]> Git Repo - linux.git/blame - kernel/time/hrtimer.c
Merge tag 'timers-v5.5-rc6' of https://git.linaro.org/people/daniel.lezcano/linux...
[linux.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4 33#include <linux/err.h>
237fc6e7 34#include <linux/debugobjects.h>
174cd4b1 35#include <linux/sched/signal.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
8bd75c77 37#include <linux/sched/rt.h>
aab03e05 38#include <linux/sched/deadline.h>
370c9135 39#include <linux/sched/nohz.h>
b17b0153 40#include <linux/sched/debug.h>
eea08f32 41#include <linux/timer.h>
b0f8c44f 42#include <linux/freezer.h>
edbeda46 43#include <linux/compat.h>
c0a31329 44
7c0f6ba6 45#include <linux/uaccess.h>
c0a31329 46
c6a2a177
XG
47#include <trace/events/timer.h>
48
c1797baf 49#include "tick-internal.h"
8b094cd0 50
c458b1d1
AMG
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
c0a31329
TG
60/*
61 * The timer bases:
7978672c 62 *
571af55a 63 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 67 */
54cdfdb4 68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 69{
84cc8fd2 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
a3ed0e43
TG
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
98ecadd4
AMG
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
a3ed0e43
TG
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
98ecadd4
AMG
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
3c8aa39d 113 }
c0a31329
TG
114};
115
942c3c5c 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
ce31332d
TG
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 124};
e06383db 125
c0a31329
TG
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
887d9dc9
PZ
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
5d2295f3
SAS
143static inline bool is_migration_base(struct hrtimer_clock_base *base)
144{
145 return base == &migration_base;
146}
147
c0a31329
TG
148/*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
c0a31329 159 */
3c8aa39d
TG
160static
161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
c0a31329 163{
3c8aa39d 164 struct hrtimer_clock_base *base;
c0a31329
TG
165
166 for (;;) {
ff229eee 167 base = READ_ONCE(timer->base);
887d9dc9 168 if (likely(base != &migration_base)) {
ecb49d1a 169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
ecb49d1a 173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
174 }
175 cpu_relax();
176 }
177}
178
6ff7041d 179/*
07a9a7ea
AMG
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
6ff7041d
TG
185 *
186 * Called with cpu_base->lock of target cpu held.
187 */
188static int
189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190{
6ff7041d
TG
191 ktime_t expires;
192
6ff7041d 193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 194 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
195}
196
bc7a34b8
TG
197static inline
198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
200{
ae67bada
TG
201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204#endif
662b3e19 205 return base;
bc7a34b8 206}
bc7a34b8 207
c0a31329 208/*
b48362d8
FW
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
215 *
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
c0a31329 219 */
3c8aa39d 220static inline struct hrtimer_clock_base *
597d0275
AB
221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
c0a31329 223{
b48362d8 224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 225 struct hrtimer_clock_base *new_base;
ab8177bc 226 int basenum = base->index;
c0a31329 227
b48362d8
FW
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 230again:
e06383db 231 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
232
233 if (base != new_base) {
234 /*
6ff7041d 235 * We are trying to move timer to new_base.
c0a31329
TG
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
242 */
54cdfdb4 243 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
244 return base;
245
887d9dc9 246 /* See the comment in lock_hrtimer_base() */
ff229eee 247 WRITE_ONCE(timer->base, &migration_base);
ecb49d1a
TG
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 250
b48362d8 251 if (new_cpu_base != this_cpu_base &&
bc7a34b8 252 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
b48362d8 255 new_cpu_base = this_cpu_base;
ff229eee 256 WRITE_ONCE(timer->base, base);
6ff7041d 257 goto again;
eea08f32 258 }
ff229eee 259 WRITE_ONCE(timer->base, new_base);
012a45e3 260 } else {
b48362d8 261 if (new_cpu_base != this_cpu_base &&
bc7a34b8 262 hrtimer_check_target(timer, new_base)) {
b48362d8 263 new_cpu_base = this_cpu_base;
012a45e3
LM
264 goto again;
265 }
c0a31329
TG
266 }
267 return new_base;
268}
269
270#else /* CONFIG_SMP */
271
5d2295f3
SAS
272static inline bool is_migration_base(struct hrtimer_clock_base *base)
273{
274 return false;
275}
276
3c8aa39d 277static inline struct hrtimer_clock_base *
c0a31329
TG
278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279{
3c8aa39d 280 struct hrtimer_clock_base *base = timer->base;
c0a31329 281
ecb49d1a 282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
283
284 return base;
285}
286
eea08f32 287# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
288
289#endif /* !CONFIG_SMP */
290
291/*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295#if BITS_PER_LONG < 64
c0a31329
TG
296/*
297 * Divide a ktime value by a nanosecond value
298 */
f7bcb70e 299s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 300{
c0a31329 301 int sft = 0;
f7bcb70e
JS
302 s64 dclc;
303 u64 tmp;
c0a31329 304
900cfa46 305 dclc = ktime_to_ns(kt);
f7bcb70e
JS
306 tmp = dclc < 0 ? -dclc : dclc;
307
c0a31329
TG
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
f7bcb70e
JS
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
c0a31329 316}
8b618628 317EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
318#endif /* BITS_PER_LONG >= 64 */
319
5a7780e7
TG
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
979515c5 325 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
2456e855 331 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
8daa21e6
AB
337EXPORT_SYMBOL_GPL(ktime_add_safe);
338
237fc6e7
TG
339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341static struct debug_obj_descr hrtimer_debug_descr;
342
99777288
SG
343static void *hrtimer_debug_hint(void *addr)
344{
345 return ((struct hrtimer *) addr)->function;
346}
347
237fc6e7
TG
348/*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
e3252464 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
353{
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 360 return true;
237fc6e7 361 default:
e3252464 362 return false;
237fc6e7
TG
363 }
364}
365
366/*
367 * fixup_activate is called when:
368 * - an active object is activated
b9fdac7f 369 * - an unknown non-static object is activated
237fc6e7 370 */
e3252464 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
372{
373 switch (state) {
237fc6e7
TG
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
75b710af 376 /* fall through */
237fc6e7 377 default:
e3252464 378 return false;
237fc6e7
TG
379 }
380}
381
382/*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
e3252464 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
387{
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 394 return true;
237fc6e7 395 default:
e3252464 396 return false;
237fc6e7
TG
397 }
398}
399
400static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
99777288 402 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406};
407
408static inline void debug_hrtimer_init(struct hrtimer *timer)
409{
410 debug_object_init(timer, &hrtimer_debug_descr);
411}
412
5da70160
AMG
413static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
237fc6e7
TG
415{
416 debug_object_activate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420{
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422}
423
424static inline void debug_hrtimer_free(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434{
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437}
2bc481cf 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7 439
dbc1625f
SAS
440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448}
449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
237fc6e7
TG
451void destroy_hrtimer_on_stack(struct hrtimer *timer)
452{
453 debug_object_free(timer, &hrtimer_debug_descr);
454}
c08376ac 455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
456
457#else
5da70160 458
237fc6e7 459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
460static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
237fc6e7
TG
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
c6a2a177
XG
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
63e2ed36
AMG
473static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
c6a2a177 475{
5da70160 476 debug_hrtimer_activate(timer, mode);
63e2ed36 477 trace_hrtimer_start(timer, mode);
c6a2a177
XG
478}
479
480static inline void debug_deactivate(struct hrtimer *timer)
481{
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
484}
485
c272ca58
AMG
486static struct hrtimer_clock_base *
487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488{
489 unsigned int idx;
490
491 if (!*active)
492 return NULL;
493
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
496
497 return &cpu_base->clock_base[idx];
498}
499
500#define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
502
ad38f596 503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 504 const struct hrtimer *exclude,
ad38f596
AMG
505 unsigned int active,
506 ktime_t expires_next)
9bc74919 507{
c272ca58 508 struct hrtimer_clock_base *base;
ad38f596 509 ktime_t expires;
9bc74919 510
c272ca58 511 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
514
34aee88a 515 next = timerqueue_getnext(&base->active);
9bc74919 516 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
7d2f6abb 519 next = timerqueue_iterate_next(next);
a59855cd
RW
520 if (!next)
521 continue;
522
523 timer = container_of(next, struct hrtimer, node);
524 }
9bc74919 525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 526 if (expires < expires_next) {
9bc74919 527 expires_next = expires;
a59855cd
RW
528
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
532
5da70160
AMG
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
895bdfa7 537 }
9bc74919
TG
538 }
539 /*
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
543 */
2456e855
TG
544 if (expires_next < 0)
545 expires_next = 0;
9bc74919
TG
546 return expires_next;
547}
9bc74919 548
c458b1d1
AMG
549/*
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552 *
5da70160
AMG
553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554 * those timers will get run whenever the softirq gets handled, at the end of
555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556 *
557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560 *
c458b1d1 561 * @active_mask must be one of:
5da70160 562 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
563 * - HRTIMER_ACTIVE_SOFT, or
564 * - HRTIMER_ACTIVE_HARD.
