]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Perform non-arithmetic operations on values, for GDB. |
2 | Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
33 | ||
34 | #include <errno.h> | |
35 | #include "gdb_string.h" | |
36 | ||
c906108c SS |
37 | /* Flag indicating HP compilers were used; needed to correctly handle some |
38 | value operations with HP aCC code/runtime. */ | |
39 | extern int hp_som_som_object_present; | |
40 | ||
070ad9f0 | 41 | extern int overload_debug; |
c906108c SS |
42 | /* Local functions. */ |
43 | ||
a14ed312 | 44 | static int typecmp (int staticp, struct type *t1[], value_ptr t2[]); |
c906108c | 45 | |
a14ed312 KB |
46 | static CORE_ADDR find_function_addr (value_ptr, struct type **); |
47 | static value_ptr value_arg_coerce (value_ptr, struct type *, int); | |
c906108c SS |
48 | |
49 | ||
a14ed312 | 50 | static CORE_ADDR value_push (CORE_ADDR, value_ptr); |
c906108c | 51 | |
a14ed312 KB |
52 | static value_ptr search_struct_field (char *, value_ptr, int, |
53 | struct type *, int); | |
c906108c | 54 | |
a14ed312 KB |
55 | static value_ptr search_struct_method (char *, value_ptr *, |
56 | value_ptr *, | |
57 | int, int *, struct type *); | |
c906108c | 58 | |
a14ed312 | 59 | static int check_field_in (struct type *, const char *); |
c906108c | 60 | |
a14ed312 | 61 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 62 | |
a14ed312 | 63 | static value_ptr cast_into_complex (struct type *, value_ptr); |
c906108c | 64 | |
a14ed312 KB |
65 | static struct fn_field *find_method_list (value_ptr * argp, char *method, |
66 | int offset, int *static_memfuncp, | |
67 | struct type *type, int *num_fns, | |
68 | struct type **basetype, | |
69 | int *boffset); | |
7a292a7a | 70 | |
a14ed312 | 71 | void _initialize_valops (void); |
c906108c | 72 | |
c906108c SS |
73 | /* Flag for whether we want to abandon failed expression evals by default. */ |
74 | ||
75 | #if 0 | |
76 | static int auto_abandon = 0; | |
77 | #endif | |
78 | ||
79 | int overload_resolution = 0; | |
242bfc55 FN |
80 | |
81 | /* This boolean tells what gdb should do if a signal is received while in | |
82 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
83 | and restore the context to what as it was before the call. | |
84 | The default is to stop in the frame where the signal was received. */ | |
85 | ||
86 | int unwind_on_signal_p = 0; | |
c5aa993b | 87 | \f |
c906108c SS |
88 | |
89 | ||
c906108c SS |
90 | /* Find the address of function name NAME in the inferior. */ |
91 | ||
92 | value_ptr | |
fba45db2 | 93 | find_function_in_inferior (char *name) |
c906108c SS |
94 | { |
95 | register struct symbol *sym; | |
96 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
97 | if (sym != NULL) | |
98 | { | |
99 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
100 | { | |
101 | error ("\"%s\" exists in this program but is not a function.", | |
102 | name); | |
103 | } | |
104 | return value_of_variable (sym, NULL); | |
105 | } | |
106 | else | |
107 | { | |
c5aa993b | 108 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
109 | if (msymbol != NULL) |
110 | { | |
111 | struct type *type; | |
4478b372 | 112 | CORE_ADDR maddr; |
c906108c SS |
113 | type = lookup_pointer_type (builtin_type_char); |
114 | type = lookup_function_type (type); | |
115 | type = lookup_pointer_type (type); | |
4478b372 JB |
116 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
117 | return value_from_pointer (type, maddr); | |
c906108c SS |
118 | } |
119 | else | |
120 | { | |
c5aa993b | 121 | if (!target_has_execution) |
c906108c | 122 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 123 | else |
c906108c SS |
124 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
125 | } | |
126 | } | |
127 | } | |
128 | ||
129 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
130 | and return a value that is a pointer to the allocated space. */ | |
131 | ||
132 | value_ptr | |
fba45db2 | 133 | value_allocate_space_in_inferior (int len) |
c906108c SS |
134 | { |
135 | value_ptr blocklen; | |
136 | register value_ptr val = find_function_in_inferior ("malloc"); | |
137 | ||
138 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
139 | val = call_function_by_hand (val, 1, &blocklen); | |
140 | if (value_logical_not (val)) | |
141 | { | |
142 | if (!target_has_execution) | |
c5aa993b JM |
143 | error ("No memory available to program now: you need to start the target first"); |
144 | else | |
145 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
146 | } |
147 | return val; | |
148 | } | |
149 | ||
150 | static CORE_ADDR | |
fba45db2 | 151 | allocate_space_in_inferior (int len) |
c906108c SS |
152 | { |
153 | return value_as_long (value_allocate_space_in_inferior (len)); | |
154 | } | |
155 | ||
156 | /* Cast value ARG2 to type TYPE and return as a value. | |
157 | More general than a C cast: accepts any two types of the same length, | |
158 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
159 | /* In C++, casts may change pointer or object representations. */ | |
160 | ||
161 | value_ptr | |
fba45db2 | 162 | value_cast (struct type *type, register value_ptr arg2) |
c906108c SS |
163 | { |
164 | register enum type_code code1; | |
165 | register enum type_code code2; | |
166 | register int scalar; | |
167 | struct type *type2; | |
168 | ||
169 | int convert_to_boolean = 0; | |
c5aa993b | 170 | |
c906108c SS |
171 | if (VALUE_TYPE (arg2) == type) |
172 | return arg2; | |
173 | ||
174 | CHECK_TYPEDEF (type); | |
175 | code1 = TYPE_CODE (type); | |
c5aa993b | 176 | COERCE_REF (arg2); |
c906108c SS |
177 | type2 = check_typedef (VALUE_TYPE (arg2)); |
178 | ||
179 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
180 | is treated like a cast to (TYPE [N])OBJECT, | |
181 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
182 | if (code1 == TYPE_CODE_ARRAY) | |
183 | { | |
184 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
185 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
186 | if (element_length > 0 | |
c5aa993b | 187 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
188 | { |
189 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
190 | int val_length = TYPE_LENGTH (type2); | |
191 | LONGEST low_bound, high_bound, new_length; | |
192 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
193 | low_bound = 0, high_bound = 0; | |
194 | new_length = val_length / element_length; | |
195 | if (val_length % element_length != 0) | |
c5aa993b | 196 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
197 | /* FIXME-type-allocation: need a way to free this type when we are |
198 | done with it. */ | |
199 | range_type = create_range_type ((struct type *) NULL, | |
200 | TYPE_TARGET_TYPE (range_type), | |
201 | low_bound, | |
202 | new_length + low_bound - 1); | |
203 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
204 | element_type, range_type); | |
205 | return arg2; | |
206 | } | |
207 | } | |
208 | ||
209 | if (current_language->c_style_arrays | |
210 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
211 | arg2 = value_coerce_array (arg2); | |
212 | ||
213 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
214 | arg2 = value_coerce_function (arg2); | |
215 | ||
216 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
217 | COERCE_VARYING_ARRAY (arg2, type2); | |
218 | code2 = TYPE_CODE (type2); | |
219 | ||
220 | if (code1 == TYPE_CODE_COMPLEX) | |
221 | return cast_into_complex (type, arg2); | |
222 | if (code1 == TYPE_CODE_BOOL) | |
223 | { | |
224 | code1 = TYPE_CODE_INT; | |
225 | convert_to_boolean = 1; | |
226 | } | |
227 | if (code1 == TYPE_CODE_CHAR) | |
228 | code1 = TYPE_CODE_INT; | |
229 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
230 | code2 = TYPE_CODE_INT; | |
231 | ||
232 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
233 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
234 | ||
c5aa993b | 235 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
236 | && code2 == TYPE_CODE_STRUCT |
237 | && TYPE_NAME (type) != 0) | |
238 | { | |
239 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
240 | type of the target as a superclass. If so, we'll need to |
241 | offset the object in addition to changing its type. */ | |
c906108c SS |
242 | value_ptr v = search_struct_field (type_name_no_tag (type), |
243 | arg2, 0, type2, 1); | |
244 | if (v) | |
245 | { | |
246 | VALUE_TYPE (v) = type; | |
247 | return v; | |
248 | } | |
249 | } | |
250 | if (code1 == TYPE_CODE_FLT && scalar) | |
251 | return value_from_double (type, value_as_double (arg2)); | |
252 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
253 | || code1 == TYPE_CODE_RANGE) | |
254 | && (scalar || code2 == TYPE_CODE_PTR)) | |
255 | { | |
256 | LONGEST longest; | |
c5aa993b JM |
257 | |
258 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
259 | (code2 == TYPE_CODE_PTR)) | |
260 | { | |
261 | unsigned int *ptr; | |
262 | value_ptr retvalp; | |
263 | ||
264 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
265 | { | |
266 | /* With HP aCC, pointers to data members have a bias */ | |
267 | case TYPE_CODE_MEMBER: | |
268 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 269 | /* force evaluation */ |
802db21b | 270 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
271 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
272 | return retvalp; | |
273 | ||
274 | /* While pointers to methods don't really point to a function */ | |
275 | case TYPE_CODE_METHOD: | |
276 | error ("Pointers to methods not supported with HP aCC"); | |
277 | ||
278 | default: | |
279 | break; /* fall out and go to normal handling */ | |
280 | } | |
281 | } | |
c906108c | 282 | longest = value_as_long (arg2); |
802db21b | 283 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 284 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 285 | } |
802db21b | 286 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
287 | code2 == TYPE_CODE_ENUM || |
288 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 289 | { |
4603e466 DT |
290 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
291 | want the length of an address! -- we are really dealing with | |
292 | addresses (i.e., gdb representations) not pointers (i.e., | |
293 | target representations) here. | |
294 | ||
295 | This allows things like "print *(int *)0x01000234" to work | |
296 | without printing a misleading message -- which would | |
297 | otherwise occur when dealing with a target having two byte | |
298 | pointers and four byte addresses. */ | |
299 | ||
300 | int addr_bit = TARGET_ADDR_BIT; | |
301 | ||
634acd5f | 302 | LONGEST longest = value_as_long (arg2); |
4603e466 | 303 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 304 | { |
4603e466 DT |
305 | if (longest >= ((LONGEST) 1 << addr_bit) |
306 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
307 | warning ("value truncated"); |
308 | } | |
309 | return value_from_longest (type, longest); | |
310 | } | |
c906108c SS |
311 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
312 | { | |
313 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
314 | { | |
315 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
316 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 317 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
318 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
319 | && !value_logical_not (arg2)) | |
320 | { | |
321 | value_ptr v; | |
322 | ||
323 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
324 | type of the target as a superclass. If so, we'll need to |
325 | offset the pointer rather than just change its type. */ | |
c906108c SS |
326 | if (TYPE_NAME (t1) != NULL) |
327 | { | |
328 | v = search_struct_field (type_name_no_tag (t1), | |
329 | value_ind (arg2), 0, t2, 1); | |
330 | if (v) | |
331 | { | |
332 | v = value_addr (v); | |
333 | VALUE_TYPE (v) = type; | |
334 | return v; | |
335 | } | |
336 | } | |
337 | ||
338 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
339 | type of the source as a superclass. If so, we'll need to |
340 | offset the pointer rather than just change its type. | |
341 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
342 | if (TYPE_NAME (t2) != NULL) |
343 | { | |
344 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 345 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
346 | if (v) |
347 | { | |
348 | value_ptr v2 = value_ind (arg2); | |
349 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) | |
c5aa993b | 350 | + VALUE_OFFSET (v); |
070ad9f0 DB |
351 | |
352 | /* JYG: adjust the new pointer value and | |
353 | embedded offset. */ | |
354 | v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v); | |
355 | VALUE_EMBEDDED_OFFSET (v2) = 0; | |
356 | ||
c906108c SS |
357 | v2 = value_addr (v2); |
358 | VALUE_TYPE (v2) = type; | |
359 | return v2; | |
360 | } | |
361 | } | |
362 | } | |
363 | /* No superclass found, just fall through to change ptr type. */ | |
364 | } | |
365 | VALUE_TYPE (arg2) = type; | |
c5aa993b JM |
366 | VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */ |
367 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ | |
c906108c SS |
368 | return arg2; |
369 | } | |
370 | else if (chill_varying_type (type)) | |
371 | { | |
372 | struct type *range1, *range2, *eltype1, *eltype2; | |
373 | value_ptr val; | |
374 | int count1, count2; | |
375 | LONGEST low_bound, high_bound; | |
376 | char *valaddr, *valaddr_data; | |
