]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
60063497 | 29 | #include <linux/atomic.h> |
32fcfd40 | 30 | #include <linux/llist.h> |
1da177e4 LT |
31 | #include <asm/uaccess.h> |
32 | #include <asm/tlbflush.h> | |
2dca6999 | 33 | #include <asm/shmparam.h> |
1da177e4 | 34 | |
32fcfd40 AV |
35 | struct vfree_deferred { |
36 | struct llist_head list; | |
37 | struct work_struct wq; | |
38 | }; | |
39 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
40 | ||
41 | static void __vunmap(const void *, int); | |
42 | ||
43 | static void free_work(struct work_struct *w) | |
44 | { | |
45 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
46 | struct llist_node *llnode = llist_del_all(&p->list); | |
47 | while (llnode) { | |
48 | void *p = llnode; | |
49 | llnode = llist_next(llnode); | |
50 | __vunmap(p, 1); | |
51 | } | |
52 | } | |
53 | ||
db64fe02 | 54 | /*** Page table manipulation functions ***/ |
b221385b | 55 | |
1da177e4 LT |
56 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
57 | { | |
58 | pte_t *pte; | |
59 | ||
60 | pte = pte_offset_kernel(pmd, addr); | |
61 | do { | |
62 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
63 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
64 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
65 | } | |
66 | ||
db64fe02 | 67 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
68 | { |
69 | pmd_t *pmd; | |
70 | unsigned long next; | |
71 | ||
72 | pmd = pmd_offset(pud, addr); | |
73 | do { | |
74 | next = pmd_addr_end(addr, end); | |
75 | if (pmd_none_or_clear_bad(pmd)) | |
76 | continue; | |
77 | vunmap_pte_range(pmd, addr, next); | |
78 | } while (pmd++, addr = next, addr != end); | |
79 | } | |
80 | ||
db64fe02 | 81 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
82 | { |
83 | pud_t *pud; | |
84 | unsigned long next; | |
85 | ||
86 | pud = pud_offset(pgd, addr); | |
87 | do { | |
88 | next = pud_addr_end(addr, end); | |
89 | if (pud_none_or_clear_bad(pud)) | |
90 | continue; | |
91 | vunmap_pmd_range(pud, addr, next); | |
92 | } while (pud++, addr = next, addr != end); | |
93 | } | |
94 | ||
db64fe02 | 95 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
96 | { |
97 | pgd_t *pgd; | |
98 | unsigned long next; | |
1da177e4 LT |
99 | |
100 | BUG_ON(addr >= end); | |
101 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
102 | do { |
103 | next = pgd_addr_end(addr, end); | |
104 | if (pgd_none_or_clear_bad(pgd)) | |
105 | continue; | |
106 | vunmap_pud_range(pgd, addr, next); | |
107 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
108 | } |
109 | ||
110 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 111 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
112 | { |
113 | pte_t *pte; | |
114 | ||
db64fe02 NP |
115 | /* |
116 | * nr is a running index into the array which helps higher level | |
117 | * callers keep track of where we're up to. | |
118 | */ | |
119 | ||
872fec16 | 120 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
121 | if (!pte) |
122 | return -ENOMEM; | |
123 | do { | |
db64fe02 NP |
124 | struct page *page = pages[*nr]; |
125 | ||
126 | if (WARN_ON(!pte_none(*pte))) | |
127 | return -EBUSY; | |
128 | if (WARN_ON(!page)) | |
1da177e4 LT |
129 | return -ENOMEM; |
130 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 131 | (*nr)++; |
1da177e4 LT |
132 | } while (pte++, addr += PAGE_SIZE, addr != end); |
133 | return 0; | |
134 | } | |
135 | ||
db64fe02 NP |
136 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
137 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
138 | { |
139 | pmd_t *pmd; | |
140 | unsigned long next; | |
141 | ||
142 | pmd = pmd_alloc(&init_mm, pud, addr); | |
143 | if (!pmd) | |
144 | return -ENOMEM; | |
145 | do { | |
146 | next = pmd_addr_end(addr, end); | |
db64fe02 | 147 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
148 | return -ENOMEM; |
149 | } while (pmd++, addr = next, addr != end); | |
150 | return 0; | |
151 | } | |
152 | ||
db64fe02 NP |
153 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
154 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
155 | { |
156 | pud_t *pud; | |
157 | unsigned long next; | |
158 | ||
159 | pud = pud_alloc(&init_mm, pgd, addr); | |
160 | if (!pud) | |
161 | return -ENOMEM; | |
162 | do { | |
163 | next = pud_addr_end(addr, end); | |
db64fe02 | 164 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
165 | return -ENOMEM; |
166 | } while (pud++, addr = next, addr != end); | |
167 | return 0; | |
168 | } | |
169 | ||
db64fe02 NP |
170 | /* |
171 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
172 | * will have pfns corresponding to the "pages" array. | |
173 | * | |
174 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
175 | */ | |
8fc48985 TH |
176 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
177 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
178 | { |
179 | pgd_t *pgd; | |
180 | unsigned long next; | |
2e4e27c7 | 181 | unsigned long addr = start; |
db64fe02 NP |
182 | int err = 0; |
183 | int nr = 0; | |
1da177e4 LT |
184 | |
185 | BUG_ON(addr >= end); | |
186 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
187 | do { |
188 | next = pgd_addr_end(addr, end); | |
db64fe02 | 189 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 190 | if (err) |
bf88c8c8 | 191 | return err; |
1da177e4 | 192 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 193 | |
db64fe02 | 194 | return nr; |
1da177e4 LT |
195 | } |
196 | ||
8fc48985 TH |
197 | static int vmap_page_range(unsigned long start, unsigned long end, |
198 | pgprot_t prot, struct page **pages) | |
199 | { | |
200 | int ret; | |
201 | ||
202 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
203 | flush_cache_vmap(start, end); | |
204 | return ret; | |
205 | } | |
206 | ||
81ac3ad9 | 207 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
208 | { |
209 | /* | |
ab4f2ee1 | 210 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
211 | * and fall back on vmalloc() if that fails. Others |
212 | * just put it in the vmalloc space. | |
213 | */ | |
214 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
215 | unsigned long addr = (unsigned long)x; | |
216 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
217 | return 1; | |
218 | #endif | |
219 | return is_vmalloc_addr(x); | |
220 | } | |
221 | ||
48667e7a | 222 | /* |
add688fb | 223 | * Walk a vmap address to the struct page it maps. |
48667e7a | 224 | */ |
add688fb | 225 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
226 | { |
227 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 228 | struct page *page = NULL; |
48667e7a | 229 | pgd_t *pgd = pgd_offset_k(addr); |
48667e7a | 230 | |
7aa413de IM |
231 | /* |
232 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
233 | * architectures that do not vmalloc module space | |
234 | */ | |
73bdf0a6 | 235 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 236 | |
48667e7a | 237 | if (!pgd_none(*pgd)) { |
db64fe02 | 238 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 239 | if (!pud_none(*pud)) { |
db64fe02 | 240 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 241 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
242 | pte_t *ptep, pte; |
243 | ||
48667e7a CL |
244 | ptep = pte_offset_map(pmd, addr); |
245 | pte = *ptep; | |
246 | if (pte_present(pte)) | |
add688fb | 247 | page = pte_page(pte); |
48667e7a CL |
248 | pte_unmap(ptep); |
249 | } | |
250 | } | |
251 | } | |
add688fb | 252 | return page; |
48667e7a | 253 | } |
add688fb | 254 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
255 | |
256 | /* | |
add688fb | 257 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 258 | */ |
add688fb | 259 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 260 | { |
add688fb | 261 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 262 | } |
add688fb | 263 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 264 | |
db64fe02 NP |
265 | |
266 | /*** Global kva allocator ***/ | |
267 | ||
268 | #define VM_LAZY_FREE 0x01 | |
269 | #define VM_LAZY_FREEING 0x02 | |
270 | #define VM_VM_AREA 0x04 | |
271 | ||
db64fe02 | 272 | static DEFINE_SPINLOCK(vmap_area_lock); |
f1c4069e JK |
273 | /* Export for kexec only */ |
274 | LIST_HEAD(vmap_area_list); | |
89699605 NP |
275 | static struct rb_root vmap_area_root = RB_ROOT; |
276 | ||
277 | /* The vmap cache globals are protected by vmap_area_lock */ | |
278 | static struct rb_node *free_vmap_cache; | |
279 | static unsigned long cached_hole_size; | |
280 | static unsigned long cached_vstart; | |
281 | static unsigned long cached_align; | |
282 | ||
ca23e405 | 283 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
284 | |
285 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 286 | { |
db64fe02 NP |
287 | struct rb_node *n = vmap_area_root.rb_node; |
288 | ||
289 | while (n) { | |
290 | struct vmap_area *va; | |
291 | ||
292 | va = rb_entry(n, struct vmap_area, rb_node); | |
293 | if (addr < va->va_start) | |
294 | n = n->rb_left; | |
cef2ac3f | 295 | else if (addr >= va->va_end) |
db64fe02 NP |
296 | n = n->rb_right; |
297 | else | |
298 | return va; | |
299 | } | |
300 | ||
301 | return NULL; | |
302 | } | |
303 | ||
304 | static void __insert_vmap_area(struct vmap_area *va) | |
305 | { | |
306 | struct rb_node **p = &vmap_area_root.rb_node; | |
307 | struct rb_node *parent = NULL; | |
308 | struct rb_node *tmp; | |
309 | ||
310 | while (*p) { | |
170168d0 | 311 | struct vmap_area *tmp_va; |
db64fe02 NP |
312 | |
313 | parent = *p; | |
170168d0 NK |
314 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
315 | if (va->va_start < tmp_va->va_end) | |
db64fe02 | 316 | p = &(*p)->rb_left; |
170168d0 | 317 | else if (va->va_end > tmp_va->va_start) |
db64fe02 NP |
318 | p = &(*p)->rb_right; |
319 | else | |
320 | BUG(); | |
321 | } | |
322 | ||
323 | rb_link_node(&va->rb_node, parent, p); | |
324 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
325 | ||
4341fa45 | 326 | /* address-sort this list */ |
db64fe02 NP |
327 | tmp = rb_prev(&va->rb_node); |
328 | if (tmp) { | |
329 | struct vmap_area *prev; | |
330 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
331 | list_add_rcu(&va->list, &prev->list); | |
332 | } else | |
333 | list_add_rcu(&va->list, &vmap_area_list); | |
334 | } | |
335 | ||
336 | static void purge_vmap_area_lazy(void); | |
337 | ||
338 | /* | |
339 | * Allocate a region of KVA of the specified size and alignment, within the | |
340 | * vstart and vend. | |
341 | */ | |
342 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
343 | unsigned long align, | |
344 | unsigned long vstart, unsigned long vend, | |
345 | int node, gfp_t gfp_mask) | |
346 | { | |
347 | struct vmap_area *va; | |
348 | struct rb_node *n; | |
1da177e4 | 349 | unsigned long addr; |
db64fe02 | 350 | int purged = 0; |
89699605 | 351 | struct vmap_area *first; |
db64fe02 | 352 | |
7766970c | 353 | BUG_ON(!size); |
db64fe02 | 354 | BUG_ON(size & ~PAGE_MASK); |
89699605 | 355 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 356 | |
db64fe02 NP |
357 | va = kmalloc_node(sizeof(struct vmap_area), |
358 | gfp_mask & GFP_RECLAIM_MASK, node); | |
359 | if (unlikely(!va)) | |
360 | return ERR_PTR(-ENOMEM); | |
361 | ||
7f88f88f CM |
362 | /* |
363 | * Only scan the relevant parts containing pointers to other objects | |
364 | * to avoid false negatives. | |
365 | */ | |
366 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | |
367 | ||
db64fe02 NP |
368 | retry: |
369 | spin_lock(&vmap_area_lock); | |
89699605 NP |
370 | /* |
371 | * Invalidate cache if we have more permissive parameters. | |
372 | * cached_hole_size notes the largest hole noticed _below_ | |
373 | * the vmap_area cached in free_vmap_cache: if size fits | |
374 | * into that hole, we want to scan from vstart to reuse | |
375 | * the hole instead of allocating above free_vmap_cache. | |
376 | * Note that __free_vmap_area may update free_vmap_cache | |
377 | * without updating cached_hole_size or cached_align. | |
378 | */ | |
379 | if (!free_vmap_cache || | |
380 | size < cached_hole_size || | |
381 | vstart < cached_vstart || | |
382 | align < cached_align) { | |
