]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
f23631e4 AC |
2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
3 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 | |
4 | Free Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "demangle.h" | |
32 | #include "language.h" | |
33 | #include "gdbcmd.h" | |
4e052eda | 34 | #include "regcache.h" |
015a42b4 | 35 | #include "cp-abi.h" |
c906108c SS |
36 | |
37 | #include <errno.h> | |
38 | #include "gdb_string.h" | |
39 | ||
c906108c SS |
40 | /* Flag indicating HP compilers were used; needed to correctly handle some |
41 | value operations with HP aCC code/runtime. */ | |
42 | extern int hp_som_som_object_present; | |
43 | ||
070ad9f0 | 44 | extern int overload_debug; |
c906108c SS |
45 | /* Local functions. */ |
46 | ||
f23631e4 | 47 | static int typecmp (int staticp, struct type *t1[], struct value *t2[]); |
c906108c | 48 | |
f23631e4 AC |
49 | static CORE_ADDR find_function_addr (struct value *, struct type **); |
50 | static struct value *value_arg_coerce (struct value *, struct type *, int); | |
c906108c SS |
51 | |
52 | ||
f23631e4 | 53 | static CORE_ADDR value_push (CORE_ADDR, struct value *); |
c906108c | 54 | |
f23631e4 | 55 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 56 | struct type *, int); |
c906108c | 57 | |
f23631e4 AC |
58 | static struct value *search_struct_method (char *, struct value **, |
59 | struct value **, | |
a14ed312 | 60 | int, int *, struct type *); |
c906108c | 61 | |
a14ed312 | 62 | static int check_field_in (struct type *, const char *); |
c906108c | 63 | |
a14ed312 | 64 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 65 | |
f23631e4 | 66 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 67 | |
f23631e4 | 68 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
a14ed312 KB |
69 | int offset, int *static_memfuncp, |
70 | struct type *type, int *num_fns, | |
71 | struct type **basetype, | |
72 | int *boffset); | |
7a292a7a | 73 | |
a14ed312 | 74 | void _initialize_valops (void); |
c906108c | 75 | |
c906108c SS |
76 | /* Flag for whether we want to abandon failed expression evals by default. */ |
77 | ||
78 | #if 0 | |
79 | static int auto_abandon = 0; | |
80 | #endif | |
81 | ||
82 | int overload_resolution = 0; | |
242bfc55 FN |
83 | |
84 | /* This boolean tells what gdb should do if a signal is received while in | |
85 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
86 | and restore the context to what as it was before the call. | |
87 | The default is to stop in the frame where the signal was received. */ | |
88 | ||
89 | int unwind_on_signal_p = 0; | |
c5aa993b | 90 | \f |
c906108c SS |
91 | |
92 | ||
c906108c SS |
93 | /* Find the address of function name NAME in the inferior. */ |
94 | ||
f23631e4 | 95 | struct value * |
fba45db2 | 96 | find_function_in_inferior (char *name) |
c906108c SS |
97 | { |
98 | register struct symbol *sym; | |
99 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
100 | if (sym != NULL) | |
101 | { | |
102 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
103 | { | |
104 | error ("\"%s\" exists in this program but is not a function.", | |
105 | name); | |
106 | } | |
107 | return value_of_variable (sym, NULL); | |
108 | } | |
109 | else | |
110 | { | |
c5aa993b | 111 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
112 | if (msymbol != NULL) |
113 | { | |
114 | struct type *type; | |
4478b372 | 115 | CORE_ADDR maddr; |
c906108c SS |
116 | type = lookup_pointer_type (builtin_type_char); |
117 | type = lookup_function_type (type); | |
118 | type = lookup_pointer_type (type); | |
4478b372 JB |
119 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
120 | return value_from_pointer (type, maddr); | |
c906108c SS |
121 | } |
122 | else | |
123 | { | |
c5aa993b | 124 | if (!target_has_execution) |
c906108c | 125 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 126 | else |
c906108c SS |
127 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
128 | } | |
129 | } | |
130 | } | |
131 | ||
132 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
133 | and return a value that is a pointer to the allocated space. */ | |
134 | ||
f23631e4 | 135 | struct value * |
fba45db2 | 136 | value_allocate_space_in_inferior (int len) |
c906108c | 137 | { |
f23631e4 AC |
138 | struct value *blocklen; |
139 | struct value *val = find_function_in_inferior ("malloc"); | |
c906108c SS |
140 | |
141 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
142 | val = call_function_by_hand (val, 1, &blocklen); | |
143 | if (value_logical_not (val)) | |
144 | { | |
145 | if (!target_has_execution) | |
c5aa993b JM |
146 | error ("No memory available to program now: you need to start the target first"); |
147 | else | |
148 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
149 | } |
150 | return val; | |
151 | } | |
152 | ||
153 | static CORE_ADDR | |
fba45db2 | 154 | allocate_space_in_inferior (int len) |
c906108c SS |
155 | { |
156 | return value_as_long (value_allocate_space_in_inferior (len)); | |
157 | } | |
158 | ||
159 | /* Cast value ARG2 to type TYPE and return as a value. | |
160 | More general than a C cast: accepts any two types of the same length, | |
161 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
162 | /* In C++, casts may change pointer or object representations. */ | |
163 | ||
f23631e4 AC |
164 | struct value * |
165 | value_cast (struct type *type, struct value *arg2) | |
c906108c SS |
166 | { |
167 | register enum type_code code1; | |
168 | register enum type_code code2; | |
169 | register int scalar; | |
170 | struct type *type2; | |
171 | ||
172 | int convert_to_boolean = 0; | |
c5aa993b | 173 | |
c906108c SS |
174 | if (VALUE_TYPE (arg2) == type) |
175 | return arg2; | |
176 | ||
177 | CHECK_TYPEDEF (type); | |
178 | code1 = TYPE_CODE (type); | |
c5aa993b | 179 | COERCE_REF (arg2); |
c906108c SS |
180 | type2 = check_typedef (VALUE_TYPE (arg2)); |
181 | ||
182 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
183 | is treated like a cast to (TYPE [N])OBJECT, | |
184 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
185 | if (code1 == TYPE_CODE_ARRAY) | |
186 | { | |
187 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
188 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
189 | if (element_length > 0 | |
c5aa993b | 190 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
191 | { |
192 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
193 | int val_length = TYPE_LENGTH (type2); | |
194 | LONGEST low_bound, high_bound, new_length; | |
195 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
196 | low_bound = 0, high_bound = 0; | |
197 | new_length = val_length / element_length; | |
198 | if (val_length % element_length != 0) | |
c5aa993b | 199 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
200 | /* FIXME-type-allocation: need a way to free this type when we are |
201 | done with it. */ | |
202 | range_type = create_range_type ((struct type *) NULL, | |
203 | TYPE_TARGET_TYPE (range_type), | |
204 | low_bound, | |
205 | new_length + low_bound - 1); | |
206 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
207 | element_type, range_type); | |
208 | return arg2; | |
209 | } | |
210 | } | |
211 | ||
212 | if (current_language->c_style_arrays | |
213 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
214 | arg2 = value_coerce_array (arg2); | |
215 | ||
216 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
217 | arg2 = value_coerce_function (arg2); | |
218 | ||
219 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
220 | COERCE_VARYING_ARRAY (arg2, type2); | |
221 | code2 = TYPE_CODE (type2); | |
222 | ||
223 | if (code1 == TYPE_CODE_COMPLEX) | |
224 | return cast_into_complex (type, arg2); | |
225 | if (code1 == TYPE_CODE_BOOL) | |
226 | { | |
227 | code1 = TYPE_CODE_INT; | |
228 | convert_to_boolean = 1; | |
229 | } | |
230 | if (code1 == TYPE_CODE_CHAR) | |
231 | code1 = TYPE_CODE_INT; | |
232 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
233 | code2 = TYPE_CODE_INT; | |
234 | ||
235 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
236 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
237 | ||
c5aa993b | 238 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
239 | && code2 == TYPE_CODE_STRUCT |
240 | && TYPE_NAME (type) != 0) | |
241 | { | |
242 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
243 | type of the target as a superclass. If so, we'll need to |
244 | offset the object in addition to changing its type. */ | |
f23631e4 | 245 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
246 | arg2, 0, type2, 1); |
247 | if (v) | |
248 | { | |
249 | VALUE_TYPE (v) = type; | |
250 | return v; | |
251 | } | |
252 | } | |
253 | if (code1 == TYPE_CODE_FLT && scalar) | |
254 | return value_from_double (type, value_as_double (arg2)); | |
255 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
256 | || code1 == TYPE_CODE_RANGE) | |
257 | && (scalar || code2 == TYPE_CODE_PTR)) | |
258 | { | |
259 | LONGEST longest; | |
c5aa993b JM |
260 | |
261 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
262 | (code2 == TYPE_CODE_PTR)) | |
263 | { | |
264 | unsigned int *ptr; | |
f23631e4 | 265 | struct value *retvalp; |
c5aa993b JM |
266 | |
267 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
268 | { | |
269 | /* With HP aCC, pointers to data members have a bias */ | |
270 | case TYPE_CODE_MEMBER: | |
271 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 272 | /* force evaluation */ |
802db21b | 273 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
274 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
275 | return retvalp; | |
276 | ||
277 | /* While pointers to methods don't really point to a function */ | |
278 | case TYPE_CODE_METHOD: | |
279 | error ("Pointers to methods not supported with HP aCC"); | |
280 | ||
281 | default: | |
282 | break; /* fall out and go to normal handling */ | |
283 | } | |
284 | } | |
2bf1f4a1 JB |
285 | |
286 | /* When we cast pointers to integers, we mustn't use | |
287 | POINTER_TO_ADDRESS to find the address the pointer | |
288 | represents, as value_as_long would. GDB should evaluate | |
289 | expressions just as the compiler would --- and the compiler | |
290 | sees a cast as a simple reinterpretation of the pointer's | |
291 | bits. */ | |
292 | if (code2 == TYPE_CODE_PTR) | |
293 | longest = extract_unsigned_integer (VALUE_CONTENTS (arg2), | |
294 | TYPE_LENGTH (type2)); | |
295 | else | |
296 | longest = value_as_long (arg2); | |
802db21b | 297 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 298 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 299 | } |
802db21b | 300 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
301 | code2 == TYPE_CODE_ENUM || |
302 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 303 | { |
4603e466 DT |
304 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
305 | want the length of an address! -- we are really dealing with | |
306 | addresses (i.e., gdb representations) not pointers (i.e., | |
307 | target representations) here. | |
308 | ||
309 | This allows things like "print *(int *)0x01000234" to work | |
310 | without printing a misleading message -- which would | |
311 | otherwise occur when dealing with a target having two byte | |
312 | pointers and four byte addresses. */ | |
313 | ||
314 | int addr_bit = TARGET_ADDR_BIT; | |
315 | ||
634acd5f | 316 | LONGEST longest = value_as_long (arg2); |
4603e466 | 317 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 318 | { |
4603e466 DT |
319 | if (longest >= ((LONGEST) 1 << addr_bit) |
320 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
321 | warning ("value truncated"); |
322 | } | |
323 | return value_from_longest (type, longest); | |
324 | } | |
c906108c SS |
325 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
326 | { | |
327 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
328 | { | |
329 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
330 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 331 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
332 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
333 | && !value_logical_not (arg2)) | |
334 | { | |
f23631e4 | 335 | struct value *v; |
c906108c SS |
336 | |
337 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
338 | type of the target as a superclass. If so, we'll need to |
339 | offset the pointer rather than just change its type. */ | |
c906108c SS |
340 | if (TYPE_NAME (t1) != NULL) |
341 | { | |
342 | v = search_struct_field (type_name_no_tag (t1), | |
343 | value_ind (arg2), 0, t2, 1); | |
344 | if (v) | |
345 | { | |
346 | v = value_addr (v); | |
347 | VALUE_TYPE (v) = type; | |
348 | return v; | |
349 | } | |
350 | } | |
351 | ||
352 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
353 | type of the source as a superclass. If so, we'll need to |
354 | offset the pointer rather than just change its type. | |
355 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
356 | if (TYPE_NAME (t2) != NULL) |
357 | { | |
358 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 359 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
360 | if (v) |
361 | { | |
f23631e4 | 362 | struct value *v2 = value_ind (arg2); |
c906108c | 363 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) |
c5aa993b | 364 | + VALUE_OFFSET (v); |
070ad9f0 DB |
365 | |
366 | /* JYG: adjust the new pointer value and | |
367 | embedded offset. */ | |
368 | v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v); | |
369 | VALUE_EMBEDDED_OFFSET (v2) = 0; | |
370 | ||
c906108c SS |
371 | v2 = value_addr (v2); |
372 | VALUE_TYPE (v2) = type; | |
373 | return v2; | |
374 | } | |
375 | } | |
376 | } | |
377 | /* No superclass found, just fall through to change ptr type. */ | |
378 | } | |
379 | VALUE_TYPE (arg2) = type; | |
2b127877 | 380 | arg2 = value_change_enclosing_type (arg2, type); |
c5aa993b | 381 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ |
c906108c SS |
382 | return arg2; |
383 | } | |
384 | else if (chill_varying_type (type)) | |
385 | { | |
386 | struct type *range1, *range2, *eltype1, *eltype2; | |
f23631e4 | 387 | struct value *val; |
c906108c SS |
388 | int count1, count2; |
389 | LONGEST low_bound, high_bound; | |
390 | char *valaddr, *valaddr_data; | |
391 | /* For lint warning about eltype2 possibly uninitialized: */ | |
392 | eltype2 = NULL; | |
393 | if (code2 == TYPE_CODE_BITSTRING) | |
394 | error ("not implemented: converting bitstring to varying type"); | |
395 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
396 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
397 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
398 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 399 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
400 | error ("Invalid conversion to varying type"); |
401 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
402 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
403 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
404 | count1 = -1; | |
405 | else | |
406 | count1 = high_bound - low_bound + 1; | |
407 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 408 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
409 | else |
410 | count2 = high_bound - low_bound + 1; | |
411 | if (count2 > count1) | |
412 | error ("target varying type is too small"); | |
413 | val = allocate_value (type); | |
414 | valaddr = VALUE_CONTENTS_RAW (val); | |
415 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
416 | /* Set val's __var_length field to count2. */ | |
417 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
418 | count2); | |
419 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
420 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
421 | count2 * TYPE_LENGTH (eltype2)); | |
422 | /* Zero the rest of the __var_data field of val. */ | |
423 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
424 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
425 | return val; | |
426 | } | |
427 | else if (VALUE_LVAL (arg2) == lval_memory) | |
428 | { | |
429 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
430 | VALUE_BFD_SECTION (arg2)); | |
431 | } | |
432 | else if (code1 == TYPE_CODE_VOID) | |
433 | { | |
434 | return value_zero (builtin_type_void, not_lval); | |
435 | } | |
436 | else | |
437 | { | |
438 | error ("Invalid cast."); | |
439 | return 0; | |
440 | } | |
441 | } | |
442 | ||
443 | /* Create a value of type TYPE that is zero, and return it. */ | |
444 | ||
f23631e4 | 445 | struct value * |
fba45db2 | 446 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 447 | { |
f23631e4 | 448 | struct value *val = allocate_value (type); |
c906108c SS |
449 | |
450 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
451 | VALUE_LVAL (val) = lv; | |
452 | ||