377 | /* For lint warning about eltype2 possibly uninitialized: */ | |
378 | eltype2 = NULL; | |
379 | if (code2 == TYPE_CODE_BITSTRING) | |
380 | error ("not implemented: converting bitstring to varying type"); | |
381 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
382 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
383 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
384 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 385 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
386 | error ("Invalid conversion to varying type"); |
387 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
388 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
389 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
390 | count1 = -1; | |
391 | else | |
392 | count1 = high_bound - low_bound + 1; | |
393 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 394 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
395 | else |
396 | count2 = high_bound - low_bound + 1; | |
397 | if (count2 > count1) | |
398 | error ("target varying type is too small"); | |
399 | val = allocate_value (type); | |
400 | valaddr = VALUE_CONTENTS_RAW (val); | |
401 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
402 | /* Set val's __var_length field to count2. */ | |
403 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
404 | count2); | |
405 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
406 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
407 | count2 * TYPE_LENGTH (eltype2)); | |
408 | /* Zero the rest of the __var_data field of val. */ | |
409 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
410 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
411 | return val; | |
412 | } | |
413 | else if (VALUE_LVAL (arg2) == lval_memory) | |
414 | { | |
415 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
416 | VALUE_BFD_SECTION (arg2)); | |
417 | } | |
418 | else if (code1 == TYPE_CODE_VOID) | |
419 | { | |
420 | return value_zero (builtin_type_void, not_lval); | |
421 | } | |
422 | else | |
423 | { | |
424 | error ("Invalid cast."); | |
425 | return 0; | |
426 | } | |
427 | } | |
428 | ||
429 | /* Create a value of type TYPE that is zero, and return it. */ | |
430 | ||
431 | value_ptr | |
fba45db2 | 432 | value_zero (struct type *type, enum lval_type lv) |
c906108c SS |
433 | { |
434 | register value_ptr val = allocate_value (type); | |
435 | ||
436 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
437 | VALUE_LVAL (val) = lv; | |
438 | ||
439 | return val; | |
440 | } | |
441 | ||
070ad9f0 | 442 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
443 | |
444 | Call value_at only if the data needs to be fetched immediately; | |
445 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
446 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
447 | the data and sets the lazy-evaluation-required flag. The lazy flag |
448 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
449 | the contents are actually required. | |
c906108c SS |
450 | |
451 | Note: value_at does *NOT* handle embedded offsets; perform such | |
452 | adjustments before or after calling it. */ | |
453 | ||
454 | value_ptr | |
fba45db2 | 455 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c SS |
456 | { |
457 | register value_ptr val; | |
458 | ||
459 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
460 | error ("Attempt to dereference a generic pointer."); | |
461 | ||
462 | val = allocate_value (type); | |
463 | ||
7a292a7a SS |
464 | if (GDB_TARGET_IS_D10V |
465 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
466 | && TYPE_TARGET_TYPE (type) |
467 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
468 | { | |
469 | /* pointer to function */ | |
470 | unsigned long num; | |
471 | unsigned short snum; | |
472 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a SS |
473 | num = D10V_MAKE_IADDR (snum); |
474 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 475 | } |
7a292a7a | 476 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 477 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
478 | { |
479 | /* pointer to data */ | |
480 | unsigned long num; | |
481 | unsigned short snum; | |
482 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a | 483 | num = D10V_MAKE_DADDR (snum); |
c5aa993b | 484 | store_address (VALUE_CONTENTS_RAW (val), 4, num); |
c906108c SS |
485 | } |
486 | else | |
d4b2399a | 487 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
488 | |
489 | VALUE_LVAL (val) = lval_memory; | |
490 | VALUE_ADDRESS (val) = addr; | |
491 | VALUE_BFD_SECTION (val) = sect; | |
492 | ||
493 | return val; | |
494 | } | |
495 | ||
496 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
497 | ||
498 | value_ptr | |
fba45db2 | 499 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c SS |
500 | { |
501 | register value_ptr val; | |
502 | ||
503 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
504 | error ("Attempt to dereference a generic pointer."); | |
505 | ||
506 | val = allocate_value (type); | |
507 | ||
508 | VALUE_LVAL (val) = lval_memory; | |
509 | VALUE_ADDRESS (val) = addr; | |
510 | VALUE_LAZY (val) = 1; | |
511 | VALUE_BFD_SECTION (val) = sect; | |
512 | ||
513 | return val; | |
514 | } | |
515 | ||
070ad9f0 DB |
516 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
517 | if the current data for a variable needs to be loaded into | |
518 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
519 | clears the lazy flag to indicate that the data in the buffer is valid. |
520 | ||
521 | If the value is zero-length, we avoid calling read_memory, which would | |
522 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
523 | ||
524 | This function returns a value because it is used in the VALUE_CONTENTS | |
525 | macro as part of an expression, where a void would not work. The | |
526 | value is ignored. */ | |
527 | ||
528 | int | |
fba45db2 | 529 | value_fetch_lazy (register value_ptr val) |
c906108c SS |
530 | { |
531 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
532 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
533 | ||
c5aa993b | 534 | struct type *type = VALUE_TYPE (val); |
7a292a7a SS |
535 | if (GDB_TARGET_IS_D10V |
536 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
537 | && TYPE_TARGET_TYPE (type) |
538 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
539 | { | |
540 | /* pointer to function */ | |
541 | unsigned long num; | |
542 | unsigned short snum; | |
543 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
544 | num = D10V_MAKE_IADDR (snum); |
545 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 546 | } |
7a292a7a | 547 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 548 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
549 | { |
550 | /* pointer to data */ | |
551 | unsigned long num; | |
552 | unsigned short snum; | |
553 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
554 | num = D10V_MAKE_DADDR (snum); |
555 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 556 | } |
7a292a7a | 557 | else if (length) |
d4b2399a | 558 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 559 | |
c906108c SS |
560 | VALUE_LAZY (val) = 0; |
561 | return 0; | |
562 | } | |
563 | ||
564 | ||
565 | /* Store the contents of FROMVAL into the location of TOVAL. | |
566 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
567 | ||
568 | value_ptr | |
fba45db2 | 569 | value_assign (register value_ptr toval, register value_ptr fromval) |
c906108c SS |
570 | { |
571 | register struct type *type; | |
572 | register value_ptr val; | |
573 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
574 | int use_buffer = 0; | |
575 | ||
576 | if (!toval->modifiable) | |
577 | error ("Left operand of assignment is not a modifiable lvalue."); | |
578 | ||
579 | COERCE_REF (toval); | |
580 | ||
581 | type = VALUE_TYPE (toval); | |
582 | if (VALUE_LVAL (toval) != lval_internalvar) | |
583 | fromval = value_cast (type, fromval); | |
584 | else | |
585 | COERCE_ARRAY (fromval); | |
586 | CHECK_TYPEDEF (type); | |
587 | ||
588 | /* If TOVAL is a special machine register requiring conversion | |
589 | of program values to a special raw format, | |
590 | convert FROMVAL's contents now, with result in `raw_buffer', | |
591 | and set USE_BUFFER to the number of bytes to write. */ | |
592 | ||
ac9a91a7 | 593 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
594 | { |
595 | int regno = VALUE_REGNO (toval); | |
596 | if (REGISTER_CONVERTIBLE (regno)) | |
597 | { | |
598 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
599 | REGISTER_CONVERT_TO_RAW (fromtype, regno, | |
600 | VALUE_CONTENTS (fromval), raw_buffer); | |
601 | use_buffer = REGISTER_RAW_SIZE (regno); | |
602 | } | |
603 | } | |
c906108c SS |
604 | |
605 | switch (VALUE_LVAL (toval)) | |
606 | { | |
607 | case lval_internalvar: | |
608 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
609 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
610 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
611 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
612 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
613 | return val; | |
614 | ||
615 | case lval_internalvar_component: | |
616 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
617 | VALUE_OFFSET (toval), | |
618 | VALUE_BITPOS (toval), | |
619 | VALUE_BITSIZE (toval), | |
620 | fromval); | |
621 | break; | |
622 | ||
623 | case lval_memory: | |
624 | { | |
625 | char *dest_buffer; | |
c5aa993b JM |
626 | CORE_ADDR changed_addr; |
627 | int changed_len; | |
c906108c | 628 | |
c5aa993b JM |
629 | if (VALUE_BITSIZE (toval)) |
630 | { | |
c906108c SS |
631 | char buffer[sizeof (LONGEST)]; |
632 | /* We assume that the argument to read_memory is in units of | |
633 | host chars. FIXME: Is that correct? */ | |
634 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
635 | + VALUE_BITSIZE (toval) |
636 | + HOST_CHAR_BIT - 1) | |
637 | / HOST_CHAR_BIT; | |
c906108c SS |
638 | |
639 | if (changed_len > (int) sizeof (LONGEST)) | |
640 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
641 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
642 | ||
643 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
644 | buffer, changed_len); | |
645 | modify_field (buffer, value_as_long (fromval), | |
646 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
647 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
648 | dest_buffer = buffer; | |
649 | } | |
650 | else if (use_buffer) | |
651 | { | |
652 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
653 | changed_len = use_buffer; | |
654 | dest_buffer = raw_buffer; | |
655 | } | |
656 | else | |
657 | { | |
658 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
659 | changed_len = TYPE_LENGTH (type); | |
660 | dest_buffer = VALUE_CONTENTS (fromval); | |
661 | } | |
662 | ||
663 | write_memory (changed_addr, dest_buffer, changed_len); | |
664 | if (memory_changed_hook) | |
665 | memory_changed_hook (changed_addr, changed_len); | |
666 | } | |
667 | break; | |
668 | ||
669 | case lval_register: | |
670 | if (VALUE_BITSIZE (toval)) | |
671 | { | |
672 | char buffer[sizeof (LONGEST)]; | |
802db21b | 673 | int len = |
8903de4f | 674 | REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval); |
c906108c SS |
675 | |
676 | if (len > (int) sizeof (LONGEST)) | |
677 | error ("Can't handle bitfields in registers larger than %d bits.", | |
678 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
679 | ||
680 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
681 | > len * HOST_CHAR_BIT) | |
682 | /* Getting this right would involve being very careful about | |
683 | byte order. */ | |
c2d11a7d JM |
684 | error ("Can't assign to bitfields that cross register " |
685 | "boundaries."); | |
c906108c | 686 | |
c5aa993b JM |
687 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
688 | buffer, len); | |
689 | modify_field (buffer, value_as_long (fromval), | |
690 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
691 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
692 | buffer, len); | |
c906108c SS |
693 | } |
694 | else if (use_buffer) | |
695 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
696 | raw_buffer, use_buffer); | |
697 | else | |
c5aa993b | 698 | { |
c906108c SS |
699 | /* Do any conversion necessary when storing this type to more |
700 | than one register. */ | |
701 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
702 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 703 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
704 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
705 | raw_buffer, TYPE_LENGTH (type)); | |
706 | #else | |
707 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 708 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
709 | #endif |
710 | } | |
711 | /* Assigning to the stack pointer, frame pointer, and other | |
7b83ea04 AC |
712 | (architecture and calling convention specific) registers may |
713 | cause the frame cache to be out of date. We just do this | |
714 | on all assignments to registers for simplicity; I doubt the slowdown | |
715 | matters. */ | |
c906108c SS |
716 | reinit_frame_cache (); |
717 | break; | |
718 | ||
719 | case lval_reg_frame_relative: | |
720 | { | |
721 | /* value is stored in a series of registers in the frame | |
722 | specified by the structure. Copy that value out, modify | |
723 | it, and copy it back in. */ | |
