1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "arch-utils.h"
34 #include "parser-defs.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
53 #include "elf/ppc64.h"
55 #include "solib-svr4.h"
57 #include "ppc-ravenscar-thread.h"
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
109 /* The list of available "set powerpc ..." and "show powerpc ..."
111 static struct cmd_list_element *setpowerpccmdlist = NULL;
112 static struct cmd_list_element *showpowerpccmdlist = NULL;
114 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
116 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
117 static const char *const powerpc_vector_strings[] =
126 /* A variable that can be configured by the user. */
127 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
128 static const char *powerpc_vector_abi_string = "auto";
130 /* To be used by skip_prologue. */
132 struct rs6000_framedata
134 int offset; /* total size of frame --- the distance
135 by which we decrement sp to allocate
137 int saved_gpr; /* smallest # of saved gpr */
138 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
139 int saved_fpr; /* smallest # of saved fpr */
140 int saved_vr; /* smallest # of saved vr */
141 int saved_ev; /* smallest # of saved ev */
142 int alloca_reg; /* alloca register number (frame ptr) */
143 char frameless; /* true if frameless functions. */
144 char nosavedpc; /* true if pc not saved. */
145 char used_bl; /* true if link register clobbered */
146 int gpr_offset; /* offset of saved gprs from prev sp */
147 int fpr_offset; /* offset of saved fprs from prev sp */
148 int vr_offset; /* offset of saved vrs from prev sp */
149 int ev_offset; /* offset of saved evs from prev sp */
150 int lr_offset; /* offset of saved lr */
151 int lr_register; /* register of saved lr, if trustworthy */
152 int cr_offset; /* offset of saved cr */
153 int vrsave_offset; /* offset of saved vrsave register */
157 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
159 vsx_register_p (struct gdbarch *gdbarch, int regno)
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162 if (tdep->ppc_vsr0_regnum < 0)
165 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
166 <= tdep->ppc_vsr0_upper_regnum + 31);
169 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
171 altivec_register_p (struct gdbarch *gdbarch, int regno)
173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
174 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
177 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 /* Return true if REGNO is an SPE register, false otherwise. */
183 spe_register_p (struct gdbarch *gdbarch, int regno)
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 /* Is it a reference to EV0 -- EV31, and do we have those? */
188 if (IS_SPE_PSEUDOREG (tdep, regno))
191 /* Is it a reference to one of the raw upper GPR halves? */
192 if (tdep->ppc_ev0_upper_regnum >= 0
193 && tdep->ppc_ev0_upper_regnum <= regno
194 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
197 /* Is it a reference to the 64-bit accumulator, and do we have that? */
198 if (tdep->ppc_acc_regnum >= 0
199 && tdep->ppc_acc_regnum == regno)
202 /* Is it a reference to the SPE floating-point status and control register,
203 and do we have that? */
204 if (tdep->ppc_spefscr_regnum >= 0
205 && tdep->ppc_spefscr_regnum == regno)
212 /* Return non-zero if the architecture described by GDBARCH has
213 floating-point registers (f0 --- f31 and fpscr). */
215 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 return (tdep->ppc_fp0_regnum >= 0
220 && tdep->ppc_fpscr_regnum >= 0);
223 /* Return non-zero if the architecture described by GDBARCH has
224 VSX registers (vsr0 --- vsr63). */
226 ppc_vsx_support_p (struct gdbarch *gdbarch)
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
230 return tdep->ppc_vsr0_regnum >= 0;
233 /* Return non-zero if the architecture described by GDBARCH has
234 Altivec registers (vr0 --- vr31, vrsave and vscr). */
236 ppc_altivec_support_p (struct gdbarch *gdbarch)
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240 return (tdep->ppc_vr0_regnum >= 0
241 && tdep->ppc_vrsave_regnum >= 0);
244 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
247 This is a helper function for init_sim_regno_table, constructing
248 the table mapping GDB register numbers to sim register numbers; we
249 initialize every element in that table to -1 before we start
252 set_sim_regno (int *table, int gdb_regno, int sim_regno)
254 /* Make sure we don't try to assign any given GDB register a sim
255 register number more than once. */
256 gdb_assert (table[gdb_regno] == -1);
257 table[gdb_regno] = sim_regno;
261 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
262 numbers to simulator register numbers, based on the values placed
263 in the ARCH->tdep->ppc_foo_regnum members. */
265 init_sim_regno_table (struct gdbarch *arch)
267 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
268 int total_regs = gdbarch_num_regs (arch);
269 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
271 static const char *const segment_regs[] = {
272 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
273 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
276 /* Presume that all registers not explicitly mentioned below are
277 unavailable from the sim. */
278 for (i = 0; i < total_regs; i++)
281 /* General-purpose registers. */
282 for (i = 0; i < ppc_num_gprs; i++)
283 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
285 /* Floating-point registers. */
286 if (tdep->ppc_fp0_regnum >= 0)
287 for (i = 0; i < ppc_num_fprs; i++)
288 set_sim_regno (sim_regno,
289 tdep->ppc_fp0_regnum + i,
290 sim_ppc_f0_regnum + i);
291 if (tdep->ppc_fpscr_regnum >= 0)
292 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
294 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
295 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
296 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
298 /* Segment registers. */
299 for (i = 0; i < ppc_num_srs; i++)
303 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
305 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
308 /* Altivec registers. */
309 if (tdep->ppc_vr0_regnum >= 0)
311 for (i = 0; i < ppc_num_vrs; i++)
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + i,
314 sim_ppc_vr0_regnum + i);
316 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
317 we can treat this more like the other cases. */
318 set_sim_regno (sim_regno,
319 tdep->ppc_vr0_regnum + ppc_num_vrs,
320 sim_ppc_vscr_regnum);
322 /* vsave is a special-purpose register, so the code below handles it. */
324 /* SPE APU (E500) registers. */
325 if (tdep->ppc_ev0_upper_regnum >= 0)
326 for (i = 0; i < ppc_num_gprs; i++)
327 set_sim_regno (sim_regno,
328 tdep->ppc_ev0_upper_regnum + i,
329 sim_ppc_rh0_regnum + i);
330 if (tdep->ppc_acc_regnum >= 0)
331 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
332 /* spefscr is a special-purpose register, so the code below handles it. */
335 /* Now handle all special-purpose registers. Verify that they
336 haven't mistakenly been assigned numbers by any of the above
338 for (i = 0; i < sim_ppc_num_sprs; i++)
340 const char *spr_name = sim_spr_register_name (i);
343 if (spr_name != NULL)
344 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
347 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
351 /* Drop the initialized array into place. */
352 tdep->sim_regno = sim_regno;
356 /* Given a GDB register number REG, return the corresponding SIM
359 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
364 if (tdep->sim_regno == NULL)
365 init_sim_regno_table (gdbarch);
368 && reg <= gdbarch_num_regs (gdbarch)
369 + gdbarch_num_pseudo_regs (gdbarch));
370 sim_regno = tdep->sim_regno[reg];
375 return LEGACY_SIM_REGNO_IGNORE;
380 /* Register set support functions. */
382 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
383 Write the register to REGCACHE. */
386 ppc_supply_reg (struct regcache *regcache, int regnum,
387 const gdb_byte *regs, size_t offset, int regsize)
389 if (regnum != -1 && offset != -1)
393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
394 int gdb_regsize = register_size (gdbarch, regnum);
395 if (gdb_regsize < regsize
396 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
397 offset += regsize - gdb_regsize;
399 regcache_raw_supply (regcache, regnum, regs + offset);
403 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
404 in a field REGSIZE wide. Zero pad as necessary. */
407 ppc_collect_reg (const struct regcache *regcache, int regnum,
408 gdb_byte *regs, size_t offset, int regsize)
410 if (regnum != -1 && offset != -1)
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 int gdb_regsize = register_size (gdbarch, regnum);
416 if (gdb_regsize < regsize)
418 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
420 memset (regs + offset, 0, regsize - gdb_regsize);
421 offset += regsize - gdb_regsize;
424 memset (regs + offset + regsize - gdb_regsize, 0,
425 regsize - gdb_regsize);
428 regcache_raw_collect (regcache, regnum, regs + offset);
433 ppc_greg_offset (struct gdbarch *gdbarch,
434 struct gdbarch_tdep *tdep,
435 const struct ppc_reg_offsets *offsets,
439 *regsize = offsets->gpr_size;
440 if (regnum >= tdep->ppc_gp0_regnum
441 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
442 return (offsets->r0_offset
443 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
445 if (regnum == gdbarch_pc_regnum (gdbarch))
446 return offsets->pc_offset;
448 if (regnum == tdep->ppc_ps_regnum)
449 return offsets->ps_offset;
451 if (regnum == tdep->ppc_lr_regnum)
452 return offsets->lr_offset;
454 if (regnum == tdep->ppc_ctr_regnum)
455 return offsets->ctr_offset;
457 *regsize = offsets->xr_size;
458 if (regnum == tdep->ppc_cr_regnum)
459 return offsets->cr_offset;
461 if (regnum == tdep->ppc_xer_regnum)
462 return offsets->xer_offset;
464 if (regnum == tdep->ppc_mq_regnum)
465 return offsets->mq_offset;
471 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
472 const struct ppc_reg_offsets *offsets,
475 if (regnum >= tdep->ppc_fp0_regnum
476 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
477 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
479 if (regnum == tdep->ppc_fpscr_regnum)
480 return offsets->fpscr_offset;
486 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
487 const struct ppc_reg_offsets *offsets,
490 if (regnum >= tdep->ppc_vr0_regnum
491 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
492 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
494 if (regnum == tdep->ppc_vrsave_regnum - 1)
495 return offsets->vscr_offset;
497 if (regnum == tdep->ppc_vrsave_regnum)
498 return offsets->vrsave_offset;
503 /* Supply register REGNUM in the general-purpose register set REGSET
504 from the buffer specified by GREGS and LEN to register cache
505 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
508 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 const struct ppc_reg_offsets *offsets
514 = (const struct ppc_reg_offsets *) regset->regmap;
521 int gpr_size = offsets->gpr_size;
523 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
524 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
525 i++, offset += gpr_size)
526 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
529 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
530 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
532 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
534 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
535 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
536 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
537 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
538 (const gdb_byte *) gregs, offsets->cr_offset,
540 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
541 (const gdb_byte *) gregs, offsets->xer_offset,
543 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
544 (const gdb_byte *) gregs, offsets->mq_offset,
549 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
550 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
553 /* Supply register REGNUM in the floating-point register set REGSET
554 from the buffer specified by FPREGS and LEN to register cache
555 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
558 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
559 int regnum, const void *fpregs, size_t len)
561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
562 struct gdbarch_tdep *tdep;
563 const struct ppc_reg_offsets *offsets;
566 if (!ppc_floating_point_unit_p (gdbarch))
569 tdep = gdbarch_tdep (gdbarch);
570 offsets = (const struct ppc_reg_offsets *) regset->regmap;
575 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
576 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
578 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
580 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
581 (const gdb_byte *) fpregs, offsets->fpscr_offset,
582 offsets->fpscr_size);
586 offset = ppc_fpreg_offset (tdep, offsets, regnum);
587 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
588 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
591 /* Supply register REGNUM in the VSX register set REGSET
592 from the buffer specified by VSXREGS and LEN to register cache
593 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
596 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
597 int regnum, const void *vsxregs, size_t len)
599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
600 struct gdbarch_tdep *tdep;
602 if (!ppc_vsx_support_p (gdbarch))
605 tdep = gdbarch_tdep (gdbarch);
611 for (i = tdep->ppc_vsr0_upper_regnum;
612 i < tdep->ppc_vsr0_upper_regnum + 32;
614 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
619 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
622 /* Supply register REGNUM in the Altivec register set REGSET
623 from the buffer specified by VRREGS and LEN to register cache
624 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
627 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
628 int regnum, const void *vrregs, size_t len)
630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
631 struct gdbarch_tdep *tdep;
632 const struct ppc_reg_offsets *offsets;
635 if (!ppc_altivec_support_p (gdbarch))
638 tdep = gdbarch_tdep (gdbarch);
639 offsets = (const struct ppc_reg_offsets *) regset->regmap;
644 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
645 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
647 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
649 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
650 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
652 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
653 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
657 offset = ppc_vrreg_offset (tdep, offsets, regnum);
658 if (regnum != tdep->ppc_vrsave_regnum
659 && regnum != tdep->ppc_vrsave_regnum - 1)
660 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
662 ppc_supply_reg (regcache, regnum,
663 (const gdb_byte *) vrregs, offset, 4);
666 /* Collect register REGNUM in the general-purpose register set
667 REGSET from register cache REGCACHE into the buffer specified by
668 GREGS and LEN. If REGNUM is -1, do this for all registers in
672 ppc_collect_gregset (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *gregs, size_t len)
676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
678 const struct ppc_reg_offsets *offsets
679 = (const struct ppc_reg_offsets *) regset->regmap;
686 int gpr_size = offsets->gpr_size;
688 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
689 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
690 i++, offset += gpr_size)
691 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
693 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
694 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
695 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
696 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
697 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
698 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
699 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
700 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
701 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
702 (gdb_byte *) gregs, offsets->cr_offset,
704 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
705 (gdb_byte *) gregs, offsets->xer_offset,
707 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
708 (gdb_byte *) gregs, offsets->mq_offset,
713 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
714 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
717 /* Collect register REGNUM in the floating-point register set
718 REGSET from register cache REGCACHE into the buffer specified by
719 FPREGS and LEN. If REGNUM is -1, do this for all registers in
723 ppc_collect_fpregset (const struct regset *regset,
724 const struct regcache *regcache,
725 int regnum, void *fpregs, size_t len)
727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
728 struct gdbarch_tdep *tdep;
729 const struct ppc_reg_offsets *offsets;
732 if (!ppc_floating_point_unit_p (gdbarch))
735 tdep = gdbarch_tdep (gdbarch);
736 offsets = (const struct ppc_reg_offsets *) regset->regmap;
741 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
742 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
744 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
746 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
747 (gdb_byte *) fpregs, offsets->fpscr_offset,
748 offsets->fpscr_size);
752 offset = ppc_fpreg_offset (tdep, offsets, regnum);
753 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
754 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
757 /* Collect register REGNUM in the VSX register set
758 REGSET from register cache REGCACHE into the buffer specified by
759 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
763 ppc_collect_vsxregset (const struct regset *regset,
764 const struct regcache *regcache,
765 int regnum, void *vsxregs, size_t len)
767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
768 struct gdbarch_tdep *tdep;
770 if (!ppc_vsx_support_p (gdbarch))
773 tdep = gdbarch_tdep (gdbarch);
779 for (i = tdep->ppc_vsr0_upper_regnum;
780 i < tdep->ppc_vsr0_upper_regnum + 32;
782 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
787 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
791 /* Collect register REGNUM in the Altivec register set
792 REGSET from register cache REGCACHE into the buffer specified by
793 VRREGS and LEN. If REGNUM is -1, do this for all registers in
797 ppc_collect_vrregset (const struct regset *regset,
798 const struct regcache *regcache,
799 int regnum, void *vrregs, size_t len)
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep;
803 const struct ppc_reg_offsets *offsets;
806 if (!ppc_altivec_support_p (gdbarch))
809 tdep = gdbarch_tdep (gdbarch);
810 offsets = (const struct ppc_reg_offsets *) regset->regmap;
815 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
816 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
818 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
820 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
821 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
823 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
824 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
828 offset = ppc_vrreg_offset (tdep, offsets, regnum);
829 if (regnum != tdep->ppc_vrsave_regnum
830 && regnum != tdep->ppc_vrsave_regnum - 1)
831 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
833 ppc_collect_reg (regcache, regnum,
834 (gdb_byte *) vrregs, offset, 4);
839 insn_changes_sp_or_jumps (unsigned long insn)
841 int opcode = (insn >> 26) & 0x03f;
842 int sd = (insn >> 21) & 0x01f;
843 int a = (insn >> 16) & 0x01f;
844 int subcode = (insn >> 1) & 0x3ff;
846 /* Changes the stack pointer. */
848 /* NOTE: There are many ways to change the value of a given register.
849 The ways below are those used when the register is R1, the SP,
850 in a funtion's epilogue. */
852 if (opcode == 31 && subcode == 444 && a == 1)
853 return 1; /* mr R1,Rn */
854 if (opcode == 14 && sd == 1)
855 return 1; /* addi R1,Rn,simm */
856 if (opcode == 58 && sd == 1)
857 return 1; /* ld R1,ds(Rn) */
859 /* Transfers control. */
865 if (opcode == 19 && subcode == 16)
867 if (opcode == 19 && subcode == 528)
868 return 1; /* bcctr */
873 /* Return true if we are in the function's epilogue, i.e. after the
874 instruction that destroyed the function's stack frame.
876 1) scan forward from the point of execution:
877 a) If you find an instruction that modifies the stack pointer
878 or transfers control (except a return), execution is not in
880 b) Stop scanning if you find a return instruction or reach the
881 end of the function or reach the hard limit for the size of
883 2) scan backward from the point of execution:
884 a) If you find an instruction that modifies the stack pointer,
885 execution *is* in an epilogue, return.