453 | return val; | |
454 | } | |
455 | ||
070ad9f0 | 456 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
457 | |
458 | Call value_at only if the data needs to be fetched immediately; | |
459 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
460 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
461 | the data and sets the lazy-evaluation-required flag. The lazy flag |
462 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
463 | the contents are actually required. | |
c906108c SS |
464 | |
465 | Note: value_at does *NOT* handle embedded offsets; perform such | |
466 | adjustments before or after calling it. */ | |
467 | ||
f23631e4 | 468 | struct value * |
fba45db2 | 469 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 470 | { |
f23631e4 | 471 | struct value *val; |
c906108c SS |
472 | |
473 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
474 | error ("Attempt to dereference a generic pointer."); | |
475 | ||
476 | val = allocate_value (type); | |
477 | ||
75af7f68 | 478 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
479 | |
480 | VALUE_LVAL (val) = lval_memory; | |
481 | VALUE_ADDRESS (val) = addr; | |
482 | VALUE_BFD_SECTION (val) = sect; | |
483 | ||
484 | return val; | |
485 | } | |
486 | ||
487 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
488 | ||
f23631e4 | 489 | struct value * |
fba45db2 | 490 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 491 | { |
f23631e4 | 492 | struct value *val; |
c906108c SS |
493 | |
494 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
495 | error ("Attempt to dereference a generic pointer."); | |
496 | ||
497 | val = allocate_value (type); | |
498 | ||
499 | VALUE_LVAL (val) = lval_memory; | |
500 | VALUE_ADDRESS (val) = addr; | |
501 | VALUE_LAZY (val) = 1; | |
502 | VALUE_BFD_SECTION (val) = sect; | |
503 | ||
504 | return val; | |
505 | } | |
506 | ||
070ad9f0 DB |
507 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
508 | if the current data for a variable needs to be loaded into | |
509 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
510 | clears the lazy flag to indicate that the data in the buffer is valid. |
511 | ||
512 | If the value is zero-length, we avoid calling read_memory, which would | |
513 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
514 | ||
515 | This function returns a value because it is used in the VALUE_CONTENTS | |
516 | macro as part of an expression, where a void would not work. The | |
517 | value is ignored. */ | |
518 | ||
519 | int | |
f23631e4 | 520 | value_fetch_lazy (struct value *val) |
c906108c SS |
521 | { |
522 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
523 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
524 | ||
c5aa993b | 525 | struct type *type = VALUE_TYPE (val); |
75af7f68 | 526 | if (length) |
d4b2399a | 527 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 528 | |
c906108c SS |
529 | VALUE_LAZY (val) = 0; |
530 | return 0; | |
531 | } | |
532 | ||
533 | ||
534 | /* Store the contents of FROMVAL into the location of TOVAL. | |
535 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
536 | ||
f23631e4 AC |
537 | struct value * |
538 | value_assign (struct value *toval, struct value *fromval) | |
c906108c SS |
539 | { |
540 | register struct type *type; | |
f23631e4 | 541 | struct value *val; |
e6cbd02a | 542 | char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
543 | int use_buffer = 0; |
544 | ||
545 | if (!toval->modifiable) | |
546 | error ("Left operand of assignment is not a modifiable lvalue."); | |
547 | ||
548 | COERCE_REF (toval); | |
549 | ||
550 | type = VALUE_TYPE (toval); | |
551 | if (VALUE_LVAL (toval) != lval_internalvar) | |
552 | fromval = value_cast (type, fromval); | |
553 | else | |
554 | COERCE_ARRAY (fromval); | |
555 | CHECK_TYPEDEF (type); | |
556 | ||
557 | /* If TOVAL is a special machine register requiring conversion | |
558 | of program values to a special raw format, | |
559 | convert FROMVAL's contents now, with result in `raw_buffer', | |
560 | and set USE_BUFFER to the number of bytes to write. */ | |
561 | ||
ac9a91a7 | 562 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
563 | { |
564 | int regno = VALUE_REGNO (toval); | |
565 | if (REGISTER_CONVERTIBLE (regno)) | |
566 | { | |
567 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
568 | REGISTER_CONVERT_TO_RAW (fromtype, regno, | |
569 | VALUE_CONTENTS (fromval), raw_buffer); | |
570 | use_buffer = REGISTER_RAW_SIZE (regno); | |
571 | } | |
572 | } | |
c906108c SS |
573 | |
574 | switch (VALUE_LVAL (toval)) | |
575 | { | |
576 | case lval_internalvar: | |
577 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
578 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
2b127877 | 579 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
580 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
581 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
582 | return val; | |
583 | ||
584 | case lval_internalvar_component: | |
585 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
586 | VALUE_OFFSET (toval), | |
587 | VALUE_BITPOS (toval), | |
588 | VALUE_BITSIZE (toval), | |
589 | fromval); | |
590 | break; | |
591 | ||
592 | case lval_memory: | |
593 | { | |
594 | char *dest_buffer; | |
c5aa993b JM |
595 | CORE_ADDR changed_addr; |
596 | int changed_len; | |
c906108c | 597 | |
c5aa993b JM |
598 | if (VALUE_BITSIZE (toval)) |
599 | { | |
c906108c SS |
600 | char buffer[sizeof (LONGEST)]; |
601 | /* We assume that the argument to read_memory is in units of | |
602 | host chars. FIXME: Is that correct? */ | |
603 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
604 | + VALUE_BITSIZE (toval) |
605 | + HOST_CHAR_BIT - 1) | |
606 | / HOST_CHAR_BIT; | |
c906108c SS |
607 | |
608 | if (changed_len > (int) sizeof (LONGEST)) | |
609 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
610 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
611 | ||
612 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
613 | buffer, changed_len); | |
614 | modify_field (buffer, value_as_long (fromval), | |
615 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
616 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
617 | dest_buffer = buffer; | |
618 | } | |
619 | else if (use_buffer) | |
620 | { | |
621 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
622 | changed_len = use_buffer; | |
623 | dest_buffer = raw_buffer; | |
624 | } | |
625 | else | |
626 | { | |
627 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
628 | changed_len = TYPE_LENGTH (type); | |
629 | dest_buffer = VALUE_CONTENTS (fromval); | |
630 | } | |
631 | ||
632 | write_memory (changed_addr, dest_buffer, changed_len); | |
633 | if (memory_changed_hook) | |
634 | memory_changed_hook (changed_addr, changed_len); | |
635 | } | |
636 | break; | |
637 | ||
638 | case lval_register: | |
639 | if (VALUE_BITSIZE (toval)) | |
640 | { | |
641 | char buffer[sizeof (LONGEST)]; | |
802db21b | 642 | int len = |
8903de4f | 643 | REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval); |
c906108c SS |
644 | |
645 | if (len > (int) sizeof (LONGEST)) | |
646 | error ("Can't handle bitfields in registers larger than %d bits.", | |
647 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
648 | ||
649 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
650 | > len * HOST_CHAR_BIT) | |
651 | /* Getting this right would involve being very careful about | |
652 | byte order. */ | |
c2d11a7d JM |
653 | error ("Can't assign to bitfields that cross register " |
654 | "boundaries."); | |
c906108c | 655 | |
c5aa993b JM |
656 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
657 | buffer, len); | |
658 | modify_field (buffer, value_as_long (fromval), | |
659 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
660 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
661 | buffer, len); | |
c906108c SS |
662 | } |
663 | else if (use_buffer) | |
664 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
665 | raw_buffer, use_buffer); | |
666 | else | |
c5aa993b | 667 | { |
c906108c SS |
668 | /* Do any conversion necessary when storing this type to more |
669 | than one register. */ | |
670 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
671 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 672 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
673 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
674 | raw_buffer, TYPE_LENGTH (type)); | |
675 | #else | |
676 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 677 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
678 | #endif |
679 | } | |
680 | /* Assigning to the stack pointer, frame pointer, and other | |
7b83ea04 AC |
681 | (architecture and calling convention specific) registers may |
682 | cause the frame cache to be out of date. We just do this | |
683 | on all assignments to registers for simplicity; I doubt the slowdown | |
684 | matters. */ | |
c906108c SS |
685 | reinit_frame_cache (); |
686 | break; | |
687 | ||
688 | case lval_reg_frame_relative: | |
689 | { | |
690 | /* value is stored in a series of registers in the frame | |
691 | specified by the structure. Copy that value out, modify | |
692 | it, and copy it back in. */ | |
693 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
694 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
695 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
696 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
697 | int amount_copied; | |
698 | ||
699 | /* Make the buffer large enough in all cases. */ | |
34c0bd93 | 700 | /* FIXME (alloca): Not safe for very large data types. */ |
c906108c SS |
701 | char *buffer = (char *) alloca (amount_to_copy |
702 | + sizeof (LONGEST) | |
703 | + MAX_REGISTER_RAW_SIZE); | |
704 | ||
705 | int regno; | |
706 | struct frame_info *frame; | |
707 | ||
708 | /* Figure out which frame this is in currently. */ | |
709 | for (frame = get_current_frame (); | |
710 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
711 | frame = get_prev_frame (frame)) | |
712 | ; | |
713 | ||
714 | if (!frame) | |
715 | error ("Value being assigned to is no longer active."); | |
716 | ||
717 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
718 | ||
719 | /* Copy it out. */ | |
720 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
721 | amount_copied = 0); | |
722 | amount_copied < amount_to_copy; | |
723 | amount_copied += reg_size, regno++) | |
724 | { | |
725 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
726 | (int *) NULL, (CORE_ADDR *) NULL, |
727 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
728 | } |
729 | ||
730 | /* Modify what needs to be modified. */ | |
731 | if (VALUE_BITSIZE (toval)) | |
732 | modify_field (buffer + byte_offset, | |
733 | value_as_long (fromval), | |
734 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
735 | else if (use_buffer) | |
736 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
737 | else | |
738 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
739 | TYPE_LENGTH (type)); | |
740 | ||
741 | /* Copy it back. */ | |
742 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
743 | amount_copied = 0); | |
744 | amount_copied < amount_to_copy; | |
745 | amount_copied += reg_size, regno++) | |
746 | { | |
747 | enum lval_type lval; | |
748 | CORE_ADDR addr; | |
749 | int optim; | |
750 | ||
751 | /* Just find out where to put it. */ | |
c5aa993b JM |
752 | get_saved_register ((char *) NULL, |
753 | &optim, &addr, frame, regno, &lval); | |
754 | ||
c906108c SS |
755 | if (optim) |
756 | error ("Attempt to assign to a value that was optimized out."); | |
757 | if (lval == lval_memory) | |
758 | write_memory (addr, buffer + amount_copied, reg_size); | |
759 | else if (lval == lval_register) | |
760 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
761 | else | |
762 | error ("Attempt to assign to an unmodifiable value."); | |
763 | } | |
764 | ||
765 | if (register_changed_hook) | |
766 | register_changed_hook (-1); | |
767 | } | |
768 | break; | |
c5aa993b | 769 | |
c906108c SS |
770 | |
771 | default: | |
772 | error ("Left operand of assignment is not an lvalue."); | |
773 | } | |
774 | ||
775 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
776 | If the field is signed, and is negative, then sign extend. */ | |
777 | if ((VALUE_BITSIZE (toval) > 0) | |
778 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
779 | { | |
780 | LONGEST fieldval = value_as_long (fromval); | |
781 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
782 | ||
783 | fieldval &= valmask; | |
784 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
785 | fieldval |= ~valmask; | |
786 | ||
787 | fromval = value_from_longest (type, fieldval); | |
788 | } | |
789 | ||
790 | val = value_copy (toval); | |
791 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
792 | TYPE_LENGTH (type)); | |
793 | VALUE_TYPE (val) = type; | |
2b127877 | 794 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
795 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
796 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 797 | |
c906108c SS |
798 | return val; |
799 | } | |
800 | ||
801 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
802 | ||
f23631e4 AC |
803 | struct value * |
804 | value_repeat (struct value *arg1, int count) | |
c906108c | 805 | { |
f23631e4 | 806 | struct value *val; |
c906108c SS |
807 | |
808 | if (VALUE_LVAL (arg1) != lval_memory) | |
809 | error ("Only values in memory can be extended with '@'."); | |
810 | if (count < 1) | |
811 | error ("Invalid number %d of repetitions.", count); | |
812 | ||
813 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
814 | ||
815 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
816 | VALUE_CONTENTS_ALL_RAW (val), | |
817 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
818 | VALUE_LVAL (val) = lval_memory; | |
819 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
820 | ||
821 | return val; | |
822 | } | |
823 | ||
f23631e4 | 824 | struct value * |
fba45db2 | 825 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 826 | { |
f23631e4 | 827 | struct value *val; |
c906108c SS |
828 | struct frame_info *frame = NULL; |
829 | ||
830 | if (!b) | |
831 | frame = NULL; /* Use selected frame. */ | |
832 | else if (symbol_read_needs_frame (var)) | |
833 | { | |
834 | frame = block_innermost_frame (b); | |
835 | if (!frame) | |
c5aa993b | 836 | { |
c906108c SS |
837 | if (BLOCK_FUNCTION (b) |
838 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
839 | error ("No frame is currently executing in block %s.", | |
840 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
841 | else | |
842 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 843 | } |
c906108c SS |
844 | } |
845 | ||
846 | val = read_var_value (var, frame); | |
847 | if (!val) | |
848 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
849 | ||
850 | return val; | |
851 | } | |
852 | ||
853 | /* Given a value which is an array, return a value which is a pointer to its | |
854 | first element, regardless of whether or not the array has a nonzero lower | |
855 | bound. | |
856 | ||
857 | FIXME: A previous comment here indicated that this routine should be | |
858 | substracting the array's lower bound. It's not clear to me that this | |
859 | is correct. Given an array subscripting operation, it would certainly | |
860 | work to do the adjustment here, essentially computing: | |
861 | ||
862 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
863 | ||
864 | However I believe a more appropriate and logical place to account for | |
865 | the lower bound is to do so in value_subscript, essentially computing: | |
866 | ||
867 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
868 | ||
869 | As further evidence consider what would happen with operations other | |
870 | than array subscripting, where the caller would get back a value that | |
871 | had an address somewhere before the actual first element of the array, | |
872 | and the information about the lower bound would be lost because of | |
873 | the coercion to pointer type. | |
c5aa993b | 874 | */ |
c906108c | 875 | |
f23631e4 AC |
876 | struct value * |
877 | value_coerce_array (struct value *arg1) | |
c906108c SS |
878 | { |
879 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
880 | ||
881 | if (VALUE_LVAL (arg1) != lval_memory) | |
882 | error ("Attempt to take address of value not located in memory."); | |
883 | ||
4478b372 JB |
884 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
885 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
886 | } |
887 | ||
888 | /* Given a value which is a function, return a value which is a pointer | |
889 | to it. */ | |
890 | ||
f23631e4 AC |
891 | struct value * |
892 | value_coerce_function (struct value *arg1) | |
c906108c | 893 | { |