724 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
725 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
726 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
727 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
728 | int amount_copied; | |
729 | ||
730 | /* Make the buffer large enough in all cases. */ | |
731 | char *buffer = (char *) alloca (amount_to_copy | |
732 | + sizeof (LONGEST) | |
733 | + MAX_REGISTER_RAW_SIZE); | |
734 | ||
735 | int regno; | |
736 | struct frame_info *frame; | |
737 | ||
738 | /* Figure out which frame this is in currently. */ | |
739 | for (frame = get_current_frame (); | |
740 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
741 | frame = get_prev_frame (frame)) | |
742 | ; | |
743 | ||
744 | if (!frame) | |
745 | error ("Value being assigned to is no longer active."); | |
746 | ||
747 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
748 | ||
749 | /* Copy it out. */ | |
750 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
751 | amount_copied = 0); | |
752 | amount_copied < amount_to_copy; | |
753 | amount_copied += reg_size, regno++) | |
754 | { | |
755 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
756 | (int *) NULL, (CORE_ADDR *) NULL, |
757 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
758 | } |
759 | ||
760 | /* Modify what needs to be modified. */ | |
761 | if (VALUE_BITSIZE (toval)) | |
762 | modify_field (buffer + byte_offset, | |
763 | value_as_long (fromval), | |
764 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
765 | else if (use_buffer) | |
766 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
767 | else | |
768 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
769 | TYPE_LENGTH (type)); | |
770 | ||
771 | /* Copy it back. */ | |
772 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
773 | amount_copied = 0); | |
774 | amount_copied < amount_to_copy; | |
775 | amount_copied += reg_size, regno++) | |
776 | { | |
777 | enum lval_type lval; | |
778 | CORE_ADDR addr; | |
779 | int optim; | |
780 | ||
781 | /* Just find out where to put it. */ | |
c5aa993b JM |
782 | get_saved_register ((char *) NULL, |
783 | &optim, &addr, frame, regno, &lval); | |
784 | ||
c906108c SS |
785 | if (optim) |
786 | error ("Attempt to assign to a value that was optimized out."); | |
787 | if (lval == lval_memory) | |
788 | write_memory (addr, buffer + amount_copied, reg_size); | |
789 | else if (lval == lval_register) | |
790 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
791 | else | |
792 | error ("Attempt to assign to an unmodifiable value."); | |
793 | } | |
794 | ||
795 | if (register_changed_hook) | |
796 | register_changed_hook (-1); | |
797 | } | |
798 | break; | |
c5aa993b | 799 | |
c906108c SS |
800 | |
801 | default: | |
802 | error ("Left operand of assignment is not an lvalue."); | |
803 | } | |
804 | ||
805 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
806 | If the field is signed, and is negative, then sign extend. */ | |
807 | if ((VALUE_BITSIZE (toval) > 0) | |
808 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
809 | { | |
810 | LONGEST fieldval = value_as_long (fromval); | |
811 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
812 | ||
813 | fieldval &= valmask; | |
814 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
815 | fieldval |= ~valmask; | |
816 | ||
817 | fromval = value_from_longest (type, fieldval); | |
818 | } | |
819 | ||
820 | val = value_copy (toval); | |
821 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
822 | TYPE_LENGTH (type)); | |
823 | VALUE_TYPE (val) = type; | |
824 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
825 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
826 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 827 | |
c906108c SS |
828 | return val; |
829 | } | |
830 | ||
831 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
832 | ||
833 | value_ptr | |
fba45db2 | 834 | value_repeat (value_ptr arg1, int count) |
c906108c SS |
835 | { |
836 | register value_ptr val; | |
837 | ||
838 | if (VALUE_LVAL (arg1) != lval_memory) | |
839 | error ("Only values in memory can be extended with '@'."); | |
840 | if (count < 1) | |
841 | error ("Invalid number %d of repetitions.", count); | |
842 | ||
843 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
844 | ||
845 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
846 | VALUE_CONTENTS_ALL_RAW (val), | |
847 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
848 | VALUE_LVAL (val) = lval_memory; | |
849 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
850 | ||
851 | return val; | |
852 | } | |
853 | ||
854 | value_ptr | |
fba45db2 | 855 | value_of_variable (struct symbol *var, struct block *b) |
c906108c SS |
856 | { |
857 | value_ptr val; | |
858 | struct frame_info *frame = NULL; | |
859 | ||
860 | if (!b) | |
861 | frame = NULL; /* Use selected frame. */ | |
862 | else if (symbol_read_needs_frame (var)) | |
863 | { | |
864 | frame = block_innermost_frame (b); | |
865 | if (!frame) | |
c5aa993b | 866 | { |
c906108c SS |
867 | if (BLOCK_FUNCTION (b) |
868 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
869 | error ("No frame is currently executing in block %s.", | |
870 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
871 | else | |
872 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 873 | } |
c906108c SS |
874 | } |
875 | ||
876 | val = read_var_value (var, frame); | |
877 | if (!val) | |
878 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
879 | ||
880 | return val; | |
881 | } | |
882 | ||
883 | /* Given a value which is an array, return a value which is a pointer to its | |
884 | first element, regardless of whether or not the array has a nonzero lower | |
885 | bound. | |
886 | ||
887 | FIXME: A previous comment here indicated that this routine should be | |
888 | substracting the array's lower bound. It's not clear to me that this | |
889 | is correct. Given an array subscripting operation, it would certainly | |
890 | work to do the adjustment here, essentially computing: | |
891 | ||
892 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
893 | ||
894 | However I believe a more appropriate and logical place to account for | |
895 | the lower bound is to do so in value_subscript, essentially computing: | |
896 | ||
897 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
898 | ||
899 | As further evidence consider what would happen with operations other | |
900 | than array subscripting, where the caller would get back a value that | |
901 | had an address somewhere before the actual first element of the array, | |
902 | and the information about the lower bound would be lost because of | |
903 | the coercion to pointer type. | |
c5aa993b | 904 | */ |
c906108c SS |
905 | |
906 | value_ptr | |
fba45db2 | 907 | value_coerce_array (value_ptr arg1) |
c906108c SS |
908 | { |
909 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
910 | ||
911 | if (VALUE_LVAL (arg1) != lval_memory) | |
912 | error ("Attempt to take address of value not located in memory."); | |
913 | ||
4478b372 JB |
914 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
915 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
916 | } |
917 | ||
918 | /* Given a value which is a function, return a value which is a pointer | |
919 | to it. */ | |
920 | ||
921 | value_ptr | |
fba45db2 | 922 | value_coerce_function (value_ptr arg1) |
c906108c SS |
923 | { |
924 | value_ptr retval; | |
925 | ||
926 | if (VALUE_LVAL (arg1) != lval_memory) | |
927 | error ("Attempt to take address of value not located in memory."); | |
928 | ||
4478b372 JB |
929 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
930 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
931 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
932 | return retval; | |
c5aa993b | 933 | } |
c906108c SS |
934 | |
935 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
936 | ||
937 | value_ptr | |
fba45db2 | 938 | value_addr (value_ptr arg1) |
c906108c SS |
939 | { |
940 | value_ptr arg2; | |
941 | ||
942 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
943 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
944 | { | |
945 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
946 | We keep the same location information, which is efficient, |
947 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
948 | arg2 = value_copy (arg1); |
949 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
950 | return arg2; | |
951 | } | |
952 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
953 | return value_coerce_function (arg1); | |
954 | ||
955 | if (VALUE_LVAL (arg1) != lval_memory) | |
956 | error ("Attempt to take address of value not located in memory."); | |
957 | ||
c5aa993b | 958 | /* Get target memory address */ |
4478b372 JB |
959 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
960 | (VALUE_ADDRESS (arg1) | |
961 | + VALUE_OFFSET (arg1) | |
962 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
963 | |
964 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 965 | full derived object's type ... */ |
c906108c | 966 | VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)); |
c5aa993b JM |
967 | /* ... and also the relative position of the subobject in the full object */ |
968 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
969 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
970 | return arg2; | |
971 | } | |
972 | ||
973 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
974 | ||
975 | value_ptr | |
fba45db2 | 976 | value_ind (value_ptr arg1) |
c906108c SS |
977 | { |
978 | struct type *base_type; | |
979 | value_ptr arg2; | |
c906108c SS |
980 | |
981 | COERCE_ARRAY (arg1); | |
982 | ||
983 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
984 | ||
985 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
986 | error ("not implemented: member types in value_ind"); | |
987 | ||
988 | /* Allow * on an integer so we can cast it to whatever we want. | |
989 | This returns an int, which seems like the most C-like thing | |
990 | to do. "long long" variables are rare enough that | |
991 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
992 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
993 | return value_at (builtin_type_int, | |
994 | (CORE_ADDR) value_as_long (arg1), | |
995 | VALUE_BFD_SECTION (arg1)); | |
996 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
997 | { | |
998 | struct type *enc_type; | |
999 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 1000 | /* Get the real type of the enclosing object */ |
c906108c SS |
1001 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
1002 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
1003 | /* Retrieve the enclosing object pointed to */ |
1004 | arg2 = value_at_lazy (enc_type, | |
1005 | value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1), | |
1006 | VALUE_BFD_SECTION (arg1)); | |
1007 | /* Re-adjust type */ | |
c906108c SS |
1008 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
1009 | /* Add embedding info */ | |
1010 | VALUE_ENCLOSING_TYPE (arg2) = enc_type; | |
1011 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); | |
1012 | ||
1013 | /* We may be pointing to an object of some derived type */ | |
1014 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
1015 | return arg2; | |
1016 | } | |
1017 | ||
1018 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 1019 | return 0; /* For lint -- never reached */ |
c906108c SS |
1020 | } |
1021 | \f | |
1022 | /* Pushing small parts of stack frames. */ | |
1023 | ||
1024 | /* Push one word (the size of object that a register holds). */ | |
1025 | ||
1026 | CORE_ADDR | |
fba45db2 | 1027 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c SS |
1028 | { |
1029 | register int len = REGISTER_SIZE; | |
1030 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1031 | ||
1032 | store_unsigned_integer (buffer, len, word); | |
1033 | if (INNER_THAN (1, 2)) | |
1034 | { | |
1035 | /* stack grows downward */ | |
1036 | sp -= len; | |
1037 | write_memory (sp, buffer, len); | |
1038 | } | |
1039 | else | |
1040 | { | |
1041 | /* stack grows upward */ | |
1042 | write_memory (sp, buffer, len); | |
1043 | sp += len; | |
1044 | } | |
1045 | ||
1046 | return sp; | |
1047 | } | |
1048 | ||
1049 | /* Push LEN bytes with data at BUFFER. */ | |
1050 | ||
1051 | CORE_ADDR | |
fba45db2 | 1052 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
1053 | { |
1054 | if (INNER_THAN (1, 2)) | |
1055 | { | |
1056 | /* stack grows downward */ | |
1057 | sp -= len; | |
1058 | write_memory (sp, buffer, len); | |
1059 | } | |
1060 | else | |
1061 | { | |
1062 | /* stack grows upward */ | |
1063 | write_memory (sp, buffer, len); | |
1064 | sp += len; | |
1065 | } | |
1066 | ||
1067 | return sp; | |
1068 | } | |
1069 | ||
2df3850c JM |
1070 | #ifndef PARM_BOUNDARY |
1071 | #define PARM_BOUNDARY (0) | |
1072 | #endif | |
1073 | ||
1074 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1075 | it to be an argument to a function. */ | |
c906108c | 1076 | |
c906108c | 1077 | static CORE_ADDR |
fba45db2 | 1078 | value_push (register CORE_ADDR sp, value_ptr arg) |
c906108c SS |
1079 | { |
1080 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1081 | register int container_len = len; |
2df3850c JM |
1082 | register int offset; |
1083 | ||
1084 | /* How big is the container we're going to put this value in? */ | |
