]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
b1de0d13 MH |
14 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
15 | ||
1da177e4 LT |
16 | #include <linux/mm.h> |
17 | #include <linux/module.h> | |
5a0e3ad6 | 18 | #include <linux/gfp.h> |
1da177e4 LT |
19 | #include <linux/kernel_stat.h> |
20 | #include <linux/swap.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/init.h> | |
23 | #include <linux/highmem.h> | |
70ddf637 | 24 | #include <linux/vmpressure.h> |
e129b5c2 | 25 | #include <linux/vmstat.h> |
1da177e4 LT |
26 | #include <linux/file.h> |
27 | #include <linux/writeback.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
30 | buffer_heads_over_limit */ | |
31 | #include <linux/mm_inline.h> | |
1da177e4 LT |
32 | #include <linux/backing-dev.h> |
33 | #include <linux/rmap.h> | |
34 | #include <linux/topology.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/cpuset.h> | |
3e7d3449 | 37 | #include <linux/compaction.h> |
1da177e4 LT |
38 | #include <linux/notifier.h> |
39 | #include <linux/rwsem.h> | |
248a0301 | 40 | #include <linux/delay.h> |
3218ae14 | 41 | #include <linux/kthread.h> |
7dfb7103 | 42 | #include <linux/freezer.h> |
66e1707b | 43 | #include <linux/memcontrol.h> |
873b4771 | 44 | #include <linux/delayacct.h> |
af936a16 | 45 | #include <linux/sysctl.h> |
929bea7c | 46 | #include <linux/oom.h> |
268bb0ce | 47 | #include <linux/prefetch.h> |
b1de0d13 | 48 | #include <linux/printk.h> |
f9fe48be | 49 | #include <linux/dax.h> |
1da177e4 LT |
50 | |
51 | #include <asm/tlbflush.h> | |
52 | #include <asm/div64.h> | |
53 | ||
54 | #include <linux/swapops.h> | |
117aad1e | 55 | #include <linux/balloon_compaction.h> |
1da177e4 | 56 | |
0f8053a5 NP |
57 | #include "internal.h" |
58 | ||
33906bc5 MG |
59 | #define CREATE_TRACE_POINTS |
60 | #include <trace/events/vmscan.h> | |
61 | ||
1da177e4 | 62 | struct scan_control { |
22fba335 KM |
63 | /* How many pages shrink_list() should reclaim */ |
64 | unsigned long nr_to_reclaim; | |
65 | ||
1da177e4 | 66 | /* This context's GFP mask */ |
6daa0e28 | 67 | gfp_t gfp_mask; |
1da177e4 | 68 | |
ee814fe2 | 69 | /* Allocation order */ |
5ad333eb | 70 | int order; |
66e1707b | 71 | |
ee814fe2 JW |
72 | /* |
73 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
74 | * are scanned. | |
75 | */ | |
76 | nodemask_t *nodemask; | |
9e3b2f8c | 77 | |
f16015fb JW |
78 | /* |
79 | * The memory cgroup that hit its limit and as a result is the | |
80 | * primary target of this reclaim invocation. | |
81 | */ | |
82 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 83 | |
ee814fe2 JW |
84 | /* Scan (total_size >> priority) pages at once */ |
85 | int priority; | |
86 | ||
87 | unsigned int may_writepage:1; | |
88 | ||
89 | /* Can mapped pages be reclaimed? */ | |
90 | unsigned int may_unmap:1; | |
91 | ||
92 | /* Can pages be swapped as part of reclaim? */ | |
93 | unsigned int may_swap:1; | |
94 | ||
241994ed JW |
95 | /* Can cgroups be reclaimed below their normal consumption range? */ |
96 | unsigned int may_thrash:1; | |
97 | ||
ee814fe2 JW |
98 | unsigned int hibernation_mode:1; |
99 | ||
100 | /* One of the zones is ready for compaction */ | |
101 | unsigned int compaction_ready:1; | |
102 | ||
103 | /* Incremented by the number of inactive pages that were scanned */ | |
104 | unsigned long nr_scanned; | |
105 | ||
106 | /* Number of pages freed so far during a call to shrink_zones() */ | |
107 | unsigned long nr_reclaimed; | |
1da177e4 LT |
108 | }; |
109 | ||
1da177e4 LT |
110 | #ifdef ARCH_HAS_PREFETCH |
111 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
112 | do { \ | |
113 | if ((_page)->lru.prev != _base) { \ | |
114 | struct page *prev; \ | |
115 | \ | |
116 | prev = lru_to_page(&(_page->lru)); \ | |
117 | prefetch(&prev->_field); \ | |
118 | } \ | |
119 | } while (0) | |
120 | #else | |
121 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
122 | #endif | |
123 | ||
124 | #ifdef ARCH_HAS_PREFETCHW | |
125 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
126 | do { \ | |
127 | if ((_page)->lru.prev != _base) { \ | |
128 | struct page *prev; \ | |
129 | \ | |
130 | prev = lru_to_page(&(_page->lru)); \ | |
131 | prefetchw(&prev->_field); \ | |
132 | } \ | |
133 | } while (0) | |
134 | #else | |
135 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
136 | #endif | |
137 | ||
138 | /* | |
139 | * From 0 .. 100. Higher means more swappy. | |
140 | */ | |
141 | int vm_swappiness = 60; | |
d0480be4 WSH |
142 | /* |
143 | * The total number of pages which are beyond the high watermark within all | |
144 | * zones. | |
145 | */ | |
146 | unsigned long vm_total_pages; | |
1da177e4 LT |
147 | |
148 | static LIST_HEAD(shrinker_list); | |
149 | static DECLARE_RWSEM(shrinker_rwsem); | |
150 | ||
c255a458 | 151 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
152 | static bool global_reclaim(struct scan_control *sc) |
153 | { | |
f16015fb | 154 | return !sc->target_mem_cgroup; |
89b5fae5 | 155 | } |
97c9341f TH |
156 | |
157 | /** | |
158 | * sane_reclaim - is the usual dirty throttling mechanism operational? | |
159 | * @sc: scan_control in question | |
160 | * | |
161 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
162 | * completely broken with the legacy memcg and direct stalling in | |
163 | * shrink_page_list() is used for throttling instead, which lacks all the | |
164 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
165 | * allocation and configurability. | |
166 | * | |
167 | * This function tests whether the vmscan currently in progress can assume | |
168 | * that the normal dirty throttling mechanism is operational. | |
169 | */ | |
170 | static bool sane_reclaim(struct scan_control *sc) | |
171 | { | |
172 | struct mem_cgroup *memcg = sc->target_mem_cgroup; | |
173 | ||
174 | if (!memcg) | |
175 | return true; | |
176 | #ifdef CONFIG_CGROUP_WRITEBACK | |
69234ace | 177 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
97c9341f TH |
178 | return true; |
179 | #endif | |
180 | return false; | |
181 | } | |
91a45470 | 182 | #else |
89b5fae5 JW |
183 | static bool global_reclaim(struct scan_control *sc) |
184 | { | |
185 | return true; | |
186 | } | |
97c9341f TH |
187 | |
188 | static bool sane_reclaim(struct scan_control *sc) | |
189 | { | |
190 | return true; | |
191 | } | |
91a45470 KH |
192 | #endif |
193 | ||
a1c3bfb2 | 194 | static unsigned long zone_reclaimable_pages(struct zone *zone) |
6e543d57 | 195 | { |
d031a157 | 196 | unsigned long nr; |
6e543d57 | 197 | |
0db2cb8d MH |
198 | nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) + |
199 | zone_page_state_snapshot(zone, NR_INACTIVE_FILE) + | |
200 | zone_page_state_snapshot(zone, NR_ISOLATED_FILE); | |
6e543d57 LD |
201 | |
202 | if (get_nr_swap_pages() > 0) | |
0db2cb8d MH |
203 | nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) + |
204 | zone_page_state_snapshot(zone, NR_INACTIVE_ANON) + | |
205 | zone_page_state_snapshot(zone, NR_ISOLATED_ANON); | |
6e543d57 LD |
206 | |
207 | return nr; | |
208 | } | |
209 | ||
210 | bool zone_reclaimable(struct zone *zone) | |
211 | { | |
0db2cb8d | 212 | return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) < |
0d5d823a | 213 | zone_reclaimable_pages(zone) * 6; |
6e543d57 LD |
214 | } |
215 | ||
23047a96 | 216 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) |
c9f299d9 | 217 | { |
c3c787e8 | 218 | if (!mem_cgroup_disabled()) |
4d7dcca2 | 219 | return mem_cgroup_get_lru_size(lruvec, lru); |
a3d8e054 | 220 | |
074291fe | 221 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
c9f299d9 KM |
222 | } |
223 | ||
1da177e4 | 224 | /* |
1d3d4437 | 225 | * Add a shrinker callback to be called from the vm. |
1da177e4 | 226 | */ |
1d3d4437 | 227 | int register_shrinker(struct shrinker *shrinker) |
1da177e4 | 228 | { |
1d3d4437 GC |
229 | size_t size = sizeof(*shrinker->nr_deferred); |
230 | ||
1d3d4437 GC |
231 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
232 | size *= nr_node_ids; | |
233 | ||
234 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
235 | if (!shrinker->nr_deferred) | |
236 | return -ENOMEM; | |
237 | ||
8e1f936b RR |
238 | down_write(&shrinker_rwsem); |
239 | list_add_tail(&shrinker->list, &shrinker_list); | |
240 | up_write(&shrinker_rwsem); | |
1d3d4437 | 241 | return 0; |
1da177e4 | 242 | } |
8e1f936b | 243 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
244 | |
245 | /* | |
246 | * Remove one | |
247 | */ | |
8e1f936b | 248 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
249 | { |
250 | down_write(&shrinker_rwsem); | |
251 | list_del(&shrinker->list); | |
252 | up_write(&shrinker_rwsem); | |
ae393321 | 253 | kfree(shrinker->nr_deferred); |
1da177e4 | 254 | } |
8e1f936b | 255 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 LT |
256 | |
257 | #define SHRINK_BATCH 128 | |
1d3d4437 | 258 | |
cb731d6c VD |
259 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, |
260 | struct shrinker *shrinker, | |
261 | unsigned long nr_scanned, | |
262 | unsigned long nr_eligible) | |
1d3d4437 GC |
263 | { |
264 | unsigned long freed = 0; | |
265 | unsigned long long delta; | |
266 | long total_scan; | |
d5bc5fd3 | 267 | long freeable; |
1d3d4437 GC |
268 | long nr; |
269 | long new_nr; | |
270 | int nid = shrinkctl->nid; | |
271 | long batch_size = shrinker->batch ? shrinker->batch | |
272 | : SHRINK_BATCH; | |
273 | ||
d5bc5fd3 VD |
274 | freeable = shrinker->count_objects(shrinker, shrinkctl); |
275 | if (freeable == 0) | |
1d3d4437 GC |
276 | return 0; |
277 | ||
278 | /* | |
279 | * copy the current shrinker scan count into a local variable | |
280 | * and zero it so that other concurrent shrinker invocations | |
281 | * don't also do this scanning work. | |
282 | */ | |
283 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
284 | ||
285 | total_scan = nr; | |
6b4f7799 | 286 | delta = (4 * nr_scanned) / shrinker->seeks; |
d5bc5fd3 | 287 | delta *= freeable; |
6b4f7799 | 288 | do_div(delta, nr_eligible + 1); |
1d3d4437 GC |
289 | total_scan += delta; |
290 | if (total_scan < 0) { | |
8612c663 | 291 | pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", |
a0b02131 | 292 | shrinker->scan_objects, total_scan); |
d5bc5fd3 | 293 | total_scan = freeable; |
1d3d4437 GC |
294 | } |
295 | ||
296 | /* | |
297 | * We need to avoid excessive windup on filesystem shrinkers | |
298 | * due to large numbers of GFP_NOFS allocations causing the | |
299 | * shrinkers to return -1 all the time. This results in a large | |
300 | * nr being built up so when a shrink that can do some work | |
301 | * comes along it empties the entire cache due to nr >>> | |
d5bc5fd3 | 302 | * freeable. This is bad for sustaining a working set in |
1d3d4437 GC |
303 | * memory. |
304 | * | |
305 | * Hence only allow the shrinker to scan the entire cache when | |
306 | * a large delta change is calculated directly. | |
307 | */ | |
d5bc5fd3 VD |
308 | if (delta < freeable / 4) |
309 | total_scan = min(total_scan, freeable / 2); | |
1d3d4437 GC |
310 | |
311 | /* | |
312 | * Avoid risking looping forever due to too large nr value: | |
313 | * never try to free more than twice the estimate number of | |
314 | * freeable entries. | |
315 | */ | |
d5bc5fd3 VD |
316 | if (total_scan > freeable * 2) |
317 | total_scan = freeable * 2; | |
1d3d4437 GC |
318 | |
319 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
6b4f7799 JW |
320 | nr_scanned, nr_eligible, |
321 | freeable, delta, total_scan); | |
1d3d4437 | 322 | |
0b1fb40a VD |
323 | /* |
324 | * Normally, we should not scan less than batch_size objects in one | |
325 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
326 | * than batch_size objects in total and we are really tight on memory, | |
327 | * we will try to reclaim all available objects, otherwise we can end | |
328 | * up failing allocations although there are plenty of reclaimable | |
329 | * objects spread over several slabs with usage less than the | |
330 | * batch_size. | |
331 | * | |
332 | * We detect the "tight on memory" situations by looking at the total | |
333 | * number of objects we want to scan (total_scan). If it is greater | |
d5bc5fd3 | 334 | * than the total number of objects on slab (freeable), we must be |
0b1fb40a VD |
335 | * scanning at high prio and therefore should try to reclaim as much as |
336 | * possible. | |
337 | */ | |
338 | while (total_scan >= batch_size || | |
d5bc5fd3 | 339 | total_scan >= freeable) { |
a0b02131 | 340 | unsigned long ret; |
0b1fb40a | 341 | unsigned long nr_to_scan = min(batch_size, total_scan); |
1d3d4437 | 342 | |
0b1fb40a | 343 | shrinkctl->nr_to_scan = nr_to_scan; |
a0b02131 DC |
344 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
345 | if (ret == SHRINK_STOP) | |
346 | break; | |
347 | freed += ret; | |
1d3d4437 | 348 | |
0b1fb40a VD |
349 | count_vm_events(SLABS_SCANNED, nr_to_scan); |
350 | total_scan -= nr_to_scan; | |
1d3d4437 GC |
351 | |
352 | cond_resched(); | |
353 | } | |
354 | ||
355 | /* | |
356 | * move the unused scan count back into the shrinker in a | |
357 | * manner that handles concurrent updates. If we exhausted the | |
358 | * scan, there is no need to do an update. | |
359 | */ | |
360 | if (total_scan > 0) | |
361 | new_nr = atomic_long_add_return(total_scan, | |
362 | &shrinker->nr_deferred[nid]); | |
363 | else | |
364 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); | |
365 | ||
df9024a8 | 366 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); |
1d3d4437 | 367 | return freed; |
1495f230 YH |
368 | } |
369 | ||
6b4f7799 | 370 | /** |
cb731d6c | 371 | * shrink_slab - shrink slab caches |
6b4f7799 JW |
372 | * @gfp_mask: allocation context |
373 | * @nid: node whose slab caches to target | |
cb731d6c | 374 | * @memcg: memory cgroup whose slab caches to target |
6b4f7799 JW |
375 | * @nr_scanned: pressure numerator |
376 | * @nr_eligible: pressure denominator | |
1da177e4 | 377 | * |
6b4f7799 | 378 | * Call the shrink functions to age shrinkable caches. |
1da177e4 | 379 | * |
6b4f7799 JW |
380 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, |
381 | * unaware shrinkers will receive a node id of 0 instead. | |
1da177e4 | 382 | * |
cb731d6c VD |
383 | * @memcg specifies the memory cgroup to target. If it is not NULL, |
384 | * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan | |
0fc9f58a VD |
385 | * objects from the memory cgroup specified. Otherwise, only unaware |
386 | * shrinkers are called. | |
cb731d6c | 387 | * |
6b4f7799 JW |
388 | * @nr_scanned and @nr_eligible form a ratio that indicate how much of |
389 | * the available objects should be scanned. Page reclaim for example | |
390 | * passes the number of pages scanned and the number of pages on the | |
391 | * LRU lists that it considered on @nid, plus a bias in @nr_scanned | |
392 | * when it encountered mapped pages. The ratio is further biased by | |
393 | * the ->seeks setting of the shrink function, which indicates the | |
394 | * cost to recreate an object relative to that of an LRU page. | |
b15e0905 | 395 | * |
6b4f7799 | 396 | * Returns the number of reclaimed slab objects. |
1da177e4 | 397 | */ |
cb731d6c VD |
398 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, |
399 | struct mem_cgroup *memcg, | |
400 | unsigned long nr_scanned, | |
401 | unsigned long nr_eligible) | |
1da177e4 LT |
402 | { |
403 | struct shrinker *shrinker; | |
24f7c6b9 | 404 | unsigned long freed = 0; |
1da177e4 | 405 | |
0fc9f58a | 406 | if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) |
cb731d6c VD |
407 | return 0; |
408 | ||
6b4f7799 JW |
409 | if (nr_scanned == 0) |
410 | nr_scanned = SWAP_CLUSTER_MAX; | |
1da177e4 | 411 | |
f06590bd | 412 | if (!down_read_trylock(&shrinker_rwsem)) { |
24f7c6b9 DC |
413 | /* |
414 | * If we would return 0, our callers would understand that we | |
415 | * have nothing else to shrink and give up trying. By returning | |
416 | * 1 we keep it going and assume we'll be able to shrink next | |
417 | * time. | |
418 | */ | |
419 | freed = 1; | |
f06590bd MK |
420 | goto out; |
421 | } | |
1da177e4 LT |
422 | |
423 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
6b4f7799 JW |
424 | struct shrink_control sc = { |
425 | .gfp_mask = gfp_mask, | |
426 | .nid = nid, | |
cb731d6c | 427 | .memcg = memcg, |
6b4f7799 | 428 | }; |
ec97097b | 429 | |
0fc9f58a VD |
430 | /* |
431 | * If kernel memory accounting is disabled, we ignore | |
432 | * SHRINKER_MEMCG_AWARE flag and call all shrinkers | |
433 | * passing NULL for memcg. | |
434 | */ | |
435 | if (memcg_kmem_enabled() && | |
436 | !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
cb731d6c VD |
437 | continue; |
438 | ||
6b4f7799 JW |
439 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) |
440 | sc.nid = 0; | |
1da177e4 | 441 | |
cb731d6c | 442 | freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); |
1da177e4 | 443 | } |
6b4f7799 | 444 | |
1da177e4 | 445 | up_read(&shrinker_rwsem); |
f06590bd MK |
446 | out: |
447 | cond_resched(); | |
24f7c6b9 | 448 | return freed; |
1da177e4 LT |
449 | } |
450 | ||
cb731d6c VD |
451 | void drop_slab_node(int nid) |
452 | { | |
453 | unsigned long freed; | |
454 | ||
455 | do { | |
456 | struct mem_cgroup *memcg = NULL; | |
457 | ||
458 | freed = 0; | |
459 | do { | |
460 | freed += shrink_slab(GFP_KERNEL, nid, memcg, | |
461 | 1000, 1000); | |
462 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
463 | } while (freed > 10); | |
464 | } | |
465 | ||
466 | void drop_slab(void) | |
467 | { | |
468 | int nid; | |
469 | ||
470 | for_each_online_node(nid) | |
471 | drop_slab_node(nid); | |
472 | } | |
473 | ||
1da177e4 LT |
474 | static inline int is_page_cache_freeable(struct page *page) |
475 | { | |
ceddc3a5 JW |
476 | /* |
477 | * A freeable page cache page is referenced only by the caller | |
478 | * that isolated the page, the page cache radix tree and | |
479 | * optional buffer heads at page->private. | |
480 | */ | |
edcf4748 | 481 | return page_count(page) - page_has_private(page) == 2; |
1da177e4 LT |
482 | } |
483 | ||
703c2708 | 484 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) |
1da177e4 | 485 | { |
930d9152 | 486 | if (current->flags & PF_SWAPWRITE) |
1da177e4 | 487 | return 1; |
703c2708 | 488 | if (!inode_write_congested(inode)) |
1da177e4 | 489 | return 1; |
703c2708 | 490 | if (inode_to_bdi(inode) == current->backing_dev_info) |
1da177e4 LT |
491 | return 1; |
492 | return 0; | |
493 | } | |
494 | ||
495 | /* | |
496 | * We detected a synchronous write error writing a page out. Probably | |
497 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
498 | * fsync(), msync() or close(). | |
499 | * | |
500 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
501 | * prevents it from being freed up. But we have a ref on the page and once | |
502 | * that page is locked, the mapping is pinned. | |
503 | * | |
504 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
505 | * __GFP_FS. | |
506 | */ | |
507 | static void handle_write_error(struct address_space *mapping, | |
508 | struct page *page, int error) | |
509 | { | |
7eaceacc | 510 | lock_page(page); |
3e9f45bd GC |
511 | if (page_mapping(page) == mapping) |
512 | mapping_set_error(mapping, error); | |
1da177e4 LT |
513 | unlock_page(page); |
514 | } | |
515 | ||
04e62a29 CL |
516 | /* possible outcome of pageout() */ |
517 | typedef enum { | |
518 | /* failed to write page out, page is locked */ | |
519 | PAGE_KEEP, | |
520 | /* move page to the active list, page is locked */ | |
521 | PAGE_ACTIVATE, | |
522 | /* page has been sent to the disk successfully, page is unlocked */ | |
523 | PAGE_SUCCESS, | |
524 | /* page is clean and locked */ | |
525 | PAGE_CLEAN, | |
526 | } pageout_t; | |
527 | ||
1da177e4 | 528 | /* |
1742f19f AM |
529 | * pageout is called by shrink_page_list() for each dirty page. |