565 */
5da70160
AMG
566static ktime_t
567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 568{
c458b1d1 569 unsigned int active;
5da70160 570 struct hrtimer *next_timer = NULL;
ad38f596
AMG
571 ktime_t expires_next = KTIME_MAX;
572
5da70160
AMG
573 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
576 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 active, KTIME_MAX);
5da70160
AMG
578
579 next_timer = cpu_base->softirq_next_timer;
580 }
ad38f596 581
5da70160
AMG
582 if (active_mask & HRTIMER_ACTIVE_HARD) {
583 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 cpu_base->next_timer = next_timer;
a59855cd
RW
585 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 expires_next);
5da70160 587 }
ad38f596
AMG
588
589 return expires_next;
590}
591
21d6d52a
TG
592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
593{
594 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 595 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
596 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
597
5da70160 598 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 599 offs_real, offs_boot, offs_tai);
5da70160
AMG
600
601 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 602 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
603 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
604
605 return now;
21d6d52a
TG
606}
607
28bfd18b
AMG
608/*
609 * Is the high resolution mode active ?
610 */
611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
612{
613 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 cpu_base->hres_active : 0;
615}
616
617static inline int hrtimer_hres_active(void)
618{
619 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
620}
621
54cdfdb4
TG
622/*
623 * Reprogram the event source with checking both queues for the
624 * next event
625 * Called with interrupts disabled and base->lock held
626 */
7403f41f
AC
627static void
628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 629{
21d6d52a
TG
630 ktime_t expires_next;
631
5da70160
AMG
632 /*
633 * Find the current next expiration time.
634 */
635 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
636
637 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
638 /*
639 * When the softirq is activated, hrtimer has to be
640 * programmed with the first hard hrtimer because soft
641 * timer interrupt could occur too late.
642 */
643 if (cpu_base->softirq_activated)
644 expires_next = __hrtimer_get_next_event(cpu_base,
645 HRTIMER_ACTIVE_HARD);
646 else
647 cpu_base->softirq_expires_next = expires_next;
648 }
54cdfdb4 649
2456e855 650 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
651 return;
652
2456e855 653 cpu_base->expires_next = expires_next;
7403f41f 654
6c6c0d5a 655 /*
61bb4bcb
AMG
656 * If hres is not active, hardware does not have to be
657 * reprogrammed yet.
658 *
6c6c0d5a
SH
659 * If a hang was detected in the last timer interrupt then we
660 * leave the hang delay active in the hardware. We want the
661 * system to make progress. That also prevents the following
662 * scenario:
663 * T1 expires 50ms from now
664 * T2 expires 5s from now
665 *
666 * T1 is removed, so this code is called and would reprogram
667 * the hardware to 5s from now. Any hrtimer_start after that
668 * will not reprogram the hardware due to hang_detected being
669 * set. So we'd effectivly block all timers until the T2 event
670 * fires.
671 */
61bb4bcb 672 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
673 return;
674
d2540875 675 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
676}
677
ebba2c72
AMG
678/* High resolution timer related functions */
679#ifdef CONFIG_HIGH_RES_TIMERS
680
681/*
682 * High resolution timer enabled ?
683 */
684static bool hrtimer_hres_enabled __read_mostly = true;
685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686EXPORT_SYMBOL_GPL(hrtimer_resolution);
687
688/*
689 * Enable / Disable high resolution mode
690 */
691static int __init setup_hrtimer_hres(char *str)
692{
693 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
694}
695
696__setup("highres=", setup_hrtimer_hres);
697
698/*
699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
700 */
701static inline int hrtimer_is_hres_enabled(void)
702{
703 return hrtimer_hres_enabled;
704}
705
9ec26907
TG
706/*
707 * Retrigger next event is called after clock was set
708 *
709 * Called with interrupts disabled via on_each_cpu()
710 */
711static void retrigger_next_event(void *arg)
712{
dc5df73b 713 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 714
851cff8c 715 if (!__hrtimer_hres_active(base))
9ec26907
TG
716 return;
717
9ec26907 718 raw_spin_lock(&base->lock);
5baefd6d 719 hrtimer_update_base(base);
9ec26907
TG
720 hrtimer_force_reprogram(base, 0);
721 raw_spin_unlock(&base->lock);
722}
b12a03ce 723
54cdfdb4
TG
724/*
725 * Switch to high resolution mode
726 */
75e3b37d 727static void hrtimer_switch_to_hres(void)
54cdfdb4 728{
c6eb3f70 729 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
730
731 if (tick_init_highres()) {
7a6e5537
GU
732 pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 base->cpu);
85e1cd6e 734 return;
54cdfdb4
TG
735 }
736 base->hres_active = 1;
398ca17f 737 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
738
739 tick_setup_sched_timer();
54cdfdb4
TG
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
54cdfdb4
TG
742}
743
5ec2481b
TG
744static void clock_was_set_work(struct work_struct *work)
745{
746 clock_was_set();
747}
748
749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
750
f55a6faa 751/*
b4d90e9f 752 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 753 * interrupt device on all cpus.
f55a6faa
JS
754 */
755void clock_was_set_delayed(void)
756{
5ec2481b 757 schedule_work(&hrtimer_work);
f55a6faa
JS
758}
759
54cdfdb4
TG
760#else
761
54cdfdb4 762static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 763static inline void hrtimer_switch_to_hres(void) { }
9ec26907 764static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
765
766#endif /* CONFIG_HIGH_RES_TIMERS */
767
11a9fe06
AMG
768/*
769 * When a timer is enqueued and expires earlier than the already enqueued
770 * timers, we have to check, whether it expires earlier than the timer for
771 * which the clock event device was armed.
772 *
773 * Called with interrupts disabled and base->cpu_base.lock held
774 */
5da70160 775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
776{
777 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 778 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
779 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
780
781 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
782
5da70160
AMG
783 /*
784 * CLOCK_REALTIME timer might be requested with an absolute
785 * expiry time which is less than base->offset. Set it to 0.
786 */
787 if (expires < 0)
788 expires = 0;
789
790 if (timer->is_soft) {
791 /*
792 * soft hrtimer could be started on a remote CPU. In this
793 * case softirq_expires_next needs to be updated on the
794 * remote CPU. The soft hrtimer will not expire before the
795 * first hard hrtimer on the remote CPU -
796 * hrtimer_check_target() prevents this case.