1085 | if (PARM_BOUNDARY) | |
1086 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1087 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1088 | ||
1089 | /* Are we going to put it at the high or low end of the container? */ | |
1090 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1091 | offset = container_len - len; | |
1092 | else | |
1093 | offset = 0; | |
c906108c SS |
1094 | |
1095 | if (INNER_THAN (1, 2)) | |
1096 | { | |
1097 | /* stack grows downward */ | |
2df3850c JM |
1098 | sp -= container_len; |
1099 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1100 | } |
1101 | else | |
1102 | { | |
1103 | /* stack grows upward */ | |
2df3850c JM |
1104 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1105 | sp += container_len; | |
c906108c SS |
1106 | } |
1107 | ||
1108 | return sp; | |
1109 | } | |
1110 | ||
392a587b JM |
1111 | #ifndef PUSH_ARGUMENTS |
1112 | #define PUSH_ARGUMENTS default_push_arguments | |
1113 | #endif | |
1114 | ||
1115 | CORE_ADDR | |
fba45db2 KB |
1116 | default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp, |
1117 | int struct_return, CORE_ADDR struct_addr) | |
392a587b JM |
1118 | { |
1119 | /* ASSERT ( !struct_return); */ | |
1120 | int i; | |
1121 | for (i = nargs - 1; i >= 0; i--) | |
1122 | sp = value_push (sp, args[i]); | |
1123 | return sp; | |
1124 | } | |
1125 | ||
c906108c | 1126 | |
b9a8e3bf JB |
1127 | /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only |
1128 | when we don't have any type for the argument at hand. This occurs | |
1129 | when we have no debug info, or when passing varargs. | |
1130 | ||
1131 | This is an annoying default: the rule the compiler follows is to do | |
1132 | the standard promotions whenever there is no prototype in scope, | |
1133 | and almost all targets want this behavior. But there are some old | |
1134 | architectures which want this odd behavior. If you want to go | |
1135 | through them all and fix them, please do. Modern gdbarch-style | |
1136 | targets may find it convenient to use standard_coerce_float_to_double. */ | |
1137 | int | |
1138 | default_coerce_float_to_double (struct type *formal, struct type *actual) | |
1139 | { | |
1140 | return formal == NULL; | |
1141 | } | |
1142 | ||
1143 | ||
1144 | /* Always coerce floats to doubles when there is no prototype in scope. | |
1145 | If your architecture follows the standard type promotion rules for | |
1146 | calling unprototyped functions, your gdbarch init function can pass | |
1147 | this function to set_gdbarch_coerce_float_to_double to use its logic. */ | |
1148 | int | |
1149 | standard_coerce_float_to_double (struct type *formal, struct type *actual) | |
1150 | { | |
1151 | return 1; | |
1152 | } | |
1153 | ||
1154 | ||
c906108c SS |
1155 | /* Perform the standard coercions that are specified |
1156 | for arguments to be passed to C functions. | |
1157 | ||
1158 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1159 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1160 | ||
1161 | static value_ptr | |
fba45db2 | 1162 | value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped) |
c906108c SS |
1163 | { |
1164 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1165 | register struct type *type | |
c5aa993b | 1166 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1167 | |
1168 | switch (TYPE_CODE (type)) | |
1169 | { | |
1170 | case TYPE_CODE_REF: | |
1171 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF) | |
1172 | { | |
1173 | arg = value_addr (arg); | |
1174 | VALUE_TYPE (arg) = param_type; | |
1175 | return arg; | |
1176 | } | |
1177 | break; | |
1178 | case TYPE_CODE_INT: | |
1179 | case TYPE_CODE_CHAR: | |
1180 | case TYPE_CODE_BOOL: | |
1181 | case TYPE_CODE_ENUM: | |
1182 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1183 | if (!is_prototyped) | |
1184 | { | |
1185 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1186 | type = builtin_type_int; | |
1187 | } | |
1188 | /* Currently all target ABIs require at least the width of an integer | |
7b83ea04 AC |
1189 | type for an argument. We may have to conditionalize the following |
1190 | type coercion for future targets. */ | |
c906108c SS |
1191 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1192 | type = builtin_type_int; | |
1193 | break; | |
1194 | case TYPE_CODE_FLT: | |
1195 | /* FIXME: We should always convert floats to doubles in the | |
7b83ea04 AC |
1196 | non-prototyped case. As many debugging formats include |
1197 | no information about prototyping, we have to live with | |
1198 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
b9a8e3bf | 1199 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type)) |
c906108c SS |
1200 | { |
1201 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1202 | type = builtin_type_double; | |
1203 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1204 | type = builtin_type_long_double; | |
1205 | } | |
1206 | break; | |
1207 | case TYPE_CODE_FUNC: | |
1208 | type = lookup_pointer_type (type); | |
1209 | break; | |
1210 | case TYPE_CODE_ARRAY: | |
1211 | if (current_language->c_style_arrays) | |
1212 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1213 | break; | |
1214 | case TYPE_CODE_UNDEF: | |
1215 | case TYPE_CODE_PTR: | |
1216 | case TYPE_CODE_STRUCT: | |
1217 | case TYPE_CODE_UNION: | |
1218 | case TYPE_CODE_VOID: | |
1219 | case TYPE_CODE_SET: | |
1220 | case TYPE_CODE_RANGE: | |
1221 | case TYPE_CODE_STRING: | |
1222 | case TYPE_CODE_BITSTRING: | |
1223 | case TYPE_CODE_ERROR: | |
1224 | case TYPE_CODE_MEMBER: | |
1225 | case TYPE_CODE_METHOD: | |
1226 | case TYPE_CODE_COMPLEX: | |
1227 | default: | |
1228 | break; | |
1229 | } | |
1230 | ||
1231 | return value_cast (type, arg); | |
1232 | } | |
1233 | ||
070ad9f0 | 1234 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1235 | Calls error() if the function is not valid for calling. */ |
1236 | ||
1237 | static CORE_ADDR | |
fba45db2 | 1238 | find_function_addr (value_ptr function, struct type **retval_type) |
c906108c SS |
1239 | { |
1240 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1241 | register enum type_code code = TYPE_CODE (ftype); | |
1242 | struct type *value_type; | |
1243 | CORE_ADDR funaddr; | |
1244 | ||
1245 | /* If it's a member function, just look at the function | |
1246 | part of it. */ | |
1247 | ||
1248 | /* Determine address to call. */ | |
1249 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1250 | { | |
1251 | funaddr = VALUE_ADDRESS (function); | |
1252 | value_type = TYPE_TARGET_TYPE (ftype); | |
1253 | } | |
1254 | else if (code == TYPE_CODE_PTR) | |
1255 | { | |
1256 | funaddr = value_as_pointer (function); | |
1257 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
1258 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1259 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1260 | { | |
c906108c | 1261 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); |
c906108c SS |
1262 | value_type = TYPE_TARGET_TYPE (ftype); |
1263 | } | |
1264 | else | |
1265 | value_type = builtin_type_int; | |
1266 | } | |
1267 | else if (code == TYPE_CODE_INT) | |
1268 | { | |
1269 | /* Handle the case of functions lacking debugging info. | |
7b83ea04 | 1270 | Their values are characters since their addresses are char */ |
c906108c SS |
1271 | if (TYPE_LENGTH (ftype) == 1) |
1272 | funaddr = value_as_pointer (value_addr (function)); | |
1273 | else | |
1274 | /* Handle integer used as address of a function. */ | |
1275 | funaddr = (CORE_ADDR) value_as_long (function); | |
1276 | ||
1277 | value_type = builtin_type_int; | |
1278 | } | |
1279 | else | |
1280 | error ("Invalid data type for function to be called."); | |
1281 | ||
1282 | *retval_type = value_type; | |
1283 | return funaddr; | |
1284 | } | |
1285 | ||
1286 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1287 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1288 | frame which looks just like a real frame is so that if you call a | |
1289 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1290 | will look right. Whether the backtrace needs to actually show the | |
1291 | stack at the time the inferior function was called is debatable, but | |
1292 | it certainly needs to not display garbage. So if you are contemplating | |
1293 | making dummy frames be different from normal frames, consider that. */ | |
1294 | ||
1295 | /* Perform a function call in the inferior. | |
1296 | ARGS is a vector of values of arguments (NARGS of them). | |
1297 | FUNCTION is a value, the function to be called. | |
1298 | Returns a value representing what the function returned. | |
1299 | May fail to return, if a breakpoint or signal is hit | |
1300 | during the execution of the function. | |
1301 | ||
1302 | ARGS is modified to contain coerced values. */ | |
1303 | ||
a14ed312 KB |
1304 | static value_ptr hand_function_call (value_ptr function, int nargs, |
1305 | value_ptr * args); | |
7a292a7a | 1306 | static value_ptr |
fba45db2 | 1307 | hand_function_call (value_ptr function, int nargs, value_ptr *args) |
c906108c SS |
1308 | { |
1309 | register CORE_ADDR sp; | |
1310 | register int i; | |
da59e081 | 1311 | int rc; |
c906108c SS |
1312 | CORE_ADDR start_sp; |
1313 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1314 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1315 | and remove any extra bytes which might exist because ULONGEST is | |
070ad9f0 | 1316 | bigger than REGISTER_SIZE. |
c906108c SS |
1317 | |
1318 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1319 | sequence of instructions. But CISC machines will have |
1320 | to pack the instructions into REGISTER_SIZE units (and | |
1321 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1322 | REGISTER_SIZE). | |
7a292a7a SS |
1323 | |
1324 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1325 | target byte order. */ |
c906108c | 1326 | |
7a292a7a SS |
1327 | static ULONGEST *dummy; |
1328 | int sizeof_dummy1; | |
1329 | char *dummy1; | |
c906108c SS |
1330 | CORE_ADDR old_sp; |
1331 | struct type *value_type; | |
1332 | unsigned char struct_return; | |
1333 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1334 | struct inferior_status *inf_status; |
c906108c SS |
1335 | struct cleanup *old_chain; |
1336 | CORE_ADDR funaddr; | |
c5aa993b | 1337 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1338 | CORE_ADDR real_pc; |
1339 | struct type *param_type = NULL; | |
1340 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
1341 | ||
7a292a7a SS |
1342 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1343 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1344 | dummy1 = alloca (sizeof_dummy1); | |
1345 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1346 | ||
c906108c | 1347 | if (!target_has_execution) |
c5aa993b | 1348 | noprocess (); |
c906108c | 1349 | |
7a292a7a | 1350 | inf_status = save_inferior_status (1); |
74b7792f | 1351 | old_chain = make_cleanup_restore_inferior_status (inf_status); |
c906108c SS |
1352 | |
1353 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1354 | (and POP_FRAME for restoring them). (At least on most machines) | |
1355 | they are saved on the stack in the inferior. */ | |
1356 | PUSH_DUMMY_FRAME; | |
1357 | ||
1358 | old_sp = sp = read_sp (); | |
1359 | ||
1360 | if (INNER_THAN (1, 2)) | |
1361 | { | |
1362 | /* Stack grows down */ | |
7a292a7a | 1363 | sp -= sizeof_dummy1; |
c906108c SS |
1364 | start_sp = sp; |
1365 | } | |
1366 | else | |
1367 | { | |
1368 | /* Stack grows up */ | |
1369 | start_sp = sp; | |
7a292a7a | 1370 | sp += sizeof_dummy1; |
c906108c SS |
1371 | } |
1372 | ||
1373 | funaddr = find_function_addr (function, &value_type); | |
1374 | CHECK_TYPEDEF (value_type); | |
1375 | ||
1376 | { | |
1377 | struct block *b = block_for_pc (funaddr); | |
1378 | /* If compiled without -g, assume GCC 2. */ | |
1379 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1380 | } | |
1381 | ||
1382 | /* Are we returning a value using a structure return or a normal | |
1383 | value return? */ | |
1384 | ||
1385 | struct_return = using_struct_return (function, funaddr, value_type, | |
1386 | using_gcc); | |
1387 | ||
1388 | /* Create a call sequence customized for this function | |
1389 | and the number of arguments for it. */ | |
7a292a7a | 1390 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1391 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1392 | REGISTER_SIZE, | |
c5aa993b | 1393 | (ULONGEST) dummy[i]); |
c906108c SS |
1394 | |
1395 | #ifdef GDB_TARGET_IS_HPPA | |
1396 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1397 | value_type, using_gcc); | |
1398 | #else | |
1399 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1400 | value_type, using_gcc); | |
1401 | real_pc = start_sp; | |
1402 | #endif | |
1403 | ||
7a292a7a SS |
1404 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1405 | { | |
c5aa993b | 1406 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1407 | } |
c906108c | 1408 | |
7a292a7a SS |
1409 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1410 | { | |
1411 | /* Convex Unix prohibits executing in the stack segment. */ | |
1412 | /* Hope there is empty room at the top of the text segment. */ | |
1413 | extern CORE_ADDR text_end; | |
392a587b | 1414 | static int checked = 0; |
7a292a7a SS |
1415 | if (!checked) |
1416 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1417 | if (read_memory_integer (start_sp, 1) != 0) | |