530 | * Calls ->writepage(). | |
1da177e4 | 531 | */ |
c661b078 | 532 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 533 | struct scan_control *sc) |
1da177e4 LT |
534 | { |
535 | /* | |
536 | * If the page is dirty, only perform writeback if that write | |
537 | * will be non-blocking. To prevent this allocation from being | |
538 | * stalled by pagecache activity. But note that there may be | |
539 | * stalls if we need to run get_block(). We could test | |
540 | * PagePrivate for that. | |
541 | * | |
8174202b | 542 | * If this process is currently in __generic_file_write_iter() against |
1da177e4 LT |
543 | * this page's queue, we can perform writeback even if that |
544 | * will block. | |
545 | * | |
546 | * If the page is swapcache, write it back even if that would | |
547 | * block, for some throttling. This happens by accident, because | |
548 | * swap_backing_dev_info is bust: it doesn't reflect the | |
549 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
550 | */ |
551 | if (!is_page_cache_freeable(page)) | |
552 | return PAGE_KEEP; | |
553 | if (!mapping) { | |
554 | /* | |
555 | * Some data journaling orphaned pages can have | |
556 | * page->mapping == NULL while being dirty with clean buffers. | |
557 | */ | |
266cf658 | 558 | if (page_has_private(page)) { |
1da177e4 LT |
559 | if (try_to_free_buffers(page)) { |
560 | ClearPageDirty(page); | |
b1de0d13 | 561 | pr_info("%s: orphaned page\n", __func__); |
1da177e4 LT |
562 | return PAGE_CLEAN; |
563 | } | |
564 | } | |
565 | return PAGE_KEEP; | |
566 | } | |
567 | if (mapping->a_ops->writepage == NULL) | |
568 | return PAGE_ACTIVATE; | |
703c2708 | 569 | if (!may_write_to_inode(mapping->host, sc)) |
1da177e4 LT |
570 | return PAGE_KEEP; |
571 | ||
572 | if (clear_page_dirty_for_io(page)) { | |
573 | int res; | |
574 | struct writeback_control wbc = { | |
575 | .sync_mode = WB_SYNC_NONE, | |
576 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
577 | .range_start = 0, |
578 | .range_end = LLONG_MAX, | |
1da177e4 LT |
579 | .for_reclaim = 1, |
580 | }; | |
581 | ||
582 | SetPageReclaim(page); | |
583 | res = mapping->a_ops->writepage(page, &wbc); | |
584 | if (res < 0) | |
585 | handle_write_error(mapping, page, res); | |
994fc28c | 586 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
587 | ClearPageReclaim(page); |
588 | return PAGE_ACTIVATE; | |
589 | } | |
c661b078 | 590 | |
1da177e4 LT |
591 | if (!PageWriteback(page)) { |
592 | /* synchronous write or broken a_ops? */ | |
593 | ClearPageReclaim(page); | |
594 | } | |
3aa23851 | 595 | trace_mm_vmscan_writepage(page); |
e129b5c2 | 596 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
597 | return PAGE_SUCCESS; |
598 | } | |
599 | ||
600 | return PAGE_CLEAN; | |
601 | } | |
602 | ||
a649fd92 | 603 | /* |
e286781d NP |
604 | * Same as remove_mapping, but if the page is removed from the mapping, it |
605 | * gets returned with a refcount of 0. | |
a649fd92 | 606 | */ |
a528910e JW |
607 | static int __remove_mapping(struct address_space *mapping, struct page *page, |
608 | bool reclaimed) | |
49d2e9cc | 609 | { |
c4843a75 | 610 | unsigned long flags; |
c4843a75 | 611 | |
28e4d965 NP |
612 | BUG_ON(!PageLocked(page)); |
613 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 614 | |
c4843a75 | 615 | spin_lock_irqsave(&mapping->tree_lock, flags); |
49d2e9cc | 616 | /* |
0fd0e6b0 NP |
617 | * The non racy check for a busy page. |
618 | * | |
619 | * Must be careful with the order of the tests. When someone has | |
620 | * a ref to the page, it may be possible that they dirty it then | |
621 | * drop the reference. So if PageDirty is tested before page_count | |
622 | * here, then the following race may occur: | |
623 | * | |
624 | * get_user_pages(&page); | |
625 | * [user mapping goes away] | |
626 | * write_to(page); | |
627 | * !PageDirty(page) [good] | |
628 | * SetPageDirty(page); | |
629 | * put_page(page); | |
630 | * !page_count(page) [good, discard it] | |
631 | * | |
632 | * [oops, our write_to data is lost] | |
633 | * | |
634 | * Reversing the order of the tests ensures such a situation cannot | |
635 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
0139aa7b | 636 | * load is not satisfied before that of page->_refcount. |
0fd0e6b0 NP |
637 | * |
638 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
639 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc | 640 | */ |
fe896d18 | 641 | if (!page_ref_freeze(page, 2)) |
49d2e9cc | 642 | goto cannot_free; |
e286781d NP |
643 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
644 | if (unlikely(PageDirty(page))) { | |
fe896d18 | 645 | page_ref_unfreeze(page, 2); |
49d2e9cc | 646 | goto cannot_free; |
e286781d | 647 | } |
49d2e9cc CL |
648 | |
649 | if (PageSwapCache(page)) { | |
650 | swp_entry_t swap = { .val = page_private(page) }; | |
0a31bc97 | 651 | mem_cgroup_swapout(page, swap); |
49d2e9cc | 652 | __delete_from_swap_cache(page); |
c4843a75 | 653 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
0a31bc97 | 654 | swapcache_free(swap); |
e286781d | 655 | } else { |
6072d13c | 656 | void (*freepage)(struct page *); |
a528910e | 657 | void *shadow = NULL; |
6072d13c LT |
658 | |
659 | freepage = mapping->a_ops->freepage; | |
a528910e JW |
660 | /* |
661 | * Remember a shadow entry for reclaimed file cache in | |
662 | * order to detect refaults, thus thrashing, later on. | |
663 | * | |
664 | * But don't store shadows in an address space that is | |
665 | * already exiting. This is not just an optizimation, | |
666 | * inode reclaim needs to empty out the radix tree or | |
667 | * the nodes are lost. Don't plant shadows behind its | |
668 | * back. | |
f9fe48be RZ |
669 | * |
670 | * We also don't store shadows for DAX mappings because the | |
671 | * only page cache pages found in these are zero pages | |
672 | * covering holes, and because we don't want to mix DAX | |
673 | * exceptional entries and shadow exceptional entries in the | |
674 | * same page_tree. | |
a528910e JW |
675 | */ |
676 | if (reclaimed && page_is_file_cache(page) && | |
f9fe48be | 677 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
a528910e | 678 | shadow = workingset_eviction(mapping, page); |
62cccb8c | 679 | __delete_from_page_cache(page, shadow); |
c4843a75 | 680 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6072d13c LT |
681 | |
682 | if (freepage != NULL) | |
683 | freepage(page); | |
49d2e9cc CL |
684 | } |
685 | ||
49d2e9cc CL |
686 | return 1; |
687 | ||
688 | cannot_free: | |
c4843a75 | 689 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
49d2e9cc CL |
690 | return 0; |
691 | } | |
692 | ||
e286781d NP |
693 | /* |
694 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
695 | * someone else has a ref on the page, abort and return 0. If it was | |
696 | * successfully detached, return 1. Assumes the caller has a single ref on | |
697 | * this page. | |
698 | */ | |
699 | int remove_mapping(struct address_space *mapping, struct page *page) | |
700 | { | |
a528910e | 701 | if (__remove_mapping(mapping, page, false)) { |
e286781d NP |
702 | /* |
703 | * Unfreezing the refcount with 1 rather than 2 effectively | |
704 | * drops the pagecache ref for us without requiring another | |
705 | * atomic operation. | |
706 | */ | |
fe896d18 | 707 | page_ref_unfreeze(page, 1); |
e286781d NP |
708 | return 1; |
709 | } | |
710 | return 0; | |
711 | } | |
712 | ||
894bc310 LS |
713 | /** |
714 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
715 | * @page: page to be put back to appropriate lru list | |
716 | * | |
717 | * Add previously isolated @page to appropriate LRU list. | |
718 | * Page may still be unevictable for other reasons. | |
719 | * | |
720 | * lru_lock must not be held, interrupts must be enabled. | |
721 | */ | |
894bc310 LS |
722 | void putback_lru_page(struct page *page) |
723 | { | |
0ec3b74c | 724 | bool is_unevictable; |
bbfd28ee | 725 | int was_unevictable = PageUnevictable(page); |
894bc310 | 726 | |
309381fe | 727 | VM_BUG_ON_PAGE(PageLRU(page), page); |
894bc310 LS |
728 | |
729 | redo: | |
730 | ClearPageUnevictable(page); | |
731 | ||
39b5f29a | 732 | if (page_evictable(page)) { |
894bc310 LS |
733 | /* |
734 | * For evictable pages, we can use the cache. | |
735 | * In event of a race, worst case is we end up with an | |
736 | * unevictable page on [in]active list. | |
737 | * We know how to handle that. | |
738 | */ | |
0ec3b74c | 739 | is_unevictable = false; |
c53954a0 | 740 | lru_cache_add(page); |
894bc310 LS |
741 | } else { |
742 | /* | |
743 | * Put unevictable pages directly on zone's unevictable | |
744 | * list. | |
745 | */ | |
0ec3b74c | 746 | is_unevictable = true; |
894bc310 | 747 | add_page_to_unevictable_list(page); |
6a7b9548 | 748 | /* |
21ee9f39 MK |
749 | * When racing with an mlock or AS_UNEVICTABLE clearing |
750 | * (page is unlocked) make sure that if the other thread | |
751 | * does not observe our setting of PG_lru and fails | |
24513264 | 752 | * isolation/check_move_unevictable_pages, |
21ee9f39 | 753 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
6a7b9548 JW |
754 | * the page back to the evictable list. |
755 | * | |
21ee9f39 | 756 | * The other side is TestClearPageMlocked() or shmem_lock(). |
6a7b9548 JW |
757 | */ |
758 | smp_mb(); | |
894bc310 | 759 | } |
894bc310 LS |
760 | |
761 | /* | |
762 | * page's status can change while we move it among lru. If an evictable | |
763 | * page is on unevictable list, it never be freed. To avoid that, | |
764 | * check after we added it to the list, again. | |
765 | */ | |
0ec3b74c | 766 | if (is_unevictable && page_evictable(page)) { |
894bc310 LS |
767 | if (!isolate_lru_page(page)) { |
768 | put_page(page); | |
769 | goto redo; | |
770 | } | |
771 | /* This means someone else dropped this page from LRU | |
772 | * So, it will be freed or putback to LRU again. There is | |
773 | * nothing to do here. | |
774 | */ | |
775 | } | |
776 | ||
0ec3b74c | 777 | if (was_unevictable && !is_unevictable) |
bbfd28ee | 778 | count_vm_event(UNEVICTABLE_PGRESCUED); |
0ec3b74c | 779 | else if (!was_unevictable && is_unevictable) |
bbfd28ee LS |
780 | count_vm_event(UNEVICTABLE_PGCULLED); |
781 | ||
894bc310 LS |
782 | put_page(page); /* drop ref from isolate */ |
783 | } | |
784 | ||
dfc8d636 JW |
785 | enum page_references { |
786 | PAGEREF_RECLAIM, | |
787 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 788 | PAGEREF_KEEP, |
dfc8d636 JW |
789 | PAGEREF_ACTIVATE, |
790 | }; | |
791 | ||
792 | static enum page_references page_check_references(struct page *page, | |
793 | struct scan_control *sc) | |
794 | { | |
64574746 | 795 | int referenced_ptes, referenced_page; |
dfc8d636 | 796 | unsigned long vm_flags; |
dfc8d636 | 797 | |
c3ac9a8a JW |
798 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
799 | &vm_flags); | |
64574746 | 800 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 801 | |
dfc8d636 JW |
802 | /* |
803 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
804 | * move the page to the unevictable list. | |
805 | */ | |
806 | if (vm_flags & VM_LOCKED) | |
807 | return PAGEREF_RECLAIM; | |
808 | ||
64574746 | 809 | if (referenced_ptes) { |
e4898273 | 810 | if (PageSwapBacked(page)) |
64574746 JW |
811 | return PAGEREF_ACTIVATE; |
812 | /* | |
813 | * All mapped pages start out with page table | |
814 | * references from the instantiating fault, so we need | |
815 | * to look twice if a mapped file page is used more | |
816 | * than once. | |
817 | * | |
818 | * Mark it and spare it for another trip around the | |
819 | * inactive list. Another page table reference will | |
820 | * lead to its activation. | |
821 | * | |
822 | * Note: the mark is set for activated pages as well | |
823 | * so that recently deactivated but used pages are | |
824 | * quickly recovered. | |
825 | */ | |
826 | SetPageReferenced(page); | |
827 | ||
34dbc67a | 828 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
829 | return PAGEREF_ACTIVATE; |
830 | ||
c909e993 KK |
831 | /* |
832 | * Activate file-backed executable pages after first usage. | |
833 | */ | |
834 | if (vm_flags & VM_EXEC) | |
835 | return PAGEREF_ACTIVATE; | |
836 | ||
64574746 JW |
837 | return PAGEREF_KEEP; |
838 | } | |
dfc8d636 JW |
839 | |
840 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 841 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
842 | return PAGEREF_RECLAIM_CLEAN; |
843 | ||
844 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
845 | } |
846 | ||
e2be15f6 MG |
847 | /* Check if a page is dirty or under writeback */ |
848 | static void page_check_dirty_writeback(struct page *page, | |
849 | bool *dirty, bool *writeback) | |
850 | { | |
b4597226 MG |
851 | struct address_space *mapping; |
852 | ||
e2be15f6 MG |
853 | /* |
854 | * Anonymous pages are not handled by flushers and must be written | |
855 | * from reclaim context. Do not stall reclaim based on them | |
856 | */ | |
857 | if (!page_is_file_cache(page)) { | |
858 | *dirty = false; | |
859 | *writeback = false; | |
860 | return; | |
861 | } | |
862 | ||
863 | /* By default assume that the page flags are accurate */ | |
864 | *dirty = PageDirty(page); | |
865 | *writeback = PageWriteback(page); | |
b4597226 MG |
866 | |
867 | /* Verify dirty/writeback state if the filesystem supports it */ | |
868 | if (!page_has_private(page)) | |
869 | return; | |
870 | ||
871 | mapping = page_mapping(page); | |
872 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
873 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | |
e2be15f6 MG |
874 | } |
875 | ||
1da177e4 | 876 | /* |
1742f19f | 877 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 878 | */ |
1742f19f | 879 | static unsigned long shrink_page_list(struct list_head *page_list, |
6a18adb3 | 880 | struct zone *zone, |
f84f6e2b | 881 | struct scan_control *sc, |
02c6de8d | 882 | enum ttu_flags ttu_flags, |
8e950282 | 883 | unsigned long *ret_nr_dirty, |
d43006d5 | 884 | unsigned long *ret_nr_unqueued_dirty, |
8e950282 | 885 | unsigned long *ret_nr_congested, |
02c6de8d | 886 | unsigned long *ret_nr_writeback, |
b1a6f21e | 887 | unsigned long *ret_nr_immediate, |
02c6de8d | 888 | bool force_reclaim) |
1da177e4 LT |
889 | { |
890 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 891 | LIST_HEAD(free_pages); |
1da177e4 | 892 | int pgactivate = 0; |
d43006d5 | 893 | unsigned long nr_unqueued_dirty = 0; |
0e093d99 MG |
894 | unsigned long nr_dirty = 0; |
895 | unsigned long nr_congested = 0; | |
05ff5137 | 896 | unsigned long nr_reclaimed = 0; |
92df3a72 | 897 | unsigned long nr_writeback = 0; |
b1a6f21e | 898 | unsigned long nr_immediate = 0; |
1da177e4 LT |
899 | |
900 | cond_resched(); | |
901 | ||
1da177e4 LT |
902 | while (!list_empty(page_list)) { |
903 | struct address_space *mapping; | |
904 | struct page *page; | |
905 | int may_enter_fs; | |
02c6de8d | 906 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
e2be15f6 | 907 | bool dirty, writeback; |
854e9ed0 MK |
908 | bool lazyfree = false; |
909 | int ret = SWAP_SUCCESS; | |
1da177e4 LT |
910 | |
911 | cond_resched(); | |
912 | ||
913 | page = lru_to_page(page_list); | |
914 | list_del(&page->lru); | |
915 | ||
529ae9aa | 916 | if (!trylock_page(page)) |
1da177e4 LT |
917 | goto keep; |
918 | ||
309381fe SL |
919 | VM_BUG_ON_PAGE(PageActive(page), page); |
920 | VM_BUG_ON_PAGE(page_zone(page) != zone, page); | |
1da177e4 LT |
921 | |
922 | sc->nr_scanned++; | |
80e43426 | 923 | |
39b5f29a | 924 | if (unlikely(!page_evictable(page))) |
b291f000 | 925 | goto cull_mlocked; |
894bc310 | 926 | |
a6dc60f8 | 927 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
928 | goto keep_locked; |
929 | ||
1da177e4 LT |
930 | /* Double the slab pressure for mapped and swapcache pages */ |
931 | if (page_mapped(page) || PageSwapCache(page)) | |
932 | sc->nr_scanned++; | |
933 | ||
c661b078 AW |
934 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
935 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
936 | ||
e2be15f6 MG |
937 | /* |
938 | * The number of dirty pages determines if a zone is marked | |
939 | * reclaim_congested which affects wait_iff_congested. kswapd | |
940 | * will stall and start writing pages if the tail of the LRU | |
941 | * is all dirty unqueued pages. | |
942 | */ | |
943 | page_check_dirty_writeback(page, &dirty, &writeback); | |
944 | if (dirty || writeback) | |
945 | nr_dirty++; | |
946 | ||
947 | if (dirty && !writeback) | |
948 | nr_unqueued_dirty++; | |
949 | ||
d04e8acd MG |
950 | /* |
951 | * Treat this page as congested if the underlying BDI is or if | |
952 | * pages are cycling through the LRU so quickly that the | |
953 | * pages marked for immediate reclaim are making it to the | |
954 | * end of the LRU a second time. | |
955 | */ | |
e2be15f6 | 956 | mapping = page_mapping(page); |
1da58ee2 | 957 | if (((dirty || writeback) && mapping && |
703c2708 | 958 | inode_write_congested(mapping->host)) || |
d04e8acd | 959 | (writeback && PageReclaim(page))) |
e2be15f6 MG |
960 | nr_congested++; |
961 | ||
283aba9f MG |
962 | /* |
963 | * If a page at the tail of the LRU is under writeback, there | |
964 | * are three cases to consider. | |
965 | * | |
966 | * 1) If reclaim is encountering an excessive number of pages | |
967 | * under writeback and this page is both under writeback and | |
968 | * PageReclaim then it indicates that pages are being queued | |
969 | * for IO but are being recycled through the LRU before the | |
970 | * IO can complete. Waiting on the page itself risks an | |
971 | * indefinite stall if it is impossible to writeback the | |
972 | * page due to IO error or disconnected storage so instead | |
b1a6f21e MG |
973 | * note that the LRU is being scanned too quickly and the |
974 | * caller can stall after page list has been processed. | |
283aba9f | 975 | * |
97c9341f | 976 | * 2) Global or new memcg reclaim encounters a page that is |
ecf5fc6e MH |
977 | * not marked for immediate reclaim, or the caller does not |
978 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
979 | * not to fs). In this case mark the page for immediate | |
97c9341f | 980 | * reclaim and continue scanning. |
283aba9f | 981 | * |
ecf5fc6e MH |
982 | * Require may_enter_fs because we would wait on fs, which |
983 | * may not have submitted IO yet. And the loop driver might | |
283aba9f MG |
984 | * enter reclaim, and deadlock if it waits on a page for |
985 | * which it is needed to do the write (loop masks off | |
986 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
987 | * would probably show more reasons. | |
988 | * | |
7fadc820 | 989 | * 3) Legacy memcg encounters a page that is already marked |
283aba9f MG |
990 | * PageReclaim. memcg does not have any dirty pages |
991 | * throttling so we could easily OOM just because too many | |
992 | * pages are in writeback and there is nothing else to | |
993 | * reclaim. Wait for the writeback to complete. | |
994 | */ | |
c661b078 | 995 | if (PageWriteback(page)) { |
283aba9f MG |
996 | /* Case 1 above */ |
997 | if (current_is_kswapd() && | |
998 | PageReclaim(page) && | |
57054651 | 999 | test_bit(ZONE_WRITEBACK, &zone->flags)) { |
b1a6f21e MG |
1000 | nr_immediate++; |
1001 | goto keep_locked; | |
283aba9f MG |
1002 | |
1003 | /* Case 2 above */ | |
97c9341f | 1004 | } else if (sane_reclaim(sc) || |
ecf5fc6e | 1005 | !PageReclaim(page) || !may_enter_fs) { |
c3b94f44 HD |
1006 | /* |
1007 | * This is slightly racy - end_page_writeback() | |
1008 | * might have just cleared PageReclaim, then | |
1009 | * setting PageReclaim here end up interpreted | |
1010 | * as PageReadahead - but that does not matter | |
1011 | * enough to care. What we do want is for this | |
1012 | * page to have PageReclaim set next time memcg | |