f23631e4 | 894 | struct value *retval; |
c906108c SS |
895 | |
896 | if (VALUE_LVAL (arg1) != lval_memory) | |
897 | error ("Attempt to take address of value not located in memory."); | |
898 | ||
4478b372 JB |
899 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
900 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
901 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
902 | return retval; | |
c5aa993b | 903 | } |
c906108c SS |
904 | |
905 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
906 | ||
f23631e4 AC |
907 | struct value * |
908 | value_addr (struct value *arg1) | |
c906108c | 909 | { |
f23631e4 | 910 | struct value *arg2; |
c906108c SS |
911 | |
912 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
913 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
914 | { | |
915 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
916 | We keep the same location information, which is efficient, |
917 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
918 | arg2 = value_copy (arg1); |
919 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
920 | return arg2; | |
921 | } | |
922 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
923 | return value_coerce_function (arg1); | |
924 | ||
925 | if (VALUE_LVAL (arg1) != lval_memory) | |
926 | error ("Attempt to take address of value not located in memory."); | |
927 | ||
c5aa993b | 928 | /* Get target memory address */ |
4478b372 JB |
929 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
930 | (VALUE_ADDRESS (arg1) | |
931 | + VALUE_OFFSET (arg1) | |
932 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
933 | |
934 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 935 | full derived object's type ... */ |
2b127877 | 936 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1))); |
c5aa993b JM |
937 | /* ... and also the relative position of the subobject in the full object */ |
938 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
939 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
940 | return arg2; | |
941 | } | |
942 | ||
943 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
944 | ||
f23631e4 AC |
945 | struct value * |
946 | value_ind (struct value *arg1) | |
c906108c SS |
947 | { |
948 | struct type *base_type; | |
f23631e4 | 949 | struct value *arg2; |
c906108c SS |
950 | |
951 | COERCE_ARRAY (arg1); | |
952 | ||
953 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
954 | ||
955 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
956 | error ("not implemented: member types in value_ind"); | |
957 | ||
958 | /* Allow * on an integer so we can cast it to whatever we want. | |
959 | This returns an int, which seems like the most C-like thing | |
960 | to do. "long long" variables are rare enough that | |
961 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
962 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
963 | return value_at (builtin_type_int, | |
964 | (CORE_ADDR) value_as_long (arg1), | |
965 | VALUE_BFD_SECTION (arg1)); | |
966 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
967 | { | |
968 | struct type *enc_type; | |
969 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 970 | /* Get the real type of the enclosing object */ |
c906108c SS |
971 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
972 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
973 | /* Retrieve the enclosing object pointed to */ |
974 | arg2 = value_at_lazy (enc_type, | |
1aa20aa8 | 975 | value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1), |
c5aa993b JM |
976 | VALUE_BFD_SECTION (arg1)); |
977 | /* Re-adjust type */ | |
c906108c SS |
978 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
979 | /* Add embedding info */ | |
2b127877 | 980 | arg2 = value_change_enclosing_type (arg2, enc_type); |
c906108c SS |
981 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); |
982 | ||
983 | /* We may be pointing to an object of some derived type */ | |
984 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
985 | return arg2; | |
986 | } | |
987 | ||
988 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 989 | return 0; /* For lint -- never reached */ |
c906108c SS |
990 | } |
991 | \f | |
992 | /* Pushing small parts of stack frames. */ | |
993 | ||
994 | /* Push one word (the size of object that a register holds). */ | |
995 | ||
996 | CORE_ADDR | |
fba45db2 | 997 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c SS |
998 | { |
999 | register int len = REGISTER_SIZE; | |
e6cbd02a | 1000 | char *buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
1001 | |
1002 | store_unsigned_integer (buffer, len, word); | |
1003 | if (INNER_THAN (1, 2)) | |
1004 | { | |
1005 | /* stack grows downward */ | |
1006 | sp -= len; | |
1007 | write_memory (sp, buffer, len); | |
1008 | } | |
1009 | else | |
1010 | { | |
1011 | /* stack grows upward */ | |
1012 | write_memory (sp, buffer, len); | |
1013 | sp += len; | |
1014 | } | |
1015 | ||
1016 | return sp; | |
1017 | } | |
1018 | ||
1019 | /* Push LEN bytes with data at BUFFER. */ | |
1020 | ||
1021 | CORE_ADDR | |
fba45db2 | 1022 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
1023 | { |
1024 | if (INNER_THAN (1, 2)) | |
1025 | { | |
1026 | /* stack grows downward */ | |
1027 | sp -= len; | |
1028 | write_memory (sp, buffer, len); | |
1029 | } | |
1030 | else | |
1031 | { | |
1032 | /* stack grows upward */ | |
1033 | write_memory (sp, buffer, len); | |
1034 | sp += len; | |
1035 | } | |
1036 | ||
1037 | return sp; | |
1038 | } | |
1039 | ||
2df3850c JM |
1040 | #ifndef PARM_BOUNDARY |
1041 | #define PARM_BOUNDARY (0) | |
1042 | #endif | |
1043 | ||
1044 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1045 | it to be an argument to a function. */ | |
c906108c | 1046 | |
c906108c | 1047 | static CORE_ADDR |
f23631e4 | 1048 | value_push (register CORE_ADDR sp, struct value *arg) |
c906108c SS |
1049 | { |
1050 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1051 | register int container_len = len; |
2df3850c JM |
1052 | register int offset; |
1053 | ||
1054 | /* How big is the container we're going to put this value in? */ | |
1055 | if (PARM_BOUNDARY) | |
1056 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1057 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1058 | ||
1059 | /* Are we going to put it at the high or low end of the container? */ | |
d7449b42 | 1060 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
2df3850c JM |
1061 | offset = container_len - len; |
1062 | else | |
1063 | offset = 0; | |
c906108c SS |
1064 | |
1065 | if (INNER_THAN (1, 2)) | |
1066 | { | |
1067 | /* stack grows downward */ | |
2df3850c JM |
1068 | sp -= container_len; |
1069 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1070 | } |
1071 | else | |
1072 | { | |
1073 | /* stack grows upward */ | |
2df3850c JM |
1074 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1075 | sp += container_len; | |
c906108c SS |
1076 | } |
1077 | ||
1078 | return sp; | |
1079 | } | |
1080 | ||
392a587b | 1081 | CORE_ADDR |
f23631e4 | 1082 | default_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1083 | int struct_return, CORE_ADDR struct_addr) |
392a587b JM |
1084 | { |
1085 | /* ASSERT ( !struct_return); */ | |
1086 | int i; | |
1087 | for (i = nargs - 1; i >= 0; i--) | |
1088 | sp = value_push (sp, args[i]); | |
1089 | return sp; | |
1090 | } | |
1091 | ||
c906108c | 1092 | |
641225a4 JB |
1093 | /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method. |
1094 | ||
1095 | How you should pass arguments to a function depends on whether it | |
1096 | was defined in K&R style or prototype style. If you define a | |
1097 | function using the K&R syntax that takes a `float' argument, then | |
1098 | callers must pass that argument as a `double'. If you define the | |
1099 | function using the prototype syntax, then you must pass the | |
1100 | argument as a `float', with no promotion. | |
1101 | ||
1102 | Unfortunately, on certain older platforms, the debug info doesn't | |
1103 | indicate reliably how each function was defined. A function type's | |
1104 | TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was | |
1105 | defined in prototype style. When calling a function whose | |
1106 | TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the | |
1107 | COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do. | |
1108 | ||
1109 | For modern targets, it is proper to assume that, if the prototype | |
1110 | flag is clear, that can be trusted: `float' arguments should be | |
1111 | promoted to `double'. You should register the function | |
1112 | `standard_coerce_float_to_double' to get this behavior. | |
1113 | ||
1114 | For some older targets, if the prototype flag is clear, that | |
1115 | doesn't tell us anything. So we guess that, if we don't have a | |
1116 | type for the formal parameter (i.e., the first argument to | |
1117 | COERCE_FLOAT_TO_DOUBLE is null), then we should promote it; | |
1118 | otherwise, we should leave it alone. The function | |
1119 | `default_coerce_float_to_double' provides this behavior; it is the | |
1120 | default value, for compatibility with older configurations. */ | |
b9a8e3bf JB |
1121 | int |
1122 | default_coerce_float_to_double (struct type *formal, struct type *actual) | |
1123 | { | |
1124 | return formal == NULL; | |
1125 | } | |
1126 | ||
1127 | ||
b9a8e3bf JB |
1128 | int |
1129 | standard_coerce_float_to_double (struct type *formal, struct type *actual) | |
1130 | { | |
1131 | return 1; | |
1132 | } | |
1133 | ||
1134 | ||
c906108c SS |
1135 | /* Perform the standard coercions that are specified |
1136 | for arguments to be passed to C functions. | |
1137 | ||
1138 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1139 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1140 | ||
f23631e4 | 1141 | static struct value * |
290b2c7a MK |
1142 | value_arg_coerce (struct value *arg, struct type *param_type, |
1143 | int is_prototyped) | |
c906108c SS |
1144 | { |
1145 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1146 | register struct type *type | |
290b2c7a | 1147 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1148 | |
1149 | switch (TYPE_CODE (type)) | |
1150 | { | |
1151 | case TYPE_CODE_REF: | |
491b8946 DJ |
1152 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF |
1153 | && TYPE_CODE (arg_type) != TYPE_CODE_PTR) | |
c906108c SS |
1154 | { |
1155 | arg = value_addr (arg); | |
1156 | VALUE_TYPE (arg) = param_type; | |
1157 | return arg; | |
1158 | } | |
1159 | break; | |
1160 | case TYPE_CODE_INT: | |
1161 | case TYPE_CODE_CHAR: | |
1162 | case TYPE_CODE_BOOL: | |
1163 | case TYPE_CODE_ENUM: | |
1164 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1165 | if (!is_prototyped) | |
1166 | { | |
1167 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1168 | type = builtin_type_int; | |
1169 | } | |
1170 | /* Currently all target ABIs require at least the width of an integer | |
7b83ea04 AC |
1171 | type for an argument. We may have to conditionalize the following |
1172 | type coercion for future targets. */ | |
c906108c SS |
1173 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1174 | type = builtin_type_int; | |
1175 | break; | |
1176 | case TYPE_CODE_FLT: | |
1177 | /* FIXME: We should always convert floats to doubles in the | |
7b83ea04 AC |
1178 | non-prototyped case. As many debugging formats include |
1179 | no information about prototyping, we have to live with | |
1180 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
b9a8e3bf | 1181 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type)) |
c906108c SS |
1182 | { |
1183 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1184 | type = builtin_type_double; | |
1185 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1186 | type = builtin_type_long_double; | |
1187 | } | |
1188 | break; | |
1189 | case TYPE_CODE_FUNC: | |
1190 | type = lookup_pointer_type (type); | |
1191 | break; | |
1192 | case TYPE_CODE_ARRAY: | |
1193 | if (current_language->c_style_arrays) | |
1194 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1195 | break; | |
1196 | case TYPE_CODE_UNDEF: | |
1197 | case TYPE_CODE_PTR: | |
1198 | case TYPE_CODE_STRUCT: | |
1199 | case TYPE_CODE_UNION: | |
1200 | case TYPE_CODE_VOID: | |
1201 | case TYPE_CODE_SET: | |
1202 | case TYPE_CODE_RANGE: | |
1203 | case TYPE_CODE_STRING: | |
1204 | case TYPE_CODE_BITSTRING: | |
1205 | case TYPE_CODE_ERROR: | |
1206 | case TYPE_CODE_MEMBER: | |
1207 | case TYPE_CODE_METHOD: | |
1208 | case TYPE_CODE_COMPLEX: | |
1209 | default: | |
1210 | break; | |
1211 | } | |
1212 | ||
1213 | return value_cast (type, arg); | |
1214 | } | |
1215 | ||
070ad9f0 | 1216 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1217 | Calls error() if the function is not valid for calling. */ |
1218 | ||
1219 | static CORE_ADDR | |
f23631e4 | 1220 | find_function_addr (struct value *function, struct type **retval_type) |
c906108c SS |
1221 | { |
1222 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1223 | register enum type_code code = TYPE_CODE (ftype); | |
1224 | struct type *value_type; | |
1225 | CORE_ADDR funaddr; | |
1226 | ||
1227 | /* If it's a member function, just look at the function | |
1228 | part of it. */ | |
1229 | ||
1230 | /* Determine address to call. */ | |
1231 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1232 | { | |
1233 | funaddr = VALUE_ADDRESS (function); | |
1234 | value_type = TYPE_TARGET_TYPE (ftype); | |
1235 | } | |
1236 | else if (code == TYPE_CODE_PTR) | |
1237 | { | |
1aa20aa8 | 1238 | funaddr = value_as_address (function); |
c906108c SS |
1239 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); |
1240 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1241 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1242 | { | |
c906108c | 1243 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); |
c906108c SS |
1244 | value_type = TYPE_TARGET_TYPE (ftype); |
1245 | } | |
1246 | else | |
1247 | value_type = builtin_type_int; | |
1248 | } | |
1249 | else if (code == TYPE_CODE_INT) | |
1250 | { | |
1251 | /* Handle the case of functions lacking debugging info. | |
7b83ea04 | 1252 | Their values are characters since their addresses are char */ |
c906108c | 1253 | if (TYPE_LENGTH (ftype) == 1) |
1aa20aa8 | 1254 | funaddr = value_as_address (value_addr (function)); |
c906108c SS |
1255 | else |
1256 | /* Handle integer used as address of a function. */ | |
1257 | funaddr = (CORE_ADDR) value_as_long (function); | |
1258 | ||
1259 | value_type = builtin_type_int; | |
1260 | } | |
1261 | else | |
1262 | error ("Invalid data type for function to be called."); | |
1263 | ||
1264 | *retval_type = value_type; | |
1265 | return funaddr; | |
1266 | } | |
1267 | ||
1268 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1269 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1270 | frame which looks just like a real frame is so that if you call a | |
1271 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1272 | will look right. Whether the backtrace needs to actually show the | |
1273 | stack at the time the inferior function was called is debatable, but | |
1274 | it certainly needs to not display garbage. So if you are contemplating | |
1275 | making dummy frames be different from normal frames, consider that. */ | |
1276 | ||
1277 | /* Perform a function call in the inferior. | |
1278 | ARGS is a vector of values of arguments (NARGS of them). | |
1279 | FUNCTION is a value, the function to be called. | |
1280 | Returns a value representing what the function returned. | |
1281 | May fail to return, if a breakpoint or signal is hit | |
1282 | during the execution of the function. | |
1283 | ||
1284 | ARGS is modified to contain coerced values. */ | |
1285 | ||
f23631e4 AC |
1286 | static struct value * |
1287 | hand_function_call (struct value *function, int nargs, struct value **args) | |
c906108c SS |
1288 | { |
1289 | register CORE_ADDR sp; | |
1290 | register int i; | |
da59e081 | 1291 | int rc; |
c906108c SS |
1292 | CORE_ADDR start_sp; |
1293 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1294 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1295 | and remove any extra bytes which might exist because ULONGEST is | |
070ad9f0 | 1296 | bigger than REGISTER_SIZE. |
c906108c SS |
1297 | |
1298 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1299 | sequence of instructions. But CISC machines will have |
1300 | to pack the instructions into REGISTER_SIZE units (and | |
1301 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1302 | REGISTER_SIZE). | |
7a292a7a SS |
1303 | |
1304 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1305 | target byte order. */ |
c906108c | 1306 | |
7a292a7a SS |
1307 | static ULONGEST *dummy; |
1308 | int sizeof_dummy1; | |
1309 | char *dummy1; | |
c906108c SS |
1310 | CORE_ADDR old_sp; |
1311 | struct type *value_type; | |
1312 | unsigned char struct_return; | |
1313 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1314 | struct inferior_status *inf_status; |
c906108c SS |
1315 | struct cleanup *old_chain; |
1316 | CORE_ADDR funaddr; | |
c5aa993b | 1317 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1318 | CORE_ADDR real_pc; |
1319 | struct type *param_type = NULL; | |
1320 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
76b2e19d | 1321 | int n_method_args = 0; |
c906108c | 1322 | |
7a292a7a SS |
1323 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1324 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1325 | dummy1 = alloca (sizeof_dummy1); | |
1326 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1327 | ||
c906108c | 1328 | if (!target_has_execution) |
c5aa993b | 1329 | noprocess (); |
c906108c | 1330 | |
7a292a7a | 1331 | inf_status = save_inferior_status (1); |
74b7792f | 1332 | old_chain = make_cleanup_restore_inferior_status (inf_status); |
c906108c SS |
1333 | |
1334 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1335 | (and POP_FRAME for restoring them). (At least on most machines) | |
1336 | they are saved on the stack in the inferior. */ | |
1337 | PUSH_DUMMY_FRAME; | |
1338 | ||
1339 | old_sp = sp = read_sp (); | |
1340 | ||
1341 | if (INNER_THAN (1, 2)) | |
1342 | { | |
1343 | /* Stack grows down */ | |
7a292a7a | 1344 | sp -= sizeof_dummy1; |
c906108c SS |
1345 | start_sp = sp; |
1346 | } | |
1347 | else | |
1348 | { | |
1349 | /* Stack grows up */ | |
1350 | start_sp = sp; | |
7a292a7a | 1351 | sp += sizeof_dummy1; |
c906108c SS |
1352 | } |
1353 | ||
1354 | funaddr = find_function_addr (function, &value_type); | |
1355 | CHECK_TYPEDEF (value_type); | |
1356 | ||
1357 | { | |
1358 | struct block *b = block_for_pc (funaddr); | |
1359 | /* If compiled without -g, assume GCC 2. */ | |
1360 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1361 | } | |
1362 | ||
1363 | /* Are we returning a value using a structure return or a normal | |
1364 | value return? */ | |
1365 | ||
1366 | struct_return = using_struct_return (function, funaddr, value_type, | |
1367 | using_gcc); | |
1368 | ||
1369 | /* Create a call sequence customized for this function | |
1370 | and the number of arguments for it. */ | |
7a292a7a | 1371 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1372 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1373 | REGISTER_SIZE, | |
c5aa993b | 1374 | (ULONGEST) dummy[i]); |
c906108c SS |
1375 | |
1376 | #ifdef GDB_TARGET_IS_HPPA | |
1377 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1378 | value_type, using_gcc); | |
1379 | #else | |
1380 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1381 | value_type, using_gcc); | |
1382 | real_pc = start_sp; | |
1383 | #endif | |
1384 | ||
7a292a7a SS |
1385 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1386 | { | |
c5aa993b | 1387 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1388 | } |
c906108c | 1389 | |
7a292a7a SS |
1390 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1391 | { | |
1392 | /* Convex Unix prohibits executing in the stack segment. */ | |
1393 | /* Hope there is empty room at the top of the text segment. */ | |
1394 | extern CORE_ADDR text_end; | |
392a587b | 1395 | static int checked = 0; |
7a292a7a SS |
1396 | if (!checked) |
1397 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1398 | if (read_memory_integer (start_sp, 1) != 0) | |
1399 | error ("text segment full -- no place to put call"); | |
1400 | checked = 1; | |
1401 | sp = old_sp; | |
1402 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1403 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1404 | } |
c5aa993b | 1405 | |
7a292a7a SS |
1406 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1407 | { | |
1408 | extern CORE_ADDR text_end; | |
1409 | int errcode; | |
1410 | sp = old_sp; | |
1411 | real_pc = text_end; | |
c5aa993b | 1412 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1413 | if (errcode != 0) |
1414 | error ("Cannot write text segment -- call_function failed"); | |
1415 | } | |
c906108c | 1416 | |
7a292a7a SS |
1417 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1418 | { | |
1419 | real_pc = funaddr; | |
1420 | } | |
c906108c SS |
1421 | |
1422 | #ifdef lint | |
c5aa993b | 1423 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1424 | #endif |
1425 | ||
76b2e19d DJ |
1426 | if (TYPE_CODE (ftype) == TYPE_CODE_METHOD) |
1427 | { | |
1428 | i = 0; | |
1429 | while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID) | |
1430 | i++; | |
1431 | n_method_args = i; | |
1432 | if (nargs < i) | |
1433 | error ("too few arguments in method call"); | |
1434 | } | |
1435 | else if (nargs < TYPE_NFIELDS (ftype)) | |
c906108c SS |
1436 | error ("too few arguments in function call"); |
1437 | ||
1438 | for (i = nargs - 1; i >= 0; i--) | |
1439 | { | |
76b2e19d DJ |
1440 | /* Assume that methods are always prototyped, unless they are off the |
1441 | end (which we should only be allowing if there is a ``...''). | |
1442 | FIXME. */ | |
1443 | if (TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1444 | { | |
1445 | if (i < n_method_args) | |
1446 | args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1); | |
1447 | else | |
1448 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1449 | } | |
1450 | ||
c906108c | 1451 | /* If we're off the end of the known arguments, do the standard |
7b83ea04 AC |
1452 | promotions. FIXME: if we had a prototype, this should only |
1453 | be allowed if ... were present. */ | |
c906108c SS |
1454 | if (i >= TYPE_NFIELDS (ftype)) |
1455 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1456 | ||
c5aa993b | 1457 | else |
c906108c | 1458 | { |
c906108c | 1459 | param_type = TYPE_FIELD_TYPE (ftype, i); |
74a9bb82 | 1460 | args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype)); |
c906108c SS |
1461 | } |
1462 | ||
070ad9f0 DB |
1463 | /*elz: this code is to handle the case in which the function to be called |
1464 | has a pointer to function as parameter and the corresponding actual argument | |
7b83ea04 AC |
1465 | is the address of a function and not a pointer to function variable. |
1466 | In aCC compiled code, the calls through pointers to functions (in the body | |
1467 | of the function called by hand) are made via $$dyncall_external which | |
070ad9f0 DB |
1468 | requires some registers setting, this is taken care of if we call |
1469 | via a function pointer variable, but not via a function address. | |
7b83ea04 | 1470 | In cc this is not a problem. */ |
c906108c SS |
1471 | |
1472 | if (using_gcc == 0) | |
1473 | if (param_type) | |
c5aa993b | 1474 | /* if this parameter is a pointer to function */ |
c906108c SS |
1475 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
1476 | if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC) | |
070ad9f0 | 1477 | /* elz: FIXME here should go the test about the compiler used |
7b83ea04 | 1478 | to compile the target. We want to issue the error |
070ad9f0 DB |
1479 | message only if the compiler used was HP's aCC. |
1480 | If we used HP's cc, then there is no problem and no need | |
7b83ea04 | 1481 | to return at this point */ |
c5aa993b | 1482 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1483 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1484 | pointer to function or just a function */ |
c906108c SS |
1485 | if (args[i]->lval == not_lval) |
1486 | { | |
1487 | char *arg_name; | |
c5aa993b JM |
1488 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1489 | error ("\ | |
c906108c SS |
1490 | You cannot use function <%s> as argument. \n\ |
1491 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1492 | } |
c906108c SS |
1493 | } |
1494 | ||
d03e67c9 AC |
1495 | if (REG_STRUCT_HAS_ADDR_P ()) |
1496 | { | |
1497 | /* This is a machine like the sparc, where we may need to pass a | |
1498 | pointer to the structure, not the structure itself. */ | |
1499 | for (i = nargs - 1; i >= 0; i--) | |
1500 | { | |
1501 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1502 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1503 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1504 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1505 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1506 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1507 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1508 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1509 | && TYPE_LENGTH (arg_type) > 8) | |
1510 | ) | |
1511 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
1512 | { | |
1513 | CORE_ADDR addr; | |
1514 | int len; /* = TYPE_LENGTH (arg_type); */ | |
1515 | int aligned_len; | |
1516 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1517 | len = TYPE_LENGTH (arg_type); | |
1518 | ||
1519 | if (STACK_ALIGN_P ()) | |
1520 | /* MVS 11/22/96: I think at least some of this | |
1521 | stack_align code is really broken. Better to let | |
1522 | PUSH_ARGUMENTS adjust the stack in a target-defined | |
1523 | manner. */ | |
1524 | aligned_len = STACK_ALIGN (len); | |
1525 | else | |
1526 | aligned_len = len; | |
1527 | if (INNER_THAN (1, 2)) | |
1528 | { | |
1529 | /* stack grows downward */ | |
1530 | sp -= aligned_len; | |
0b3f98d3 AC |
1531 | /* ... so the address of the thing we push is the |
1532 | stack pointer after we push it. */ | |
1533 | addr = sp; | |
d03e67c9 AC |
1534 | } |
1535 | else | |
1536 | { | |
1537 | /* The stack grows up, so the address of the thing | |
1538 | we push is the stack pointer before we push it. */ | |
1539 | addr = sp; | |
d03e67c9 AC |
1540 | sp += aligned_len; |
1541 | } | |
0b3f98d3 AC |
1542 | /* Push the structure. */ |
1543 | write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len); | |
d03e67c9 AC |
1544 | /* The value we're going to pass is the address of the |
1545 | thing we just pushed. */ | |
1546 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1547 | (LONGEST) addr); */ | |
1548 | args[i] = value_from_pointer (lookup_pointer_type (arg_type), | |
1549 | addr); | |
1550 | } | |
1551 | } | |
1552 | } | |
1553 | ||
c906108c SS |
1554 | |
1555 | /* Reserve space for the return structure to be written on the | |
1556 | stack, if necessary */ | |
1557 | ||
1558 | if (struct_return) | |
1559 | { | |
1560 | int len = TYPE_LENGTH (value_type); | |
2ada493a AC |
1561 | if (STACK_ALIGN_P ()) |
1562 | /* MVS 11/22/96: I think at least some of this stack_align | |
1563 | code is really broken. Better to let PUSH_ARGUMENTS adjust | |
1564 | the stack in a target-defined manner. */ | |
1565 | len = STACK_ALIGN (len); | |
c906108c SS |
1566 | if (INNER_THAN (1, 2)) |
1567 | { | |
1568 | /* stack grows downward */ | |
1569 | sp -= len; | |
1570 | struct_addr = sp; | |
1571 | } | |
1572 | else | |
1573 | { | |
1574 | /* stack grows upward */ | |
1575 | struct_addr = sp; | |
1576 | sp += len; | |
1577 | } | |
1578 | } | |
1579 | ||
0a49d05e AC |
1580 | /* elz: on HPPA no need for this extra alignment, maybe it is needed |
1581 | on other architectures. This is because all the alignment is | |
1582 | taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and | |
1583 | in hppa_push_arguments */ | |
1584 | if (EXTRA_STACK_ALIGNMENT_NEEDED) | |
c906108c | 1585 | { |
0a49d05e AC |
1586 | /* MVS 11/22/96: I think at least some of this stack_align code |
1587 | is really broken. Better to let PUSH_ARGUMENTS adjust the | |
1588 | stack in a target-defined manner. */ | |
1589 | if (STACK_ALIGN_P () && INNER_THAN (1, 2)) | |
1590 | { | |
1591 | /* If stack grows down, we must leave a hole at the top. */ | |
1592 | int len = 0; | |
1593 | ||
1594 | for (i = nargs - 1; i >= 0; i--) | |
1595 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
1596 | if (CALL_DUMMY_STACK_ADJUST_P) | |
1597 | len += CALL_DUMMY_STACK_ADJUST; | |
1598 | sp -= STACK_ALIGN (len) - len; | |
1599 | } | |
c906108c | 1600 | } |
c906108c | 1601 | |
392a587b | 1602 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c | 1603 | |
69a0d5f4 AC |
1604 | if (PUSH_RETURN_ADDRESS_P ()) |
1605 | /* for targets that use no CALL_DUMMY */ | |
1606 | /* There are a number of targets now which actually don't write | |
1607 | any CALL_DUMMY instructions into the target, but instead just | |
1608 | save the machine state, push the arguments, and jump directly | |
1609 | to the callee function. Since this doesn't actually involve | |
1610 | executing a JSR/BSR instruction, the return address must be set | |
1611 | up by hand, either by pushing onto the stack or copying into a | |
1612 | return-address register as appropriate. Formerly this has been | |
1613 | done in PUSH_ARGUMENTS, but that's overloading its | |
1614 | functionality a bit, so I'm making it explicit to do it here. */ | |
1615 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); | |
c906108c | 1616 | |
2ada493a | 1617 | if (STACK_ALIGN_P () && !INNER_THAN (1, 2)) |
c906108c SS |
1618 | { |
1619 | /* If stack grows up, we must leave a hole at the bottom, note | |
7b83ea04 | 1620 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1621 | if (CALL_DUMMY_STACK_ADJUST_P) |
1622 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1623 | sp = STACK_ALIGN (sp); |
1624 | } | |
c906108c SS |
1625 | |
1626 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1627 | anything here! */ | |
1628 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1629 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1630 | a target-defined manner. */ | |
7a292a7a SS |
1631 | if (CALL_DUMMY_STACK_ADJUST_P) |
1632 | if (INNER_THAN (1, 2)) | |
1633 | { | |
1634 | /* stack grows downward */ | |
1635 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1636 | } | |
c906108c SS |
1637 | |
1638 | /* Store the address at which the structure is supposed to be | |
1639 | written. Note that this (and the code which reserved the space | |
1640 | above) assumes that gcc was used to compile this function. Since | |
1641 | it doesn't cost us anything but space and if the function is pcc | |
1642 | it will ignore this value, we will make that assumption. | |
1643 | ||
070ad9f0 | 1644 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1645 | convention like gcc's. */ |
1646 | ||
1647 | if (struct_return) | |
1648 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1649 | ||
1650 | /* Write the stack pointer. This is here because the statements above | |
1651 | might fool with it. On SPARC, this write also stores the register | |
1652 | window into the right place in the new stack frame, which otherwise | |
1653 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1654 | write_sp (sp); | |
1655 | ||
d1e3cf49 AC |
1656 | if (SAVE_DUMMY_FRAME_TOS_P ()) |
1657 | SAVE_DUMMY_FRAME_TOS (sp); | |
43ff13b4 | 1658 | |
c906108c | 1659 | { |
e6cbd02a | 1660 | char *retbuf = (char*) alloca (REGISTER_BYTES); |
c906108c SS |
1661 | char *name; |
1662 | struct symbol *symbol; | |
1663 | ||
1664 | name = NULL; | |
1665 | symbol = find_pc_function (funaddr); | |
1666 | if (symbol) | |
1667 | { | |
1668 | name = SYMBOL_SOURCE_NAME (symbol); | |
1669 | } | |
1670 | else | |
1671 | { | |
1672 | /* Try the minimal symbols. */ | |
1673 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1674 | ||
1675 | if (msymbol) | |
1676 | { | |
1677 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1678 | } | |
1679 | } | |
1680 | if (name == NULL) | |
1681 | { | |
1682 | char format[80]; | |
1683 | sprintf (format, "at %s", local_hex_format ()); | |
1684 | name = alloca (80); | |
1685 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1686 | sprintf (name, format, (unsigned long) funaddr); | |
1687 | } | |
1688 | ||
1689 | /* Execute the stack dummy routine, calling FUNCTION. | |
1690 | When it is done, discard the empty frame | |
1691 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1692 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1693 | ||
1694 | if (rc == 1) | |
1695 | { | |
1696 | /* We stopped inside the FUNCTION because of a random signal. | |
1697 | Further execution of the FUNCTION is not allowed. */ | |
1698 | ||
7b83ea04 | 1699 | if (unwind_on_signal_p) |
242bfc55 FN |
1700 | { |
1701 | /* The user wants the context restored. */ | |
da59e081 | 1702 | |
7b83ea04 AC |
1703 | /* We must get back to the frame we were before the dummy call. */ |
1704 | POP_FRAME; | |
242bfc55 FN |
1705 | |
1706 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1707 | a C++ name with arguments and stuff. */ | |
1708 | error ("\ | |
1709 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1710 | GDB has restored the context to what it was before the call.\n\ | |
1711 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1712 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1713 | name); |
1714 | } | |
1715 | else | |