1418 | error ("text segment full -- no place to put call"); | |
1419 | checked = 1; | |
1420 | sp = old_sp; | |
1421 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1422 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1423 | } |
c5aa993b | 1424 | |
7a292a7a SS |
1425 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1426 | { | |
1427 | extern CORE_ADDR text_end; | |
1428 | int errcode; | |
1429 | sp = old_sp; | |
1430 | real_pc = text_end; | |
c5aa993b | 1431 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1432 | if (errcode != 0) |
1433 | error ("Cannot write text segment -- call_function failed"); | |
1434 | } | |
c906108c | 1435 | |
7a292a7a SS |
1436 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1437 | { | |
1438 | real_pc = funaddr; | |
1439 | } | |
c906108c SS |
1440 | |
1441 | #ifdef lint | |
c5aa993b | 1442 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1443 | #endif |
1444 | ||
1445 | if (nargs < TYPE_NFIELDS (ftype)) | |
1446 | error ("too few arguments in function call"); | |
1447 | ||
1448 | for (i = nargs - 1; i >= 0; i--) | |
1449 | { | |
1450 | /* If we're off the end of the known arguments, do the standard | |
7b83ea04 AC |
1451 | promotions. FIXME: if we had a prototype, this should only |
1452 | be allowed if ... were present. */ | |
c906108c SS |
1453 | if (i >= TYPE_NFIELDS (ftype)) |
1454 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1455 | ||
c5aa993b | 1456 | else |
c906108c SS |
1457 | { |
1458 | int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED; | |
1459 | param_type = TYPE_FIELD_TYPE (ftype, i); | |
1460 | ||
1461 | args[i] = value_arg_coerce (args[i], param_type, is_prototyped); | |
1462 | } | |
1463 | ||
070ad9f0 DB |
1464 | /*elz: this code is to handle the case in which the function to be called |
1465 | has a pointer to function as parameter and the corresponding actual argument | |
7b83ea04 AC |
1466 | is the address of a function and not a pointer to function variable. |
1467 | In aCC compiled code, the calls through pointers to functions (in the body | |
1468 | of the function called by hand) are made via $$dyncall_external which | |
070ad9f0 DB |
1469 | requires some registers setting, this is taken care of if we call |
1470 | via a function pointer variable, but not via a function address. | |
7b83ea04 | 1471 | In cc this is not a problem. */ |
c906108c SS |
1472 | |
1473 | if (using_gcc == 0) | |
1474 | if (param_type) | |
c5aa993b | 1475 | /* if this parameter is a pointer to function */ |
c906108c SS |
1476 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
1477 | if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC) | |
070ad9f0 | 1478 | /* elz: FIXME here should go the test about the compiler used |
7b83ea04 | 1479 | to compile the target. We want to issue the error |
070ad9f0 DB |
1480 | message only if the compiler used was HP's aCC. |
1481 | If we used HP's cc, then there is no problem and no need | |
7b83ea04 | 1482 | to return at this point */ |
c5aa993b | 1483 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1484 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1485 | pointer to function or just a function */ |
c906108c SS |
1486 | if (args[i]->lval == not_lval) |
1487 | { | |
1488 | char *arg_name; | |
c5aa993b JM |
1489 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1490 | error ("\ | |
c906108c SS |
1491 | You cannot use function <%s> as argument. \n\ |
1492 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1493 | } |
c906108c SS |
1494 | } |
1495 | ||
d03e67c9 AC |
1496 | if (REG_STRUCT_HAS_ADDR_P ()) |
1497 | { | |
1498 | /* This is a machine like the sparc, where we may need to pass a | |
1499 | pointer to the structure, not the structure itself. */ | |
1500 | for (i = nargs - 1; i >= 0; i--) | |
1501 | { | |
1502 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1503 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1504 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1505 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1506 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1507 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1508 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1509 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1510 | && TYPE_LENGTH (arg_type) > 8) | |
1511 | ) | |
1512 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
1513 | { | |
1514 | CORE_ADDR addr; | |
1515 | int len; /* = TYPE_LENGTH (arg_type); */ | |
1516 | int aligned_len; | |
1517 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1518 | len = TYPE_LENGTH (arg_type); | |
1519 | ||
1520 | if (STACK_ALIGN_P ()) | |
1521 | /* MVS 11/22/96: I think at least some of this | |
1522 | stack_align code is really broken. Better to let | |
1523 | PUSH_ARGUMENTS adjust the stack in a target-defined | |
1524 | manner. */ | |
1525 | aligned_len = STACK_ALIGN (len); | |
1526 | else | |
1527 | aligned_len = len; | |
1528 | if (INNER_THAN (1, 2)) | |
1529 | { | |
1530 | /* stack grows downward */ | |
1531 | sp -= aligned_len; | |
1532 | } | |
1533 | else | |
1534 | { | |
1535 | /* The stack grows up, so the address of the thing | |
1536 | we push is the stack pointer before we push it. */ | |
1537 | addr = sp; | |
1538 | } | |
1539 | /* Push the structure. */ | |
1540 | write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len); | |
1541 | if (INNER_THAN (1, 2)) | |
1542 | { | |
1543 | /* The stack grows down, so the address of the thing | |
1544 | we push is the stack pointer after we push it. */ | |
1545 | addr = sp; | |
1546 | } | |
1547 | else | |
1548 | { | |
1549 | /* stack grows upward */ | |
1550 | sp += aligned_len; | |
1551 | } | |
1552 | /* The value we're going to pass is the address of the | |
1553 | thing we just pushed. */ | |
1554 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1555 | (LONGEST) addr); */ | |
1556 | args[i] = value_from_pointer (lookup_pointer_type (arg_type), | |
1557 | addr); | |
1558 | } | |
1559 | } | |
1560 | } | |
1561 | ||
c906108c SS |
1562 | |
1563 | /* Reserve space for the return structure to be written on the | |
1564 | stack, if necessary */ | |
1565 | ||
1566 | if (struct_return) | |
1567 | { | |
1568 | int len = TYPE_LENGTH (value_type); | |
2ada493a AC |
1569 | if (STACK_ALIGN_P ()) |
1570 | /* MVS 11/22/96: I think at least some of this stack_align | |
1571 | code is really broken. Better to let PUSH_ARGUMENTS adjust | |
1572 | the stack in a target-defined manner. */ | |
1573 | len = STACK_ALIGN (len); | |
c906108c SS |
1574 | if (INNER_THAN (1, 2)) |
1575 | { | |
1576 | /* stack grows downward */ | |
1577 | sp -= len; | |
1578 | struct_addr = sp; | |
1579 | } | |
1580 | else | |
1581 | { | |
1582 | /* stack grows upward */ | |
1583 | struct_addr = sp; | |
1584 | sp += len; | |
1585 | } | |
1586 | } | |
1587 | ||
0a49d05e AC |
1588 | /* elz: on HPPA no need for this extra alignment, maybe it is needed |
1589 | on other architectures. This is because all the alignment is | |
1590 | taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and | |
1591 | in hppa_push_arguments */ | |
1592 | if (EXTRA_STACK_ALIGNMENT_NEEDED) | |
c906108c | 1593 | { |
0a49d05e AC |
1594 | /* MVS 11/22/96: I think at least some of this stack_align code |
1595 | is really broken. Better to let PUSH_ARGUMENTS adjust the | |
1596 | stack in a target-defined manner. */ | |
1597 | if (STACK_ALIGN_P () && INNER_THAN (1, 2)) | |
1598 | { | |
1599 | /* If stack grows down, we must leave a hole at the top. */ | |
1600 | int len = 0; | |
1601 | ||
1602 | for (i = nargs - 1; i >= 0; i--) | |
1603 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
1604 | if (CALL_DUMMY_STACK_ADJUST_P) | |
1605 | len += CALL_DUMMY_STACK_ADJUST; | |
1606 | sp -= STACK_ALIGN (len) - len; | |
1607 | } | |
c906108c | 1608 | } |
c906108c | 1609 | |
392a587b | 1610 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c SS |
1611 | |
1612 | #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */ | |
1613 | /* There are a number of targets now which actually don't write any | |
1614 | CALL_DUMMY instructions into the target, but instead just save the | |
1615 | machine state, push the arguments, and jump directly to the callee | |
1616 | function. Since this doesn't actually involve executing a JSR/BSR | |
1617 | instruction, the return address must be set up by hand, either by | |
1618 | pushing onto the stack or copying into a return-address register | |
070ad9f0 | 1619 | as appropriate. Formerly this has been done in PUSH_ARGUMENTS, |
c906108c SS |
1620 | but that's overloading its functionality a bit, so I'm making it |
1621 | explicit to do it here. */ | |
c5aa993b JM |
1622 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); |
1623 | #endif /* PUSH_RETURN_ADDRESS */ | |
c906108c | 1624 | |
2ada493a | 1625 | if (STACK_ALIGN_P () && !INNER_THAN (1, 2)) |
c906108c SS |
1626 | { |
1627 | /* If stack grows up, we must leave a hole at the bottom, note | |
7b83ea04 | 1628 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1629 | if (CALL_DUMMY_STACK_ADJUST_P) |
1630 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1631 | sp = STACK_ALIGN (sp); |
1632 | } | |
c906108c SS |
1633 | |
1634 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1635 | anything here! */ | |
1636 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1637 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1638 | a target-defined manner. */ | |
7a292a7a SS |
1639 | if (CALL_DUMMY_STACK_ADJUST_P) |
1640 | if (INNER_THAN (1, 2)) | |
1641 | { | |
1642 | /* stack grows downward */ | |
1643 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1644 | } | |
c906108c SS |
1645 | |
1646 | /* Store the address at which the structure is supposed to be | |
1647 | written. Note that this (and the code which reserved the space | |
1648 | above) assumes that gcc was used to compile this function. Since | |
1649 | it doesn't cost us anything but space and if the function is pcc | |
1650 | it will ignore this value, we will make that assumption. | |
1651 | ||
070ad9f0 | 1652 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1653 | convention like gcc's. */ |
1654 | ||
1655 | if (struct_return) | |
1656 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1657 | ||
1658 | /* Write the stack pointer. This is here because the statements above | |
1659 | might fool with it. On SPARC, this write also stores the register | |
1660 | window into the right place in the new stack frame, which otherwise | |
1661 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1662 | write_sp (sp); | |
1663 | ||
d1e3cf49 AC |
1664 | if (SAVE_DUMMY_FRAME_TOS_P ()) |
1665 | SAVE_DUMMY_FRAME_TOS (sp); | |
43ff13b4 | 1666 | |
c906108c SS |
1667 | { |
1668 | char retbuf[REGISTER_BYTES]; | |
1669 | char *name; | |
1670 | struct symbol *symbol; | |
1671 | ||
1672 | name = NULL; | |
1673 | symbol = find_pc_function (funaddr); | |
1674 | if (symbol) | |
1675 | { | |
1676 | name = SYMBOL_SOURCE_NAME (symbol); | |
1677 | } | |
1678 | else | |
1679 | { | |
1680 | /* Try the minimal symbols. */ | |
1681 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1682 | ||
1683 | if (msymbol) | |
1684 | { | |
1685 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1686 | } | |
1687 | } | |
1688 | if (name == NULL) | |
1689 | { | |
1690 | char format[80]; | |
1691 | sprintf (format, "at %s", local_hex_format ()); | |
1692 | name = alloca (80); | |
1693 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1694 | sprintf (name, format, (unsigned long) funaddr); | |
1695 | } | |
1696 | ||
1697 | /* Execute the stack dummy routine, calling FUNCTION. | |
1698 | When it is done, discard the empty frame | |
1699 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1700 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1701 | ||
1702 | if (rc == 1) | |
1703 | { | |
1704 | /* We stopped inside the FUNCTION because of a random signal. | |
1705 | Further execution of the FUNCTION is not allowed. */ | |
1706 | ||
7b83ea04 | 1707 | if (unwind_on_signal_p) |
242bfc55 FN |
1708 | { |
1709 | /* The user wants the context restored. */ | |
da59e081 | 1710 | |
7b83ea04 AC |
1711 | /* We must get back to the frame we were before the dummy call. */ |
1712 | POP_FRAME; | |
242bfc55 FN |
1713 | |
1714 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1715 | a C++ name with arguments and stuff. */ | |
1716 | error ("\ | |
1717 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1718 | GDB has restored the context to what it was before the call.\n\ | |
1719 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1720 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1721 | name); |
1722 | } | |
1723 | else | |
1724 | { | |
1725 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1726 | ||
1727 | /* If we did the cleanups, we would print a spurious error | |
1728 | message (Unable to restore previously selected frame), | |
1729 | would write the registers from the inf_status (which is | |
1730 | wrong), and would do other wrong things. */ | |
1731 | discard_cleanups (old_chain); | |
1732 | discard_inferior_status (inf_status); | |
1733 | ||
1734 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1735 | a C++ name with arguments and stuff. */ | |
1736 | error ("\ | |
1737 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1738 | GDB remains in the frame where the signal was received.\n\ | |
1739 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1740 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1741 | name); | |
1742 | } | |
da59e081 JM |
1743 | } |
1744 | ||
1745 | if (rc == 2) | |
c906108c | 1746 | { |
da59e081 | 1747 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1748 | |
7a292a7a SS |
1749 | /* If we did the cleanups, we would print a spurious error |
1750 | message (Unable to restore previously selected frame), | |
1751 | would write the registers from the inf_status (which is | |
1752 | wrong), and would do other wrong things. */ | |
c906108c | 1753 | discard_cleanups (old_chain); |
7a292a7a | 1754 | discard_inferior_status (inf_status); |
c906108c SS |
1755 | |
1756 | /* The following error message used to say "The expression | |
1757 | which contained the function call has been discarded." It | |
1758 | is a hard concept to explain in a few words. Ideally, GDB | |
1759 | would be able to resume evaluation of the expression when | |
1760 | the function finally is done executing. Perhaps someday | |
1761 | this will be implemented (it would not be easy). */ | |
1762 | ||
1763 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1764 | a C++ name with arguments and stuff. */ | |
1765 | error ("\ | |
1766 | The program being debugged stopped while in a function called from GDB.\n\ | |
1767 | When the function (%s) is done executing, GDB will silently\n\ | |
1768 | stop (instead of continuing to evaluate the expression containing\n\ | |
1769 | the function call).", name); | |
1770 | } | |
1771 | ||
da59e081 | 1772 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1773 | do_cleanups (old_chain); |
1774 | ||
1775 | /* Figure out the value returned by the function. */ | |
1776 | /* elz: I defined this new macro for the hppa architecture only. | |
1777 | this gives us a way to get the value returned by the function from the stack, | |
1778 | at the same address we told the function to put it. | |
1779 | We cannot assume on the pa that r28 still contains the address of the returned | |
1780 | structure. Usually this will be overwritten by the callee. | |
1781 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1782 | */ |
c906108c SS |
1783 | |
1784 | #ifdef VALUE_RETURNED_FROM_STACK | |
1785 | if (struct_return) | |
1786 | return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); | |
1787 | #endif | |
1788 | ||
1789 | return value_being_returned (value_type, retbuf, struct_return); | |
1790 | } | |
1791 | } | |
7a292a7a | 1792 | |
c906108c | 1793 | value_ptr |
fba45db2 | 1794 | call_function_by_hand (value_ptr function, int nargs, value_ptr *args) |
c906108c | 1795 | { |
7a292a7a SS |
1796 | if (CALL_DUMMY_P) |
1797 | { | |
1798 | return hand_function_call (function, nargs, args); | |
1799 | } | |
1800 | else | |
1801 | { | |
1802 | error ("Cannot invoke functions on this machine."); | |
1803 | } | |
c906108c | 1804 | } |
c5aa993b | 1805 | \f |
7a292a7a | 1806 | |
c906108c | 1807 | |
c906108c SS |
1808 | /* Create a value for an array by allocating space in the inferior, copying |
1809 | the data into that space, and then setting up an array value. | |
1810 | ||
1811 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1812 | populated from the values passed in ELEMVEC. | |
1813 | ||
1814 | The element type of the array is inherited from the type of the | |
1815 | first element, and all elements must have the same size (though we | |
1816 | don't currently enforce any restriction on their types). */ | |
1817 | ||
1818 | value_ptr | |
fba45db2 | 1819 | value_array (int lowbound, int highbound, value_ptr *elemvec) |
c906108c SS |
1820 | { |
1821 | int nelem; | |
1822 | int idx; | |
1823 | unsigned int typelength; | |
1824 | value_ptr val; | |
1825 | struct type *rangetype; | |
1826 | struct type *arraytype; | |
1827 | CORE_ADDR addr; | |
1828 | ||
1829 | /* Validate that the bounds are reasonable and that each of the elements | |
1830 | have the same size. */ | |
1831 | ||
1832 | nelem = highbound - lowbound + 1; | |
1833 | if (nelem <= 0) | |
1834 | { | |
1835 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1836 | } | |
1837 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1838 | for (idx = 1; idx < nelem; idx++) | |
1839 | { | |
1840 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1841 | { | |
1842 | error ("array elements must all be the same size"); | |
1843 | } | |
1844 | } | |
1845 | ||
1846 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1847 | lowbound, highbound); | |
c5aa993b JM |
1848 | arraytype = create_array_type ((struct type *) NULL, |
1849 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1850 | |
1851 | if (!current_language->c_style_arrays) | |
1852 | { | |
1853 | val = allocate_value (arraytype); | |
1854 | for (idx = 0; idx < nelem; idx++) | |
1855 | { | |
1856 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1857 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1858 | typelength); | |
1859 | } | |
1860 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1861 | return val; | |
1862 | } | |
1863 | ||
1864 | /* Allocate space to store the array in the inferior, and then initialize | |
1865 | it by copying in each element. FIXME: Is it worth it to create a | |
1866 | local buffer in which to collect each value and then write all the | |
1867 | bytes in one operation? */ | |
1868 | ||
1869 | addr = allocate_space_in_inferior (nelem * typelength); | |
1870 | for (idx = 0; idx < nelem; idx++) | |
1871 | { | |
1872 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1873 | typelength); | |
1874 | } | |
1875 | ||
1876 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1877 | ||
1878 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1879 | return (val); | |
1880 | } | |
1881 | ||
1882 | /* Create a value for a string constant by allocating space in the inferior, | |
1883 | copying the data into that space, and returning the address with type | |
1884 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1885 | of characters. | |
1886 | Note that string types are like array of char types with a lower bound of | |
1887 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1888 | embedded null bytes. */ | |
1889 | ||
1890 | value_ptr | |
fba45db2 | 1891 | value_string (char *ptr, int len) |
c906108c SS |
1892 | { |
1893 | value_ptr val; | |
1894 | int lowbound = current_language->string_lower_bound; | |
1895 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1896 | builtin_type_int, | |
1897 | lowbound, len + lowbound - 1); | |
1898 | struct type *stringtype | |
c5aa993b | 1899 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1900 | CORE_ADDR addr; |
1901 | ||
1902 | if (current_language->c_style_arrays == 0) | |
1903 | { | |
1904 | val = allocate_value (stringtype); | |
1905 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1906 | return val; | |
1907 | } | |
1908 | ||
1909 | ||
1910 | /* Allocate space to store the string in the inferior, and then | |
1911 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1912 | ||
1913 | addr = allocate_space_in_inferior (len); | |
1914 | write_memory (addr, ptr, len); | |
1915 | ||
1916 | val = value_at_lazy (stringtype, addr, NULL); | |
1917 | return (val); | |
1918 | } | |
1919 | ||
1920 | value_ptr | |
fba45db2 | 1921 | value_bitstring (char *ptr, int len) |
c906108c SS |
1922 | { |
1923 | value_ptr val; | |
1924 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1925 | 0, len - 1); | |
c5aa993b | 1926 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1927 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1928 | val = allocate_value (type); | |
1929 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1930 | return val; | |
1931 | } | |
1932 | \f | |
1933 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1934 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1935 | arguments need coercion of some sort, then the coerced values are written | |
1936 | into T2. Return value is 0 if the arguments could be matched, or the | |
1937 | position at which they differ if not. | |
1938 | ||
1939 | STATICP is nonzero if the T1 argument list came from a | |
1940 | static member function. | |
1941 | ||
1942 | For non-static member functions, we ignore the first argument, | |
1943 | which is the type of the instance variable. This is because we want | |
1944 | to handle calls with objects from derived classes. This is not | |
1945 | entirely correct: we should actually check to make sure that a | |
1946 | requested operation is type secure, shouldn't we? FIXME. */ | |
1947 | ||
1948 | static int | |
ed37ab20 | 1949 | typecmp (int staticp, struct type *t1[], value_ptr t2[]) |
c906108c SS |
1950 | { |
1951 | int i; | |
1952 | ||
1953 | if (t2 == 0) | |
1954 | return 1; | |
1955 | if (staticp && t1 == 0) | |
1956 | return t2[1] != 0; | |
1957 | if (t1 == 0) | |
1958 | return 1; | |
c5aa993b JM |
1959 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) |
1960 | return 0; | |
1961 | if (t1[!staticp] == 0) | |
1962 | return 0; | |
c906108c SS |
1963 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) |
1964 | { | |
c5aa993b JM |
1965 | struct type *tt1, *tt2; |
1966 | if (!t2[i]) | |
1967 | return i + 1; | |
c906108c | 1968 | tt1 = check_typedef (t1[i]); |
c5aa993b | 1969 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
c906108c | 1970 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1971 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1972 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1973 | { | |
1974 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1975 | t2[i] = value_coerce_array (t2[i]); | |
1976 | else | |
1977 | t2[i] = value_addr (t2[i]); | |
1978 | continue; | |
1979 | } | |
1980 | ||
802db21b DB |
1981 | /* djb - 20000715 - Until the new type structure is in the |
1982 | place, and we can attempt things like implicit conversions, | |
1983 | we need to do this so you can take something like a map<const | |
1984 | char *>, and properly access map["hello"], because the | |
1985 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1986 | and the argument will be a pointer to a char. */ |
802db21b DB |
1987 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1988 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1989 | { | |
1990 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1991 | } | |
1992 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1993 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1994 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1995 | { |
802db21b | 1996 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1997 | } |
c5aa993b JM |
1998 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1999 | continue; | |
c906108c SS |
2000 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
2001 | ||
2002 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
2003 | of the ARM), but as a quick kludge, just check for the same type |
2004 | code. */ | |
c906108c | 2005 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 2006 | return i + 1; |
c906108c | 2007 | } |
c5aa993b JM |
2008 | if (!t1[i]) |
2009 | return 0; | |
2010 | return t2[i] ? i + 1 : 0; | |
c906108c SS |
2011 | } |
2012 | ||
2013 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2014 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2015 | and search in it assuming it has (class) type TYPE. | |
2016 | If found, return value, else return NULL. | |
2017 | ||
2018 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2019 | look for a baseclass named NAME. */ | |
2020 | ||
2021 | static value_ptr | |
fba45db2 KB |
2022 | search_struct_field (char *name, register value_ptr arg1, int offset, |
2023 | register struct type *type, int looking_for_baseclass) | |
c906108c SS |
2024 | { |
2025 | int i; | |
2026 | int nbases = TYPE_N_BASECLASSES (type); | |
2027 | ||
2028 | CHECK_TYPEDEF (type); | |
2029 | ||
c5aa993b | 2030 | if (!looking_for_baseclass) |
c906108c SS |
2031 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2032 | { | |
2033 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2034 | ||
db577aea | 2035 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2036 | { |
2037 | value_ptr v; | |
2038 | if (TYPE_FIELD_STATIC (type, i)) | |
2039 | v = value_static_field (type, i); | |
2040 | else | |
2041 | v = value_primitive_field (arg1, offset, i, type); | |
2042 | if (v == 0) | |
c5aa993b | 2043 | error ("there is no field named %s", name); |
c906108c SS |
2044 | return v; |
2045 | } | |
2046 | ||
2047 | if (t_field_name | |
2048 | && (t_field_name[0] == '\0' | |
2049 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2050 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2051 | { |
2052 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2053 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2054 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2055 | { | |
2056 | /* Look for a match through the fields of an anonymous union, | |
2057 | or anonymous struct. C++ provides anonymous unions. | |
2058 | ||
2059 | In the GNU Chill implementation of variant record types, | |
2060 | each <alternative field> has an (anonymous) union type, | |
2061 | each member of the union represents a <variant alternative>. | |
2062 | Each <variant alternative> is represented as a struct, | |
2063 | with a member for each <variant field>. */ | |
c5aa993b | 2064 | |
c906108c SS |
2065 | value_ptr v; |
2066 | int new_offset = offset; | |
2067 | ||
2068 | /* This is pretty gross. In G++, the offset in an anonymous | |
2069 | union is relative to the beginning of the enclosing struct. | |
2070 | In the GNU Chill implementation of variant records, | |
2071 | the bitpos is zero in an anonymous union field, so we | |
2072 | have to add the offset of the union here. */ | |
2073 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2074 | || (TYPE_NFIELDS (field_type) > 0 | |
2075 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2076 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2077 | ||
2078 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2079 | looking_for_baseclass); | |
2080 | if (v) | |
2081 | return v; | |
2082 | } | |
2083 | } | |
2084 | } | |
2085 | ||
c5aa993b | 2086 | for (i = 0; i < nbases; i++) |
c906108c SS |
2087 | { |
2088 | value_ptr v; | |
2089 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
2090 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
2091 | hit them. But it could happen that the base part's member name |
2092 | is not yet filled in. */ | |
c906108c SS |
2093 | int found_baseclass = (looking_for_baseclass |
2094 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 2095 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
2096 | |
2097 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2098 | { | |
2099 | int boffset; | |
2100 | value_ptr v2 = allocate_value (basetype); | |
2101 | ||
2102 | boffset = baseclass_offset (type, i, | |
2103 | VALUE_CONTENTS (arg1) + offset, | |
2104 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2105 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2106 | if (boffset == -1) |
2107 | error ("virtual baseclass botch"); | |
2108 | ||
2109 | /* The virtual base class pointer might have been clobbered by the | |
2110 | user program. Make sure that it still points to a valid memory | |
2111 | location. */ | |
2112 | ||
2113 | boffset += offset; | |
2114 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2115 | { | |
2116 | CORE_ADDR base_addr; | |
c5aa993b | 2117 | |
c906108c SS |
2118 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2119 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2120 | TYPE_LENGTH (basetype)) != 0) | |
2121 | error ("virtual baseclass botch"); | |
2122 | VALUE_LVAL (v2) = lval_memory; | |
2123 | VALUE_ADDRESS (v2) = base_addr; | |
2124 | } | |
2125 | else | |
2126 | { | |
2127 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2128 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2129 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2130 | if (VALUE_LAZY (arg1)) | |
2131 | VALUE_LAZY (v2) = 1; | |
2132 | else | |
2133 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2134 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2135 | TYPE_LENGTH (basetype)); | |
2136 | } | |
2137 | ||
2138 | if (found_baseclass) | |
2139 | return v2; | |
2140 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2141 | looking_for_baseclass); | |
2142 | } | |
2143 | else if (found_baseclass) | |
2144 | v = value_primitive_field (arg1, offset, i, type); | |
2145 | else | |
2146 | v = search_struct_field (name, arg1, | |
c5aa993b | 2147 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2148 | basetype, looking_for_baseclass); |
c5aa993b JM |
2149 | if (v) |
2150 | return v; | |
c906108c SS |
2151 | } |
2152 | return NULL; | |
2153 | } | |
2154 | ||
2155 | ||
2156 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2157 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2158 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2159 | * looking (in case VALADDR is the contents of an enclosing object). | |
2160 | * | |
2161 | * This routine recurses on the primary base of the derived class because | |
2162 | * the virtual base entries of the primary base appear before the other | |
2163 | * virtual base entries. | |
2164 | * | |
2165 | * If the virtual base is not found, a negative integer is returned. | |
2166 | * The magnitude of the negative integer is the number of entries in | |
2167 | * the virtual table to skip over (entries corresponding to various | |
2168 | * ancestral classes in the chain of primary bases). | |
2169 | * | |
2170 | * Important: This assumes the HP / Taligent C++ runtime | |
2171 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2172 | * conventions. */ | |
2173 | ||
2174 | void | |
fba45db2 KB |
2175 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
2176 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 2177 | { |
c5aa993b JM |
2178 | int boffset; /* offset of virtual base */ |
2179 | int index; /* displacement to use in virtual table */ | |
c906108c | 2180 | int skip; |
c5aa993b JM |
2181 | |
2182 | value_ptr vp; | |
2183 | CORE_ADDR vtbl; /* the virtual table pointer */ | |
2184 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2185 | |
2186 | /* Look for the virtual base recursively in the primary base, first. | |
2187 | * This is because the derived class object and its primary base | |
2188 | * subobject share the primary virtual table. */ | |
c5aa993b | 2189 | |
c906108c | 2190 | boffset = 0; |
c5aa993b | 2191 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2192 | if (pbc) |
2193 | { | |
2194 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2195 | if (skip < 0) | |
c5aa993b JM |
2196 | { |
2197 | *boffset_p = boffset; | |
2198 | *skip_p = -1; | |
2199 | return; | |
2200 | } | |
c906108c SS |
2201 | } |
2202 | else | |
2203 | skip = 0; | |
2204 | ||
2205 | ||
2206 | /* Find the index of the virtual base according to HP/Taligent | |
2207 | runtime spec. (Depth-first, left-to-right.) */ | |
2208 | index = virtual_base_index_skip_primaries (basetype, type); | |
2209 | ||
c5aa993b JM |
2210 | if (index < 0) |
2211 | { | |
2212 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2213 | *boffset_p = 0; | |
2214 | return; | |
2215 | } | |
c906108c | 2216 | |
c5aa993b | 2217 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2218 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2219 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2220 | |
c5aa993b | 2221 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2222 | if (vtbl == 0) |
2223 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2224 | ||
2225 | ||
2226 | /* Find virtual base's offset -- jump over entries for primary base | |
2227 | * ancestors, then use the index computed above. But also adjust by | |
2228 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2229 | * virtual base entries. Offset is negative -- virtual base entries | |
2230 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2231 | |
070ad9f0 | 2232 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2233 | & use long type */ |
c906108c SS |
2234 | |
2235 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2236 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2237 | boffset = value_as_long (vp); |
2238 | *skip_p = -1; | |
2239 | *boffset_p = boffset; | |
2240 | return; | |
2241 | } | |
2242 | ||
2243 | ||
2244 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2245 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2246 | and search in it assuming it has (class) type TYPE. | |
2247 | If found, return value, else if name matched and args not return (value)-1, | |
2248 | else return NULL. */ | |
2249 | ||
2250 | static value_ptr | |
fba45db2 KB |
2251 | search_struct_method (char *name, register value_ptr *arg1p, |
2252 | register value_ptr *args, int offset, | |
2253 | int *static_memfuncp, register struct type *type) | |
c906108c SS |
2254 | { |
2255 | int i; | |
2256 | value_ptr v; | |
2257 | int name_matched = 0; | |
2258 | char dem_opname[64]; | |
2259 | ||
2260 | CHECK_TYPEDEF (type); | |
2261 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2262 | { | |
2263 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2264 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2265 | if (strncmp (t_field_name, "__", 2) == 0 || |
2266 | strncmp (t_field_name, "op", 2) == 0 || | |
2267 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2268 | { |
c5aa993b JM |
2269 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2270 | t_field_name = dem_opname; | |
2271 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2272 | t_field_name = dem_opname; |
c906108c | 2273 | } |
db577aea | 2274 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2275 | { |
2276 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2277 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2278 | name_matched = 1; |
c906108c SS |
2279 | |
2280 | if (j > 0 && args == 0) | |
2281 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
2282 | while (j >= 0) | |
2283 | { | |
2284 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2285 | check_stub_method (type, i, j); | |
2286 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
2287 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
2288 | { | |
2289 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2290 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2291 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2292 | *static_memfuncp = 1; | |
2293 | v = value_fn_field (arg1p, f, j, type, offset); | |
c5aa993b | 2294 | if (v != NULL) |
7168a814 | 2295 | return v; |
c906108c SS |
2296 | } |
2297 | j--; | |
2298 | } | |
2299 | } | |
2300 | } | |
2301 | ||
2302 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2303 | { | |
2304 | int base_offset; | |
2305 | ||
2306 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2307 | { | |
c5aa993b JM |
2308 | if (TYPE_HAS_VTABLE (type)) |
2309 | { | |
2310 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 2311 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2312 | int skip; |
2313 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2314 | VALUE_CONTENTS_ALL (*arg1p), | |
2315 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2316 | &base_offset, &skip); | |
2317 | if (skip >= 0) | |
2318 | error ("Virtual base class offset not found in vtable"); | |
2319 | } | |
2320 | else | |
2321 | { | |
2322 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2323 | char *base_valaddr; | |
2324 | ||
2325 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
2326 | user program. Make sure that it still points to a valid memory |
2327 | location. */ | |
c5aa993b JM |
2328 | |
2329 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2330 | { | |
2331 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2332 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2333 | + VALUE_OFFSET (*arg1p) + offset, | |
2334 | base_valaddr, | |
2335 | TYPE_LENGTH (baseclass)) != 0) | |
2336 | error ("virtual baseclass botch"); | |
2337 | } | |
2338 | else | |
2339 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2340 | ||
2341 | base_offset = | |
2342 | baseclass_offset (type, i, base_valaddr, | |
2343 | VALUE_ADDRESS (*arg1p) | |
2344 | + VALUE_OFFSET (*arg1p) + offset); | |
2345 | if (base_offset == -1) | |
2346 | error ("virtual baseclass botch"); | |
2347 | } | |
2348 | } | |
c906108c SS |
2349 | else |
2350 | { | |
2351 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2352 | } |
c906108c SS |
2353 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2354 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
c5aa993b | 2355 | if (v == (value_ptr) - 1) |
c906108c SS |
2356 | { |
2357 | name_matched = 1; | |
2358 | } | |
2359 | else if (v) | |
2360 | { | |
2361 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2362 | /* *arg1p = arg1_tmp; */ |
c906108c | 2363 | return v; |
c5aa993b | 2364 | } |
c906108c | 2365 | } |
c5aa993b JM |
2366 | if (name_matched) |
2367 | return (value_ptr) - 1; | |
2368 | else | |
2369 | return NULL; | |
c906108c SS |
2370 | } |
2371 | ||
2372 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2373 | extract the component named NAME from the ultimate target structure/union | |
2374 | and return it as a value with its appropriate type. | |
2375 | ERR is used in the error message if *ARGP's type is wrong. | |
2376 | ||
2377 | C++: ARGS is a list of argument types to aid in the selection of | |
2378 | an appropriate method. Also, handle derived types. | |
2379 | ||
2380 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2381 | where the truthvalue of whether the function that was resolved was | |
2382 | a static member function or not is stored. | |
2383 | ||
2384 | ERR is an error message to be printed in case the field is not found. */ | |
2385 | ||
2386 | value_ptr | |
fba45db2 KB |
2387 | value_struct_elt (register value_ptr *argp, register value_ptr *args, |
2388 | char *name, int *static_memfuncp, char *err) | |
c906108c SS |
2389 | { |
2390 | register struct type *t; | |
2391 | value_ptr v; | |
2392 | ||
2393 | COERCE_ARRAY (*argp); | |
2394 | ||
2395 | t = check_typedef (VALUE_TYPE (*argp)); | |
2396 | ||
2397 | /* Follow pointers until we get to a non-pointer. */ | |
2398 | ||
2399 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2400 | { | |
2401 | *argp = value_ind (*argp); | |
2402 | /* Don't coerce fn pointer to fn and then back again! */ | |
2403 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2404 | COERCE_ARRAY (*argp); | |
2405 | t = check_typedef (VALUE_TYPE (*argp)); | |
2406 | } | |
2407 | ||
2408 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2409 | error ("not implemented: member type in value_struct_elt"); | |
2410 | ||