1013 | * reclaim reaches the tests above, so it will | |
1014 | * then wait_on_page_writeback() to avoid OOM; | |
1015 | * and it's also appropriate in global reclaim. | |
1016 | */ | |
1017 | SetPageReclaim(page); | |
e62e384e | 1018 | nr_writeback++; |
c3b94f44 | 1019 | goto keep_locked; |
283aba9f MG |
1020 | |
1021 | /* Case 3 above */ | |
1022 | } else { | |
7fadc820 | 1023 | unlock_page(page); |
283aba9f | 1024 | wait_on_page_writeback(page); |
7fadc820 HD |
1025 | /* then go back and try same page again */ |
1026 | list_add_tail(&page->lru, page_list); | |
1027 | continue; | |
e62e384e | 1028 | } |
c661b078 | 1029 | } |
1da177e4 | 1030 | |
02c6de8d MK |
1031 | if (!force_reclaim) |
1032 | references = page_check_references(page, sc); | |
1033 | ||
dfc8d636 JW |
1034 | switch (references) { |
1035 | case PAGEREF_ACTIVATE: | |
1da177e4 | 1036 | goto activate_locked; |
64574746 JW |
1037 | case PAGEREF_KEEP: |
1038 | goto keep_locked; | |
dfc8d636 JW |
1039 | case PAGEREF_RECLAIM: |
1040 | case PAGEREF_RECLAIM_CLEAN: | |
1041 | ; /* try to reclaim the page below */ | |
1042 | } | |
1da177e4 | 1043 | |
1da177e4 LT |
1044 | /* |
1045 | * Anonymous process memory has backing store? | |
1046 | * Try to allocate it some swap space here. | |
1047 | */ | |
b291f000 | 1048 | if (PageAnon(page) && !PageSwapCache(page)) { |
63eb6b93 HD |
1049 | if (!(sc->gfp_mask & __GFP_IO)) |
1050 | goto keep_locked; | |
5bc7b8ac | 1051 | if (!add_to_swap(page, page_list)) |
1da177e4 | 1052 | goto activate_locked; |
854e9ed0 | 1053 | lazyfree = true; |
63eb6b93 | 1054 | may_enter_fs = 1; |
1da177e4 | 1055 | |
e2be15f6 MG |
1056 | /* Adding to swap updated mapping */ |
1057 | mapping = page_mapping(page); | |
1058 | } | |
1da177e4 LT |
1059 | |
1060 | /* | |
1061 | * The page is mapped into the page tables of one or more | |
1062 | * processes. Try to unmap it here. | |
1063 | */ | |
1064 | if (page_mapped(page) && mapping) { | |
854e9ed0 MK |
1065 | switch (ret = try_to_unmap(page, lazyfree ? |
1066 | (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : | |
1067 | (ttu_flags | TTU_BATCH_FLUSH))) { | |
1da177e4 LT |
1068 | case SWAP_FAIL: |
1069 | goto activate_locked; | |
1070 | case SWAP_AGAIN: | |
1071 | goto keep_locked; | |
b291f000 NP |
1072 | case SWAP_MLOCK: |
1073 | goto cull_mlocked; | |
854e9ed0 MK |
1074 | case SWAP_LZFREE: |
1075 | goto lazyfree; | |
1da177e4 LT |
1076 | case SWAP_SUCCESS: |
1077 | ; /* try to free the page below */ | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | if (PageDirty(page)) { | |
ee72886d MG |
1082 | /* |
1083 | * Only kswapd can writeback filesystem pages to | |
d43006d5 MG |
1084 | * avoid risk of stack overflow but only writeback |
1085 | * if many dirty pages have been encountered. | |
ee72886d | 1086 | */ |
f84f6e2b | 1087 | if (page_is_file_cache(page) && |
9e3b2f8c | 1088 | (!current_is_kswapd() || |
57054651 | 1089 | !test_bit(ZONE_DIRTY, &zone->flags))) { |
49ea7eb6 MG |
1090 | /* |
1091 | * Immediately reclaim when written back. | |
1092 | * Similar in principal to deactivate_page() | |
1093 | * except we already have the page isolated | |
1094 | * and know it's dirty | |
1095 | */ | |
1096 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); | |
1097 | SetPageReclaim(page); | |
1098 | ||
ee72886d MG |
1099 | goto keep_locked; |
1100 | } | |
1101 | ||
dfc8d636 | 1102 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 1103 | goto keep_locked; |
4dd4b920 | 1104 | if (!may_enter_fs) |
1da177e4 | 1105 | goto keep_locked; |
52a8363e | 1106 | if (!sc->may_writepage) |
1da177e4 LT |
1107 | goto keep_locked; |
1108 | ||
d950c947 MG |
1109 | /* |
1110 | * Page is dirty. Flush the TLB if a writable entry | |
1111 | * potentially exists to avoid CPU writes after IO | |
1112 | * starts and then write it out here. | |
1113 | */ | |
1114 | try_to_unmap_flush_dirty(); | |
7d3579e8 | 1115 | switch (pageout(page, mapping, sc)) { |
1da177e4 LT |
1116 | case PAGE_KEEP: |
1117 | goto keep_locked; | |
1118 | case PAGE_ACTIVATE: | |
1119 | goto activate_locked; | |
1120 | case PAGE_SUCCESS: | |
7d3579e8 | 1121 | if (PageWriteback(page)) |
41ac1999 | 1122 | goto keep; |
7d3579e8 | 1123 | if (PageDirty(page)) |
1da177e4 | 1124 | goto keep; |
7d3579e8 | 1125 | |
1da177e4 LT |
1126 | /* |
1127 | * A synchronous write - probably a ramdisk. Go | |
1128 | * ahead and try to reclaim the page. | |
1129 | */ | |
529ae9aa | 1130 | if (!trylock_page(page)) |
1da177e4 LT |
1131 | goto keep; |
1132 | if (PageDirty(page) || PageWriteback(page)) | |
1133 | goto keep_locked; | |
1134 | mapping = page_mapping(page); | |
1135 | case PAGE_CLEAN: | |
1136 | ; /* try to free the page below */ | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | /* | |
1141 | * If the page has buffers, try to free the buffer mappings | |
1142 | * associated with this page. If we succeed we try to free | |
1143 | * the page as well. | |
1144 | * | |
1145 | * We do this even if the page is PageDirty(). | |
1146 | * try_to_release_page() does not perform I/O, but it is | |
1147 | * possible for a page to have PageDirty set, but it is actually | |
1148 | * clean (all its buffers are clean). This happens if the | |
1149 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 1150 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
1151 | * try_to_release_page() will discover that cleanness and will |
1152 | * drop the buffers and mark the page clean - it can be freed. | |
1153 | * | |
1154 | * Rarely, pages can have buffers and no ->mapping. These are | |
1155 | * the pages which were not successfully invalidated in | |
1156 | * truncate_complete_page(). We try to drop those buffers here | |
1157 | * and if that worked, and the page is no longer mapped into | |
1158 | * process address space (page_count == 1) it can be freed. | |
1159 | * Otherwise, leave the page on the LRU so it is swappable. | |
1160 | */ | |
266cf658 | 1161 | if (page_has_private(page)) { |
1da177e4 LT |
1162 | if (!try_to_release_page(page, sc->gfp_mask)) |
1163 | goto activate_locked; | |
e286781d NP |
1164 | if (!mapping && page_count(page) == 1) { |
1165 | unlock_page(page); | |
1166 | if (put_page_testzero(page)) | |
1167 | goto free_it; | |
1168 | else { | |
1169 | /* | |
1170 | * rare race with speculative reference. | |
1171 | * the speculative reference will free | |
1172 | * this page shortly, so we may | |
1173 | * increment nr_reclaimed here (and | |
1174 | * leave it off the LRU). | |
1175 | */ | |
1176 | nr_reclaimed++; | |
1177 | continue; | |
1178 | } | |
1179 | } | |
1da177e4 LT |
1180 | } |
1181 | ||
854e9ed0 | 1182 | lazyfree: |
a528910e | 1183 | if (!mapping || !__remove_mapping(mapping, page, true)) |
49d2e9cc | 1184 | goto keep_locked; |
1da177e4 | 1185 | |
a978d6f5 NP |
1186 | /* |
1187 | * At this point, we have no other references and there is | |
1188 | * no way to pick any more up (removed from LRU, removed | |
1189 | * from pagecache). Can use non-atomic bitops now (and | |
1190 | * we obviously don't have to worry about waking up a process | |
1191 | * waiting on the page lock, because there are no references. | |
1192 | */ | |
48c935ad | 1193 | __ClearPageLocked(page); |
e286781d | 1194 | free_it: |
854e9ed0 MK |
1195 | if (ret == SWAP_LZFREE) |
1196 | count_vm_event(PGLAZYFREED); | |
1197 | ||
05ff5137 | 1198 | nr_reclaimed++; |
abe4c3b5 MG |
1199 | |
1200 | /* | |
1201 | * Is there need to periodically free_page_list? It would | |
1202 | * appear not as the counts should be low | |
1203 | */ | |
1204 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
1205 | continue; |
1206 | ||
b291f000 | 1207 | cull_mlocked: |
63d6c5ad HD |
1208 | if (PageSwapCache(page)) |
1209 | try_to_free_swap(page); | |
b291f000 | 1210 | unlock_page(page); |
c54839a7 | 1211 | list_add(&page->lru, &ret_pages); |
b291f000 NP |
1212 | continue; |
1213 | ||
1da177e4 | 1214 | activate_locked: |
68a22394 | 1215 | /* Not a candidate for swapping, so reclaim swap space. */ |
5ccc5aba | 1216 | if (PageSwapCache(page) && mem_cgroup_swap_full(page)) |
a2c43eed | 1217 | try_to_free_swap(page); |
309381fe | 1218 | VM_BUG_ON_PAGE(PageActive(page), page); |
1da177e4 LT |
1219 | SetPageActive(page); |
1220 | pgactivate++; | |
1221 | keep_locked: | |
1222 | unlock_page(page); | |
1223 | keep: | |
1224 | list_add(&page->lru, &ret_pages); | |
309381fe | 1225 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); |
1da177e4 | 1226 | } |
abe4c3b5 | 1227 | |
747db954 | 1228 | mem_cgroup_uncharge_list(&free_pages); |
72b252ae | 1229 | try_to_unmap_flush(); |
b745bc85 | 1230 | free_hot_cold_page_list(&free_pages, true); |
abe4c3b5 | 1231 | |
1da177e4 | 1232 | list_splice(&ret_pages, page_list); |
f8891e5e | 1233 | count_vm_events(PGACTIVATE, pgactivate); |
0a31bc97 | 1234 | |
8e950282 MG |
1235 | *ret_nr_dirty += nr_dirty; |
1236 | *ret_nr_congested += nr_congested; | |
d43006d5 | 1237 | *ret_nr_unqueued_dirty += nr_unqueued_dirty; |
92df3a72 | 1238 | *ret_nr_writeback += nr_writeback; |
b1a6f21e | 1239 | *ret_nr_immediate += nr_immediate; |
05ff5137 | 1240 | return nr_reclaimed; |
1da177e4 LT |
1241 | } |
1242 | ||
02c6de8d MK |
1243 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
1244 | struct list_head *page_list) | |
1245 | { | |
1246 | struct scan_control sc = { | |
1247 | .gfp_mask = GFP_KERNEL, | |
1248 | .priority = DEF_PRIORITY, | |
1249 | .may_unmap = 1, | |
1250 | }; | |
8e950282 | 1251 | unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; |
02c6de8d MK |
1252 | struct page *page, *next; |
1253 | LIST_HEAD(clean_pages); | |
1254 | ||
1255 | list_for_each_entry_safe(page, next, page_list, lru) { | |
117aad1e RA |
1256 | if (page_is_file_cache(page) && !PageDirty(page) && |
1257 | !isolated_balloon_page(page)) { | |
02c6de8d MK |
1258 | ClearPageActive(page); |
1259 | list_move(&page->lru, &clean_pages); | |
1260 | } | |
1261 | } | |
1262 | ||
1263 | ret = shrink_page_list(&clean_pages, zone, &sc, | |
8e950282 MG |
1264 | TTU_UNMAP|TTU_IGNORE_ACCESS, |
1265 | &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); | |
02c6de8d | 1266 | list_splice(&clean_pages, page_list); |
83da7510 | 1267 | mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); |
02c6de8d MK |
1268 | return ret; |
1269 | } | |
1270 | ||
5ad333eb AW |
1271 | /* |
1272 | * Attempt to remove the specified page from its LRU. Only take this page | |
1273 | * if it is of the appropriate PageActive status. Pages which are being | |
1274 | * freed elsewhere are also ignored. | |
1275 | * | |
1276 | * page: page to consider | |
1277 | * mode: one of the LRU isolation modes defined above | |
1278 | * | |
1279 | * returns 0 on success, -ve errno on failure. | |
1280 | */ | |
f3fd4a61 | 1281 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
1282 | { |
1283 | int ret = -EINVAL; | |
1284 | ||
1285 | /* Only take pages on the LRU. */ | |
1286 | if (!PageLRU(page)) | |
1287 | return ret; | |
1288 | ||
e46a2879 MK |
1289 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1290 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
894bc310 LS |
1291 | return ret; |
1292 | ||
5ad333eb | 1293 | ret = -EBUSY; |
08e552c6 | 1294 | |
c8244935 MG |
1295 | /* |
1296 | * To minimise LRU disruption, the caller can indicate that it only | |
1297 | * wants to isolate pages it will be able to operate on without | |
1298 | * blocking - clean pages for the most part. | |
1299 | * | |
1300 | * ISOLATE_CLEAN means that only clean pages should be isolated. This | |
1301 | * is used by reclaim when it is cannot write to backing storage | |
1302 | * | |
1303 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
1304 | * that it is possible to migrate without blocking | |
1305 | */ | |
1306 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { | |
1307 | /* All the caller can do on PageWriteback is block */ | |
1308 | if (PageWriteback(page)) | |
1309 | return ret; | |
1310 | ||
1311 | if (PageDirty(page)) { | |
1312 | struct address_space *mapping; | |
1313 | ||
1314 | /* ISOLATE_CLEAN means only clean pages */ | |
1315 | if (mode & ISOLATE_CLEAN) | |
1316 | return ret; | |
1317 | ||
1318 | /* | |
1319 | * Only pages without mappings or that have a | |
1320 | * ->migratepage callback are possible to migrate | |
1321 | * without blocking | |
1322 | */ | |
1323 | mapping = page_mapping(page); | |
1324 | if (mapping && !mapping->a_ops->migratepage) | |
1325 | return ret; | |
1326 | } | |
1327 | } | |
39deaf85 | 1328 | |
f80c0673 MK |
1329 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1330 | return ret; | |
1331 | ||
5ad333eb AW |
1332 | if (likely(get_page_unless_zero(page))) { |
1333 | /* | |
1334 | * Be careful not to clear PageLRU until after we're | |
1335 | * sure the page is not being freed elsewhere -- the | |
1336 | * page release code relies on it. | |
1337 | */ | |
1338 | ClearPageLRU(page); | |
1339 | ret = 0; | |
1340 | } | |
1341 | ||
1342 | return ret; | |
1343 | } | |
1344 | ||
1da177e4 LT |
1345 | /* |
1346 | * zone->lru_lock is heavily contended. Some of the functions that | |
1347 | * shrink the lists perform better by taking out a batch of pages | |
1348 | * and working on them outside the LRU lock. | |
1349 | * | |
1350 | * For pagecache intensive workloads, this function is the hottest | |
1351 | * spot in the kernel (apart from copy_*_user functions). | |
1352 | * | |
1353 | * Appropriate locks must be held before calling this function. | |
1354 | * | |
1355 | * @nr_to_scan: The number of pages to look through on the list. | |
5dc35979 | 1356 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1357 | * @dst: The temp list to put pages on to. |
f626012d | 1358 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1359 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1360 | * @mode: One of the LRU isolation modes |
3cb99451 | 1361 | * @lru: LRU list id for isolating |
1da177e4 LT |
1362 | * |
1363 | * returns how many pages were moved onto *@dst. | |
1364 | */ | |
69e05944 | 1365 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1366 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1367 | unsigned long *nr_scanned, struct scan_control *sc, |
3cb99451 | 1368 | isolate_mode_t mode, enum lru_list lru) |
1da177e4 | 1369 | { |
75b00af7 | 1370 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1371 | unsigned long nr_taken = 0; |
c9b02d97 | 1372 | unsigned long scan; |
1da177e4 | 1373 | |
0b802f10 VD |
1374 | for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && |
1375 | !list_empty(src); scan++) { | |
5ad333eb | 1376 | struct page *page; |
fa9add64 | 1377 | int nr_pages; |
5ad333eb | 1378 | |
1da177e4 LT |
1379 | page = lru_to_page(src); |
1380 | prefetchw_prev_lru_page(page, src, flags); | |
1381 | ||
309381fe | 1382 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
8d438f96 | 1383 | |
f3fd4a61 | 1384 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1385 | case 0: |
fa9add64 HD |
1386 | nr_pages = hpage_nr_pages(page); |
1387 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); | |
5ad333eb | 1388 | list_move(&page->lru, dst); |
fa9add64 | 1389 | nr_taken += nr_pages; |
5ad333eb AW |
1390 | break; |
1391 | ||
1392 | case -EBUSY: | |
1393 | /* else it is being freed elsewhere */ | |
1394 | list_move(&page->lru, src); | |
1395 | continue; | |
46453a6e | 1396 | |
5ad333eb AW |
1397 | default: |
1398 | BUG(); | |
1399 | } | |
1da177e4 LT |
1400 | } |
1401 | ||
f626012d | 1402 | *nr_scanned = scan; |
75b00af7 HD |
1403 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1404 | nr_taken, mode, is_file_lru(lru)); | |
1da177e4 LT |
1405 | return nr_taken; |
1406 | } | |
1407 | ||
62695a84 NP |
1408 | /** |
1409 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1410 | * @page: page to isolate from its LRU list | |
1411 | * | |
1412 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1413 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1414 | * | |
1415 | * Returns 0 if the page was removed from an LRU list. | |
1416 | * Returns -EBUSY if the page was not on an LRU list. | |
1417 | * | |
1418 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1419 | * the active list, it will have PageActive set. If it was found on |
1420 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1421 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1422 | * |
1423 | * The vmstat statistic corresponding to the list on which the page was | |
1424 | * found will be decremented. | |
1425 | * | |
1426 | * Restrictions: | |
1427 | * (1) Must be called with an elevated refcount on the page. This is a | |
1428 | * fundamentnal difference from isolate_lru_pages (which is called | |
1429 | * without a stable reference). | |
1430 | * (2) the lru_lock must not be held. | |
1431 | * (3) interrupts must be enabled. | |
1432 | */ | |
1433 | int isolate_lru_page(struct page *page) | |
1434 | { | |
1435 | int ret = -EBUSY; | |
1436 | ||
309381fe | 1437 | VM_BUG_ON_PAGE(!page_count(page), page); |
cf2a82ee | 1438 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); |
0c917313 | 1439 | |
62695a84 NP |
1440 | if (PageLRU(page)) { |
1441 | struct zone *zone = page_zone(page); | |
fa9add64 | 1442 | struct lruvec *lruvec; |
62695a84 NP |
1443 | |
1444 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 1445 | lruvec = mem_cgroup_page_lruvec(page, zone); |
0c917313 | 1446 | if (PageLRU(page)) { |
894bc310 | 1447 | int lru = page_lru(page); |
0c917313 | 1448 | get_page(page); |
62695a84 | 1449 | ClearPageLRU(page); |
fa9add64 HD |
1450 | del_page_from_lru_list(page, lruvec, lru); |
1451 | ret = 0; | |
62695a84 NP |
1452 | } |
1453 | spin_unlock_irq(&zone->lru_lock); | |
1454 | } | |
1455 | return ret; | |
1456 | } | |
1457 | ||
35cd7815 | 1458 | /* |
d37dd5dc FW |
1459 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1460 | * then get resheduled. When there are massive number of tasks doing page | |
1461 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1462 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1463 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 RR |
1464 | */ |
1465 | static int too_many_isolated(struct zone *zone, int file, | |
1466 | struct scan_control *sc) | |
1467 | { | |
1468 | unsigned long inactive, isolated; | |
1469 | ||
1470 | if (current_is_kswapd()) | |
1471 | return 0; | |
1472 | ||
97c9341f | 1473 | if (!sane_reclaim(sc)) |
35cd7815 RR |
1474 | return 0; |
1475 | ||
1476 | if (file) { | |
1477 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | |
1478 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); | |
1479 | } else { | |
1480 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1481 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); | |
1482 | } | |
1483 | ||
3cf23841 FW |
1484 | /* |
1485 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1486 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1487 | * deadlock. | |
1488 | */ | |
d0164adc | 1489 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
3cf23841 FW |
1490 | inactive >>= 3; |
1491 | ||
35cd7815 RR |
1492 | return isolated > inactive; |
1493 | } | |
1494 | ||
66635629 | 1495 | static noinline_for_stack void |
75b00af7 | 1496 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1497 | { |
27ac81d8 KK |
1498 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1499 | struct zone *zone = lruvec_zone(lruvec); | |
3f79768f | 1500 | LIST_HEAD(pages_to_free); |
66635629 | 1501 | |
66635629 MG |
1502 | /* |
1503 | * Put back any unfreeable pages. | |
1504 | */ | |
66635629 | 1505 | while (!list_empty(page_list)) { |
3f79768f | 1506 | struct page *page = lru_to_page(page_list); |
66635629 | 1507 | int lru; |
3f79768f | 1508 | |
309381fe | 1509 | VM_BUG_ON_PAGE(PageLRU(page), page); |
66635629 | 1510 | list_del(&page->lru); |
39b5f29a | 1511 | if (unlikely(!page_evictable(page))) { |
66635629 MG |
1512 | spin_unlock_irq(&zone->lru_lock); |
1513 | putback_lru_page(page); | |
1514 | spin_lock_irq(&zone->lru_lock); | |
1515 | continue; | |
1516 | } | |
fa9add64 HD |
1517 | |
1518 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
1519 | ||
7a608572 | 1520 | SetPageLRU(page); |
66635629 | 1521 | lru = page_lru(page); |
fa9add64 HD |
1522 | add_page_to_lru_list(page, lruvec, lru); |
1523 | ||
66635629 MG |
1524 | if (is_active_lru(lru)) { |
1525 | int file = is_file_lru(lru); | |
9992af10 RR |
1526 | int numpages = hpage_nr_pages(page); |
1527 | reclaim_stat->recent_rotated[file] += numpages; | |
66635629 | 1528 | } |
2bcf8879 HD |
1529 | if (put_page_testzero(page)) { |
1530 | __ClearPageLRU(page); | |
1531 | __ClearPageActive(page); | |
fa9add64 | 1532 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1533 | |
1534 | if (unlikely(PageCompound(page))) { | |
1535 | spin_unlock_irq(&zone->lru_lock); | |
747db954 | 1536 | mem_cgroup_uncharge(page); |
2bcf8879 HD |
1537 | (*get_compound_page_dtor(page))(page); |
1538 | spin_lock_irq(&zone->lru_lock); | |
1539 | } else | |
1540 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1541 | } |
1542 | } | |
66635629 | 1543 | |
3f79768f HD |
1544 | /* |
1545 | * To save our caller's stack, now use input list for pages to free. | |
1546 | */ | |
1547 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1548 | } |
1549 | ||
399ba0b9 N |
1550 | /* |
1551 | * If a kernel thread (such as nfsd for loop-back mounts) services | |
1552 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. | |
1553 | * In that case we should only throttle if the backing device it is | |
1554 | * writing to is congested. In other cases it is safe to throttle. | |
1555 | */ | |
1556 | static int current_may_throttle(void) | |
1557 | { | |
1558 | return !(current->flags & PF_LESS_THROTTLE) || | |
1559 | current->backing_dev_info == NULL || | |
1560 | bdi_write_congested(current->backing_dev_info); | |
1561 | } | |
1562 | ||
1da177e4 | 1563 | /* |
1742f19f AM |
1564 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1565 | * of reclaimed pages | |
1da177e4 | 1566 | */ |
66635629 | 1567 | static noinline_for_stack unsigned long |
1a93be0e | 1568 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1569 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1570 | { |
1571 | LIST_HEAD(page_list); | |
e247dbce | 1572 | unsigned long nr_scanned; |
05ff5137 | 1573 | unsigned long nr_reclaimed = 0; |
e247dbce | 1574 | unsigned long nr_taken; |
8e950282 MG |
1575 | unsigned long nr_dirty = 0; |
1576 | unsigned long nr_congested = 0; | |
e2be15f6 | 1577 | unsigned long nr_unqueued_dirty = 0; |
92df3a72 | 1578 | unsigned long nr_writeback = 0; |
b1a6f21e | 1579 | unsigned long nr_immediate = 0; |
f3fd4a61 | 1580 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1581 | int file = is_file_lru(lru); |
1a93be0e KK |
1582 | struct zone *zone = lruvec_zone(lruvec); |
1583 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
78dc583d | 1584 | |
35cd7815 | 1585 | while (unlikely(too_many_isolated(zone, file, sc))) { |
58355c78 | 1586 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
35cd7815 RR |
1587 | |
1588 | /* We are about to die and free our memory. Return now. */ | |
1589 | if (fatal_signal_pending(current)) | |
1590 | return SWAP_CLUSTER_MAX; | |
1591 | } | |
1592 | ||
1da177e4 | 1593 | lru_add_drain(); |
f80c0673 MK |
1594 | |
1595 | if (!sc->may_unmap) | |
61317289 | 1596 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1597 | if (!sc->may_writepage) |
61317289 | 1598 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1599 | |
1da177e4 | 1600 | spin_lock_irq(&zone->lru_lock); |
b35ea17b | 1601 | |
5dc35979 KK |
1602 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1603 | &nr_scanned, sc, isolate_mode, lru); | |
95d918fc KK |
1604 | |
1605 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); | |
1606 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); | |
1607 | ||
89b5fae5 | 1608 | if (global_reclaim(sc)) { |
0d5d823a | 1609 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); |
e247dbce | 1610 | if (current_is_kswapd()) |
75b00af7 | 1611 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
e247dbce | 1612 | else |
75b00af7 | 1613 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
e247dbce | 1614 | } |
d563c050 | 1615 | spin_unlock_irq(&zone->lru_lock); |
b35ea17b | 1616 | |
d563c050 | 1617 | if (nr_taken == 0) |
66635629 | 1618 | return 0; |
5ad333eb | 1619 | |
02c6de8d | 1620 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, |
8e950282 MG |
1621 | &nr_dirty, &nr_unqueued_dirty, &nr_congested, |
1622 | &nr_writeback, &nr_immediate, | |
1623 | false); | |
c661b078 | 1624 | |
3f79768f HD |
1625 | spin_lock_irq(&zone->lru_lock); |
1626 | ||
95d918fc | 1627 | reclaim_stat->recent_scanned[file] += nr_taken; |
d563c050 | 1628 | |
904249aa YH |
1629 | if (global_reclaim(sc)) { |
1630 | if (current_is_kswapd()) | |
1631 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, | |
1632 | nr_reclaimed); | |
1633 | else | |
1634 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, | |
1635 | nr_reclaimed); | |
1636 | } | |
a74609fa | 1637 | |
27ac81d8 | 1638 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1639 | |
95d918fc | 1640 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f HD |
1641 | |
1642 | spin_unlock_irq(&zone->lru_lock); | |
1643 | ||
747db954 | 1644 | mem_cgroup_uncharge_list(&page_list); |
b745bc85 | 1645 | free_hot_cold_page_list(&page_list, true); |
e11da5b4 | 1646 | |
92df3a72 MG |
1647 | /* |
1648 | * If reclaim is isolating dirty pages under writeback, it implies | |
1649 | * that the long-lived page allocation rate is exceeding the page | |
1650 | * laundering rate. Either the global limits are not being effective | |
1651 | * at throttling processes due to the page distribution throughout | |
1652 | * zones or there is heavy usage of a slow backing device. The | |
1653 | * only option is to throttle from reclaim context which is not ideal | |
1654 | * as there is no guarantee the dirtying process is throttled in the | |
1655 | * same way balance_dirty_pages() manages. | |
1656 | * | |
8e950282 MG |
1657 | * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number |
1658 | * of pages under pages flagged for immediate reclaim and stall if any | |
1659 | * are encountered in the nr_immediate check below. | |
92df3a72 | 1660 | */ |
918fc718 | 1661 | if (nr_writeback && nr_writeback == nr_taken) |
57054651 | 1662 | set_bit(ZONE_WRITEBACK, &zone->flags); |
92df3a72 | 1663 | |
d43006d5 | 1664 | /* |
97c9341f TH |
1665 | * Legacy memcg will stall in page writeback so avoid forcibly |
1666 | * stalling here. | |
d43006d5 | 1667 | */ |
97c9341f | 1668 | if (sane_reclaim(sc)) { |
8e950282 MG |
1669 | /* |
1670 | * Tag a zone as congested if all the dirty pages scanned were | |
1671 | * backed by a congested BDI and wait_iff_congested will stall. | |
1672 | */ | |
1673 | if (nr_dirty && nr_dirty == nr_congested) | |
57054651 | 1674 | set_bit(ZONE_CONGESTED, &zone->flags); |
8e950282 | 1675 | |
b1a6f21e MG |
1676 | /* |
1677 | * If dirty pages are scanned that are not queued for IO, it | |
1678 | * implies that flushers are not keeping up. In this case, flag | |
57054651 JW |
1679 | * the zone ZONE_DIRTY and kswapd will start writing pages from |
1680 | * reclaim context. | |
b1a6f21e MG |
1681 | */ |
1682 | if (nr_unqueued_dirty == nr_taken) | |
57054651 | 1683 | set_bit(ZONE_DIRTY, &zone->flags); |
b1a6f21e MG |
1684 | |
1685 | /* | |
b738d764 LT |
1686 | * If kswapd scans pages marked marked for immediate |
1687 | * reclaim and under writeback (nr_immediate), it implies | |
1688 | * that pages are cycling through the LRU faster than | |
b1a6f21e MG |
1689 | * they are written so also forcibly stall. |
1690 | */ | |
b738d764 | 1691 | if (nr_immediate && current_may_throttle()) |
b1a6f21e | 1692 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
e2be15f6 | 1693 | } |
d43006d5 | 1694 | |
8e950282 MG |
1695 | /* |
1696 | * Stall direct reclaim for IO completions if underlying BDIs or zone | |
1697 | * is congested. Allow kswapd to continue until it starts encountering | |
1698 | * unqueued dirty pages or cycling through the LRU too quickly. | |
1699 | */ | |
399ba0b9 N |
1700 | if (!sc->hibernation_mode && !current_is_kswapd() && |
1701 | current_may_throttle()) | |
8e950282 MG |
1702 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1703 | ||
ba5e9579 | 1704 | trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, |
1705 | sc->priority, file); | |
05ff5137 | 1706 | return nr_reclaimed; |
1da177e4 LT |
1707 | } |
1708 | ||
1709 | /* | |
1710 | * This moves pages from the active list to the inactive list. | |
1711 | * | |
1712 | * We move them the other way if the page is referenced by one or more | |
1713 | * processes, from rmap. | |
1714 | * | |
1715 | * If the pages are mostly unmapped, the processing is fast and it is | |
1716 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1717 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1718 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1719 | * this, so instead we remove the pages from the LRU while processing them. | |
1720 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1721 | * nobody will play with that bit on a non-LRU page. | |
1722 | * | |
0139aa7b | 1723 | * The downside is that we have to touch page->_refcount against each page. |
1da177e4 LT |
1724 | * But we had to alter page->flags anyway. |
1725 | */ | |
1cfb419b | 1726 | |
fa9add64 | 1727 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 1728 | struct list_head *list, |
2bcf8879 | 1729 | struct list_head *pages_to_free, |
3eb4140f WF |
1730 | enum lru_list lru) |
1731 | { | |
fa9add64 | 1732 | struct zone *zone = lruvec_zone(lruvec); |
3eb4140f | 1733 | unsigned long pgmoved = 0; |
3eb4140f | 1734 | struct page *page; |
fa9add64 | 1735 | int nr_pages; |
3eb4140f | 1736 | |
3eb4140f WF |
1737 | while (!list_empty(list)) { |
1738 | page = lru_to_page(list); | |
fa9add64 | 1739 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3eb4140f | 1740 | |
309381fe | 1741 | VM_BUG_ON_PAGE(PageLRU(page), page); |
3eb4140f WF |
1742 | SetPageLRU(page); |
1743 | ||
fa9add64 HD |
1744 | nr_pages = hpage_nr_pages(page); |
1745 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); | |
925b7673 | 1746 | list_move(&page->lru, &lruvec->lists[lru]); |
fa9add64 | 1747 | pgmoved += nr_pages; |
3eb4140f | 1748 | |
2bcf8879 HD |
1749 | if (put_page_testzero(page)) { |
1750 | __ClearPageLRU(page); | |
1751 | __ClearPageActive(page); | |
fa9add64 | 1752 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1753 | |
1754 | if (unlikely(PageCompound(page))) { | |
1755 | spin_unlock_irq(&zone->lru_lock); | |
747db954 | 1756 | mem_cgroup_uncharge(page); |
2bcf8879 HD |
1757 | (*get_compound_page_dtor(page))(page); |
1758 | spin_lock_irq(&zone->lru_lock); | |
1759 | } else | |
1760 | list_add(&page->lru, pages_to_free); | |
3eb4140f WF |
1761 | } |
1762 | } | |
1763 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | |
1764 | if (!is_active_lru(lru)) | |
1765 | __count_vm_events(PGDEACTIVATE, pgmoved); | |
1766 | } | |
1cfb419b | 1767 | |
f626012d | 1768 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 1769 | struct lruvec *lruvec, |
f16015fb | 1770 | struct scan_control *sc, |
9e3b2f8c | 1771 | enum lru_list lru) |
1da177e4 | 1772 | { |
44c241f1 | 1773 | unsigned long nr_taken; |
f626012d | 1774 | unsigned long nr_scanned; |
6fe6b7e3 | 1775 | unsigned long vm_flags; |
1da177e4 | 1776 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 1777 | LIST_HEAD(l_active); |
b69408e8 | 1778 | LIST_HEAD(l_inactive); |
1da177e4 | 1779 | struct page *page; |
1a93be0e | 1780 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
44c241f1 | 1781 | unsigned long nr_rotated = 0; |
f3fd4a61 | 1782 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1783 | int file = is_file_lru(lru); |
1a93be0e | 1784 | struct zone *zone = lruvec_zone(lruvec); |
1da177e4 LT |
1785 | |
1786 | lru_add_drain(); | |
f80c0673 MK |
1787 | |
1788 | if (!sc->may_unmap) | |
61317289 | 1789 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1790 | if (!sc->may_writepage) |
61317289 | 1791 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1792 | |
1da177e4 | 1793 | spin_lock_irq(&zone->lru_lock); |
925b7673 | 1794 | |
5dc35979 KK |
1795 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1796 | &nr_scanned, sc, isolate_mode, lru); | |
89b5fae5 | 1797 | if (global_reclaim(sc)) |
0d5d823a | 1798 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); |
89b5fae5 | 1799 | |
b7c46d15 | 1800 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 1801 | |
f626012d | 1802 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
3cb99451 | 1803 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
a731286d | 1804 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1da177e4 LT |
1805 | spin_unlock_irq(&zone->lru_lock); |
1806 | ||
1da177e4 LT |
1807 | while (!list_empty(&l_hold)) { |
1808 | cond_resched(); | |
1809 | page = lru_to_page(&l_hold); | |
1810 | list_del(&page->lru); | |
7e9cd484 | 1811 | |
39b5f29a | 1812 | if (unlikely(!page_evictable(page))) { |
894bc310 LS |
1813 | putback_lru_page(page); |
1814 | continue; | |
1815 | } | |
1816 | ||
cc715d99 MG |
1817 | if (unlikely(buffer_heads_over_limit)) { |
1818 | if (page_has_private(page) && trylock_page(page)) { | |
1819 | if (page_has_private(page)) | |
1820 | try_to_release_page(page, 0); | |
1821 | unlock_page(page); | |
1822 | } | |
1823 | } | |
1824 | ||
c3ac9a8a JW |
1825 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1826 | &vm_flags)) { | |
9992af10 | 1827 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
1828 | /* |
1829 | * Identify referenced, file-backed active pages and | |
1830 | * give them one more trip around the active list. So | |
1831 | * that executable code get better chances to stay in | |
1832 | * memory under moderate memory pressure. Anon pages | |
1833 | * are not likely to be evicted by use-once streaming | |
1834 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1835 | * so we ignore them here. | |
1836 | */ | |
41e20983 | 1837 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
1838 | list_add(&page->lru, &l_active); |
1839 | continue; | |
1840 | } | |
1841 | } | |
7e9cd484 | 1842 | |
5205e56e | 1843 | ClearPageActive(page); /* we are de-activating */ |
1da177e4 LT |
1844 | list_add(&page->lru, &l_inactive); |
1845 | } | |
1846 | ||
b555749a | 1847 | /* |
8cab4754 | 1848 | * Move pages back to the lru list. |
b555749a | 1849 | */ |
2a1dc509 | 1850 | spin_lock_irq(&zone->lru_lock); |
556adecb | 1851 | /* |
8cab4754 WF |
1852 | * Count referenced pages from currently used mappings as rotated, |
1853 | * even though only some of them are actually re-activated. This | |
1854 | * helps balance scan pressure between file and anonymous pages in | |
7c0db9e9 | 1855 | * get_scan_count. |
7e9cd484 | 1856 | */ |
b7c46d15 | 1857 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 1858 | |
fa9add64 HD |
1859 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1860 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
a731286d | 1861 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
f8891e5e | 1862 | spin_unlock_irq(&zone->lru_lock); |
2bcf8879 | 1863 | |
747db954 | 1864 | mem_cgroup_uncharge_list(&l_hold); |
b745bc85 | 1865 | free_hot_cold_page_list(&l_hold, true); |
1da177e4 LT |
1866 | } |
1867 | ||
74e3f3c3 | 1868 | #ifdef CONFIG_SWAP |
42e2e457 | 1869 | static bool inactive_anon_is_low_global(struct zone *zone) |
f89eb90e KM |
1870 | { |
1871 | unsigned long active, inactive; | |
1872 | ||
1873 | active = zone_page_state(zone, NR_ACTIVE_ANON); | |
1874 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1875 | ||
29d06bbb | 1876 | return inactive * zone->inactive_ratio < active; |
f89eb90e KM |
1877 | } |
1878 | ||
14797e23 KM |
1879 | /** |
1880 | * inactive_anon_is_low - check if anonymous pages need to be deactivated | |
c56d5c7d | 1881 | * @lruvec: LRU vector to check |
14797e23 KM |
1882 | * |
1883 | * Returns true if the zone does not have enough inactive anon pages, | |
1884 | * meaning some active anon pages need to be deactivated. | |
1885 | */ | |
42e2e457 | 1886 | static bool inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1887 | { |
74e3f3c3 MK |
1888 | /* |
1889 | * If we don't have swap space, anonymous page deactivation | |
1890 | * is pointless. | |
1891 | */ | |
1892 | if (!total_swap_pages) | |
42e2e457 | 1893 | return false; |
74e3f3c3 | 1894 | |
c3c787e8 | 1895 | if (!mem_cgroup_disabled()) |
c56d5c7d | 1896 | return mem_cgroup_inactive_anon_is_low(lruvec); |
f16015fb | 1897 | |
c56d5c7d | 1898 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
14797e23 | 1899 | } |
74e3f3c3 | 1900 | #else |
42e2e457 | 1901 | static inline bool inactive_anon_is_low(struct lruvec *lruvec) |
74e3f3c3 | 1902 | { |
42e2e457 | 1903 | return false; |
74e3f3c3 MK |
1904 | } |
1905 | #endif | |
14797e23 | 1906 | |
56e49d21 RR |
1907 | /** |
1908 | * inactive_file_is_low - check if file pages need to be deactivated | |
c56d5c7d | 1909 | * @lruvec: LRU vector to check |
56e49d21 RR |
1910 | * |
1911 | * When the system is doing streaming IO, memory pressure here | |
1912 | * ensures that active file pages get deactivated, until more | |
1913 | * than half of the file pages are on the inactive list. | |
1914 | * | |
1915 | * Once we get to that situation, protect the system's working | |
1916 | * set from being evicted by disabling active file page aging. | |
1917 | * | |
1918 | * This uses a different ratio than the anonymous pages, because | |
1919 | * the page cache uses a use-once replacement algorithm. | |
1920 | */ | |
42e2e457 | 1921 | static bool inactive_file_is_low(struct lruvec *lruvec) |
56e49d21 | 1922 | { |
e3790144 JW |
1923 | unsigned long inactive; |
1924 | unsigned long active; | |
1925 | ||
23047a96 JW |
1926 | inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); |
1927 | active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE); | |
56e49d21 | 1928 | |
e3790144 | 1929 | return active > inactive; |
56e49d21 RR |
1930 | } |
1931 | ||
42e2e457 | 1932 | static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
b39415b2 | 1933 | { |
75b00af7 | 1934 | if (is_file_lru(lru)) |
c56d5c7d | 1935 | return inactive_file_is_low(lruvec); |
b39415b2 | 1936 | else |
c56d5c7d | 1937 | return inactive_anon_is_low(lruvec); |
b39415b2 RR |
1938 | } |
1939 | ||
4f98a2fe | 1940 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1a93be0e | 1941 | struct lruvec *lruvec, struct scan_control *sc) |
b69408e8 | 1942 | { |
b39415b2 | 1943 | if (is_active_lru(lru)) { |
75b00af7 | 1944 | if (inactive_list_is_low(lruvec, lru)) |
1a93be0e | 1945 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
1946 | return 0; |
1947 | } | |
1948 | ||
1a93be0e | 1949 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
1950 | } |
1951 | ||
9a265114 JW |
1952 | enum scan_balance { |
1953 | SCAN_EQUAL, | |
1954 | SCAN_FRACT, | |
1955 | SCAN_ANON, | |
1956 | SCAN_FILE, | |
1957 | }; | |
1958 | ||
4f98a2fe RR |
1959 | /* |
1960 | * Determine how aggressively the anon and file LRU lists should be | |
1961 | * scanned. The relative value of each set of LRU lists is determined | |
1962 | * by looking at the fraction of the pages scanned we did rotate back | |
1963 | * onto the active list instead of evict. | |
1964 | * | |
be7bd59d WL |
1965 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1966 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 1967 | */ |
33377678 | 1968 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, |
6b4f7799 JW |
1969 | struct scan_control *sc, unsigned long *nr, |
1970 | unsigned long *lru_pages) | |
4f98a2fe | 1971 | { |
33377678 | 1972 | int swappiness = mem_cgroup_swappiness(memcg); |
9a265114 JW |
1973 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1974 | u64 fraction[2]; | |
1975 | u64 denominator = 0; /* gcc */ | |
1976 | struct zone *zone = lruvec_zone(lruvec); | |
4f98a2fe | 1977 | unsigned long anon_prio, file_prio; |
9a265114 | 1978 | enum scan_balance scan_balance; |
0bf1457f | 1979 | unsigned long anon, file; |
9a265114 | 1980 | bool force_scan = false; |
4f98a2fe | 1981 | unsigned long ap, fp; |
4111304d | 1982 | enum lru_list lru; |
6f04f48d SS |
1983 | bool some_scanned; |
1984 | int pass; | |
246e87a9 | 1985 | |
f11c0ca5 JW |
1986 | /* |
1987 | * If the zone or memcg is small, nr[l] can be 0. This | |
1988 | * results in no scanning on this priority and a potential | |
1989 | * priority drop. Global direct reclaim can go to the next | |
1990 | * zone and tends to have no problems. Global kswapd is for | |
1991 | * zone balancing and it needs to scan a minimum amount. When | |
1992 | * reclaiming for a memcg, a priority drop can cause high | |
1993 | * latencies, so it's better to scan a minimum amount there as | |
1994 | * well. | |
1995 | */ | |
90cbc250 VD |
1996 | if (current_is_kswapd()) { |
1997 | if (!zone_reclaimable(zone)) | |
1998 | force_scan = true; | |
eb01aaab | 1999 | if (!mem_cgroup_online(memcg)) |
90cbc250 VD |
2000 | force_scan = true; |
2001 | } | |
89b5fae5 | 2002 | if (!global_reclaim(sc)) |
a4d3e9e7 | 2003 | force_scan = true; |
76a33fc3 SL |
2004 | |
2005 | /* If we have no swap space, do not bother scanning anon pages. */ | |
d8b38438 | 2006 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { |
9a265114 | 2007 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
2008 | goto out; |
2009 | } | |
4f98a2fe | 2010 | |
10316b31 JW |
2011 | /* |
2012 | * Global reclaim will swap to prevent OOM even with no | |
2013 | * swappiness, but memcg users want to use this knob to | |
2014 | * disable swapping for individual groups completely when | |
2015 | * using the memory controller's swap limit feature would be | |
2016 | * too expensive. | |
2017 | */ | |
02695175 | 2018 | if (!global_reclaim(sc) && !swappiness) { |
9a265114 | 2019 | scan_balance = SCAN_FILE; |
10316b31 JW |
2020 | goto out; |
2021 | } | |
2022 | ||
2023 | /* | |
2024 | * Do not apply any pressure balancing cleverness when the | |
2025 | * system is close to OOM, scan both anon and file equally | |
2026 | * (unless the swappiness setting disagrees with swapping). | |
2027 | */ | |
02695175 | 2028 | if (!sc->priority && swappiness) { |
9a265114 | 2029 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
2030 | goto out; |
2031 | } | |
2032 | ||
62376251 JW |
2033 | /* |
2034 | * Prevent the reclaimer from falling into the cache trap: as | |
2035 | * cache pages start out inactive, every cache fault will tip | |
2036 | * the scan balance towards the file LRU. And as the file LRU | |
2037 | * shrinks, so does the window for rotation from references. | |
2038 | * This means we have a runaway feedback loop where a tiny | |
2039 | * thrashing file LRU becomes infinitely more attractive than | |
2040 | * anon pages. Try to detect this based on file LRU size. | |
2041 | */ | |
2042 | if (global_reclaim(sc)) { | |
2ab051e1 JM |
2043 | unsigned long zonefile; |
2044 | unsigned long zonefree; | |
2045 | ||
2046 | zonefree = zone_page_state(zone, NR_FREE_PAGES); | |
2047 | zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + | |
2048 | zone_page_state(zone, NR_INACTIVE_FILE); | |
62376251 | 2049 | |
2ab051e1 | 2050 | if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { |
62376251 JW |
2051 | scan_balance = SCAN_ANON; |
2052 | goto out; | |
2053 | } | |
2054 | } | |
2055 | ||
7c5bd705 | 2056 | /* |
316bda0e VD |
2057 | * If there is enough inactive page cache, i.e. if the size of the |
2058 | * inactive list is greater than that of the active list *and* the | |
2059 | * inactive list actually has some pages to scan on this priority, we | |
2060 | * do not reclaim anything from the anonymous working set right now. | |
2061 | * Without the second condition we could end up never scanning an | |
2062 | * lruvec even if it has plenty of old anonymous pages unless the | |
2063 | * system is under heavy pressure. | |
7c5bd705 | 2064 | */ |
316bda0e | 2065 | if (!inactive_file_is_low(lruvec) && |
23047a96 | 2066 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { |
9a265114 | 2067 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
2068 | goto out; |
2069 | } | |
2070 | ||
9a265114 JW |
2071 | scan_balance = SCAN_FRACT; |
2072 | ||
58c37f6e KM |
2073 | /* |
2074 | * With swappiness at 100, anonymous and file have the same priority. | |
2075 | * This scanning priority is essentially the inverse of IO cost. | |
2076 | */ | |
02695175 | 2077 | anon_prio = swappiness; |
75b00af7 | 2078 | file_prio = 200 - anon_prio; |
58c37f6e | 2079 | |
4f98a2fe RR |
2080 | /* |
2081 | * OK, so we have swap space and a fair amount of page cache | |
2082 | * pages. We use the recently rotated / recently scanned | |
2083 | * ratios to determine how valuable each cache is. | |
2084 | * | |
2085 | * Because workloads change over time (and to avoid overflow) | |
2086 | * we keep these statistics as a floating average, which ends | |
2087 | * up weighing recent references more than old ones. | |
2088 | * | |
2089 | * anon in [0], file in [1] | |
2090 | */ | |
2ab051e1 | 2091 | |
23047a96 JW |
2092 | anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + |
2093 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); | |
2094 | file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + | |
2095 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); | |
2ab051e1 | 2096 | |
90126375 | 2097 | spin_lock_irq(&zone->lru_lock); |
6e901571 | 2098 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
2099 | reclaim_stat->recent_scanned[0] /= 2; |
2100 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
2101 | } |
2102 | ||
6e901571 | 2103 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
2104 | reclaim_stat->recent_scanned[1] /= 2; |
2105 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
2106 | } |
2107 | ||
4f98a2fe | 2108 | /* |
00d8089c RR |
2109 | * The amount of pressure on anon vs file pages is inversely |
2110 | * proportional to the fraction of recently scanned pages on | |
2111 | * each list that were recently referenced and in active use. | |
4f98a2fe | 2112 | */ |
fe35004f | 2113 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 2114 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 2115 | |
fe35004f | 2116 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 2117 | fp /= reclaim_stat->recent_rotated[1] + 1; |
90126375 | 2118 | spin_unlock_irq(&zone->lru_lock); |
4f98a2fe | 2119 | |
76a33fc3 SL |
2120 | fraction[0] = ap; |
2121 | fraction[1] = fp; | |
2122 | denominator = ap + fp + 1; | |
2123 | out: | |
6f04f48d SS |
2124 | some_scanned = false; |
2125 | /* Only use force_scan on second pass. */ | |
2126 | for (pass = 0; !some_scanned && pass < 2; pass++) { | |
6b4f7799 | 2127 | *lru_pages = 0; |
6f04f48d SS |
2128 | for_each_evictable_lru(lru) { |
2129 | int file = is_file_lru(lru); | |
2130 | unsigned long size; | |
2131 | unsigned long scan; | |
6e08a369 | 2132 | |
23047a96 | 2133 | size = lruvec_lru_size(lruvec, lru); |
6f04f48d | 2134 | scan = size >> sc->priority; |
9a265114 | 2135 | |
6f04f48d SS |
2136 | if (!scan && pass && force_scan) |
2137 | scan = min(size, SWAP_CLUSTER_MAX); | |
9a265114 | 2138 | |
6f04f48d SS |
2139 | switch (scan_balance) { |
2140 | case SCAN_EQUAL: | |
2141 | /* Scan lists relative to size */ | |
2142 | break; | |
2143 | case SCAN_FRACT: | |
2144 | /* | |
2145 | * Scan types proportional to swappiness and | |
2146 | * their relative recent reclaim efficiency. | |
2147 | */ | |
2148 | scan = div64_u64(scan * fraction[file], | |
2149 | denominator); | |
2150 | break; | |
2151 | case SCAN_FILE: | |
2152 | case SCAN_ANON: | |
2153 | /* Scan one type exclusively */ | |
6b4f7799 JW |
2154 | if ((scan_balance == SCAN_FILE) != file) { |
2155 | size = 0; | |
6f04f48d | 2156 | scan = 0; |
6b4f7799 | 2157 | } |
6f04f48d SS |
2158 | break; |
2159 | default: | |
2160 | /* Look ma, no brain */ | |
2161 | BUG(); | |
2162 | } | |
6b4f7799 JW |
2163 | |
2164 | *lru_pages += size; | |
6f04f48d | 2165 | nr[lru] = scan; |
6b4f7799 | 2166 | |
9a265114 | 2167 | /* |
6f04f48d SS |
2168 | * Skip the second pass and don't force_scan, |
2169 | * if we found something to scan. | |
9a265114 | 2170 | */ |
6f04f48d | 2171 | some_scanned |= !!scan; |
9a265114 | 2172 | } |
76a33fc3 | 2173 | } |
6e08a369 | 2174 | } |
4f98a2fe | 2175 | |
72b252ae MG |
2176 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
2177 | static void init_tlb_ubc(void) | |
2178 | { | |
2179 | /* | |
2180 | * This deliberately does not clear the cpumask as it's expensive | |
2181 | * and unnecessary. If there happens to be data in there then the | |
2182 | * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and | |
2183 | * then will be cleared. | |
2184 | */ | |
2185 | current->tlb_ubc.flush_required = false; | |
2186 | } | |
2187 | #else | |
2188 | static inline void init_tlb_ubc(void) | |
2189 | { | |
2190 | } | |
2191 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
2192 | ||
9b4f98cd JW |
2193 | /* |
2194 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
2195 | */ | |
33377678 VD |
2196 | static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, |
2197 | struct scan_control *sc, unsigned long *lru_pages) | |
9b4f98cd | 2198 | { |
33377678 | 2199 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
9b4f98cd | 2200 | unsigned long nr[NR_LRU_LISTS]; |
e82e0561 | 2201 | unsigned long targets[NR_LRU_LISTS]; |
9b4f98cd JW |
2202 | unsigned long nr_to_scan; |
2203 | enum lru_list lru; | |
2204 | unsigned long nr_reclaimed = 0; | |
2205 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2206 | struct blk_plug plug; | |
1a501907 | 2207 | bool scan_adjusted; |
9b4f98cd | 2208 | |
33377678 | 2209 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); |
9b4f98cd | 2210 | |
e82e0561 MG |
2211 | /* Record the original scan target for proportional adjustments later */ |
2212 | memcpy(targets, nr, sizeof(nr)); | |
2213 | ||
1a501907 MG |
2214 | /* |
2215 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2216 | * event that can occur when there is little memory pressure e.g. | |
2217 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2218 | * when the requested number of pages are reclaimed when scanning at | |
2219 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2220 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2221 | * do a batch of work at once. For memcg reclaim one check is made to | |
2222 | * abort proportional reclaim if either the file or anon lru has already | |
2223 | * dropped to zero at the first pass. | |
2224 | */ | |
2225 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && | |
2226 | sc->priority == DEF_PRIORITY); | |
2227 | ||
72b252ae MG |
2228 | init_tlb_ubc(); |
2229 | ||
9b4f98cd JW |
2230 | blk_start_plug(&plug); |
2231 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2232 | nr[LRU_INACTIVE_FILE]) { | |
e82e0561 MG |
2233 | unsigned long nr_anon, nr_file, percentage; |
2234 | unsigned long nr_scanned; | |
2235 | ||
9b4f98cd JW |
2236 | for_each_evictable_lru(lru) { |
2237 | if (nr[lru]) { | |
2238 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2239 | nr[lru] -= nr_to_scan; | |
2240 | ||
2241 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
2242 | lruvec, sc); | |
2243 | } | |
2244 | } | |
e82e0561 MG |
2245 | |
2246 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) | |
2247 | continue; | |
2248 | ||
e82e0561 MG |
2249 | /* |
2250 | * For kswapd and memcg, reclaim at least the number of pages | |
1a501907 | 2251 | * requested. Ensure that the anon and file LRUs are scanned |
e82e0561 MG |
2252 | * proportionally what was requested by get_scan_count(). We |
2253 | * stop reclaiming one LRU and reduce the amount scanning | |
2254 | * proportional to the original scan target. | |
2255 | */ | |
2256 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
2257 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
2258 | ||
1a501907 MG |
2259 | /* |
2260 | * It's just vindictive to attack the larger once the smaller | |
2261 | * has gone to zero. And given the way we stop scanning the | |
2262 | * smaller below, this makes sure that we only make one nudge | |
2263 | * towards proportionality once we've got nr_to_reclaim. | |
2264 | */ | |
2265 | if (!nr_file || !nr_anon) | |
2266 | break; | |
2267 | ||
e82e0561 MG |
2268 | if (nr_file > nr_anon) { |
2269 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
2270 | targets[LRU_ACTIVE_ANON] + 1; | |
2271 | lru = LRU_BASE; | |
2272 | percentage = nr_anon * 100 / scan_target; | |
2273 | } else { | |
2274 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
2275 | targets[LRU_ACTIVE_FILE] + 1; | |
2276 | lru = LRU_FILE; | |
2277 | percentage = nr_file * 100 / scan_target; | |
2278 | } | |
2279 | ||
2280 | /* Stop scanning the smaller of the LRU */ | |
2281 | nr[lru] = 0; | |
2282 | nr[lru + LRU_ACTIVE] = 0; | |
2283 | ||
2284 | /* | |
2285 | * Recalculate the other LRU scan count based on its original | |
2286 | * scan target and the percentage scanning already complete | |
2287 | */ | |
2288 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
2289 | nr_scanned = targets[lru] - nr[lru]; | |
2290 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2291 | nr[lru] -= min(nr[lru], nr_scanned); | |
2292 | ||
2293 | lru += LRU_ACTIVE; | |
2294 | nr_scanned = targets[lru] - nr[lru]; | |
2295 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2296 | nr[lru] -= min(nr[lru], nr_scanned); | |
2297 | ||
2298 | scan_adjusted = true; | |
9b4f98cd JW |
2299 | } |
2300 | blk_finish_plug(&plug); | |
2301 | sc->nr_reclaimed += nr_reclaimed; | |
2302 | ||
2303 | /* | |
2304 | * Even if we did not try to evict anon pages at all, we want to | |
2305 | * rebalance the anon lru active/inactive ratio. | |
2306 | */ | |
2307 | if (inactive_anon_is_low(lruvec)) | |
2308 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
2309 | sc, LRU_ACTIVE_ANON); | |
2310 | ||
2311 | throttle_vm_writeout(sc->gfp_mask); | |
2312 | } | |
2313 | ||
23b9da55 | 2314 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 2315 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 2316 | { |
d84da3f9 | 2317 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 2318 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 2319 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
2320 | return true; |
2321 | ||
2322 | return false; | |
2323 | } | |
2324 | ||
3e7d3449 | 2325 | /* |
23b9da55 MG |
2326 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
2327 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
2328 | * true if more pages should be reclaimed such that when the page allocator | |
2329 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
2330 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 2331 | */ |
9b4f98cd | 2332 | static inline bool should_continue_reclaim(struct zone *zone, |
3e7d3449 MG |
2333 | unsigned long nr_reclaimed, |
2334 | unsigned long nr_scanned, | |
2335 | struct scan_control *sc) | |
2336 | { | |
2337 | unsigned long pages_for_compaction; | |
2338 | unsigned long inactive_lru_pages; | |
2339 | ||
2340 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 2341 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
2342 | return false; |
2343 | ||
2876592f MG |
2344 | /* Consider stopping depending on scan and reclaim activity */ |
2345 | if (sc->gfp_mask & __GFP_REPEAT) { | |
2346 | /* | |
2347 | * For __GFP_REPEAT allocations, stop reclaiming if the | |
2348 | * full LRU list has been scanned and we are still failing | |
2349 | * to reclaim pages. This full LRU scan is potentially | |
2350 | * expensive but a __GFP_REPEAT caller really wants to succeed | |
2351 | */ | |
2352 | if (!nr_reclaimed && !nr_scanned) | |
2353 | return false; | |
2354 | } else { | |
2355 | /* | |
2356 | * For non-__GFP_REPEAT allocations which can presumably | |
2357 | * fail without consequence, stop if we failed to reclaim | |
2358 | * any pages from the last SWAP_CLUSTER_MAX number of | |
2359 | * pages that were scanned. This will return to the | |
2360 | * caller faster at the risk reclaim/compaction and | |
2361 | * the resulting allocation attempt fails | |
2362 | */ | |
2363 | if (!nr_reclaimed) | |
2364 | return false; | |
2365 | } | |
3e7d3449 MG |
2366 | |
2367 | /* | |
2368 | * If we have not reclaimed enough pages for compaction and the | |
2369 | * inactive lists are large enough, continue reclaiming | |
2370 | */ | |
2371 | pages_for_compaction = (2UL << sc->order); | |
9b4f98cd | 2372 | inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); |
ec8acf20 | 2373 | if (get_nr_swap_pages() > 0) |
9b4f98cd | 2374 | inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); |
3e7d3449 MG |
2375 | if (sc->nr_reclaimed < pages_for_compaction && |
2376 | inactive_lru_pages > pages_for_compaction) | |
2377 | return true; | |
2378 | ||
2379 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
ebff3980 | 2380 | switch (compaction_suitable(zone, sc->order, 0, 0)) { |
3e7d3449 MG |
2381 | case COMPACT_PARTIAL: |
2382 | case COMPACT_CONTINUE: | |
2383 | return false; | |
2384 | default: | |
2385 | return true; | |
2386 | } | |
2387 | } | |
2388 | ||
6b4f7799 JW |
2389 | static bool shrink_zone(struct zone *zone, struct scan_control *sc, |
2390 | bool is_classzone) | |
1da177e4 | 2391 | { |
cb731d6c | 2392 | struct reclaim_state *reclaim_state = current->reclaim_state; |
f0fdc5e8 | 2393 | unsigned long nr_reclaimed, nr_scanned; |
2344d7e4 | 2394 | bool reclaimable = false; |
1da177e4 | 2395 | |
9b4f98cd JW |
2396 | do { |
2397 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
2398 | struct mem_cgroup_reclaim_cookie reclaim = { | |
2399 | .zone = zone, | |
2400 | .priority = sc->priority, | |
2401 | }; | |
6b4f7799 | 2402 | unsigned long zone_lru_pages = 0; |
694fbc0f | 2403 | struct mem_cgroup *memcg; |
3e7d3449 | 2404 | |
9b4f98cd JW |
2405 | nr_reclaimed = sc->nr_reclaimed; |
2406 | nr_scanned = sc->nr_scanned; | |
1da177e4 | 2407 | |
694fbc0f AM |
2408 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
2409 | do { | |
6b4f7799 | 2410 | unsigned long lru_pages; |
8e8ae645 | 2411 | unsigned long reclaimed; |
cb731d6c | 2412 | unsigned long scanned; |
5660048c | 2413 | |
241994ed JW |
2414 | if (mem_cgroup_low(root, memcg)) { |
2415 | if (!sc->may_thrash) | |
2416 | continue; | |
2417 | mem_cgroup_events(memcg, MEMCG_LOW, 1); | |
2418 | } | |
2419 | ||
8e8ae645 | 2420 | reclaimed = sc->nr_reclaimed; |
cb731d6c | 2421 | scanned = sc->nr_scanned; |
f9be23d6 | 2422 | |
33377678 | 2423 | shrink_zone_memcg(zone, memcg, sc, &lru_pages); |
6b4f7799 | 2424 | zone_lru_pages += lru_pages; |
f16015fb | 2425 | |
cb731d6c VD |
2426 | if (memcg && is_classzone) |
2427 | shrink_slab(sc->gfp_mask, zone_to_nid(zone), | |
2428 | memcg, sc->nr_scanned - scanned, | |
2429 | lru_pages); | |
2430 | ||
8e8ae645 JW |
2431 | /* Record the group's reclaim efficiency */ |
2432 | vmpressure(sc->gfp_mask, memcg, false, | |
2433 | sc->nr_scanned - scanned, | |
2434 | sc->nr_reclaimed - reclaimed); | |
2435 | ||
9b4f98cd | 2436 | /* |
a394cb8e MH |
2437 | * Direct reclaim and kswapd have to scan all memory |
2438 | * cgroups to fulfill the overall scan target for the | |
9b4f98cd | 2439 | * zone. |
a394cb8e MH |
2440 | * |
2441 | * Limit reclaim, on the other hand, only cares about | |
2442 | * nr_to_reclaim pages to be reclaimed and it will | |
2443 | * retry with decreasing priority if one round over the | |
2444 | * whole hierarchy is not sufficient. | |
9b4f98cd | 2445 | */ |
a394cb8e MH |
2446 | if (!global_reclaim(sc) && |
2447 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
9b4f98cd JW |
2448 | mem_cgroup_iter_break(root, memcg); |
2449 | break; | |
2450 | } | |
241994ed | 2451 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); |
70ddf637 | 2452 | |
6b4f7799 JW |
2453 | /* |
2454 | * Shrink the slab caches in the same proportion that | |
2455 | * the eligible LRU pages were scanned. | |
2456 | */ | |
cb731d6c VD |
2457 | if (global_reclaim(sc) && is_classzone) |
2458 | shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, | |
2459 | sc->nr_scanned - nr_scanned, | |
2460 | zone_lru_pages); | |
2461 | ||
2462 | if (reclaim_state) { | |
2463 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
2464 | reclaim_state->reclaimed_slab = 0; | |
6b4f7799 JW |
2465 | } |
2466 | ||
8e8ae645 JW |
2467 | /* Record the subtree's reclaim efficiency */ |
2468 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
70ddf637 AV |
2469 | sc->nr_scanned - nr_scanned, |
2470 | sc->nr_reclaimed - nr_reclaimed); | |
2471 | ||
2344d7e4 JW |
2472 | if (sc->nr_reclaimed - nr_reclaimed) |
2473 | reclaimable = true; | |
2474 | ||
9b4f98cd JW |
2475 | } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, |
2476 | sc->nr_scanned - nr_scanned, sc)); | |
2344d7e4 JW |
2477 | |
2478 | return reclaimable; | |
f16015fb JW |
2479 | } |
2480 | ||
53853e2d VB |
2481 | /* |
2482 | * Returns true if compaction should go ahead for a high-order request, or | |
2483 | * the high-order allocation would succeed without compaction. | |
2484 | */ | |
0b06496a | 2485 | static inline bool compaction_ready(struct zone *zone, int order) |
fe4b1b24 MG |
2486 | { |
2487 | unsigned long balance_gap, watermark; | |
2488 | bool watermark_ok; | |
2489 | ||
fe4b1b24 MG |
2490 | /* |
2491 | * Compaction takes time to run and there are potentially other | |
2492 | * callers using the pages just freed. Continue reclaiming until | |
2493 | * there is a buffer of free pages available to give compaction | |
2494 | * a reasonable chance of completing and allocating the page | |
2495 | */ | |
4be89a34 JZ |
2496 | balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( |
2497 | zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); | |
0b06496a | 2498 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); |
e2b19197 | 2499 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); |
fe4b1b24 MG |
2500 | |
2501 | /* | |
2502 | * If compaction is deferred, reclaim up to a point where | |
2503 | * compaction will have a chance of success when re-enabled | |
2504 | */ | |
0b06496a | 2505 | if (compaction_deferred(zone, order)) |
fe4b1b24 MG |
2506 | return watermark_ok; |
2507 | ||
53853e2d VB |
2508 | /* |
2509 | * If compaction is not ready to start and allocation is not likely | |
2510 | * to succeed without it, then keep reclaiming. | |
2511 | */ | |
ebff3980 | 2512 | if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) |
fe4b1b24 MG |
2513 | return false; |
2514 | ||
2515 | return watermark_ok; | |
2516 | } | |
2517 | ||
1da177e4 LT |
2518 | /* |
2519 | * This is the direct reclaim path, for page-allocating processes. We only | |
2520 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2521 | * request. | |
2522 | * | |
41858966 MG |
2523 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
2524 | * Because: | |
1da177e4 LT |
2525 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
2526 | * allocation or | |
41858966 MG |
2527 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
2528 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' | |
2529 | * zone defense algorithm. | |
1da177e4 | 2530 | * |
1da177e4 LT |
2531 | * If a zone is deemed to be full of pinned pages then just give it a light |
2532 | * scan then give up on it. | |
2344d7e4 JW |
2533 | * |
2534 | * Returns true if a zone was reclaimable. | |
1da177e4 | 2535 | */ |
2344d7e4 | 2536 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 2537 | { |
dd1a239f | 2538 | struct zoneref *z; |
54a6eb5c | 2539 | struct zone *zone; |
0608f43d AM |
2540 | unsigned long nr_soft_reclaimed; |
2541 | unsigned long nr_soft_scanned; | |
619d0d76 | 2542 | gfp_t orig_mask; |
9bbc04ee | 2543 | enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); |
2344d7e4 | 2544 | bool reclaimable = false; |
1cfb419b | 2545 | |
cc715d99 MG |
2546 | /* |
2547 | * If the number of buffer_heads in the machine exceeds the maximum | |
2548 | * allowed level, force direct reclaim to scan the highmem zone as | |
2549 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2550 | */ | |
619d0d76 | 2551 | orig_mask = sc->gfp_mask; |
cc715d99 MG |
2552 | if (buffer_heads_over_limit) |
2553 | sc->gfp_mask |= __GFP_HIGHMEM; | |
2554 | ||
d4debc66 | 2555 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
7bf52fb8 | 2556 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
6b4f7799 JW |
2557 | enum zone_type classzone_idx; |
2558 | ||
f3fe6512 | 2559 | if (!populated_zone(zone)) |
1da177e4 | 2560 | continue; |
6b4f7799 JW |
2561 | |
2562 | classzone_idx = requested_highidx; | |
2563 | while (!populated_zone(zone->zone_pgdat->node_zones + | |
2564 | classzone_idx)) | |
2565 | classzone_idx--; | |
2566 | ||
1cfb419b KH |
2567 | /* |
2568 | * Take care memory controller reclaiming has small influence | |
2569 | * to global LRU. | |
2570 | */ | |
89b5fae5 | 2571 | if (global_reclaim(sc)) { |
344736f2 VD |
2572 | if (!cpuset_zone_allowed(zone, |
2573 | GFP_KERNEL | __GFP_HARDWALL)) | |
1cfb419b | 2574 | continue; |
65ec02cb | 2575 | |
6e543d57 LD |
2576 | if (sc->priority != DEF_PRIORITY && |
2577 | !zone_reclaimable(zone)) | |
1cfb419b | 2578 | continue; /* Let kswapd poll it */ |
0b06496a JW |
2579 | |
2580 | /* | |
2581 | * If we already have plenty of memory free for | |
2582 | * compaction in this zone, don't free any more. | |
2583 | * Even though compaction is invoked for any | |
2584 | * non-zero order, only frequent costly order | |
2585 | * reclamation is disruptive enough to become a | |
2586 | * noticeable problem, like transparent huge | |
2587 | * page allocations. | |
2588 | */ | |
2589 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
2590 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
2591 | zonelist_zone_idx(z) <= requested_highidx && | |
2592 | compaction_ready(zone, sc->order)) { | |
2593 | sc->compaction_ready = true; | |
2594 | continue; | |
e0887c19 | 2595 | } |
0b06496a | 2596 | |
0608f43d AM |
2597 | /* |
2598 | * This steals pages from memory cgroups over softlimit | |
2599 | * and returns the number of reclaimed pages and | |
2600 | * scanned pages. This works for global memory pressure | |
2601 | * and balancing, not for a memcg's limit. | |
2602 | */ | |
2603 | nr_soft_scanned = 0; | |
2604 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, | |
2605 | sc->order, sc->gfp_mask, | |
2606 | &nr_soft_scanned); | |
2607 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2608 | sc->nr_scanned += nr_soft_scanned; | |
2344d7e4 JW |
2609 | if (nr_soft_reclaimed) |
2610 | reclaimable = true; | |
ac34a1a3 | 2611 | /* need some check for avoid more shrink_zone() */ |
1cfb419b | 2612 | } |
408d8544 | 2613 | |
6b4f7799 | 2614 | if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) |
2344d7e4 JW |
2615 | reclaimable = true; |
2616 | ||
2617 | if (global_reclaim(sc) && | |
2618 | !reclaimable && zone_reclaimable(zone)) | |
2619 | reclaimable = true; | |
1da177e4 | 2620 | } |
e0c23279 | 2621 | |
619d0d76 WY |
2622 | /* |
2623 | * Restore to original mask to avoid the impact on the caller if we | |
2624 | * promoted it to __GFP_HIGHMEM. | |
2625 | */ | |
2626 | sc->gfp_mask = orig_mask; | |
d1908362 | 2627 | |
2344d7e4 | 2628 | return reclaimable; |
1da177e4 | 2629 | } |
4f98a2fe | 2630 | |
1da177e4 LT |
2631 | /* |
2632 | * This is the main entry point to direct page reclaim. | |
2633 | * | |
2634 | * If a full scan of the inactive list fails to free enough memory then we | |
2635 | * are "out of memory" and something needs to be killed. | |
2636 | * | |
2637 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2638 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2639 | * caller can't do much about. We kick the writeback threads and take explicit |
2640 | * naps in the hope that some of these pages can be written. But if the | |
2641 | * allocating task holds filesystem locks which prevent writeout this might not | |
2642 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2643 | * |
2644 | * returns: 0, if no pages reclaimed | |
2645 | * else, the number of pages reclaimed | |
1da177e4 | 2646 | */ |
dac1d27b | 2647 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
3115cd91 | 2648 | struct scan_control *sc) |
1da177e4 | 2649 | { |
241994ed | 2650 | int initial_priority = sc->priority; |
69e05944 | 2651 | unsigned long total_scanned = 0; |
22fba335 | 2652 | unsigned long writeback_threshold; |
2344d7e4 | 2653 | bool zones_reclaimable; |
241994ed | 2654 | retry: |
873b4771 KK |
2655 | delayacct_freepages_start(); |
2656 | ||
89b5fae5 | 2657 | if (global_reclaim(sc)) |
1cfb419b | 2658 | count_vm_event(ALLOCSTALL); |
1da177e4 | 2659 | |
9e3b2f8c | 2660 | do { |
70ddf637 AV |
2661 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
2662 | sc->priority); | |
66e1707b | 2663 | sc->nr_scanned = 0; |
2344d7e4 | 2664 | zones_reclaimable = shrink_zones(zonelist, sc); |
c6a8a8c5 | 2665 | |
66e1707b | 2666 | total_scanned += sc->nr_scanned; |
bb21c7ce | 2667 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
0b06496a JW |
2668 | break; |
2669 | ||
2670 | if (sc->compaction_ready) | |
2671 | break; | |
1da177e4 | 2672 | |
0e50ce3b MK |
2673 | /* |
2674 | * If we're getting trouble reclaiming, start doing | |
2675 | * writepage even in laptop mode. | |
2676 | */ | |
2677 | if (sc->priority < DEF_PRIORITY - 2) | |
2678 | sc->may_writepage = 1; | |
2679 | ||
1da177e4 LT |
2680 | /* |
2681 | * Try to write back as many pages as we just scanned. This | |
2682 | * tends to cause slow streaming writers to write data to the | |
2683 | * disk smoothly, at the dirtying rate, which is nice. But | |
2684 | * that's undesirable in laptop mode, where we *want* lumpy | |
2685 | * writeout. So in laptop mode, write out the whole world. | |
2686 | */ | |
22fba335 KM |
2687 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2688 | if (total_scanned > writeback_threshold) { | |
0e175a18 CW |
2689 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2690 | WB_REASON_TRY_TO_FREE_PAGES); | |
66e1707b | 2691 | sc->may_writepage = 1; |
1da177e4 | 2692 | } |
0b06496a | 2693 | } while (--sc->priority >= 0); |
bb21c7ce | 2694 | |
873b4771 KK |
2695 | delayacct_freepages_end(); |
2696 | ||
bb21c7ce KM |
2697 | if (sc->nr_reclaimed) |
2698 | return sc->nr_reclaimed; | |
2699 | ||
0cee34fd | 2700 | /* Aborted reclaim to try compaction? don't OOM, then */ |
0b06496a | 2701 | if (sc->compaction_ready) |
7335084d MG |
2702 | return 1; |
2703 | ||
241994ed JW |
2704 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
2705 | if (!sc->may_thrash) { | |
2706 | sc->priority = initial_priority; | |
2707 | sc->may_thrash = 1; | |
2708 | goto retry; | |
2709 | } | |
2710 | ||
2344d7e4 JW |
2711 | /* Any of the zones still reclaimable? Don't OOM. */ |
2712 | if (zones_reclaimable) | |
bb21c7ce KM |
2713 | return 1; |
2714 | ||
2715 | return 0; | |
1da177e4 LT |
2716 | } |
2717 | ||
5515061d MG |
2718 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2719 | { | |
2720 | struct zone *zone; | |
2721 | unsigned long pfmemalloc_reserve = 0; | |
2722 | unsigned long free_pages = 0; | |
2723 | int i; | |
2724 | bool wmark_ok; | |
2725 | ||
2726 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
2727 | zone = &pgdat->node_zones[i]; | |
f012a84a NA |
2728 | if (!populated_zone(zone) || |
2729 | zone_reclaimable_pages(zone) == 0) | |
675becce MG |
2730 | continue; |
2731 | ||
5515061d MG |
2732 | pfmemalloc_reserve += min_wmark_pages(zone); |
2733 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2734 | } | |
2735 | ||
675becce MG |
2736 | /* If there are no reserves (unexpected config) then do not throttle */ |
2737 | if (!pfmemalloc_reserve) | |
2738 | return true; | |
2739 | ||
5515061d MG |
2740 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
2741 | ||
2742 | /* kswapd must be awake if processes are being throttled */ | |
2743 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
2744 | pgdat->classzone_idx = min(pgdat->classzone_idx, | |
2745 | (enum zone_type)ZONE_NORMAL); | |
2746 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2747 | } | |
2748 | ||
2749 | return wmark_ok; | |
2750 | } | |
2751 | ||
2752 | /* | |
2753 | * Throttle direct reclaimers if backing storage is backed by the network | |
2754 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2755 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
2756 | * when the low watermark is reached. |
2757 | * | |
2758 | * Returns true if a fatal signal was delivered during throttling. If this | |
2759 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 2760 | */ |
50694c28 | 2761 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
2762 | nodemask_t *nodemask) |
2763 | { | |
675becce | 2764 | struct zoneref *z; |
5515061d | 2765 | struct zone *zone; |
675becce | 2766 | pg_data_t *pgdat = NULL; |
5515061d MG |
2767 | |
2768 | /* | |
2769 | * Kernel threads should not be throttled as they may be indirectly | |
2770 | * responsible for cleaning pages necessary for reclaim to make forward | |
2771 | * progress. kjournald for example may enter direct reclaim while | |
2772 | * committing a transaction where throttling it could forcing other | |
2773 | * processes to block on log_wait_commit(). | |
2774 | */ | |
2775 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
2776 | goto out; |
2777 | ||
2778 | /* | |
2779 | * If a fatal signal is pending, this process should not throttle. | |
2780 | * It should return quickly so it can exit and free its memory | |
2781 | */ | |
2782 | if (fatal_signal_pending(current)) | |
2783 | goto out; | |
5515061d | 2784 | |
675becce MG |
2785 | /* |
2786 | * Check if the pfmemalloc reserves are ok by finding the first node | |
2787 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
2788 | * GFP_KERNEL will be required for allocating network buffers when | |
2789 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
2790 | * | |
2791 | * Throttling is based on the first usable node and throttled processes | |
2792 | * wait on a queue until kswapd makes progress and wakes them. There | |
2793 | * is an affinity then between processes waking up and where reclaim | |
2794 | * progress has been made assuming the process wakes on the same node. | |
2795 | * More importantly, processes running on remote nodes will not compete | |
2796 | * for remote pfmemalloc reserves and processes on different nodes | |
2797 | * should make reasonable progress. | |
2798 | */ | |
2799 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
17636faa | 2800 | gfp_zone(gfp_mask), nodemask) { |
675becce MG |
2801 | if (zone_idx(zone) > ZONE_NORMAL) |
2802 | continue; | |
2803 | ||
2804 | /* Throttle based on the first usable node */ | |
2805 | pgdat = zone->zone_pgdat; | |
2806 | if (pfmemalloc_watermark_ok(pgdat)) | |
2807 | goto out; | |
2808 | break; | |
2809 | } | |
2810 | ||
2811 | /* If no zone was usable by the allocation flags then do not throttle */ | |
2812 | if (!pgdat) | |
50694c28 | 2813 | goto out; |
5515061d | 2814 | |
68243e76 MG |
2815 | /* Account for the throttling */ |
2816 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
2817 | ||
5515061d MG |
2818 | /* |
2819 | * If the caller cannot enter the filesystem, it's possible that it | |
2820 | * is due to the caller holding an FS lock or performing a journal | |
2821 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
2822 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
2823 | * blocked waiting on the same lock. Instead, throttle for up to a | |
2824 | * second before continuing. | |
2825 | */ | |
2826 | if (!(gfp_mask & __GFP_FS)) { | |
2827 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
2828 | pfmemalloc_watermark_ok(pgdat), HZ); | |
50694c28 MG |
2829 | |
2830 | goto check_pending; | |
5515061d MG |
2831 | } |
2832 | ||
2833 | /* Throttle until kswapd wakes the process */ | |
2834 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
2835 | pfmemalloc_watermark_ok(pgdat)); | |
50694c28 MG |
2836 | |
2837 | check_pending: | |
2838 | if (fatal_signal_pending(current)) | |
2839 | return true; | |
2840 | ||
2841 | out: | |
2842 | return false; | |
5515061d MG |
2843 | } |
2844 | ||
dac1d27b | 2845 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 2846 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 2847 | { |
33906bc5 | 2848 | unsigned long nr_reclaimed; |
66e1707b | 2849 | struct scan_control sc = { |
ee814fe2 | 2850 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
21caf2fc | 2851 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
ee814fe2 JW |
2852 | .order = order, |
2853 | .nodemask = nodemask, | |
2854 | .priority = DEF_PRIORITY, | |
66e1707b | 2855 | .may_writepage = !laptop_mode, |
a6dc60f8 | 2856 | .may_unmap = 1, |
2e2e4259 | 2857 | .may_swap = 1, |
66e1707b BS |
2858 | }; |
2859 | ||
5515061d | 2860 | /* |
50694c28 MG |
2861 | * Do not enter reclaim if fatal signal was delivered while throttled. |
2862 | * 1 is returned so that the page allocator does not OOM kill at this | |
2863 | * point. | |
5515061d | 2864 | */ |
50694c28 | 2865 | if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) |
5515061d MG |
2866 | return 1; |
2867 | ||
33906bc5 MG |
2868 | trace_mm_vmscan_direct_reclaim_begin(order, |
2869 | sc.may_writepage, | |
2870 | gfp_mask); | |
2871 | ||
3115cd91 | 2872 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
33906bc5 MG |
2873 | |
2874 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
2875 | ||
2876 | return nr_reclaimed; | |
66e1707b BS |
2877 | } |
2878 | ||
c255a458 | 2879 | #ifdef CONFIG_MEMCG |
66e1707b | 2880 | |
72835c86 | 2881 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
4e416953 | 2882 | gfp_t gfp_mask, bool noswap, |
0ae5e89c YH |
2883 | struct zone *zone, |
2884 | unsigned long *nr_scanned) | |
4e416953 BS |
2885 | { |
2886 | struct scan_control sc = { | |
b8f5c566 | 2887 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
ee814fe2 | 2888 | .target_mem_cgroup = memcg, |
4e416953 BS |
2889 | .may_writepage = !laptop_mode, |
2890 | .may_unmap = 1, | |
2891 | .may_swap = !noswap, | |
4e416953 | 2892 | }; |
6b4f7799 | 2893 | unsigned long lru_pages; |
0ae5e89c | 2894 | |
4e416953 BS |
2895 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2896 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 2897 | |
9e3b2f8c | 2898 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e KM |
2899 | sc.may_writepage, |
2900 | sc.gfp_mask); | |
2901 | ||
4e416953 BS |
2902 | /* |
2903 | * NOTE: Although we can get the priority field, using it | |
2904 | * here is not a good idea, since it limits the pages we can scan. | |
2905 | * if we don't reclaim here, the shrink_zone from balance_pgdat | |
2906 | * will pick up pages from other mem cgroup's as well. We hack | |
2907 | * the priority and make it zero. | |
2908 | */ | |
33377678 | 2909 | shrink_zone_memcg(zone, memcg, &sc, &lru_pages); |
bdce6d9e KM |
2910 | |
2911 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
2912 | ||
0ae5e89c | 2913 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
2914 | return sc.nr_reclaimed; |
2915 | } | |
2916 | ||
72835c86 | 2917 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
b70a2a21 | 2918 | unsigned long nr_pages, |
a7885eb8 | 2919 | gfp_t gfp_mask, |
b70a2a21 | 2920 | bool may_swap) |
66e1707b | 2921 | { |
4e416953 | 2922 | struct zonelist *zonelist; |
bdce6d9e | 2923 | unsigned long nr_reclaimed; |
889976db | 2924 | int nid; |
66e1707b | 2925 | struct scan_control sc = { |
b70a2a21 | 2926 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
a09ed5e0 YH |
2927 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2928 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
ee814fe2 JW |
2929 | .target_mem_cgroup = memcg, |
2930 | .priority = DEF_PRIORITY, | |
2931 | .may_writepage = !laptop_mode, | |
2932 | .may_unmap = 1, | |
b70a2a21 | 2933 | .may_swap = may_swap, |
a09ed5e0 | 2934 | }; |
66e1707b | 2935 | |
889976db YH |
2936 | /* |
2937 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
2938 | * take care of from where we get pages. So the node where we start the | |
2939 | * scan does not need to be the current node. | |
2940 | */ | |
72835c86 | 2941 | nid = mem_cgroup_select_victim_node(memcg); |
889976db YH |
2942 | |
2943 | zonelist = NODE_DATA(nid)->node_zonelists; | |
bdce6d9e KM |
2944 | |
2945 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
2946 | sc.may_writepage, | |
2947 | sc.gfp_mask); | |
2948 | ||
3115cd91 | 2949 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
bdce6d9e KM |
2950 | |
2951 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
2952 | ||
2953 | return nr_reclaimed; | |
66e1707b BS |
2954 | } |
2955 | #endif | |
2956 | ||
9e3b2f8c | 2957 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
f16015fb | 2958 | { |
b95a2f2d | 2959 | struct mem_cgroup *memcg; |
f16015fb | 2960 | |
b95a2f2d JW |
2961 | if (!total_swap_pages) |
2962 | return; | |
2963 | ||
2964 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
2965 | do { | |
c56d5c7d | 2966 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
b95a2f2d | 2967 | |
c56d5c7d | 2968 | if (inactive_anon_is_low(lruvec)) |
1a93be0e | 2969 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 2970 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
2971 | |
2972 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
2973 | } while (memcg); | |
f16015fb JW |
2974 | } |
2975 | ||
accf6242 VB |
2976 | static bool zone_balanced(struct zone *zone, int order, bool highorder, |
2977 | unsigned long balance_gap, int classzone_idx) | |
60cefed4 | 2978 | { |
accf6242 | 2979 | unsigned long mark = high_wmark_pages(zone) + balance_gap; |
60cefed4 | 2980 | |
accf6242 VB |
2981 | /* |
2982 | * When checking from pgdat_balanced(), kswapd should stop and sleep | |
2983 | * when it reaches the high order-0 watermark and let kcompactd take | |
2984 | * over. Other callers such as wakeup_kswapd() want to determine the | |
2985 | * true high-order watermark. | |
2986 | */ | |
2987 | if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) { | |
2988 | mark += (1UL << order); | |
2989 | order = 0; | |
2990 | } | |
60cefed4 | 2991 | |
accf6242 | 2992 | return zone_watermark_ok_safe(zone, order, mark, classzone_idx); |
60cefed4 JW |
2993 | } |
2994 | ||
1741c877 | 2995 | /* |
4ae0a48b ZC |
2996 | * pgdat_balanced() is used when checking if a node is balanced. |
2997 | * | |
2998 | * For order-0, all zones must be balanced! | |
2999 | * | |
3000 | * For high-order allocations only zones that meet watermarks and are in a | |
3001 | * zone allowed by the callers classzone_idx are added to balanced_pages. The | |
3002 | * total of balanced pages must be at least 25% of the zones allowed by | |
3003 | * classzone_idx for the node to be considered balanced. Forcing all zones to | |
3004 | * be balanced for high orders can cause excessive reclaim when there are | |
3005 | * imbalanced zones. | |
1741c877 MG |
3006 | * The choice of 25% is due to |
3007 | * o a 16M DMA zone that is balanced will not balance a zone on any | |
3008 | * reasonable sized machine | |
3009 | * o On all other machines, the top zone must be at least a reasonable | |
25985edc | 3010 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
1741c877 MG |
3011 | * would need to be at least 256M for it to be balance a whole node. |
3012 | * Similarly, on x86-64 the Normal zone would need to be at least 1G | |
3013 | * to balance a node on its own. These seemed like reasonable ratios. | |
3014 | */ | |
4ae0a48b | 3015 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) |
1741c877 | 3016 | { |
b40da049 | 3017 | unsigned long managed_pages = 0; |
4ae0a48b | 3018 | unsigned long balanced_pages = 0; |
1741c877 MG |
3019 | int i; |
3020 | ||
4ae0a48b ZC |
3021 | /* Check the watermark levels */ |
3022 | for (i = 0; i <= classzone_idx; i++) { | |
3023 | struct zone *zone = pgdat->node_zones + i; | |
1741c877 | 3024 | |
4ae0a48b ZC |
3025 | if (!populated_zone(zone)) |
3026 | continue; | |
3027 | ||
b40da049 | 3028 | managed_pages += zone->managed_pages; |
4ae0a48b ZC |
3029 | |
3030 | /* | |
3031 | * A special case here: | |
3032 | * | |
3033 | * balance_pgdat() skips over all_unreclaimable after | |
3034 | * DEF_PRIORITY. Effectively, it considers them balanced so | |
3035 | * they must be considered balanced here as well! | |
3036 | */ | |
6e543d57 | 3037 | if (!zone_reclaimable(zone)) { |
b40da049 | 3038 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
3039 | continue; |
3040 | } | |
3041 | ||
accf6242 | 3042 | if (zone_balanced(zone, order, false, 0, i)) |
b40da049 | 3043 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
3044 | else if (!order) |
3045 | return false; | |
3046 | } | |
3047 | ||
3048 | if (order) | |
b40da049 | 3049 | return balanced_pages >= (managed_pages >> 2); |
4ae0a48b ZC |
3050 | else |
3051 | return true; | |
1741c877 MG |
3052 | } |
3053 | ||
5515061d MG |
3054 | /* |
3055 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
3056 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
3057 | * | |
3058 | * Returns true if kswapd is ready to sleep | |
3059 | */ | |
3060 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, | |
dc83edd9 | 3061 | int classzone_idx) |
f50de2d3 | 3062 | { |
f50de2d3 MG |
3063 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ |
3064 | if (remaining) | |
5515061d MG |
3065 | return false; |
3066 | ||
3067 | /* | |
9e5e3661 VB |
3068 | * The throttled processes are normally woken up in balance_pgdat() as |
3069 | * soon as pfmemalloc_watermark_ok() is true. But there is a potential | |
3070 | * race between when kswapd checks the watermarks and a process gets | |
3071 | * throttled. There is also a potential race if processes get | |
3072 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
3073 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
3074 | * the wake up checks. If kswapd is going to sleep, no process should | |
3075 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
3076 | * the wake up is premature, processes will wake kswapd and get | |
3077 | * throttled again. The difference from wake ups in balance_pgdat() is | |
3078 | * that here we are under prepare_to_wait(). | |
5515061d | 3079 | */ |
9e5e3661 VB |
3080 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) |
3081 | wake_up_all(&pgdat->pfmemalloc_wait); | |
f50de2d3 | 3082 | |
4ae0a48b | 3083 | return pgdat_balanced(pgdat, order, classzone_idx); |
f50de2d3 MG |
3084 | } |
3085 | ||
75485363 MG |
3086 | /* |
3087 | * kswapd shrinks the zone by the number of pages required to reach | |
3088 | * the high watermark. | |
b8e83b94 MG |
3089 | * |
3090 | * Returns true if kswapd scanned at least the requested number of pages to | |
283aba9f MG |
3091 | * reclaim or if the lack of progress was due to pages under writeback. |
3092 | * This is used to determine if the scanning priority needs to be raised. | |
75485363 | 3093 | */ |
b8e83b94 | 3094 | static bool kswapd_shrink_zone(struct zone *zone, |
7c954f6d | 3095 | int classzone_idx, |
accf6242 | 3096 | struct scan_control *sc) |
75485363 | 3097 | { |
7c954f6d | 3098 | unsigned long balance_gap; |
7c954f6d | 3099 | bool lowmem_pressure; |
75485363 MG |
3100 | |
3101 | /* Reclaim above the high watermark. */ | |
3102 | sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); | |
7c954f6d | 3103 | |
7c954f6d MG |
3104 | /* |
3105 | * We put equal pressure on every zone, unless one zone has way too | |
3106 | * many pages free already. The "too many pages" is defined as the | |
3107 | * high wmark plus a "gap" where the gap is either the low | |
3108 | * watermark or 1% of the zone, whichever is smaller. | |
3109 | */ | |
4be89a34 JZ |
3110 | balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( |
3111 | zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); | |
7c954f6d MG |
3112 | |
3113 | /* | |
3114 | * If there is no low memory pressure or the zone is balanced then no | |
3115 | * reclaim is necessary | |
3116 | */ | |
3117 | lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); | |
accf6242 | 3118 | if (!lowmem_pressure && zone_balanced(zone, sc->order, false, |
7c954f6d MG |
3119 | balance_gap, classzone_idx)) |
3120 | return true; | |
3121 | ||
6b4f7799 | 3122 | shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); |
75485363 | 3123 | |
57054651 | 3124 | clear_bit(ZONE_WRITEBACK, &zone->flags); |
283aba9f | 3125 | |
7c954f6d MG |
3126 | /* |
3127 | * If a zone reaches its high watermark, consider it to be no longer | |
3128 | * congested. It's possible there are dirty pages backed by congested | |
3129 | * BDIs but as pressure is relieved, speculatively avoid congestion | |
3130 | * waits. | |
3131 | */ | |
6e543d57 | 3132 | if (zone_reclaimable(zone) && |
accf6242 | 3133 | zone_balanced(zone, sc->order, false, 0, classzone_idx)) { |
57054651 JW |
3134 | clear_bit(ZONE_CONGESTED, &zone->flags); |
3135 | clear_bit(ZONE_DIRTY, &zone->flags); | |
7c954f6d MG |
3136 | } |
3137 | ||
b8e83b94 | 3138 | return sc->nr_scanned >= sc->nr_to_reclaim; |
75485363 MG |
3139 | } |
3140 | ||
1da177e4 LT |
3141 | /* |
3142 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
41858966 | 3143 | * they are all at high_wmark_pages(zone). |
1da177e4 | 3144 | * |
accf6242 | 3145 | * Returns the highest zone idx kswapd was reclaiming at |
1da177e4 LT |
3146 | * |
3147 | * There is special handling here for zones which are full of pinned pages. | |
3148 | * This can happen if the pages are all mlocked, or if they are all used by | |
3149 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
3150 | * What we do is to detect the case where all pages in the zone have been | |
3151 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
3152 | * dead and from now on, only perform a short scan. Basically we're polling | |
3153 | * the zone for when the problem goes away. | |
3154 | * | |
3155 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 MG |
3156 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
3157 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the | |
3158 | * lower zones regardless of the number of free pages in the lower zones. This | |
3159 | * interoperates with the page allocator fallback scheme to ensure that aging | |
3160 | * of pages is balanced across the zones. | |
1da177e4 | 3161 | */ |
accf6242 | 3162 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) |
1da177e4 | 3163 | { |
1da177e4 | 3164 | int i; |
99504748 | 3165 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
0608f43d AM |
3166 | unsigned long nr_soft_reclaimed; |
3167 | unsigned long nr_soft_scanned; | |
179e9639 AM |
3168 | struct scan_control sc = { |
3169 | .gfp_mask = GFP_KERNEL, | |
ee814fe2 | 3170 | .order = order, |
b8e83b94 | 3171 | .priority = DEF_PRIORITY, |
ee814fe2 | 3172 | .may_writepage = !laptop_mode, |
a6dc60f8 | 3173 | .may_unmap = 1, |
2e2e4259 | 3174 | .may_swap = 1, |
179e9639 | 3175 | }; |
f8891e5e | 3176 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 3177 | |
9e3b2f8c | 3178 | do { |
b8e83b94 MG |
3179 | bool raise_priority = true; |
3180 | ||
3181 | sc.nr_reclaimed = 0; | |
1da177e4 | 3182 | |
d6277db4 RW |
3183 | /* |
3184 | * Scan in the highmem->dma direction for the highest | |
3185 | * zone which needs scanning | |
3186 | */ | |
3187 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
3188 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 3189 | |
d6277db4 RW |
3190 | if (!populated_zone(zone)) |
3191 | continue; | |
1da177e4 | 3192 | |
6e543d57 LD |
3193 | if (sc.priority != DEF_PRIORITY && |
3194 | !zone_reclaimable(zone)) | |
d6277db4 | 3195 | continue; |
1da177e4 | 3196 | |
556adecb RR |
3197 | /* |
3198 | * Do some background aging of the anon list, to give | |
3199 | * pages a chance to be referenced before reclaiming. | |
3200 | */ | |
9e3b2f8c | 3201 | age_active_anon(zone, &sc); |
556adecb | 3202 | |
cc715d99 MG |
3203 | /* |
3204 | * If the number of buffer_heads in the machine | |
3205 | * exceeds the maximum allowed level and this node | |
3206 | * has a highmem zone, force kswapd to reclaim from | |
3207 | * it to relieve lowmem pressure. | |
3208 | */ | |
3209 | if (buffer_heads_over_limit && is_highmem_idx(i)) { | |
3210 | end_zone = i; | |
3211 | break; | |
3212 | } | |
3213 | ||
accf6242 | 3214 | if (!zone_balanced(zone, order, false, 0, 0)) { |
d6277db4 | 3215 | end_zone = i; |
e1dbeda6 | 3216 | break; |
439423f6 | 3217 | } else { |
d43006d5 MG |
3218 | /* |
3219 | * If balanced, clear the dirty and congested | |
3220 | * flags | |
3221 | */ | |
57054651 JW |
3222 | clear_bit(ZONE_CONGESTED, &zone->flags); |
3223 | clear_bit(ZONE_DIRTY, &zone->flags); | |
1da177e4 | 3224 | } |
1da177e4 | 3225 | } |
dafcb73e | 3226 | |
b8e83b94 | 3227 | if (i < 0) |
e1dbeda6 AM |
3228 | goto out; |
3229 | ||
b7ea3c41 MG |
3230 | /* |
3231 | * If we're getting trouble reclaiming, start doing writepage | |
3232 | * even in laptop mode. | |
3233 | */ | |
3234 | if (sc.priority < DEF_PRIORITY - 2) | |
3235 | sc.may_writepage = 1; | |
3236 | ||
1da177e4 LT |
3237 | /* |
3238 | * Now scan the zone in the dma->highmem direction, stopping | |
3239 | * at the last zone which needs scanning. | |
3240 | * | |
3241 | * We do this because the page allocator works in the opposite | |
3242 | * direction. This prevents the page allocator from allocating | |
3243 | * pages behind kswapd's direction of progress, which would | |
3244 | * cause too much scanning of the lower zones. | |
3245 | */ | |
3246 | for (i = 0; i <= end_zone; i++) { | |
3247 | struct zone *zone = pgdat->node_zones + i; | |
3248 | ||
f3fe6512 | 3249 | if (!populated_zone(zone)) |
1da177e4 LT |
3250 | continue; |
3251 | ||
6e543d57 LD |
3252 | if (sc.priority != DEF_PRIORITY && |
3253 | !zone_reclaimable(zone)) | |
1da177e4 LT |
3254 | continue; |
3255 | ||
1da177e4 | 3256 | sc.nr_scanned = 0; |
4e416953 | 3257 | |
0608f43d AM |
3258 | nr_soft_scanned = 0; |
3259 | /* | |
3260 | * Call soft limit reclaim before calling shrink_zone. | |
3261 | */ | |
3262 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, | |
3263 | order, sc.gfp_mask, | |
3264 | &nr_soft_scanned); | |
3265 | sc.nr_reclaimed += nr_soft_reclaimed; | |
3266 | ||
32a4330d | 3267 | /* |
7c954f6d MG |
3268 | * There should be no need to raise the scanning |
3269 | * priority if enough pages are already being scanned | |
3270 | * that that high watermark would be met at 100% | |
3271 | * efficiency. | |
fe2c2a10 | 3272 | */ |
accf6242 | 3273 | if (kswapd_shrink_zone(zone, end_zone, &sc)) |
7c954f6d | 3274 | raise_priority = false; |
1da177e4 | 3275 | } |
5515061d MG |
3276 | |
3277 | /* | |
3278 | * If the low watermark is met there is no need for processes | |
3279 | * to be throttled on pfmemalloc_wait as they should not be | |
3280 | * able to safely make forward progress. Wake them | |
3281 | */ | |
3282 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
3283 | pfmemalloc_watermark_ok(pgdat)) | |
cfc51155 | 3284 | wake_up_all(&pgdat->pfmemalloc_wait); |
5515061d | 3285 | |
b8e83b94 MG |
3286 | /* Check if kswapd should be suspending */ |
3287 | if (try_to_freeze() || kthread_should_stop()) | |
3288 | break; | |
8357376d | 3289 | |
73ce02e9 | 3290 | /* |
b8e83b94 MG |
3291 | * Raise priority if scanning rate is too low or there was no |
3292 | * progress in reclaiming pages | |
73ce02e9 | 3293 | */ |
b8e83b94 MG |
3294 | if (raise_priority || !sc.nr_reclaimed) |
3295 | sc.priority--; | |
9aa41348 | 3296 | } while (sc.priority >= 1 && |
accf6242 | 3297 | !pgdat_balanced(pgdat, order, classzone_idx)); |
1da177e4 | 3298 | |
b8e83b94 | 3299 | out: |
0abdee2b | 3300 | /* |
accf6242 VB |
3301 | * Return the highest zone idx we were reclaiming at so |
3302 | * prepare_kswapd_sleep() makes the same decisions as here. | |
0abdee2b | 3303 | */ |
accf6242 | 3304 | return end_zone; |
1da177e4 LT |
3305 | } |
3306 | ||
accf6242 VB |
3307 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, |
3308 | int classzone_idx, int balanced_classzone_idx) | |
f0bc0a60 KM |
3309 | { |
3310 | long remaining = 0; | |
3311 | DEFINE_WAIT(wait); | |
3312 | ||
3313 | if (freezing(current) || kthread_should_stop()) | |
3314 | return; | |
3315 | ||
3316 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3317 | ||
3318 | /* Try to sleep for a short interval */ | |
accf6242 VB |
3319 | if (prepare_kswapd_sleep(pgdat, order, remaining, |
3320 | balanced_classzone_idx)) { | |
fd901c95 VB |
3321 | /* |
3322 | * Compaction records what page blocks it recently failed to | |
3323 | * isolate pages from and skips them in the future scanning. | |
3324 | * When kswapd is going to sleep, it is reasonable to assume | |
3325 | * that pages and compaction may succeed so reset the cache. | |
3326 | */ | |
3327 | reset_isolation_suitable(pgdat); | |
3328 | ||
3329 | /* | |
3330 | * We have freed the memory, now we should compact it to make | |
3331 | * allocation of the requested order possible. | |
3332 | */ | |
3333 | wakeup_kcompactd(pgdat, order, classzone_idx); | |
3334 | ||
f0bc0a60 KM |
3335 | remaining = schedule_timeout(HZ/10); |
3336 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3337 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3338 | } | |
3339 | ||
3340 | /* | |
3341 | * After a short sleep, check if it was a premature sleep. If not, then | |
3342 | * go fully to sleep until explicitly woken up. | |
3343 | */ | |
accf6242 VB |
3344 | if (prepare_kswapd_sleep(pgdat, order, remaining, |
3345 | balanced_classzone_idx)) { | |
f0bc0a60 KM |
3346 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
3347 | ||
3348 | /* | |
3349 | * vmstat counters are not perfectly accurate and the estimated | |
3350 | * value for counters such as NR_FREE_PAGES can deviate from the | |
3351 | * true value by nr_online_cpus * threshold. To avoid the zone | |
3352 | * watermarks being breached while under pressure, we reduce the | |
3353 | * per-cpu vmstat threshold while kswapd is awake and restore | |
3354 | * them before going back to sleep. | |
3355 | */ | |
3356 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c AK |
3357 | |
3358 | if (!kthread_should_stop()) | |
3359 | schedule(); | |
3360 | ||
f0bc0a60 KM |
3361 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
3362 | } else { | |
3363 | if (remaining) | |
3364 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
3365 | else | |
3366 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
3367 | } | |
3368 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3369 | } | |
3370 | ||
1da177e4 LT |
3371 | /* |
3372 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 3373 | * from the init process. |
1da177e4 LT |
3374 | * |
3375 | * This basically trickles out pages so that we have _some_ | |
3376 | * free memory available even if there is no other activity | |
3377 | * that frees anything up. This is needed for things like routing | |