383 | nocache: | |
384 | cached_hole_size = 0; | |
385 | free_vmap_cache = NULL; | |
386 | } | |
387 | /* record if we encounter less permissive parameters */ | |
388 | cached_vstart = vstart; | |
389 | cached_align = align; | |
390 | ||
391 | /* find starting point for our search */ | |
392 | if (free_vmap_cache) { | |
393 | first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
248ac0e1 | 394 | addr = ALIGN(first->va_end, align); |
89699605 NP |
395 | if (addr < vstart) |
396 | goto nocache; | |
bcb615a8 | 397 | if (addr + size < addr) |
89699605 NP |
398 | goto overflow; |
399 | ||
400 | } else { | |
401 | addr = ALIGN(vstart, align); | |
bcb615a8 | 402 | if (addr + size < addr) |
89699605 NP |
403 | goto overflow; |
404 | ||
405 | n = vmap_area_root.rb_node; | |
406 | first = NULL; | |
407 | ||
408 | while (n) { | |
db64fe02 NP |
409 | struct vmap_area *tmp; |
410 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
411 | if (tmp->va_end >= addr) { | |
db64fe02 | 412 | first = tmp; |
89699605 NP |
413 | if (tmp->va_start <= addr) |
414 | break; | |
415 | n = n->rb_left; | |
416 | } else | |
db64fe02 | 417 | n = n->rb_right; |
89699605 | 418 | } |
db64fe02 NP |
419 | |
420 | if (!first) | |
421 | goto found; | |
db64fe02 | 422 | } |
89699605 NP |
423 | |
424 | /* from the starting point, walk areas until a suitable hole is found */ | |
248ac0e1 | 425 | while (addr + size > first->va_start && addr + size <= vend) { |
89699605 NP |
426 | if (addr + cached_hole_size < first->va_start) |
427 | cached_hole_size = first->va_start - addr; | |
248ac0e1 | 428 | addr = ALIGN(first->va_end, align); |
bcb615a8 | 429 | if (addr + size < addr) |
89699605 NP |
430 | goto overflow; |
431 | ||
92ca922f | 432 | if (list_is_last(&first->list, &vmap_area_list)) |
89699605 | 433 | goto found; |
92ca922f H |
434 | |
435 | first = list_entry(first->list.next, | |
436 | struct vmap_area, list); | |
db64fe02 NP |
437 | } |
438 | ||
89699605 NP |
439 | found: |
440 | if (addr + size > vend) | |
441 | goto overflow; | |
db64fe02 NP |
442 | |
443 | va->va_start = addr; | |
444 | va->va_end = addr + size; | |
445 | va->flags = 0; | |
446 | __insert_vmap_area(va); | |
89699605 | 447 | free_vmap_cache = &va->rb_node; |
db64fe02 NP |
448 | spin_unlock(&vmap_area_lock); |
449 | ||
89699605 NP |
450 | BUG_ON(va->va_start & (align-1)); |
451 | BUG_ON(va->va_start < vstart); | |
452 | BUG_ON(va->va_end > vend); | |
453 | ||
db64fe02 | 454 | return va; |
89699605 NP |
455 | |
456 | overflow: | |
457 | spin_unlock(&vmap_area_lock); | |
458 | if (!purged) { | |
459 | purge_vmap_area_lazy(); | |
460 | purged = 1; | |
461 | goto retry; | |
462 | } | |
463 | if (printk_ratelimit()) | |
464 | printk(KERN_WARNING | |
465 | "vmap allocation for size %lu failed: " | |
466 | "use vmalloc=<size> to increase size.\n", size); | |
467 | kfree(va); | |
468 | return ERR_PTR(-EBUSY); | |
db64fe02 NP |
469 | } |
470 | ||
db64fe02 NP |
471 | static void __free_vmap_area(struct vmap_area *va) |
472 | { | |
473 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
89699605 NP |
474 | |
475 | if (free_vmap_cache) { | |
476 | if (va->va_end < cached_vstart) { | |
477 | free_vmap_cache = NULL; | |
478 | } else { | |
479 | struct vmap_area *cache; | |
480 | cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
481 | if (va->va_start <= cache->va_start) { | |
482 | free_vmap_cache = rb_prev(&va->rb_node); | |
483 | /* | |
484 | * We don't try to update cached_hole_size or | |
485 | * cached_align, but it won't go very wrong. | |
486 | */ | |
487 | } | |
488 | } | |
489 | } | |
db64fe02 NP |
490 | rb_erase(&va->rb_node, &vmap_area_root); |
491 | RB_CLEAR_NODE(&va->rb_node); | |
492 | list_del_rcu(&va->list); | |
493 | ||
ca23e405 TH |
494 | /* |
495 | * Track the highest possible candidate for pcpu area | |
496 | * allocation. Areas outside of vmalloc area can be returned | |
497 | * here too, consider only end addresses which fall inside | |
498 | * vmalloc area proper. | |
499 | */ | |
500 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
501 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
502 | ||
14769de9 | 503 | kfree_rcu(va, rcu_head); |
db64fe02 NP |
504 | } |
505 | ||
506 | /* | |
507 | * Free a region of KVA allocated by alloc_vmap_area | |
508 | */ | |
509 | static void free_vmap_area(struct vmap_area *va) | |
510 | { | |
511 | spin_lock(&vmap_area_lock); | |
512 | __free_vmap_area(va); | |
513 | spin_unlock(&vmap_area_lock); | |
514 | } | |
515 | ||
516 | /* | |
517 | * Clear the pagetable entries of a given vmap_area | |
518 | */ | |
519 | static void unmap_vmap_area(struct vmap_area *va) | |
520 | { | |
521 | vunmap_page_range(va->va_start, va->va_end); | |
522 | } | |
523 | ||
cd52858c NP |
524 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
525 | { | |
526 | /* | |
527 | * Unmap page tables and force a TLB flush immediately if | |
528 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
529 | * bugs similarly to those in linear kernel virtual address | |
530 | * space after a page has been freed. | |
531 | * | |
532 | * All the lazy freeing logic is still retained, in order to | |
533 | * minimise intrusiveness of this debugging feature. | |
534 | * | |
535 | * This is going to be *slow* (linear kernel virtual address | |
536 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
537 | * faster). | |
538 | */ | |
539 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
540 | vunmap_page_range(start, end); | |
541 | flush_tlb_kernel_range(start, end); | |
542 | #endif | |
543 | } | |
544 | ||
db64fe02 NP |
545 | /* |
546 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
547 | * before attempting to purge with a TLB flush. | |
548 | * | |
549 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
550 | * and take slightly longer to purge, but it will linearly reduce the number of | |
551 | * global TLB flushes that must be performed. It would seem natural to scale | |
552 | * this number up linearly with the number of CPUs (because vmapping activity | |
553 | * could also scale linearly with the number of CPUs), however it is likely | |
554 | * that in practice, workloads might be constrained in other ways that mean | |
555 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
556 | * conservative and not introduce a big latency on huge systems, so go with | |
557 | * a less aggressive log scale. It will still be an improvement over the old | |
558 | * code, and it will be simple to change the scale factor if we find that it | |
559 | * becomes a problem on bigger systems. | |
560 | */ | |
561 | static unsigned long lazy_max_pages(void) | |
562 | { | |
563 | unsigned int log; | |
564 | ||
565 | log = fls(num_online_cpus()); | |
566 | ||
567 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
568 | } | |
569 | ||
570 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
571 | ||
02b709df NP |
572 | /* for per-CPU blocks */ |
573 | static void purge_fragmented_blocks_allcpus(void); | |
574 | ||
3ee48b6a CW |
575 | /* |
576 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
577 | * immediately freed. | |
578 | */ | |
579 | void set_iounmap_nonlazy(void) | |
580 | { | |
581 | atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); | |
582 | } | |
583 | ||
db64fe02 NP |
584 | /* |
585 | * Purges all lazily-freed vmap areas. | |
586 | * | |
587 | * If sync is 0 then don't purge if there is already a purge in progress. | |
588 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
589 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
590 | * their own TLB flushing). | |
591 | * Returns with *start = min(*start, lowest purged address) | |
592 | * *end = max(*end, highest purged address) | |
593 | */ | |
594 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
595 | int sync, int force_flush) | |
596 | { | |
46666d8a | 597 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
598 | LIST_HEAD(valist); |
599 | struct vmap_area *va; | |
cbb76676 | 600 | struct vmap_area *n_va; |
db64fe02 NP |
601 | int nr = 0; |
602 | ||
603 | /* | |
604 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
605 | * should not expect such behaviour. This just simplifies locking for | |
606 | * the case that isn't actually used at the moment anyway. | |
607 | */ | |
608 | if (!sync && !force_flush) { | |
46666d8a | 609 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
610 | return; |
611 | } else | |
46666d8a | 612 | spin_lock(&purge_lock); |
db64fe02 | 613 | |
02b709df NP |
614 | if (sync) |
615 | purge_fragmented_blocks_allcpus(); | |
616 | ||
db64fe02 NP |
617 | rcu_read_lock(); |
618 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
619 | if (va->flags & VM_LAZY_FREE) { | |
620 | if (va->va_start < *start) | |
621 | *start = va->va_start; | |
622 | if (va->va_end > *end) | |
623 | *end = va->va_end; | |
624 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
db64fe02 NP |
625 | list_add_tail(&va->purge_list, &valist); |
626 | va->flags |= VM_LAZY_FREEING; | |
627 | va->flags &= ~VM_LAZY_FREE; | |
628 | } | |
629 | } | |
630 | rcu_read_unlock(); | |
631 | ||
88f50044 | 632 | if (nr) |
db64fe02 | 633 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
634 | |
635 | if (nr || force_flush) | |
636 | flush_tlb_kernel_range(*start, *end); | |
637 | ||
638 | if (nr) { | |
639 | spin_lock(&vmap_area_lock); | |
cbb76676 | 640 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
641 | __free_vmap_area(va); |
642 | spin_unlock(&vmap_area_lock); | |
643 | } | |
46666d8a | 644 | spin_unlock(&purge_lock); |
db64fe02 NP |
645 | } |
646 | ||
496850e5 NP |
647 | /* |
648 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
649 | * is already purging. | |
650 | */ | |
651 | static void try_purge_vmap_area_lazy(void) | |
652 | { | |
653 | unsigned long start = ULONG_MAX, end = 0; | |
654 | ||
655 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
656 | } | |
657 | ||
db64fe02 NP |
658 | /* |
659 | * Kick off a purge of the outstanding lazy areas. | |
660 | */ | |
661 | static void purge_vmap_area_lazy(void) | |
662 | { | |
663 | unsigned long start = ULONG_MAX, end = 0; | |
664 | ||
496850e5 | 665 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
666 | } |
667 | ||
668 | /* | |
64141da5 JF |
669 | * Free a vmap area, caller ensuring that the area has been unmapped |
670 | * and flush_cache_vunmap had been called for the correct range | |
671 | * previously. | |
db64fe02 | 672 | */ |
64141da5 | 673 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
674 | { |
675 | va->flags |= VM_LAZY_FREE; | |
676 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
677 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 678 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
679 | } |
680 | ||
64141da5 JF |
681 | /* |
682 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been | |
683 | * called for the correct range previously. | |
684 | */ | |
685 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) | |
686 | { | |
687 | unmap_vmap_area(va); | |
688 | free_vmap_area_noflush(va); | |
689 | } | |
690 | ||
b29acbdc NP |
691 | /* |
692 | * Free and unmap a vmap area | |
693 | */ | |
694 | static void free_unmap_vmap_area(struct vmap_area *va) | |
695 | { | |
696 | flush_cache_vunmap(va->va_start, va->va_end); | |
697 | free_unmap_vmap_area_noflush(va); | |
698 | } | |
699 | ||
db64fe02 NP |
700 | static struct vmap_area *find_vmap_area(unsigned long addr) |
701 | { | |
702 | struct vmap_area *va; | |
703 | ||
704 | spin_lock(&vmap_area_lock); | |
705 | va = __find_vmap_area(addr); | |
706 | spin_unlock(&vmap_area_lock); | |
707 | ||
708 | return va; | |
709 | } | |
710 | ||
711 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
712 | { | |
713 | struct vmap_area *va; | |
714 | ||
715 | va = find_vmap_area(addr); | |
716 | BUG_ON(!va); | |
717 | free_unmap_vmap_area(va); | |
718 | } | |
719 | ||
720 | ||
721 | /*** Per cpu kva allocator ***/ | |
722 | ||
723 | /* | |
724 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
725 | * room for at least 16 percpu vmap blocks per CPU. | |
726 | */ | |