1716 | { | |
1717 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1718 | ||
1719 | /* If we did the cleanups, we would print a spurious error | |
1720 | message (Unable to restore previously selected frame), | |
1721 | would write the registers from the inf_status (which is | |
1722 | wrong), and would do other wrong things. */ | |
1723 | discard_cleanups (old_chain); | |
1724 | discard_inferior_status (inf_status); | |
1725 | ||
1726 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1727 | a C++ name with arguments and stuff. */ | |
1728 | error ("\ | |
1729 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1730 | GDB remains in the frame where the signal was received.\n\ | |
1731 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1732 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1733 | name); | |
1734 | } | |
da59e081 JM |
1735 | } |
1736 | ||
1737 | if (rc == 2) | |
c906108c | 1738 | { |
da59e081 | 1739 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1740 | |
7a292a7a SS |
1741 | /* If we did the cleanups, we would print a spurious error |
1742 | message (Unable to restore previously selected frame), | |
1743 | would write the registers from the inf_status (which is | |
1744 | wrong), and would do other wrong things. */ | |
c906108c | 1745 | discard_cleanups (old_chain); |
7a292a7a | 1746 | discard_inferior_status (inf_status); |
c906108c SS |
1747 | |
1748 | /* The following error message used to say "The expression | |
1749 | which contained the function call has been discarded." It | |
1750 | is a hard concept to explain in a few words. Ideally, GDB | |
1751 | would be able to resume evaluation of the expression when | |
1752 | the function finally is done executing. Perhaps someday | |
1753 | this will be implemented (it would not be easy). */ | |
1754 | ||
1755 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1756 | a C++ name with arguments and stuff. */ | |
1757 | error ("\ | |
1758 | The program being debugged stopped while in a function called from GDB.\n\ | |
1759 | When the function (%s) is done executing, GDB will silently\n\ | |
1760 | stop (instead of continuing to evaluate the expression containing\n\ | |
1761 | the function call).", name); | |
1762 | } | |
1763 | ||
da59e081 | 1764 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1765 | do_cleanups (old_chain); |
1766 | ||
1767 | /* Figure out the value returned by the function. */ | |
1768 | /* elz: I defined this new macro for the hppa architecture only. | |
1769 | this gives us a way to get the value returned by the function from the stack, | |
1770 | at the same address we told the function to put it. | |
1771 | We cannot assume on the pa that r28 still contains the address of the returned | |
1772 | structure. Usually this will be overwritten by the callee. | |
1773 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1774 | */ |
c906108c SS |
1775 | |
1776 | #ifdef VALUE_RETURNED_FROM_STACK | |
1777 | if (struct_return) | |
f23631e4 | 1778 | return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); |
c906108c SS |
1779 | #endif |
1780 | ||
1781 | return value_being_returned (value_type, retbuf, struct_return); | |
1782 | } | |
1783 | } | |
7a292a7a | 1784 | |
f23631e4 AC |
1785 | struct value * |
1786 | call_function_by_hand (struct value *function, int nargs, struct value **args) | |
c906108c | 1787 | { |
7a292a7a SS |
1788 | if (CALL_DUMMY_P) |
1789 | { | |
1790 | return hand_function_call (function, nargs, args); | |
1791 | } | |
1792 | else | |
1793 | { | |
1794 | error ("Cannot invoke functions on this machine."); | |
1795 | } | |
c906108c | 1796 | } |
c5aa993b | 1797 | \f |
7a292a7a | 1798 | |
c906108c | 1799 | |
c906108c SS |
1800 | /* Create a value for an array by allocating space in the inferior, copying |
1801 | the data into that space, and then setting up an array value. | |
1802 | ||
1803 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1804 | populated from the values passed in ELEMVEC. | |
1805 | ||
1806 | The element type of the array is inherited from the type of the | |
1807 | first element, and all elements must have the same size (though we | |
1808 | don't currently enforce any restriction on their types). */ | |
1809 | ||
f23631e4 AC |
1810 | struct value * |
1811 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1812 | { |
1813 | int nelem; | |
1814 | int idx; | |
1815 | unsigned int typelength; | |
f23631e4 | 1816 | struct value *val; |
c906108c SS |
1817 | struct type *rangetype; |
1818 | struct type *arraytype; | |
1819 | CORE_ADDR addr; | |
1820 | ||
1821 | /* Validate that the bounds are reasonable and that each of the elements | |
1822 | have the same size. */ | |
1823 | ||
1824 | nelem = highbound - lowbound + 1; | |
1825 | if (nelem <= 0) | |
1826 | { | |
1827 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1828 | } | |
1829 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1830 | for (idx = 1; idx < nelem; idx++) | |
1831 | { | |
1832 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1833 | { | |
1834 | error ("array elements must all be the same size"); | |
1835 | } | |
1836 | } | |
1837 | ||
1838 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1839 | lowbound, highbound); | |
c5aa993b JM |
1840 | arraytype = create_array_type ((struct type *) NULL, |
1841 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1842 | |
1843 | if (!current_language->c_style_arrays) | |
1844 | { | |
1845 | val = allocate_value (arraytype); | |
1846 | for (idx = 0; idx < nelem; idx++) | |
1847 | { | |
1848 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1849 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1850 | typelength); | |
1851 | } | |
1852 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1853 | return val; | |
1854 | } | |
1855 | ||
1856 | /* Allocate space to store the array in the inferior, and then initialize | |
1857 | it by copying in each element. FIXME: Is it worth it to create a | |
1858 | local buffer in which to collect each value and then write all the | |
1859 | bytes in one operation? */ | |
1860 | ||
1861 | addr = allocate_space_in_inferior (nelem * typelength); | |
1862 | for (idx = 0; idx < nelem; idx++) | |
1863 | { | |
1864 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1865 | typelength); | |
1866 | } | |
1867 | ||
1868 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1869 | ||
1870 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1871 | return (val); | |
1872 | } | |
1873 | ||
1874 | /* Create a value for a string constant by allocating space in the inferior, | |
1875 | copying the data into that space, and returning the address with type | |
1876 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1877 | of characters. | |
1878 | Note that string types are like array of char types with a lower bound of | |
1879 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1880 | embedded null bytes. */ | |
1881 | ||
f23631e4 | 1882 | struct value * |
fba45db2 | 1883 | value_string (char *ptr, int len) |
c906108c | 1884 | { |
f23631e4 | 1885 | struct value *val; |
c906108c SS |
1886 | int lowbound = current_language->string_lower_bound; |
1887 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1888 | builtin_type_int, | |
1889 | lowbound, len + lowbound - 1); | |
1890 | struct type *stringtype | |
c5aa993b | 1891 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1892 | CORE_ADDR addr; |
1893 | ||
1894 | if (current_language->c_style_arrays == 0) | |
1895 | { | |
1896 | val = allocate_value (stringtype); | |
1897 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1898 | return val; | |
1899 | } | |
1900 | ||
1901 | ||
1902 | /* Allocate space to store the string in the inferior, and then | |
1903 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1904 | ||
1905 | addr = allocate_space_in_inferior (len); | |
1906 | write_memory (addr, ptr, len); | |
1907 | ||
1908 | val = value_at_lazy (stringtype, addr, NULL); | |
1909 | return (val); | |
1910 | } | |
1911 | ||
f23631e4 | 1912 | struct value * |
fba45db2 | 1913 | value_bitstring (char *ptr, int len) |
c906108c | 1914 | { |
f23631e4 | 1915 | struct value *val; |
c906108c SS |
1916 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1917 | 0, len - 1); | |
c5aa993b | 1918 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1919 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1920 | val = allocate_value (type); | |
1921 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1922 | return val; | |
1923 | } | |
1924 | \f | |
1925 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1926 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1927 | arguments need coercion of some sort, then the coerced values are written | |
1928 | into T2. Return value is 0 if the arguments could be matched, or the | |
1929 | position at which they differ if not. | |
1930 | ||
1931 | STATICP is nonzero if the T1 argument list came from a | |
1932 | static member function. | |
1933 | ||
1934 | For non-static member functions, we ignore the first argument, | |
1935 | which is the type of the instance variable. This is because we want | |
1936 | to handle calls with objects from derived classes. This is not | |
1937 | entirely correct: we should actually check to make sure that a | |
1938 | requested operation is type secure, shouldn't we? FIXME. */ | |
1939 | ||
1940 | static int | |
f23631e4 | 1941 | typecmp (int staticp, struct type *t1[], struct value *t2[]) |
c906108c SS |
1942 | { |
1943 | int i; | |
1944 | ||
1945 | if (t2 == 0) | |
1946 | return 1; | |
1947 | if (staticp && t1 == 0) | |
1948 | return t2[1] != 0; | |
1949 | if (t1 == 0) | |
1950 | return 1; | |
c5aa993b JM |
1951 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) |
1952 | return 0; | |
1953 | if (t1[!staticp] == 0) | |
1954 | return 0; | |
c906108c SS |
1955 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) |
1956 | { | |
c5aa993b JM |
1957 | struct type *tt1, *tt2; |
1958 | if (!t2[i]) | |
1959 | return i + 1; | |
c906108c | 1960 | tt1 = check_typedef (t1[i]); |
c5aa993b | 1961 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
c906108c | 1962 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1963 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1964 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1965 | { | |
1966 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1967 | t2[i] = value_coerce_array (t2[i]); | |
1968 | else | |
1969 | t2[i] = value_addr (t2[i]); | |
1970 | continue; | |
1971 | } | |
1972 | ||
802db21b DB |
1973 | /* djb - 20000715 - Until the new type structure is in the |
1974 | place, and we can attempt things like implicit conversions, | |
1975 | we need to do this so you can take something like a map<const | |
1976 | char *>, and properly access map["hello"], because the | |
1977 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1978 | and the argument will be a pointer to a char. */ |
802db21b DB |
1979 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1980 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1981 | { | |
1982 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1983 | } | |
1984 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1985 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1986 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1987 | { |
802db21b | 1988 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1989 | } |
c5aa993b JM |
1990 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1991 | continue; | |
c906108c SS |
1992 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1993 | ||
1994 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1995 | of the ARM), but as a quick kludge, just check for the same type |
1996 | code. */ | |
c906108c | 1997 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 1998 | return i + 1; |
c906108c | 1999 | } |
c5aa993b JM |
2000 | if (!t1[i]) |
2001 | return 0; | |
2002 | return t2[i] ? i + 1 : 0; | |
c906108c SS |
2003 | } |
2004 | ||
2005 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2006 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2007 | and search in it assuming it has (class) type TYPE. | |
2008 | If found, return value, else return NULL. | |
2009 | ||
2010 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2011 | look for a baseclass named NAME. */ | |
2012 | ||
f23631e4 AC |
2013 | static struct value * |
2014 | search_struct_field (char *name, struct value *arg1, int offset, | |
fba45db2 | 2015 | register struct type *type, int looking_for_baseclass) |
c906108c SS |
2016 | { |
2017 | int i; | |
2018 | int nbases = TYPE_N_BASECLASSES (type); | |
2019 | ||
2020 | CHECK_TYPEDEF (type); | |
2021 | ||
c5aa993b | 2022 | if (!looking_for_baseclass) |
c906108c SS |
2023 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2024 | { | |
2025 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2026 | ||
db577aea | 2027 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 2028 | { |
f23631e4 | 2029 | struct value *v; |
c906108c SS |
2030 | if (TYPE_FIELD_STATIC (type, i)) |
2031 | v = value_static_field (type, i); | |
2032 | else | |
2033 | v = value_primitive_field (arg1, offset, i, type); | |
2034 | if (v == 0) | |
c5aa993b | 2035 | error ("there is no field named %s", name); |
c906108c SS |
2036 | return v; |
2037 | } | |
2038 | ||
2039 | if (t_field_name | |
2040 | && (t_field_name[0] == '\0' | |
2041 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2042 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2043 | { |
2044 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2045 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2046 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2047 | { | |
2048 | /* Look for a match through the fields of an anonymous union, | |
2049 | or anonymous struct. C++ provides anonymous unions. | |
2050 | ||
2051 | In the GNU Chill implementation of variant record types, | |
2052 | each <alternative field> has an (anonymous) union type, | |
2053 | each member of the union represents a <variant alternative>. | |
2054 | Each <variant alternative> is represented as a struct, | |
2055 | with a member for each <variant field>. */ | |
c5aa993b | 2056 | |
f23631e4 | 2057 | struct value *v; |
c906108c SS |
2058 | int new_offset = offset; |
2059 | ||
2060 | /* This is pretty gross. In G++, the offset in an anonymous | |
2061 | union is relative to the beginning of the enclosing struct. | |
2062 | In the GNU Chill implementation of variant records, | |
2063 | the bitpos is zero in an anonymous union field, so we | |
2064 | have to add the offset of the union here. */ | |
2065 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2066 | || (TYPE_NFIELDS (field_type) > 0 | |
2067 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2068 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2069 | ||
2070 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2071 | looking_for_baseclass); | |
2072 | if (v) | |
2073 | return v; | |
2074 | } | |
2075 | } | |
2076 | } | |
2077 | ||
c5aa993b | 2078 | for (i = 0; i < nbases; i++) |
c906108c | 2079 | { |
f23631e4 | 2080 | struct value *v; |
c906108c SS |
2081 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
2082 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
2083 | hit them. But it could happen that the base part's member name |
2084 | is not yet filled in. */ | |
c906108c SS |
2085 | int found_baseclass = (looking_for_baseclass |
2086 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 2087 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
2088 | |
2089 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2090 | { | |
2091 | int boffset; | |
f23631e4 | 2092 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
2093 | |
2094 | boffset = baseclass_offset (type, i, | |
2095 | VALUE_CONTENTS (arg1) + offset, | |
2096 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2097 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2098 | if (boffset == -1) |
2099 | error ("virtual baseclass botch"); | |
2100 | ||
2101 | /* The virtual base class pointer might have been clobbered by the | |
2102 | user program. Make sure that it still points to a valid memory | |
2103 | location. */ | |
2104 | ||
2105 | boffset += offset; | |
2106 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2107 | { | |
2108 | CORE_ADDR base_addr; | |
c5aa993b | 2109 | |
c906108c SS |
2110 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2111 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2112 | TYPE_LENGTH (basetype)) != 0) | |
2113 | error ("virtual baseclass botch"); | |
2114 | VALUE_LVAL (v2) = lval_memory; | |
2115 | VALUE_ADDRESS (v2) = base_addr; | |
2116 | } | |
2117 | else | |
2118 | { | |