797 */
798 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
799
800 if (timer_cpu_base->softirq_activated)
801 return;
802
803 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 return;
805
806 timer_cpu_base->softirq_next_timer = timer;
807 timer_cpu_base->softirq_expires_next = expires;
808
809 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 !reprogram)
811 return;
812 }
813
11a9fe06
AMG
814 /*
815 * If the timer is not on the current cpu, we cannot reprogram
816 * the other cpus clock event device.
817 */
818 if (base->cpu_base != cpu_base)
819 return;
820
821 /*
822 * If the hrtimer interrupt is running, then it will
823 * reevaluate the clock bases and reprogram the clock event
824 * device. The callbacks are always executed in hard interrupt
825 * context so we don't need an extra check for a running
826 * callback.
827 */
828 if (cpu_base->in_hrtirq)
829 return;
830
11a9fe06
AMG
831 if (expires >= cpu_base->expires_next)
832 return;
833
834 /* Update the pointer to the next expiring timer */
835 cpu_base->next_timer = timer;
14c80341 836 cpu_base->expires_next = expires;
11a9fe06
AMG
837
838 /*
14c80341
AMG
839 * If hres is not active, hardware does not have to be
840 * programmed yet.
841 *
11a9fe06
AMG
842 * If a hang was detected in the last timer interrupt then we
843 * do not schedule a timer which is earlier than the expiry
844 * which we enforced in the hang detection. We want the system
845 * to make progress.
846 */
14c80341 847 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
848 return;
849
850 /*
851 * Program the timer hardware. We enforce the expiry for
852 * events which are already in the past.
853 */
11a9fe06
AMG
854 tick_program_event(expires, 1);
855}
856
b12a03ce
TG
857/*
858 * Clock realtime was set
859 *
860 * Change the offset of the realtime clock vs. the monotonic
861 * clock.
862 *
863 * We might have to reprogram the high resolution timer interrupt. On
864 * SMP we call the architecture specific code to retrigger _all_ high
865 * resolution timer interrupts. On UP we just disable interrupts and
866 * call the high resolution interrupt code.
867 */
868void clock_was_set(void)
869{
90ff1f30 870#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
871 /* Retrigger the CPU local events everywhere */
872 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
873#endif
874 timerfd_clock_was_set();
b12a03ce
TG
875}
876
877/*
878 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
879 * interrupt on all online CPUs. However, all other CPUs will be
880 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 881 * must be deferred.
b12a03ce
TG
882 */
883void hrtimers_resume(void)
884{
53bef3fd 885 lockdep_assert_irqs_disabled();
5ec2481b 886 /* Retrigger on the local CPU */
b12a03ce 887 retrigger_next_event(NULL);
5ec2481b
TG
888 /* And schedule a retrigger for all others */
889 clock_was_set_delayed();
b12a03ce
TG
890}
891
c0a31329 892/*
6506f2aa 893 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
894 */
895static inline
896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
897{
ecb49d1a 898 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
899}
900
901/**
902 * hrtimer_forward - forward the timer expiry
c0a31329 903 * @timer: hrtimer to forward
44f21475 904 * @now: forward past this time
c0a31329
TG
905 * @interval: the interval to forward
906 *
907 * Forward the timer expiry so it will expire in the future.
8dca6f33 908 * Returns the number of overruns.
91e5a217
TG
909 *
910 * Can be safely called from the callback function of @timer. If
911 * called from other contexts @timer must neither be enqueued nor
912 * running the callback and the caller needs to take care of
913 * serialization.
914 *
915 * Note: This only updates the timer expiry value and does not requeue
916 * the timer.
c0a31329 917 */
4d672e7a 918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 919{
4d672e7a 920 u64 orun = 1;
44f21475 921 ktime_t delta;
c0a31329 922
cc584b21 923 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 924
2456e855 925 if (delta < 0)
c0a31329
TG
926 return 0;
927
5de2755c
PZ
928 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 return 0;
930
2456e855
TG
931 if (interval < hrtimer_resolution)
932 interval = hrtimer_resolution;
c9db4fa1 933
2456e855 934 if (unlikely(delta >= interval)) {
df869b63 935 s64 incr = ktime_to_ns(interval);
c0a31329
TG
936
937 orun = ktime_divns(delta, incr);
cc584b21 938 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 939 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
940 return orun;
941 /*
942 * This (and the ktime_add() below) is the
943 * correction for exact:
944 */
945 orun++;
946 }
cc584b21 947 hrtimer_add_expires(timer, interval);
c0a31329
TG
948
949 return orun;
950}
6bdb6b62 951EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
952
953/*
954 * enqueue_hrtimer - internal function to (re)start a timer
955 *
956 * The timer is inserted in expiry order. Insertion into the
957 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
958 *
959 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 960 */
a6037b61 961static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
962 struct hrtimer_clock_base *base,
963 enum hrtimer_mode mode)
c0a31329 964{
63e2ed36 965 debug_activate(timer, mode);
237fc6e7 966
ab8177bc 967 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 968
56144737
ED
969 /* Pairs with the lockless read in hrtimer_is_queued() */
970 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
a6037b61 971
b97f44c9 972 return timerqueue_add(&base->active, &timer->node);
288867ec 973}
c0a31329
TG
974
975/*
976 * __remove_hrtimer - internal function to remove a timer
977 *
978 * Caller must hold the base lock.
54cdfdb4
TG
979 *
980 * High resolution timer mode reprograms the clock event device when the
981 * timer is the one which expires next. The caller can disable this by setting
982 * reprogram to zero. This is useful, when the context does a reprogramming
983 * anyway (e.g. timer interrupt)
c0a31329 984 */
3c8aa39d 985static void __remove_hrtimer(struct hrtimer *timer,
303e967f 986 struct hrtimer_clock_base *base,
203cbf77 987 u8 newstate, int reprogram)
c0a31329 988{
e19ffe8b 989 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 990 u8 state = timer->state;
e19ffe8b 991
56144737
ED
992 /* Pairs with the lockless read in hrtimer_is_queued() */
993 WRITE_ONCE(timer->state, newstate);
895bdfa7
TG
994 if (!(state & HRTIMER_STATE_ENQUEUED))
995 return;
7403f41f 996
b97f44c9 997 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 998 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 999
895bdfa7
TG
1000 /*
1001 * Note: If reprogram is false we do not update
1002 * cpu_base->next_timer. This happens when we remove the first
1003 * timer on a remote cpu. No harm as we never dereference
1004 * cpu_base->next_timer. So the worst thing what can happen is
1005 * an superflous call to hrtimer_force_reprogram() on the
1006 * remote cpu later on if the same timer gets enqueued again.
1007 */
1008 if (reprogram && timer == cpu_base->next_timer)
1009 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
1010}
1011
1012/*
1013 * remove hrtimer, called with base lock held
1014 */
1015static inline int
8edfb036 1016remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 1017{
56144737
ED
1018 u8 state = timer->state;
1019
1020 if (state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
1021 int reprogram;
1022
1023 /*
1024 * Remove the timer and force reprogramming when high
1025 * resolution mode is active and the timer is on the current
1026 * CPU. If we remove a timer on another CPU, reprogramming is
1027 * skipped. The interrupt event on this CPU is fired and
1028 * reprogramming happens in the interrupt handler. This is a
1029 * rare case and less expensive than a smp call.