727 | /* | |
728 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
729 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
730 | * instead (we just need a rough idea) | |
731 | */ | |
732 | #if BITS_PER_LONG == 32 | |
733 | #define VMALLOC_SPACE (128UL*1024*1024) | |
734 | #else | |
735 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
736 | #endif | |
737 | ||
738 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
739 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
740 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
741 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
742 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
743 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
744 | #define VMAP_BBMAP_BITS \ |
745 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
746 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
747 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
748 | |
749 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
750 | ||
9b463334 JF |
751 | static bool vmap_initialized __read_mostly = false; |
752 | ||
db64fe02 NP |
753 | struct vmap_block_queue { |
754 | spinlock_t lock; | |
755 | struct list_head free; | |
db64fe02 NP |
756 | }; |
757 | ||
758 | struct vmap_block { | |
759 | spinlock_t lock; | |
760 | struct vmap_area *va; | |
db64fe02 | 761 | unsigned long free, dirty; |
db64fe02 | 762 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); |
de560423 NP |
763 | struct list_head free_list; |
764 | struct rcu_head rcu_head; | |
02b709df | 765 | struct list_head purge; |
db64fe02 NP |
766 | }; |
767 | ||
768 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
769 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
770 | ||
771 | /* | |
772 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
773 | * in the free path. Could get rid of this if we change the API to return a | |
774 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
775 | */ | |
776 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
777 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
778 | ||
779 | /* | |
780 | * We should probably have a fallback mechanism to allocate virtual memory | |
781 | * out of partially filled vmap blocks. However vmap block sizing should be | |
782 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
783 | * big problem. | |
784 | */ | |
785 | ||
786 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
787 | { | |
788 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
789 | addr /= VMAP_BLOCK_SIZE; | |
790 | return addr; | |
791 | } | |
792 | ||
793 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
794 | { | |
795 | struct vmap_block_queue *vbq; | |
796 | struct vmap_block *vb; | |
797 | struct vmap_area *va; | |
798 | unsigned long vb_idx; | |
799 | int node, err; | |
800 | ||
801 | node = numa_node_id(); | |
802 | ||
803 | vb = kmalloc_node(sizeof(struct vmap_block), | |
804 | gfp_mask & GFP_RECLAIM_MASK, node); | |
805 | if (unlikely(!vb)) | |
806 | return ERR_PTR(-ENOMEM); | |
807 | ||
808 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
809 | VMALLOC_START, VMALLOC_END, | |
810 | node, gfp_mask); | |
ddf9c6d4 | 811 | if (IS_ERR(va)) { |
db64fe02 | 812 | kfree(vb); |
e7d86340 | 813 | return ERR_CAST(va); |
db64fe02 NP |
814 | } |
815 | ||
816 | err = radix_tree_preload(gfp_mask); | |
817 | if (unlikely(err)) { | |
818 | kfree(vb); | |
819 | free_vmap_area(va); | |
820 | return ERR_PTR(err); | |
821 | } | |
822 | ||
823 | spin_lock_init(&vb->lock); | |
824 | vb->va = va; | |
825 | vb->free = VMAP_BBMAP_BITS; | |
826 | vb->dirty = 0; | |
db64fe02 NP |
827 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); |
828 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
829 | |
830 | vb_idx = addr_to_vb_idx(va->va_start); | |
831 | spin_lock(&vmap_block_tree_lock); | |
832 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
833 | spin_unlock(&vmap_block_tree_lock); | |
834 | BUG_ON(err); | |
835 | radix_tree_preload_end(); | |
836 | ||
837 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 838 | spin_lock(&vbq->lock); |
de560423 | 839 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 840 | spin_unlock(&vbq->lock); |
3f04ba85 | 841 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
842 | |
843 | return vb; | |
844 | } | |
845 | ||
db64fe02 NP |
846 | static void free_vmap_block(struct vmap_block *vb) |
847 | { | |
848 | struct vmap_block *tmp; | |
849 | unsigned long vb_idx; | |
850 | ||
db64fe02 NP |
851 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
852 | spin_lock(&vmap_block_tree_lock); | |
853 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
854 | spin_unlock(&vmap_block_tree_lock); | |
855 | BUG_ON(tmp != vb); | |
856 | ||
64141da5 | 857 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 858 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
859 | } |
860 | ||
02b709df NP |
861 | static void purge_fragmented_blocks(int cpu) |
862 | { | |
863 | LIST_HEAD(purge); | |
864 | struct vmap_block *vb; | |
865 | struct vmap_block *n_vb; | |
866 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
867 | ||
868 | rcu_read_lock(); | |
869 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
870 | ||
871 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
872 | continue; | |
873 | ||
874 | spin_lock(&vb->lock); | |
875 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
876 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
877 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
02b709df NP |
878 | bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); |
879 | spin_lock(&vbq->lock); | |
880 | list_del_rcu(&vb->free_list); | |
881 | spin_unlock(&vbq->lock); | |
882 | spin_unlock(&vb->lock); | |
883 | list_add_tail(&vb->purge, &purge); | |
884 | } else | |
885 | spin_unlock(&vb->lock); | |
886 | } | |
887 | rcu_read_unlock(); | |
888 | ||
889 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
890 | list_del(&vb->purge); | |
891 | free_vmap_block(vb); | |
892 | } | |
893 | } | |
894 | ||
02b709df NP |
895 | static void purge_fragmented_blocks_allcpus(void) |
896 | { | |
897 | int cpu; | |
898 | ||
899 | for_each_possible_cpu(cpu) | |
900 | purge_fragmented_blocks(cpu); | |
901 | } | |
902 | ||
db64fe02 NP |
903 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
904 | { | |
905 | struct vmap_block_queue *vbq; | |
906 | struct vmap_block *vb; | |
907 | unsigned long addr = 0; | |
908 | unsigned int order; | |
909 | ||
910 | BUG_ON(size & ~PAGE_MASK); | |
911 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
aa91c4d8 JK |
912 | if (WARN_ON(size == 0)) { |
913 | /* | |
914 | * Allocating 0 bytes isn't what caller wants since | |
915 | * get_order(0) returns funny result. Just warn and terminate | |
916 | * early. | |
917 | */ | |
918 | return NULL; | |
919 | } | |
db64fe02 NP |
920 | order = get_order(size); |
921 | ||
922 | again: | |
923 | rcu_read_lock(); | |
924 | vbq = &get_cpu_var(vmap_block_queue); | |
925 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
926 | int i; | |
927 | ||
928 | spin_lock(&vb->lock); | |
02b709df NP |
929 | if (vb->free < 1UL << order) |
930 | goto next; | |
931 | ||
3fcd76e8 | 932 | i = VMAP_BBMAP_BITS - vb->free; |
02b709df NP |
933 | addr = vb->va->va_start + (i << PAGE_SHIFT); |
934 | BUG_ON(addr_to_vb_idx(addr) != | |
935 | addr_to_vb_idx(vb->va->va_start)); | |
936 | vb->free -= 1UL << order; | |
937 | if (vb->free == 0) { | |
938 | spin_lock(&vbq->lock); | |
939 | list_del_rcu(&vb->free_list); | |
940 | spin_unlock(&vbq->lock); | |
941 | } | |
942 | spin_unlock(&vb->lock); | |
943 | break; | |
944 | next: | |
db64fe02 NP |
945 | spin_unlock(&vb->lock); |
946 | } | |
02b709df | 947 | |
3f04ba85 | 948 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
949 | rcu_read_unlock(); |
950 | ||
951 | if (!addr) { | |
952 | vb = new_vmap_block(gfp_mask); | |
953 | if (IS_ERR(vb)) | |
954 | return vb; | |
955 | goto again; | |
956 | } | |
957 | ||
958 | return (void *)addr; | |
959 | } | |
960 | ||
961 | static void vb_free(const void *addr, unsigned long size) | |
962 | { | |
963 | unsigned long offset; | |
964 | unsigned long vb_idx; | |
965 | unsigned int order; | |
966 | struct vmap_block *vb; | |
967 | ||
968 | BUG_ON(size & ~PAGE_MASK); | |
969 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
970 | |
971 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
972 | ||
db64fe02 NP |
973 | order = get_order(size); |
974 | ||
975 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
976 | ||
977 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
978 | rcu_read_lock(); | |
979 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
980 | rcu_read_unlock(); | |
981 | BUG_ON(!vb); | |
982 | ||
64141da5 JF |
983 | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); |
984 | ||
db64fe02 | 985 | spin_lock(&vb->lock); |
de560423 | 986 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 987 | |
db64fe02 NP |
988 | vb->dirty += 1UL << order; |
989 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 990 | BUG_ON(vb->free); |
db64fe02 NP |
991 | spin_unlock(&vb->lock); |
992 | free_vmap_block(vb); | |
993 | } else | |
994 | spin_unlock(&vb->lock); | |
995 | } | |
996 | ||
997 | /** | |
998 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
999 | * | |
1000 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
1001 | * to amortize TLB flushing overheads. What this means is that any page you | |
1002 | * have now, may, in a former life, have been mapped into kernel virtual | |
1003 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
1004 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
1005 | * | |
1006 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
1007 | * be sure that none of the pages we have control over will have any aliases | |
1008 | * from the vmap layer. | |
1009 | */ | |
1010 | void vm_unmap_aliases(void) | |
1011 | { | |
1012 | unsigned long start = ULONG_MAX, end = 0; | |
1013 | int cpu; | |
1014 | int flush = 0; | |
1015 | ||
9b463334 JF |
1016 | if (unlikely(!vmap_initialized)) |
1017 | return; | |
1018 | ||
db64fe02 NP |
1019 | for_each_possible_cpu(cpu) { |
1020 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1021 | struct vmap_block *vb; | |
1022 | ||
1023 | rcu_read_lock(); | |
1024 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
b136be5e | 1025 | int i, j; |
db64fe02 NP |
1026 | |
1027 | spin_lock(&vb->lock); | |
1028 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
b136be5e | 1029 | if (i < VMAP_BBMAP_BITS) { |
db64fe02 | 1030 | unsigned long s, e; |
b136be5e JK |
1031 | |
1032 | j = find_last_bit(vb->dirty_map, | |
1033 | VMAP_BBMAP_BITS); | |
1034 | j = j + 1; /* need exclusive index */ | |
db64fe02 NP |
1035 | |
1036 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
1037 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
db64fe02 NP |
1038 | flush = 1; |
1039 | ||
1040 | if (s < start) | |
1041 | start = s; | |
1042 | if (e > end) | |
1043 | end = e; | |
db64fe02 NP |
1044 | } |
1045 | spin_unlock(&vb->lock); | |
1046 | } | |
1047 | rcu_read_unlock(); | |
1048 | } | |
1049 | ||
1050 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
1051 | } | |
1052 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1053 | ||
1054 | /** | |
1055 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1056 | * @mem: the pointer returned by vm_map_ram | |
1057 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1058 | */ | |
1059 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1060 | { | |
1061 | unsigned long size = count << PAGE_SHIFT; | |
1062 | unsigned long addr = (unsigned long)mem; | |
1063 | ||
1064 | BUG_ON(!addr); | |
1065 | BUG_ON(addr < VMALLOC_START); | |
1066 | BUG_ON(addr > VMALLOC_END); | |
1067 | BUG_ON(addr & (PAGE_SIZE-1)); | |
1068 | ||
1069 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1070 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
1071 | |
1072 | if (likely(count <= VMAP_MAX_ALLOC)) | |
1073 | vb_free(mem, size); | |
1074 | else | |
1075 | free_unmap_vmap_area_addr(addr); | |
1076 | } | |
1077 | EXPORT_SYMBOL(vm_unmap_ram); | |