2119 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2120 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2121 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2122 | if (VALUE_LAZY (arg1)) | |
2123 | VALUE_LAZY (v2) = 1; | |
2124 | else | |
2125 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2126 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2127 | TYPE_LENGTH (basetype)); | |
2128 | } | |
2129 | ||
2130 | if (found_baseclass) | |
2131 | return v2; | |
2132 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2133 | looking_for_baseclass); | |
2134 | } | |
2135 | else if (found_baseclass) | |
2136 | v = value_primitive_field (arg1, offset, i, type); | |
2137 | else | |
2138 | v = search_struct_field (name, arg1, | |
c5aa993b | 2139 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2140 | basetype, looking_for_baseclass); |
c5aa993b JM |
2141 | if (v) |
2142 | return v; | |
c906108c SS |
2143 | } |
2144 | return NULL; | |
2145 | } | |
2146 | ||
2147 | ||
2148 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2149 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2150 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2151 | * looking (in case VALADDR is the contents of an enclosing object). | |
2152 | * | |
2153 | * This routine recurses on the primary base of the derived class because | |
2154 | * the virtual base entries of the primary base appear before the other | |
2155 | * virtual base entries. | |
2156 | * | |
2157 | * If the virtual base is not found, a negative integer is returned. | |
2158 | * The magnitude of the negative integer is the number of entries in | |
2159 | * the virtual table to skip over (entries corresponding to various | |
2160 | * ancestral classes in the chain of primary bases). | |
2161 | * | |
2162 | * Important: This assumes the HP / Taligent C++ runtime | |
2163 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2164 | * conventions. */ | |
2165 | ||
2166 | void | |
fba45db2 KB |
2167 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
2168 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 2169 | { |
c5aa993b JM |
2170 | int boffset; /* offset of virtual base */ |
2171 | int index; /* displacement to use in virtual table */ | |
c906108c | 2172 | int skip; |
c5aa993b | 2173 | |
f23631e4 | 2174 | struct value *vp; |
c5aa993b JM |
2175 | CORE_ADDR vtbl; /* the virtual table pointer */ |
2176 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2177 | |
2178 | /* Look for the virtual base recursively in the primary base, first. | |
2179 | * This is because the derived class object and its primary base | |
2180 | * subobject share the primary virtual table. */ | |
c5aa993b | 2181 | |
c906108c | 2182 | boffset = 0; |
c5aa993b | 2183 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2184 | if (pbc) |
2185 | { | |
2186 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2187 | if (skip < 0) | |
c5aa993b JM |
2188 | { |
2189 | *boffset_p = boffset; | |
2190 | *skip_p = -1; | |
2191 | return; | |
2192 | } | |
c906108c SS |
2193 | } |
2194 | else | |
2195 | skip = 0; | |
2196 | ||
2197 | ||
2198 | /* Find the index of the virtual base according to HP/Taligent | |
2199 | runtime spec. (Depth-first, left-to-right.) */ | |
2200 | index = virtual_base_index_skip_primaries (basetype, type); | |
2201 | ||
c5aa993b JM |
2202 | if (index < 0) |
2203 | { | |
2204 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2205 | *boffset_p = 0; | |
2206 | return; | |
2207 | } | |
c906108c | 2208 | |
c5aa993b | 2209 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2210 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2211 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2212 | |
c5aa993b | 2213 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2214 | if (vtbl == 0) |
2215 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2216 | ||
2217 | ||
2218 | /* Find virtual base's offset -- jump over entries for primary base | |
2219 | * ancestors, then use the index computed above. But also adjust by | |
2220 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2221 | * virtual base entries. Offset is negative -- virtual base entries | |
2222 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2223 | |
070ad9f0 | 2224 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2225 | & use long type */ |
c906108c SS |
2226 | |
2227 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2228 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2229 | boffset = value_as_long (vp); |
2230 | *skip_p = -1; | |
2231 | *boffset_p = boffset; | |
2232 | return; | |
2233 | } | |
2234 | ||
2235 | ||
2236 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2237 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2238 | and search in it assuming it has (class) type TYPE. | |
2239 | If found, return value, else if name matched and args not return (value)-1, | |
2240 | else return NULL. */ | |
2241 | ||
f23631e4 AC |
2242 | static struct value * |
2243 | search_struct_method (char *name, struct value **arg1p, | |
2244 | struct value **args, int offset, | |
fba45db2 | 2245 | int *static_memfuncp, register struct type *type) |
c906108c SS |
2246 | { |
2247 | int i; | |
f23631e4 | 2248 | struct value *v; |
c906108c SS |
2249 | int name_matched = 0; |
2250 | char dem_opname[64]; | |
2251 | ||
2252 | CHECK_TYPEDEF (type); | |
2253 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2254 | { | |
2255 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2256 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2257 | if (strncmp (t_field_name, "__", 2) == 0 || |
2258 | strncmp (t_field_name, "op", 2) == 0 || | |
2259 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2260 | { |
c5aa993b JM |
2261 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2262 | t_field_name = dem_opname; | |
2263 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2264 | t_field_name = dem_opname; |
c906108c | 2265 | } |
db577aea | 2266 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2267 | { |
2268 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2269 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2270 | name_matched = 1; |
c906108c SS |
2271 | |
2272 | if (j > 0 && args == 0) | |
2273 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
acf5ed49 | 2274 | else if (j == 0 && args == 0) |
c906108c SS |
2275 | { |
2276 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2277 | check_stub_method (type, i, j); | |
acf5ed49 DJ |
2278 | v = value_fn_field (arg1p, f, j, type, offset); |
2279 | if (v != NULL) | |
2280 | return v; | |
c906108c | 2281 | } |
acf5ed49 DJ |
2282 | else |
2283 | while (j >= 0) | |
2284 | { | |
2285 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2286 | check_stub_method (type, i, j); | |
2287 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
2288 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
2289 | { | |
2290 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2291 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2292 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2293 | *static_memfuncp = 1; | |
2294 | v = value_fn_field (arg1p, f, j, type, offset); | |
2295 | if (v != NULL) | |
2296 | return v; | |
2297 | } | |
2298 | j--; | |
2299 | } | |
c906108c SS |
2300 | } |
2301 | } | |
2302 | ||
2303 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2304 | { | |
2305 | int base_offset; | |
2306 | ||
2307 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2308 | { | |
c5aa993b JM |
2309 | if (TYPE_HAS_VTABLE (type)) |
2310 | { | |
2311 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 2312 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2313 | int skip; |
2314 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2315 | VALUE_CONTENTS_ALL (*arg1p), | |
2316 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2317 | &base_offset, &skip); | |
2318 | if (skip >= 0) | |
2319 | error ("Virtual base class offset not found in vtable"); | |
2320 | } | |
2321 | else | |
2322 | { | |
2323 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2324 | char *base_valaddr; | |
2325 | ||
2326 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
2327 | user program. Make sure that it still points to a valid memory |
2328 | location. */ | |
c5aa993b JM |
2329 | |
2330 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2331 | { | |
2332 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2333 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2334 | + VALUE_OFFSET (*arg1p) + offset, | |
2335 | base_valaddr, | |
2336 | TYPE_LENGTH (baseclass)) != 0) | |
2337 | error ("virtual baseclass botch"); | |
2338 | } | |
2339 | else | |
2340 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2341 | ||
2342 | base_offset = | |
2343 | baseclass_offset (type, i, base_valaddr, | |
2344 | VALUE_ADDRESS (*arg1p) | |
2345 | + VALUE_OFFSET (*arg1p) + offset); | |
2346 | if (base_offset == -1) | |
2347 | error ("virtual baseclass botch"); | |
2348 | } | |
2349 | } | |
c906108c SS |
2350 | else |
2351 | { | |
2352 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2353 | } |
c906108c SS |
2354 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2355 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2356 | if (v == (struct value *) - 1) |
c906108c SS |
2357 | { |
2358 | name_matched = 1; | |
2359 | } | |
2360 | else if (v) | |
2361 | { | |
2362 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2363 | /* *arg1p = arg1_tmp; */ |
c906108c | 2364 | return v; |
c5aa993b | 2365 | } |
c906108c | 2366 | } |
c5aa993b | 2367 | if (name_matched) |
f23631e4 | 2368 | return (struct value *) - 1; |
c5aa993b JM |
2369 | else |
2370 | return NULL; | |
c906108c SS |
2371 | } |
2372 | ||
2373 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2374 | extract the component named NAME from the ultimate target structure/union | |
2375 | and return it as a value with its appropriate type. | |
2376 | ERR is used in the error message if *ARGP's type is wrong. | |
2377 | ||
2378 | C++: ARGS is a list of argument types to aid in the selection of | |
2379 | an appropriate method. Also, handle derived types. | |
2380 | ||
2381 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2382 | where the truthvalue of whether the function that was resolved was | |
2383 | a static member function or not is stored. | |
2384 | ||
2385 | ERR is an error message to be printed in case the field is not found. */ | |
2386 | ||
f23631e4 AC |
2387 | struct value * |
2388 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 2389 | char *name, int *static_memfuncp, char *err) |
c906108c SS |
2390 | { |
2391 | register struct type *t; | |
f23631e4 | 2392 | struct value *v; |
c906108c SS |
2393 | |
2394 | COERCE_ARRAY (*argp); | |
2395 | ||
2396 | t = check_typedef (VALUE_TYPE (*argp)); | |
2397 | ||
2398 | /* Follow pointers until we get to a non-pointer. */ | |
2399 | ||
2400 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2401 | { | |
2402 | *argp = value_ind (*argp); | |
2403 | /* Don't coerce fn pointer to fn and then back again! */ | |
2404 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2405 | COERCE_ARRAY (*argp); | |
2406 | t = check_typedef (VALUE_TYPE (*argp)); | |
2407 | } | |
2408 | ||
2409 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2410 | error ("not implemented: member type in value_struct_elt"); | |
2411 | ||
c5aa993b | 2412 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2413 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2414 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2415 | ||
2416 | /* Assume it's not, unless we see that it is. */ | |
2417 | if (static_memfuncp) | |
c5aa993b | 2418 | *static_memfuncp = 0; |
c906108c SS |
2419 | |
2420 | if (!args) | |
2421 | { | |
2422 | /* if there are no arguments ...do this... */ | |
2423 | ||
2424 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 2425 | is less work to be done. */ |
c906108c SS |
2426 | v = search_struct_field (name, *argp, 0, t, 0); |
2427 | if (v) | |
2428 | return v; | |
2429 | ||
2430 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2431 | return it as a pointer to a method. */ |
c906108c SS |
2432 | |
2433 | if (destructor_name_p (name, t)) | |
2434 | error ("Cannot get value of destructor"); | |
2435 | ||
2436 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2437 | ||
f23631e4 | 2438 | if (v == (struct value *) - 1) |
c906108c SS |
2439 | error ("Cannot take address of a method"); |
2440 | else if (v == 0) | |
2441 | { | |
2442 | if (TYPE_NFN_FIELDS (t)) | |
2443 | error ("There is no member or method named %s.", name); | |
2444 | else | |
2445 | error ("There is no member named %s.", name); | |
2446 | } | |
2447 | return v; | |
2448 | } | |
2449 | ||
2450 | if (destructor_name_p (name, t)) | |
2451 | { | |
2452 | if (!args[1]) | |
2453 | { | |
2454 | /* Destructors are a special case. */ | |
2455 | int m_index, f_index; | |
2456 | ||
2457 | v = NULL; | |
2458 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2459 | { | |
2460 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2461 | f_index, NULL, 0); | |
2462 | } | |
2463 | if (v == NULL) | |
2464 | error ("could not find destructor function named %s.", name); | |
2465 | else | |
2466 | return v; | |
2467 | } | |
2468 | else | |
2469 | { | |
2470 | error ("destructor should not have any argument"); | |
2471 | } | |
2472 | } | |
2473 | else | |
2474 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 2475 | |
f23631e4 | 2476 | if (v == (struct value *) - 1) |
c906108c | 2477 | { |
7168a814 | 2478 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
2479 | } |
2480 | else if (v == 0) | |
2481 | { | |
2482 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
2483 | hand it back. If it's not callable (i.e., a pointer to function), |
2484 | gdb should give an error. */ | |
c906108c SS |
2485 | v = search_struct_field (name, *argp, 0, t, 0); |
2486 | } | |
2487 | ||
2488 | if (!v) | |
2489 | error ("Structure has no component named %s.", name); | |
2490 | return v; | |
2491 | } | |
2492 | ||
2493 | /* Search through the methods of an object (and its bases) | |
2494 | * to find a specified method. Return the pointer to the | |
2495 | * fn_field list of overloaded instances. | |
2496 | * Helper function for value_find_oload_list. | |
2497 | * ARGP is a pointer to a pointer to a value (the object) | |
2498 | * METHOD is a string containing the method name | |
2499 | * OFFSET is the offset within the value | |
2500 | * STATIC_MEMFUNCP is set if the method is static | |
2501 | * TYPE is the assumed type of the object | |
2502 | * NUM_FNS is the number of overloaded instances | |
2503 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2504 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2505 | ||
7a292a7a | 2506 | static struct fn_field * |
f23631e4 | 2507 | find_method_list (struct value **argp, char *method, int offset, |
fba45db2 KB |
2508 | int *static_memfuncp, struct type *type, int *num_fns, |
2509 | struct type **basetype, int *boffset) | |
c906108c SS |
2510 | { |
2511 | int i; | |
c5aa993b | 2512 | struct fn_field *f; |
c906108c SS |
2513 | CHECK_TYPEDEF (type); |
2514 | ||
2515 | *num_fns = 0; | |
2516 | ||
c5aa993b JM |
2517 | /* First check in object itself */ |
2518 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2519 | { |
2520 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2521 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2522 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b JM |
2523 | { |
2524 | *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2525 | *basetype = type; | |
2526 | *boffset = offset; | |
2527 | return TYPE_FN_FIELDLIST1 (type, i); | |
2528 | } | |
2529 | } | |
2530 | ||
c906108c SS |
2531 | /* Not found in object, check in base subobjects */ |
2532 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2533 | { | |
2534 | int base_offset; | |
2535 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2536 | { | |
c5aa993b JM |
2537 | if (TYPE_HAS_VTABLE (type)) |
2538 | { | |
2539 | /* HP aCC compiled type, search for virtual base offset | |
2540 | * according to HP/Taligent runtime spec. */ | |
2541 | int skip; | |
2542 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2543 | VALUE_CONTENTS_ALL (*argp), | |
2544 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2545 | &base_offset, &skip); | |
2546 | if (skip >= 0) | |
2547 | error ("Virtual base class offset not found in vtable"); | |
2548 | } | |
2549 | else | |
2550 | { | |
2551 | /* probably g++ runtime model */ | |
2552 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2553 | base_offset = | |
2554 | baseclass_offset (type, i, | |
2555 | VALUE_CONTENTS (*argp) + base_offset, | |
2556 | VALUE_ADDRESS (*argp) + base_offset); | |
2557 | if (base_offset == -1) | |
2558 | error ("virtual baseclass botch"); | |
2559 | } | |
2560 | } | |
2561 | else | |