1030 */
c6a2a177 1031 debug_deactivate(timer);
dc5df73b 1032 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1033
887d9dc9
PZ
1034 if (!restart)
1035 state = HRTIMER_STATE_INACTIVE;
1036
f13d4f97 1037 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1038 return 1;
1039 }
1040 return 0;
1041}
1042
203cbf77
TG
1043static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1044 const enum hrtimer_mode mode)
1045{
1046#ifdef CONFIG_TIME_LOW_RES
1047 /*
1048 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1049 * granular time values. For relative timers we add hrtimer_resolution
1050 * (i.e. one jiffie) to prevent short timeouts.
1051 */
1052 timer->is_rel = mode & HRTIMER_MODE_REL;
1053 if (timer->is_rel)
8b0e1953 1054 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1055#endif
1056 return tim;
1057}
1058
5da70160
AMG
1059static void
1060hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1061{
1062 ktime_t expires;
1063
1064 /*
1065 * Find the next SOFT expiration.
1066 */
1067 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1068
1069 /*
1070 * reprogramming needs to be triggered, even if the next soft
1071 * hrtimer expires at the same time than the next hard
1072 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1073 */
1074 if (expires == KTIME_MAX)
1075 return;
1076
1077 /*
1078 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1079 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1080 */
1081 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1082}
1083
138a6b7a
AMG
1084static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1085 u64 delta_ns, const enum hrtimer_mode mode,
1086 struct hrtimer_clock_base *base)
c0a31329 1087{
138a6b7a 1088 struct hrtimer_clock_base *new_base;
c0a31329
TG
1089
1090 /* Remove an active timer from the queue: */
8edfb036 1091 remove_hrtimer(timer, base, true);
c0a31329 1092
203cbf77 1093 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1094 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1095
1096 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1097
da8f2e17 1098 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1099
84ea7fe3
VK
1100 /* Switch the timer base, if necessary: */
1101 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1102
138a6b7a
AMG
1103 return enqueue_hrtimer(timer, new_base, mode);
1104}
5da70160 1105
138a6b7a
AMG
1106/**
1107 * hrtimer_start_range_ns - (re)start an hrtimer
1108 * @timer: the timer to be added
1109 * @tim: expiry time
1110 * @delta_ns: "slack" range for the timer
1111 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1112 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1113 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1114 */
1115void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1116 u64 delta_ns, const enum hrtimer_mode mode)
1117{
1118 struct hrtimer_clock_base *base;
1119 unsigned long flags;
1120
5da70160
AMG
1121 /*
1122 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
0ab6a3dd
TG
1123 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1124 * expiry mode because unmarked timers are moved to softirq expiry.
5da70160 1125 */
0ab6a3dd
TG
1126 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1127 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1128 else
1129 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
5da70160 1130
138a6b7a
AMG
1131 base = lock_hrtimer_base(timer, &flags);
1132
1133 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1134 hrtimer_reprogram(timer, true);
49a2a075 1135
c0a31329 1136 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1137}
da8f2e17
AV
1138EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1139
c0a31329
TG
1140/**
1141 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1142 * @timer: hrtimer to stop
1143 *
1144 * Returns:
51633704
MCC
1145 *
1146 * * 0 when the timer was not active
1147 * * 1 when the timer was active
1148 * * -1 when the timer is currently executing the callback function and
fa9799e3 1149 * cannot be stopped
c0a31329
TG
1150 */
1151int hrtimer_try_to_cancel(struct hrtimer *timer)
1152{
3c8aa39d 1153 struct hrtimer_clock_base *base;
c0a31329
TG
1154 unsigned long flags;
1155 int ret = -1;
1156
19d9f422
TG
1157 /*
1158 * Check lockless first. If the timer is not active (neither
1159 * enqueued nor running the callback, nothing to do here. The
1160 * base lock does not serialize against a concurrent enqueue,
1161 * so we can avoid taking it.
1162 */
1163 if (!hrtimer_active(timer))
1164 return 0;
1165
c0a31329
TG
1166 base = lock_hrtimer_base(timer, &flags);
1167
303e967f 1168 if (!hrtimer_callback_running(timer))
8edfb036 1169 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1170
1171 unlock_hrtimer_base(timer, &flags);
1172
1173 return ret;
1174
1175}
8d16b764 1176EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329 1177
f61eff83
AMG
1178#ifdef CONFIG_PREEMPT_RT
1179static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1180{
1181 spin_lock_init(&base->softirq_expiry_lock);
1182}
1183
1184static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1185{
1186 spin_lock(&base->softirq_expiry_lock);
1187}
1188
1189static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1190{
1191 spin_unlock(&base->softirq_expiry_lock);
1192}
1193
1194/*
1195 * The counterpart to hrtimer_cancel_wait_running().
1196 *
1197 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1198 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1199 * allows the waiter to acquire the lock and make progress.
1200 */
1201static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1202 unsigned long flags)
1203{
1204 if (atomic_read(&cpu_base->timer_waiters)) {
1205 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1206 spin_unlock(&cpu_base->softirq_expiry_lock);
1207 spin_lock(&cpu_base->softirq_expiry_lock);
1208 raw_spin_lock_irq(&cpu_base->lock);
1209 }
1210}
1211
1212/*
1213 * This function is called on PREEMPT_RT kernels when the fast path
1214 * deletion of a timer failed because the timer callback function was
1215 * running.
1216 *
0bee3b60
FW
1217 * This prevents priority inversion: if the soft irq thread is preempted
1218 * in the middle of a timer callback, then calling del_timer_sync() can
1219 * lead to two issues:
1220 *
1221 * - If the caller is on a remote CPU then it has to spin wait for the timer
1222 * handler to complete. This can result in unbound priority inversion.
1223 *
1224 * - If the caller originates from the task which preempted the timer
1225 * handler on the same CPU, then spin waiting for the timer handler to
1226 * complete is never going to end.
f61eff83
AMG
1227 */
1228void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1229{
dd2261ed
JG
1230 /* Lockless read. Prevent the compiler from reloading it below */
1231 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
f61eff83 1232
68b2c8c1
JG
1233 /*
1234 * Just relax if the timer expires in hard interrupt context or if
1235 * it is currently on the migration base.
1236 */
5d2295f3 1237 if (!timer->is_soft || is_migration_base(base)) {
f61eff83
AMG
1238 cpu_relax();
1239 return;
1240 }
1241
1242 /*
1243 * Mark the base as contended and grab the expiry lock, which is
1244 * held by the softirq across the timer callback. Drop the lock
1245 * immediately so the softirq can expire the next timer. In theory
1246 * the timer could already be running again, but that's more than
1247 * unlikely and just causes another wait loop.
1248 */
1249 atomic_inc(&base->cpu_base->timer_waiters);
1250 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1251 atomic_dec(&base->cpu_base->timer_waiters);
1252 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1253}
1254#else
1255static inline void
1256hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1257static inline void
1258hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1259static inline void
1260hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1261static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1262 unsigned long flags) { }
1263#endif
1264
c0a31329
TG
1265/**
1266 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1267 * @timer: the timer to be cancelled
1268 *
1269 * Returns:
1270 * 0 when the timer was not active
1271 * 1 when the timer was active
1272 */
1273int hrtimer_cancel(struct hrtimer *timer)
1274{
f61eff83 1275 int ret;
c0a31329 1276
f61eff83
AMG
1277 do {
1278 ret = hrtimer_try_to_cancel(timer);
1279
1280 if (ret < 0)
1281 hrtimer_cancel_wait_running(timer);
1282 } while (ret < 0);
1283 return ret;
c0a31329 1284}
8d16b764 1285EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1286
1287/**
1288 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1289 * @timer: the timer to read
203cbf77 1290 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1291 */
203cbf77 1292ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1293{
c0a31329
TG
1294 unsigned long flags;
1295 ktime_t rem;
1296
b3bd3de6 1297 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1298 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1299 rem = hrtimer_expires_remaining_adjusted(timer);
1300 else
1301 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1302 unlock_hrtimer_base(timer, &flags);
1303
1304 return rem;
1305}
203cbf77 1306EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1307
3451d024 1308#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1309/**
1310 * hrtimer_get_next_event - get the time until next expiry event
1311 *
c1ad348b 1312 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1313 */
c1ad348b 1314u64 hrtimer_get_next_event(void)
69239749 1315{
dc5df73b 1316 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1317 u64 expires = KTIME_MAX;
69239749 1318 unsigned long flags;
69239749 1319
ecb49d1a 1320 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1321
e19ffe8b 1322 if (!__hrtimer_hres_active(cpu_base))
5da70160 1323 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1324
ecb49d1a 1325 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1326
c1ad348b 1327 return expires;
69239749 1328}
a59855cd
RW
1329
1330/**
1331 * hrtimer_next_event_without - time until next expiry event w/o one timer
1332 * @exclude: timer to exclude
1333 *
1334 * Returns the next expiry time over all timers except for the @exclude one or
1335 * KTIME_MAX if none of them is pending.
1336 */
1337u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1338{
1339 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1340 u64 expires = KTIME_MAX;
1341 unsigned long flags;
1342
1343 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1344
1345 if (__hrtimer_hres_active(cpu_base)) {
1346 unsigned int active;
1347
1348 if (!cpu_base->softirq_activated) {
1349 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1350 expires = __hrtimer_next_event_base(cpu_base, exclude,
1351 active, KTIME_MAX);
1352 }
1353 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1354 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1355 expires);
1356 }
1357
1358 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1359
1360 return expires;
1361}
69239749
TL
1362#endif
1363
336a9cde
MZ
1364static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1365{
1366 if (likely(clock_id < MAX_CLOCKS)) {
1367 int base = hrtimer_clock_to_base_table[clock_id];
1368
1369 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1370 return base;
1371 }
1372 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1373 return HRTIMER_BASE_MONOTONIC;
1374}
1375
237fc6e7
TG
1376static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1377 enum hrtimer_mode mode)
c0a31329 1378{
42f42da4 1379 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
3c8aa39d 1380 struct hrtimer_cpu_base *cpu_base;
f5c2f021
SAS
1381 int base;
1382
1383 /*
1384 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1385 * marked for hard interrupt expiry mode are moved into soft
1386 * interrupt context for latency reasons and because the callbacks
1387 * can invoke functions which might sleep on RT, e.g. spin_lock().
1388 */
1389 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1390 softtimer = true;
c0a31329 1391
7978672c
GA
1392 memset(timer, 0, sizeof(struct hrtimer));
1393
22127e93 1394 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1395
48d0c9be
AMG
1396 /*
1397 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1398 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1399 * ensure POSIX compliance.
1400 */
1401 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1402 clock_id = CLOCK_MONOTONIC;
1403
f5c2f021 1404 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
42f42da4
AMG
1405 base += hrtimer_clockid_to_base(clock_id);
1406 timer->is_soft = softtimer;
0ab6a3dd 1407 timer->is_hard = !softtimer;
e06383db 1408 timer->base = &cpu_base->clock_base[base];
998adc3d 1409 timerqueue_init(&timer->node);
c0a31329 1410}
237fc6e7
TG
1411
1412/**
1413 * hrtimer_init - initialize a timer to the given clock
1414 * @timer: the timer to be initialized
1415 * @clock_id: the clock to be used
42f42da4
AMG
1416 * @mode: The modes which are relevant for intitialization:
1417 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1418 * HRTIMER_MODE_REL_SOFT
1419 *
1420 * The PINNED variants of the above can be handed in,
1421 * but the PINNED bit is ignored as pinning happens
1422 * when the hrtimer is started
237fc6e7
TG
1423 */
1424void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1425 enum hrtimer_mode mode)
1426{
c6a2a177 1427 debug_init(timer, clock_id, mode);
237fc6e7
TG
1428 __hrtimer_init(timer, clock_id, mode);
1429}
8d16b764 1430EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1431
887d9dc9
PZ
1432/*
1433 * A timer is active, when it is enqueued into the rbtree or the
1434 * callback function is running or it's in the state of being migrated
1435 * to another cpu.
c0a31329 1436 *
887d9dc9 1437 * It is important for this function to not return a false negative.
c0a31329 1438 */
887d9dc9 1439bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1440{
3f0b9e8e 1441 struct hrtimer_clock_base *base;
887d9dc9 1442 unsigned int seq;
c0a31329 1443
887d9dc9 1444 do {
3f0b9e8e
AMG
1445 base = READ_ONCE(timer->base);
1446 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1447
887d9dc9 1448 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1449 base->running == timer)
887d9dc9
PZ
1450 return true;
1451
3f0b9e8e
AMG
1452 } while (read_seqcount_retry(&base->seq, seq) ||
1453 base != READ_ONCE(timer->base));
887d9dc9
PZ
1454
1455 return false;
c0a31329 1456}
887d9dc9 1457EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1458
887d9dc9
PZ
1459/*
1460 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1461 * distinct sections:
1462 *
1463 * - queued: the timer is queued
1464 * - callback: the timer is being ran
1465 * - post: the timer is inactive or (re)queued
1466 *
1467 * On the read side we ensure we observe timer->state and cpu_base->running
1468 * from the same section, if anything changed while we looked at it, we retry.
1469 * This includes timer->base changing because sequence numbers alone are
1470 * insufficient for that.
1471 *
1472 * The sequence numbers are required because otherwise we could still observe
1473 * a false negative if the read side got smeared over multiple consequtive
1474 * __run_hrtimer() invocations.
1475 */
1476
21d6d52a
TG
1477static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1478 struct hrtimer_clock_base *base,
dd934aa8
AMG
1479 struct hrtimer *timer, ktime_t *now,
1480 unsigned long flags)
d3d74453 1481{
d3d74453
PZ
1482 enum hrtimer_restart (*fn)(struct hrtimer *);
1483 int restart;
1484
887d9dc9 1485 lockdep_assert_held(&cpu_base->lock);
ca109491 1486
c6a2a177 1487 debug_deactivate(timer);
3f0b9e8e 1488 base->running = timer;
887d9dc9
PZ
1489
1490 /*
1491 * Separate the ->running assignment from the ->state assignment.
1492 *
1493 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1494 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1495 * timer->state == INACTIVE.
1496 */
3f0b9e8e 1497 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1498
1499 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1500 fn = timer->function;
ca109491 1501
203cbf77
TG
1502 /*
1503 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504 * timer is restarted with a period then it becomes an absolute
1505 * timer. If its not restarted it does not matter.
1506 */
1507 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1508 timer->is_rel = false;
1509
ca109491 1510 /*
d05ca13b
TG
1511 * The timer is marked as running in the CPU base, so it is
1512 * protected against migration to a different CPU even if the lock
1513 * is dropped.
ca109491 1514 */
dd934aa8 1515 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1516 trace_hrtimer_expire_entry(timer, now);
ca109491 1517 restart = fn(timer);
c6a2a177 1518 trace_hrtimer_expire_exit(timer);
dd934aa8 1519 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1520
1521 /*
887d9dc9 1522 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1523 * we do not reprogram the event hardware. Happens either in
e3f1d883 1524 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1525 *
1526 * Note: Because we dropped the cpu_base->lock above,
1527 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1528 * for us already.
d3d74453 1529 */
5de2755c
PZ
1530 if (restart != HRTIMER_NORESTART &&
1531 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1532 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1533
887d9dc9
PZ
1534 /*
1535 * Separate the ->running assignment from the ->state assignment.
1536 *
1537 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1538 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1539 * timer->state == INACTIVE.
1540 */
3f0b9e8e 1541 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1542
3f0b9e8e
AMG
1543 WARN_ON_ONCE(base->running != timer);
1544 base->running = NULL;
d3d74453
PZ
1545}
1546
dd934aa8 1547static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1548 unsigned long flags, unsigned int active_mask)
54cdfdb4 1549{
c272ca58 1550 struct hrtimer_clock_base *base;
c458b1d1 1551 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1552
c272ca58 1553 for_each_active_base(base, cpu_base, active) {
998adc3d 1554 struct timerqueue_node *node;
ab8177bc
TG
1555 ktime_t basenow;
1556
54cdfdb4
TG
1557 basenow = ktime_add(now, base->offset);
1558
998adc3d 1559 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1560 struct hrtimer *timer;
1561
998adc3d 1562 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1563
654c8e0b
AV
1564 /*
1565 * The immediate goal for using the softexpires is
1566 * minimizing wakeups, not running timers at the
1567 * earliest interrupt after their soft expiration.
1568 * This allows us to avoid using a Priority Search
1569 * Tree, which can answer a stabbing querry for
1570 * overlapping intervals and instead use the simple
1571 * BST we already have.
1572 * We don't add extra wakeups by delaying timers that
1573 * are right-of a not yet expired timer, because that
1574 * timer will have to trigger a wakeup anyway.
1575 */
2456e855 1576 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1577 break;
54cdfdb4 1578
dd934aa8 1579 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
f61eff83
AMG
1580 if (active_mask == HRTIMER_ACTIVE_SOFT)
1581 hrtimer_sync_wait_running(cpu_base, flags);
54cdfdb4 1582 }
54cdfdb4 1583 }
21d6d52a
TG
1584}
1585
5da70160
AMG
1586static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1587{
1588 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1589 unsigned long flags;
1590 ktime_t now;
1591
f61eff83 1592 hrtimer_cpu_base_lock_expiry(cpu_base);
5da70160
AMG
1593 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1594
1595 now = hrtimer_update_base(cpu_base);
1596 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1597
1598 cpu_base->softirq_activated = 0;
1599 hrtimer_update_softirq_timer(cpu_base, true);
1600
1601 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
f61eff83 1602 hrtimer_cpu_base_unlock_expiry(cpu_base);
5da70160
AMG
1603}
1604
21d6d52a
TG
1605#ifdef CONFIG_HIGH_RES_TIMERS
1606
1607/*
1608 * High resolution timer interrupt
1609 * Called with interrupts disabled
1610 */
1611void hrtimer_interrupt(struct clock_event_device *dev)
1612{
1613 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1614 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1615 unsigned long flags;
21d6d52a
TG
1616 int retries = 0;
1617
1618 BUG_ON(!cpu_base->hres_active);
1619 cpu_base->nr_events++;
2456e855 1620 dev->next_event = KTIME_MAX;
21d6d52a 1621
dd934aa8 1622 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1623 entry_time = now = hrtimer_update_base(cpu_base);
1624retry:
1625 cpu_base->in_hrtirq = 1;
1626 /*
1627 * We set expires_next to KTIME_MAX here with cpu_base->lock
1628 * held to prevent that a timer is enqueued in our queue via
1629 * the migration code. This does not affect enqueueing of
1630 * timers which run their callback and need to be requeued on
1631 * this CPU.
1632 */
2456e855 1633 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1634
5da70160
AMG
1635 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1636 cpu_base->softirq_expires_next = KTIME_MAX;
1637 cpu_base->softirq_activated = 1;
1638 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1639 }
1640
c458b1d1 1641 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1642
9bc74919 1643 /* Reevaluate the clock bases for the next expiry */
5da70160 1644 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1645 /*
1646 * Store the new expiry value so the migration code can verify
1647 * against it.
1648 */
54cdfdb4 1649 cpu_base->expires_next = expires_next;
9bc74919 1650 cpu_base->in_hrtirq = 0;
dd934aa8 1651 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1652
1653 /* Reprogramming necessary ? */
d2540875 1654 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1655 cpu_base->hang_detected = 0;
1656 return;
54cdfdb4 1657 }
41d2e494
TG
1658
1659 /*
1660 * The next timer was already expired due to:
1661 * - tracing
1662 * - long lasting callbacks
1663 * - being scheduled away when running in a VM
1664 *
1665 * We need to prevent that we loop forever in the hrtimer
1666 * interrupt routine. We give it 3 attempts to avoid
1667 * overreacting on some spurious event.
5baefd6d
JS
1668 *
1669 * Acquire base lock for updating the offsets and retrieving
1670 * the current time.
41d2e494 1671 */
dd934aa8 1672 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1673 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1674 cpu_base->nr_retries++;
1675 if (++retries < 3)
1676 goto retry;
1677 /*
1678 * Give the system a chance to do something else than looping
1679 * here. We stored the entry time, so we know exactly how long
1680 * we spent here. We schedule the next event this amount of
1681 * time away.
1682 */
1683 cpu_base->nr_hangs++;
1684 cpu_base->hang_detected = 1;
dd934aa8
AMG
1685 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1686
41d2e494 1687 delta = ktime_sub(now, entry_time);
2456e855
TG
1688 if ((unsigned int)delta > cpu_base->max_hang_time)
1689 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1690 /*
1691 * Limit it to a sensible value as we enforce a longer
1692 * delay. Give the CPU at least 100ms to catch up.
1693 */
2456e855 1694 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1695 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1696 else
1697 expires_next = ktime_add(now, delta);
1698 tick_program_event(expires_next, 1);
7a6e5537 1699 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1700}
1701
016da201 1702/* called with interrupts disabled */
c6eb3f70 1703static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1704{
1705 struct tick_device *td;
1706
1707 if (!hrtimer_hres_active())
1708 return;
1709
22127e93 1710 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1711 if (td && td->evtdev)
1712 hrtimer_interrupt(td->evtdev);
1713}
1714
82c5b7b5
IM
1715#else /* CONFIG_HIGH_RES_TIMERS */
1716
1717static inline void __hrtimer_peek_ahead_timers(void) { }
1718
1719#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1720
d3d74453 1721/*
c6eb3f70 1722 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1723 */
833883d9 1724void hrtimer_run_queues(void)
d3d74453 1725{
dc5df73b 1726 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1727 unsigned long flags;
21d6d52a 1728 ktime_t now;
c0a31329 1729
e19ffe8b 1730 if (__hrtimer_hres_active(cpu_base))
d3d74453 1731 return;
54cdfdb4 1732
d3d74453 1733 /*
c6eb3f70
TG
1734 * This _is_ ugly: We have to check periodically, whether we
1735 * can switch to highres and / or nohz mode. The clocksource
1736 * switch happens with xtime_lock held. Notification from
1737 * there only sets the check bit in the tick_oneshot code,
1738 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1739 */
c6eb3f70 1740 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1741 hrtimer_switch_to_hres();
3055adda 1742 return;
833883d9 1743 }
c6eb3f70 1744
dd934aa8 1745 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1746 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1747
1748 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1749 cpu_base->softirq_expires_next = KTIME_MAX;
1750 cpu_base->softirq_activated = 1;
1751 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1752 }
1753
c458b1d1 1754 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1755 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1756}
1757
10c94ec1
TG
1758/*
1759 * Sleep related functions:
1760 */
c9cb2e3d 1761static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1762{
1763 struct hrtimer_sleeper *t =
1764 container_of(timer, struct hrtimer_sleeper, timer);
1765 struct task_struct *task = t->task;
1766
1767 t->task = NULL;
1768 if (task)
1769 wake_up_process(task);
1770
1771 return HRTIMER_NORESTART;
1772}
1773
01656464
TG
1774/**
1775 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1776 * @sl: sleeper to be started
1777 * @mode: timer mode abs/rel
1778 *
1779 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1780 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1781 */
1782void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1783 enum hrtimer_mode mode)
1784{
1842f5a4
SAS
1785 /*
1786 * Make the enqueue delivery mode check work on RT. If the sleeper
1787 * was initialized for hard interrupt delivery, force the mode bit.
1788 * This is a special case for hrtimer_sleepers because
1789 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1790 * fiddling with this decision is avoided at the call sites.
1791 */
1792 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1793 mode |= HRTIMER_MODE_HARD;
1794
01656464
TG
1795 hrtimer_start_expires(&sl->timer, mode);
1796}
1797EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1798
dbc1625f
SAS
1799static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1800 clockid_t clock_id, enum hrtimer_mode mode)
00362e33 1801{
1842f5a4
SAS
1802 /*
1803 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1804 * marked for hard interrupt expiry mode are moved into soft
1805 * interrupt context either for latency reasons or because the
1806 * hrtimer callback takes regular spinlocks or invokes other
1807 * functions which are not suitable for hard interrupt context on
1808 * PREEMPT_RT.
1809 *
1810 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1811 * context, but there is a latency concern: Untrusted userspace can
1812 * spawn many threads which arm timers for the same expiry time on
1813 * the same CPU. That causes a latency spike due to the wakeup of
1814 * a gazillion threads.
1815 *
1816 * OTOH, priviledged real-time user space applications rely on the
1817 * low latency of hard interrupt wakeups. If the current task is in
1818 * a real-time scheduling class, mark the mode for hard interrupt
1819 * expiry.
1820 */
1821 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1822 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1823 mode |= HRTIMER_MODE_HARD;
1824 }
1825
dbc1625f 1826 __hrtimer_init(&sl->timer, clock_id, mode);
00362e33 1827 sl->timer.function = hrtimer_wakeup;
b7449487 1828 sl->task = current;
00362e33 1829}
dbc1625f
SAS
1830
1831/**
1832 * hrtimer_init_sleeper - initialize sleeper to the given clock
1833 * @sl: sleeper to be initialized
1834 * @clock_id: the clock to be used
1835 * @mode: timer mode abs/rel
1836 */
1837void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1838 enum hrtimer_mode mode)
1839{
1840 debug_init(&sl->timer, clock_id, mode);
1841 __hrtimer_init_sleeper(sl, clock_id, mode);
1842
1843}
2bc481cf 1844EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1845
c0edd7c9 1846int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1847{
1848 switch(restart->nanosleep.type) {
0fe27955 1849#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1850 case TT_COMPAT:
9afc5eee 1851 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1852 return -EFAULT;
1853 break;
1854#endif
1855 case TT_NATIVE:
c0edd7c9 1856 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1857 return -EFAULT;
1858 break;
1859 default:
1860 BUG();
1861 }
1862 return -ERESTART_RESTARTBLOCK;
1863}
1864
669d7868 1865static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1866{
edbeda46
AV
1867 struct restart_block *restart;
1868
432569bb
RZ
1869 do {
1870 set_current_state(TASK_INTERRUPTIBLE);
01656464 1871 hrtimer_sleeper_start_expires(t, mode);
432569bb 1872
54cdfdb4 1873 if (likely(t->task))
b0f8c44f 1874 freezable_schedule();
432569bb 1875
669d7868 1876 hrtimer_cancel(&t->timer);
c9cb2e3d 1877 mode = HRTIMER_MODE_ABS;
669d7868
TG
1878
1879 } while (t->task && !signal_pending(current));
432569bb 1880
3588a085
PZ
1881 __set_current_state(TASK_RUNNING);
1882
a7602681 1883 if (!t->task)
080344b9 1884 return 0;
080344b9 1885
edbeda46
AV
1886 restart = &current->restart_block;
1887 if (restart->nanosleep.type != TT_NONE) {
a7602681 1888 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1889 struct timespec64 rmt;
edbeda46 1890
a7602681
AV
1891 if (rem <= 0)
1892 return 0;
c0edd7c9 1893 rmt = ktime_to_timespec64(rem);
a7602681 1894
ce41aaf4 1895 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1896 }
1897 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1898}
1899
fb923c4a 1900static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1901{
669d7868 1902 struct hrtimer_sleeper t;
a7602681 1903 int ret;
10c94ec1 1904
dbc1625f
SAS
1905 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1906 HRTIMER_MODE_ABS);
cc584b21 1907 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
a7602681 1908 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1909 destroy_hrtimer_on_stack(&t.timer);
1910 return ret;
10c94ec1
TG
1911}
1912
ea2d1f7f
AV
1913long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1914 const clockid_t clockid)
10c94ec1 1915{
a7602681 1916 struct restart_block *restart;
669d7868 1917 struct hrtimer_sleeper t;
237fc6e7 1918 int ret = 0;
da8b44d5 1919 u64 slack;
3bd01206
AV
1920
1921 slack = current->timer_slack_ns;
aab03e05 1922 if (dl_task(current) || rt_task(current))
3bd01206 1923 slack = 0;
10c94ec1 1924
dbc1625f 1925 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
ea2d1f7f 1926 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
a7602681
AV
1927 ret = do_nanosleep(&t, mode);
1928 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1929 goto out;
10c94ec1 1930
7978672c 1931 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1932 if (mode == HRTIMER_MODE_ABS) {
1933 ret = -ERESTARTNOHAND;
1934 goto out;
1935 }
10c94ec1 1936
a7602681 1937 restart = &current->restart_block;
1711ef38 1938 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1939 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1940 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1941out:
1942 destroy_hrtimer_on_stack(&t.timer);
1943 return ret;
10c94ec1
TG
1944}
1945
3ca47e95 1946#ifdef CONFIG_64BIT
01909974
DD
1947
1948SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1949 struct __kernel_timespec __user *, rmtp)
6ba1b912 1950{
c0edd7c9 1951 struct timespec64 tu;
6ba1b912 1952
c0edd7c9 1953 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1954 return -EFAULT;
1955
c0edd7c9 1956 if (!timespec64_valid(&tu))
6ba1b912
TG
1957 return -EINVAL;
1958
edbeda46 1959 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1960 current->restart_block.nanosleep.rmtp = rmtp;
ea2d1f7f
AV
1961 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1962 CLOCK_MONOTONIC);
6ba1b912
TG
1963}
1964
01909974
DD
1965#endif
1966
b5793b0d 1967#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1968
8dabe724 1969SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1970 struct old_timespec32 __user *, rmtp)
edbeda46 1971{
c0edd7c9 1972 struct timespec64 tu;
edbeda46 1973
9afc5eee 1974 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1975 return -EFAULT;
1976
c0edd7c9 1977 if (!timespec64_valid(&tu))
edbeda46
AV
1978 return -EINVAL;
1979
1980 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1981 current->restart_block.nanosleep.compat_rmtp = rmtp;
ea2d1f7f
AV
1982 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1983 CLOCK_MONOTONIC);
edbeda46
AV
1984}
1985#endif
1986
c0a31329
TG
1987/*
1988 * Functions related to boot-time initialization:
1989 */
27590dc1 1990int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1991{
3c8aa39d 1992 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1993 int i;
1994
998adc3d 1995 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1996 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1997 timerqueue_init_head(&cpu_base->clock_base[i].active);
1998 }
3c8aa39d 1999
cddd0248 2000 cpu_base->cpu = cpu;
303c146d 2001 cpu_base->active_bases = 0;
28bfd18b 2002 cpu_base->hres_active = 0;
303c146d
TG
2003 cpu_base->hang_detected = 0;
2004 cpu_base->next_timer = NULL;
2005 cpu_base->softirq_next_timer = NULL;
07a9a7ea 2006 cpu_base->expires_next = KTIME_MAX;
5da70160 2007 cpu_base->softirq_expires_next = KTIME_MAX;
f61eff83 2008 hrtimer_cpu_base_init_expiry_lock(cpu_base);
27590dc1 2009 return 0;
c0a31329
TG
2010}
2011
2012#ifdef CONFIG_HOTPLUG_CPU
2013
ca109491 2014static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 2015 struct hrtimer_clock_base *new_base)
c0a31329
TG
2016{
2017 struct hrtimer *timer;
998adc3d 2018 struct timerqueue_node *node;
c0a31329 2019
998adc3d
JS
2020 while ((node = timerqueue_getnext(&old_base->active))) {
2021 timer = container_of(node, struct hrtimer, node);
54cdfdb4 2022 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 2023 debug_deactivate(timer);
b00c1a99
TG
2024
2025 /*
c04dca02 2026 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
2027 * timer could be seen as !active and just vanish away
2028 * under us on another CPU
2029 */
c04dca02 2030 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 2031 timer->base = new_base;
54cdfdb4 2032 /*
e3f1d883
TG
2033 * Enqueue the timers on the new cpu. This does not
2034 * reprogram the event device in case the timer
2035 * expires before the earliest on this CPU, but we run
2036 * hrtimer_interrupt after we migrated everything to
2037 * sort out already expired timers and reprogram the
2038 * event device.