1078 | ||
1079 | /** | |
1080 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1081 | * @pages: an array of pointers to the pages to be mapped | |
1082 | * @count: number of pages | |
1083 | * @node: prefer to allocate data structures on this node | |
1084 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
1085 | * |
1086 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
1087 | */ |
1088 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1089 | { | |
1090 | unsigned long size = count << PAGE_SHIFT; | |
1091 | unsigned long addr; | |
1092 | void *mem; | |
1093 | ||
1094 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1095 | mem = vb_alloc(size, GFP_KERNEL); | |
1096 | if (IS_ERR(mem)) | |
1097 | return NULL; | |
1098 | addr = (unsigned long)mem; | |
1099 | } else { | |
1100 | struct vmap_area *va; | |
1101 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1102 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1103 | if (IS_ERR(va)) | |
1104 | return NULL; | |
1105 | ||
1106 | addr = va->va_start; | |
1107 | mem = (void *)addr; | |
1108 | } | |
1109 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1110 | vm_unmap_ram(mem, count); | |
1111 | return NULL; | |
1112 | } | |
1113 | return mem; | |
1114 | } | |
1115 | EXPORT_SYMBOL(vm_map_ram); | |
1116 | ||
4341fa45 | 1117 | static struct vm_struct *vmlist __initdata; |
be9b7335 NP |
1118 | /** |
1119 | * vm_area_add_early - add vmap area early during boot | |
1120 | * @vm: vm_struct to add | |
1121 | * | |
1122 | * This function is used to add fixed kernel vm area to vmlist before | |
1123 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
1124 | * should contain proper values and the other fields should be zero. | |
1125 | * | |
1126 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1127 | */ | |
1128 | void __init vm_area_add_early(struct vm_struct *vm) | |
1129 | { | |
1130 | struct vm_struct *tmp, **p; | |
1131 | ||
1132 | BUG_ON(vmap_initialized); | |
1133 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1134 | if (tmp->addr >= vm->addr) { | |
1135 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
1136 | break; | |
1137 | } else | |
1138 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
1139 | } | |
1140 | vm->next = *p; | |
1141 | *p = vm; | |
1142 | } | |
1143 | ||
f0aa6617 TH |
1144 | /** |
1145 | * vm_area_register_early - register vmap area early during boot | |
1146 | * @vm: vm_struct to register | |
c0c0a293 | 1147 | * @align: requested alignment |
f0aa6617 TH |
1148 | * |
1149 | * This function is used to register kernel vm area before | |
1150 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1151 | * proper values on entry and other fields should be zero. On return, | |
1152 | * vm->addr contains the allocated address. | |
1153 | * | |
1154 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1155 | */ | |
c0c0a293 | 1156 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1157 | { |
1158 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1159 | unsigned long addr; |
1160 | ||
1161 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1162 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1163 | |
c0c0a293 | 1164 | vm->addr = (void *)addr; |
f0aa6617 | 1165 | |
be9b7335 | 1166 | vm_area_add_early(vm); |
f0aa6617 TH |
1167 | } |
1168 | ||
db64fe02 NP |
1169 | void __init vmalloc_init(void) |
1170 | { | |
822c18f2 IK |
1171 | struct vmap_area *va; |
1172 | struct vm_struct *tmp; | |
db64fe02 NP |
1173 | int i; |
1174 | ||
1175 | for_each_possible_cpu(i) { | |
1176 | struct vmap_block_queue *vbq; | |
32fcfd40 | 1177 | struct vfree_deferred *p; |
db64fe02 NP |
1178 | |
1179 | vbq = &per_cpu(vmap_block_queue, i); | |
1180 | spin_lock_init(&vbq->lock); | |
1181 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
1182 | p = &per_cpu(vfree_deferred, i); |
1183 | init_llist_head(&p->list); | |
1184 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 1185 | } |
9b463334 | 1186 | |
822c18f2 IK |
1187 | /* Import existing vmlist entries. */ |
1188 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1189 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
dbda591d | 1190 | va->flags = VM_VM_AREA; |
822c18f2 IK |
1191 | va->va_start = (unsigned long)tmp->addr; |
1192 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 1193 | va->vm = tmp; |
822c18f2 IK |
1194 | __insert_vmap_area(va); |
1195 | } | |
ca23e405 TH |
1196 | |
1197 | vmap_area_pcpu_hole = VMALLOC_END; | |
1198 | ||
9b463334 | 1199 | vmap_initialized = true; |
db64fe02 NP |
1200 | } |
1201 | ||
8fc48985 TH |
1202 | /** |
1203 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1204 | * @addr: start of the VM area to map | |
1205 | * @size: size of the VM area to map | |
1206 | * @prot: page protection flags to use | |
1207 | * @pages: pages to map | |
1208 | * | |
1209 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1210 | * specify should have been allocated using get_vm_area() and its | |
1211 | * friends. | |
1212 | * | |
1213 | * NOTE: | |
1214 | * This function does NOT do any cache flushing. The caller is | |
1215 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1216 | * before calling this function. | |
1217 | * | |
1218 | * RETURNS: | |
1219 | * The number of pages mapped on success, -errno on failure. | |
1220 | */ | |
1221 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1222 | pgprot_t prot, struct page **pages) | |
1223 | { | |
1224 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1225 | } | |
1226 | ||
1227 | /** | |
1228 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1229 | * @addr: start of the VM area to unmap | |
1230 | * @size: size of the VM area to unmap | |
1231 | * | |
1232 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1233 | * specify should have been allocated using get_vm_area() and its | |
1234 | * friends. | |
1235 | * | |
1236 | * NOTE: | |
1237 | * This function does NOT do any cache flushing. The caller is | |
1238 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1239 | * before calling this function and flush_tlb_kernel_range() after. | |
1240 | */ | |
1241 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1242 | { | |
1243 | vunmap_page_range(addr, addr + size); | |
1244 | } | |
81e88fdc | 1245 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); |
8fc48985 TH |
1246 | |
1247 | /** | |
1248 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1249 | * @addr: start of the VM area to unmap | |
1250 | * @size: size of the VM area to unmap | |
1251 | * | |
1252 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1253 | * the unmapping and tlb after. | |
1254 | */ | |
db64fe02 NP |
1255 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1256 | { | |
1257 | unsigned long end = addr + size; | |
f6fcba70 TH |
1258 | |
1259 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1260 | vunmap_page_range(addr, end); |
1261 | flush_tlb_kernel_range(addr, end); | |
1262 | } | |
1263 | ||
1264 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1265 | { | |
1266 | unsigned long addr = (unsigned long)area->addr; | |
762216ab | 1267 | unsigned long end = addr + get_vm_area_size(area); |
db64fe02 NP |
1268 | int err; |
1269 | ||
1270 | err = vmap_page_range(addr, end, prot, *pages); | |
1271 | if (err > 0) { | |
1272 | *pages += err; | |
1273 | err = 0; | |
1274 | } | |
1275 | ||
1276 | return err; | |
1277 | } | |
1278 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1279 | ||
f5252e00 | 1280 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
5e6cafc8 | 1281 | unsigned long flags, const void *caller) |
cf88c790 | 1282 | { |
c69480ad | 1283 | spin_lock(&vmap_area_lock); |
cf88c790 TH |
1284 | vm->flags = flags; |
1285 | vm->addr = (void *)va->va_start; | |
1286 | vm->size = va->va_end - va->va_start; | |
1287 | vm->caller = caller; | |
db1aecaf | 1288 | va->vm = vm; |
cf88c790 | 1289 | va->flags |= VM_VM_AREA; |
c69480ad | 1290 | spin_unlock(&vmap_area_lock); |
f5252e00 | 1291 | } |
cf88c790 | 1292 | |
20fc02b4 | 1293 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 1294 | { |
d4033afd | 1295 | /* |
20fc02b4 | 1296 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
1297 | * we should make sure that vm has proper values. |
1298 | * Pair with smp_rmb() in show_numa_info(). | |
1299 | */ | |
1300 | smp_wmb(); | |
20fc02b4 | 1301 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
1302 | } |
1303 | ||
db64fe02 | 1304 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 | 1305 | unsigned long align, unsigned long flags, unsigned long start, |
5e6cafc8 | 1306 | unsigned long end, int node, gfp_t gfp_mask, const void *caller) |
db64fe02 | 1307 | { |
0006526d | 1308 | struct vmap_area *va; |
db64fe02 | 1309 | struct vm_struct *area; |
1da177e4 | 1310 | |
52fd24ca | 1311 | BUG_ON(in_interrupt()); |
0f2d4a8e ZY |
1312 | if (flags & VM_IOREMAP) |
1313 | align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
db64fe02 | 1314 | |
1da177e4 | 1315 | size = PAGE_ALIGN(size); |
31be8309 OH |
1316 | if (unlikely(!size)) |
1317 | return NULL; | |
1da177e4 | 1318 | |
cf88c790 | 1319 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1320 | if (unlikely(!area)) |
1321 | return NULL; | |
1322 | ||
1da177e4 LT |
1323 | /* |
1324 | * We always allocate a guard page. | |
1325 | */ | |
1326 | size += PAGE_SIZE; | |
1327 | ||
db64fe02 NP |
1328 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1329 | if (IS_ERR(va)) { | |
1330 | kfree(area); | |
1331 | return NULL; | |
1da177e4 | 1332 | } |
1da177e4 | 1333 | |
d82b1d85 | 1334 | setup_vmalloc_vm(area, va, flags, caller); |
f5252e00 | 1335 | |
1da177e4 | 1336 | return area; |
1da177e4 LT |
1337 | } |
1338 | ||
930fc45a CL |
1339 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1340 | unsigned long start, unsigned long end) | |
1341 | { | |
00ef2d2f DR |
1342 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1343 | GFP_KERNEL, __builtin_return_address(0)); | |
930fc45a | 1344 | } |
5992b6da | 1345 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1346 | |
c2968612 BH |
1347 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1348 | unsigned long start, unsigned long end, | |
5e6cafc8 | 1349 | const void *caller) |
c2968612 | 1350 | { |
00ef2d2f DR |
1351 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1352 | GFP_KERNEL, caller); | |
c2968612 BH |
1353 | } |
1354 | ||
1da177e4 | 1355 | /** |
183ff22b | 1356 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1357 | * @size: size of the area |
1358 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1359 | * | |
1360 | * Search an area of @size in the kernel virtual mapping area, | |
1361 | * and reserved it for out purposes. Returns the area descriptor | |
1362 | * on success or %NULL on failure. | |
1363 | */ | |
1364 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1365 | { | |
2dca6999 | 1366 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f DR |
1367 | NUMA_NO_NODE, GFP_KERNEL, |
1368 | __builtin_return_address(0)); | |
23016969 CL |
1369 | } |
1370 | ||
1371 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 1372 | const void *caller) |
23016969 | 1373 | { |
2dca6999 | 1374 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f | 1375 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
1376 | } |
1377 | ||
e9da6e99 MS |
1378 | /** |
1379 | * find_vm_area - find a continuous kernel virtual area | |
1380 | * @addr: base address | |
1381 | * | |
1382 | * Search for the kernel VM area starting at @addr, and return it. | |
1383 | * It is up to the caller to do all required locking to keep the returned | |
1384 | * pointer valid. | |
1385 | */ | |
1386 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 1387 | { |
db64fe02 | 1388 | struct vmap_area *va; |
83342314 | 1389 | |
db64fe02 NP |
1390 | va = find_vmap_area((unsigned long)addr); |
1391 | if (va && va->flags & VM_VM_AREA) | |
db1aecaf | 1392 | return va->vm; |
1da177e4 | 1393 | |
1da177e4 | 1394 | return NULL; |
1da177e4 LT |
1395 | } |
1396 | ||
7856dfeb | 1397 | /** |
183ff22b | 1398 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1399 | * @addr: base address |
1400 | * | |
1401 | * Search for the kernel VM area starting at @addr, and remove it. | |
1402 | * This function returns the found VM area, but using it is NOT safe | |
1403 | * on SMP machines, except for its size or flags. | |
1404 | */ | |
b3bdda02 | 1405 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1406 | { |
db64fe02 NP |
1407 | struct vmap_area *va; |
1408 | ||
1409 | va = find_vmap_area((unsigned long)addr); | |
1410 | if (va && va->flags & VM_VM_AREA) { | |
db1aecaf | 1411 | struct vm_struct *vm = va->vm; |
f5252e00 | 1412 | |
c69480ad JK |
1413 | spin_lock(&vmap_area_lock); |
1414 | va->vm = NULL; | |
1415 | va->flags &= ~VM_VM_AREA; | |
1416 | spin_unlock(&vmap_area_lock); | |
1417 | ||
dd32c279 KH |
1418 | vmap_debug_free_range(va->va_start, va->va_end); |
1419 | free_unmap_vmap_area(va); | |
1420 | vm->size -= PAGE_SIZE; | |
1421 | ||
db64fe02 NP |
1422 | return vm; |
1423 | } | |
1424 | return NULL; | |
7856dfeb AK |
1425 | } |
1426 | ||
b3bdda02 | 1427 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1428 | { |
1429 | struct vm_struct *area; | |
1430 | ||
1431 | if (!addr) | |
1432 | return; | |
1433 | ||
e69e9d4a | 1434 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 1435 | addr)) |
1da177e4 | 1436 | return; |
1da177e4 LT |
1437 | |
1438 | area = remove_vm_area(addr); | |
1439 | if (unlikely(!area)) { | |
4c8573e2 | 1440 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1441 | addr); |
1da177e4 LT |
1442 | return; |
1443 | } | |
1444 | ||
9a11b49a | 1445 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1446 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1447 | |
1da177e4 LT |
1448 | if (deallocate_pages) { |
1449 | int i; | |
1450 | ||
1451 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1452 | struct page *page = area->pages[i]; |
1453 | ||
1454 | BUG_ON(!page); | |
1455 | __free_page(page); | |
1da177e4 LT |
1456 | } |
1457 | ||
8757d5fa | 1458 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1459 | vfree(area->pages); |
1460 | else | |
1461 | kfree(area->pages); | |
1462 | } | |
1463 | ||
1464 | kfree(area); | |
1465 | return; | |
1466 | } | |
32fcfd40 | 1467 | |
1da177e4 LT |
1468 | /** |
1469 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1470 | * @addr: memory base address |
1471 | * | |
183ff22b | 1472 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1473 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1474 | * NULL, no operation is performed. | |
1da177e4 | 1475 | * |
32fcfd40 AV |
1476 | * Must not be called in NMI context (strictly speaking, only if we don't |
1477 | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
1478 | * conventions for vfree() arch-depenedent would be a really bad idea) | |
c9fcee51 AM |
1479 | * |
1480 | * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) | |
1da177e4 | 1481 | */ |
b3bdda02 | 1482 | void vfree(const void *addr) |
1da177e4 | 1483 | { |
32fcfd40 | 1484 | BUG_ON(in_nmi()); |
89219d37 CM |
1485 | |
1486 | kmemleak_free(addr); | |
1487 | ||
32fcfd40 AV |
1488 | if (!addr) |
1489 | return; | |
1490 | if (unlikely(in_interrupt())) { | |
1491 | struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); | |
59d3132f ON |
1492 | if (llist_add((struct llist_node *)addr, &p->list)) |
1493 | schedule_work(&p->wq); | |
32fcfd40 AV |
1494 | } else |
1495 | __vunmap(addr, 1); | |
1da177e4 | 1496 | } |
1da177e4 LT |
1497 | EXPORT_SYMBOL(vfree); |
1498 | ||
1499 | /** | |
1500 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1501 | * @addr: memory base address |
1502 | * | |
1503 | * Free the virtually contiguous memory area starting at @addr, | |
1504 | * which was created from the page array passed to vmap(). | |
1505 | * | |
80e93eff | 1506 | * Must not be called in interrupt context. |
1da177e4 | 1507 | */ |
b3bdda02 | 1508 | void vunmap(const void *addr) |
1da177e4 LT |
1509 | { |
1510 | BUG_ON(in_interrupt()); | |
34754b69 | 1511 | might_sleep(); |
32fcfd40 AV |
1512 | if (addr) |
1513 | __vunmap(addr, 0); | |
1da177e4 | 1514 | } |
1da177e4 LT |
1515 | EXPORT_SYMBOL(vunmap); |
1516 | ||
1517 | /** | |
1518 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1519 | * @pages: array of page pointers |
1520 | * @count: number of pages to map | |
1521 | * @flags: vm_area->flags | |
1522 | * @prot: page protection for the mapping | |
1523 | * | |
1524 | * Maps @count pages from @pages into contiguous kernel virtual | |
1525 | * space. | |
1526 | */ | |
1527 | void *vmap(struct page **pages, unsigned int count, | |
1528 | unsigned long flags, pgprot_t prot) | |
1529 | { | |
1530 | struct vm_struct *area; | |
1531 | ||
34754b69 PZ |
1532 | might_sleep(); |
1533 | ||
4481374c | 1534 | if (count > totalram_pages) |
1da177e4 LT |
1535 | return NULL; |
1536 | ||
23016969 CL |
1537 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1538 | __builtin_return_address(0)); | |
1da177e4 LT |
1539 | if (!area) |
1540 | return NULL; | |
23016969 | 1541 | |
1da177e4 LT |
1542 | if (map_vm_area(area, prot, &pages)) { |
1543 | vunmap(area->addr); | |
1544 | return NULL; | |
1545 | } | |
1546 | ||
1547 | return area->addr; | |
1548 | } | |
1da177e4 LT |
1549 | EXPORT_SYMBOL(vmap); |
1550 | ||
2dca6999 DM |
1551 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1552 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1553 | int node, const void *caller); |
e31d9eb5 | 1554 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
3722e13c | 1555 | pgprot_t prot, int node) |
1da177e4 | 1556 | { |
22943ab1 | 1557 | const int order = 0; |
1da177e4 LT |
1558 | struct page **pages; |
1559 | unsigned int nr_pages, array_size, i; | |
976d6dfb | 1560 | gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1da177e4 | 1561 | |
762216ab | 1562 | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; |
1da177e4 LT |
1563 | array_size = (nr_pages * sizeof(struct page *)); |
1564 | ||
1565 | area->nr_pages = nr_pages; | |
1566 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1567 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1568 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
3722e13c | 1569 | PAGE_KERNEL, node, area->caller); |
8757d5fa | 1570 | area->flags |= VM_VPAGES; |
286e1ea3 | 1571 | } else { |
976d6dfb | 1572 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1573 | } |
1da177e4 LT |
1574 | area->pages = pages; |
1575 | if (!area->pages) { | |
1576 | remove_vm_area(area->addr); | |
1577 | kfree(area); | |
1578 | return NULL; | |
1579 | } | |
1da177e4 LT |
1580 | |
1581 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 | 1582 | struct page *page; |
22943ab1 | 1583 | gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; |
bf53d6f8 | 1584 | |
4b90951c | 1585 | if (node == NUMA_NO_NODE) |
22943ab1 | 1586 | page = alloc_page(tmp_mask); |
930fc45a | 1587 | else |
22943ab1 | 1588 | page = alloc_pages_node(node, tmp_mask, order); |
bf53d6f8 CL |
1589 | |
1590 | if (unlikely(!page)) { | |
1da177e4 LT |
1591 | /* Successfully allocated i pages, free them in __vunmap() */ |
1592 | area->nr_pages = i; | |
1593 | goto fail; | |
1594 | } | |
bf53d6f8 | 1595 | area->pages[i] = page; |
1da177e4 LT |
1596 | } |
1597 | ||
1598 | if (map_vm_area(area, prot, &pages)) | |
1599 | goto fail; | |
1600 | return area->addr; | |
1601 | ||
1602 | fail: | |
3ee9a4f0 JP |
1603 | warn_alloc_failed(gfp_mask, order, |
1604 | "vmalloc: allocation failure, allocated %ld of %ld bytes\n", | |
22943ab1 | 1605 | (area->nr_pages*PAGE_SIZE), area->size); |
1da177e4 LT |
1606 | vfree(area->addr); |
1607 | return NULL; | |
1608 | } | |
1609 | ||
1610 | /** | |
d0a21265 | 1611 | * __vmalloc_node_range - allocate virtually contiguous memory |
1da177e4 | 1612 | * @size: allocation size |
2dca6999 | 1613 | * @align: desired alignment |
d0a21265 DR |
1614 | * @start: vm area range start |
1615 | * @end: vm area range end | |
1da177e4 LT |
1616 | * @gfp_mask: flags for the page level allocator |
1617 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1618 | * @node: node to use for allocation or NUMA_NO_NODE |
c85d194b | 1619 | * @caller: caller's return address |
1da177e4 LT |
1620 | * |
1621 | * Allocate enough pages to cover @size from the page level | |
1622 | * allocator with @gfp_mask flags. Map them into contiguous | |
1623 | * kernel virtual space, using a pagetable protection of @prot. | |
1624 | */ | |
d0a21265 DR |
1625 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
1626 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
5e6cafc8 | 1627 | pgprot_t prot, int node, const void *caller) |
1da177e4 LT |
1628 | { |
1629 | struct vm_struct *area; | |
89219d37 CM |
1630 | void *addr; |
1631 | unsigned long real_size = size; | |
1da177e4 LT |
1632 | |
1633 | size = PAGE_ALIGN(size); | |
4481374c | 1634 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
de7d2b56 | 1635 | goto fail; |
1da177e4 | 1636 | |
20fc02b4 | 1637 | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, |
f5252e00 | 1638 | start, end, node, gfp_mask, caller); |
1da177e4 | 1639 | if (!area) |
de7d2b56 | 1640 | goto fail; |
1da177e4 | 1641 | |
3722e13c | 1642 | addr = __vmalloc_area_node(area, gfp_mask, prot, node); |
1368edf0 | 1643 | if (!addr) |
b82225f3 | 1644 | return NULL; |
89219d37 | 1645 | |
f5252e00 | 1646 | /* |
20fc02b4 ZY |
1647 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
1648 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 1649 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 1650 | */ |
20fc02b4 | 1651 | clear_vm_uninitialized_flag(area); |
f5252e00 | 1652 | |
89219d37 | 1653 | /* |
7f88f88f CM |
1654 | * A ref_count = 2 is needed because vm_struct allocated in |
1655 | * __get_vm_area_node() contains a reference to the virtual address of | |
1656 | * the vmalloc'ed block. | |
89219d37 | 1657 | */ |
7f88f88f | 1658 | kmemleak_alloc(addr, real_size, 2, gfp_mask); |
89219d37 CM |
1659 | |
1660 | return addr; | |
de7d2b56 JP |
1661 | |
1662 | fail: | |
1663 | warn_alloc_failed(gfp_mask, 0, | |
1664 | "vmalloc: allocation failure: %lu bytes\n", | |
1665 | real_size); | |
1666 | return NULL; | |
1da177e4 LT |
1667 | } |
1668 | ||
d0a21265 DR |
1669 | /** |
1670 | * __vmalloc_node - allocate virtually contiguous memory | |
1671 | * @size: allocation size | |
1672 | * @align: desired alignment | |
1673 | * @gfp_mask: flags for the page level allocator | |
1674 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1675 | * @node: node to use for allocation or NUMA_NO_NODE |
d0a21265 DR |
1676 | * @caller: caller's return address |
1677 | * | |
1678 | * Allocate enough pages to cover @size from the page level | |
1679 | * allocator with @gfp_mask flags. Map them into contiguous | |
1680 | * kernel virtual space, using a pagetable protection of @prot. | |
1681 | */ | |
1682 | static void *__vmalloc_node(unsigned long size, unsigned long align, | |
1683 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1684 | int node, const void *caller) |
d0a21265 DR |
1685 | { |
1686 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
1687 | gfp_mask, prot, node, caller); | |
1688 | } | |
1689 | ||
930fc45a CL |
1690 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1691 | { | |
00ef2d2f | 1692 | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, |
23016969 | 1693 | __builtin_return_address(0)); |
930fc45a | 1694 | } |
1da177e4 LT |
1695 | EXPORT_SYMBOL(__vmalloc); |
1696 | ||
e1ca7788 DY |
1697 | static inline void *__vmalloc_node_flags(unsigned long size, |
1698 | int node, gfp_t flags) | |
1699 | { | |
1700 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | |
1701 | node, __builtin_return_address(0)); | |
1702 | } | |
1703 | ||
1da177e4 LT |
1704 | /** |
1705 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1706 | * @size: allocation size |
1da177e4 LT |
1707 | * Allocate enough pages to cover @size from the page level |
1708 | * allocator and map them into contiguous kernel virtual space. | |
1709 | * | |
c1c8897f | 1710 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1711 | * use __vmalloc() instead. |
1712 | */ | |
1713 | void *vmalloc(unsigned long size) | |
1714 | { | |
00ef2d2f DR |
1715 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
1716 | GFP_KERNEL | __GFP_HIGHMEM); | |
1da177e4 | 1717 | } |
1da177e4 LT |
1718 | EXPORT_SYMBOL(vmalloc); |
1719 | ||
e1ca7788 DY |
1720 | /** |
1721 | * vzalloc - allocate virtually contiguous memory with zero fill | |
1722 | * @size: allocation size | |
1723 | * Allocate enough pages to cover @size from the page level | |
1724 | * allocator and map them into contiguous kernel virtual space. | |
1725 | * The memory allocated is set to zero. | |
1726 | * | |
1727 | * For tight control over page level allocator and protection flags | |
1728 | * use __vmalloc() instead. | |
1729 | */ | |
1730 | void *vzalloc(unsigned long size) | |
1731 | { | |
00ef2d2f | 1732 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
e1ca7788 DY |
1733 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); |
1734 | } | |
1735 | EXPORT_SYMBOL(vzalloc); | |
1736 | ||
83342314 | 1737 | /** |
ead04089 REB |
1738 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1739 | * @size: allocation size | |
83342314 | 1740 | * |
ead04089 REB |
1741 | * The resulting memory area is zeroed so it can be mapped to userspace |
1742 | * without leaking data. | |
83342314 NP |
1743 | */ |
1744 | void *vmalloc_user(unsigned long size) | |
1745 | { | |
1746 | struct vm_struct *area; | |
1747 | void *ret; | |
1748 | ||
2dca6999 DM |
1749 | ret = __vmalloc_node(size, SHMLBA, |
1750 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
00ef2d2f DR |
1751 | PAGE_KERNEL, NUMA_NO_NODE, |
1752 | __builtin_return_address(0)); | |
2b4ac44e | 1753 | if (ret) { |
db64fe02 | 1754 | area = find_vm_area(ret); |
2b4ac44e | 1755 | area->flags |= VM_USERMAP; |
2b4ac44e | 1756 | } |
83342314 NP |
1757 | return ret; |
1758 | } | |
1759 | EXPORT_SYMBOL(vmalloc_user); | |
1760 | ||
930fc45a CL |
1761 | /** |
1762 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1763 | * @size: allocation size |
d44e0780 | 1764 | * @node: numa node |
930fc45a CL |
1765 | * |
1766 | * Allocate enough pages to cover @size from the page level | |
1767 | * allocator and map them into contiguous kernel virtual space. | |
1768 | * | |
c1c8897f | 1769 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1770 | * use __vmalloc() instead. |
1771 | */ | |
1772 | void *vmalloc_node(unsigned long size, int node) | |
1773 | { | |
2dca6999 | 1774 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1775 | node, __builtin_return_address(0)); |
930fc45a CL |
1776 | } |
1777 | EXPORT_SYMBOL(vmalloc_node); | |
1778 | ||
e1ca7788 DY |
1779 | /** |
1780 | * vzalloc_node - allocate memory on a specific node with zero fill | |
1781 | * @size: allocation size | |
1782 | * @node: numa node | |
1783 | * | |
1784 | * Allocate enough pages to cover @size from the page level | |
1785 | * allocator and map them into contiguous kernel virtual space. | |
1786 | * The memory allocated is set to zero. | |
1787 | * | |
1788 | * For tight control over page level allocator and protection flags | |
1789 | * use __vmalloc_node() instead. | |
1790 | */ | |
1791 | void *vzalloc_node(unsigned long size, int node) | |
1792 | { | |
1793 | return __vmalloc_node_flags(size, node, | |
1794 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | |
1795 | } | |
1796 | EXPORT_SYMBOL(vzalloc_node); | |
1797 | ||
4dc3b16b PP |
1798 | #ifndef PAGE_KERNEL_EXEC |
1799 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1800 | #endif | |
1801 | ||
1da177e4 LT |
1802 | /** |
1803 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1804 | * @size: allocation size |
1805 | * | |
1806 | * Kernel-internal function to allocate enough pages to cover @size | |
1807 | * the page level allocator and map them into contiguous and | |
1808 | * executable kernel virtual space. | |
1809 | * | |
c1c8897f | 1810 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1811 | * use __vmalloc() instead. |
1812 | */ | |
1813 | ||
1da177e4 LT |
1814 | void *vmalloc_exec(unsigned long size) |
1815 | { | |
2dca6999 | 1816 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
00ef2d2f | 1817 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 LT |
1818 | } |
1819 | ||
0d08e0d3 | 1820 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1821 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1822 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1823 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1824 | #else |
1825 | #define GFP_VMALLOC32 GFP_KERNEL | |
1826 | #endif | |
1827 | ||
1da177e4 LT |
1828 | /** |
1829 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1830 | * @size: allocation size |
1831 | * | |
1832 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1833 | * page level allocator and map them into contiguous kernel virtual space. | |
1834 | */ | |
1835 | void *vmalloc_32(unsigned long size) | |
1836 | { | |
2dca6999 | 1837 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
00ef2d2f | 1838 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 | 1839 | } |
1da177e4 LT |
1840 | EXPORT_SYMBOL(vmalloc_32); |
1841 | ||
83342314 | 1842 | /** |
ead04089 | 1843 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1844 | * @size: allocation size |
ead04089 REB |
1845 | * |
1846 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1847 | * mapped to userspace without leaking data. | |
83342314 NP |
1848 | */ |
1849 | void *vmalloc_32_user(unsigned long size) | |
1850 | { | |
1851 | struct vm_struct *area; | |
1852 | void *ret; | |
1853 | ||
2dca6999 | 1854 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
00ef2d2f | 1855 | NUMA_NO_NODE, __builtin_return_address(0)); |
2b4ac44e | 1856 | if (ret) { |
db64fe02 | 1857 | area = find_vm_area(ret); |
2b4ac44e | 1858 | area->flags |= VM_USERMAP; |
2b4ac44e | 1859 | } |
83342314 NP |
1860 | return ret; |
1861 | } | |
1862 | EXPORT_SYMBOL(vmalloc_32_user); | |
1863 | ||
d0107eb0 KH |
1864 | /* |
1865 | * small helper routine , copy contents to buf from addr. | |
1866 | * If the page is not present, fill zero. | |
1867 | */ | |
1868 | ||
1869 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1870 | { | |
1871 | struct page *p; | |
1872 | int copied = 0; | |
1873 | ||
1874 | while (count) { | |
1875 | unsigned long offset, length; | |
1876 | ||
1877 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1878 | length = PAGE_SIZE - offset; | |
1879 | if (length > count) | |
1880 | length = count; | |
1881 | p = vmalloc_to_page(addr); | |
1882 | /* | |
1883 | * To do safe access to this _mapped_ area, we need | |
1884 | * lock. But adding lock here means that we need to add | |
1885 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1886 | * interface, rarely used. Instead of that, we'll use | |
1887 | * kmap() and get small overhead in this access function. | |
1888 | */ | |
1889 | if (p) { | |
1890 | /* | |
1891 | * we can expect USER0 is not used (see vread/vwrite's | |
1892 | * function description) | |
1893 | */ | |
9b04c5fe | 1894 | void *map = kmap_atomic(p); |
d0107eb0 | 1895 | memcpy(buf, map + offset, length); |
9b04c5fe | 1896 | kunmap_atomic(map); |
d0107eb0 KH |
1897 | } else |
1898 | memset(buf, 0, length); | |
1899 | ||
1900 | addr += length; | |
1901 | buf += length; | |
1902 | copied += length; | |
1903 | count -= length; | |
1904 | } | |
1905 | return copied; | |
1906 | } | |
1907 | ||
1908 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1909 | { | |
1910 | struct page *p; | |
1911 | int copied = 0; | |
1912 | ||
1913 | while (count) { | |
1914 | unsigned long offset, length; | |
1915 | ||
1916 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1917 | length = PAGE_SIZE - offset; | |
1918 | if (length > count) | |
1919 | length = count; | |
1920 | p = vmalloc_to_page(addr); | |
1921 | /* | |
1922 | * To do safe access to this _mapped_ area, we need | |
1923 | * lock. But adding lock here means that we need to add | |
1924 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1925 | * interface, rarely used. Instead of that, we'll use | |
1926 | * kmap() and get small overhead in this access function. | |
1927 | */ | |
1928 | if (p) { | |
1929 | /* | |
1930 | * we can expect USER0 is not used (see vread/vwrite's | |
1931 | * function description) | |
1932 | */ | |
9b04c5fe | 1933 | void *map = kmap_atomic(p); |
d0107eb0 | 1934 | memcpy(map + offset, buf, length); |
9b04c5fe | 1935 | kunmap_atomic(map); |
d0107eb0 KH |
1936 | } |
1937 | addr += length; | |
1938 | buf += length; | |
1939 | copied += length; | |
1940 | count -= length; | |
1941 | } | |
1942 | return copied; | |
1943 | } | |
1944 | ||
1945 | /** | |
1946 | * vread() - read vmalloc area in a safe way. | |
1947 | * @buf: buffer for reading data | |
1948 | * @addr: vm address. | |
1949 | * @count: number of bytes to be read. | |
1950 | * | |
1951 | * Returns # of bytes which addr and buf should be increased. | |
1952 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1953 | * includes any intersect with alive vmalloc area. | |
1954 | * | |
1955 | * This function checks that addr is a valid vmalloc'ed area, and | |
1956 | * copy data from that area to a given buffer. If the given memory range | |
1957 | * of [addr...addr+count) includes some valid address, data is copied to | |
1958 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1959 | * IOREMAP area is treated as memory hole and no copy is done. | |
1960 | * | |
1961 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 1962 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
1963 | * |
1964 | * Note: In usual ops, vread() is never necessary because the caller | |
1965 | * should know vmalloc() area is valid and can use memcpy(). | |
1966 | * This is for routines which have to access vmalloc area without | |
1967 | * any informaion, as /dev/kmem. | |
1968 | * | |
1969 | */ | |
1970 | ||
1da177e4 LT |
1971 | long vread(char *buf, char *addr, unsigned long count) |
1972 | { | |
e81ce85f JK |
1973 | struct vmap_area *va; |
1974 | struct vm_struct *vm; | |
1da177e4 | 1975 | char *vaddr, *buf_start = buf; |
d0107eb0 | 1976 | unsigned long buflen = count; |
1da177e4 LT |
1977 | unsigned long n; |
1978 | ||
1979 | /* Don't allow overflow */ | |
1980 | if ((unsigned long) addr + count < count) | |
1981 | count = -(unsigned long) addr; | |
1982 | ||
e81ce85f JK |
1983 | spin_lock(&vmap_area_lock); |
1984 | list_for_each_entry(va, &vmap_area_list, list) { | |
1985 | if (!count) | |
1986 | break; | |
1987 | ||
1988 | if (!(va->flags & VM_VM_AREA)) | |
1989 | continue; | |
1990 | ||
1991 | vm = va->vm; | |
1992 | vaddr = (char *) vm->addr; | |
762216ab | 1993 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
1994 | continue; |
1995 | while (addr < vaddr) { | |
1996 | if (count == 0) | |
1997 | goto finished; | |
1998 | *buf = '\0'; | |
1999 | buf++; | |
2000 | addr++; | |
2001 | count--; | |
2002 | } | |
762216ab | 2003 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2004 | if (n > count) |
2005 | n = count; | |
e81ce85f | 2006 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
2007 | aligned_vread(buf, addr, n); |
2008 | else /* IOREMAP area is treated as memory hole */ | |
2009 | memset(buf, 0, n); | |
2010 | buf += n; | |
2011 | addr += n; | |
2012 | count -= n; | |
1da177e4 LT |
2013 | } |
2014 | finished: | |
e81ce85f | 2015 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2016 | |
2017 | if (buf == buf_start) | |
2018 | return 0; | |
2019 | /* zero-fill memory holes */ | |
2020 | if (buf != buf_start + buflen) | |
2021 | memset(buf, 0, buflen - (buf - buf_start)); | |
2022 | ||
2023 | return buflen; | |
1da177e4 LT |
2024 | } |
2025 | ||
d0107eb0 KH |
2026 | /** |
2027 | * vwrite() - write vmalloc area in a safe way. | |
2028 | * @buf: buffer for source data | |
2029 | * @addr: vm address. | |
2030 | * @count: number of bytes to be read. | |
2031 | * | |
2032 | * Returns # of bytes which addr and buf should be incresed. | |
2033 | * (same number to @count). | |
2034 | * If [addr...addr+count) doesn't includes any intersect with valid | |
2035 | * vmalloc area, returns 0. | |
2036 | * | |
