If the task was woken before the |
2205 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or | |
2206 | * by an explicit wakeup, it returns -EINTR. | |
654c8e0b AV |
2207 | */ |
2208 | int __sched schedule_hrtimeout(ktime_t *expires, | |
2209 | const enum hrtimer_mode mode) | |
2210 | { | |
2211 | return schedule_hrtimeout_range(expires, 0, mode); | |
2212 | } | |
7bb67439 | 2213 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |