]>
Commit | Line | Data |
---|---|---|
685784aa DW |
1 | # |
2 | # Generic algorithms support | |
3 | # | |
4 | config XOR_BLOCKS | |
5 | tristate | |
6 | ||
1da177e4 | 7 | # |
9bc89cd8 | 8 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 9 | # |
9bc89cd8 | 10 | source "crypto/async_tx/Kconfig" |
1da177e4 | 11 | |
9bc89cd8 DW |
12 | # |
13 | # Cryptographic API Configuration | |
14 | # | |
2e290f43 | 15 | menuconfig CRYPTO |
c3715cb9 | 16 | tristate "Cryptographic API" |
1da177e4 LT |
17 | help |
18 | This option provides the core Cryptographic API. | |
19 | ||
cce9e06d HX |
20 | if CRYPTO |
21 | ||
584fffc8 SS |
22 | comment "Crypto core or helper" |
23 | ||
ccb778e1 NH |
24 | config CRYPTO_FIPS |
25 | bool "FIPS 200 compliance" | |
f2c89a10 | 26 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
002c77a4 | 27 | depends on MODULE_SIG |
ccb778e1 NH |
28 | help |
29 | This options enables the fips boot option which is | |
30 | required if you want to system to operate in a FIPS 200 | |
31 | certification. You should say no unless you know what | |
e84c5480 | 32 | this is. |
ccb778e1 | 33 | |
cce9e06d HX |
34 | config CRYPTO_ALGAPI |
35 | tristate | |
6a0fcbb4 | 36 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
37 | help |
38 | This option provides the API for cryptographic algorithms. | |
39 | ||
6a0fcbb4 HX |
40 | config CRYPTO_ALGAPI2 |
41 | tristate | |
42 | ||
1ae97820 HX |
43 | config CRYPTO_AEAD |
44 | tristate | |
6a0fcbb4 | 45 | select CRYPTO_AEAD2 |
1ae97820 HX |
46 | select CRYPTO_ALGAPI |
47 | ||
6a0fcbb4 HX |
48 | config CRYPTO_AEAD2 |
49 | tristate | |
50 | select CRYPTO_ALGAPI2 | |
51 | ||
5cde0af2 HX |
52 | config CRYPTO_BLKCIPHER |
53 | tristate | |
6a0fcbb4 | 54 | select CRYPTO_BLKCIPHER2 |
5cde0af2 | 55 | select CRYPTO_ALGAPI |
6a0fcbb4 HX |
56 | |
57 | config CRYPTO_BLKCIPHER2 | |
58 | tristate | |
59 | select CRYPTO_ALGAPI2 | |
60 | select CRYPTO_RNG2 | |
0a2e821d | 61 | select CRYPTO_WORKQUEUE |
5cde0af2 | 62 | |
055bcee3 HX |
63 | config CRYPTO_HASH |
64 | tristate | |
6a0fcbb4 | 65 | select CRYPTO_HASH2 |
055bcee3 HX |
66 | select CRYPTO_ALGAPI |
67 | ||
6a0fcbb4 HX |
68 | config CRYPTO_HASH2 |
69 | tristate | |
70 | select CRYPTO_ALGAPI2 | |
71 | ||
17f0f4a4 NH |
72 | config CRYPTO_RNG |
73 | tristate | |
6a0fcbb4 | 74 | select CRYPTO_RNG2 |
17f0f4a4 NH |
75 | select CRYPTO_ALGAPI |
76 | ||
6a0fcbb4 HX |
77 | config CRYPTO_RNG2 |
78 | tristate | |
79 | select CRYPTO_ALGAPI2 | |
80 | ||
a1d2f095 | 81 | config CRYPTO_PCOMP |
bc94e596 HX |
82 | tristate |
83 | select CRYPTO_PCOMP2 | |
84 | select CRYPTO_ALGAPI | |
85 | ||
86 | config CRYPTO_PCOMP2 | |
a1d2f095 GU |
87 | tristate |
88 | select CRYPTO_ALGAPI2 | |
89 | ||
2b8c19db HX |
90 | config CRYPTO_MANAGER |
91 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 92 | select CRYPTO_MANAGER2 |
2b8c19db HX |
93 | help |
94 | Create default cryptographic template instantiations such as | |
95 | cbc(aes). | |
96 | ||
6a0fcbb4 HX |
97 | config CRYPTO_MANAGER2 |
98 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
99 | select CRYPTO_AEAD2 | |
100 | select CRYPTO_HASH2 | |
101 | select CRYPTO_BLKCIPHER2 | |
bc94e596 | 102 | select CRYPTO_PCOMP2 |
6a0fcbb4 | 103 | |
a38f7907 SK |
104 | config CRYPTO_USER |
105 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 106 | depends on NET |
a38f7907 SK |
107 | select CRYPTO_MANAGER |
108 | help | |
d19978f5 | 109 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
110 | cbc(aes). |
111 | ||
326a6346 HX |
112 | config CRYPTO_MANAGER_DISABLE_TESTS |
113 | bool "Disable run-time self tests" | |
00ca28a5 HX |
114 | default y |
115 | depends on CRYPTO_MANAGER2 | |
0b767f96 | 116 | help |
326a6346 HX |
117 | Disable run-time self tests that normally take place at |
118 | algorithm registration. | |
0b767f96 | 119 | |
584fffc8 | 120 | config CRYPTO_GF128MUL |
08c70fc3 | 121 | tristate "GF(2^128) multiplication functions" |
333b0d7e | 122 | help |
584fffc8 SS |
123 | Efficient table driven implementation of multiplications in the |
124 | field GF(2^128). This is needed by some cypher modes. This | |
125 | option will be selected automatically if you select such a | |
126 | cipher mode. Only select this option by hand if you expect to load | |
127 | an external module that requires these functions. | |
333b0d7e | 128 | |
1da177e4 LT |
129 | config CRYPTO_NULL |
130 | tristate "Null algorithms" | |
cce9e06d | 131 | select CRYPTO_ALGAPI |
c8620c25 | 132 | select CRYPTO_BLKCIPHER |
d35d2454 | 133 | select CRYPTO_HASH |
1da177e4 LT |
134 | help |
135 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
136 | ||
5068c7a8 | 137 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
138 | tristate "Parallel crypto engine" |
139 | depends on SMP | |
5068c7a8 SK |
140 | select PADATA |
141 | select CRYPTO_MANAGER | |
142 | select CRYPTO_AEAD | |
143 | help | |
144 | This converts an arbitrary crypto algorithm into a parallel | |
145 | algorithm that executes in kernel threads. | |
146 | ||
25c38d3f YH |
147 | config CRYPTO_WORKQUEUE |
148 | tristate | |
149 | ||
584fffc8 SS |
150 | config CRYPTO_CRYPTD |
151 | tristate "Software async crypto daemon" | |
152 | select CRYPTO_BLKCIPHER | |
b8a28251 | 153 | select CRYPTO_HASH |
584fffc8 | 154 | select CRYPTO_MANAGER |
254eff77 | 155 | select CRYPTO_WORKQUEUE |
1da177e4 | 156 | help |
584fffc8 SS |
157 | This is a generic software asynchronous crypto daemon that |
158 | converts an arbitrary synchronous software crypto algorithm | |
159 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 160 | |
1e65b81a TC |
161 | config CRYPTO_MCRYPTD |
162 | tristate "Software async multi-buffer crypto daemon" | |
163 | select CRYPTO_BLKCIPHER | |
164 | select CRYPTO_HASH | |
165 | select CRYPTO_MANAGER | |
166 | select CRYPTO_WORKQUEUE | |
167 | help | |
168 | This is a generic software asynchronous crypto daemon that | |
169 | provides the kernel thread to assist multi-buffer crypto | |
170 | algorithms for submitting jobs and flushing jobs in multi-buffer | |
171 | crypto algorithms. Multi-buffer crypto algorithms are executed | |
172 | in the context of this kernel thread and drivers can post | |
0e56673b | 173 | their crypto request asynchronously to be processed by this daemon. |
1e65b81a | 174 | |
584fffc8 SS |
175 | config CRYPTO_AUTHENC |
176 | tristate "Authenc support" | |
177 | select CRYPTO_AEAD | |
178 | select CRYPTO_BLKCIPHER | |
179 | select CRYPTO_MANAGER | |
180 | select CRYPTO_HASH | |
1da177e4 | 181 | help |
584fffc8 SS |
182 | Authenc: Combined mode wrapper for IPsec. |
183 | This is required for IPSec. | |
1da177e4 | 184 | |
584fffc8 SS |
185 | config CRYPTO_TEST |
186 | tristate "Testing module" | |
187 | depends on m | |
da7f033d | 188 | select CRYPTO_MANAGER |
1da177e4 | 189 | help |
584fffc8 | 190 | Quick & dirty crypto test module. |
1da177e4 | 191 | |
a62b01cd | 192 | config CRYPTO_ABLK_HELPER |
ffaf9156 | 193 | tristate |
ffaf9156 JK |
194 | select CRYPTO_CRYPTD |
195 | ||
596d8750 JK |
196 | config CRYPTO_GLUE_HELPER_X86 |
197 | tristate | |
198 | depends on X86 | |
199 | select CRYPTO_ALGAPI | |
200 | ||
584fffc8 | 201 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 202 | |
584fffc8 SS |
203 | config CRYPTO_CCM |
204 | tristate "CCM support" | |
205 | select CRYPTO_CTR | |
206 | select CRYPTO_AEAD | |
1da177e4 | 207 | help |
584fffc8 | 208 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 209 | |
584fffc8 SS |
210 | config CRYPTO_GCM |
211 | tristate "GCM/GMAC support" | |
212 | select CRYPTO_CTR | |
213 | select CRYPTO_AEAD | |
9382d97a | 214 | select CRYPTO_GHASH |
9489667d | 215 | select CRYPTO_NULL |
1da177e4 | 216 | help |
584fffc8 SS |
217 | Support for Galois/Counter Mode (GCM) and Galois Message |
218 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 219 | |
71ebc4d1 MW |
220 | config CRYPTO_CHACHA20POLY1305 |
221 | tristate "ChaCha20-Poly1305 AEAD support" | |
222 | select CRYPTO_CHACHA20 | |
223 | select CRYPTO_POLY1305 | |
224 | select CRYPTO_AEAD | |
225 | help | |
226 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
227 | ||
228 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
229 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
230 | IETF protocols. | |
231 | ||
584fffc8 SS |
232 | config CRYPTO_SEQIV |
233 | tristate "Sequence Number IV Generator" | |
234 | select CRYPTO_AEAD | |
235 | select CRYPTO_BLKCIPHER | |
856e3f40 | 236 | select CRYPTO_NULL |
a0f000ec | 237 | select CRYPTO_RNG |
1da177e4 | 238 | help |
584fffc8 SS |
239 | This IV generator generates an IV based on a sequence number by |
240 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 241 | |
a10f554f HX |
242 | config CRYPTO_ECHAINIV |
243 | tristate "Encrypted Chain IV Generator" | |
244 | select CRYPTO_AEAD | |
245 | select CRYPTO_NULL | |
246 | select CRYPTO_RNG | |
247 | help | |
248 | This IV generator generates an IV based on the encryption of | |
249 | a sequence number xored with a salt. This is the default | |
250 | algorithm for CBC. | |
251 | ||
584fffc8 | 252 | comment "Block modes" |
c494e070 | 253 | |
584fffc8 SS |
254 | config CRYPTO_CBC |
255 | tristate "CBC support" | |
db131ef9 | 256 | select CRYPTO_BLKCIPHER |
43518407 | 257 | select CRYPTO_MANAGER |
db131ef9 | 258 | help |
584fffc8 SS |
259 | CBC: Cipher Block Chaining mode |
260 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 261 | |
584fffc8 SS |
262 | config CRYPTO_CTR |
263 | tristate "CTR support" | |
db131ef9 | 264 | select CRYPTO_BLKCIPHER |
584fffc8 | 265 | select CRYPTO_SEQIV |
43518407 | 266 | select CRYPTO_MANAGER |
db131ef9 | 267 | help |
584fffc8 | 268 | CTR: Counter mode |
db131ef9 HX |
269 | This block cipher algorithm is required for IPSec. |
270 | ||
584fffc8 SS |
271 | config CRYPTO_CTS |
272 | tristate "CTS support" | |
273 | select CRYPTO_BLKCIPHER | |
274 | help | |
275 | CTS: Cipher Text Stealing | |
276 | This is the Cipher Text Stealing mode as described by | |
277 | Section 8 of rfc2040 and referenced by rfc3962. | |
278 | (rfc3962 includes errata information in its Appendix A) | |
279 | This mode is required for Kerberos gss mechanism support | |
280 | for AES encryption. | |
281 | ||
282 | config CRYPTO_ECB | |
283 | tristate "ECB support" | |
91652be5 DH |
284 | select CRYPTO_BLKCIPHER |
285 | select CRYPTO_MANAGER | |
91652be5 | 286 | help |
584fffc8 SS |
287 | ECB: Electronic CodeBook mode |
288 | This is the simplest block cipher algorithm. It simply encrypts | |
289 | the input block by block. | |
91652be5 | 290 | |
64470f1b | 291 | config CRYPTO_LRW |
2470a2b2 | 292 | tristate "LRW support" |
64470f1b RS |
293 | select CRYPTO_BLKCIPHER |
294 | select CRYPTO_MANAGER | |
295 | select CRYPTO_GF128MUL | |
296 | help | |
297 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
298 | narrow block cipher mode for dm-crypt. Use it with cipher | |
299 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
300 | The first 128, 192 or 256 bits in the key are used for AES and the | |
301 | rest is used to tie each cipher block to its logical position. | |
302 | ||
584fffc8 SS |
303 | config CRYPTO_PCBC |
304 | tristate "PCBC support" | |
305 | select CRYPTO_BLKCIPHER | |
306 | select CRYPTO_MANAGER | |
307 | help | |
308 | PCBC: Propagating Cipher Block Chaining mode | |
309 | This block cipher algorithm is required for RxRPC. | |
310 | ||
f19f5111 | 311 | config CRYPTO_XTS |
5bcf8e6d | 312 | tristate "XTS support" |
f19f5111 RS |
313 | select CRYPTO_BLKCIPHER |
314 | select CRYPTO_MANAGER | |
315 | select CRYPTO_GF128MUL | |
316 | help | |
317 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
318 | key size 256, 384 or 512 bits. This implementation currently | |
319 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
320 | ||
584fffc8 SS |
321 | comment "Hash modes" |
322 | ||
93b5e86a JK |
323 | config CRYPTO_CMAC |
324 | tristate "CMAC support" | |
325 | select CRYPTO_HASH | |
326 | select CRYPTO_MANAGER | |
327 | help | |
328 | Cipher-based Message Authentication Code (CMAC) specified by | |
329 | The National Institute of Standards and Technology (NIST). | |
330 | ||
331 | https://tools.ietf.org/html/rfc4493 | |
332 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
333 | ||
584fffc8 SS |
334 | config CRYPTO_HMAC |
335 | tristate "HMAC support" | |
336 | select CRYPTO_HASH | |
23e353c8 | 337 | select CRYPTO_MANAGER |
23e353c8 | 338 | help |
584fffc8 SS |
339 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
340 | This is required for IPSec. | |
23e353c8 | 341 | |
584fffc8 SS |
342 | config CRYPTO_XCBC |
343 | tristate "XCBC support" | |
584fffc8 SS |
344 | select CRYPTO_HASH |
345 | select CRYPTO_MANAGER | |
76cb9521 | 346 | help |
584fffc8 SS |
347 | XCBC: Keyed-Hashing with encryption algorithm |
348 | http://www.ietf.org/rfc/rfc3566.txt | |
349 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | |
350 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 351 | |
f1939f7c SW |
352 | config CRYPTO_VMAC |
353 | tristate "VMAC support" | |
f1939f7c SW |
354 | select CRYPTO_HASH |
355 | select CRYPTO_MANAGER | |
356 | help | |
357 | VMAC is a message authentication algorithm designed for | |
358 | very high speed on 64-bit architectures. | |
359 | ||
360 | See also: | |
361 | <http://fastcrypto.org/vmac> | |
362 | ||
584fffc8 | 363 | comment "Digest" |
28db8e3e | 364 | |
584fffc8 SS |
365 | config CRYPTO_CRC32C |
366 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 367 | select CRYPTO_HASH |
6a0962b2 | 368 | select CRC32 |
4a49b499 | 369 | help |
584fffc8 SS |
370 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
371 | by iSCSI for header and data digests and by others. | |
69c35efc | 372 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 373 | |
8cb51ba8 AZ |
374 | config CRYPTO_CRC32C_INTEL |
375 | tristate "CRC32c INTEL hardware acceleration" | |
376 | depends on X86 | |
377 | select CRYPTO_HASH | |
378 | help | |
379 | In Intel processor with SSE4.2 supported, the processor will | |
380 | support CRC32C implementation using hardware accelerated CRC32 | |
381 | instruction. This option will create 'crc32c-intel' module, | |
382 | which will enable any routine to use the CRC32 instruction to | |
383 | gain performance compared with software implementation. | |
384 | Module will be crc32c-intel. | |
385 | ||
442a7c40 DM |
386 | config CRYPTO_CRC32C_SPARC64 |
387 | tristate "CRC32c CRC algorithm (SPARC64)" | |
388 | depends on SPARC64 | |
389 | select CRYPTO_HASH | |
390 | select CRC32 | |
391 | help | |
392 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
393 | when available. | |
394 | ||
78c37d19 AB |
395 | config CRYPTO_CRC32 |
396 | tristate "CRC32 CRC algorithm" | |
397 | select CRYPTO_HASH | |
398 | select CRC32 | |
399 | help | |
400 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
401 | Shash crypto api wrappers to crc32_le function. | |
402 | ||
403 | config CRYPTO_CRC32_PCLMUL | |
404 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
405 | depends on X86 | |
406 | select CRYPTO_HASH | |
407 | select CRC32 | |
408 | help | |
409 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
410 | and PCLMULQDQ supported, the processor will support | |
411 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
412 | instruction. This option will create 'crc32-plcmul' module, | |
413 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum | |
414 | and gain better performance as compared with the table implementation. | |
415 | ||
68411521 HX |
416 | config CRYPTO_CRCT10DIF |
417 | tristate "CRCT10DIF algorithm" | |
418 | select CRYPTO_HASH | |
419 | help | |
420 | CRC T10 Data Integrity Field computation is being cast as | |
421 | a crypto transform. This allows for faster crc t10 diff | |
422 | transforms to be used if they are available. | |
423 | ||
424 | config CRYPTO_CRCT10DIF_PCLMUL | |
425 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
426 | depends on X86 && 64BIT && CRC_T10DIF | |
427 | select CRYPTO_HASH | |
428 | help | |
429 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
430 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
431 | accelerated PCLMULQDQ instruction. This option will create | |
432 | 'crct10dif-plcmul' module, which is faster when computing the | |
433 | crct10dif checksum as compared with the generic table implementation. | |
434 | ||
2cdc6899 YH |
435 | config CRYPTO_GHASH |
436 | tristate "GHASH digest algorithm" | |
2cdc6899 YH |
437 | select CRYPTO_GF128MUL |
438 | help | |
439 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
440 | ||
f979e014 MW |
441 | config CRYPTO_POLY1305 |
442 | tristate "Poly1305 authenticator algorithm" | |
443 | help | |
444 | Poly1305 authenticator algorithm, RFC7539. | |
445 | ||
446 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
447 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
448 | in IETF protocols. This is the portable C implementation of Poly1305. | |
449 | ||
584fffc8 SS |
450 | config CRYPTO_MD4 |
451 | tristate "MD4 digest algorithm" | |
808a1763 | 452 | select CRYPTO_HASH |
124b53d0 | 453 | help |
584fffc8 | 454 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 455 | |
584fffc8 SS |
456 | config CRYPTO_MD5 |
457 | tristate "MD5 digest algorithm" | |
14b75ba7 | 458 | select CRYPTO_HASH |
1da177e4 | 459 | help |
584fffc8 | 460 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 461 | |
d69e75de AK |
462 | config CRYPTO_MD5_OCTEON |
463 | tristate "MD5 digest algorithm (OCTEON)" | |
464 | depends on CPU_CAVIUM_OCTEON | |
465 | select CRYPTO_MD5 | |
466 | select CRYPTO_HASH | |
467 | help | |
468 | MD5 message digest algorithm (RFC1321) implemented | |
469 | using OCTEON crypto instructions, when available. | |
470 | ||
e8e59953 MS |
471 | config CRYPTO_MD5_PPC |
472 | tristate "MD5 digest algorithm (PPC)" | |
473 | depends on PPC | |
474 | select CRYPTO_HASH | |
475 | help | |
476 | MD5 message digest algorithm (RFC1321) implemented | |
477 | in PPC assembler. | |
478 | ||
fa4dfedc DM |
479 | config CRYPTO_MD5_SPARC64 |
480 | tristate "MD5 digest algorithm (SPARC64)" | |
481 | depends on SPARC64 | |
482 | select CRYPTO_MD5 | |
483 | select CRYPTO_HASH | |
484 | help | |
485 | MD5 message digest algorithm (RFC1321) implemented | |
486 | using sparc64 crypto instructions, when available. | |
487 | ||
584fffc8 SS |
488 | config CRYPTO_MICHAEL_MIC |
489 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 490 | select CRYPTO_HASH |
90831639 | 491 | help |
584fffc8 SS |
492 | Michael MIC is used for message integrity protection in TKIP |
493 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
494 | should not be used for other purposes because of the weakness | |
495 | of the algorithm. | |
90831639 | 496 | |
82798f90 | 497 | config CRYPTO_RMD128 |
b6d44341 | 498 | tristate "RIPEMD-128 digest algorithm" |
7c4468bc | 499 | select CRYPTO_HASH |
b6d44341 AB |
500 | help |
501 | RIPEMD-128 (ISO/IEC 10118-3:2004). | |
82798f90 | 502 | |
b6d44341 | 503 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
35ed4b35 | 504 | be used as a secure replacement for RIPEMD. For other use cases, |
b6d44341 | 505 | RIPEMD-160 should be used. |
82798f90 | 506 | |
b6d44341 | 507 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 508 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 AKR |
509 | |
510 | config CRYPTO_RMD160 | |
b6d44341 | 511 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 512 | select CRYPTO_HASH |
b6d44341 AB |
513 | help |
514 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 515 | |
b6d44341 AB |
516 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
517 | to be used as a secure replacement for the 128-bit hash functions | |
518 | MD4, MD5 and it's predecessor RIPEMD | |
519 | (not to be confused with RIPEMD-128). | |
82798f90 | 520 | |
b6d44341 AB |
521 | It's speed is comparable to SHA1 and there are no known attacks |
522 | against RIPEMD-160. | |
534fe2c1 | 523 | |
b6d44341 | 524 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 525 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
526 | |
527 | config CRYPTO_RMD256 | |
b6d44341 | 528 | tristate "RIPEMD-256 digest algorithm" |
d8a5e2e9 | 529 | select CRYPTO_HASH |
b6d44341 AB |
530 | help |
531 | RIPEMD-256 is an optional extension of RIPEMD-128 with a | |
532 | 256 bit hash. It is intended for applications that require | |
533 | longer hash-results, without needing a larger security level | |
534 | (than RIPEMD-128). | |
534fe2c1 | 535 | |
b6d44341 | 536 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 537 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
538 | |
539 | config CRYPTO_RMD320 | |
b6d44341 | 540 | tristate "RIPEMD-320 digest algorithm" |
3b8efb4c | 541 | select CRYPTO_HASH |
b6d44341 AB |
542 | help |
543 | RIPEMD-320 is an optional extension of RIPEMD-160 with a | |
544 | 320 bit hash. It is intended for applications that require | |
545 | longer hash-results, without needing a larger security level | |
546 | (than RIPEMD-160). | |
534fe2c1 | 547 | |
b6d44341 | 548 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 549 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 | 550 | |
584fffc8 SS |
551 | config CRYPTO_SHA1 |
552 | tristate "SHA1 digest algorithm" | |
54ccb367 | 553 | select CRYPTO_HASH |
1da177e4 | 554 | help |
584fffc8 | 555 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 556 | |
66be8951 | 557 | config CRYPTO_SHA1_SSSE3 |
7c1da8d0 | 558 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)" |
66be8951 MK |
559 | depends on X86 && 64BIT |
560 | select CRYPTO_SHA1 | |
561 | select CRYPTO_HASH | |
562 | help | |
563 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
564 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
7c1da8d0 | 565 | Extensions (AVX/AVX2), when available. |
66be8951 | 566 | |
8275d1aa TC |
567 | config CRYPTO_SHA256_SSSE3 |
568 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" | |
569 | depends on X86 && 64BIT | |
570 | select CRYPTO_SHA256 | |
571 | select CRYPTO_HASH | |
572 | help | |
573 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
574 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
575 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
87de4579 TC |
576 | version 2 (AVX2) instructions, when available. |
577 | ||
578 | config CRYPTO_SHA512_SSSE3 | |
579 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
580 | depends on X86 && 64BIT | |
581 | select CRYPTO_SHA512 | |
582 | select CRYPTO_HASH | |
583 | help | |
584 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
585 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
586 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
587 | version 2 (AVX2) instructions, when available. |
588 | ||
efdb6f6e AK |
589 | config CRYPTO_SHA1_OCTEON |
590 | tristate "SHA1 digest algorithm (OCTEON)" | |
591 | depends on CPU_CAVIUM_OCTEON | |
592 | select CRYPTO_SHA1 | |
593 | select CRYPTO_HASH | |
594 | help | |
595 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
596 | using OCTEON crypto instructions, when available. | |
597 | ||
4ff28d4c DM |
598 | config CRYPTO_SHA1_SPARC64 |
599 | tristate "SHA1 digest algorithm (SPARC64)" | |
600 | depends on SPARC64 | |
601 | select CRYPTO_SHA1 | |
602 | select CRYPTO_HASH | |
603 | help | |
604 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
605 | using sparc64 crypto instructions, when available. | |
606 | ||
323a6bf1 ME |
607 | config CRYPTO_SHA1_PPC |
608 | tristate "SHA1 digest algorithm (powerpc)" | |
609 | depends on PPC | |
610 | help | |
611 | This is the powerpc hardware accelerated implementation of the | |
612 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
613 | ||
d9850fc5 MS |
614 | config CRYPTO_SHA1_PPC_SPE |
615 | tristate "SHA1 digest algorithm (PPC SPE)" | |
616 | depends on PPC && SPE | |
617 | help | |
618 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
619 | using powerpc SPE SIMD instruction set. | |
620 | ||
1e65b81a TC |
621 | config CRYPTO_SHA1_MB |
622 | tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
623 | depends on X86 && 64BIT | |
624 | select CRYPTO_SHA1 | |
625 | select CRYPTO_HASH | |
626 | select CRYPTO_MCRYPTD | |
627 | help | |
628 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
629 | using multi-buffer technique. This algorithm computes on | |
630 | multiple data lanes concurrently with SIMD instructions for | |
631 | better throughput. It should not be enabled by default but | |
632 | used when there is significant amount of work to keep the keep | |
633 | the data lanes filled to get performance benefit. If the data | |
634 | lanes remain unfilled, a flush operation will be initiated to | |
635 | process the crypto jobs, adding a slight latency. | |
636 | ||
584fffc8 SS |
637 | config CRYPTO_SHA256 |
638 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 639 | select CRYPTO_HASH |
1da177e4 | 640 | help |
584fffc8 | 641 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 642 | |
584fffc8 SS |
643 | This version of SHA implements a 256 bit hash with 128 bits of |
644 | security against collision attacks. | |
2729bb42 | 645 | |
b6d44341 AB |
646 | This code also includes SHA-224, a 224 bit hash with 112 bits |
647 | of security against collision attacks. | |
584fffc8 | 648 | |
2ecc1e95 MS |
649 | config CRYPTO_SHA256_PPC_SPE |
650 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
651 | depends on PPC && SPE | |
652 | select CRYPTO_SHA256 | |
653 | select CRYPTO_HASH | |
654 | help | |
655 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
656 | implemented using powerpc SPE SIMD instruction set. | |
657 | ||
efdb6f6e AK |
658 | config CRYPTO_SHA256_OCTEON |
659 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
660 | depends on CPU_CAVIUM_OCTEON | |
661 | select CRYPTO_SHA256 | |
662 | select CRYPTO_HASH | |
663 | help | |
664 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
665 | using OCTEON crypto instructions, when available. | |
666 | ||
86c93b24 DM |
667 | config CRYPTO_SHA256_SPARC64 |
668 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
669 | depends on SPARC64 | |
670 | select CRYPTO_SHA256 | |
671 | select CRYPTO_HASH | |
672 | help | |
673 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
674 | using sparc64 crypto instructions, when available. | |
675 | ||
584fffc8 SS |
676 | config CRYPTO_SHA512 |
677 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 678 | select CRYPTO_HASH |
b9f535ff | 679 | help |
584fffc8 | 680 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 681 | |
584fffc8 SS |
682 | This version of SHA implements a 512 bit hash with 256 bits of |
683 | security against collision attacks. | |
b9f535ff | 684 | |
584fffc8 SS |
685 | This code also includes SHA-384, a 384 bit hash with 192 bits |
686 | of security against collision attacks. | |
b9f535ff | 687 | |
efdb6f6e AK |
688 | config CRYPTO_SHA512_OCTEON |
689 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
690 | depends on CPU_CAVIUM_OCTEON | |
691 | select CRYPTO_SHA512 | |
692 | select CRYPTO_HASH | |
693 | help | |
694 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
695 | using OCTEON crypto instructions, when available. | |
696 | ||
775e0c69 DM |
697 | config CRYPTO_SHA512_SPARC64 |
698 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
699 | depends on SPARC64 | |
700 | select CRYPTO_SHA512 | |
701 | select CRYPTO_HASH | |
702 | help | |
703 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
704 | using sparc64 crypto instructions, when available. | |
705 | ||
584fffc8 SS |
706 | config CRYPTO_TGR192 |
707 | tristate "Tiger digest algorithms" | |
f63fbd3d | 708 | select CRYPTO_HASH |
eaf44088 | 709 | help |
584fffc8 | 710 | Tiger hash algorithm 192, 160 and 128-bit hashes |
eaf44088 | 711 | |
584fffc8 SS |
712 | Tiger is a hash function optimized for 64-bit processors while |
713 | still having decent performance on 32-bit processors. | |
714 | Tiger was developed by Ross Anderson and Eli Biham. | |
eaf44088 JF |
715 | |
716 | See also: | |
584fffc8 | 717 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
eaf44088 | 718 | |
584fffc8 SS |
719 | config CRYPTO_WP512 |
720 | tristate "Whirlpool digest algorithms" | |
4946510b | 721 | select CRYPTO_HASH |
1da177e4 | 722 | help |
584fffc8 | 723 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 724 | |
584fffc8 SS |
725 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
726 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
727 | |
728 | See also: | |
6d8de74c | 729 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 730 | |
0e1227d3 YH |
731 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
732 | tristate "GHASH digest algorithm (CLMUL-NI accelerated)" | |
8af00860 | 733 | depends on X86 && 64BIT |
0e1227d3 YH |
734 | select CRYPTO_CRYPTD |
735 | help | |
736 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
737 | The implementation is accelerated by CLMUL-NI of Intel. | |
738 | ||
584fffc8 | 739 | comment "Ciphers" |
1da177e4 LT |
740 | |
741 | config CRYPTO_AES | |
742 | tristate "AES cipher algorithms" | |
cce9e06d | 743 | select CRYPTO_ALGAPI |
1da177e4 | 744 | help |
584fffc8 | 745 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
746 | algorithm. |
747 | ||
748 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
749 | both hardware and software across a wide range of computing |
750 | environments regardless of its use in feedback or non-feedback | |
751 | modes. Its key setup time is excellent, and its key agility is | |
752 | good. Rijndael's very low memory requirements make it very well | |
753 | suited for restricted-space environments, in which it also | |
754 | demonstrates excellent performance. Rijndael's operations are | |
755 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 756 | |
584fffc8 | 757 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
758 | |
759 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
760 | ||
761 | config CRYPTO_AES_586 | |
762 | tristate "AES cipher algorithms (i586)" | |
cce9e06d HX |
763 | depends on (X86 || UML_X86) && !64BIT |
764 | select CRYPTO_ALGAPI | |
5157dea8 | 765 | select CRYPTO_AES |
1da177e4 | 766 | help |
584fffc8 | 767 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
768 | algorithm. |
769 | ||
770 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
771 | both hardware and software across a wide range of computing |
772 | environments regardless of its use in feedback or non-feedback | |
773 | modes. Its key setup time is excellent, and its key agility is | |
774 | good. Rijndael's very low memory requirements make it very well | |
775 | suited for restricted-space environments, in which it also | |
776 | demonstrates excellent performance. Rijndael's operations are | |
777 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 778 | |
584fffc8 | 779 | The AES specifies three key sizes: 128, 192 and 256 bits |
a2a892a2 AS |
780 | |
781 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
782 | ||
783 | config CRYPTO_AES_X86_64 | |
784 | tristate "AES cipher algorithms (x86_64)" | |
cce9e06d HX |
785 | depends on (X86 || UML_X86) && 64BIT |
786 | select CRYPTO_ALGAPI | |
81190b32 | 787 | select CRYPTO_AES |
a2a892a2 | 788 | help |
584fffc8 | 789 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
a2a892a2 AS |
790 | algorithm. |
791 | ||
792 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
793 | both hardware and software across a wide range of computing |
794 | environments regardless of its use in feedback or non-feedback | |
795 | modes. Its key setup time is excellent, and its key agility is | |
54b6a1bd YH |
796 | good. Rijndael's very low memory requirements make it very well |
797 | suited for restricted-space environments, in which it also | |
798 | demonstrates excellent performance. Rijndael's operations are | |
799 | among the easiest to defend against power and timing attacks. | |
800 | ||
801 | The AES specifies three key sizes: 128, 192 and 256 bits | |
802 | ||
803 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
804 | ||
805 | config CRYPTO_AES_NI_INTEL | |
806 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 807 | depends on X86 |
0d258efb MK |
808 | select CRYPTO_AES_X86_64 if 64BIT |
809 | select CRYPTO_AES_586 if !64BIT | |
54b6a1bd | 810 | select CRYPTO_CRYPTD |
801201aa | 811 | select CRYPTO_ABLK_HELPER |
54b6a1bd | 812 | select CRYPTO_ALGAPI |
7643a11a | 813 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
023af608 JK |
814 | select CRYPTO_LRW |
815 | select CRYPTO_XTS | |
54b6a1bd YH |
816 | help |
817 | Use Intel AES-NI instructions for AES algorithm. | |
818 | ||
819 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
820 | algorithm. | |
821 | ||
822 | Rijndael appears to be consistently a very good performer in | |
823 | both hardware and software across a wide range of computing | |
824 | environments regardless of its use in feedback or non-feedback | |
825 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
826 | good. Rijndael's very low memory requirements make it very well |
827 | suited for restricted-space environments, in which it also | |
828 | demonstrates excellent performance. Rijndael's operations are | |
829 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 830 | |
584fffc8 | 831 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
832 | |
833 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
834 | ||
0d258efb MK |
835 | In addition to AES cipher algorithm support, the acceleration |
836 | for some popular block cipher mode is supported too, including | |
837 | ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional | |
838 | acceleration for CTR. | |
2cf4ac8b | 839 | |
9bf4852d DM |
840 | config CRYPTO_AES_SPARC64 |
841 | tristate "AES cipher algorithms (SPARC64)" | |
842 | depends on SPARC64 | |
843 | select CRYPTO_CRYPTD | |
844 | select CRYPTO_ALGAPI | |
845 | help | |
846 | Use SPARC64 crypto opcodes for AES algorithm. | |
847 | ||
848 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
849 | algorithm. | |
850 | ||
851 | Rijndael appears to be consistently a very good performer in | |
852 | both hardware and software across a wide range of computing | |
853 | environments regardless of its use in feedback or non-feedback | |
854 | modes. Its key setup time is excellent, and its key agility is | |
855 | good. Rijndael's very low memory requirements make it very well | |
856 | suited for restricted-space environments, in which it also | |
857 | demonstrates excellent performance. Rijndael's operations are | |
858 | among the easiest to defend against power and timing attacks. | |
859 | ||
860 | The AES specifies three key sizes: 128, 192 and 256 bits | |
861 | ||
862 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
863 | ||
864 | In addition to AES cipher algorithm support, the acceleration | |
865 | for some popular block cipher mode is supported too, including | |
866 | ECB and CBC. | |
867 | ||
504c6143 MS |
868 | config CRYPTO_AES_PPC_SPE |
869 | tristate "AES cipher algorithms (PPC SPE)" | |
870 | depends on PPC && SPE | |
871 | help | |
872 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
873 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
874 | This module should only be used for low power (router) devices | |
875 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
876 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
877 | timining attacks. Nevertheless it might be not as secure as other | |
878 | architecture specific assembler implementations that work on 1KB | |
879 | tables or 256 bytes S-boxes. | |
880 | ||
584fffc8 SS |
881 | config CRYPTO_ANUBIS |
882 | tristate "Anubis cipher algorithm" | |
883 | select CRYPTO_ALGAPI | |
884 | help | |
885 | Anubis cipher algorithm. | |
886 | ||
887 | Anubis is a variable key length cipher which can use keys from | |
888 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
889 | in the NESSIE competition. | |
890 | ||
891 | See also: | |
6d8de74c JM |
892 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
893 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
894 | |
895 | config CRYPTO_ARC4 | |
896 | tristate "ARC4 cipher algorithm" | |
b9b0f080 | 897 | select CRYPTO_BLKCIPHER |
584fffc8 SS |
898 | help |
899 | ARC4 cipher algorithm. | |
900 | ||
901 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
902 | bits in length. This algorithm is required for driver-based | |
903 | WEP, but it should not be for other purposes because of the | |
904 | weakness of the algorithm. | |
905 | ||
906 | config CRYPTO_BLOWFISH | |
907 | tristate "Blowfish cipher algorithm" | |
908 | select CRYPTO_ALGAPI | |
52ba867c | 909 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
910 | help |
911 | Blowfish cipher algorithm, by Bruce Schneier. | |
912 | ||
913 | This is a variable key length cipher which can use keys from 32 | |
914 | bits to 448 bits in length. It's fast, simple and specifically | |
915 | designed for use on "large microprocessors". | |
916 | ||
917 | See also: | |
918 | <http://www.schneier.com/blowfish.html> | |
919 | ||
52ba867c JK |
920 | config CRYPTO_BLOWFISH_COMMON |
921 | tristate | |
922 | help | |
923 | Common parts of the Blowfish cipher algorithm shared by the | |
924 | generic c and the assembler implementations. | |
925 | ||
926 | See also: | |
927 | <http://www.schneier.com/blowfish.html> | |
928 | ||
64b94cea JK |
929 | config CRYPTO_BLOWFISH_X86_64 |
930 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 931 | depends on X86 && 64BIT |
64b94cea JK |
932 | select CRYPTO_ALGAPI |
933 | select CRYPTO_BLOWFISH_COMMON | |
934 | help | |
935 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
936 | ||
937 | This is a variable key length cipher which can use keys from 32 | |
938 | bits to 448 bits in length. It's fast, simple and specifically | |
939 | designed for use on "large microprocessors". | |
940 | ||
941 | See also: | |
942 | <http://www.schneier.com/blowfish.html> | |
943 | ||
584fffc8 SS |
944 | config CRYPTO_CAMELLIA |
945 | tristate "Camellia cipher algorithms" | |
946 | depends on CRYPTO | |
947 | select CRYPTO_ALGAPI | |
948 | help | |
949 | Camellia cipher algorithms module. | |
950 | ||
951 | Camellia is a symmetric key block cipher developed jointly | |
952 | at NTT and Mitsubishi Electric Corporation. | |
953 | ||
954 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
955 | ||
956 | See also: | |
957 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
958 | ||
0b95ec56 JK |
959 | config CRYPTO_CAMELLIA_X86_64 |
960 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 961 | depends on X86 && 64BIT |
0b95ec56 JK |
962 | depends on CRYPTO |
963 | select CRYPTO_ALGAPI | |
964263af | 964 | select CRYPTO_GLUE_HELPER_X86 |
0b95ec56 JK |
965 | select CRYPTO_LRW |
966 | select CRYPTO_XTS | |
967 | help | |
968 | Camellia cipher algorithm module (x86_64). | |
969 | ||
970 | Camellia is a symmetric key block cipher developed jointly | |
971 | at NTT and Mitsubishi Electric Corporation. | |
972 | ||
973 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
974 | ||
975 | See also: | |
d9b1d2e7 JK |
976 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
977 | ||
978 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
979 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
980 | depends on X86 && 64BIT | |
981 | depends on CRYPTO | |
982 | select CRYPTO_ALGAPI | |
983 | select CRYPTO_CRYPTD | |
801201aa | 984 | select CRYPTO_ABLK_HELPER |
d9b1d2e7 JK |
985 | select CRYPTO_GLUE_HELPER_X86 |
986 | select CRYPTO_CAMELLIA_X86_64 | |
987 | select CRYPTO_LRW | |
988 | select CRYPTO_XTS | |
989 | help | |
990 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
991 | ||
992 | Camellia is a symmetric key block cipher developed jointly | |
993 | at NTT and Mitsubishi Electric Corporation. | |
994 | ||
995 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
996 | ||
997 | See also: | |
0b95ec56 JK |
998 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
999 | ||
f3f935a7 JK |
1000 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1001 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1002 | depends on X86 && 64BIT | |
1003 | depends on CRYPTO | |
1004 | select CRYPTO_ALGAPI | |
1005 | select CRYPTO_CRYPTD | |
801201aa | 1006 | select CRYPTO_ABLK_HELPER |
f3f935a7 JK |
1007 | select CRYPTO_GLUE_HELPER_X86 |
1008 | select CRYPTO_CAMELLIA_X86_64 | |
1009 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1010 | select CRYPTO_LRW | |
1011 | select CRYPTO_XTS | |
1012 | help | |
1013 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1014 | ||
1015 | Camellia is a symmetric key block cipher developed jointly | |
1016 | at NTT and Mitsubishi Electric Corporation. | |
1017 | ||
1018 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1019 | ||
1020 | See also: | |
1021 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1022 | ||
81658ad0 DM |
1023 | config CRYPTO_CAMELLIA_SPARC64 |
1024 | tristate "Camellia cipher algorithm (SPARC64)" | |
1025 | depends on SPARC64 | |
1026 | depends on CRYPTO | |
1027 | select CRYPTO_ALGAPI | |
1028 | help | |
1029 | Camellia cipher algorithm module (SPARC64). | |
1030 | ||
1031 | Camellia is a symmetric key block cipher developed jointly | |
1032 | at NTT and Mitsubishi Electric Corporation. | |
1033 | ||
1034 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1035 | ||
1036 | See also: | |
1037 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1038 | ||
044ab525 JK |
1039 | config CRYPTO_CAST_COMMON |
1040 | tristate | |
1041 | help | |
1042 | Common parts of the CAST cipher algorithms shared by the | |
1043 | generic c and the assembler implementations. | |
1044 | ||
1da177e4 LT |
1045 | config CRYPTO_CAST5 |
1046 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1047 | select CRYPTO_ALGAPI |
044ab525 | 1048 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1049 | help |
1050 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1051 | described in RFC2144. | |
1052 | ||
4d6d6a2c JG |
1053 | config CRYPTO_CAST5_AVX_X86_64 |
1054 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1055 | depends on X86 && 64BIT | |
1056 | select CRYPTO_ALGAPI | |
1057 | select CRYPTO_CRYPTD | |
801201aa | 1058 | select CRYPTO_ABLK_HELPER |
044ab525 | 1059 | select CRYPTO_CAST_COMMON |
4d6d6a2c JG |
1060 | select CRYPTO_CAST5 |
1061 | help | |
1062 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1063 | described in RFC2144. | |
1064 | ||
1065 | This module provides the Cast5 cipher algorithm that processes | |
1066 | sixteen blocks parallel using the AVX instruction set. | |
1067 | ||
1da177e4 LT |
1068 | config CRYPTO_CAST6 |
1069 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1070 | select CRYPTO_ALGAPI |
044ab525 | 1071 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1072 | help |
1073 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1074 | described in RFC2612. | |
1075 | ||
4ea1277d JG |
1076 | config CRYPTO_CAST6_AVX_X86_64 |
1077 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1078 | depends on X86 && 64BIT | |
1079 | select CRYPTO_ALGAPI | |
1080 | select CRYPTO_CRYPTD | |
801201aa | 1081 | select CRYPTO_ABLK_HELPER |
4ea1277d | 1082 | select CRYPTO_GLUE_HELPER_X86 |
044ab525 | 1083 | select CRYPTO_CAST_COMMON |
4ea1277d JG |
1084 | select CRYPTO_CAST6 |
1085 | select CRYPTO_LRW | |
1086 | select CRYPTO_XTS | |
1087 | help | |
1088 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1089 | described in RFC2612. | |
1090 | ||
1091 | This module provides the Cast6 cipher algorithm that processes | |
1092 | eight blocks parallel using the AVX instruction set. | |
1093 | ||
584fffc8 SS |
1094 | config CRYPTO_DES |
1095 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1096 | select CRYPTO_ALGAPI |
1da177e4 | 1097 | help |
584fffc8 | 1098 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1099 | |
c5aac2df DM |
1100 | config CRYPTO_DES_SPARC64 |
1101 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1102 | depends on SPARC64 |
c5aac2df DM |
1103 | select CRYPTO_ALGAPI |
1104 | select CRYPTO_DES | |
1105 | help | |
1106 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1107 | optimized using SPARC64 crypto opcodes. | |
1108 | ||
6574e6c6 JK |
1109 | config CRYPTO_DES3_EDE_X86_64 |
1110 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1111 | depends on X86 && 64BIT | |
1112 | select CRYPTO_ALGAPI | |
1113 | select CRYPTO_DES | |
1114 | help | |
1115 | Triple DES EDE (FIPS 46-3) algorithm. | |
1116 | ||
1117 | This module provides implementation of the Triple DES EDE cipher | |
1118 | algorithm that is optimized for x86-64 processors. Two versions of | |
1119 | algorithm are provided; regular processing one input block and | |
1120 | one that processes three blocks parallel. | |
1121 | ||
584fffc8 SS |
1122 | config CRYPTO_FCRYPT |
1123 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1124 | select CRYPTO_ALGAPI |
584fffc8 | 1125 | select CRYPTO_BLKCIPHER |
1da177e4 | 1126 | help |
584fffc8 | 1127 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1128 | |
1129 | config CRYPTO_KHAZAD | |
1130 | tristate "Khazad cipher algorithm" | |
cce9e06d | 1131 | select CRYPTO_ALGAPI |
1da177e4 LT |
1132 | help |
1133 | Khazad cipher algorithm. | |
1134 | ||
1135 | Khazad was a finalist in the initial NESSIE competition. It is | |
1136 | an algorithm optimized for 64-bit processors with good performance | |
1137 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1138 | ||
1139 | See also: | |
6d8de74c | 1140 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1141 | |
2407d608 | 1142 | config CRYPTO_SALSA20 |
3b4afaf2 | 1143 | tristate "Salsa20 stream cipher algorithm" |
2407d608 TSH |
1144 | select CRYPTO_BLKCIPHER |
1145 | help | |
1146 | Salsa20 stream cipher algorithm. | |
1147 | ||
1148 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1149 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
974e4b75 TSH |
1150 | |
1151 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1152 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1153 | ||
1154 | config CRYPTO_SALSA20_586 | |
3b4afaf2 | 1155 | tristate "Salsa20 stream cipher algorithm (i586)" |
974e4b75 | 1156 | depends on (X86 || UML_X86) && !64BIT |
974e4b75 | 1157 | select CRYPTO_BLKCIPHER |
974e4b75 TSH |
1158 | help |
1159 | Salsa20 stream cipher algorithm. | |
1160 | ||
1161 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1162 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
9a7dafbb TSH |
1163 | |
1164 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1165 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1166 | ||
1167 | config CRYPTO_SALSA20_X86_64 | |
3b4afaf2 | 1168 | tristate "Salsa20 stream cipher algorithm (x86_64)" |
9a7dafbb | 1169 | depends on (X86 || UML_X86) && 64BIT |
9a7dafbb | 1170 | select CRYPTO_BLKCIPHER |
9a7dafbb TSH |
1171 | help |
1172 | Salsa20 stream cipher algorithm. | |
1173 | ||
1174 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1175 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
2407d608 TSH |
1176 | |
1177 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1178 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1da177e4 | 1179 | |
c08d0e64 MW |
1180 | config CRYPTO_CHACHA20 |
1181 | tristate "ChaCha20 cipher algorithm" | |
1182 | select CRYPTO_BLKCIPHER | |
1183 | help | |
1184 | ChaCha20 cipher algorithm, RFC7539. | |
1185 | ||
1186 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1187 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1188 | This is the portable C implementation of ChaCha20. | |
1189 | ||
1190 | See also: | |
1191 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1192 | ||
584fffc8 SS |
1193 | config CRYPTO_SEED |
1194 | tristate "SEED cipher algorithm" | |
cce9e06d | 1195 | select CRYPTO_ALGAPI |
1da177e4 | 1196 | help |
584fffc8 | 1197 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1198 | |
584fffc8 SS |
1199 | SEED is a 128-bit symmetric key block cipher that has been |
1200 | developed by KISA (Korea Information Security Agency) as a | |
1201 | national standard encryption algorithm of the Republic of Korea. | |
1202 | It is a 16 round block cipher with the key size of 128 bit. | |
1203 | ||
1204 | See also: | |
1205 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1206 | ||
1207 | config CRYPTO_SERPENT | |
1208 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1209 | select CRYPTO_ALGAPI |
1da177e4 | 1210 | help |
584fffc8 | 1211 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1212 | |
584fffc8 SS |
1213 | Keys are allowed to be from 0 to 256 bits in length, in steps |
1214 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed | |
1215 | variant of Serpent for compatibility with old kerneli.org code. | |
1216 | ||
1217 | See also: | |
1218 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1219 | ||
937c30d7 JK |
1220 | config CRYPTO_SERPENT_SSE2_X86_64 |
1221 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1222 | depends on X86 && 64BIT | |
1223 | select CRYPTO_ALGAPI | |
341975bf | 1224 | select CRYPTO_CRYPTD |
801201aa | 1225 | select CRYPTO_ABLK_HELPER |
596d8750 | 1226 | select CRYPTO_GLUE_HELPER_X86 |
937c30d7 | 1227 | select CRYPTO_SERPENT |
feaf0cfc JK |
1228 | select CRYPTO_LRW |
1229 | select CRYPTO_XTS | |
937c30d7 JK |
1230 | help |
1231 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1232 | ||
1233 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1234 | of 8 bits. | |
1235 | ||
1e6232f8 | 1236 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1237 | blocks parallel using SSE2 instruction set. |
1238 | ||
1239 | See also: | |
1240 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1241 | ||
251496db JK |
1242 | config CRYPTO_SERPENT_SSE2_586 |
1243 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1244 | depends on X86 && !64BIT | |
1245 | select CRYPTO_ALGAPI | |
341975bf | 1246 | select CRYPTO_CRYPTD |
801201aa | 1247 | select CRYPTO_ABLK_HELPER |
596d8750 | 1248 | select CRYPTO_GLUE_HELPER_X86 |
251496db | 1249 | select CRYPTO_SERPENT |
feaf0cfc JK |
1250 | select CRYPTO_LRW |
1251 | select CRYPTO_XTS | |
251496db JK |
1252 | help |
1253 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1254 | ||
1255 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1256 | of 8 bits. | |
1257 | ||
1258 | This module provides Serpent cipher algorithm that processes four | |
1259 | blocks parallel using SSE2 instruction set. | |
1260 | ||
1261 | See also: | |
1262 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
7efe4076 JG |
1263 | |
1264 | config CRYPTO_SERPENT_AVX_X86_64 | |
1265 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1266 | depends on X86 && 64BIT | |
1267 | select CRYPTO_ALGAPI | |
1268 | select CRYPTO_CRYPTD | |
801201aa | 1269 | select CRYPTO_ABLK_HELPER |
1d0debbd | 1270 | select CRYPTO_GLUE_HELPER_X86 |
7efe4076 JG |
1271 | select CRYPTO_SERPENT |
1272 | select CRYPTO_LRW | |
1273 | select CRYPTO_XTS | |
1274 | help | |
1275 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1276 | ||
1277 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1278 | of 8 bits. | |
1279 | ||
1280 | This module provides the Serpent cipher algorithm that processes | |
1281 | eight blocks parallel using the AVX instruction set. | |
1282 | ||
1283 | See also: | |
1284 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
251496db | 1285 | |
56d76c96 JK |
1286 | config CRYPTO_SERPENT_AVX2_X86_64 |
1287 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1288 | depends on X86 && 64BIT | |
1289 | select CRYPTO_ALGAPI | |
1290 | select CRYPTO_CRYPTD | |
801201aa | 1291 | select CRYPTO_ABLK_HELPER |
56d76c96 JK |
1292 | select CRYPTO_GLUE_HELPER_X86 |
1293 | select CRYPTO_SERPENT | |
1294 | select CRYPTO_SERPENT_AVX_X86_64 | |
1295 | select CRYPTO_LRW | |
1296 | select CRYPTO_XTS | |
1297 | help | |
1298 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1299 | ||
1300 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1301 | of 8 bits. | |
1302 | ||
1303 | This module provides Serpent cipher algorithm that processes 16 | |
1304 | blocks parallel using AVX2 instruction set. | |
1305 | ||
1306 | See also: | |
1307 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1308 | ||
584fffc8 SS |
1309 | config CRYPTO_TEA |
1310 | tristate "TEA, XTEA and XETA cipher algorithms" | |
cce9e06d | 1311 | select CRYPTO_ALGAPI |
1da177e4 | 1312 | help |
584fffc8 | 1313 | TEA cipher algorithm. |
1da177e4 | 1314 | |
584fffc8 SS |
1315 | Tiny Encryption Algorithm is a simple cipher that uses |
1316 | many rounds for security. It is very fast and uses | |
1317 | little memory. | |
1318 | ||
1319 | Xtendend Tiny Encryption Algorithm is a modification to | |
1320 | the TEA algorithm to address a potential key weakness | |
1321 | in the TEA algorithm. | |
1322 | ||
1323 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1324 | of the XTEA algorithm for compatibility purposes. | |
1325 | ||
1326 | config CRYPTO_TWOFISH | |
1327 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1328 | select CRYPTO_ALGAPI |
584fffc8 | 1329 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1330 | help |
584fffc8 | 1331 | Twofish cipher algorithm. |
04ac7db3 | 1332 | |
584fffc8 SS |
1333 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1334 | candidate cipher by researchers at CounterPane Systems. It is a | |
1335 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1336 | bits. | |
04ac7db3 | 1337 | |
584fffc8 SS |
1338 | See also: |
1339 | <http://www.schneier.com/twofish.html> | |
1340 | ||
1341 | config CRYPTO_TWOFISH_COMMON | |
1342 | tristate | |
1343 | help | |
1344 | Common parts of the Twofish cipher algorithm shared by the | |
1345 | generic c and the assembler implementations. | |
1346 | ||
1347 | config CRYPTO_TWOFISH_586 | |
1348 | tristate "Twofish cipher algorithms (i586)" | |
1349 | depends on (X86 || UML_X86) && !64BIT | |
1350 | select CRYPTO_ALGAPI | |
1351 | select CRYPTO_TWOFISH_COMMON | |
1352 | help | |
1353 | Twofish cipher algorithm. | |
1354 | ||
1355 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1356 | candidate cipher by researchers at CounterPane Systems. It is a | |
1357 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1358 | bits. | |
04ac7db3 NT |
1359 | |
1360 | See also: | |
584fffc8 | 1361 | <http://www.schneier.com/twofish.html> |
04ac7db3 | 1362 | |
584fffc8 SS |
1363 | config CRYPTO_TWOFISH_X86_64 |
1364 | tristate "Twofish cipher algorithm (x86_64)" | |
1365 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1366 | select CRYPTO_ALGAPI |
584fffc8 | 1367 | select CRYPTO_TWOFISH_COMMON |
1da177e4 | 1368 | help |
584fffc8 | 1369 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1370 | |
584fffc8 SS |
1371 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1372 | candidate cipher by researchers at CounterPane Systems. It is a | |
1373 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1374 | bits. | |
1375 | ||
1376 | See also: | |
1377 | <http://www.schneier.com/twofish.html> | |
1378 | ||
8280daad JK |
1379 | config CRYPTO_TWOFISH_X86_64_3WAY |
1380 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1381 | depends on X86 && 64BIT |
8280daad JK |
1382 | select CRYPTO_ALGAPI |
1383 | select CRYPTO_TWOFISH_COMMON | |
1384 | select CRYPTO_TWOFISH_X86_64 | |
414cb5e7 | 1385 | select CRYPTO_GLUE_HELPER_X86 |
e7cda5d2 JK |
1386 | select CRYPTO_LRW |
1387 | select CRYPTO_XTS | |
8280daad JK |
1388 | help |
1389 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1390 | ||
1391 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1392 | candidate cipher by researchers at CounterPane Systems. It is a | |
1393 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1394 | bits. | |
1395 | ||
1396 | This module provides Twofish cipher algorithm that processes three | |
1397 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1398 | ||
1399 | See also: | |
1400 | <http://www.schneier.com/twofish.html> | |
1401 | ||
107778b5 JG |
1402 | config CRYPTO_TWOFISH_AVX_X86_64 |
1403 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1404 | depends on X86 && 64BIT | |
1405 | select CRYPTO_ALGAPI | |
1406 | select CRYPTO_CRYPTD | |
801201aa | 1407 | select CRYPTO_ABLK_HELPER |
a7378d4e | 1408 | select CRYPTO_GLUE_HELPER_X86 |
107778b5 JG |
1409 | select CRYPTO_TWOFISH_COMMON |
1410 | select CRYPTO_TWOFISH_X86_64 | |
1411 | select CRYPTO_TWOFISH_X86_64_3WAY | |
1412 | select CRYPTO_LRW | |
1413 | select CRYPTO_XTS | |
1414 | help | |
1415 | Twofish cipher algorithm (x86_64/AVX). | |
1416 | ||
1417 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1418 | candidate cipher by researchers at CounterPane Systems. It is a | |
1419 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1420 | bits. | |
1421 | ||
1422 | This module provides the Twofish cipher algorithm that processes | |
1423 | eight blocks parallel using the AVX Instruction Set. | |
1424 | ||
1425 | See also: | |
1426 | <http://www.schneier.com/twofish.html> | |
1427 | ||
584fffc8 SS |
1428 | comment "Compression" |
1429 | ||
1430 | config CRYPTO_DEFLATE | |
1431 | tristate "Deflate compression algorithm" | |
1432 | select CRYPTO_ALGAPI | |
1433 | select ZLIB_INFLATE | |
1434 | select ZLIB_DEFLATE | |
3c09f17c | 1435 | help |
584fffc8 SS |
1436 | This is the Deflate algorithm (RFC1951), specified for use in |
1437 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1438 | ||
1439 | You will most probably want this if using IPSec. | |
3c09f17c | 1440 | |
bf68e65e GU |
1441 | config CRYPTO_ZLIB |
1442 | tristate "Zlib compression algorithm" | |
1443 | select CRYPTO_PCOMP | |
1444 | select ZLIB_INFLATE | |
1445 | select ZLIB_DEFLATE | |
1446 | select NLATTR | |
1447 | help | |
1448 | This is the zlib algorithm. | |
1449 | ||
0b77abb3 ZS |
1450 | config CRYPTO_LZO |
1451 | tristate "LZO compression algorithm" | |
1452 | select CRYPTO_ALGAPI | |
1453 | select LZO_COMPRESS | |
1454 | select LZO_DECOMPRESS | |
1455 | help | |
1456 | This is the LZO algorithm. | |
1457 | ||
35a1fc18 SJ |
1458 | config CRYPTO_842 |
1459 | tristate "842 compression algorithm" | |
2062c5b6 DS |
1460 | select CRYPTO_ALGAPI |
1461 | select 842_COMPRESS | |
1462 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1463 | help |
1464 | This is the 842 algorithm. | |
0ea8530d CM |
1465 | |
1466 | config CRYPTO_LZ4 | |
1467 | tristate "LZ4 compression algorithm" | |
1468 | select CRYPTO_ALGAPI | |
1469 | select LZ4_COMPRESS | |
1470 | select LZ4_DECOMPRESS | |
1471 | help | |
1472 | This is the LZ4 algorithm. | |
1473 | ||
1474 | config CRYPTO_LZ4HC | |
1475 | tristate "LZ4HC compression algorithm" | |
1476 | select CRYPTO_ALGAPI | |
1477 | select LZ4HC_COMPRESS | |
1478 | select LZ4_DECOMPRESS | |
1479 | help | |
1480 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1481 | |
17f0f4a4 NH |
1482 | comment "Random Number Generation" |
1483 | ||
1484 | config CRYPTO_ANSI_CPRNG | |
1485 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
4e4ed83b | 1486 | default m |
17f0f4a4 NH |
1487 | select CRYPTO_AES |
1488 | select CRYPTO_RNG | |
17f0f4a4 NH |
1489 | help |
1490 | This option enables the generic pseudo random number generator | |
1491 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1492 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1493 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1494 | |
f2c89a10 | 1495 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1496 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1497 | help |
1498 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1499 | more of the DRBG types must be selected. | |
1500 | ||
f2c89a10 | 1501 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1502 | |
1503 | config CRYPTO_DRBG_HMAC | |
1504 | bool "Enable HMAC DRBG" | |
1505 | default y | |
419090c6 SM |
1506 | select CRYPTO_HMAC |
1507 | help | |
1508 | Enable the HMAC DRBG variant as defined in NIST SP800-90A. | |
1509 | ||
1510 | config CRYPTO_DRBG_HASH | |
1511 | bool "Enable Hash DRBG" | |
419090c6 SM |
1512 | select CRYPTO_HASH |
1513 | help | |
1514 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1515 | ||
1516 | config CRYPTO_DRBG_CTR | |
1517 | bool "Enable CTR DRBG" | |
419090c6 SM |
1518 | select CRYPTO_AES |
1519 | help | |
1520 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1521 | ||
f2c89a10 HX |
1522 | config CRYPTO_DRBG |
1523 | tristate | |
1524 | default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR) | |
1525 | select CRYPTO_RNG | |
bb5530e4 | 1526 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1527 | |
1528 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1529 | |
bb5530e4 SM |
1530 | config CRYPTO_JITTERENTROPY |
1531 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
1532 | help | |
1533 | The Jitterentropy RNG is a noise that is intended | |
1534 | to provide seed to another RNG. The RNG does not | |
1535 | perform any cryptographic whitening of the generated | |
1536 | random numbers. This Jitterentropy RNG registers with | |
1537 | the kernel crypto API and can be used by any caller. | |
1538 | ||
03c8efc1 HX |
1539 | config CRYPTO_USER_API |
1540 | tristate | |
1541 | ||
fe869cdb HX |
1542 | config CRYPTO_USER_API_HASH |
1543 | tristate "User-space interface for hash algorithms" | |
7451708f | 1544 | depends on NET |
fe869cdb HX |
1545 | select CRYPTO_HASH |
1546 | select CRYPTO_USER_API | |
1547 | help | |
1548 | This option enables the user-spaces interface for hash | |
1549 | algorithms. | |
1550 | ||
8ff59090 HX |
1551 | config CRYPTO_USER_API_SKCIPHER |
1552 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1553 | depends on NET |
8ff59090 HX |
1554 | select CRYPTO_BLKCIPHER |
1555 | select CRYPTO_USER_API | |
1556 | help | |
1557 | This option enables the user-spaces interface for symmetric | |
1558 | key cipher algorithms. | |
1559 | ||
2f375538 SM |
1560 | config CRYPTO_USER_API_RNG |
1561 | tristate "User-space interface for random number generator algorithms" | |
1562 | depends on NET | |
1563 | select CRYPTO_RNG | |
1564 | select CRYPTO_USER_API | |
1565 | help | |
1566 | This option enables the user-spaces interface for random | |
1567 | number generator algorithms. | |
1568 | ||
b64a2d95 HX |
1569 | config CRYPTO_USER_API_AEAD |
1570 | tristate "User-space interface for AEAD cipher algorithms" | |
1571 | depends on NET | |
1572 | select CRYPTO_AEAD | |
1573 | select CRYPTO_USER_API | |
1574 | help | |
1575 | This option enables the user-spaces interface for AEAD | |
1576 | cipher algorithms. | |
1577 | ||
ee08997f DK |
1578 | config CRYPTO_HASH_INFO |
1579 | bool | |
1580 | ||
1da177e4 | 1581 | source "drivers/crypto/Kconfig" |
964f3b3b | 1582 | source crypto/asymmetric_keys/Kconfig |
1da177e4 | 1583 | |
cce9e06d | 1584 | endif # if CRYPTO |