886 b) Stop scanning if you reach an instruction that transfers
887 control or the beginning of the function or reach the hard
888 limit for the size of an epilogue. */
891 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
892 struct gdbarch *gdbarch, CORE_ADDR pc)
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 bfd_byte insn_buf[PPC_INSN_SIZE];
897 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
900 /* Find the search limits based on function boundaries and hard limit. */
902 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
905 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_start < func_start) epilogue_start = func_start;
908 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_end > func_end) epilogue_end = func_end;
911 /* Scan forward until next 'blr'. */
913 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
915 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
917 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
918 if (insn == 0x4e800020)
920 /* Assume a bctr is a tail call unless it points strictly within
922 if (insn == 0x4e800420)
924 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
925 tdep->ppc_ctr_regnum);
926 if (ctr > func_start && ctr < func_end)
931 if (insn_changes_sp_or_jumps (insn))
935 /* Scan backward until adjustment to stack pointer (R1). */
937 for (scan_pc = pc - PPC_INSN_SIZE;
938 scan_pc >= epilogue_start;
939 scan_pc -= PPC_INSN_SIZE)
941 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
943 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
944 if (insn_changes_sp_or_jumps (insn))
951 /* Implement the stack_frame_destroyed_p gdbarch method. */
954 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
956 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
960 /* Get the ith function argument for the current function. */
962 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
965 return get_frame_register_unsigned (frame, 3 + argi);
968 /* Sequence of bytes for breakpoint instruction. */
970 static const unsigned char *
971 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
974 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
975 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
977 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
978 return big_breakpoint;
980 return little_breakpoint;
983 /* Instruction masks for displaced stepping. */
984 #define BRANCH_MASK 0xfc000000
985 #define BP_MASK 0xFC0007FE
986 #define B_INSN 0x48000000
987 #define BC_INSN 0x40000000
988 #define BXL_INSN 0x4c000000
989 #define BP_INSN 0x7C000008
991 /* Instruction masks used during single-stepping of atomic
993 #define LWARX_MASK 0xfc0007fe
994 #define LWARX_INSTRUCTION 0x7c000028
995 #define LDARX_INSTRUCTION 0x7c0000A8
996 #define STWCX_MASK 0xfc0007ff
997 #define STWCX_INSTRUCTION 0x7c00012d
998 #define STDCX_INSTRUCTION 0x7c0001ad
1000 /* We can't displaced step atomic sequences. Otherwise this is just
1001 like simple_displaced_step_copy_insn. */
1003 static struct displaced_step_closure *
1004 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1005 CORE_ADDR from, CORE_ADDR to,
1006 struct regcache *regs)
1008 size_t len = gdbarch_max_insn_length (gdbarch);
1009 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1010 struct cleanup *old_chain = make_cleanup (xfree, buf);
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1014 read_memory (from, buf, len);
1016 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1018 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1019 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1020 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1022 if (debug_displaced)
1024 fprintf_unfiltered (gdb_stdlog,
1025 "displaced: can't displaced step "
1026 "atomic sequence at %s\n",
1027 paddress (gdbarch, from));
1029 do_cleanups (old_chain);
1033 write_memory (to, buf, len);
1035 if (debug_displaced)
1037 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1038 paddress (gdbarch, from), paddress (gdbarch, to));
1039 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1042 discard_cleanups (old_chain);
1043 return (struct displaced_step_closure *) buf;
1046 /* Fix up the state of registers and memory after having single-stepped
1047 a displaced instruction. */
1049 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1050 struct displaced_step_closure *closure,
1051 CORE_ADDR from, CORE_ADDR to,
1052 struct regcache *regs)
1054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1055 /* Our closure is a copy of the instruction. */
1056 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1057 PPC_INSN_SIZE, byte_order);
1058 ULONGEST opcode = 0;
1059 /* Offset for non PC-relative instructions. */
1060 LONGEST offset = PPC_INSN_SIZE;
1062 opcode = insn & BRANCH_MASK;
1064 if (debug_displaced)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "displaced: (ppc) fixup (%s, %s)\n",
1067 paddress (gdbarch, from), paddress (gdbarch, to));
1070 /* Handle PC-relative branch instructions. */
1071 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1073 ULONGEST current_pc;
1075 /* Read the current PC value after the instruction has been executed
1076 in a displaced location. Calculate the offset to be applied to the
1077 original PC value before the displaced stepping. */
1078 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1080 offset = current_pc - to;
1082 if (opcode != BXL_INSN)
1084 /* Check for AA bit indicating whether this is an absolute
1085 addressing or PC-relative (1: absolute, 0: relative). */
1088 /* PC-relative addressing is being used in the branch. */
1089 if (debug_displaced)
1092 "displaced: (ppc) branch instruction: %s\n"
1093 "displaced: (ppc) adjusted PC from %s to %s\n",
1094 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1095 paddress (gdbarch, from + offset));
1097 regcache_cooked_write_unsigned (regs,
1098 gdbarch_pc_regnum (gdbarch),
1104 /* If we're here, it means we have a branch to LR or CTR. If the
1105 branch was taken, the offset is probably greater than 4 (the next
1106 instruction), so it's safe to assume that an offset of 4 means we
1107 did not take the branch. */
1108 if (offset == PPC_INSN_SIZE)
1109 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1110 from + PPC_INSN_SIZE);
1113 /* Check for LK bit indicating whether we should set the link
1114 register to point to the next instruction
1115 (1: Set, 0: Don't set). */
1118 /* Link register needs to be set to the next instruction's PC. */
1119 regcache_cooked_write_unsigned (regs,
1120 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1121 from + PPC_INSN_SIZE);
1122 if (debug_displaced)
1123 fprintf_unfiltered (gdb_stdlog,
1124 "displaced: (ppc) adjusted LR to %s\n",
1125 paddress (gdbarch, from + PPC_INSN_SIZE));
1129 /* Check for breakpoints in the inferior. If we've found one, place the PC
1130 right at the breakpoint instruction. */
1131 else if ((insn & BP_MASK) == BP_INSN)
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1134 /* Handle any other instructions that do not fit in the categories above. */
1135 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1139 /* Always use hardware single-stepping to execute the
1140 displaced instruction. */
1142 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1143 struct displaced_step_closure *closure)
1148 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1149 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1150 is found, attempt to step through it. A breakpoint is placed at the end of
1154 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1156 struct gdbarch *gdbarch = get_frame_arch (frame);
1157 struct address_space *aspace = get_frame_address_space (frame);
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 CORE_ADDR pc = get_frame_pc (frame);
1160 CORE_ADDR breaks[2] = {-1, -1};
1162 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1163 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1166 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1167 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1168 int bc_insn_count = 0; /* Conditional branch instruction count. */
1170 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1171 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1172 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1175 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1177 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1179 loc += PPC_INSN_SIZE;
1180 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1182 /* Assume that there is at most one conditional branch in the atomic
1183 sequence. If a conditional branch is found, put a breakpoint in
1184 its destination address. */
1185 if ((insn & BRANCH_MASK) == BC_INSN)
1187 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1188 int absolute = insn & 2;
1190 if (bc_insn_count >= 1)
1191 return 0; /* More than one conditional branch found, fallback
1192 to the standard single-step code. */
1195 breaks[1] = immediate;
1197 breaks[1] = loc + immediate;
1203 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1204 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1208 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1209 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1210 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1214 loc += PPC_INSN_SIZE;
1215 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1217 /* Insert a breakpoint right after the end of the atomic sequence. */
1220 /* Check for duplicated breakpoints. Check also for a breakpoint
1221 placed (branch instruction's destination) anywhere in sequence. */
1223 && (breaks[1] == breaks[0]
1224 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1225 last_breakpoint = 0;
1227 /* Effectively inserts the breakpoints. */
1228 for (index = 0; index <= last_breakpoint; index++)
1229 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1235 #define SIGNED_SHORT(x) \
1236 ((sizeof (short) == 2) \
1237 ? ((int)(short)(x)) \
1238 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1240 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1242 /* Limit the number of skipped non-prologue instructions, as the examining
1243 of the prologue is expensive. */
1244 static int max_skip_non_prologue_insns = 10;
1246 /* Return nonzero if the given instruction OP can be part of the prologue
1247 of a function and saves a parameter on the stack. FRAMEP should be
1248 set if one of the previous instructions in the function has set the
1252 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1254 /* Move parameters from argument registers to temporary register. */
1255 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1257 /* Rx must be scratch register r0. */
1258 const int rx_regno = (op >> 16) & 31;
1259 /* Ry: Only r3 - r10 are used for parameter passing. */
1260 const int ry_regno = GET_SRC_REG (op);
1262 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1264 *r0_contains_arg = 1;
1271 /* Save a General Purpose Register on stack. */
1273 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1274 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1276 /* Rx: Only r3 - r10 are used for parameter passing. */
1277 const int rx_regno = GET_SRC_REG (op);
1279 return (rx_regno >= 3 && rx_regno <= 10);
1282 /* Save a General Purpose Register on stack via the Frame Pointer. */
1285 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1286 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1287 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1289 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1290 However, the compiler sometimes uses r0 to hold an argument. */
1291 const int rx_regno = GET_SRC_REG (op);
1293 return ((rx_regno >= 3 && rx_regno <= 10)
1294 || (rx_regno == 0 && *r0_contains_arg));
1297 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1299 /* Only f2 - f8 are used for parameter passing. */
1300 const int src_regno = GET_SRC_REG (op);
1302 return (src_regno >= 2 && src_regno <= 8);
1305 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1307 /* Only f2 - f8 are used for parameter passing. */
1308 const int src_regno = GET_SRC_REG (op);
1310 return (src_regno >= 2 && src_regno <= 8);
1313 /* Not an insn that saves a parameter on stack. */
1317 /* Assuming that INSN is a "bl" instruction located at PC, return
1318 nonzero if the destination of the branch is a "blrl" instruction.
1320 This sequence is sometimes found in certain function prologues.
1321 It allows the function to load the LR register with a value that
1322 they can use to access PIC data using PC-relative offsets. */
1325 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1332 absolute = (int) ((insn >> 1) & 1);
1333 immediate = ((insn & ~3) << 6) >> 6;
1337 dest = pc + immediate;
1339 dest_insn = read_memory_integer (dest, 4, byte_order);
1340 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1346 /* Masks for decoding a branch-and-link (bl) instruction.
1348 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1349 The former is anded with the opcode in question; if the result of
1350 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1351 question is a ``bl'' instruction.
1353 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1354 the branch displacement. */
1356 #define BL_MASK 0xfc000001
1357 #define BL_INSTRUCTION 0x48000001
1358 #define BL_DISPLACEMENT_MASK 0x03fffffc
1360 static unsigned long
1361 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1363 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1367 /* Fetch the instruction and convert it to an integer. */
1368 if (target_read_memory (pc, buf, 4))
1370 op = extract_unsigned_integer (buf, 4, byte_order);
1375 /* GCC generates several well-known sequences of instructions at the begining
1376 of each function prologue when compiling with -fstack-check. If one of
1377 such sequences starts at START_PC, then return the address of the
1378 instruction immediately past this sequence. Otherwise, return START_PC. */
1381 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1383 CORE_ADDR pc = start_pc;
1384 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1386 /* First possible sequence: A small number of probes.
1387 stw 0, -<some immediate>(1)
1388 [repeat this instruction any (small) number of times]. */
1390 if ((op & 0xffff0000) == 0x90010000)
1392 while ((op & 0xffff0000) == 0x90010000)
1395 op = rs6000_fetch_instruction (gdbarch, pc);
1400 /* Second sequence: A probing loop.
1401 addi 12,1,-<some immediate>
1402 lis 0,-<some immediate>
1403 [possibly ori 0,0,<some immediate>]
1407 addi 12,12,-<some immediate>
1410 [possibly one last probe: stw 0,<some immediate>(12)]. */
1414 /* addi 12,1,-<some immediate> */
1415 if ((op & 0xffff0000) != 0x39810000)
1418 /* lis 0,-<some immediate> */
1420 op = rs6000_fetch_instruction (gdbarch, pc);
1421 if ((op & 0xffff0000) != 0x3c000000)
1425 op = rs6000_fetch_instruction (gdbarch, pc);
1426 /* [possibly ori 0,0,<some immediate>] */
1427 if ((op & 0xffff0000) == 0x60000000)
1430 op = rs6000_fetch_instruction (gdbarch, pc);
1433 if (op != 0x7c0c0214)
1438 op = rs6000_fetch_instruction (gdbarch, pc);
1439 if (op != 0x7c0c0000)
1444 op = rs6000_fetch_instruction (gdbarch, pc);
1445 if ((op & 0xff9f0001) != 0x41820000)
1448 /* addi 12,12,-<some immediate> */
1450 op = rs6000_fetch_instruction (gdbarch, pc);
1451 if ((op & 0xffff0000) != 0x398c0000)
1456 op = rs6000_fetch_instruction (gdbarch, pc);
1457 if (op != 0x900c0000)
1462 op = rs6000_fetch_instruction (gdbarch, pc);
1463 if ((op & 0xfc000001) != 0x48000000)
1466 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1468 op = rs6000_fetch_instruction (gdbarch, pc);
1469 if ((op & 0xffff0000) == 0x900c0000)
1472 op = rs6000_fetch_instruction (gdbarch, pc);
1475 /* We found a valid stack-check sequence, return the new PC. */
1479 /* Third sequence: No probe; instead, a comparizon between the stack size
1480 limit (saved in a run-time global variable) and the current stack
1483 addi 0,1,-<some immediate>
1484 lis 12,__gnat_stack_limit@ha
1485 lwz 12,__gnat_stack_limit@l(12)
1488 or, with a small variant in the case of a bigger stack frame:
1489 addis 0,1,<some immediate>
1490 addic 0,0,-<some immediate>
1491 lis 12,__gnat_stack_limit@ha
1492 lwz 12,__gnat_stack_limit@l(12)
1497 /* addi 0,1,-<some immediate> */
1498 if ((op & 0xffff0000) != 0x38010000)
1500 /* small stack frame variant not recognized; try the
1501 big stack frame variant: */
1503 /* addis 0,1,<some immediate> */
1504 if ((op & 0xffff0000) != 0x3c010000)
1507 /* addic 0,0,-<some immediate> */
1509 op = rs6000_fetch_instruction (gdbarch, pc);
1510 if ((op & 0xffff0000) != 0x30000000)
1514 /* lis 12,<some immediate> */
1516 op = rs6000_fetch_instruction (gdbarch, pc);
1517 if ((op & 0xffff0000) != 0x3d800000)
1520 /* lwz 12,<some immediate>(12) */
1522 op = rs6000_fetch_instruction (gdbarch, pc);
1523 if ((op & 0xffff0000) != 0x818c0000)
1528 op = rs6000_fetch_instruction (gdbarch, pc);
1529 if ((op & 0xfffffffe) != 0x7c406008)
1532 /* We found a valid stack-check sequence, return the new PC. */
1536 /* No stack check code in our prologue, return the start_pc. */
1540 /* return pc value after skipping a function prologue and also return
1541 information about a function frame.
1543 in struct rs6000_framedata fdata:
1544 - frameless is TRUE, if function does not have a frame.
1545 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1546 - offset is the initial size of this stack frame --- the amount by
1547 which we decrement the sp to allocate the frame.
1548 - saved_gpr is the number of the first saved gpr.
1549 - saved_fpr is the number of the first saved fpr.
1550 - saved_vr is the number of the first saved vr.
1551 - saved_ev is the number of the first saved ev.
1552 - alloca_reg is the number of the register used for alloca() handling.
1554 - gpr_offset is the offset of the first saved gpr from the previous frame.
1555 - fpr_offset is the offset of the first saved fpr from the previous frame.
1556 - vr_offset is the offset of the first saved vr from the previous frame.
1557 - ev_offset is the offset of the first saved ev from the previous frame.
1558 - lr_offset is the offset of the saved lr
1559 - cr_offset is the offset of the saved cr
1560 - vrsave_offset is the offset of the saved vrsave register. */
1563 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1564 struct rs6000_framedata *fdata)
1566 CORE_ADDR orig_pc = pc;
1567 CORE_ADDR last_prologue_pc = pc;
1568 CORE_ADDR li_found_pc = 0;
1572 long vr_saved_offset = 0;
1578 int vrsave_reg = -1;
1581 int minimal_toc_loaded = 0;
1582 int prev_insn_was_prologue_insn = 1;
1583 int num_skip_non_prologue_insns = 0;
1584 int r0_contains_arg = 0;
1585 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589 memset (fdata, 0, sizeof (struct rs6000_framedata));
1590 fdata->saved_gpr = -1;
1591 fdata->saved_fpr = -1;
1592 fdata->saved_vr = -1;
1593 fdata->saved_ev = -1;
1594 fdata->alloca_reg = -1;
1595 fdata->frameless = 1;
1596 fdata->nosavedpc = 1;
1597 fdata->lr_register = -1;
1599 pc = rs6000_skip_stack_check (gdbarch, pc);
1605 /* Sometimes it isn't clear if an instruction is a prologue
1606 instruction or not. When we encounter one of these ambiguous
1607 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1608 Otherwise, we'll assume that it really is a prologue instruction. */
1609 if (prev_insn_was_prologue_insn)
1610 last_prologue_pc = pc;
1612 /* Stop scanning if we've hit the limit. */
1616 prev_insn_was_prologue_insn = 1;
1618 /* Fetch the instruction and convert it to an integer. */
1619 if (target_read_memory (pc, buf, 4))
1621 op = extract_unsigned_integer (buf, 4, byte_order);
1623 if ((op & 0xfc1fffff) == 0x7c0802a6)
1625 /* Since shared library / PIC code, which needs to get its
1626 address at runtime, can appear to save more than one link
1640 remember just the first one, but skip over additional
1643 lr_reg = (op & 0x03e00000) >> 21;
1645 r0_contains_arg = 0;
1648 else if ((op & 0xfc1fffff) == 0x7c000026)
1650 cr_reg = (op & 0x03e00000);
1652 r0_contains_arg = 0;
1656 else if ((op & 0xfc1f0000) == 0xd8010000)
1657 { /* stfd Rx,NUM(r1) */
1658 reg = GET_SRC_REG (op);
1659 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1661 fdata->saved_fpr = reg;
1662 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1667 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1668 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1669 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1670 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1673 reg = GET_SRC_REG (op);
1674 if ((op & 0xfc1f0000) == 0xbc010000)
1675 fdata->gpr_mask |= ~((1U << reg) - 1);
1677 fdata->gpr_mask |= 1U << reg;
1678 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1680 fdata->saved_gpr = reg;
1681 if ((op & 0xfc1f0003) == 0xf8010000)
1683 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1688 else if ((op & 0xffff0000) == 0x3c4c0000
1689 || (op & 0xffff0000) == 0x3c400000
1690 || (op & 0xffff0000) == 0x38420000)
1692 /* . 0: addis 2,12,.TOC.-0b@ha
1693 . addi 2,2,.TOC.-0b@l
1697 used by ELFv2 global entry points to set up r2. */
1700 else if (op == 0x60000000)
1703 /* Allow nops in the prologue, but do not consider them to
1704 be part of the prologue unless followed by other prologue
1706 prev_insn_was_prologue_insn = 0;
1710 else if ((op & 0xffff0000) == 0x3c000000)
1711 { /* addis 0,0,NUM, used for >= 32k frames */
1712 fdata->offset = (op & 0x0000ffff) << 16;
1713 fdata->frameless = 0;
1714 r0_contains_arg = 0;
1718 else if ((op & 0xffff0000) == 0x60000000)
1719 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1720 fdata->offset |= (op & 0x0000ffff);
1721 fdata->frameless = 0;
1722 r0_contains_arg = 0;
1726 else if (lr_reg >= 0 &&
1727 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1728 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1729 /* stw Rx, NUM(r1) */
1730 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1731 /* stwu Rx, NUM(r1) */
1732 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1733 { /* where Rx == lr */
1734 fdata->lr_offset = offset;
1735 fdata->nosavedpc = 0;
1736 /* Invalidate lr_reg, but don't set it to -1.
1737 That would mean that it had never been set. */
1739 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1740 (op & 0xfc000000) == 0x90000000) /* stw */
1742 /* Does not update r1, so add displacement to lr_offset. */
1743 fdata->lr_offset += SIGNED_SHORT (op);
1748 else if (cr_reg >= 0 &&
1749 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1750 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1751 /* stw Rx, NUM(r1) */
1752 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1753 /* stwu Rx, NUM(r1) */
1754 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1755 { /* where Rx == cr */
1756 fdata->cr_offset = offset;
1757 /* Invalidate cr_reg, but don't set it to -1.
1758 That would mean that it had never been set. */
1760 if ((op & 0xfc000003) == 0xf8000000 ||
1761 (op & 0xfc000000) == 0x90000000)
1763 /* Does not update r1, so add displacement to cr_offset. */
1764 fdata->cr_offset += SIGNED_SHORT (op);
1769 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1771 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1772 prediction bits. If the LR has already been saved, we can
1776 else if (op == 0x48000005)
1783 else if (op == 0x48000004)
1788 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1789 in V.4 -mminimal-toc */
1790 (op & 0xffff0000) == 0x3bde0000)
1791 { /* addi 30,30,foo@l */
1795 else if ((op & 0xfc000001) == 0x48000001)
1799 fdata->frameless = 0;
1801 /* If the return address has already been saved, we can skip
1802 calls to blrl (for PIC). */
1803 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1809 /* Don't skip over the subroutine call if it is not within
1810 the first three instructions of the prologue and either
1811 we have no line table information or the line info tells
1812 us that the subroutine call is not part of the line
1813 associated with the prologue. */
1814 if ((pc - orig_pc) > 8)
1816 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1817 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1819 if ((prologue_sal.line == 0)
1820 || (prologue_sal.line != this_sal.line))
1824 op = read_memory_integer (pc + 4, 4, byte_order);
1826 /* At this point, make sure this is not a trampoline
1827 function (a function that simply calls another functions,
1828 and nothing else). If the next is not a nop, this branch
1829 was part of the function prologue. */
1831 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1832 break; /* Don't skip over
1838 /* update stack pointer */
1839 else if ((op & 0xfc1f0000) == 0x94010000)
1840 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1841 fdata->frameless = 0;
1842 fdata->offset = SIGNED_SHORT (op);
1843 offset = fdata->offset;
1846 else if ((op & 0xfc1f016a) == 0x7c01016e)
1847 { /* stwux rX,r1,rY */
1848 /* No way to figure out what r1 is going to be. */
1849 fdata->frameless = 0;
1850 offset = fdata->offset;
1853 else if ((op & 0xfc1f0003) == 0xf8010001)
1854 { /* stdu rX,NUM(r1) */
1855 fdata->frameless = 0;
1856 fdata->offset = SIGNED_SHORT (op & ~3UL);
1857 offset = fdata->offset;
1860 else if ((op & 0xfc1f016a) == 0x7c01016a)
1861 { /* stdux rX,r1,rY */
1862 /* No way to figure out what r1 is going to be. */
1863 fdata->frameless = 0;
1864 offset = fdata->offset;
1867 else if ((op & 0xffff0000) == 0x38210000)
1868 { /* addi r1,r1,SIMM */
1869 fdata->frameless = 0;
1870 fdata->offset += SIGNED_SHORT (op);
1871 offset = fdata->offset;
1874 /* Load up minimal toc pointer. Do not treat an epilogue restore
1875 of r31 as a minimal TOC load. */
1876 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1877 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1879 && !minimal_toc_loaded)
1881 minimal_toc_loaded = 1;
1884 /* move parameters from argument registers to local variable
1887 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1888 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1889 (((op >> 21) & 31) <= 10) &&
1890 ((long) ((op >> 16) & 31)
1891 >= fdata->saved_gpr)) /* Rx: local var reg */
1895 /* store parameters in stack */
1897 /* Move parameters from argument registers to temporary register. */
1898 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1902 /* Set up frame pointer */
1904 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1906 fdata->frameless = 0;
1908 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1911 /* Another way to set up the frame pointer. */
1913 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1914 || op == 0x7c3f0b78)
1916 fdata->frameless = 0;
1918 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1921 /* Another way to set up the frame pointer. */
1923 else if ((op & 0xfc1fffff) == 0x38010000)
1924 { /* addi rX, r1, 0x0 */
1925 fdata->frameless = 0;
1927 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1928 + ((op & ~0x38010000) >> 21));
1931 /* AltiVec related instructions. */
1932 /* Store the vrsave register (spr 256) in another register for
1933 later manipulation, or load a register into the vrsave
1934 register. 2 instructions are used: mfvrsave and
1935 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1936 and mtspr SPR256, Rn. */
1937 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1938 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1939 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1941 vrsave_reg = GET_SRC_REG (op);
1944 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1948 /* Store the register where vrsave was saved to onto the stack:
1949 rS is the register where vrsave was stored in a previous
1951 /* 100100 sssss 00001 dddddddd dddddddd */
1952 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1954 if (vrsave_reg == GET_SRC_REG (op))
1956 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1961 /* Compute the new value of vrsave, by modifying the register
1962 where vrsave was saved to. */
1963 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1964 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1968 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1969 in a pair of insns to save the vector registers on the
1971 /* 001110 00000 00000 iiii iiii iiii iiii */
1972 /* 001110 01110 00000 iiii iiii iiii iiii */
1973 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1974 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1976 if ((op & 0xffff0000) == 0x38000000)
1977 r0_contains_arg = 0;
1979 vr_saved_offset = SIGNED_SHORT (op);
1981 /* This insn by itself is not part of the prologue, unless
1982 if part of the pair of insns mentioned above. So do not
1983 record this insn as part of the prologue yet. */
1984 prev_insn_was_prologue_insn = 0;
1986 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1987 /* 011111 sssss 11111 00000 00111001110 */
1988 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1990 if (pc == (li_found_pc + 4))
1992 vr_reg = GET_SRC_REG (op);
1993 /* If this is the first vector reg to be saved, or if
1994 it has a lower number than others previously seen,
1995 reupdate the frame info. */
1996 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1998 fdata->saved_vr = vr_reg;
1999 fdata->vr_offset = vr_saved_offset + offset;
2001 vr_saved_offset = -1;
2006 /* End AltiVec related instructions. */
2008 /* Start BookE related instructions. */
2009 /* Store gen register S at (r31+uimm).
2010 Any register less than r13 is volatile, so we don't care. */
2011 /* 000100 sssss 11111 iiiii 01100100001 */
2012 else if (arch_info->mach == bfd_mach_ppc_e500
2013 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2015 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2018 ev_reg = GET_SRC_REG (op);
2019 imm = (op >> 11) & 0x1f;
2020 ev_offset = imm * 8;
2021 /* If this is the first vector reg to be saved, or if
2022 it has a lower number than others previously seen,
2023 reupdate the frame info. */
2024 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2026 fdata->saved_ev = ev_reg;
2027 fdata->ev_offset = ev_offset + offset;
2032 /* Store gen register rS at (r1+rB). */
2033 /* 000100 sssss 00001 bbbbb 01100100000 */
2034 else if (arch_info->mach == bfd_mach_ppc_e500
2035 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2037 if (pc == (li_found_pc + 4))
2039 ev_reg = GET_SRC_REG (op);
2040 /* If this is the first vector reg to be saved, or if
2041 it has a lower number than others previously seen,
2042 reupdate the frame info. */
2043 /* We know the contents of rB from the previous instruction. */
2044 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2046 fdata->saved_ev = ev_reg;
2047 fdata->ev_offset = vr_saved_offset + offset;
2049 vr_saved_offset = -1;
2055 /* Store gen register r31 at (rA+uimm). */
2056 /* 000100 11111 aaaaa iiiii 01100100001 */
2057 else if (arch_info->mach == bfd_mach_ppc_e500
2058 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2060 /* Wwe know that the source register is 31 already, but
2061 it can't hurt to compute it. */
2062 ev_reg = GET_SRC_REG (op);
2063 ev_offset = ((op >> 11) & 0x1f) * 8;
2064 /* If this is the first vector reg to be saved, or if
2065 it has a lower number than others previously seen,
2066 reupdate the frame info. */
2067 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2069 fdata->saved_ev = ev_reg;
2070 fdata->ev_offset = ev_offset + offset;
2075 /* Store gen register S at (r31+r0).
2076 Store param on stack when offset from SP bigger than 4 bytes. */
2077 /* 000100 sssss 11111 00000 01100100000 */
2078 else if (arch_info->mach == bfd_mach_ppc_e500
2079 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2081 if (pc == (li_found_pc + 4))
2083 if ((op & 0x03e00000) >= 0x01a00000)
2085 ev_reg = GET_SRC_REG (op);
2086 /* If this is the first vector reg to be saved, or if
2087 it has a lower number than others previously seen,
2088 reupdate the frame info. */
2089 /* We know the contents of r0 from the previous
2091 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2093 fdata->saved_ev = ev_reg;
2094 fdata->ev_offset = vr_saved_offset + offset;
2098 vr_saved_offset = -1;
2103 /* End BookE related instructions. */
2107 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2109 /* Not a recognized prologue instruction.
2110 Handle optimizer code motions into the prologue by continuing
2111 the search if we have no valid frame yet or if the return
2112 address is not yet saved in the frame. Also skip instructions
2113 if some of the GPRs expected to be saved are not yet saved. */
2114 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2115 && (fdata->gpr_mask & all_mask) == all_mask)
2118 if (op == 0x4e800020 /* blr */
2119 || op == 0x4e800420) /* bctr */
2120 /* Do not scan past epilogue in frameless functions or
2123 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2124 /* Never skip branches. */
2127 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2128 /* Do not scan too many insns, scanning insns is expensive with
2132 /* Continue scanning. */
2133 prev_insn_was_prologue_insn = 0;
2139 /* I have problems with skipping over __main() that I need to address
2140 * sometime. Previously, I used to use misc_function_vector which
2141 * didn't work as well as I wanted to be. -MGO */
2143 /* If the first thing after skipping a prolog is a branch to a function,
2144 this might be a call to an initializer in main(), introduced by gcc2.
2145 We'd like to skip over it as well. Fortunately, xlc does some extra
2146 work before calling a function right after a prologue, thus we can
2147 single out such gcc2 behaviour. */
2150 if ((op & 0xfc000001) == 0x48000001)
2151 { /* bl foo, an initializer function? */
2152 op = read_memory_integer (pc + 4, 4, byte_order);
2154 if (op == 0x4def7b82)
2155 { /* cror 0xf, 0xf, 0xf (nop) */
2157 /* Check and see if we are in main. If so, skip over this
2158 initializer function as well. */
2160 tmp = find_pc_misc_function (pc);
2162 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2168 if (pc == lim_pc && lr_reg >= 0)
2169 fdata->lr_register = lr_reg;
2171 fdata->offset = -fdata->offset;
2172 return last_prologue_pc;
2176 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2178 struct rs6000_framedata frame;
2179 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2181 /* See if we can determine the end of the prologue via the symbol table.
2182 If so, then return either PC, or the PC after the prologue, whichever
2184 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2186 CORE_ADDR post_prologue_pc
2187 = skip_prologue_using_sal (gdbarch, func_addr);
2188 if (post_prologue_pc != 0)
2189 return std::max (pc, post_prologue_pc);
2192 /* Can't determine prologue from the symbol table, need to examine
2195 /* Find an upper limit on the function prologue using the debug
2196 information. If the debug information could not be used to provide
2197 that bound, then use an arbitrary large number as the upper bound. */
2198 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2200 limit_pc = pc + 100; /* Magic. */
2202 /* Do not allow limit_pc to be past the function end, if we know
2203 where that end is... */
2204 if (func_end_addr && limit_pc > func_end_addr)
2205 limit_pc = func_end_addr;
2207 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2211 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2212 in the prologue of main().
2214 The function below examines the code pointed at by PC and checks to
2215 see if it corresponds to a call to __eabi. If so, it returns the
2216 address of the instruction following that call. Otherwise, it simply
2220 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2222 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2226 if (target_read_memory (pc, buf, 4))
2228 op = extract_unsigned_integer (buf, 4, byte_order);
2230 if ((op & BL_MASK) == BL_INSTRUCTION)
2232 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2233 CORE_ADDR call_dest = pc + 4 + displ;
2234 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2236 /* We check for ___eabi (three leading underscores) in addition
2237 to __eabi in case the GCC option "-fleading-underscore" was
2238 used to compile the program. */
2239 if (s.minsym != NULL
2240 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2241 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2242 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2248 /* All the ABI's require 16 byte alignment. */
2250 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2252 return (addr & -16);
2255 /* Return whether handle_inferior_event() should proceed through code
2256 starting at PC in function NAME when stepping.
2258 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2259 handle memory references that are too distant to fit in instructions
2260 generated by the compiler. For example, if 'foo' in the following
2265 is greater than 32767, the linker might replace the lwz with a branch to
2266 somewhere in @FIX1 that does the load in 2 instructions and then branches
2267 back to where execution should continue.
2269 GDB should silently step over @FIX code, just like AIX dbx does.
2270 Unfortunately, the linker uses the "b" instruction for the
2271 branches, meaning that the link register doesn't get set.
2272 Therefore, GDB's usual step_over_function () mechanism won't work.
2274 Instead, use the gdbarch_skip_trampoline_code and
2275 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2279 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2280 CORE_ADDR pc, const char *name)
2282 return name && startswith (name, "@FIX");
2285 /* Skip code that the user doesn't want to see when stepping:
2287 1. Indirect function calls use a piece of trampoline code to do context
2288 switching, i.e. to set the new TOC table. Skip such code if we are on
2289 its first instruction (as when we have single-stepped to here).
2291 2. Skip shared library trampoline code (which is different from
2292 indirect function call trampolines).
2294 3. Skip bigtoc fixup code.
2296 Result is desired PC to step until, or NULL if we are not in
2297 code that should be skipped. */
2300 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2302 struct gdbarch *gdbarch = get_frame_arch (frame);
2303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2305 unsigned int ii, op;
2307 CORE_ADDR solib_target_pc;
2308 struct bound_minimal_symbol msymbol;
2310 static unsigned trampoline_code[] =
2312 0x800b0000, /* l r0,0x0(r11) */
2313 0x90410014, /* st r2,0x14(r1) */
2314 0x7c0903a6, /* mtctr r0 */
2315 0x804b0004, /* l r2,0x4(r11) */
2316 0x816b0008, /* l r11,0x8(r11) */
2317 0x4e800420, /* bctr */
2318 0x4e800020, /* br */
2322 /* Check for bigtoc fixup code. */
2323 msymbol = lookup_minimal_symbol_by_pc (pc);
2325 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2326 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2328 /* Double-check that the third instruction from PC is relative "b". */
2329 op = read_memory_integer (pc + 8, 4, byte_order);
2330 if ((op & 0xfc000003) == 0x48000000)
2332 /* Extract bits 6-29 as a signed 24-bit relative word address and
2333 add it to the containing PC. */
2334 rel = ((int)(op << 6) >> 6);
2335 return pc + 8 + rel;
2339 /* If pc is in a shared library trampoline, return its target. */
2340 solib_target_pc = find_solib_trampoline_target (frame, pc);
2341 if (solib_target_pc)
2342 return solib_target_pc;
2344 for (ii = 0; trampoline_code[ii]; ++ii)
2346 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2347 if (op != trampoline_code[ii])
2350 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2352 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2356 /* ISA-specific vector types. */
2358 static struct type *
2359 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2363 if (!tdep->ppc_builtin_type_vec64)
2365 const struct builtin_type *bt = builtin_type (gdbarch);
2367 /* The type we're building is this: */
2369 union __gdb_builtin_type_vec64
2373 int32_t v2_int32[2];
2374 int16_t v4_int16[4];
2381 t = arch_composite_type (gdbarch,
2382 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2383 append_composite_type_field (t, "uint64", bt->builtin_int64);
2384 append_composite_type_field (t, "v2_float",
2385 init_vector_type (bt->builtin_float, 2));
2386 append_composite_type_field (t, "v2_int32",
2387 init_vector_type (bt->builtin_int32, 2));
2388 append_composite_type_field (t, "v4_int16",
2389 init_vector_type (bt->builtin_int16, 4));
2390 append_composite_type_field (t, "v8_int8",
2391 init_vector_type (bt->builtin_int8, 8));
2393 TYPE_VECTOR (t) = 1;
2394 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2395 tdep->ppc_builtin_type_vec64 = t;
2398 return tdep->ppc_builtin_type_vec64;
2401 /* Vector 128 type. */
2403 static struct type *
2404 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2408 if (!tdep->ppc_builtin_type_vec128)
2410 const struct builtin_type *bt = builtin_type (gdbarch);
2412 /* The type we're building is this
2414 type = union __ppc_builtin_type_vec128 {
2416 double v2_double[2];
2418 int32_t v4_int32[4];
2419 int16_t v8_int16[8];
2420 int8_t v16_int8[16];
2426 t = arch_composite_type (gdbarch,
2427 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2428 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2429 append_composite_type_field (t, "v2_double",
2430 init_vector_type (bt->builtin_double, 2));
2431 append_composite_type_field (t, "v4_float",
2432 init_vector_type (bt->builtin_float, 4));
2433 append_composite_type_field (t, "v4_int32",
2434 init_vector_type (bt->builtin_int32, 4));
2435 append_composite_type_field (t, "v8_int16",
2436 init_vector_type (bt->builtin_int16, 8));
2437 append_composite_type_field (t, "v16_int8",
2438 init_vector_type (bt->builtin_int8, 16));
2440 TYPE_VECTOR (t) = 1;
2441 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2442 tdep->ppc_builtin_type_vec128 = t;
2445 return tdep->ppc_builtin_type_vec128;
2448 /* Return the name of register number REGNO, or the empty string if it
2449 is an anonymous register. */
2452 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2456 /* The upper half "registers" have names in the XML description,
2457 but we present only the low GPRs and the full 64-bit registers
2459 if (tdep->ppc_ev0_upper_regnum >= 0
2460 && tdep->ppc_ev0_upper_regnum <= regno
2461 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2464 /* Hide the upper halves of the vs0~vs31 registers. */
2465 if (tdep->ppc_vsr0_regnum >= 0
2466 && tdep->ppc_vsr0_upper_regnum <= regno
2467 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2470 /* Check if the SPE pseudo registers are available. */
2471 if (IS_SPE_PSEUDOREG (tdep, regno))
2473 static const char *const spe_regnames[] = {
2474 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2475 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2476 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2477 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2479 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2482 /* Check if the decimal128 pseudo-registers are available. */
2483 if (IS_DFP_PSEUDOREG (tdep, regno))
2485 static const char *const dfp128_regnames[] = {
2486 "dl0", "dl1", "dl2", "dl3",
2487 "dl4", "dl5", "dl6", "dl7",
2488 "dl8", "dl9", "dl10", "dl11",
2489 "dl12", "dl13", "dl14", "dl15"
2491 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2494 /* Check if this is a VSX pseudo-register. */
2495 if (IS_VSX_PSEUDOREG (tdep, regno))
2497 static const char *const vsx_regnames[] = {
2498 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2499 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2500 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2501 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2502 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2503 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2504 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2505 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2506 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2508 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2511 /* Check if the this is a Extended FP pseudo-register. */
2512 if (IS_EFP_PSEUDOREG (tdep, regno))
2514 static const char *const efpr_regnames[] = {
2515 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2516 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2517 "f46", "f47", "f48", "f49", "f50", "f51",
2518 "f52", "f53", "f54", "f55", "f56", "f57",
2519 "f58", "f59", "f60", "f61", "f62", "f63"
2521 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2524 return tdesc_register_name (gdbarch, regno);
2527 /* Return the GDB type object for the "standard" data type of data in
2530 static struct type *
2531 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2535 /* These are the only pseudo-registers we support. */
2536 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2537 || IS_DFP_PSEUDOREG (tdep, regnum)
2538 || IS_VSX_PSEUDOREG (tdep, regnum)
2539 || IS_EFP_PSEUDOREG (tdep, regnum));
2541 /* These are the e500 pseudo-registers. */
2542 if (IS_SPE_PSEUDOREG (tdep, regnum))
2543 return rs6000_builtin_type_vec64 (gdbarch);
2544 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2545 /* PPC decimal128 pseudo-registers. */
2546 return builtin_type (gdbarch)->builtin_declong;
2547 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2548 /* POWER7 VSX pseudo-registers. */
2549 return rs6000_builtin_type_vec128 (gdbarch);
2551 /* POWER7 Extended FP pseudo-registers. */
2552 return builtin_type (gdbarch)->builtin_double;
2555 /* Is REGNUM a member of REGGROUP? */
2557 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2558 struct reggroup *group)
2560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2562 /* These are the only pseudo-registers we support. */
2563 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2564 || IS_DFP_PSEUDOREG (tdep, regnum)
2565 || IS_VSX_PSEUDOREG (tdep, regnum)
2566 || IS_EFP_PSEUDOREG (tdep, regnum));
2568 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2569 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2570 return group == all_reggroup || group == vector_reggroup;
2572 /* PPC decimal128 or Extended FP pseudo-registers. */
2573 return group == all_reggroup || group == float_reggroup;
2576 /* The register format for RS/6000 floating point registers is always
2577 double, we need a conversion if the memory format is float. */
2580 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2585 return (tdep->ppc_fp0_regnum >= 0
2586 && regnum >= tdep->ppc_fp0_regnum
2587 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2588 && TYPE_CODE (type) == TYPE_CODE_FLT
2589 && TYPE_LENGTH (type)
2590 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2594 rs6000_register_to_value (struct frame_info *frame,
2598 int *optimizedp, int *unavailablep)
2600 struct gdbarch *gdbarch = get_frame_arch (frame);
2601 gdb_byte from[MAX_REGISTER_SIZE];
2603 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2605 if (!get_frame_register_bytes (frame, regnum, 0,
2606 register_size (gdbarch, regnum),
2607 from, optimizedp, unavailablep))
2610 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2612 *optimizedp = *unavailablep = 0;
2617 rs6000_value_to_register (struct frame_info *frame,
2620 const gdb_byte *from)
2622 struct gdbarch *gdbarch = get_frame_arch (frame);
2623 gdb_byte to[MAX_REGISTER_SIZE];
2625 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2627 convert_typed_floating (from, type,
2628 to, builtin_type (gdbarch)->builtin_double);
2629 put_frame_register (frame, regnum, to);
2632 /* The type of a function that moves the value of REG between CACHE
2633 or BUF --- in either direction. */
2634 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2637 /* Move SPE vector register values between a 64-bit buffer and the two
2638 32-bit raw register halves in a regcache. This function handles
2639 both splitting a 64-bit value into two 32-bit halves, and joining
2640 two halves into a whole 64-bit value, depending on the function
2641 passed as the MOVE argument.
2643 EV_REG must be the number of an SPE evN vector register --- a
2644 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2647 Call MOVE once for each 32-bit half of that register, passing
2648 REGCACHE, the number of the raw register corresponding to that
2649 half, and the address of the appropriate half of BUFFER.
2651 For example, passing 'regcache_raw_read' as the MOVE function will
2652 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2653 'regcache_raw_supply' will supply the contents of BUFFER to the
2654 appropriate pair of raw registers in REGCACHE.
2656 You may need to cast away some 'const' qualifiers when passing
2657 MOVE, since this function can't tell at compile-time which of
2658 REGCACHE or BUFFER is acting as the source of the data. If C had
2659 co-variant type qualifiers, ... */
2661 static enum register_status
2662 e500_move_ev_register (move_ev_register_func move,
2663 struct regcache *regcache, int ev_reg, void *buffer)
2665 struct gdbarch *arch = get_regcache_arch (regcache);
2666 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2668 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2669 enum register_status status;
2671 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2673 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2677 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2679 if (status == REG_VALID)
2680 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2685 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2686 if (status == REG_VALID)
2687 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2694 static enum register_status
2695 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2697 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2700 static enum register_status
2701 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2703 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2708 static enum register_status
2709 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2710 int reg_nr, gdb_byte *buffer)
2712 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2716 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2717 int reg_nr, const gdb_byte *buffer)
2719 e500_move_ev_register (do_regcache_raw_write, regcache,
2720 reg_nr, (void *) buffer);
2723 /* Read method for DFP pseudo-registers. */
2724 static enum register_status
2725 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2726 int reg_nr, gdb_byte *buffer)
2728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2729 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2730 enum register_status status;
2732 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2734 /* Read two FP registers to form a whole dl register. */
2735 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2736 2 * reg_index, buffer);
2737 if (status == REG_VALID)
2738 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2739 2 * reg_index + 1, buffer + 8);
2743 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2744 2 * reg_index + 1, buffer);
2745 if (status == REG_VALID)
2746 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2747 2 * reg_index, buffer + 8);
2753 /* Write method for DFP pseudo-registers. */
2755 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2756 int reg_nr, const gdb_byte *buffer)
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2763 /* Write each half of the dl register into a separate
2765 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2766 2 * reg_index, buffer);
2767 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2768 2 * reg_index + 1, buffer + 8);
2772 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2773 2 * reg_index + 1, buffer);
2774 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2775 2 * reg_index, buffer + 8);
2779 /* Read method for POWER7 VSX pseudo-registers. */
2780 static enum register_status
2781 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2782 int reg_nr, gdb_byte *buffer)
2784 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2785 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2786 enum register_status status;
2788 /* Read the portion that overlaps the VMX registers. */
2790 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2791 reg_index - 32, buffer);
2793 /* Read the portion that overlaps the FPR registers. */
2794 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2796 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2798 if (status == REG_VALID)
2799 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2800 reg_index, buffer + 8);
2804 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2805 reg_index, buffer + 8);
2806 if (status == REG_VALID)
2807 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2814 /* Write method for POWER7 VSX pseudo-registers. */
2816 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2817 int reg_nr, const gdb_byte *buffer)
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2820 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2822 /* Write the portion that overlaps the VMX registers. */
2824 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2825 reg_index - 32, buffer);
2827 /* Write the portion that overlaps the FPR registers. */
2828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2830 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2832 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2833 reg_index, buffer + 8);
2837 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2838 reg_index, buffer + 8);
2839 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2844 /* Read method for POWER7 Extended FP pseudo-registers. */
2845 static enum register_status
2846 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2847 int reg_nr, gdb_byte *buffer)
2849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2850 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2851 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2853 /* Read the portion that overlaps the VMX register. */
2854 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2855 offset, register_size (gdbarch, reg_nr),
2859 /* Write method for POWER7 Extended FP pseudo-registers. */
2861 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2862 int reg_nr, const gdb_byte *buffer)
2864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2865 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2866 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2868 /* Write the portion that overlaps the VMX register. */
2869 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2870 offset, register_size (gdbarch, reg_nr),
2874 static enum register_status
2875 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2876 struct regcache *regcache,
2877 int reg_nr, gdb_byte *buffer)
2879 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882 gdb_assert (regcache_arch == gdbarch);
2884 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2885 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2886 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2887 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2888 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2889 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2890 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2891 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2893 internal_error (__FILE__, __LINE__,
2894 _("rs6000_pseudo_register_read: "
2895 "called on unexpected register '%s' (%d)"),
2896 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2900 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2901 struct regcache *regcache,
2902 int reg_nr, const gdb_byte *buffer)
2904 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2905 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2907 gdb_assert (regcache_arch == gdbarch);
2909 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2910 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2911 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2912 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2913 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2914 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2915 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2916 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2918 internal_error (__FILE__, __LINE__,
2919 _("rs6000_pseudo_register_write: "
2920 "called on unexpected register '%s' (%d)"),
2921 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2925 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2926 struct agent_expr *ax, int reg_nr)
2928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2929 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2931 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2932 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2933 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2935 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2937 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2938 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2939 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2941 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2943 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2946 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2950 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2951 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2954 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2956 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2957 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2960 internal_error (__FILE__, __LINE__,
2961 _("rs6000_pseudo_register_collect: "
2962 "called on unexpected register '%s' (%d)"),
2963 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2969 rs6000_gen_return_address (struct gdbarch *gdbarch,
2970 struct agent_expr *ax, struct axs_value *value,
2973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2974 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2975 value->kind = axs_lvalue_register;
2976 value->u.reg = tdep->ppc_lr_regnum;
2980 /* Convert a DBX STABS register number to a GDB register number. */
2982 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2984 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2986 if (0 <= num && num <= 31)
2987 return tdep->ppc_gp0_regnum + num;
2988 else if (32 <= num && num <= 63)
2989 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2990 specifies registers the architecture doesn't have? Our
2991 callers don't check the value we return. */
2992 return tdep->ppc_fp0_regnum + (num - 32);
2993 else if (77 <= num && num <= 108)
2994 return tdep->ppc_vr0_regnum + (num - 77);
2995 else if (1200 <= num && num < 1200 + 32)
2996 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3001 return tdep->ppc_mq_regnum;
3003 return tdep->ppc_lr_regnum;
3005 return tdep->ppc_ctr_regnum;
3007 return tdep->ppc_xer_regnum;
3009 return tdep->ppc_vrsave_regnum;
3011 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3013 return tdep->ppc_acc_regnum;
3015 return tdep->ppc_spefscr_regnum;
3022 /* Convert a Dwarf 2 register number to a GDB register number. */
3024 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3028 if (0 <= num && num <= 31)
3029 return tdep->ppc_gp0_regnum + num;
3030 else if (32 <= num && num <= 63)
3031 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3032 specifies registers the architecture doesn't have? Our
3033 callers don't check the value we return. */
3034 return tdep->ppc_fp0_regnum + (num - 32);
3035 else if (1124 <= num && num < 1124 + 32)
3036 return tdep->ppc_vr0_regnum + (num - 1124);
3037 else if (1200 <= num && num < 1200 + 32)
3038 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3043 return tdep->ppc_cr_regnum;
3045 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3047 return tdep->ppc_acc_regnum;
3049 return tdep->ppc_mq_regnum;
3051 return tdep->ppc_xer_regnum;
3053 return tdep->ppc_lr_regnum;
3055 return tdep->ppc_ctr_regnum;
3057 return tdep->ppc_vrsave_regnum;
3059 return tdep->ppc_spefscr_regnum;
3065 /* Translate a .eh_frame register to DWARF register, or adjust a
3066 .debug_frame register. */
3069 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3071 /* GCC releases before 3.4 use GCC internal register numbering in
3072 .debug_frame (and .debug_info, et cetera). The numbering is
3073 different from the standard SysV numbering for everything except
3074 for GPRs and FPRs. We can not detect this problem in most cases
3075 - to get accurate debug info for variables living in lr, ctr, v0,
3076 et cetera, use a newer version of GCC. But we must detect
3077 one important case - lr is in column 65 in .debug_frame output,
3080 GCC 3.4, and the "hammer" branch, have a related problem. They
3081 record lr register saves in .debug_frame as 108, but still record
3082 the return column as 65. We fix that up too.
3084 We can do this because 65 is assigned to fpsr, and GCC never
3085 generates debug info referring to it. To add support for
3086 handwritten debug info that restores fpsr, we would need to add a
3087 producer version check to this. */
3096 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3097 internal register numbering; translate that to the standard DWARF2
3098 register numbering. */
3099 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3101 else if (68 <= num && num <= 75) /* cr0-cr8 */
3102 return num - 68 + 86;
3103 else if (77 <= num && num <= 108) /* vr0-vr31 */
3104 return num - 77 + 1124;
3116 case 109: /* vrsave */
3118 case 110: /* vscr */
3120 case 111: /* spe_acc */
3122 case 112: /* spefscr */
3130 /* Handling the various POWER/PowerPC variants. */
3132 /* Information about a particular processor variant. */
3136 /* Name of this variant. */
3139 /* English description of the variant. */
3142 /* bfd_arch_info.arch corresponding to variant. */
3143 enum bfd_architecture arch;
3145 /* bfd_arch_info.mach corresponding to variant. */
3148 /* Target description for this variant. */
3149 struct target_desc **tdesc;
3152 static struct variant variants[] =
3154 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3155 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3156 {"power", "POWER user-level", bfd_arch_rs6000,
3157 bfd_mach_rs6k, &tdesc_rs6000},
3158 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3159 bfd_mach_ppc_403, &tdesc_powerpc_403},
3160 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3161 bfd_mach_ppc_405, &tdesc_powerpc_405},
3162 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3163 bfd_mach_ppc_601, &tdesc_powerpc_601},
3164 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3165 bfd_mach_ppc_602, &tdesc_powerpc_602},
3166 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3167 bfd_mach_ppc_603, &tdesc_powerpc_603},
3168 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3169 604, &tdesc_powerpc_604},
3170 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3171 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3172 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3173 bfd_mach_ppc_505, &tdesc_powerpc_505},
3174 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3175 bfd_mach_ppc_860, &tdesc_powerpc_860},
3176 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3177 bfd_mach_ppc_750, &tdesc_powerpc_750},
3178 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3179 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3180 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3181 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3184 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3185 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3186 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3187 bfd_mach_ppc_620, &tdesc_powerpc_64},
3188 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3189 bfd_mach_ppc_630, &tdesc_powerpc_64},
3190 {"a35", "PowerPC A35", bfd_arch_powerpc,
3191 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3192 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3193 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3194 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3195 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3197 /* FIXME: I haven't checked the register sets of the following. */
3198 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3199 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3200 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3201 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3202 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3203 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3205 {0, 0, (enum bfd_architecture) 0, 0, 0}
3208 /* Return the variant corresponding to architecture ARCH and machine number
3209 MACH. If no such variant exists, return null. */
3211 static const struct variant *
3212 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3214 const struct variant *v;
3216 for (v = variants; v->name; v++)
3217 if (arch == v->arch && mach == v->mach)
3224 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3226 if (info->endian == BFD_ENDIAN_BIG)
3227 return print_insn_big_powerpc (memaddr, info);
3229 return print_insn_little_powerpc (memaddr, info);
3233 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3235 return frame_unwind_register_unsigned (next_frame,
3236 gdbarch_pc_regnum (gdbarch));
3239 static struct frame_id
3240 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3242 return frame_id_build (get_frame_register_unsigned
3243 (this_frame, gdbarch_sp_regnum (gdbarch)),
3244 get_frame_pc (this_frame));
3247 struct rs6000_frame_cache
3250 CORE_ADDR initial_sp;
3251 struct trad_frame_saved_reg *saved_regs;
3253 /* Set BASE_P to true if this frame cache is properly initialized.
3254 Otherwise set to false because some registers or memory cannot
3257 /* Cache PC for building unavailable frame. */
3261 static struct rs6000_frame_cache *
3262 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3264 struct rs6000_frame_cache *cache;
3265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3268 struct rs6000_framedata fdata;
3269 int wordsize = tdep->wordsize;
3270 CORE_ADDR func = 0, pc = 0;
3272 if ((*this_cache) != NULL)
3273 return (struct rs6000_frame_cache *) (*this_cache);
3274 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3275 (*this_cache) = cache;
3277 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3281 func = get_frame_func (this_frame);
3283 pc = get_frame_pc (this_frame);
3284 skip_prologue (gdbarch, func, pc, &fdata);
3286 /* Figure out the parent's stack pointer. */
3288 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3289 address of the current frame. Things might be easier if the
3290 ->frame pointed to the outer-most address of the frame. In
3291 the mean time, the address of the prev frame is used as the
3292 base address of this frame. */
3293 cache->base = get_frame_register_unsigned
3294 (this_frame, gdbarch_sp_regnum (gdbarch));
3296 CATCH (ex, RETURN_MASK_ERROR)
3298 if (ex.error != NOT_AVAILABLE_ERROR)
3299 throw_exception (ex);
3300 return (struct rs6000_frame_cache *) (*this_cache);
3304 /* If the function appears to be frameless, check a couple of likely
3305 indicators that we have simply failed to find the frame setup.
3306 Two common cases of this are missing symbols (i.e.
3307 get_frame_func returns the wrong address or 0), and assembly
3308 stubs which have a fast exit path but set up a frame on the slow
3311 If the LR appears to return to this function, then presume that
3312 we have an ABI compliant frame that we failed to find. */
3313 if (fdata.frameless && fdata.lr_offset == 0)
3318 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3319 if (func == 0 && saved_lr == pc)
3323 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3324 if (func == saved_func)
3330 fdata.frameless = 0;
3331 fdata.lr_offset = tdep->lr_frame_offset;
3335 if (!fdata.frameless)
3337 /* Frameless really means stackless. */
3340 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3341 byte_order, &backchain))
3342 cache->base = (CORE_ADDR) backchain;
3345 trad_frame_set_value (cache->saved_regs,
3346 gdbarch_sp_regnum (gdbarch), cache->base);
3348 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3349 All fpr's from saved_fpr to fp31 are saved. */
3351 if (fdata.saved_fpr >= 0)
3354 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3356 /* If skip_prologue says floating-point registers were saved,
3357 but the current architecture has no floating-point registers,
3358 then that's strange. But we have no indices to even record
3359 the addresses under, so we just ignore it. */
3360 if (ppc_floating_point_unit_p (gdbarch))
3361 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3363 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3368 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3369 All gpr's from saved_gpr to gpr31 are saved (except during the
3372 if (fdata.saved_gpr >= 0)
3375 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3376 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3378 if (fdata.gpr_mask & (1U << i))
3379 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3380 gpr_addr += wordsize;
3384 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3385 All vr's from saved_vr to vr31 are saved. */
3386 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3388 if (fdata.saved_vr >= 0)
3391 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3392 for (i = fdata.saved_vr; i < 32; i++)
3394 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3395 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3400 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3401 All vr's from saved_ev to ev31 are saved. ????? */
3402 if (tdep->ppc_ev0_regnum != -1)
3404 if (fdata.saved_ev >= 0)
3407 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3408 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3410 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3412 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3413 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3414 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3419 /* If != 0, fdata.cr_offset is the offset from the frame that
3421 if (fdata.cr_offset != 0)
3422 cache->saved_regs[tdep->ppc_cr_regnum].addr
3423 = cache->base + fdata.cr_offset;
3425 /* If != 0, fdata.lr_offset is the offset from the frame that
3427 if (fdata.lr_offset != 0)
3428 cache->saved_regs[tdep->ppc_lr_regnum].addr
3429 = cache->base + fdata.lr_offset;
3430 else if (fdata.lr_register != -1)
3431 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3432 /* The PC is found in the link register. */
3433 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3434 cache->saved_regs[tdep->ppc_lr_regnum];
3436 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3437 holds the VRSAVE. */
3438 if (fdata.vrsave_offset != 0)
3439 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3440 = cache->base + fdata.vrsave_offset;
3442 if (fdata.alloca_reg < 0)
3443 /* If no alloca register used, then fi->frame is the value of the
3444 %sp for this frame, and it is good enough. */
3446 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3449 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3456 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3457 struct frame_id *this_id)
3459 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3464 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3468 /* This marks the outermost frame. */
3469 if (info->base == 0)
3472 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3475 static struct value *
3476 rs6000_frame_prev_register (struct frame_info *this_frame,
3477 void **this_cache, int regnum)
3479 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3481 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3484 static const struct frame_unwind rs6000_frame_unwind =
3487 default_frame_unwind_stop_reason,
3488 rs6000_frame_this_id,
3489 rs6000_frame_prev_register,
3491 default_frame_sniffer
3494 /* Allocate and initialize a frame cache for an epilogue frame.
3495 SP is restored and prev-PC is stored in LR. */
3497 static struct rs6000_frame_cache *
3498 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3500 struct rs6000_frame_cache *cache;
3501 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3505 return (struct rs6000_frame_cache *) *this_cache;
3507 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3508 (*this_cache) = cache;
3509 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3513 /* At this point the stack looks as if we just entered the
3514 function, and the return address is stored in LR. */
3517 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3518 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3521 cache->initial_sp = sp;
3523 trad_frame_set_value (cache->saved_regs,
3524 gdbarch_pc_regnum (gdbarch), lr);
3526 CATCH (ex, RETURN_MASK_ERROR)
3528 if (ex.error != NOT_AVAILABLE_ERROR)
3529 throw_exception (ex);
3536 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3537 Return the frame ID of an epilogue frame. */
3540 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3541 void **this_cache, struct frame_id *this_id)
3544 struct rs6000_frame_cache *info =
3545 rs6000_epilogue_frame_cache (this_frame, this_cache);
3547 pc = get_frame_func (this_frame);
3548 if (info->base == 0)
3549 (*this_id) = frame_id_build_unavailable_stack (pc);
3551 (*this_id) = frame_id_build (info->base, pc);
3554 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3555 Return the register value of REGNUM in previous frame. */
3557 static struct value *
3558 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3559 void **this_cache, int regnum)
3561 struct rs6000_frame_cache *info =
3562 rs6000_epilogue_frame_cache (this_frame, this_cache);
3563 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3566 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3567 Check whether this an epilogue frame. */
3570 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3571 struct frame_info *this_frame,
3572 void **this_prologue_cache)
3574 if (frame_relative_level (this_frame) == 0)
3575 return rs6000_in_function_epilogue_frame_p (this_frame,
3576 get_frame_arch (this_frame),
3577 get_frame_pc (this_frame));
3582 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3583 a function without debug information. */
3585 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3588 default_frame_unwind_stop_reason,
3589 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3591 rs6000_epilogue_frame_sniffer
3596 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3598 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3600 return info->initial_sp;
3603 static const struct frame_base rs6000_frame_base = {
3604 &rs6000_frame_unwind,
3605 rs6000_frame_base_address,
3606 rs6000_frame_base_address,
3607 rs6000_frame_base_address
3610 static const struct frame_base *
3611 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3613 return &rs6000_frame_base;
3616 /* DWARF-2 frame support. Used to handle the detection of
3617 clobbered registers during function calls. */
3620 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3621 struct dwarf2_frame_state_reg *reg,
3622 struct frame_info *this_frame)
3624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3626 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3627 non-volatile registers. We will use the same code for both. */
3629 /* Call-saved GP registers. */
3630 if ((regnum >= tdep->ppc_gp0_regnum + 14
3631 && regnum <= tdep->ppc_gp0_regnum + 31)
3632 || (regnum == tdep->ppc_gp0_regnum + 1))
3633 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3635 /* Call-clobbered GP registers. */
3636 if ((regnum >= tdep->ppc_gp0_regnum + 3
3637 && regnum <= tdep->ppc_gp0_regnum + 12)
3638 || (regnum == tdep->ppc_gp0_regnum))
3639 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3641 /* Deal with FP registers, if supported. */
3642 if (tdep->ppc_fp0_regnum >= 0)
3644 /* Call-saved FP registers. */
3645 if ((regnum >= tdep->ppc_fp0_regnum + 14
3646 && regnum <= tdep->ppc_fp0_regnum + 31))
3647 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3649 /* Call-clobbered FP registers. */
3650 if ((regnum >= tdep->ppc_fp0_regnum
3651 && regnum <= tdep->ppc_fp0_regnum + 13))
3652 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3655 /* Deal with ALTIVEC registers, if supported. */
3656 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3658 /* Call-saved Altivec registers. */
3659 if ((regnum >= tdep->ppc_vr0_regnum + 20
3660 && regnum <= tdep->ppc_vr0_regnum + 31)
3661 || regnum == tdep->ppc_vrsave_regnum)
3662 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3664 /* Call-clobbered Altivec registers. */
3665 if ((regnum >= tdep->ppc_vr0_regnum
3666 && regnum <= tdep->ppc_vr0_regnum + 19))
3667 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3670 /* Handle PC register and Stack Pointer correctly. */
3671 if (regnum == gdbarch_pc_regnum (gdbarch))
3672 reg->how = DWARF2_FRAME_REG_RA;
3673 else if (regnum == gdbarch_sp_regnum (gdbarch))
3674 reg->how = DWARF2_FRAME_REG_CFA;
3678 /* Return true if a .gnu_attributes section exists in BFD and it
3679 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3680 section exists in BFD and it indicates that SPE extensions are in
3681 use. Check the .gnu.attributes section first, as the binary might be
3682 compiled for SPE, but not actually using SPE instructions. */
3685 bfd_uses_spe_extensions (bfd *abfd)
3688 gdb_byte *contents = NULL;
3698 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3699 could be using the SPE vector abi without actually using any spe
3700 bits whatsoever. But it's close enough for now. */
3701 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3702 Tag_GNU_Power_ABI_Vector);
3703 if (vector_abi == 3)
3707 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3711 size = bfd_get_section_size (sect);
3712 contents = (gdb_byte *) xmalloc (size);
3713 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3719 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3725 char name[name_len rounded up to 4-byte alignment];
3726 char data[data_len];
3729 Technically, there's only supposed to be one such structure in a
3730 given apuinfo section, but the linker is not always vigilant about
3731 merging apuinfo sections from input files. Just go ahead and parse
3732 them all, exiting early when we discover the binary uses SPE
3735 It's not specified in what endianness the information in this
3736 section is stored. Assume that it's the endianness of the BFD. */
3740 unsigned int name_len;
3741 unsigned int data_len;
3744 /* If we can't read the first three fields, we're done. */
3748 name_len = bfd_get_32 (abfd, ptr);
3749 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3750 data_len = bfd_get_32 (abfd, ptr + 4);
3751 type = bfd_get_32 (abfd, ptr + 8);
3754 /* The name must be "APUinfo\0". */
3756 && strcmp ((const char *) ptr, "APUinfo") != 0)
3760 /* The type must be 2. */
3764 /* The data is stored as a series of uint32. The upper half of
3765 each uint32 indicates the particular APU used and the lower
3766 half indicates the revision of that APU. We just care about
3769 /* Not 4-byte quantities. */
3775 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3776 unsigned int apu = apuinfo >> 16;
3780 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3782 if (apu == 0x100 || apu == 0x101)
3797 /* These are macros for parsing instruction fields (I.1.6.28) */
3799 #define PPC_FIELD(value, from, len) \
3800 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3801 #define PPC_SEXT(v, bs) \
3802 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3803 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3804 - ((CORE_ADDR) 1 << ((bs) - 1)))
3805 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3806 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3807 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3808 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3809 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3810 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3811 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3812 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3813 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3814 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3815 | (PPC_FIELD (insn, 16, 5) << 5))
3816 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3817 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3818 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3819 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3820 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3821 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3822 #define PPC_OE(insn) PPC_BIT (insn, 21)
3823 #define PPC_RC(insn) PPC_BIT (insn, 31)
3824 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3825 #define PPC_LK(insn) PPC_BIT (insn, 31)
3826 #define PPC_TX(insn) PPC_BIT (insn, 31)
3827 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3829 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3830 #define PPC_XER_NB(xer) (xer & 0x7f)
3832 /* Record Vector-Scalar Registers.
3833 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3834 Otherwise, it's just a VR register. Record them accordingly. */
3837 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3839 if (vsr < 0 || vsr >= 64)
3844 if (tdep->ppc_vr0_regnum >= 0)
3845 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3849 if (tdep->ppc_fp0_regnum >= 0)
3850 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3851 if (tdep->ppc_vsr0_upper_regnum >= 0)
3852 record_full_arch_list_add_reg (regcache,
3853 tdep->ppc_vsr0_upper_regnum + vsr);
3859 /* Parse and record instructions primary opcode-4 at ADDR.
3860 Return 0 if successful. */
3863 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3864 CORE_ADDR addr, uint32_t insn)
3866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3867 int ext = PPC_FIELD (insn, 21, 11);
3868 int vra = PPC_FIELD (insn, 11, 5);
3872 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3873 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3874 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3875 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3876 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3878 case 42: /* Vector Select */
3879 case 43: /* Vector Permute */
3880 case 59: /* Vector Permute Right-indexed */
3881 case 44: /* Vector Shift Left Double by Octet Immediate */
3882 case 45: /* Vector Permute and Exclusive-OR */
3883 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3884 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3885 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3886 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3887 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3888 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3889 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3890 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3891 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3892 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3893 case 46: /* Vector Multiply-Add Single-Precision */
3894 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3895 record_full_arch_list_add_reg (regcache,
3896 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3899 case 48: /* Multiply-Add High Doubleword */
3900 case 49: /* Multiply-Add High Doubleword Unsigned */
3901 case 51: /* Multiply-Add Low Doubleword */
3902 record_full_arch_list_add_reg (regcache,
3903 tdep->ppc_gp0_regnum + PPC_RT (insn));
3907 switch ((ext & 0x1ff))
3910 if (vra != 0 /* Decimal Convert To Signed Quadword */
3911 && vra != 2 /* Decimal Convert From Signed Quadword */
3912 && vra != 4 /* Decimal Convert To Zoned */
3913 && vra != 5 /* Decimal Convert To National */
3914 && vra != 6 /* Decimal Convert From Zoned */
3915 && vra != 7 /* Decimal Convert From National */
3916 && vra != 31) /* Decimal Set Sign */
3918 /* 5.16 Decimal Integer Arithmetic Instructions */
3919 case 1: /* Decimal Add Modulo */
3920 case 65: /* Decimal Subtract Modulo */
3922 case 193: /* Decimal Shift */
3923 case 129: /* Decimal Unsigned Shift */
3924 case 449: /* Decimal Shift and Round */
3926 case 257: /* Decimal Truncate */
3927 case 321: /* Decimal Unsigned Truncate */
3929 /* Bit-21 should be set. */
3930 if (!PPC_BIT (insn, 21))
3933 record_full_arch_list_add_reg (regcache,
3934 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3935 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3939 /* Bit-21 is used for RC */
3940 switch (ext & 0x3ff)
3942 case 6: /* Vector Compare Equal To Unsigned Byte */
3943 case 70: /* Vector Compare Equal To Unsigned Halfword */
3944 case 134: /* Vector Compare Equal To Unsigned Word */
3945 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3946 case 774: /* Vector Compare Greater Than Signed Byte */
3947 case 838: /* Vector Compare Greater Than Signed Halfword */
3948 case 902: /* Vector Compare Greater Than Signed Word */
3949 case 967: /* Vector Compare Greater Than Signed Doubleword */
3950 case 518: /* Vector Compare Greater Than Unsigned Byte */
3951 case 646: /* Vector Compare Greater Than Unsigned Word */
3952 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3953 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3954 case 966: /* Vector Compare Bounds Single-Precision */
3955 case 198: /* Vector Compare Equal To Single-Precision */
3956 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3957 case 710: /* Vector Compare Greater Than Single-Precision */
3958 case 7: /* Vector Compare Not Equal Byte */
3959 case 71: /* Vector Compare Not Equal Halfword */
3960 case 135: /* Vector Compare Not Equal Word */
3961 case 263: /* Vector Compare Not Equal or Zero Byte */
3962 case 327: /* Vector Compare Not Equal or Zero Halfword */
3963 case 391: /* Vector Compare Not Equal or Zero Word */
3965 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3966 record_full_arch_list_add_reg (regcache,
3967 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3975 case 0: /* Vector Count Leading Zero Least-Significant Bits
3977 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3979 record_full_arch_list_add_reg (regcache,
3980 tdep->ppc_gp0_regnum + PPC_RT (insn));
3983 case 6: /* Vector Negate Word */
3984 case 7: /* Vector Negate Doubleword */
3985 case 8: /* Vector Parity Byte Word */
3986 case 9: /* Vector Parity Byte Doubleword */
3987 case 10: /* Vector Parity Byte Quadword */
3988 case 16: /* Vector Extend Sign Byte To Word */
3989 case 17: /* Vector Extend Sign Halfword To Word */
3990 case 24: /* Vector Extend Sign Byte To Doubleword */
3991 case 25: /* Vector Extend Sign Halfword To Doubleword */
3992 case 26: /* Vector Extend Sign Word To Doubleword */
3993 case 28: /* Vector Count Trailing Zeros Byte */
3994 case 29: /* Vector Count Trailing Zeros Halfword */
3995 case 30: /* Vector Count Trailing Zeros Word */
3996 case 31: /* Vector Count Trailing Zeros Doubleword */
3997 record_full_arch_list_add_reg (regcache,
3998 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4005 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4006 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4007 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4008 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4009 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4010 case 462: /* Vector Pack Signed Word Signed Saturate */
4011 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4012 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4013 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4014 case 512: /* Vector Add Unsigned Byte Saturate */
4015 case 576: /* Vector Add Unsigned Halfword Saturate */
4016 case 640: /* Vector Add Unsigned Word Saturate */
4017 case 768: /* Vector Add Signed Byte Saturate */
4018 case 832: /* Vector Add Signed Halfword Saturate */
4019 case 896: /* Vector Add Signed Word Saturate */
4020 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4021 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4022 case 1664: /* Vector Subtract Unsigned Word Saturate */
4023 case 1792: /* Vector Subtract Signed Byte Saturate */
4024 case 1856: /* Vector Subtract Signed Halfword Saturate */
4025 case 1920: /* Vector Subtract Signed Word Saturate */
4027 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4028 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4029 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4030 case 1672: /* Vector Sum across Half Signed Word Saturate */
4031 case 1928: /* Vector Sum across Signed Word Saturate */
4032 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4033 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4034 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4036 case 12: /* Vector Merge High Byte */
4037 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4038 case 76: /* Vector Merge High Halfword */
4039 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4040 case 140: /* Vector Merge High Word */
4041 case 268: /* Vector Merge Low Byte */
4042 case 332: /* Vector Merge Low Halfword */
4043 case 396: /* Vector Merge Low Word */
4044 case 526: /* Vector Unpack High Signed Byte */
4045 case 590: /* Vector Unpack High Signed Halfword */
4046 case 654: /* Vector Unpack Low Signed Byte */
4047 case 718: /* Vector Unpack Low Signed Halfword */
4048 case 782: /* Vector Pack Pixel */
4049 case 846: /* Vector Unpack High Pixel */
4050 case 974: /* Vector Unpack Low Pixel */
4051 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4052 case 1614: /* Vector Unpack High Signed Word */
4053 case 1676: /* Vector Merge Odd Word */
4054 case 1742: /* Vector Unpack Low Signed Word */
4055 case 1932: /* Vector Merge Even Word */
4056 case 524: /* Vector Splat Byte */
4057 case 588: /* Vector Splat Halfword */
4058 case 652: /* Vector Splat Word */
4059 case 780: /* Vector Splat Immediate Signed Byte */
4060 case 844: /* Vector Splat Immediate Signed Halfword */
4061 case 908: /* Vector Splat Immediate Signed Word */
4062 case 452: /* Vector Shift Left */
4063 case 708: /* Vector Shift Right */
4064 case 1036: /* Vector Shift Left by Octet */
4065 case 1100: /* Vector Shift Right by Octet */
4066 case 0: /* Vector Add Unsigned Byte Modulo */
4067 case 64: /* Vector Add Unsigned Halfword Modulo */
4068 case 128: /* Vector Add Unsigned Word Modulo */
4069 case 192: /* Vector Add Unsigned Doubleword Modulo */
4070 case 256: /* Vector Add Unsigned Quadword Modulo */
4071 case 320: /* Vector Add & write Carry Unsigned Quadword */
4072 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4073 case 8: /* Vector Multiply Odd Unsigned Byte */
4074 case 72: /* Vector Multiply Odd Unsigned Halfword */
4075 case 136: /* Vector Multiply Odd Unsigned Word */
4076 case 264: /* Vector Multiply Odd Signed Byte */
4077 case 328: /* Vector Multiply Odd Signed Halfword */
4078 case 392: /* Vector Multiply Odd Signed Word */
4079 case 520: /* Vector Multiply Even Unsigned Byte */
4080 case 584: /* Vector Multiply Even Unsigned Halfword */
4081 case 648: /* Vector Multiply Even Unsigned Word */
4082 case 776: /* Vector Multiply Even Signed Byte */
4083 case 840: /* Vector Multiply Even Signed Halfword */
4084 case 904: /* Vector Multiply Even Signed Word */
4085 case 137: /* Vector Multiply Unsigned Word Modulo */
4086 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4087 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4088 case 1152: /* Vector Subtract Unsigned Word Modulo */
4089 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4090 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4091 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4092 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4093 case 1282: /* Vector Average Signed Byte */
4094 case 1346: /* Vector Average Signed Halfword */
4095 case 1410: /* Vector Average Signed Word */
4096 case 1026: /* Vector Average Unsigned Byte */
4097 case 1090: /* Vector Average Unsigned Halfword */
4098 case 1154: /* Vector Average Unsigned Word */
4099 case 258: /* Vector Maximum Signed Byte */
4100 case 322: /* Vector Maximum Signed Halfword */
4101 case 386: /* Vector Maximum Signed Word */
4102 case 450: /* Vector Maximum Signed Doubleword */
4103 case 2: /* Vector Maximum Unsigned Byte */
4104 case 66: /* Vector Maximum Unsigned Halfword */
4105 case 130: /* Vector Maximum Unsigned Word */
4106 case 194: /* Vector Maximum Unsigned Doubleword */
4107 case 770: /* Vector Minimum Signed Byte */
4108 case 834: /* Vector Minimum Signed Halfword */
4109 case 898: /* Vector Minimum Signed Word */
4110 case 962: /* Vector Minimum Signed Doubleword */
4111 case 514: /* Vector Minimum Unsigned Byte */
4112 case 578: /* Vector Minimum Unsigned Halfword */
4113 case 642: /* Vector Minimum Unsigned Word */
4114 case 706: /* Vector Minimum Unsigned Doubleword */
4115 case 1028: /* Vector Logical AND */
4116 case 1668: /* Vector Logical Equivalent */
4117 case 1092: /* Vector Logical AND with Complement */
4118 case 1412: /* Vector Logical NAND */
4119 case 1348: /* Vector Logical OR with Complement */
4120 case 1156: /* Vector Logical OR */
4121 case 1284: /* Vector Logical NOR */
4122 case 1220: /* Vector Logical XOR */
4123 case 4: /* Vector Rotate Left Byte */
4124 case 132: /* Vector Rotate Left Word VX-form */
4125 case 68: /* Vector Rotate Left Halfword */
4126 case 196: /* Vector Rotate Left Doubleword */
4127 case 260: /* Vector Shift Left Byte */
4128 case 388: /* Vector Shift Left Word */
4129 case 324: /* Vector Shift Left Halfword */
4130 case 1476: /* Vector Shift Left Doubleword */
4131 case 516: /* Vector Shift Right Byte */
4132 case 644: /* Vector Shift Right Word */
4133 case 580: /* Vector Shift Right Halfword */
4134 case 1732: /* Vector Shift Right Doubleword */
4135 case 772: /* Vector Shift Right Algebraic Byte */
4136 case 900: /* Vector Shift Right Algebraic Word */
4137 case 836: /* Vector Shift Right Algebraic Halfword */
4138 case 964: /* Vector Shift Right Algebraic Doubleword */
4139 case 10: /* Vector Add Single-Precision */
4140 case 74: /* Vector Subtract Single-Precision */
4141 case 1034: /* Vector Maximum Single-Precision */
4142 case 1098: /* Vector Minimum Single-Precision */
4143 case 842: /* Vector Convert From Signed Fixed-Point Word */
4144 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4145 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4146 case 522: /* Vector Round to Single-Precision Integer Nearest */
4147 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4148 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4149 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4150 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4151 case 266: /* Vector Reciprocal Estimate Single-Precision */
4152 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4153 case 1288: /* Vector AES Cipher */
4154 case 1289: /* Vector AES Cipher Last */
4155 case 1352: /* Vector AES Inverse Cipher */
4156 case 1353: /* Vector AES Inverse Cipher Last */
4157 case 1480: /* Vector AES SubBytes */
4158 case 1730: /* Vector SHA-512 Sigma Doubleword */
4159 case 1666: /* Vector SHA-256 Sigma Word */
4160 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4161 case 1160: /* Vector Polynomial Multiply-Sum Word */
4162 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4163 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4164 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4165 case 1794: /* Vector Count Leading Zeros Byte */
4166 case 1858: /* Vector Count Leading Zeros Halfword */
4167 case 1922: /* Vector Count Leading Zeros Word */
4168 case 1986: /* Vector Count Leading Zeros Doubleword */
4169 case 1795: /* Vector Population Count Byte */
4170 case 1859: /* Vector Population Count Halfword */
4171 case 1923: /* Vector Population Count Word */
4172 case 1987: /* Vector Population Count Doubleword */
4173 case 1356: /* Vector Bit Permute Quadword */
4174 case 1484: /* Vector Bit Permute Doubleword */
4175 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4176 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4178 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4179 case 65: /* Vector Multiply-by-10 Extended & write Carry
4180 Unsigned Quadword */
4181 case 1027: /* Vector Absolute Difference Unsigned Byte */
4182 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4183 case 1155: /* Vector Absolute Difference Unsigned Word */
4184 case 1796: /* Vector Shift Right Variable */
4185 case 1860: /* Vector Shift Left Variable */
4186 case 133: /* Vector Rotate Left Word then Mask Insert */
4187 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4188 case 389: /* Vector Rotate Left Word then AND with Mask */
4189 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4190 case 525: /* Vector Extract Unsigned Byte */
4191 case 589: /* Vector Extract Unsigned Halfword */
4192 case 653: /* Vector Extract Unsigned Word */
4193 case 717: /* Vector Extract Doubleword */
4194 case 781: /* Vector Insert Byte */
4195 case 845: /* Vector Insert Halfword */
4196 case 909: /* Vector Insert Word */
4197 case 973: /* Vector Insert Doubleword */
4198 record_full_arch_list_add_reg (regcache,
4199 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4202 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4203 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4204 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4205 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4206 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4207 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4208 record_full_arch_list_add_reg (regcache,
4209 tdep->ppc_gp0_regnum + PPC_RT (insn));
4212 case 1604: /* Move To Vector Status and Control Register */
4213 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4215 case 1540: /* Move From Vector Status and Control Register */
4216 record_full_arch_list_add_reg (regcache,
4217 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4219 case 833: /* Decimal Copy Sign */
4220 record_full_arch_list_add_reg (regcache,
4221 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4222 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4226 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4227 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4231 /* Parse and record instructions of primary opcode-19 at ADDR.
4232 Return 0 if successful. */
4235 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4236 CORE_ADDR addr, uint32_t insn)
4238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4239 int ext = PPC_EXTOP (insn);
4241 switch (ext & 0x01f)
4243 case 2: /* Add PC Immediate Shifted */
4244 record_full_arch_list_add_reg (regcache,
4245 tdep->ppc_gp0_regnum + PPC_RT (insn));
4251 case 0: /* Move Condition Register Field */
4252 case 33: /* Condition Register NOR */
4253 case 129: /* Condition Register AND with Complement */
4254 case 193: /* Condition Register XOR */
4255 case 225: /* Condition Register NAND */
4256 case 257: /* Condition Register AND */
4257 case 289: /* Condition Register Equivalent */
4258 case 417: /* Condition Register OR with Complement */
4259 case 449: /* Condition Register OR */
4260 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4263 case 16: /* Branch Conditional */
4264 case 560: /* Branch Conditional to Branch Target Address Register */
4265 if ((PPC_BO (insn) & 0x4) == 0)
4266 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4268 case 528: /* Branch Conditional to Count Register */
4270 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4273 case 150: /* Instruction Synchronize */
4278 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4279 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4283 /* Parse and record instructions of primary opcode-31 at ADDR.
4284 Return 0 if successful. */
4287 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4288 CORE_ADDR addr, uint32_t insn)
4290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4291 int ext = PPC_EXTOP (insn);
4293 CORE_ADDR at_dcsz, ea = 0;
4294 ULONGEST rb, ra, xer;
4297 /* These instructions have OE bit. */
4298 switch (ext & 0x1ff)
4300 /* These write RT and XER. Update CR if RC is set. */
4301 case 8: /* Subtract from carrying */
4302 case 10: /* Add carrying */
4303 case 136: /* Subtract from extended */
4304 case 138: /* Add extended */
4305 case 200: /* Subtract from zero extended */
4306 case 202: /* Add to zero extended */
4307 case 232: /* Subtract from minus one extended */
4308 case 234: /* Add to minus one extended */
4309 /* CA is always altered, but SO/OV are only altered when OE=1.
4310 In any case, XER is always altered. */
4311 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4313 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4314 record_full_arch_list_add_reg (regcache,
4315 tdep->ppc_gp0_regnum + PPC_RT (insn));
4318 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4319 case 40: /* Subtract from */
4320 case 104: /* Negate */
4321 case 233: /* Multiply low doubleword */
4322 case 235: /* Multiply low word */
4324 case 393: /* Divide Doubleword Extended Unsigned */
4325 case 395: /* Divide Word Extended Unsigned */
4326 case 425: /* Divide Doubleword Extended */
4327 case 427: /* Divide Word Extended */
4328 case 457: /* Divide Doubleword Unsigned */
4329 case 459: /* Divide Word Unsigned */
4330 case 489: /* Divide Doubleword */
4331 case 491: /* Divide Word */
4333 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4335 case 9: /* Multiply High Doubleword Unsigned */
4336 case 11: /* Multiply High Word Unsigned */
4337 case 73: /* Multiply High Doubleword */
4338 case 75: /* Multiply High Word */
4340 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4341 record_full_arch_list_add_reg (regcache,
4342 tdep->ppc_gp0_regnum + PPC_RT (insn));
4346 if ((ext & 0x1f) == 15)
4348 /* Integer Select. bit[16:20] is used for BC. */
4349 record_full_arch_list_add_reg (regcache,
4350 tdep->ppc_gp0_regnum + PPC_RT (insn));
4354 if ((ext & 0xff) == 170)
4356 /* Add Extended using alternate carry bits */
4357 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4358 record_full_arch_list_add_reg (regcache,
4359 tdep->ppc_gp0_regnum + PPC_RT (insn));
4365 case 78: /* Determine Leftmost Zero Byte */
4367 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4368 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4369 record_full_arch_list_add_reg (regcache,
4370 tdep->ppc_gp0_regnum + PPC_RT (insn));
4373 /* These only write RT. */
4374 case 19: /* Move from condition register */
4375 /* Move From One Condition Register Field */
4376 case 74: /* Add and Generate Sixes */
4377 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4378 case 302: /* Move From Branch History Rolling Buffer */
4379 case 339: /* Move From Special Purpose Register */
4380 case 371: /* Move From Time Base [Phased-Out] */
4381 case 309: /* Load Doubleword Monitored Indexed */
4382 case 128: /* Set Boolean */
4383 case 755: /* Deliver A Random Number */
4384 record_full_arch_list_add_reg (regcache,
4385 tdep->ppc_gp0_regnum + PPC_RT (insn));
4388 /* These only write to RA. */
4389 case 51: /* Move From VSR Doubleword */
4390 case 115: /* Move From VSR Word and Zero */
4391 case 122: /* Population count bytes */
4392 case 378: /* Population count words */
4393 case 506: /* Population count doublewords */
4394 case 154: /* Parity Word */
4395 case 186: /* Parity Doubleword */
4396 case 252: /* Bit Permute Doubleword */
4397 case 282: /* Convert Declets To Binary Coded Decimal */
4398 case 314: /* Convert Binary Coded Decimal To Declets */
4399 case 508: /* Compare bytes */
4400 case 307: /* Move From VSR Lower Doubleword */
4401 record_full_arch_list_add_reg (regcache,
4402 tdep->ppc_gp0_regnum + PPC_RA (insn));
4405 /* These write CR and optional RA. */
4406 case 792: /* Shift Right Algebraic Word */
4407 case 794: /* Shift Right Algebraic Doubleword */
4408 case 824: /* Shift Right Algebraic Word Immediate */
4409 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4410 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4411 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4412 record_full_arch_list_add_reg (regcache,
4413 tdep->ppc_gp0_regnum + PPC_RA (insn));
4415 case 0: /* Compare */
4416 case 32: /* Compare logical */
4417 case 144: /* Move To Condition Register Fields */
4418 /* Move To One Condition Register Field */
4419 case 192: /* Compare Ranged Byte */
4420 case 224: /* Compare Equal Byte */
4421 case 576: /* Move XER to CR Extended */
4422 case 902: /* Paste (should always fail due to single-stepping and
4423 the memory location might not be accessible, so
4425 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4428 /* These write to RT. Update RA if 'update indexed.' */
4429 case 53: /* Load Doubleword with Update Indexed */
4430 case 119: /* Load Byte and Zero with Update Indexed */
4431 case 311: /* Load Halfword and Zero with Update Indexed */
4432 case 55: /* Load Word and Zero with Update Indexed */
4433 case 375: /* Load Halfword Algebraic with Update Indexed */
4434 case 373: /* Load Word Algebraic with Update Indexed */
4435 record_full_arch_list_add_reg (regcache,
4436 tdep->ppc_gp0_regnum + PPC_RA (insn));
4438 case 21: /* Load Doubleword Indexed */
4439 case 52: /* Load Byte And Reserve Indexed */
4440 case 116: /* Load Halfword And Reserve Indexed */
4441 case 20: /* Load Word And Reserve Indexed */
4442 case 84: /* Load Doubleword And Reserve Indexed */
4443 case 87: /* Load Byte and Zero Indexed */
4444 case 279: /* Load Halfword and Zero Indexed */
4445 case 23: /* Load Word and Zero Indexed */
4446 case 343: /* Load Halfword Algebraic Indexed */
4447 case 341: /* Load Word Algebraic Indexed */
4448 case 790: /* Load Halfword Byte-Reverse Indexed */
4449 case 534: /* Load Word Byte-Reverse Indexed */
4450 case 532: /* Load Doubleword Byte-Reverse Indexed */
4451 case 582: /* Load Word Atomic */
4452 case 614: /* Load Doubleword Atomic */
4453 case 265: /* Modulo Unsigned Doubleword */
4454 case 777: /* Modulo Signed Doubleword */
4455 case 267: /* Modulo Unsigned Word */
4456 case 779: /* Modulo Signed Word */
4457 record_full_arch_list_add_reg (regcache,
4458 tdep->ppc_gp0_regnum + PPC_RT (insn));
4461 case 597: /* Load String Word Immediate */
4462 case 533: /* Load String Word Indexed */
4471 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4472 nr = PPC_XER_NB (xer);
4477 /* If n=0, the contents of register RT are undefined. */
4481 for (i = 0; i < nr; i++)
4482 record_full_arch_list_add_reg (regcache,
4483 tdep->ppc_gp0_regnum
4484 + ((PPC_RT (insn) + i) & 0x1f));
4487 case 276: /* Load Quadword And Reserve Indexed */
4488 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4489 record_full_arch_list_add_reg (regcache, tmp);
4490 record_full_arch_list_add_reg (regcache, tmp + 1);
4493 /* These write VRT. */
4494 case 6: /* Load Vector for Shift Left Indexed */
4495 case 38: /* Load Vector for Shift Right Indexed */
4496 case 7: /* Load Vector Element Byte Indexed */
4497 case 39: /* Load Vector Element Halfword Indexed */
4498 case 71: /* Load Vector Element Word Indexed */
4499 case 103: /* Load Vector Indexed */
4500 case 359: /* Load Vector Indexed LRU */
4501 record_full_arch_list_add_reg (regcache,
4502 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4505 /* These write FRT. Update RA if 'update indexed.' */
4506 case 567: /* Load Floating-Point Single with Update Indexed */
4507 case 631: /* Load Floating-Point Double with Update Indexed */
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum + PPC_RA (insn));
4511 case 535: /* Load Floating-Point Single Indexed */
4512 case 599: /* Load Floating-Point Double Indexed */
4513 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4514 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4515 record_full_arch_list_add_reg (regcache,
4516 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4519 case 791: /* Load Floating-Point Double Pair Indexed */
4520 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4521 record_full_arch_list_add_reg (regcache, tmp);
4522 record_full_arch_list_add_reg (regcache, tmp + 1);
4525 case 179: /* Move To VSR Doubleword */
4526 case 211: /* Move To VSR Word Algebraic */
4527 case 243: /* Move To VSR Word and Zero */
4528 case 588: /* Load VSX Scalar Doubleword Indexed */
4529 case 524: /* Load VSX Scalar Single-Precision Indexed */
4530 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4531 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4532 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4533 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4534 case 780: /* Load VSX Vector Word*4 Indexed */
4535 case 268: /* Load VSX Vector Indexed */
4536 case 364: /* Load VSX Vector Word & Splat Indexed */
4537 case 812: /* Load VSX Vector Halfword*8 Indexed */
4538 case 876: /* Load VSX Vector Byte*16 Indexed */
4539 case 269: /* Load VSX Vector with Length */
4540 case 301: /* Load VSX Vector Left-justified with Length */
4541 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4542 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4543 case 403: /* Move To VSR Word & Splat */
4544 case 435: /* Move To VSR Double Doubleword */
4545 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4548 /* These write RA. Update CR if RC is set. */
4549 case 24: /* Shift Left Word */
4550 case 26: /* Count Leading Zeros Word */
4551 case 27: /* Shift Left Doubleword */
4553 case 58: /* Count Leading Zeros Doubleword */
4554 case 60: /* AND with Complement */
4556 case 284: /* Equivalent */
4558 case 476: /* NAND */
4559 case 412: /* OR with Complement */
4561 case 536: /* Shift Right Word */
4562 case 539: /* Shift Right Doubleword */
4563 case 922: /* Extend Sign Halfword */
4564 case 954: /* Extend Sign Byte */
4565 case 986: /* Extend Sign Word */
4566 case 538: /* Count Trailing Zeros Word */
4567 case 570: /* Count Trailing Zeros Doubleword */
4568 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4569 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4571 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4572 record_full_arch_list_add_reg (regcache,
4573 tdep->ppc_gp0_regnum + PPC_RA (insn));
4577 case 181: /* Store Doubleword with Update Indexed */
4578 case 183: /* Store Word with Update Indexed */
4579 case 247: /* Store Byte with Update Indexed */
4580 case 439: /* Store Half Word with Update Indexed */
4581 case 695: /* Store Floating-Point Single with Update Indexed */
4582 case 759: /* Store Floating-Point Double with Update Indexed */
4583 record_full_arch_list_add_reg (regcache,
4584 tdep->ppc_gp0_regnum + PPC_RA (insn));
4586 case 135: /* Store Vector Element Byte Indexed */
4587 case 167: /* Store Vector Element Halfword Indexed */
4588 case 199: /* Store Vector Element Word Indexed */
4589 case 231: /* Store Vector Indexed */
4590 case 487: /* Store Vector Indexed LRU */
4591 case 716: /* Store VSX Scalar Doubleword Indexed */
4592 case 140: /* Store VSX Scalar as Integer Word Indexed */
4593 case 652: /* Store VSX Scalar Single-Precision Indexed */
4594 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4595 case 908: /* Store VSX Vector Word*4 Indexed */
4596 case 149: /* Store Doubleword Indexed */
4597 case 151: /* Store Word Indexed */
4598 case 215: /* Store Byte Indexed */
4599 case 407: /* Store Half Word Indexed */
4600 case 694: /* Store Byte Conditional Indexed */
4601 case 726: /* Store Halfword Conditional Indexed */
4602 case 150: /* Store Word Conditional Indexed */
4603 case 214: /* Store Doubleword Conditional Indexed */
4604 case 182: /* Store Quadword Conditional Indexed */
4605 case 662: /* Store Word Byte-Reverse Indexed */
4606 case 918: /* Store Halfword Byte-Reverse Indexed */
4607 case 660: /* Store Doubleword Byte-Reverse Indexed */
4608 case 663: /* Store Floating-Point Single Indexed */
4609 case 727: /* Store Floating-Point Double Indexed */
4610 case 919: /* Store Floating-Point Double Pair Indexed */
4611 case 983: /* Store Floating-Point as Integer Word Indexed */
4612 case 396: /* Store VSX Vector Indexed */
4613 case 940: /* Store VSX Vector Halfword*8 Indexed */
4614 case 1004: /* Store VSX Vector Byte*16 Indexed */
4615 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4616 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4617 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4621 if (PPC_RA (insn) != 0)
4622 regcache_raw_read_unsigned (regcache,
4623 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4624 regcache_raw_read_unsigned (regcache,
4625 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4630 case 183: /* Store Word with Update Indexed */
4631 case 199: /* Store Vector Element Word Indexed */
4632 case 140: /* Store VSX Scalar as Integer Word Indexed */
4633 case 652: /* Store VSX Scalar Single-Precision Indexed */
4634 case 151: /* Store Word Indexed */
4635 case 150: /* Store Word Conditional Indexed */
4636 case 662: /* Store Word Byte-Reverse Indexed */
4637 case 663: /* Store Floating-Point Single Indexed */
4638 case 695: /* Store Floating-Point Single with Update Indexed */
4639 case 983: /* Store Floating-Point as Integer Word Indexed */
4642 case 247: /* Store Byte with Update Indexed */
4643 case 135: /* Store Vector Element Byte Indexed */
4644 case 215: /* Store Byte Indexed */
4645 case 694: /* Store Byte Conditional Indexed */
4646 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4649 case 439: /* Store Halfword with Update Indexed */
4650 case 167: /* Store Vector Element Halfword Indexed */
4651 case 407: /* Store Halfword Indexed */
4652 case 726: /* Store Halfword Conditional Indexed */
4653 case 918: /* Store Halfword Byte-Reverse Indexed */
4654 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4657 case 181: /* Store Doubleword with Update Indexed */
4658 case 716: /* Store VSX Scalar Doubleword Indexed */
4659 case 149: /* Store Doubleword Indexed */
4660 case 214: /* Store Doubleword Conditional Indexed */
4661 case 660: /* Store Doubleword Byte-Reverse Indexed */
4662 case 727: /* Store Floating-Point Double Indexed */
4663 case 759: /* Store Floating-Point Double with Update Indexed */
4666 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4667 case 908: /* Store VSX Vector Word*4 Indexed */
4668 case 182: /* Store Quadword Conditional Indexed */
4669 case 231: /* Store Vector Indexed */
4670 case 487: /* Store Vector Indexed LRU */
4671 case 919: /* Store Floating-Point Double Pair Indexed */
4672 case 396: /* Store VSX Vector Indexed */
4673 case 940: /* Store VSX Vector Halfword*8 Indexed */
4674 case 1004: /* Store VSX Vector Byte*16 Indexed */
4681 /* Align address for Store Vector instructions. */
4684 case 167: /* Store Vector Element Halfword Indexed */
4685 addr = addr & ~0x1ULL;
4688 case 199: /* Store Vector Element Word Indexed */
4689 addr = addr & ~0x3ULL;
4692 case 231: /* Store Vector Indexed */
4693 case 487: /* Store Vector Indexed LRU */
4694 addr = addr & ~0xfULL;
4698 record_full_arch_list_add_mem (addr, size);
4701 case 397: /* Store VSX Vector with Length */
4702 case 429: /* Store VSX Vector Left-justified with Length */
4703 if (PPC_RA (insn) != 0)
4704 regcache_raw_read_unsigned (regcache,
4705 tdep->ppc_gp0_regnum + PPC_RA (insn), &ea);
4706 regcache_raw_read_unsigned (regcache,
4707 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4708 /* Store up to 16 bytes. */
4709 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4711 record_full_arch_list_add_mem (ea, nb);
4714 case 710: /* Store Word Atomic */
4715 case 742: /* Store Doubleword Atomic */
4716 if (PPC_RA (insn) != 0)
4717 regcache_raw_read_unsigned (regcache,
4718 tdep->ppc_gp0_regnum + PPC_RA (insn), &ea);
4721 case 710: /* Store Word Atomic */
4724 case 742: /* Store Doubleword Atomic */
4730 record_full_arch_list_add_mem (ea, size);
4733 case 725: /* Store String Word Immediate */
4735 if (PPC_RA (insn) != 0)
4736 regcache_raw_read_unsigned (regcache,
4737 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4744 record_full_arch_list_add_mem (ea, nb);
4748 case 661: /* Store String Word Indexed */
4750 if (PPC_RA (insn) != 0)
4751 regcache_raw_read_unsigned (regcache,
4752 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4755 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4756 nb = PPC_XER_NB (xer);
4760 regcache_raw_read_unsigned (regcache,
4761 tdep->ppc_gp0_regnum + PPC_RB (insn),
4764 record_full_arch_list_add_mem (ea, nb);
4769 case 467: /* Move To Special Purpose Register */
4770 switch (PPC_SPR (insn))
4773 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4776 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4779 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4781 case 256: /* VRSAVE */
4782 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4788 case 147: /* Move To Split Little Endian */
4789 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4792 case 512: /* Move to Condition Register from XER */
4793 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4794 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4797 case 4: /* Trap Word */
4798 case 68: /* Trap Doubleword */
4799 case 430: /* Clear BHRB */
4800 case 598: /* Synchronize */
4801 case 62: /* Wait for Interrupt */
4803 case 22: /* Instruction Cache Block Touch */
4804 case 854: /* Enforce In-order Execution of I/O */
4805 case 246: /* Data Cache Block Touch for Store */
4806 case 54: /* Data Cache Block Store */
4807 case 86: /* Data Cache Block Flush */
4808 case 278: /* Data Cache Block Touch */
4809 case 758: /* Data Cache Block Allocate */
4810 case 982: /* Instruction Cache Block Invalidate */
4811 case 774: /* Copy */
4812 case 838: /* CP_Abort */
4815 case 654: /* Transaction Begin */
4816 case 686: /* Transaction End */
4817 case 750: /* Transaction Suspend or Resume */
4818 case 782: /* Transaction Abort Word Conditional */
4819 case 814: /* Transaction Abort Doubleword Conditional */
4820 case 846: /* Transaction Abort Word Conditional Immediate */
4821 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4822 case 910: /* Transaction Abort */
4823 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4825 case 718: /* Transaction Check */
4826 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4829 case 1014: /* Data Cache Block set to Zero */
4830 if (target_auxv_search (¤t_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4832 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4835 if (PPC_RA (insn) != 0)
4836 regcache_raw_read_unsigned (regcache,
4837 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4838 regcache_raw_read_unsigned (regcache,
4839 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4840 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4841 record_full_arch_list_add_mem (ea, at_dcsz);
4846 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4847 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4851 /* Parse and record instructions of primary opcode-59 at ADDR.
4852 Return 0 if successful. */
4855 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4856 CORE_ADDR addr, uint32_t insn)
4858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4859 int ext = PPC_EXTOP (insn);
4863 case 18: /* Floating Divide */
4864 case 20: /* Floating Subtract */
4865 case 21: /* Floating Add */
4866 case 22: /* Floating Square Root */
4867 case 24: /* Floating Reciprocal Estimate */
4868 case 25: /* Floating Multiply */
4869 case 26: /* Floating Reciprocal Square Root Estimate */
4870 case 28: /* Floating Multiply-Subtract */
4871 case 29: /* Floating Multiply-Add */
4872 case 30: /* Floating Negative Multiply-Subtract */
4873 case 31: /* Floating Negative Multiply-Add */
4874 record_full_arch_list_add_reg (regcache,
4875 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4877 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4878 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4885 case 2: /* DFP Add */
4886 case 3: /* DFP Quantize */
4887 case 34: /* DFP Multiply */
4888 case 35: /* DFP Reround */
4889 case 67: /* DFP Quantize Immediate */
4890 case 99: /* DFP Round To FP Integer With Inexact */
4891 case 227: /* DFP Round To FP Integer Without Inexact */
4892 case 258: /* DFP Convert To DFP Long! */
4893 case 290: /* DFP Convert To Fixed */
4894 case 514: /* DFP Subtract */
4895 case 546: /* DFP Divide */
4896 case 770: /* DFP Round To DFP Short! */
4897 case 802: /* DFP Convert From Fixed */
4898 case 834: /* DFP Encode BCD To DPD */
4900 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4901 record_full_arch_list_add_reg (regcache,
4902 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4903 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4906 case 130: /* DFP Compare Ordered */
4907 case 162: /* DFP Test Exponent */
4908 case 194: /* DFP Test Data Class */
4909 case 226: /* DFP Test Data Group */
4910 case 642: /* DFP Compare Unordered */
4911 case 674: /* DFP Test Significance */
4912 case 675: /* DFP Test Significance Immediate */
4913 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4914 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4917 case 66: /* DFP Shift Significand Left Immediate */
4918 case 98: /* DFP Shift Significand Right Immediate */
4919 case 322: /* DFP Decode DPD To BCD */
4920 case 354: /* DFP Extract Biased Exponent */
4921 case 866: /* DFP Insert Biased Exponent */
4922 record_full_arch_list_add_reg (regcache,
4923 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4925 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4928 case 846: /* Floating Convert From Integer Doubleword Single */
4929 case 974: /* Floating Convert From Integer Doubleword Unsigned
4931 record_full_arch_list_add_reg (regcache,
4932 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4934 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4935 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4940 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4941 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4945 /* Parse and record instructions of primary opcode-60 at ADDR.
4946 Return 0 if successful. */
4949 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4950 CORE_ADDR addr, uint32_t insn)
4952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4953 int ext = PPC_EXTOP (insn);
4957 case 0: /* VSX Scalar Add Single-Precision */
4958 case 32: /* VSX Scalar Add Double-Precision */
4959 case 24: /* VSX Scalar Divide Single-Precision */
4960 case 56: /* VSX Scalar Divide Double-Precision */
4961 case 176: /* VSX Scalar Copy Sign Double-Precision */
4962 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4963 case 41: /* ditto */
4964 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4966 case 160: /* VSX Scalar Maximum Double-Precision */
4967 case 168: /* VSX Scalar Minimum Double-Precision */
4968 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4969 case 57: /* ditto */
4970 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4971 case 25: /* ditto */
4972 case 48: /* VSX Scalar Multiply Double-Precision */
4973 case 16: /* VSX Scalar Multiply Single-Precision */
4974 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4975 case 169: /* ditto */
4976 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4977 case 137: /* ditto */
4978 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4979 case 185: /* ditto */
4980 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4981 case 153: /* ditto */
4982 case 40: /* VSX Scalar Subtract Double-Precision */
4983 case 8: /* VSX Scalar Subtract Single-Precision */
4984 case 96: /* VSX Vector Add Double-Precision */
4985 case 64: /* VSX Vector Add Single-Precision */
4986 case 120: /* VSX Vector Divide Double-Precision */
4987 case 88: /* VSX Vector Divide Single-Precision */
4988 case 97: /* VSX Vector Multiply-Add Double-Precision */
4989 case 105: /* ditto */
4990 case 65: /* VSX Vector Multiply-Add Single-Precision */
4991 case 73: /* ditto */
4992 case 224: /* VSX Vector Maximum Double-Precision */
4993 case 192: /* VSX Vector Maximum Single-Precision */
4994 case 232: /* VSX Vector Minimum Double-Precision */
4995 case 200: /* VSX Vector Minimum Single-Precision */
4996 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4997 case 121: /* ditto */
4998 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4999 case 89: /* ditto */
5000 case 112: /* VSX Vector Multiply Double-Precision */
5001 case 80: /* VSX Vector Multiply Single-Precision */
5002 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5003 case 233: /* ditto */
5004 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5005 case 201: /* ditto */
5006 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5007 case 249: /* ditto */
5008 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5009 case 217: /* ditto */
5010 case 104: /* VSX Vector Subtract Double-Precision */
5011 case 72: /* VSX Vector Subtract Single-Precision */
5012 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5013 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5014 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5015 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5016 case 3: /* VSX Scalar Compare Equal Double-Precision */
5017 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5018 case 19: /* VSX Scalar Compare Greater Than or Equal
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5022 case 240: /* VSX Vector Copy Sign Double-Precision */
5023 case 208: /* VSX Vector Copy Sign Single-Precision */
5024 case 130: /* VSX Logical AND */
5025 case 138: /* VSX Logical AND with Complement */
5026 case 186: /* VSX Logical Equivalence */
5027 case 178: /* VSX Logical NAND */
5028 case 170: /* VSX Logical OR with Complement */
5029 case 162: /* VSX Logical NOR */
5030 case 146: /* VSX Logical OR */
5031 case 154: /* VSX Logical XOR */
5032 case 18: /* VSX Merge High Word */
5033 case 50: /* VSX Merge Low Word */
5034 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5035 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5036 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5037 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5038 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5039 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5040 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5041 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5042 case 216: /* VSX Vector Insert Exponent Single-Precision */
5043 case 248: /* VSX Vector Insert Exponent Double-Precision */
5044 case 26: /* VSX Vector Permute */
5045 case 58: /* VSX Vector Permute Right-indexed */
5046 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5047 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5048 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5049 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5050 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5053 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5054 case 125: /* VSX Vector Test for software Divide Double-Precision */
5055 case 93: /* VSX Vector Test for software Divide Single-Precision */
5056 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5059 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5060 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5061 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5062 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5063 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5067 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5069 case 99: /* VSX Vector Compare Equal To Double-Precision */
5070 case 67: /* VSX Vector Compare Equal To Single-Precision */
5071 case 115: /* VSX Vector Compare Greater Than or
5072 Equal To Double-Precision */
5073 case 83: /* VSX Vector Compare Greater Than or
5074 Equal To Single-Precision */
5075 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5076 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5078 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5079 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5080 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5086 case 265: /* VSX Scalar round Double-Precision to
5087 Single-Precision and Convert to
5088 Single-Precision format */
5089 case 344: /* VSX Scalar truncate Double-Precision to
5090 Integer and Convert to Signed Integer
5091 Doubleword format with Saturate */
5092 case 88: /* VSX Scalar truncate Double-Precision to
5093 Integer and Convert to Signed Integer Word
5094 Format with Saturate */
5095 case 328: /* VSX Scalar truncate Double-Precision integer
5096 and Convert to Unsigned Integer Doubleword
5097 Format with Saturate */
5098 case 72: /* VSX Scalar truncate Double-Precision to
5099 Integer and Convert to Unsigned Integer Word
5100 Format with Saturate */
5101 case 329: /* VSX Scalar Convert Single-Precision to
5102 Double-Precision format */
5103 case 376: /* VSX Scalar Convert Signed Integer
5104 Doubleword to floating-point format and
5105 Round to Double-Precision format */
5106 case 312: /* VSX Scalar Convert Signed Integer
5107 Doubleword to floating-point format and
5108 round to Single-Precision */
5109 case 360: /* VSX Scalar Convert Unsigned Integer
5110 Doubleword to floating-point format and
5111 Round to Double-Precision format */
5112 case 296: /* VSX Scalar Convert Unsigned Integer
5113 Doubleword to floating-point format and
5114 Round to Single-Precision */
5115 case 73: /* VSX Scalar Round to Double-Precision Integer
5116 Using Round to Nearest Away */
5117 case 107: /* VSX Scalar Round to Double-Precision Integer
5118 Exact using Current rounding mode */
5119 case 121: /* VSX Scalar Round to Double-Precision Integer
5120 Using Round toward -Infinity */
5121 case 105: /* VSX Scalar Round to Double-Precision Integer
5122 Using Round toward +Infinity */
5123 case 89: /* VSX Scalar Round to Double-Precision Integer
5124 Using Round toward Zero */
5125 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5126 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5127 case 281: /* VSX Scalar Round to Single-Precision */
5128 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5130 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5132 case 75: /* VSX Scalar Square Root Double-Precision */
5133 case 11: /* VSX Scalar Square Root Single-Precision */
5134 case 393: /* VSX Vector round Double-Precision to
5135 Single-Precision and Convert to
5136 Single-Precision format */
5137 case 472: /* VSX Vector truncate Double-Precision to
5138 Integer and Convert to Signed Integer
5139 Doubleword format with Saturate */
5140 case 216: /* VSX Vector truncate Double-Precision to
5141 Integer and Convert to Signed Integer Word
5142 Format with Saturate */
5143 case 456: /* VSX Vector truncate Double-Precision to
5144 Integer and Convert to Unsigned Integer
5145 Doubleword format with Saturate */
5146 case 200: /* VSX Vector truncate Double-Precision to
5147 Integer and Convert to Unsigned Integer Word
5148 Format with Saturate */
5149 case 457: /* VSX Vector Convert Single-Precision to
5150 Double-Precision format */
5151 case 408: /* VSX Vector truncate Single-Precision to
5152 Integer and Convert to Signed Integer
5153 Doubleword format with Saturate */
5154 case 152: /* VSX Vector truncate Single-Precision to
5155 Integer and Convert to Signed Integer Word
5156 Format with Saturate */
5157 case 392: /* VSX Vector truncate Single-Precision to
5158 Integer and Convert to Unsigned Integer
5159 Doubleword format with Saturate */
5160 case 136: /* VSX Vector truncate Single-Precision to
5161 Integer and Convert to Unsigned Integer Word
5162 Format with Saturate */
5163 case 504: /* VSX Vector Convert and round Signed Integer
5164 Doubleword to Double-Precision format */
5165 case 440: /* VSX Vector Convert and round Signed Integer
5166 Doubleword to Single-Precision format */
5167 case 248: /* VSX Vector Convert Signed Integer Word to
5168 Double-Precision format */
5169 case 184: /* VSX Vector Convert and round Signed Integer
5170 Word to Single-Precision format */
5171 case 488: /* VSX Vector Convert and round Unsigned
5172 Integer Doubleword to Double-Precision format */
5173 case 424: /* VSX Vector Convert and round Unsigned
5174 Integer Doubleword to Single-Precision format */
5175 case 232: /* VSX Vector Convert and round Unsigned
5176 Integer Word to Double-Precision format */
5177 case 168: /* VSX Vector Convert and round Unsigned
5178 Integer Word to Single-Precision format */
5179 case 201: /* VSX Vector Round to Double-Precision
5180 Integer using round to Nearest Away */
5181 case 235: /* VSX Vector Round to Double-Precision
5182 Integer Exact using Current rounding mode */
5183 case 249: /* VSX Vector Round to Double-Precision
5184 Integer using round toward -Infinity */
5185 case 233: /* VSX Vector Round to Double-Precision
5186 Integer using round toward +Infinity */
5187 case 217: /* VSX Vector Round to Double-Precision
5188 Integer using round toward Zero */
5189 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5190 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5191 case 137: /* VSX Vector Round to Single-Precision Integer
5192 Using Round to Nearest Away */
5193 case 171: /* VSX Vector Round to Single-Precision Integer
5194 Exact Using Current rounding mode */
5195 case 185: /* VSX Vector Round to Single-Precision Integer
5196 Using Round toward -Infinity */
5197 case 169: /* VSX Vector Round to Single-Precision Integer
5198 Using Round toward +Infinity */
5199 case 153: /* VSX Vector Round to Single-Precision Integer
5200 Using round toward Zero */
5201 case 202: /* VSX Vector Reciprocal Square Root Estimate
5203 case 138: /* VSX Vector Reciprocal Square Root Estimate
5205 case 203: /* VSX Vector Square Root Double-Precision */
5206 case 139: /* VSX Vector Square Root Single-Precision */
5207 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5209 case 345: /* VSX Scalar Absolute Value Double-Precision */
5210 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5211 Vector Single-Precision format Non-signalling */
5212 case 331: /* VSX Scalar Convert Single-Precision to
5213 Double-Precision format Non-signalling */
5214 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5215 case 377: /* VSX Scalar Negate Double-Precision */
5216 case 473: /* VSX Vector Absolute Value Double-Precision */
5217 case 409: /* VSX Vector Absolute Value Single-Precision */
5218 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5219 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5220 case 505: /* VSX Vector Negate Double-Precision */
5221 case 441: /* VSX Vector Negate Single-Precision */
5222 case 164: /* VSX Splat Word */
5223 case 165: /* VSX Vector Extract Unsigned Word */
5224 case 181: /* VSX Vector Insert Word */
5225 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5228 case 298: /* VSX Scalar Test Data Class Single-Precision */
5229 case 362: /* VSX Scalar Test Data Class Double-Precision */
5230 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5232 case 106: /* VSX Scalar Test for software Square Root
5234 case 234: /* VSX Vector Test for software Square Root
5236 case 170: /* VSX Vector Test for software Square Root
5238 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5242 switch (PPC_FIELD (insn, 11, 5))
5244 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5245 case 1: /* VSX Scalar Extract Significand Double-Precision */
5246 record_full_arch_list_add_reg (regcache,
5247 tdep->ppc_gp0_regnum + PPC_RT (insn));
5249 case 16: /* VSX Scalar Convert Half-Precision format to
5250 Double-Precision format */
5251 case 17: /* VSX Scalar round & Convert Double-Precision format
5252 to Half-Precision format */
5253 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5254 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5260 switch (PPC_FIELD (insn, 11, 5))
5262 case 24: /* VSX Vector Convert Half-Precision format to
5263 Single-Precision format */
5264 case 25: /* VSX Vector round and Convert Single-Precision format
5265 to Half-Precision format */
5266 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5268 case 0: /* VSX Vector Extract Exponent Double-Precision */
5269 case 1: /* VSX Vector Extract Significand Double-Precision */
5270 case 7: /* VSX Vector Byte-Reverse Halfword */
5271 case 8: /* VSX Vector Extract Exponent Single-Precision */
5272 case 9: /* VSX Vector Extract Significand Single-Precision */
5273 case 15: /* VSX Vector Byte-Reverse Word */
5274 case 23: /* VSX Vector Byte-Reverse Doubleword */
5275 case 31: /* VSX Vector Byte-Reverse Quadword */
5276 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5284 case 360: /* VSX Vector Splat Immediate Byte */
5285 if (PPC_FIELD (insn, 11, 2) == 0)
5287 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5291 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5292 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5296 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5298 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5302 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5303 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5307 /* Parse and record instructions of primary opcode-61 at ADDR.
5308 Return 0 if successful. */
5311 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5312 CORE_ADDR addr, uint32_t insn)
5314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5320 case 0: /* Store Floating-Point Double Pair */
5321 case 2: /* Store VSX Scalar Doubleword */
5322 case 3: /* Store VSX Scalar Single */
5323 if (PPC_RA (insn) != 0)
5324 regcache_raw_read_unsigned (regcache,
5325 tdep->ppc_gp0_regnum + PPC_RA (insn),
5327 ea += PPC_DS (insn) << 2;
5330 case 0: /* Store Floating-Point Double Pair */
5333 case 2: /* Store VSX Scalar Doubleword */
5336 case 3: /* Store VSX Scalar Single */
5342 record_full_arch_list_add_mem (ea, size);
5348 case 1: /* Load VSX Vector */
5349 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5351 case 5: /* Store VSX Vector */
5352 if (PPC_RA (insn) != 0)
5353 regcache_raw_read_unsigned (regcache,
5354 tdep->ppc_gp0_regnum + PPC_RA (insn),
5356 ea += PPC_DQ (insn) << 4;
5357 record_full_arch_list_add_mem (ea, 16);
5361 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5362 "at %s.\n", insn, paddress (gdbarch, addr));
5366 /* Parse and record instructions of primary opcode-63 at ADDR.
5367 Return 0 if successful. */
5370 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5371 CORE_ADDR addr, uint32_t insn)
5373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5374 int ext = PPC_EXTOP (insn);
5379 case 18: /* Floating Divide */
5380 case 20: /* Floating Subtract */
5381 case 21: /* Floating Add */
5382 case 22: /* Floating Square Root */
5383 case 24: /* Floating Reciprocal Estimate */
5384 case 25: /* Floating Multiply */
5385 case 26: /* Floating Reciprocal Square Root Estimate */
5386 case 28: /* Floating Multiply-Subtract */
5387 case 29: /* Floating Multiply-Add */
5388 case 30: /* Floating Negative Multiply-Subtract */
5389 case 31: /* Floating Negative Multiply-Add */
5390 record_full_arch_list_add_reg (regcache,
5391 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5393 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5394 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5397 case 23: /* Floating Select */
5398 record_full_arch_list_add_reg (regcache,
5399 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5401 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5407 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5408 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5410 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5411 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5417 case 2: /* DFP Add Quad */
5418 case 3: /* DFP Quantize Quad */
5419 case 34: /* DFP Multiply Quad */
5420 case 35: /* DFP Reround Quad */
5421 case 67: /* DFP Quantize Immediate Quad */
5422 case 99: /* DFP Round To FP Integer With Inexact Quad */
5423 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5424 case 258: /* DFP Convert To DFP Extended Quad */
5425 case 514: /* DFP Subtract Quad */
5426 case 546: /* DFP Divide Quad */
5427 case 770: /* DFP Round To DFP Long Quad */
5428 case 802: /* DFP Convert From Fixed Quad */
5429 case 834: /* DFP Encode BCD To DPD Quad */
5431 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5432 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5433 record_full_arch_list_add_reg (regcache, tmp);
5434 record_full_arch_list_add_reg (regcache, tmp + 1);
5435 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5438 case 130: /* DFP Compare Ordered Quad */
5439 case 162: /* DFP Test Exponent Quad */
5440 case 194: /* DFP Test Data Class Quad */
5441 case 226: /* DFP Test Data Group Quad */
5442 case 642: /* DFP Compare Unordered Quad */
5443 case 674: /* DFP Test Significance Quad */
5444 case 675: /* DFP Test Significance Immediate Quad */
5445 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5446 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5449 case 66: /* DFP Shift Significand Left Immediate Quad */
5450 case 98: /* DFP Shift Significand Right Immediate Quad */
5451 case 322: /* DFP Decode DPD To BCD Quad */
5452 case 866: /* DFP Insert Biased Exponent Quad */
5453 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5454 record_full_arch_list_add_reg (regcache, tmp);
5455 record_full_arch_list_add_reg (regcache, tmp + 1);
5457 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5460 case 290: /* DFP Convert To Fixed Quad */
5461 record_full_arch_list_add_reg (regcache,
5462 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5464 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5465 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5468 case 354: /* DFP Extract Biased Exponent Quad */
5469 record_full_arch_list_add_reg (regcache,
5470 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5472 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5475 case 12: /* Floating Round to Single-Precision */
5476 case 14: /* Floating Convert To Integer Word */
5477 case 15: /* Floating Convert To Integer Word
5478 with round toward Zero */
5479 case 142: /* Floating Convert To Integer Word Unsigned */
5480 case 143: /* Floating Convert To Integer Word Unsigned
5481 with round toward Zero */
5482 case 392: /* Floating Round to Integer Nearest */
5483 case 424: /* Floating Round to Integer Toward Zero */
5484 case 456: /* Floating Round to Integer Plus */
5485 case 488: /* Floating Round to Integer Minus */
5486 case 814: /* Floating Convert To Integer Doubleword */
5487 case 815: /* Floating Convert To Integer Doubleword
5488 with round toward Zero */
5489 case 846: /* Floating Convert From Integer Doubleword */
5490 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5491 case 943: /* Floating Convert To Integer Doubleword Unsigned
5492 with round toward Zero */
5493 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5494 record_full_arch_list_add_reg (regcache,
5495 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5497 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5498 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5502 switch (PPC_FIELD (insn, 11, 5))
5504 case 1: /* Move From FPSCR & Clear Enables */
5505 case 20: /* Move From FPSCR Control & set DRN */
5506 case 21: /* Move From FPSCR Control & set DRN Immediate */
5507 case 22: /* Move From FPSCR Control & set RN */
5508 case 23: /* Move From FPSCR Control & set RN Immediate */
5509 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5510 case 0: /* Move From FPSCR */
5511 case 24: /* Move From FPSCR Lightweight */
5512 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5513 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5514 record_full_arch_list_add_reg (regcache,
5515 tdep->ppc_fp0_regnum
5521 case 8: /* Floating Copy Sign */
5522 case 40: /* Floating Negate */
5523 case 72: /* Floating Move Register */
5524 case 136: /* Floating Negative Absolute Value */
5525 case 264: /* Floating Absolute Value */
5526 record_full_arch_list_add_reg (regcache,
5527 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5529 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5532 case 838: /* Floating Merge Odd Word */
5533 case 966: /* Floating Merge Even Word */
5534 record_full_arch_list_add_reg (regcache,
5535 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5538 case 38: /* Move To FPSCR Bit 1 */
5539 case 70: /* Move To FPSCR Bit 0 */
5540 case 134: /* Move To FPSCR Field Immediate */
5541 case 711: /* Move To FPSCR Fields */
5543 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5544 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5547 case 0: /* Floating Compare Unordered */
5548 case 32: /* Floating Compare Ordered */
5549 case 64: /* Move to Condition Register from FPSCR */
5550 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5551 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5552 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5553 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5554 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5556 case 128: /* Floating Test for software Divide */
5557 case 160: /* Floating Test for software Square Root */
5558 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5561 case 4: /* VSX Scalar Add Quad-Precision */
5562 case 36: /* VSX Scalar Multiply Quad-Precision */
5563 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5564 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5565 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5566 case 484: /* VSX Scalar Negative Multiply-Subtract
5568 case 516: /* VSX Scalar Subtract Quad-Precision */
5569 case 548: /* VSX Scalar Divide Quad-Precision */
5570 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5572 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5573 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5574 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5578 switch (PPC_FIELD (insn, 11, 5))
5580 case 27: /* VSX Scalar Square Root Quad-Precision */
5581 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5583 case 0: /* VSX Scalar Absolute Quad-Precision */
5584 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5585 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5586 case 16: /* VSX Scalar Negate Quad-Precision */
5587 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5588 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5594 switch (PPC_FIELD (insn, 11, 5))
5596 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5597 to Unsigned Word format */
5598 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5599 Quad-Precision format */
5600 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5601 to Signed Word format */
5602 case 10: /* VSX Scalar Convert Signed Doubleword format to
5603 Quad-Precision format */
5604 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5605 to Unsigned Doubleword format */
5606 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5607 Double-Precision format */
5608 case 22: /* VSX Scalar Convert Double-Precision format to
5609 Quad-Precision format */
5610 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5611 to Signed Doubleword format */
5612 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5613 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5618 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5619 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5623 /* Parse the current instruction and record the values of the registers and
5624 memory that will be changed in current instruction to "record_arch_list".
5625 Return -1 if something wrong. */
5628 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5631 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5636 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5637 op6 = PPC_OP6 (insn);
5641 case 2: /* Trap Doubleword Immediate */
5642 case 3: /* Trap Word Immediate */
5647 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5651 case 17: /* System call */
5652 if (PPC_LEV (insn) != 0)
5655 if (tdep->ppc_syscall_record != NULL)
5657 if (tdep->ppc_syscall_record (regcache) != 0)
5662 printf_unfiltered (_("no syscall record support\n"));
5667 case 7: /* Multiply Low Immediate */
5668 record_full_arch_list_add_reg (regcache,
5669 tdep->ppc_gp0_regnum + PPC_RT (insn));
5672 case 8: /* Subtract From Immediate Carrying */
5673 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5674 record_full_arch_list_add_reg (regcache,
5675 tdep->ppc_gp0_regnum + PPC_RT (insn));
5678 case 10: /* Compare Logical Immediate */
5679 case 11: /* Compare Immediate */
5680 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5683 case 13: /* Add Immediate Carrying and Record */
5684 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5686 case 12: /* Add Immediate Carrying */
5687 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5689 case 14: /* Add Immediate */
5690 case 15: /* Add Immediate Shifted */
5691 record_full_arch_list_add_reg (regcache,
5692 tdep->ppc_gp0_regnum + PPC_RT (insn));
5695 case 16: /* Branch Conditional */
5696 if ((PPC_BO (insn) & 0x4) == 0)
5697 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5699 case 18: /* Branch */
5701 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5705 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5709 case 20: /* Rotate Left Word Immediate then Mask Insert */
5710 case 21: /* Rotate Left Word Immediate then AND with Mask */
5711 case 23: /* Rotate Left Word then AND with Mask */
5712 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5713 /* Rotate Left Doubleword Immediate then Clear Right */
5714 /* Rotate Left Doubleword Immediate then Clear */
5715 /* Rotate Left Doubleword then Clear Left */
5716 /* Rotate Left Doubleword then Clear Right */
5717 /* Rotate Left Doubleword Immediate then Mask Insert */
5719 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5720 record_full_arch_list_add_reg (regcache,
5721 tdep->ppc_gp0_regnum + PPC_RA (insn));
5724 case 28: /* AND Immediate */
5725 case 29: /* AND Immediate Shifted */
5726 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5728 case 24: /* OR Immediate */
5729 case 25: /* OR Immediate Shifted */
5730 case 26: /* XOR Immediate */
5731 case 27: /* XOR Immediate Shifted */
5732 record_full_arch_list_add_reg (regcache,
5733 tdep->ppc_gp0_regnum + PPC_RA (insn));
5737 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5741 case 33: /* Load Word and Zero with Update */
5742 case 35: /* Load Byte and Zero with Update */
5743 case 41: /* Load Halfword and Zero with Update */
5744 case 43: /* Load Halfword Algebraic with Update */
5745 record_full_arch_list_add_reg (regcache,
5746 tdep->ppc_gp0_regnum + PPC_RA (insn));
5748 case 32: /* Load Word and Zero */
5749 case 34: /* Load Byte and Zero */
5750 case 40: /* Load Halfword and Zero */
5751 case 42: /* Load Halfword Algebraic */
5752 record_full_arch_list_add_reg (regcache,
5753 tdep->ppc_gp0_regnum + PPC_RT (insn));
5756 case 46: /* Load Multiple Word */
5757 for (i = PPC_RT (insn); i < 32; i++)
5758 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5761 case 56: /* Load Quadword */
5762 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5763 record_full_arch_list_add_reg (regcache, tmp);
5764 record_full_arch_list_add_reg (regcache, tmp + 1);
5767 case 49: /* Load Floating-Point Single with Update */
5768 case 51: /* Load Floating-Point Double with Update */
5769 record_full_arch_list_add_reg (regcache,
5770 tdep->ppc_gp0_regnum + PPC_RA (insn));
5772 case 48: /* Load Floating-Point Single */
5773 case 50: /* Load Floating-Point Double */
5774 record_full_arch_list_add_reg (regcache,
5775 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5778 case 47: /* Store Multiple Word */
5782 if (PPC_RA (insn) != 0)
5783 regcache_raw_read_unsigned (regcache,
5784 tdep->ppc_gp0_regnum + PPC_RA (insn),
5787 addr += PPC_D (insn);
5788 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5792 case 37: /* Store Word with Update */
5793 case 39: /* Store Byte with Update */
5794 case 45: /* Store Halfword with Update */
5795 case 53: /* Store Floating-Point Single with Update */
5796 case 55: /* Store Floating-Point Double with Update */
5797 record_full_arch_list_add_reg (regcache,
5798 tdep->ppc_gp0_regnum + PPC_RA (insn));
5800 case 36: /* Store Word */
5801 case 38: /* Store Byte */
5802 case 44: /* Store Halfword */
5803 case 52: /* Store Floating-Point Single */
5804 case 54: /* Store Floating-Point Double */
5809 if (PPC_RA (insn) != 0)
5810 regcache_raw_read_unsigned (regcache,
5811 tdep->ppc_gp0_regnum + PPC_RA (insn),
5813 addr += PPC_D (insn);
5815 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5817 else if (op6 == 54 || op6 == 55)
5819 else if (op6 == 44 || op6 == 45)
5821 else if (op6 == 38 || op6 == 39)
5826 record_full_arch_list_add_mem (addr, size);
5833 case 0: /* Load Floating-Point Double Pair */
5834 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5835 record_full_arch_list_add_reg (regcache, tmp);
5836 record_full_arch_list_add_reg (regcache, tmp + 1);
5838 case 2: /* Load VSX Scalar Doubleword */
5839 case 3: /* Load VSX Scalar Single */
5840 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5847 case 58: /* Load Doubleword */
5848 /* Load Doubleword with Update */
5849 /* Load Word Algebraic */
5850 if (PPC_FIELD (insn, 30, 2) > 2)
5853 record_full_arch_list_add_reg (regcache,
5854 tdep->ppc_gp0_regnum + PPC_RT (insn));
5855 if (PPC_BIT (insn, 31))
5856 record_full_arch_list_add_reg (regcache,
5857 tdep->ppc_gp0_regnum + PPC_RA (insn));
5861 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5866 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5871 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5875 case 62: /* Store Doubleword */
5876 /* Store Doubleword with Update */
5877 /* Store Quadword with Update */
5881 int sub2 = PPC_FIELD (insn, 30, 2);
5886 if (PPC_RA (insn) != 0)
5887 regcache_raw_read_unsigned (regcache,
5888 tdep->ppc_gp0_regnum + PPC_RA (insn),
5891 size = (sub2 == 2) ? 16 : 8;
5893 addr += PPC_DS (insn) << 2;
5894 record_full_arch_list_add_mem (addr, size);
5896 if (op6 == 62 && sub2 == 1)
5897 record_full_arch_list_add_reg (regcache,
5898 tdep->ppc_gp0_regnum +
5905 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5911 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5912 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5916 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5918 if (record_full_arch_list_add_end ())
5923 /* Initialize the current architecture based on INFO. If possible, re-use an
5924 architecture from ARCHES, which is a list of architectures already created
5925 during this debugging session.
5927 Called e.g. at program startup, when reading a core file, and when reading
5930 static struct gdbarch *
5931 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5933 struct gdbarch *gdbarch;
5934 struct gdbarch_tdep *tdep;
5935 int wordsize, from_xcoff_exec, from_elf_exec;
5936 enum bfd_architecture arch;
5939 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5941 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5942 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5943 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5945 int tdesc_wordsize = -1;
5946 const struct target_desc *tdesc = info.target_desc;
5947 struct tdesc_arch_data *tdesc_data = NULL;
5948 int num_pseudoregs = 0;
5951 /* INFO may refer to a binary that is not of the PowerPC architecture,
5952 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5953 In this case, we must not attempt to infer properties of the (PowerPC
5954 side) of the target system from properties of that executable. Trust
5955 the target description instead. */
5957 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5958 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5961 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5962 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5964 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5965 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5967 /* Check word size. If INFO is from a binary file, infer it from
5968 that, else choose a likely default. */
5969 if (from_xcoff_exec)
5971 if (bfd_xcoff_is_xcoff64 (info.abfd))
5976 else if (from_elf_exec)
5978 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5983 else if (tdesc_has_registers (tdesc))
5987 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5988 wordsize = (info.bfd_arch_info->bits_per_word
5989 / info.bfd_arch_info->bits_per_byte);
5994 /* Get the architecture and machine from the BFD. */
5995 arch = info.bfd_arch_info->arch;
5996 mach = info.bfd_arch_info->mach;
5998 /* For e500 executables, the apuinfo section is of help here. Such
5999 section contains the identifier and revision number of each
6000 Application-specific Processing Unit that is present on the
6001 chip. The content of the section is determined by the assembler
6002 which looks at each instruction and determines which unit (and
6003 which version of it) can execute it. Grovel through the section
6004 looking for relevant e500 APUs. */
6006 if (bfd_uses_spe_extensions (info.abfd))
6008 arch = info.bfd_arch_info->arch;
6009 mach = bfd_mach_ppc_e500;
6010 bfd_default_set_arch_mach (&abfd, arch, mach);
6011 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6014 /* Find a default target description which describes our register
6015 layout, if we do not already have one. */
6016 if (! tdesc_has_registers (tdesc))
6018 const struct variant *v;
6020 /* Choose variant. */
6021 v = find_variant_by_arch (arch, mach);
6028 gdb_assert (tdesc_has_registers (tdesc));
6030 /* Check any target description for validity. */
6031 if (tdesc_has_registers (tdesc))
6033 static const char *const gprs[] = {
6034 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6035 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6036 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6037 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6039 const struct tdesc_feature *feature;
6041 static const char *const msr_names[] = { "msr", "ps" };
6042 static const char *const cr_names[] = { "cr", "cnd" };
6043 static const char *const ctr_names[] = { "ctr", "cnt" };
6045 feature = tdesc_find_feature (tdesc,
6046 "org.gnu.gdb.power.core");
6047 if (feature == NULL)
6050 tdesc_data = tdesc_data_alloc ();
6053 for (i = 0; i < ppc_num_gprs; i++)
6054 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6055 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6057 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6059 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6062 /* Allow alternate names for these registers, to accomodate GDB's
6064 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6065 PPC_MSR_REGNUM, msr_names);
6066 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6067 PPC_CR_REGNUM, cr_names);
6068 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6069 PPC_CTR_REGNUM, ctr_names);
6073 tdesc_data_cleanup (tdesc_data);
6077 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6080 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6082 wordsize = tdesc_wordsize;
6084 feature = tdesc_find_feature (tdesc,
6085 "org.gnu.gdb.power.fpu");
6086 if (feature != NULL)
6088 static const char *const fprs[] = {
6089 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6090 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6091 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6092 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6095 for (i = 0; i < ppc_num_fprs; i++)
6096 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6097 PPC_F0_REGNUM + i, fprs[i]);
6098 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6099 PPC_FPSCR_REGNUM, "fpscr");
6103 tdesc_data_cleanup (tdesc_data);
6111 /* The DFP pseudo-registers will be available when there are floating
6113 have_dfp = have_fpu;
6115 feature = tdesc_find_feature (tdesc,
6116 "org.gnu.gdb.power.altivec");
6117 if (feature != NULL)
6119 static const char *const vector_regs[] = {
6120 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6121 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6122 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6123 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6127 for (i = 0; i < ppc_num_gprs; i++)
6128 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6131 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6132 PPC_VSCR_REGNUM, "vscr");
6133 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6134 PPC_VRSAVE_REGNUM, "vrsave");
6136 if (have_spe || !valid_p)
6138 tdesc_data_cleanup (tdesc_data);
6146 /* Check for POWER7 VSX registers support. */
6147 feature = tdesc_find_feature (tdesc,
6148 "org.gnu.gdb.power.vsx");
6150 if (feature != NULL)
6152 static const char *const vsx_regs[] = {
6153 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6154 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6155 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6156 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6157 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6163 for (i = 0; i < ppc_num_vshrs; i++)
6164 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6165 PPC_VSR0_UPPER_REGNUM + i,
6169 tdesc_data_cleanup (tdesc_data);
6178 /* On machines supporting the SPE APU, the general-purpose registers
6179 are 64 bits long. There are SIMD vector instructions to treat them
6180 as pairs of floats, but the rest of the instruction set treats them
6181 as 32-bit registers, and only operates on their lower halves.
6183 In the GDB regcache, we treat their high and low halves as separate
6184 registers. The low halves we present as the general-purpose
6185 registers, and then we have pseudo-registers that stitch together
6186 the upper and lower halves and present them as pseudo-registers.
6188 Thus, the target description is expected to supply the upper
6189 halves separately. */
6191 feature = tdesc_find_feature (tdesc,
6192 "org.gnu.gdb.power.spe");
6193 if (feature != NULL)
6195 static const char *const upper_spe[] = {
6196 "ev0h", "ev1h", "ev2h", "ev3h",
6197 "ev4h", "ev5h", "ev6h", "ev7h",
6198 "ev8h", "ev9h", "ev10h", "ev11h",
6199 "ev12h", "ev13h", "ev14h", "ev15h",
6200 "ev16h", "ev17h", "ev18h", "ev19h",
6201 "ev20h", "ev21h", "ev22h", "ev23h",
6202 "ev24h", "ev25h", "ev26h", "ev27h",
6203 "ev28h", "ev29h", "ev30h", "ev31h"
6207 for (i = 0; i < ppc_num_gprs; i++)
6208 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6209 PPC_SPE_UPPER_GP0_REGNUM + i,
6211 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6212 PPC_SPE_ACC_REGNUM, "acc");
6213 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6214 PPC_SPE_FSCR_REGNUM, "spefscr");
6216 if (have_mq || have_fpu || !valid_p)
6218 tdesc_data_cleanup (tdesc_data);
6227 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6228 complain for a 32-bit binary on a 64-bit target; we do not yet
6229 support that. For instance, the 32-bit ABI routines expect
6232 As long as there isn't an explicit target description, we'll
6233 choose one based on the BFD architecture and get a word size
6234 matching the binary (probably powerpc:common or
6235 powerpc:common64). So there is only trouble if a 64-bit target
6236 supplies a 64-bit description while debugging a 32-bit
6238 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6240 tdesc_data_cleanup (tdesc_data);
6247 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6250 elf_abi = POWERPC_ELF_V1;
6253 elf_abi = POWERPC_ELF_V2;
6260 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6262 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6263 Tag_GNU_Power_ABI_FP))
6266 soft_float_flag = AUTO_BOOLEAN_FALSE;
6269 soft_float_flag = AUTO_BOOLEAN_TRUE;
6276 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6278 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6279 Tag_GNU_Power_ABI_Vector))
6282 vector_abi = POWERPC_VEC_GENERIC;
6285 vector_abi = POWERPC_VEC_ALTIVEC;
6288 vector_abi = POWERPC_VEC_SPE;
6296 /* At this point, the only supported ELF-based 64-bit little-endian
6297 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6298 default. All other supported ELF-based operating systems use the
6299 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6300 e.g. because we run a legacy binary, or have attached to a process
6301 and have not found any associated binary file, set the default
6302 according to this heuristic. */
6303 if (elf_abi == POWERPC_ELF_AUTO)
6305 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6306 elf_abi = POWERPC_ELF_V2;
6308 elf_abi = POWERPC_ELF_V1;
6311 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6313 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6316 soft_float = !have_fpu;
6318 /* If we have a hard float binary or setting but no floating point
6319 registers, downgrade to soft float anyway. We're still somewhat
6320 useful in this scenario. */
6321 if (!soft_float && !have_fpu)
6324 /* Similarly for vector registers. */
6325 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6326 vector_abi = POWERPC_VEC_GENERIC;
6328 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6329 vector_abi = POWERPC_VEC_GENERIC;
6331 if (vector_abi == POWERPC_VEC_AUTO)
6334 vector_abi = POWERPC_VEC_ALTIVEC;
6336 vector_abi = POWERPC_VEC_SPE;
6338 vector_abi = POWERPC_VEC_GENERIC;
6341 /* Do not limit the vector ABI based on available hardware, since we
6342 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6344 /* Find a candidate among extant architectures. */
6345 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6347 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6349 /* Word size in the various PowerPC bfd_arch_info structs isn't
6350 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6351 separate word size check. */
6352 tdep = gdbarch_tdep (arches->gdbarch);
6353 if (tdep && tdep->elf_abi != elf_abi)
6355 if (tdep && tdep->soft_float != soft_float)
6357 if (tdep && tdep->vector_abi != vector_abi)
6359 if (tdep && tdep->wordsize == wordsize)
6361 if (tdesc_data != NULL)
6362 tdesc_data_cleanup (tdesc_data);
6363 return arches->gdbarch;
6367 /* None found, create a new architecture from INFO, whose bfd_arch_info
6368 validity depends on the source:
6369 - executable useless
6370 - rs6000_host_arch() good
6372 - "set arch" trust blindly
6373 - GDB startup useless but harmless */
6375 tdep = XCNEW (struct gdbarch_tdep);
6376 tdep->wordsize = wordsize;
6377 tdep->elf_abi = elf_abi;
6378 tdep->soft_float = soft_float;
6379 tdep->vector_abi = vector_abi;
6381 gdbarch = gdbarch_alloc (&info, tdep);
6383 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6384 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6385 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6386 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6387 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6388 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6389 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6390 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6392 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6393 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6394 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6395 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6396 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6397 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6398 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6399 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6401 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6402 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6403 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6404 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6406 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6407 GDB traditionally called it "ps", though, so let GDB add an
6409 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6412 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6414 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6416 /* Set lr_frame_offset. */
6418 tdep->lr_frame_offset = 16;
6420 tdep->lr_frame_offset = 4;
6422 if (have_spe || have_dfp || have_vsx)
6424 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6425 set_gdbarch_pseudo_register_write (gdbarch,
6426 rs6000_pseudo_register_write);
6427 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6428 rs6000_ax_pseudo_register_collect);
6431 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6433 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6435 /* Select instruction printer. */
6436 if (arch == bfd_arch_rs6000)
6437 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
6439 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
6441 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6444 num_pseudoregs += 32;
6446 num_pseudoregs += 16;
6448 /* Include both VSX and Extended FP registers. */
6449 num_pseudoregs += 96;
6451 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6453 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6454 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6455 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6456 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6457 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6458 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6459 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6460 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6461 set_gdbarch_char_signed (gdbarch, 0);
6463 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6466 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6468 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6469 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6470 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6472 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6473 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6476 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6477 else if (wordsize == 8)
6478 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6480 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6481 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6482 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6484 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6485 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
6487 /* The value of symbols of type N_SO and N_FUN maybe null when
6489 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6491 /* Handles single stepping of atomic sequences. */
6492 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6494 /* Not sure on this. FIXMEmgo */
6495 set_gdbarch_frame_args_skip (gdbarch, 8);
6497 /* Helpers for function argument information. */
6498 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6501 set_gdbarch_in_solib_return_trampoline
6502 (gdbarch, rs6000_in_solib_return_trampoline);
6503 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6505 /* Hook in the DWARF CFI frame unwinder. */
6506 dwarf2_append_unwinders (gdbarch);
6507 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6509 /* Frame handling. */
6510 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6512 /* Setup displaced stepping. */
6513 set_gdbarch_displaced_step_copy_insn (gdbarch,
6514 ppc_displaced_step_copy_insn);
6515 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6516 ppc_displaced_step_hw_singlestep);
6517 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6518 set_gdbarch_displaced_step_free_closure (gdbarch,
6519 simple_displaced_step_free_closure);
6520 set_gdbarch_displaced_step_location (gdbarch,
6521 displaced_step_at_entry_point);
6523 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6525 /* Hook in ABI-specific overrides, if they have been registered. */
6526 info.target_desc = tdesc;
6527 info.tdep_info = tdesc_data;
6528 gdbarch_init_osabi (info, gdbarch);
6532 case GDB_OSABI_LINUX:
6533 case GDB_OSABI_NETBSD_AOUT:
6534 case GDB_OSABI_NETBSD_ELF:
6535 case GDB_OSABI_UNKNOWN:
6536 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6537 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6538 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6539 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6540 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6543 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6545 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6546 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6547 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6548 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6549 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6552 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6553 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6554 rs6000_pseudo_register_reggroup_p);
6555 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6557 /* Override the normal target description method to make the SPE upper
6558 halves anonymous. */
6559 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6561 /* Choose register numbers for all supported pseudo-registers. */
6562 tdep->ppc_ev0_regnum = -1;
6563 tdep->ppc_dl0_regnum = -1;
6564 tdep->ppc_vsr0_regnum = -1;
6565 tdep->ppc_efpr0_regnum = -1;
6567 cur_reg = gdbarch_num_regs (gdbarch);
6571 tdep->ppc_ev0_regnum = cur_reg;
6576 tdep->ppc_dl0_regnum = cur_reg;
6581 tdep->ppc_vsr0_regnum = cur_reg;
6583 tdep->ppc_efpr0_regnum = cur_reg;
6587 gdb_assert (gdbarch_num_regs (gdbarch)
6588 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6590 /* Register the ravenscar_arch_ops. */
6591 if (mach == bfd_mach_ppc_e500)
6592 register_e500_ravenscar_ops (gdbarch);
6594 register_ppc_ravenscar_ops (gdbarch);
6600 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6607 /* FIXME: Dump gdbarch_tdep. */
6610 /* PowerPC-specific commands. */
6613 set_powerpc_command (char *args, int from_tty)
6615 printf_unfiltered (_("\
6616 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6617 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6621 show_powerpc_command (char *args, int from_tty)
6623 cmd_show_list (showpowerpccmdlist, from_tty, "");
6627 powerpc_set_soft_float (char *args, int from_tty,
6628 struct cmd_list_element *c)
6630 struct gdbarch_info info;
6632 /* Update the architecture. */
6633 gdbarch_info_init (&info);
6634 if (!gdbarch_update_p (info))
6635 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6639 powerpc_set_vector_abi (char *args, int from_tty,
6640 struct cmd_list_element *c)
6642 struct gdbarch_info info;
6645 for (vector_abi = POWERPC_VEC_AUTO;
6646 vector_abi != POWERPC_VEC_LAST;
6648 if (strcmp (powerpc_vector_abi_string,
6649 powerpc_vector_strings[vector_abi]) == 0)
6651 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6655 if (vector_abi == POWERPC_VEC_LAST)
6656 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6657 powerpc_vector_abi_string);
6659 /* Update the architecture. */
6660 gdbarch_info_init (&info);
6661 if (!gdbarch_update_p (info))
6662 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6665 /* Show the current setting of the exact watchpoints flag. */
6668 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6669 struct cmd_list_element *c,
6672 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6675 /* Read a PPC instruction from memory. */
6678 read_insn (struct frame_info *frame, CORE_ADDR pc)
6680 struct gdbarch *gdbarch = get_frame_arch (frame);
6681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6683 return read_memory_unsigned_integer (pc, 4, byte_order);
6686 /* Return non-zero if the instructions at PC match the series
6687 described in PATTERN, or zero otherwise. PATTERN is an array of
6688 'struct ppc_insn_pattern' objects, terminated by an entry whose
6691 When the match is successful, fill INSN[i] with what PATTERN[i]
6692 matched. If PATTERN[i] is optional, and the instruction wasn't
6693 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6694 INSN should have as many elements as PATTERN. Note that, if
6695 PATTERN contains optional instructions which aren't present in
6696 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6697 i'th instruction in memory. */
6700 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6701 struct ppc_insn_pattern *pattern,
6702 unsigned int *insns)
6707 for (i = 0, insn = 0; pattern[i].mask; i++)
6710 insn = read_insn (frame, pc);
6712 if ((insn & pattern[i].mask) == pattern[i].data)
6718 else if (!pattern[i].optional)
6725 /* Return the 'd' field of the d-form instruction INSN, properly
6729 ppc_insn_d_field (unsigned int insn)
6731 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6734 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6735 zero bits concatenated at the right, and properly
6739 ppc_insn_ds_field (unsigned int insn)
6741 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6744 /* Initialization code. */
6746 /* -Wmissing-prototypes */
6747 extern initialize_file_ftype _initialize_rs6000_tdep;
6750 _initialize_rs6000_tdep (void)
6752 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6753 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6755 /* Initialize the standard target descriptions. */
6756 initialize_tdesc_powerpc_32 ();
6757 initialize_tdesc_powerpc_altivec32 ();
6758 initialize_tdesc_powerpc_vsx32 ();
6759 initialize_tdesc_powerpc_403 ();
6760 initialize_tdesc_powerpc_403gc ();
6761 initialize_tdesc_powerpc_405 ();
6762 initialize_tdesc_powerpc_505 ();
6763 initialize_tdesc_powerpc_601 ();
6764 initialize_tdesc_powerpc_602 ();
6765 initialize_tdesc_powerpc_603 ();
6766 initialize_tdesc_powerpc_604 ();
6767 initialize_tdesc_powerpc_64 ();
6768 initialize_tdesc_powerpc_altivec64 ();
6769 initialize_tdesc_powerpc_vsx64 ();
6770 initialize_tdesc_powerpc_7400 ();
6771 initialize_tdesc_powerpc_750 ();
6772 initialize_tdesc_powerpc_860 ();
6773 initialize_tdesc_powerpc_e500 ();
6774 initialize_tdesc_rs6000 ();
6776 /* Add root prefix command for all "set powerpc"/"show powerpc"
6778 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6779 _("Various PowerPC-specific commands."),
6780 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6782 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6783 _("Various PowerPC-specific commands."),
6784 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6786 /* Add a command to allow the user to force the ABI. */
6787 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6788 &powerpc_soft_float_global,
6789 _("Set whether to use a soft-float ABI."),
6790 _("Show whether to use a soft-float ABI."),
6792 powerpc_set_soft_float, NULL,
6793 &setpowerpccmdlist, &showpowerpccmdlist);
6795 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6796 &powerpc_vector_abi_string,
6797 _("Set the vector ABI."),
6798 _("Show the vector ABI."),
6799 NULL, powerpc_set_vector_abi, NULL,
6800 &setpowerpccmdlist, &showpowerpccmdlist);
6802 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6803 &target_exact_watchpoints,
6805 Set whether to use just one debug register for watchpoints on scalars."),
6807 Show whether to use just one debug register for watchpoints on scalars."),
6809 If true, GDB will use only one debug register when watching a variable of\n\
6810 scalar type, thus assuming that the variable is accessed through the address\n\
6811 of its first byte."),
6812 NULL, show_powerpc_exact_watchpoints,
6813 &setpowerpccmdlist, &showpowerpccmdlist);