3378 | * etc, where we otherwise might have all activity going on in | |
3379 | * asynchronous contexts that cannot page things out. | |
3380 | * | |
3381 | * If there are applications that are active memory-allocators | |
3382 | * (most normal use), this basically shouldn't matter. | |
3383 | */ | |
3384 | static int kswapd(void *p) | |
3385 | { | |
215ddd66 MG |
3386 | unsigned long order, new_order; |
3387 | int classzone_idx, new_classzone_idx; | |
d2ebd0f6 | 3388 | int balanced_classzone_idx; |
1da177e4 LT |
3389 | pg_data_t *pgdat = (pg_data_t*)p; |
3390 | struct task_struct *tsk = current; | |
f0bc0a60 | 3391 | |
1da177e4 LT |
3392 | struct reclaim_state reclaim_state = { |
3393 | .reclaimed_slab = 0, | |
3394 | }; | |
a70f7302 | 3395 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 3396 | |
cf40bd16 NP |
3397 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
3398 | ||
174596a0 | 3399 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 3400 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
3401 | current->reclaim_state = &reclaim_state; |
3402 | ||
3403 | /* | |
3404 | * Tell the memory management that we're a "memory allocator", | |
3405 | * and that if we need more memory we should get access to it | |
3406 | * regardless (see "__alloc_pages()"). "kswapd" should | |
3407 | * never get caught in the normal page freeing logic. | |
3408 | * | |
3409 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
3410 | * you need a small amount of memory in order to be able to | |
3411 | * page out something else, and this flag essentially protects | |
3412 | * us from recursively trying to free more memory as we're | |
3413 | * trying to free the first piece of memory in the first place). | |
3414 | */ | |
930d9152 | 3415 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 3416 | set_freezable(); |
1da177e4 | 3417 | |
215ddd66 MG |
3418 | order = new_order = 0; |
3419 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; | |
d2ebd0f6 | 3420 | balanced_classzone_idx = classzone_idx; |
1da177e4 | 3421 | for ( ; ; ) { |
6f6313d4 | 3422 | bool ret; |
3e1d1d28 | 3423 | |
215ddd66 | 3424 | /* |
accf6242 VB |
3425 | * While we were reclaiming, there might have been another |
3426 | * wakeup, so check the values. | |
215ddd66 | 3427 | */ |
accf6242 VB |
3428 | new_order = pgdat->kswapd_max_order; |
3429 | new_classzone_idx = pgdat->classzone_idx; | |
3430 | pgdat->kswapd_max_order = 0; | |
3431 | pgdat->classzone_idx = pgdat->nr_zones - 1; | |
215ddd66 | 3432 | |
99504748 | 3433 | if (order < new_order || classzone_idx > new_classzone_idx) { |
1da177e4 LT |
3434 | /* |
3435 | * Don't sleep if someone wants a larger 'order' | |
99504748 | 3436 | * allocation or has tigher zone constraints |
1da177e4 LT |
3437 | */ |
3438 | order = new_order; | |
99504748 | 3439 | classzone_idx = new_classzone_idx; |
1da177e4 | 3440 | } else { |
accf6242 | 3441 | kswapd_try_to_sleep(pgdat, order, classzone_idx, |
d2ebd0f6 | 3442 | balanced_classzone_idx); |
1da177e4 | 3443 | order = pgdat->kswapd_max_order; |
99504748 | 3444 | classzone_idx = pgdat->classzone_idx; |
f0dfcde0 AS |
3445 | new_order = order; |
3446 | new_classzone_idx = classzone_idx; | |
4d40502e | 3447 | pgdat->kswapd_max_order = 0; |
215ddd66 | 3448 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
1da177e4 | 3449 | } |
1da177e4 | 3450 | |
8fe23e05 DR |
3451 | ret = try_to_freeze(); |
3452 | if (kthread_should_stop()) | |
3453 | break; | |
3454 | ||
3455 | /* | |
3456 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3457 | * after returning from the refrigerator | |
3458 | */ | |
33906bc5 MG |
3459 | if (!ret) { |
3460 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | |
accf6242 VB |
3461 | balanced_classzone_idx = balance_pgdat(pgdat, order, |
3462 | classzone_idx); | |
33906bc5 | 3463 | } |
1da177e4 | 3464 | } |
b0a8cc58 | 3465 | |
71abdc15 | 3466 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); |
b0a8cc58 | 3467 | current->reclaim_state = NULL; |
71abdc15 JW |
3468 | lockdep_clear_current_reclaim_state(); |
3469 | ||
1da177e4 LT |
3470 | return 0; |
3471 | } | |
3472 | ||
3473 | /* | |
3474 | * A zone is low on free memory, so wake its kswapd task to service it. | |
3475 | */ | |
99504748 | 3476 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
1da177e4 LT |
3477 | { |
3478 | pg_data_t *pgdat; | |
3479 | ||
f3fe6512 | 3480 | if (!populated_zone(zone)) |
1da177e4 LT |
3481 | return; |
3482 | ||
344736f2 | 3483 | if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) |
1da177e4 | 3484 | return; |
88f5acf8 | 3485 | pgdat = zone->zone_pgdat; |
99504748 | 3486 | if (pgdat->kswapd_max_order < order) { |
1da177e4 | 3487 | pgdat->kswapd_max_order = order; |
99504748 MG |
3488 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
3489 | } | |
8d0986e2 | 3490 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 3491 | return; |
accf6242 | 3492 | if (zone_balanced(zone, order, true, 0, 0)) |
88f5acf8 MG |
3493 | return; |
3494 | ||
3495 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | |
8d0986e2 | 3496 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
3497 | } |
3498 | ||
c6f37f12 | 3499 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3500 | /* |
7b51755c | 3501 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3502 | * freed pages. |
3503 | * | |
3504 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3505 | * LRU order by reclaiming preferentially | |
3506 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3507 | */ |
7b51755c | 3508 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3509 | { |
d6277db4 | 3510 | struct reclaim_state reclaim_state; |
d6277db4 | 3511 | struct scan_control sc = { |
ee814fe2 | 3512 | .nr_to_reclaim = nr_to_reclaim, |
7b51755c | 3513 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
ee814fe2 | 3514 | .priority = DEF_PRIORITY, |
d6277db4 | 3515 | .may_writepage = 1, |
ee814fe2 JW |
3516 | .may_unmap = 1, |
3517 | .may_swap = 1, | |
7b51755c | 3518 | .hibernation_mode = 1, |
1da177e4 | 3519 | }; |
a09ed5e0 | 3520 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
7b51755c KM |
3521 | struct task_struct *p = current; |
3522 | unsigned long nr_reclaimed; | |
1da177e4 | 3523 | |
7b51755c KM |
3524 | p->flags |= PF_MEMALLOC; |
3525 | lockdep_set_current_reclaim_state(sc.gfp_mask); | |
3526 | reclaim_state.reclaimed_slab = 0; | |
3527 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3528 | |
3115cd91 | 3529 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
d979677c | 3530 | |
7b51755c KM |
3531 | p->reclaim_state = NULL; |
3532 | lockdep_clear_current_reclaim_state(); | |
3533 | p->flags &= ~PF_MEMALLOC; | |
d6277db4 | 3534 | |
7b51755c | 3535 | return nr_reclaimed; |
1da177e4 | 3536 | } |
c6f37f12 | 3537 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3538 | |
1da177e4 LT |
3539 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3540 | not required for correctness. So if the last cpu in a node goes | |
3541 | away, we get changed to run anywhere: as the first one comes back, | |
3542 | restore their cpu bindings. */ | |
fcb35a9b GKH |
3543 | static int cpu_callback(struct notifier_block *nfb, unsigned long action, |
3544 | void *hcpu) | |
1da177e4 | 3545 | { |
58c0a4a7 | 3546 | int nid; |
1da177e4 | 3547 | |
8bb78442 | 3548 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
48fb2e24 | 3549 | for_each_node_state(nid, N_MEMORY) { |
c5f59f08 | 3550 | pg_data_t *pgdat = NODE_DATA(nid); |
a70f7302 RR |
3551 | const struct cpumask *mask; |
3552 | ||
3553 | mask = cpumask_of_node(pgdat->node_id); | |
c5f59f08 | 3554 | |
3e597945 | 3555 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
1da177e4 | 3556 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 3557 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
3558 | } |
3559 | } | |
3560 | return NOTIFY_OK; | |
3561 | } | |
1da177e4 | 3562 | |
3218ae14 YG |
3563 | /* |
3564 | * This kswapd start function will be called by init and node-hot-add. | |
3565 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3566 | */ | |
3567 | int kswapd_run(int nid) | |
3568 | { | |
3569 | pg_data_t *pgdat = NODE_DATA(nid); | |
3570 | int ret = 0; | |
3571 | ||
3572 | if (pgdat->kswapd) | |
3573 | return 0; | |
3574 | ||
3575 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3576 | if (IS_ERR(pgdat->kswapd)) { | |
3577 | /* failure at boot is fatal */ | |
3578 | BUG_ON(system_state == SYSTEM_BOOTING); | |
d5dc0ad9 GS |
3579 | pr_err("Failed to start kswapd on node %d\n", nid); |
3580 | ret = PTR_ERR(pgdat->kswapd); | |
d72515b8 | 3581 | pgdat->kswapd = NULL; |
3218ae14 YG |
3582 | } |
3583 | return ret; | |
3584 | } | |
3585 | ||
8fe23e05 | 3586 | /* |
d8adde17 | 3587 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
bfc8c901 | 3588 | * hold mem_hotplug_begin/end(). |
8fe23e05 DR |
3589 | */ |
3590 | void kswapd_stop(int nid) | |
3591 | { | |
3592 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3593 | ||
d8adde17 | 3594 | if (kswapd) { |
8fe23e05 | 3595 | kthread_stop(kswapd); |
d8adde17 JL |
3596 | NODE_DATA(nid)->kswapd = NULL; |
3597 | } | |
8fe23e05 DR |
3598 | } |
3599 | ||
1da177e4 LT |
3600 | static int __init kswapd_init(void) |
3601 | { | |
3218ae14 | 3602 | int nid; |
69e05944 | 3603 | |
1da177e4 | 3604 | swap_setup(); |
48fb2e24 | 3605 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 3606 | kswapd_run(nid); |
1da177e4 LT |
3607 | hotcpu_notifier(cpu_callback, 0); |
3608 | return 0; | |
3609 | } | |
3610 | ||
3611 | module_init(kswapd_init) | |
9eeff239 CL |
3612 | |
3613 | #ifdef CONFIG_NUMA | |
3614 | /* | |
3615 | * Zone reclaim mode | |
3616 | * | |
3617 | * If non-zero call zone_reclaim when the number of free pages falls below | |
3618 | * the watermarks. | |
9eeff239 CL |
3619 | */ |
3620 | int zone_reclaim_mode __read_mostly; | |
3621 | ||
1b2ffb78 | 3622 | #define RECLAIM_OFF 0 |
7d03431c | 3623 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 | 3624 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
95bbc0c7 | 3625 | #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ |
1b2ffb78 | 3626 | |
a92f7126 CL |
3627 | /* |
3628 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
3629 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
3630 | * a zone. | |
3631 | */ | |
3632 | #define ZONE_RECLAIM_PRIORITY 4 | |
3633 | ||
9614634f CL |
3634 | /* |
3635 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
3636 | * occur. | |
3637 | */ | |
3638 | int sysctl_min_unmapped_ratio = 1; | |
3639 | ||
0ff38490 CL |
3640 | /* |
3641 | * If the number of slab pages in a zone grows beyond this percentage then | |
3642 | * slab reclaim needs to occur. | |
3643 | */ | |
3644 | int sysctl_min_slab_ratio = 5; | |
3645 | ||
90afa5de MG |
3646 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3647 | { | |
3648 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); | |
3649 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + | |
3650 | zone_page_state(zone, NR_ACTIVE_FILE); | |
3651 | ||
3652 | /* | |
3653 | * It's possible for there to be more file mapped pages than | |
3654 | * accounted for by the pages on the file LRU lists because | |
3655 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3656 | */ | |
3657 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3658 | } | |
3659 | ||
3660 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
d031a157 | 3661 | static unsigned long zone_pagecache_reclaimable(struct zone *zone) |
90afa5de | 3662 | { |
d031a157 AM |
3663 | unsigned long nr_pagecache_reclaimable; |
3664 | unsigned long delta = 0; | |
90afa5de MG |
3665 | |
3666 | /* | |
95bbc0c7 | 3667 | * If RECLAIM_UNMAP is set, then all file pages are considered |
90afa5de MG |
3668 | * potentially reclaimable. Otherwise, we have to worry about |
3669 | * pages like swapcache and zone_unmapped_file_pages() provides | |
3670 | * a better estimate | |
3671 | */ | |
95bbc0c7 | 3672 | if (zone_reclaim_mode & RECLAIM_UNMAP) |
90afa5de MG |
3673 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); |
3674 | else | |
3675 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); | |
3676 | ||
3677 | /* If we can't clean pages, remove dirty pages from consideration */ | |
3678 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) | |
3679 | delta += zone_page_state(zone, NR_FILE_DIRTY); | |
3680 | ||
3681 | /* Watch for any possible underflows due to delta */ | |
3682 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3683 | delta = nr_pagecache_reclaimable; | |
3684 | ||
3685 | return nr_pagecache_reclaimable - delta; | |
3686 | } | |
3687 | ||
9eeff239 CL |
3688 | /* |
3689 | * Try to free up some pages from this zone through reclaim. | |
3690 | */ | |
179e9639 | 3691 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 3692 | { |
7fb2d46d | 3693 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 3694 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
3695 | struct task_struct *p = current; |
3696 | struct reclaim_state reclaim_state; | |
179e9639 | 3697 | struct scan_control sc = { |
62b726c1 | 3698 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
21caf2fc | 3699 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
bd2f6199 | 3700 | .order = order, |
9e3b2f8c | 3701 | .priority = ZONE_RECLAIM_PRIORITY, |
ee814fe2 | 3702 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), |
95bbc0c7 | 3703 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), |
ee814fe2 | 3704 | .may_swap = 1, |
179e9639 | 3705 | }; |
9eeff239 | 3706 | |
9eeff239 | 3707 | cond_resched(); |
d4f7796e | 3708 | /* |
95bbc0c7 | 3709 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
d4f7796e | 3710 | * and we also need to be able to write out pages for RECLAIM_WRITE |
95bbc0c7 | 3711 | * and RECLAIM_UNMAP. |
d4f7796e CL |
3712 | */ |
3713 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
76ca542d | 3714 | lockdep_set_current_reclaim_state(gfp_mask); |
9eeff239 CL |
3715 | reclaim_state.reclaimed_slab = 0; |
3716 | p->reclaim_state = &reclaim_state; | |
c84db23c | 3717 | |
90afa5de | 3718 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
0ff38490 CL |
3719 | /* |
3720 | * Free memory by calling shrink zone with increasing | |
3721 | * priorities until we have enough memory freed. | |
3722 | */ | |
0ff38490 | 3723 | do { |
6b4f7799 | 3724 | shrink_zone(zone, &sc, true); |
9e3b2f8c | 3725 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
0ff38490 | 3726 | } |
c84db23c | 3727 | |
9eeff239 | 3728 | p->reclaim_state = NULL; |
d4f7796e | 3729 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
76ca542d | 3730 | lockdep_clear_current_reclaim_state(); |
a79311c1 | 3731 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 3732 | } |
179e9639 AM |
3733 | |
3734 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
3735 | { | |
179e9639 | 3736 | int node_id; |
d773ed6b | 3737 | int ret; |
179e9639 AM |
3738 | |
3739 | /* | |
0ff38490 CL |
3740 | * Zone reclaim reclaims unmapped file backed pages and |
3741 | * slab pages if we are over the defined limits. | |
34aa1330 | 3742 | * |
9614634f CL |
3743 | * A small portion of unmapped file backed pages is needed for |
3744 | * file I/O otherwise pages read by file I/O will be immediately | |
3745 | * thrown out if the zone is overallocated. So we do not reclaim | |
3746 | * if less than a specified percentage of the zone is used by | |
3747 | * unmapped file backed pages. | |
179e9639 | 3748 | */ |
90afa5de MG |
3749 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3750 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) | |
fa5e084e | 3751 | return ZONE_RECLAIM_FULL; |
179e9639 | 3752 | |
6e543d57 | 3753 | if (!zone_reclaimable(zone)) |
fa5e084e | 3754 | return ZONE_RECLAIM_FULL; |
d773ed6b | 3755 | |
179e9639 | 3756 | /* |
d773ed6b | 3757 | * Do not scan if the allocation should not be delayed. |
179e9639 | 3758 | */ |
d0164adc | 3759 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) |
fa5e084e | 3760 | return ZONE_RECLAIM_NOSCAN; |
179e9639 AM |
3761 | |
3762 | /* | |
3763 | * Only run zone reclaim on the local zone or on zones that do not | |
3764 | * have associated processors. This will favor the local processor | |
3765 | * over remote processors and spread off node memory allocations | |
3766 | * as wide as possible. | |
3767 | */ | |
89fa3024 | 3768 | node_id = zone_to_nid(zone); |
37c0708d | 3769 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
fa5e084e | 3770 | return ZONE_RECLAIM_NOSCAN; |
d773ed6b | 3771 | |
57054651 | 3772 | if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) |
fa5e084e MG |
3773 | return ZONE_RECLAIM_NOSCAN; |
3774 | ||
d773ed6b | 3775 | ret = __zone_reclaim(zone, gfp_mask, order); |
57054651 | 3776 | clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); |
d773ed6b | 3777 | |
24cf7251 MG |
3778 | if (!ret) |
3779 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3780 | ||
d773ed6b | 3781 | return ret; |
179e9639 | 3782 | } |
9eeff239 | 3783 | #endif |
894bc310 | 3784 | |
894bc310 LS |
3785 | /* |
3786 | * page_evictable - test whether a page is evictable | |
3787 | * @page: the page to test | |
894bc310 LS |
3788 | * |
3789 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
39b5f29a | 3790 | * lists vs unevictable list. |
894bc310 LS |
3791 | * |
3792 | * Reasons page might not be evictable: | |
ba9ddf49 | 3793 | * (1) page's mapping marked unevictable |
b291f000 | 3794 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 3795 | * |
894bc310 | 3796 | */ |
39b5f29a | 3797 | int page_evictable(struct page *page) |
894bc310 | 3798 | { |
39b5f29a | 3799 | return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); |
894bc310 | 3800 | } |
89e004ea | 3801 | |
85046579 | 3802 | #ifdef CONFIG_SHMEM |
89e004ea | 3803 | /** |
24513264 HD |
3804 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3805 | * @pages: array of pages to check | |
3806 | * @nr_pages: number of pages to check | |
89e004ea | 3807 | * |
24513264 | 3808 | * Checks pages for evictability and moves them to the appropriate lru list. |
85046579 HD |
3809 | * |
3810 | * This function is only used for SysV IPC SHM_UNLOCK. | |
89e004ea | 3811 | */ |
24513264 | 3812 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
89e004ea | 3813 | { |
925b7673 | 3814 | struct lruvec *lruvec; |
24513264 HD |
3815 | struct zone *zone = NULL; |
3816 | int pgscanned = 0; | |
3817 | int pgrescued = 0; | |
3818 | int i; | |
89e004ea | 3819 | |
24513264 HD |
3820 | for (i = 0; i < nr_pages; i++) { |
3821 | struct page *page = pages[i]; | |
3822 | struct zone *pagezone; | |
89e004ea | 3823 | |
24513264 HD |
3824 | pgscanned++; |
3825 | pagezone = page_zone(page); | |
3826 | if (pagezone != zone) { | |
3827 | if (zone) | |
3828 | spin_unlock_irq(&zone->lru_lock); | |
3829 | zone = pagezone; | |
3830 | spin_lock_irq(&zone->lru_lock); | |
3831 | } | |
fa9add64 | 3832 | lruvec = mem_cgroup_page_lruvec(page, zone); |
89e004ea | 3833 | |
24513264 HD |
3834 | if (!PageLRU(page) || !PageUnevictable(page)) |
3835 | continue; | |
89e004ea | 3836 | |
39b5f29a | 3837 | if (page_evictable(page)) { |
24513264 HD |
3838 | enum lru_list lru = page_lru_base_type(page); |
3839 | ||
309381fe | 3840 | VM_BUG_ON_PAGE(PageActive(page), page); |
24513264 | 3841 | ClearPageUnevictable(page); |
fa9add64 HD |
3842 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3843 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 3844 | pgrescued++; |
89e004ea | 3845 | } |
24513264 | 3846 | } |
89e004ea | 3847 | |
24513264 HD |
3848 | if (zone) { |
3849 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
3850 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
3851 | spin_unlock_irq(&zone->lru_lock); | |
89e004ea | 3852 | } |
89e004ea | 3853 | } |
85046579 | 3854 | #endif /* CONFIG_SHMEM */ |