2562 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2563 | { |
2564 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2565 | } |
c906108c | 2566 | f = find_method_list (argp, method, base_offset + offset, |
c5aa993b | 2567 | static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset); |
c906108c | 2568 | if (f) |
c5aa993b | 2569 | return f; |
c906108c | 2570 | } |
c5aa993b | 2571 | return NULL; |
c906108c SS |
2572 | } |
2573 | ||
2574 | /* Return the list of overloaded methods of a specified name. | |
2575 | * ARGP is a pointer to a pointer to a value (the object) | |
2576 | * METHOD is the method name | |
2577 | * OFFSET is the offset within the value contents | |
2578 | * STATIC_MEMFUNCP is set if the method is static | |
2579 | * NUM_FNS is the number of overloaded instances | |
2580 | * BASETYPE is set to the type of the base subobject that defines the method | |
2581 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2582 | ||
2583 | struct fn_field * | |
f23631e4 | 2584 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
fba45db2 KB |
2585 | int *static_memfuncp, int *num_fns, |
2586 | struct type **basetype, int *boffset) | |
c906108c | 2587 | { |
c5aa993b | 2588 | struct type *t; |
c906108c SS |
2589 | |
2590 | t = check_typedef (VALUE_TYPE (*argp)); | |
2591 | ||
c5aa993b | 2592 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2593 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2594 | { | |
2595 | *argp = value_ind (*argp); | |
2596 | /* Don't coerce fn pointer to fn and then back again! */ | |
2597 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2598 | COERCE_ARRAY (*argp); | |
2599 | t = check_typedef (VALUE_TYPE (*argp)); | |
2600 | } | |
c5aa993b | 2601 | |
c906108c SS |
2602 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2603 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2604 | |
2605 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2606 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2607 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2608 | |
c906108c SS |
2609 | /* Assume it's not static, unless we see that it is. */ |
2610 | if (static_memfuncp) | |
c5aa993b | 2611 | *static_memfuncp = 0; |
c906108c SS |
2612 | |
2613 | return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset); | |
c5aa993b | 2614 | |
c906108c SS |
2615 | } |
2616 | ||
2617 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2618 | entry for "this" in the case of C++ methods), the number of | |
2619 | arguments NARGS, the NAME of a function whether it's a method or | |
2620 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2621 | overload resolution rules in ANSI C++, find the best function that | |
2622 | matches on the argument types according to the overload resolution | |
2623 | rules. | |
2624 | ||
2625 | In the case of class methods, the parameter OBJ is an object value | |
2626 | in which to search for overloaded methods. | |
2627 | ||
2628 | In the case of non-method functions, the parameter FSYM is a symbol | |
2629 | corresponding to one of the overloaded functions. | |
2630 | ||
2631 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2632 | non-standard coercions, 100 -> incompatible. | |
2633 | ||
2634 | If a method is being searched for, VALP will hold the value. | |
2635 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2636 | ||
2637 | If a method is being searched for, and it is a static method, | |
2638 | then STATICP will point to a non-zero value. | |
2639 | ||
2640 | Note: This function does *not* check the value of | |
2641 | overload_resolution. Caller must check it to see whether overload | |
2642 | resolution is permitted. | |
c5aa993b | 2643 | */ |
c906108c SS |
2644 | |
2645 | int | |
fba45db2 | 2646 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 2647 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 2648 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c SS |
2649 | { |
2650 | int nparms; | |
c5aa993b | 2651 | struct type **parm_types; |
c906108c | 2652 | int champ_nparms = 0; |
7f8c9282 | 2653 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b JM |
2654 | |
2655 | short oload_champ = -1; /* Index of best overloaded function */ | |
2656 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2657 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2658 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2659 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2660 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2661 | ||
2662 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2663 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2664 | ||
f23631e4 | 2665 | struct value *temp = obj; |
c5aa993b JM |
2666 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2667 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2668 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2669 | struct type *basetype = NULL; | |
c906108c SS |
2670 | int boffset; |
2671 | register int jj; | |
2672 | register int ix; | |
2673 | ||
c5aa993b JM |
2674 | char *obj_type_name = NULL; |
2675 | char *func_name = NULL; | |
c906108c SS |
2676 | |
2677 | /* Get the list of overloaded methods or functions */ | |
2678 | if (method) | |
2679 | { | |
db577aea AC |
2680 | int i; |
2681 | int len; | |
2682 | struct type *domain; | |
c906108c SS |
2683 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); |
2684 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 2685 | value rather than the object itself, so try again */ |
c906108c | 2686 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2687 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2688 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2689 | |
2690 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2691 | staticp, |
2692 | &num_fns, | |
2693 | &basetype, &boffset); | |
c906108c | 2694 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2695 | error ("Couldn't find method %s%s%s", |
2696 | obj_type_name, | |
2697 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2698 | name); | |
db577aea AC |
2699 | domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type); |
2700 | len = TYPE_NFN_FIELDS (domain); | |
2701 | /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't | |
2702 | give us the info we need directly in the types. We have to | |
2703 | use the method stub conversion to get it. Be aware that this | |
2704 | is by no means perfect, and if you use STABS, please move to | |
2705 | DWARF-2, or something like it, because trying to improve | |
2706 | overloading using STABS is really a waste of time. */ | |
2707 | for (i = 0; i < len; i++) | |
2708 | { | |
2709 | int j; | |
2710 | struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i); | |
2711 | int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | |
2712 | ||
2713 | for (j = 0; j < len2; j++) | |
2714 | { | |
070ad9f0 | 2715 | if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name))) |
db577aea AC |
2716 | check_stub_method (domain, i, j); |
2717 | } | |
2718 | } | |
c906108c SS |
2719 | } |
2720 | else | |
2721 | { | |
2722 | int i = -1; | |
2723 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2724 | ||
917317f4 | 2725 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 2726 | Just return the same symbol. */ |
917317f4 | 2727 | if (!func_name) |
7b83ea04 | 2728 | { |
917317f4 | 2729 | *symp = fsym; |
7b83ea04 AC |
2730 | return 0; |
2731 | } | |
917317f4 | 2732 | |
c906108c SS |
2733 | oload_syms = make_symbol_overload_list (fsym); |
2734 | while (oload_syms[++i]) | |
c5aa993b | 2735 | num_fns++; |
c906108c | 2736 | if (!num_fns) |
c5aa993b | 2737 | error ("Couldn't find function %s", func_name); |
c906108c | 2738 | } |
c5aa993b | 2739 | |
c906108c SS |
2740 | oload_champ_bv = NULL; |
2741 | ||
c5aa993b | 2742 | /* Consider each candidate in turn */ |
c906108c SS |
2743 | for (ix = 0; ix < num_fns; ix++) |
2744 | { | |
db577aea AC |
2745 | if (method) |
2746 | { | |
2747 | /* For static member functions, we won't have a this pointer, but nothing | |
2748 | else seems to handle them right now, so we just pretend ourselves */ | |
2749 | nparms=0; | |
2750 | ||
2751 | if (TYPE_FN_FIELD_ARGS(fns_ptr,ix)) | |
2752 | { | |
2753 | while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID) | |
2754 | nparms++; | |
2755 | } | |
2756 | } | |
2757 | else | |
2758 | { | |
2759 | /* If it's not a method, this is the proper place */ | |
2760 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2761 | } | |
c906108c | 2762 | |
c5aa993b | 2763 | /* Prepare array of parameter types */ |
c906108c SS |
2764 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2765 | for (jj = 0; jj < nparms; jj++) | |
db577aea AC |
2766 | parm_types[jj] = (method |
2767 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj]) | |
2768 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); | |
c906108c SS |
2769 | |
2770 | /* Compare parameter types to supplied argument types */ | |
2771 | bv = rank_function (parm_types, nparms, arg_types, nargs); | |
c5aa993b | 2772 | |
c906108c | 2773 | if (!oload_champ_bv) |
c5aa993b JM |
2774 | { |
2775 | oload_champ_bv = bv; | |
2776 | oload_champ = 0; | |
2777 | champ_nparms = nparms; | |
2778 | } | |
c906108c | 2779 | else |
c5aa993b JM |
2780 | /* See whether current candidate is better or worse than previous best */ |
2781 | switch (compare_badness (bv, oload_champ_bv)) | |
2782 | { | |
2783 | case 0: | |
2784 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2785 | oload_ambig_champ = ix; | |
2786 | break; | |
2787 | case 1: | |
2788 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2789 | oload_ambig_champ = ix; | |
2790 | break; | |
2791 | case 2: | |
2792 | oload_champ_bv = bv; /* new champion, record details */ | |
2793 | oload_ambiguous = 0; | |
2794 | oload_champ = ix; | |
2795 | oload_ambig_champ = -1; | |
2796 | champ_nparms = nparms; | |
2797 | break; | |
2798 | case 3: | |
2799 | default: | |
2800 | break; | |
2801 | } | |
b8c9b27d | 2802 | xfree (parm_types); |
6b1ba9a0 ND |
2803 | if (overload_debug) |
2804 | { | |
2805 | if (method) | |
2806 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2807 | else | |
2808 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
2809 | for (jj = 0; jj < nargs; jj++) | |
2810 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); | |
2811 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2812 | } | |
c5aa993b | 2813 | } /* end loop over all candidates */ |
db577aea AC |
2814 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2815 | if they have the exact same goodness. This is because there is no | |
2816 | way to differentiate based on return type, which we need to in | |
2817 | cases like overloads of .begin() <It's both const and non-const> */ | |
2818 | #if 0 | |
c906108c SS |
2819 | if (oload_ambiguous) |
2820 | { | |
2821 | if (method) | |
c5aa993b JM |
2822 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2823 | obj_type_name, | |
2824 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2825 | name); | |
c906108c | 2826 | else |
c5aa993b JM |
2827 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2828 | func_name); | |
c906108c | 2829 | } |
db577aea | 2830 | #endif |
c906108c | 2831 | |
c5aa993b | 2832 | /* Check how bad the best match is */ |
c906108c SS |
2833 | for (ix = 1; ix <= nargs; ix++) |
2834 | { | |
6b1ba9a0 ND |
2835 | if (oload_champ_bv->rank[ix] >= 100) |
2836 | oload_incompatible = 1; /* truly mismatched types */ | |
2837 | ||
2838 | else if (oload_champ_bv->rank[ix] >= 10) | |
2839 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
c906108c SS |
2840 | } |
2841 | if (oload_incompatible) | |
2842 | { | |
2843 | if (method) | |
c5aa993b JM |
2844 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2845 | obj_type_name, | |
2846 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2847 | name); | |
c906108c | 2848 | else |
c5aa993b JM |
2849 | error ("Cannot resolve function %s to any overloaded instance", |
2850 | func_name); | |
c906108c SS |
2851 | } |
2852 | else if (oload_non_standard) | |
2853 | { | |
2854 | if (method) | |
c5aa993b JM |
2855 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2856 | obj_type_name, | |
2857 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2858 | name); | |
c906108c | 2859 | else |
c5aa993b JM |
2860 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2861 | func_name); | |
c906108c SS |
2862 | } |
2863 | ||
2864 | if (method) | |
2865 | { | |
2866 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
c5aa993b | 2867 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2868 | else |
c5aa993b | 2869 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2870 | } |
2871 | else | |
2872 | { | |
2873 | *symp = oload_syms[oload_champ]; | |
b8c9b27d | 2874 | xfree (func_name); |
c906108c SS |
2875 | } |
2876 | ||
7f8c9282 DJ |
2877 | if (objp) |
2878 | { | |
2879 | if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR | |
2880 | && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR) | |
2881 | { | |
2882 | temp = value_addr (temp); | |
2883 | } | |
2884 | *objp = temp; | |
2885 | } | |
c906108c SS |
2886 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); |
2887 | } | |
2888 | ||
2889 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2890 | of type TYPE. If TYPE does not have a destructor, or | |
2891 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2892 | int | |
fba45db2 | 2893 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2894 | { |
2895 | /* destructors are a special case. */ | |
2896 | ||
2897 | if (name[0] == '~') | |
2898 | { | |
2899 | char *dname = type_name_no_tag (type); | |
2900 | char *cp = strchr (dname, '<'); | |
2901 | unsigned int len; | |
2902 | ||
2903 | /* Do not compare the template part for template classes. */ | |
2904 | if (cp == NULL) | |
2905 | len = strlen (dname); | |
2906 | else | |
2907 | len = cp - dname; | |
2908 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2909 | error ("name of destructor must equal name of class"); | |
2910 | else | |
2911 | return 1; | |
2912 | } | |
2913 | return 0; | |
2914 | } | |
2915 | ||
2916 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2917 | return 1 if the component named NAME from the ultimate | |
2918 | target structure/union is defined, otherwise, return 0. */ | |
2919 | ||
2920 | static int | |
fba45db2 | 2921 | check_field_in (register struct type *type, const char *name) |
c906108c SS |
2922 | { |
2923 | register int i; | |
2924 | ||
2925 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2926 | { | |
2927 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2928 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2929 | return 1; |
2930 | } | |
2931 | ||
2932 | /* C++: If it was not found as a data field, then try to | |
2933 | return it as a pointer to a method. */ | |
2934 | ||
2935 | /* Destructors are a special case. */ | |
2936 | if (destructor_name_p (name, type)) | |
2937 | { | |
2938 | int m_index, f_index; | |
2939 | ||
2940 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2941 | } | |
2942 | ||
2943 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2944 | { | |
db577aea | 2945 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2946 | return 1; |
2947 | } | |
2948 | ||
2949 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2950 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2951 | return 1; | |
c5aa993b | 2952 | |
c906108c SS |
2953 | return 0; |
2954 | } | |
2955 | ||
2956 | ||
2957 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2958 | return 1 if the component named NAME from the ultimate | |
2959 | target structure/union is defined, otherwise, return 0. */ | |
2960 | ||
2961 | int | |
f23631e4 | 2962 | check_field (struct value *arg1, const char *name) |
c906108c SS |
2963 | { |
2964 | register struct type *t; | |
2965 | ||
2966 | COERCE_ARRAY (arg1); | |
2967 | ||
2968 | t = VALUE_TYPE (arg1); | |
2969 | ||
2970 | /* Follow pointers until we get to a non-pointer. */ | |
2971 | ||
2972 | for (;;) | |
2973 | { | |
2974 | CHECK_TYPEDEF (t); | |
2975 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2976 | break; | |
2977 | t = TYPE_TARGET_TYPE (t); | |
2978 | } | |
2979 | ||
2980 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2981 | error ("not implemented: member type in check_field"); | |
2982 | ||
c5aa993b | 2983 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2984 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2985 | error ("Internal error: `this' is not an aggregate"); | |
2986 | ||
2987 | return check_field_in (t, name); | |
2988 | } | |
2989 | ||
2990 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2991 | return the address of this member as a "pointer to member" | |
2992 | type. If INTYPE is non-null, then it will be the type | |
2993 | of the member we are looking for. This will help us resolve | |
2994 | "pointers to member functions". This function is used | |
2995 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2996 | ||
f23631e4 | 2997 | struct value * |
fba45db2 KB |
2998 | value_struct_elt_for_reference (struct type *domain, int offset, |
2999 | struct type *curtype, char *name, | |
3000 | struct type *intype) | |
c906108c SS |
3001 | { |
3002 | register struct type *t = curtype; | |
3003 | register int i; | |
f23631e4 | 3004 | struct value *v; |
c906108c | 3005 | |
c5aa993b | 3006 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3007 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3008 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
3009 | ||
3010 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3011 | { | |
3012 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3013 | |
c906108c SS |
3014 | if (t_field_name && STREQ (t_field_name, name)) |
3015 | { | |
3016 | if (TYPE_FIELD_STATIC (t, i)) | |
3017 | { | |
3018 | v = value_static_field (t, i); | |
3019 | if (v == NULL) | |
3020 | error ("Internal error: could not find static variable %s", | |
3021 | name); | |
3022 | return v; | |
3023 | } | |
3024 | if (TYPE_FIELD_PACKED (t, i)) | |
3025 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3026 | |
c906108c SS |
3027 | return value_from_longest |
3028 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3029 | domain)), | |
3030 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3031 | } | |
3032 | } | |
3033 | ||
3034 | /* C++: If it was not found as a data field, then try to | |
3035 | return it as a pointer to a method. */ | |
3036 | ||
3037 | /* Destructors are a special case. */ | |
3038 | if (destructor_name_p (name, t)) | |
3039 | { | |
3040 | error ("member pointers to destructors not implemented yet"); | |
3041 | } | |
3042 | ||
3043 | /* Perform all necessary dereferencing. */ | |
3044 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3045 | intype = TYPE_TARGET_TYPE (intype); | |
3046 | ||
3047 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3048 | { | |
3049 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3050 | char dem_opname[64]; | |
3051 | ||
c5aa993b JM |
3052 | if (strncmp (t_field_name, "__", 2) == 0 || |
3053 | strncmp (t_field_name, "op", 2) == 0 || | |
3054 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3055 | { |
c5aa993b JM |
3056 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3057 | t_field_name = dem_opname; | |
3058 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3059 | t_field_name = dem_opname; |
c906108c SS |
3060 | } |
3061 | if (t_field_name && STREQ (t_field_name, name)) | |
3062 | { | |
3063 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3064 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3065 | |
c906108c SS |
3066 | if (intype == 0 && j > 1) |
3067 | error ("non-unique member `%s' requires type instantiation", name); | |
3068 | if (intype) | |
3069 | { | |
3070 | while (j--) | |
3071 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3072 | break; | |
3073 | if (j < 0) | |
3074 | error ("no member function matches that type instantiation"); | |
3075 | } | |
3076 | else | |
3077 | j = 0; | |
c5aa993b | 3078 | |
c906108c SS |
3079 | if (TYPE_FN_FIELD_STUB (f, j)) |
3080 | check_stub_method (t, i, j); | |
3081 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3082 | { | |
3083 | return value_from_longest | |
3084 | (lookup_reference_type | |
3085 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3086 | domain)), | |
3087 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3088 | } | |
3089 | else | |
3090 | { | |
3091 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3092 | 0, VAR_NAMESPACE, 0, NULL); | |
3093 | if (s == NULL) | |
3094 | { | |
3095 | v = 0; | |
3096 | } | |
3097 | else | |
3098 | { | |
3099 | v = read_var_value (s, 0); | |
3100 | #if 0 | |
3101 | VALUE_TYPE (v) = lookup_reference_type | |
3102 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3103 | domain)); | |
3104 | #endif | |
3105 | } | |
3106 | return v; | |
3107 | } | |
3108 | } | |
3109 | } | |
3110 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3111 | { | |
f23631e4 | 3112 | struct value *v; |
c906108c SS |
3113 | int base_offset; |
3114 | ||
3115 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3116 | base_offset = 0; | |
3117 | else | |
3118 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3119 | v = value_struct_elt_for_reference (domain, | |
3120 | offset + base_offset, | |
3121 | TYPE_BASECLASS (t, i), | |
3122 | name, | |
3123 | intype); | |
3124 | if (v) | |
3125 | return v; | |
3126 | } | |
3127 | return 0; | |
3128 | } | |
3129 | ||
3130 | ||
c906108c SS |
3131 | /* Given a pointer value V, find the real (RTTI) type |
3132 | of the object it points to. | |
3133 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3134 | and refer to the values computed for the object pointed to. */ | |
3135 | ||
3136 | struct type * | |
f23631e4 | 3137 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 3138 | { |
f23631e4 | 3139 | struct value *target; |
c906108c SS |
3140 | |
3141 | target = value_ind (v); | |
3142 | ||
3143 | return value_rtti_type (target, full, top, using_enc); | |
3144 | } | |
3145 | ||
3146 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3147 | if that is different from the enclosing type, create a new value | |
3148 | using the real run-time type as the enclosing type (and of the same | |
3149 | type as ARGP) and return it, with the embedded offset adjusted to | |
3150 | be the correct offset to the enclosed object | |
3151 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3152 | parameters, computed by value_rtti_type(). If these are available, | |
3153 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3154 | (Pass RTYPE == NULL if they're not available */ | |
3155 | ||
f23631e4 AC |
3156 | struct value * |
3157 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 3158 | int xusing_enc) |
c906108c | 3159 | { |
c5aa993b | 3160 | struct type *real_type; |
c906108c SS |
3161 | int full = 0; |
3162 | int top = -1; | |
3163 | int using_enc = 0; | |
f23631e4 | 3164 | struct value *new_val; |
c906108c SS |
3165 | |
3166 | if (rtype) | |
3167 | { | |
3168 | real_type = rtype; | |
3169 | full = xfull; | |
3170 | top = xtop; | |
3171 | using_enc = xusing_enc; | |
3172 | } | |
3173 | else | |
3174 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3175 | ||
3176 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3177 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3178 | return argp; | |
3179 | ||
3180 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3181 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3182 | if (full) |
3183 | { | |
2b127877 | 3184 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
3185 | return argp; |
3186 | } | |
3187 | ||
3188 | /* Check if object is in memory */ | |
3189 | if (VALUE_LVAL (argp) != lval_memory) | |
3190 | { | |
3191 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3192 | |
c906108c SS |
3193 | return argp; |
3194 | } | |
c5aa993b | 3195 | |
c906108c SS |
3196 | /* All other cases -- retrieve the complete object */ |
3197 | /* Go back by the computed top_offset from the beginning of the object, | |
3198 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3199 | used for its computation. */ | |
3200 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3201 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3202 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3203 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3204 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3205 | return new_val; | |
3206 | } | |
3207 | ||
3208 | ||
3209 | ||
3210 | ||
3211 | /* C++: return the value of the class instance variable, if one exists. | |
3212 | Flag COMPLAIN signals an error if the request is made in an | |
3213 | inappropriate context. */ | |
3214 | ||
f23631e4 | 3215 | struct value * |
fba45db2 | 3216 | value_of_this (int complain) |
c906108c SS |
3217 | { |
3218 | struct symbol *func, *sym; | |
3219 | struct block *b; | |
3220 | int i; | |
3221 | static const char funny_this[] = "this"; | |
f23631e4 | 3222 | struct value *this; |
c906108c SS |
3223 | |
3224 | if (selected_frame == 0) | |
3225 | { | |
3226 | if (complain) | |
c5aa993b JM |
3227 | error ("no frame selected"); |
3228 | else | |
3229 | return 0; | |
c906108c SS |
3230 | } |
3231 | ||
3232 | func = get_frame_function (selected_frame); | |
3233 | if (!func) | |
3234 | { | |
3235 | if (complain) | |
3236 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3237 | else |
3238 | return 0; | |
c906108c SS |
3239 | } |
3240 | ||
3241 | b = SYMBOL_BLOCK_VALUE (func); | |
3242 | i = BLOCK_NSYMS (b); | |
3243 | if (i <= 0) | |
3244 | { | |
3245 | if (complain) | |
c5aa993b JM |
3246 | error ("no args, no `this'"); |
3247 | else | |
3248 | return 0; | |
c906108c SS |
3249 | } |
3250 | ||
3251 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3252 | symbol instead of the LOC_ARG one (if both exist). */ | |
3121eff0 | 3253 | sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE); |
c906108c SS |
3254 | if (sym == NULL) |
3255 | { | |
3256 | if (complain) | |
3257 | error ("current stack frame not in method"); | |
3258 | else | |
3259 | return NULL; | |
3260 | } | |
3261 | ||
3262 | this = read_var_value (sym, selected_frame); | |
3263 | if (this == 0 && complain) | |
3264 | error ("`this' argument at unknown address"); | |
3265 | return this; | |
3266 | } | |
3267 | ||
3268 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3269 | long, starting at LOWBOUND. The result has the same lower bound as | |
3270 | the original ARRAY. */ | |
3271 | ||
f23631e4 AC |
3272 | struct value * |
3273 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3274 | { |
3275 | struct type *slice_range_type, *slice_type, *range_type; | |
3276 | LONGEST lowerbound, upperbound, offset; | |
f23631e4 | 3277 | struct value *slice; |
c906108c SS |
3278 | struct type *array_type; |
3279 | array_type = check_typedef (VALUE_TYPE (array)); | |
3280 | COERCE_VARYING_ARRAY (array, array_type); | |
3281 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3282 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3283 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3284 | error ("cannot take slice of non-array"); | |
3285 | range_type = TYPE_INDEX_TYPE (array_type); | |
3286 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3287 | error ("slice from bad array or bitstring"); | |
3288 | if (lowbound < lowerbound || length < 0 | |
3289 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3290 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3291 | || (current_language->la_language == language_chill |
3292 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3293 | error ("slice out of range"); | |
3294 | /* FIXME-type-allocation: need a way to free this type when we are | |
3295 | done with it. */ | |
c5aa993b | 3296 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3297 | TYPE_TARGET_TYPE (range_type), |
3298 | lowbound, lowbound + length - 1); | |
3299 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3300 | { | |
3301 | int i; | |
c5aa993b | 3302 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3303 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3304 | slice = value_zero (slice_type, not_lval); | |
3305 | for (i = 0; i < length; i++) | |
3306 | { | |
3307 | int element = value_bit_index (array_type, | |
3308 | VALUE_CONTENTS (array), | |
3309 | lowbound + i); | |
3310 | if (element < 0) | |
3311 | error ("internal error accessing bitstring"); | |
3312 | else if (element > 0) | |
3313 | { | |
3314 | int j = i % TARGET_CHAR_BIT; | |
3315 | if (BITS_BIG_ENDIAN) | |
3316 | j = TARGET_CHAR_BIT - 1 - j; | |
3317 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3318 | } | |
3319 | } | |
3320 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
3321 | can be used on the LHS, but that may require extensions to |
3322 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3323 | } |
3324 | else | |
3325 | { | |
3326 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3327 | offset | |
3328 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3329 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3330 | slice_range_type); |
3331 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3332 | slice = allocate_value (slice_type); | |
3333 | if (VALUE_LAZY (array)) | |
3334 | VALUE_LAZY (slice) = 1; | |
3335 | else | |
3336 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3337 | TYPE_LENGTH (slice_type)); | |
3338 | if (VALUE_LVAL (array) == lval_internalvar) | |
3339 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3340 | else | |
3341 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3342 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3343 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3344 | } | |
3345 | return slice; | |
3346 | } | |
3347 | ||
3348 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3349 | value as a fixed-length array. */ | |
3350 | ||
f23631e4 AC |
3351 | struct value * |
3352 | varying_to_slice (struct value *varray) | |
c906108c SS |
3353 | { |
3354 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3355 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3356 | VALUE_CONTENTS (varray) | |
3357 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3358 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3359 | } | |
3360 | ||
070ad9f0 DB |
3361 | /* Create a value for a FORTRAN complex number. Currently most of |
3362 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3363 | composed of 2 doubles. This really should be a smarter routine | |
3364 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3365 | doubles. FIXME: fmb */ |
c906108c | 3366 | |
f23631e4 AC |
3367 | struct value * |
3368 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 3369 | { |
f23631e4 | 3370 | struct value *val; |
c906108c SS |
3371 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3372 | ||
3373 | val = allocate_value (type); | |
3374 | arg1 = value_cast (real_type, arg1); | |
3375 | arg2 = value_cast (real_type, arg2); | |
3376 | ||
3377 | memcpy (VALUE_CONTENTS_RAW (val), | |
3378 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3379 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3380 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3381 | return val; | |
3382 | } | |
3383 | ||
3384 | /* Cast a value into the appropriate complex data type. */ | |
3385 | ||
f23631e4 AC |
3386 | static struct value * |
3387 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3388 | { |
3389 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3390 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3391 | { | |
3392 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
f23631e4 AC |
3393 | struct value *re_val = allocate_value (val_real_type); |
3394 | struct value *im_val = allocate_value (val_real_type); | |
c906108c SS |
3395 | |
3396 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3397 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3398 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3399 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3400 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3401 | |
3402 | return value_literal_complex (re_val, im_val, type); | |
3403 | } | |
3404 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3405 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3406 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3407 | else | |
3408 | error ("cannot cast non-number to complex"); | |
3409 | } | |
3410 | ||
3411 | void | |
fba45db2 | 3412 | _initialize_valops (void) |
c906108c SS |
3413 | { |
3414 | #if 0 | |
3415 | add_show_from_set | |
c5aa993b | 3416 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3417 | "Set automatic abandonment of expressions upon failure.", |
3418 | &setlist), | |
3419 | &showlist); | |
3420 | #endif | |
3421 | ||
3422 | add_show_from_set | |
c5aa993b | 3423 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3424 | "Set overload resolution in evaluating C++ functions.", |
3425 | &setlist), | |
3426 | &showlist); | |
3427 | overload_resolution = 1; | |
3428 | ||
242bfc55 FN |
3429 | add_show_from_set ( |
3430 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3431 | (char *) &unwind_on_signal_p, | |
3432 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3433 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3434 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3435 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3436 | The default is to stop in the frame where the signal was received.", &setlist), | |
3437 | &showlist); | |
c906108c | 3438 | } |