54cdfdb4 2039 */
63e2ed36 2040 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
2041 }
2042}
2043
27590dc1 2044int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 2045{
3c8aa39d 2046 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 2047 int i;
c0a31329 2048
37810659 2049 BUG_ON(cpu_online(scpu));
37810659 2050 tick_cancel_sched_timer(scpu);
731a55ba 2051
5da70160
AMG
2052 /*
2053 * this BH disable ensures that raise_softirq_irqoff() does
2054 * not wakeup ksoftirqd (and acquire the pi-lock) while
2055 * holding the cpu_base lock
2056 */
2057 local_bh_disable();
731a55ba
TG
2058 local_irq_disable();
2059 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 2060 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
2061 /*
2062 * The caller is globally serialized and nobody else
2063 * takes two locks at once, deadlock is not possible.
2064 */
ecb49d1a
TG
2065 raw_spin_lock(&new_base->lock);
2066 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 2067
3c8aa39d 2068 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 2069 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 2070 &new_base->clock_base[i]);
c0a31329
TG
2071 }
2072
5da70160
AMG
2073 /*
2074 * The migration might have changed the first expiring softirq
2075 * timer on this CPU. Update it.
2076 */
2077 hrtimer_update_softirq_timer(new_base, false);
2078
ecb49d1a
TG
2079 raw_spin_unlock(&old_base->lock);
2080 raw_spin_unlock(&new_base->lock);
37810659 2081
731a55ba
TG
2082 /* Check, if we got expired work to do */
2083 __hrtimer_peek_ahead_timers();
2084 local_irq_enable();
5da70160 2085 local_bh_enable();
27590dc1 2086 return 0;
c0a31329 2087}
37810659 2088
c0a31329
TG
2089#endif /* CONFIG_HOTPLUG_CPU */
2090
c0a31329
TG
2091void __init hrtimers_init(void)
2092{
27590dc1 2093 hrtimers_prepare_cpu(smp_processor_id());
5da70160 2094 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
2095}
2096
7bb67439 2097/**
351b3f7a 2098 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 2099 * @expires: timeout value (ktime_t)
654c8e0b 2100 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
2101 * @mode: timer mode
2102 * @clock_id: timer clock to be used
7bb67439 2103 */
351b3f7a 2104int __sched
da8b44d5 2105schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 2106 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
2107{
2108 struct hrtimer_sleeper t;
2109
2110 /*
2111 * Optimize when a zero timeout value is given. It does not
2112 * matter whether this is an absolute or a relative time.
2113 */
2456e855 2114 if (expires && *expires == 0) {
7bb67439
AV
2115 __set_current_state(TASK_RUNNING);
2116 return 0;
2117 }
2118
2119 /*
43b21013 2120 * A NULL parameter means "infinite"
7bb67439
AV
2121 */
2122 if (!expires) {
2123 schedule();
7bb67439
AV
2124 return -EINTR;
2125 }
2126
dbc1625f 2127 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
654c8e0b 2128 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
01656464 2129 hrtimer_sleeper_start_expires(&t, mode);
7bb67439
AV
2130
2131 if (likely(t.task))
2132 schedule();
2133
2134 hrtimer_cancel(&t.timer);
2135 destroy_hrtimer_on_stack(&t.timer);
2136
2137 __set_current_state(TASK_RUNNING);
2138
2139 return !t.task ? 0 : -EINTR;
2140}
351b3f7a
CE
2141
2142/**
2143 * schedule_hrtimeout_range - sleep until timeout
2144 * @expires: timeout value (ktime_t)
2145 * @delta: slack in expires timeout (ktime_t)
90777713 2146 * @mode: timer mode
351b3f7a
CE
2147 *
2148 * Make the current task sleep until the given expiry time has
2149 * elapsed. The routine will return immediately unless
2150 * the current task state has been set (see set_current_state()).
2151 *
2152 * The @delta argument gives the kernel the freedom to schedule the
2153 * actual wakeup to a time that is both power and performance friendly.
2154 * The kernel give the normal best effort behavior for "@expires+@delta",
2155 * but may decide to fire the timer earlier, but no earlier than @expires.
2156 *
2157 * You can set the task state as follows -
2158 *
2159 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2160 * pass before the routine returns unless the current task is explicitly
2161 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
2162 *
2163 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2164 * delivered to the current task or the current task is explicitly woken
2165 * up.
351b3f7a
CE
2166 *
2167 * The current task state is guaranteed to be TASK_RUNNING when this
2168 * routine returns.
2169 *
4b7e9cf9
DA
2170 * Returns 0 when the timer has expired. If the task was woken before the
2171 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2172 * by an explicit wakeup, it returns -EINTR.
351b3f7a 2173 */
da8b44d5 2174int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
2175 const enum hrtimer_mode mode)
2176{
2177 return schedule_hrtimeout_range_clock(expires, delta, mode,
2178 CLOCK_MONOTONIC);
2179}
654c8e0b
AV
2180EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2181
2182/**
2183 * schedule_hrtimeout - sleep until timeout
2184 * @expires: timeout value (ktime_t)
90777713 2185 * @mode: timer mode
654c8e0b
AV
2186 *
2187 * Make the current task sleep until the given expiry time has
2188 * elapsed. The routine will return immediately unless
2189 * the current task state has been set (see set_current_state()).
2190 *
2191 * You can set the task state as follows -
2192 *
2193 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2194 * pass before the routine returns unless the current task is explicitly
2195 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2196 *
2197 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2198 * delivered to the current task or the current task is explicitly woken
2199 * up.
654c8e0b
AV
2200 *
2201 * The current task state is guaranteed to be TASK_RUNNING when this
2202 * routine returns.
2203 *
4b7e9cf9
DA
2204 * Returns 0 when the timer has expired. If the task was woken before the
2205 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2206 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2207 */
2208int __sched schedule_hrtimeout(ktime_t *expires,
2209 const enum hrtimer_mode mode)
2210{
2211 return schedule_hrtimeout_range(expires, 0, mode);
2212}
7bb67439 2213EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 1.505668 seconds and 4 git commands to generate.