2037 | * This function checks that addr is a valid vmalloc'ed area, and | |
2038 | * copy data from a buffer to the given addr. If specified range of | |
2039 | * [addr...addr+count) includes some valid address, data is copied from | |
2040 | * proper area of @buf. If there are memory holes, no copy to hole. | |
2041 | * IOREMAP area is treated as memory hole and no copy is done. | |
2042 | * | |
2043 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2044 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2045 | * |
2046 | * Note: In usual ops, vwrite() is never necessary because the caller | |
2047 | * should know vmalloc() area is valid and can use memcpy(). | |
2048 | * This is for routines which have to access vmalloc area without | |
2049 | * any informaion, as /dev/kmem. | |
d0107eb0 KH |
2050 | */ |
2051 | ||
1da177e4 LT |
2052 | long vwrite(char *buf, char *addr, unsigned long count) |
2053 | { | |
e81ce85f JK |
2054 | struct vmap_area *va; |
2055 | struct vm_struct *vm; | |
d0107eb0 KH |
2056 | char *vaddr; |
2057 | unsigned long n, buflen; | |
2058 | int copied = 0; | |
1da177e4 LT |
2059 | |
2060 | /* Don't allow overflow */ | |
2061 | if ((unsigned long) addr + count < count) | |
2062 | count = -(unsigned long) addr; | |
d0107eb0 | 2063 | buflen = count; |
1da177e4 | 2064 | |
e81ce85f JK |
2065 | spin_lock(&vmap_area_lock); |
2066 | list_for_each_entry(va, &vmap_area_list, list) { | |
2067 | if (!count) | |
2068 | break; | |
2069 | ||
2070 | if (!(va->flags & VM_VM_AREA)) | |
2071 | continue; | |
2072 | ||
2073 | vm = va->vm; | |
2074 | vaddr = (char *) vm->addr; | |
762216ab | 2075 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2076 | continue; |
2077 | while (addr < vaddr) { | |
2078 | if (count == 0) | |
2079 | goto finished; | |
2080 | buf++; | |
2081 | addr++; | |
2082 | count--; | |
2083 | } | |
762216ab | 2084 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2085 | if (n > count) |
2086 | n = count; | |
e81ce85f | 2087 | if (!(vm->flags & VM_IOREMAP)) { |
d0107eb0 KH |
2088 | aligned_vwrite(buf, addr, n); |
2089 | copied++; | |
2090 | } | |
2091 | buf += n; | |
2092 | addr += n; | |
2093 | count -= n; | |
1da177e4 LT |
2094 | } |
2095 | finished: | |
e81ce85f | 2096 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2097 | if (!copied) |
2098 | return 0; | |
2099 | return buflen; | |
1da177e4 | 2100 | } |
83342314 NP |
2101 | |
2102 | /** | |
e69e9d4a HD |
2103 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
2104 | * @vma: vma to cover | |
2105 | * @uaddr: target user address to start at | |
2106 | * @kaddr: virtual address of vmalloc kernel memory | |
2107 | * @size: size of map area | |
7682486b RD |
2108 | * |
2109 | * Returns: 0 for success, -Exxx on failure | |
83342314 | 2110 | * |
e69e9d4a HD |
2111 | * This function checks that @kaddr is a valid vmalloc'ed area, |
2112 | * and that it is big enough to cover the range starting at | |
2113 | * @uaddr in @vma. Will return failure if that criteria isn't | |
2114 | * met. | |
83342314 | 2115 | * |
72fd4a35 | 2116 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 2117 | */ |
e69e9d4a HD |
2118 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
2119 | void *kaddr, unsigned long size) | |
83342314 NP |
2120 | { |
2121 | struct vm_struct *area; | |
83342314 | 2122 | |
e69e9d4a HD |
2123 | size = PAGE_ALIGN(size); |
2124 | ||
2125 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
2126 | return -EINVAL; |
2127 | ||
e69e9d4a | 2128 | area = find_vm_area(kaddr); |
83342314 | 2129 | if (!area) |
db64fe02 | 2130 | return -EINVAL; |
83342314 NP |
2131 | |
2132 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 2133 | return -EINVAL; |
83342314 | 2134 | |
e69e9d4a | 2135 | if (kaddr + size > area->addr + area->size) |
db64fe02 | 2136 | return -EINVAL; |
83342314 | 2137 | |
83342314 | 2138 | do { |
e69e9d4a | 2139 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
2140 | int ret; |
2141 | ||
83342314 NP |
2142 | ret = vm_insert_page(vma, uaddr, page); |
2143 | if (ret) | |
2144 | return ret; | |
2145 | ||
2146 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
2147 | kaddr += PAGE_SIZE; |
2148 | size -= PAGE_SIZE; | |
2149 | } while (size > 0); | |
83342314 | 2150 | |
314e51b9 | 2151 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 2152 | |
db64fe02 | 2153 | return 0; |
83342314 | 2154 | } |
e69e9d4a HD |
2155 | EXPORT_SYMBOL(remap_vmalloc_range_partial); |
2156 | ||
2157 | /** | |
2158 | * remap_vmalloc_range - map vmalloc pages to userspace | |
2159 | * @vma: vma to cover (map full range of vma) | |
2160 | * @addr: vmalloc memory | |
2161 | * @pgoff: number of pages into addr before first page to map | |
2162 | * | |
2163 | * Returns: 0 for success, -Exxx on failure | |
2164 | * | |
2165 | * This function checks that addr is a valid vmalloc'ed area, and | |
2166 | * that it is big enough to cover the vma. Will return failure if | |
2167 | * that criteria isn't met. | |
2168 | * | |
2169 | * Similar to remap_pfn_range() (see mm/memory.c) | |
2170 | */ | |
2171 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
2172 | unsigned long pgoff) | |
2173 | { | |
2174 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
2175 | addr + (pgoff << PAGE_SHIFT), | |
2176 | vma->vm_end - vma->vm_start); | |
2177 | } | |
83342314 NP |
2178 | EXPORT_SYMBOL(remap_vmalloc_range); |
2179 | ||
1eeb66a1 CH |
2180 | /* |
2181 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
2182 | * have one. | |
2183 | */ | |
2184 | void __attribute__((weak)) vmalloc_sync_all(void) | |
2185 | { | |
2186 | } | |
5f4352fb JF |
2187 | |
2188 | ||
2f569afd | 2189 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb | 2190 | { |
cd12909c DV |
2191 | pte_t ***p = data; |
2192 | ||
2193 | if (p) { | |
2194 | *(*p) = pte; | |
2195 | (*p)++; | |
2196 | } | |
5f4352fb JF |
2197 | return 0; |
2198 | } | |
2199 | ||
2200 | /** | |
2201 | * alloc_vm_area - allocate a range of kernel address space | |
2202 | * @size: size of the area | |
cd12909c | 2203 | * @ptes: returns the PTEs for the address space |
7682486b RD |
2204 | * |
2205 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2206 | * |
2207 | * This function reserves a range of kernel address space, and | |
2208 | * allocates pagetables to map that range. No actual mappings | |
cd12909c DV |
2209 | * are created. |
2210 | * | |
2211 | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | |
2212 | * allocated for the VM area are returned. | |
5f4352fb | 2213 | */ |
cd12909c | 2214 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
5f4352fb JF |
2215 | { |
2216 | struct vm_struct *area; | |
2217 | ||
23016969 CL |
2218 | area = get_vm_area_caller(size, VM_IOREMAP, |
2219 | __builtin_return_address(0)); | |
5f4352fb JF |
2220 | if (area == NULL) |
2221 | return NULL; | |
2222 | ||
2223 | /* | |
2224 | * This ensures that page tables are constructed for this region | |
2225 | * of kernel virtual address space and mapped into init_mm. | |
2226 | */ | |
2227 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
cd12909c | 2228 | size, f, ptes ? &ptes : NULL)) { |
5f4352fb JF |
2229 | free_vm_area(area); |
2230 | return NULL; | |
2231 | } | |
2232 | ||
5f4352fb JF |
2233 | return area; |
2234 | } | |
2235 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2236 | ||
2237 | void free_vm_area(struct vm_struct *area) | |
2238 | { | |
2239 | struct vm_struct *ret; | |
2240 | ret = remove_vm_area(area->addr); | |
2241 | BUG_ON(ret != area); | |
2242 | kfree(area); | |
2243 | } | |
2244 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2245 | |
4f8b02b4 | 2246 | #ifdef CONFIG_SMP |
ca23e405 TH |
2247 | static struct vmap_area *node_to_va(struct rb_node *n) |
2248 | { | |
2249 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2250 | } | |
2251 | ||
2252 | /** | |
2253 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2254 | * @end: target address | |
2255 | * @pnext: out arg for the next vmap_area | |
2256 | * @pprev: out arg for the previous vmap_area | |
2257 | * | |
2258 | * Returns: %true if either or both of next and prev are found, | |
2259 | * %false if no vmap_area exists | |
2260 | * | |
2261 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2262 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2263 | */ | |
2264 | static bool pvm_find_next_prev(unsigned long end, | |
2265 | struct vmap_area **pnext, | |
2266 | struct vmap_area **pprev) | |
2267 | { | |
2268 | struct rb_node *n = vmap_area_root.rb_node; | |
2269 | struct vmap_area *va = NULL; | |
2270 | ||
2271 | while (n) { | |
2272 | va = rb_entry(n, struct vmap_area, rb_node); | |
2273 | if (end < va->va_end) | |
2274 | n = n->rb_left; | |
2275 | else if (end > va->va_end) | |
2276 | n = n->rb_right; | |
2277 | else | |
2278 | break; | |
2279 | } | |
2280 | ||
2281 | if (!va) | |
2282 | return false; | |
2283 | ||
2284 | if (va->va_end > end) { | |
2285 | *pnext = va; | |
2286 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2287 | } else { | |
2288 | *pprev = va; | |
2289 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2290 | } | |
2291 | return true; | |
2292 | } | |
2293 | ||
2294 | /** | |
2295 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2296 | * @pnext: in/out arg for the next vmap_area | |
2297 | * @pprev: in/out arg for the previous vmap_area | |
2298 | * @align: alignment | |
2299 | * | |
2300 | * Returns: determined end address | |
2301 | * | |
2302 | * Find the highest aligned address between *@pnext and *@pprev below | |
2303 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2304 | * down address is between the end addresses of the two vmap_areas. | |
2305 | * | |
2306 | * Please note that the address returned by this function may fall | |
2307 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2308 | * that. | |
2309 | */ | |
2310 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2311 | struct vmap_area **pprev, | |
2312 | unsigned long align) | |
2313 | { | |
2314 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2315 | unsigned long addr; | |
2316 | ||
2317 | if (*pnext) | |
2318 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2319 | else | |
2320 | addr = vmalloc_end; | |
2321 | ||
2322 | while (*pprev && (*pprev)->va_end > addr) { | |
2323 | *pnext = *pprev; | |
2324 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2325 | } | |
2326 | ||
2327 | return addr; | |
2328 | } | |
2329 | ||
2330 | /** | |
2331 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2332 | * @offsets: array containing offset of each area | |
2333 | * @sizes: array containing size of each area | |
2334 | * @nr_vms: the number of areas to allocate | |
2335 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
2336 | * |
2337 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2338 | * vm_structs on success, %NULL on failure | |
2339 | * | |
2340 | * Percpu allocator wants to use congruent vm areas so that it can | |
2341 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
2342 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
2343 | * be scattered pretty far, distance between two areas easily going up | |
2344 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
2345 | * areas are allocated from top. | |
ca23e405 TH |
2346 | * |
2347 | * Despite its complicated look, this allocator is rather simple. It | |
2348 | * does everything top-down and scans areas from the end looking for | |
2349 | * matching slot. While scanning, if any of the areas overlaps with | |
2350 | * existing vmap_area, the base address is pulled down to fit the | |
2351 | * area. Scanning is repeated till all the areas fit and then all | |
2352 | * necessary data structres are inserted and the result is returned. | |
2353 | */ | |
2354 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2355 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 2356 | size_t align) |
ca23e405 TH |
2357 | { |
2358 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2359 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2360 | struct vmap_area **vas, *prev, *next; | |
2361 | struct vm_struct **vms; | |
2362 | int area, area2, last_area, term_area; | |
2363 | unsigned long base, start, end, last_end; | |
2364 | bool purged = false; | |
2365 | ||
ca23e405 TH |
2366 | /* verify parameters and allocate data structures */ |
2367 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2368 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2369 | start = offsets[area]; | |
2370 | end = start + sizes[area]; | |
2371 | ||
2372 | /* is everything aligned properly? */ | |
2373 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2374 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2375 | ||
2376 | /* detect the area with the highest address */ | |
2377 | if (start > offsets[last_area]) | |
2378 | last_area = area; | |
2379 | ||
2380 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2381 | unsigned long start2 = offsets[area2]; | |
2382 | unsigned long end2 = start2 + sizes[area2]; | |
2383 | ||
2384 | if (area2 == area) | |
2385 | continue; | |
2386 | ||
2387 | BUG_ON(start2 >= start && start2 < end); | |
2388 | BUG_ON(end2 <= end && end2 > start); | |
2389 | } | |
2390 | } | |
2391 | last_end = offsets[last_area] + sizes[last_area]; | |
2392 | ||
2393 | if (vmalloc_end - vmalloc_start < last_end) { | |
2394 | WARN_ON(true); | |
2395 | return NULL; | |
2396 | } | |
2397 | ||
4d67d860 TM |
2398 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
2399 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 2400 | if (!vas || !vms) |
f1db7afd | 2401 | goto err_free2; |
ca23e405 TH |
2402 | |
2403 | for (area = 0; area < nr_vms; area++) { | |
ec3f64fc DR |
2404 | vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); |
2405 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
ca23e405 TH |
2406 | if (!vas[area] || !vms[area]) |
2407 | goto err_free; | |
2408 | } | |
2409 | retry: | |
2410 | spin_lock(&vmap_area_lock); | |
2411 | ||
2412 | /* start scanning - we scan from the top, begin with the last area */ | |
2413 | area = term_area = last_area; | |
2414 | start = offsets[area]; | |
2415 | end = start + sizes[area]; | |
2416 | ||
2417 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2418 | base = vmalloc_end - last_end; | |
2419 | goto found; | |
2420 | } | |
2421 | base = pvm_determine_end(&next, &prev, align) - end; | |
2422 | ||
2423 | while (true) { | |
2424 | BUG_ON(next && next->va_end <= base + end); | |
2425 | BUG_ON(prev && prev->va_end > base + end); | |
2426 | ||
2427 | /* | |
2428 | * base might have underflowed, add last_end before | |
2429 | * comparing. | |
2430 | */ | |
2431 | if (base + last_end < vmalloc_start + last_end) { | |
2432 | spin_unlock(&vmap_area_lock); | |
2433 | if (!purged) { | |
2434 | purge_vmap_area_lazy(); | |
2435 | purged = true; | |
2436 | goto retry; | |
2437 | } | |
2438 | goto err_free; | |
2439 | } | |
2440 | ||
2441 | /* | |
2442 | * If next overlaps, move base downwards so that it's | |
2443 | * right below next and then recheck. | |
2444 | */ | |
2445 | if (next && next->va_start < base + end) { | |
2446 | base = pvm_determine_end(&next, &prev, align) - end; | |
2447 | term_area = area; | |
2448 | continue; | |
2449 | } | |
2450 | ||
2451 | /* | |
2452 | * If prev overlaps, shift down next and prev and move | |
2453 | * base so that it's right below new next and then | |
2454 | * recheck. | |
2455 | */ | |
2456 | if (prev && prev->va_end > base + start) { | |
2457 | next = prev; | |
2458 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2459 | base = pvm_determine_end(&next, &prev, align) - end; | |
2460 | term_area = area; | |
2461 | continue; | |
2462 | } | |
2463 | ||
2464 | /* | |
2465 | * This area fits, move on to the previous one. If | |
2466 | * the previous one is the terminal one, we're done. | |
2467 | */ | |
2468 | area = (area + nr_vms - 1) % nr_vms; | |
2469 | if (area == term_area) | |
2470 | break; | |
2471 | start = offsets[area]; | |
2472 | end = start + sizes[area]; | |
2473 | pvm_find_next_prev(base + end, &next, &prev); | |
2474 | } | |
2475 | found: | |
2476 | /* we've found a fitting base, insert all va's */ | |
2477 | for (area = 0; area < nr_vms; area++) { | |
2478 | struct vmap_area *va = vas[area]; | |
2479 | ||
2480 | va->va_start = base + offsets[area]; | |
2481 | va->va_end = va->va_start + sizes[area]; | |
2482 | __insert_vmap_area(va); | |
2483 | } | |
2484 | ||
2485 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2486 | ||
2487 | spin_unlock(&vmap_area_lock); | |
2488 | ||
2489 | /* insert all vm's */ | |
2490 | for (area = 0; area < nr_vms; area++) | |
3645cb4a ZY |
2491 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
2492 | pcpu_get_vm_areas); | |
ca23e405 TH |
2493 | |
2494 | kfree(vas); | |
2495 | return vms; | |
2496 | ||
2497 | err_free: | |
2498 | for (area = 0; area < nr_vms; area++) { | |
f1db7afd KC |
2499 | kfree(vas[area]); |
2500 | kfree(vms[area]); | |
ca23e405 | 2501 | } |
f1db7afd | 2502 | err_free2: |
ca23e405 TH |
2503 | kfree(vas); |
2504 | kfree(vms); | |
2505 | return NULL; | |
2506 | } | |
2507 | ||
2508 | /** | |
2509 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2510 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2511 | * @nr_vms: the number of allocated areas | |
2512 | * | |
2513 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2514 | */ | |
2515 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2516 | { | |
2517 | int i; | |
2518 | ||
2519 | for (i = 0; i < nr_vms; i++) | |
2520 | free_vm_area(vms[i]); | |
2521 | kfree(vms); | |
2522 | } | |
4f8b02b4 | 2523 | #endif /* CONFIG_SMP */ |
a10aa579 CL |
2524 | |
2525 | #ifdef CONFIG_PROC_FS | |
2526 | static void *s_start(struct seq_file *m, loff_t *pos) | |
d4033afd | 2527 | __acquires(&vmap_area_lock) |
a10aa579 CL |
2528 | { |
2529 | loff_t n = *pos; | |
d4033afd | 2530 | struct vmap_area *va; |
a10aa579 | 2531 | |
d4033afd JK |
2532 | spin_lock(&vmap_area_lock); |
2533 | va = list_entry((&vmap_area_list)->next, typeof(*va), list); | |
2534 | while (n > 0 && &va->list != &vmap_area_list) { | |
a10aa579 | 2535 | n--; |
d4033afd | 2536 | va = list_entry(va->list.next, typeof(*va), list); |
a10aa579 | 2537 | } |
d4033afd JK |
2538 | if (!n && &va->list != &vmap_area_list) |
2539 | return va; | |
a10aa579 CL |
2540 | |
2541 | return NULL; | |
2542 | ||
2543 | } | |
2544 | ||
2545 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2546 | { | |
d4033afd | 2547 | struct vmap_area *va = p, *next; |
a10aa579 CL |
2548 | |
2549 | ++*pos; | |
d4033afd JK |
2550 | next = list_entry(va->list.next, typeof(*va), list); |
2551 | if (&next->list != &vmap_area_list) | |
2552 | return next; | |
2553 | ||
2554 | return NULL; | |
a10aa579 CL |
2555 | } |
2556 | ||
2557 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 2558 | __releases(&vmap_area_lock) |
a10aa579 | 2559 | { |
d4033afd | 2560 | spin_unlock(&vmap_area_lock); |
a10aa579 CL |
2561 | } |
2562 | ||
a47a126a ED |
2563 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2564 | { | |
e5adfffc | 2565 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
2566 | unsigned int nr, *counters = m->private; |
2567 | ||
2568 | if (!counters) | |
2569 | return; | |
2570 | ||
af12346c WL |
2571 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
2572 | smp_rmb(); | |
2573 | if (v->flags & VM_UNINITIALIZED) | |
2574 | return; | |
2575 | ||
a47a126a ED |
2576 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
2577 | ||
2578 | for (nr = 0; nr < v->nr_pages; nr++) | |
2579 | counters[page_to_nid(v->pages[nr])]++; | |
2580 | ||
2581 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2582 | if (counters[nr]) | |
2583 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2584 | } | |
2585 | } | |
2586 | ||
a10aa579 CL |
2587 | static int s_show(struct seq_file *m, void *p) |
2588 | { | |
d4033afd JK |
2589 | struct vmap_area *va = p; |
2590 | struct vm_struct *v; | |
2591 | ||
c2ce8c14 WL |
2592 | /* |
2593 | * s_show can encounter race with remove_vm_area, !VM_VM_AREA on | |
2594 | * behalf of vmap area is being tear down or vm_map_ram allocation. | |
2595 | */ | |
2596 | if (!(va->flags & VM_VM_AREA)) | |
d4033afd | 2597 | return 0; |
d4033afd JK |
2598 | |
2599 | v = va->vm; | |
a10aa579 | 2600 | |
45ec1690 | 2601 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
2602 | v->addr, v->addr + v->size, v->size); |
2603 | ||
62c70bce JP |
2604 | if (v->caller) |
2605 | seq_printf(m, " %pS", v->caller); | |
23016969 | 2606 | |
a10aa579 CL |
2607 | if (v->nr_pages) |
2608 | seq_printf(m, " pages=%d", v->nr_pages); | |
2609 | ||
2610 | if (v->phys_addr) | |
ffa71f33 | 2611 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
a10aa579 CL |
2612 | |
2613 | if (v->flags & VM_IOREMAP) | |
2614 | seq_printf(m, " ioremap"); | |
2615 | ||
2616 | if (v->flags & VM_ALLOC) | |
2617 | seq_printf(m, " vmalloc"); | |
2618 | ||
2619 | if (v->flags & VM_MAP) | |
2620 | seq_printf(m, " vmap"); | |
2621 | ||
2622 | if (v->flags & VM_USERMAP) | |
2623 | seq_printf(m, " user"); | |
2624 | ||
2625 | if (v->flags & VM_VPAGES) | |
2626 | seq_printf(m, " vpages"); | |
2627 | ||
a47a126a | 2628 | show_numa_info(m, v); |
a10aa579 CL |
2629 | seq_putc(m, '\n'); |
2630 | return 0; | |
2631 | } | |
2632 | ||
5f6a6a9c | 2633 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2634 | .start = s_start, |
2635 | .next = s_next, | |
2636 | .stop = s_stop, | |
2637 | .show = s_show, | |
2638 | }; | |
5f6a6a9c AD |
2639 | |
2640 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2641 | { | |
2642 | unsigned int *ptr = NULL; | |
2643 | int ret; | |
2644 | ||
e5adfffc | 2645 | if (IS_ENABLED(CONFIG_NUMA)) { |
5f6a6a9c | 2646 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
51980ac9 KV |
2647 | if (ptr == NULL) |
2648 | return -ENOMEM; | |
2649 | } | |
5f6a6a9c AD |
2650 | ret = seq_open(file, &vmalloc_op); |
2651 | if (!ret) { | |
2652 | struct seq_file *m = file->private_data; | |
2653 | m->private = ptr; | |
2654 | } else | |
2655 | kfree(ptr); | |
2656 | return ret; | |
2657 | } | |
2658 | ||
2659 | static const struct file_operations proc_vmalloc_operations = { | |
2660 | .open = vmalloc_open, | |
2661 | .read = seq_read, | |
2662 | .llseek = seq_lseek, | |
2663 | .release = seq_release_private, | |
2664 | }; | |
2665 | ||
2666 | static int __init proc_vmalloc_init(void) | |
2667 | { | |
2668 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2669 | return 0; | |
2670 | } | |
2671 | module_init(proc_vmalloc_init); | |
db3808c1 JK |
2672 | |
2673 | void get_vmalloc_info(struct vmalloc_info *vmi) | |
2674 | { | |
f98782dd | 2675 | struct vmap_area *va; |
db3808c1 JK |
2676 | unsigned long free_area_size; |
2677 | unsigned long prev_end; | |
2678 | ||
2679 | vmi->used = 0; | |
f98782dd | 2680 | vmi->largest_chunk = 0; |
db3808c1 | 2681 | |
f98782dd | 2682 | prev_end = VMALLOC_START; |
db3808c1 | 2683 | |
f98782dd | 2684 | spin_lock(&vmap_area_lock); |
db3808c1 | 2685 | |
f98782dd JK |
2686 | if (list_empty(&vmap_area_list)) { |
2687 | vmi->largest_chunk = VMALLOC_TOTAL; | |
2688 | goto out; | |
2689 | } | |
db3808c1 | 2690 | |
f98782dd JK |
2691 | list_for_each_entry(va, &vmap_area_list, list) { |
2692 | unsigned long addr = va->va_start; | |
db3808c1 | 2693 | |
f98782dd JK |
2694 | /* |
2695 | * Some archs keep another range for modules in vmalloc space | |
2696 | */ | |
2697 | if (addr < VMALLOC_START) | |
2698 | continue; | |
2699 | if (addr >= VMALLOC_END) | |
2700 | break; | |
db3808c1 | 2701 | |
f98782dd JK |
2702 | if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) |
2703 | continue; | |
db3808c1 | 2704 | |
f98782dd | 2705 | vmi->used += (va->va_end - va->va_start); |
db3808c1 | 2706 | |
f98782dd JK |
2707 | free_area_size = addr - prev_end; |
2708 | if (vmi->largest_chunk < free_area_size) | |
2709 | vmi->largest_chunk = free_area_size; | |
db3808c1 | 2710 | |
f98782dd | 2711 | prev_end = va->va_end; |
db3808c1 | 2712 | } |
f98782dd JK |
2713 | |
2714 | if (VMALLOC_END - prev_end > vmi->largest_chunk) | |
2715 | vmi->largest_chunk = VMALLOC_END - prev_end; | |
2716 | ||
2717 | out: | |
2718 | spin_unlock(&vmap_area_lock); | |
db3808c1 | 2719 | } |
a10aa579 CL |
2720 | #endif |
2721 |