c5aa993b | 2411 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2412 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2413 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2414 | ||
2415 | /* Assume it's not, unless we see that it is. */ | |
2416 | if (static_memfuncp) | |
c5aa993b | 2417 | *static_memfuncp = 0; |
c906108c SS |
2418 | |
2419 | if (!args) | |
2420 | { | |
2421 | /* if there are no arguments ...do this... */ | |
2422 | ||
2423 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 2424 | is less work to be done. */ |
c906108c SS |
2425 | v = search_struct_field (name, *argp, 0, t, 0); |
2426 | if (v) | |
2427 | return v; | |
2428 | ||
2429 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2430 | return it as a pointer to a method. */ |
c906108c SS |
2431 | |
2432 | if (destructor_name_p (name, t)) | |
2433 | error ("Cannot get value of destructor"); | |
2434 | ||
2435 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2436 | ||
c5aa993b | 2437 | if (v == (value_ptr) - 1) |
c906108c SS |
2438 | error ("Cannot take address of a method"); |
2439 | else if (v == 0) | |
2440 | { | |
2441 | if (TYPE_NFN_FIELDS (t)) | |
2442 | error ("There is no member or method named %s.", name); | |
2443 | else | |
2444 | error ("There is no member named %s.", name); | |
2445 | } | |
2446 | return v; | |
2447 | } | |
2448 | ||
2449 | if (destructor_name_p (name, t)) | |
2450 | { | |
2451 | if (!args[1]) | |
2452 | { | |
2453 | /* Destructors are a special case. */ | |
2454 | int m_index, f_index; | |
2455 | ||
2456 | v = NULL; | |
2457 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2458 | { | |
2459 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2460 | f_index, NULL, 0); | |
2461 | } | |
2462 | if (v == NULL) | |
2463 | error ("could not find destructor function named %s.", name); | |
2464 | else | |
2465 | return v; | |
2466 | } | |
2467 | else | |
2468 | { | |
2469 | error ("destructor should not have any argument"); | |
2470 | } | |
2471 | } | |
2472 | else | |
2473 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 2474 | |
c5aa993b | 2475 | if (v == (value_ptr) - 1) |
c906108c | 2476 | { |
7168a814 | 2477 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
2478 | } |
2479 | else if (v == 0) | |
2480 | { | |
2481 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
2482 | hand it back. If it's not callable (i.e., a pointer to function), |
2483 | gdb should give an error. */ | |
c906108c SS |
2484 | v = search_struct_field (name, *argp, 0, t, 0); |
2485 | } | |
2486 | ||
2487 | if (!v) | |
2488 | error ("Structure has no component named %s.", name); | |
2489 | return v; | |
2490 | } | |
2491 | ||
2492 | /* Search through the methods of an object (and its bases) | |
2493 | * to find a specified method. Return the pointer to the | |
2494 | * fn_field list of overloaded instances. | |
2495 | * Helper function for value_find_oload_list. | |
2496 | * ARGP is a pointer to a pointer to a value (the object) | |
2497 | * METHOD is a string containing the method name | |
2498 | * OFFSET is the offset within the value | |
2499 | * STATIC_MEMFUNCP is set if the method is static | |
2500 | * TYPE is the assumed type of the object | |
2501 | * NUM_FNS is the number of overloaded instances | |
2502 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2503 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2504 | ||
7a292a7a | 2505 | static struct fn_field * |
fba45db2 KB |
2506 | find_method_list (value_ptr *argp, char *method, int offset, |
2507 | int *static_memfuncp, struct type *type, int *num_fns, | |
2508 | struct type **basetype, int *boffset) | |
c906108c SS |
2509 | { |
2510 | int i; | |
c5aa993b | 2511 | struct fn_field *f; |
c906108c SS |
2512 | CHECK_TYPEDEF (type); |
2513 | ||
2514 | *num_fns = 0; | |
2515 | ||
c5aa993b JM |
2516 | /* First check in object itself */ |
2517 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2518 | { |
2519 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2520 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2521 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b JM |
2522 | { |
2523 | *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2524 | *basetype = type; | |
2525 | *boffset = offset; | |
2526 | return TYPE_FN_FIELDLIST1 (type, i); | |
2527 | } | |
2528 | } | |
2529 | ||
c906108c SS |
2530 | /* Not found in object, check in base subobjects */ |
2531 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2532 | { | |
2533 | int base_offset; | |
2534 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2535 | { | |
c5aa993b JM |
2536 | if (TYPE_HAS_VTABLE (type)) |
2537 | { | |
2538 | /* HP aCC compiled type, search for virtual base offset | |
2539 | * according to HP/Taligent runtime spec. */ | |
2540 | int skip; | |
2541 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2542 | VALUE_CONTENTS_ALL (*argp), | |
2543 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2544 | &base_offset, &skip); | |
2545 | if (skip >= 0) | |
2546 | error ("Virtual base class offset not found in vtable"); | |
2547 | } | |
2548 | else | |
2549 | { | |
2550 | /* probably g++ runtime model */ | |
2551 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2552 | base_offset = | |
2553 | baseclass_offset (type, i, | |
2554 | VALUE_CONTENTS (*argp) + base_offset, | |
2555 | VALUE_ADDRESS (*argp) + base_offset); | |
2556 | if (base_offset == -1) | |
2557 | error ("virtual baseclass botch"); | |
2558 | } | |
2559 | } | |
2560 | else | |
2561 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2562 | { |
2563 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2564 | } |
c906108c | 2565 | f = find_method_list (argp, method, base_offset + offset, |
c5aa993b | 2566 | static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset); |
c906108c | 2567 | if (f) |
c5aa993b | 2568 | return f; |
c906108c | 2569 | } |
c5aa993b | 2570 | return NULL; |
c906108c SS |
2571 | } |
2572 | ||
2573 | /* Return the list of overloaded methods of a specified name. | |
2574 | * ARGP is a pointer to a pointer to a value (the object) | |
2575 | * METHOD is the method name | |
2576 | * OFFSET is the offset within the value contents | |
2577 | * STATIC_MEMFUNCP is set if the method is static | |
2578 | * NUM_FNS is the number of overloaded instances | |
2579 | * BASETYPE is set to the type of the base subobject that defines the method | |
2580 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2581 | ||
2582 | struct fn_field * | |
fba45db2 KB |
2583 | value_find_oload_method_list (value_ptr *argp, char *method, int offset, |
2584 | int *static_memfuncp, int *num_fns, | |
2585 | struct type **basetype, int *boffset) | |
c906108c | 2586 | { |
c5aa993b | 2587 | struct type *t; |
c906108c SS |
2588 | |
2589 | t = check_typedef (VALUE_TYPE (*argp)); | |
2590 | ||
c5aa993b | 2591 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2592 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2593 | { | |
2594 | *argp = value_ind (*argp); | |
2595 | /* Don't coerce fn pointer to fn and then back again! */ | |
2596 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2597 | COERCE_ARRAY (*argp); | |
2598 | t = check_typedef (VALUE_TYPE (*argp)); | |
2599 | } | |
c5aa993b | 2600 | |
c906108c SS |
2601 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2602 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2603 | |
2604 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2605 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2606 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2607 | |
c906108c SS |
2608 | /* Assume it's not static, unless we see that it is. */ |
2609 | if (static_memfuncp) | |
c5aa993b | 2610 | *static_memfuncp = 0; |
c906108c SS |
2611 | |
2612 | return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset); | |
c5aa993b | 2613 | |
c906108c SS |
2614 | } |
2615 | ||
2616 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2617 | entry for "this" in the case of C++ methods), the number of | |
2618 | arguments NARGS, the NAME of a function whether it's a method or | |
2619 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2620 | overload resolution rules in ANSI C++, find the best function that | |
2621 | matches on the argument types according to the overload resolution | |
2622 | rules. | |
2623 | ||
2624 | In the case of class methods, the parameter OBJ is an object value | |
2625 | in which to search for overloaded methods. | |
2626 | ||
2627 | In the case of non-method functions, the parameter FSYM is a symbol | |
2628 | corresponding to one of the overloaded functions. | |
2629 | ||
2630 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2631 | non-standard coercions, 100 -> incompatible. | |
2632 | ||
2633 | If a method is being searched for, VALP will hold the value. | |
2634 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2635 | ||
2636 | If a method is being searched for, and it is a static method, | |
2637 | then STATICP will point to a non-zero value. | |
2638 | ||
2639 | Note: This function does *not* check the value of | |
2640 | overload_resolution. Caller must check it to see whether overload | |
2641 | resolution is permitted. | |
c5aa993b | 2642 | */ |
c906108c SS |
2643 | |
2644 | int | |
fba45db2 KB |
2645 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
2646 | int lax, value_ptr obj, struct symbol *fsym, | |
2647 | value_ptr *valp, struct symbol **symp, int *staticp) | |
c906108c SS |
2648 | { |
2649 | int nparms; | |
c5aa993b | 2650 | struct type **parm_types; |
c906108c | 2651 | int champ_nparms = 0; |
c5aa993b JM |
2652 | |
2653 | short oload_champ = -1; /* Index of best overloaded function */ | |
2654 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2655 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2656 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2657 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2658 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2659 | ||
2660 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2661 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2662 | ||
c906108c | 2663 | value_ptr temp = obj; |
c5aa993b JM |
2664 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2665 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2666 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2667 | struct type *basetype = NULL; | |
c906108c SS |
2668 | int boffset; |
2669 | register int jj; | |
2670 | register int ix; | |
2671 | ||
c5aa993b JM |
2672 | char *obj_type_name = NULL; |
2673 | char *func_name = NULL; | |
c906108c SS |
2674 | |
2675 | /* Get the list of overloaded methods or functions */ | |
2676 | if (method) | |
2677 | { | |
db577aea AC |
2678 | int i; |
2679 | int len; | |
2680 | struct type *domain; | |
c906108c SS |
2681 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); |
2682 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 2683 | value rather than the object itself, so try again */ |
c906108c | 2684 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2685 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2686 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2687 | |
2688 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2689 | staticp, |
2690 | &num_fns, | |
2691 | &basetype, &boffset); | |
c906108c | 2692 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2693 | error ("Couldn't find method %s%s%s", |
2694 | obj_type_name, | |
2695 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2696 | name); | |
db577aea AC |
2697 | domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type); |
2698 | len = TYPE_NFN_FIELDS (domain); | |
2699 | /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't | |
2700 | give us the info we need directly in the types. We have to | |
2701 | use the method stub conversion to get it. Be aware that this | |
2702 | is by no means perfect, and if you use STABS, please move to | |
2703 | DWARF-2, or something like it, because trying to improve | |
2704 | overloading using STABS is really a waste of time. */ | |
2705 | for (i = 0; i < len; i++) | |
2706 | { | |
2707 | int j; | |
2708 | struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i); | |
2709 | int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | |
2710 | ||
2711 | for (j = 0; j < len2; j++) | |
2712 | { | |
070ad9f0 | 2713 | if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name))) |
db577aea AC |
2714 | check_stub_method (domain, i, j); |
2715 | } | |
2716 | } | |
c906108c SS |
2717 | } |
2718 | else | |
2719 | { | |
2720 | int i = -1; | |
2721 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2722 | ||
917317f4 | 2723 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 2724 | Just return the same symbol. */ |
917317f4 | 2725 | if (!func_name) |
7b83ea04 | 2726 | { |
917317f4 | 2727 | *symp = fsym; |
7b83ea04 AC |
2728 | return 0; |
2729 | } | |
917317f4 | 2730 | |
c906108c SS |
2731 | oload_syms = make_symbol_overload_list (fsym); |
2732 | while (oload_syms[++i]) | |
c5aa993b | 2733 | num_fns++; |
c906108c | 2734 | if (!num_fns) |
c5aa993b | 2735 | error ("Couldn't find function %s", func_name); |
c906108c | 2736 | } |
c5aa993b | 2737 | |
c906108c SS |
2738 | oload_champ_bv = NULL; |
2739 | ||
c5aa993b | 2740 | /* Consider each candidate in turn */ |
c906108c SS |
2741 | for (ix = 0; ix < num_fns; ix++) |
2742 | { | |
db577aea AC |
2743 | if (method) |
2744 | { | |
2745 | /* For static member functions, we won't have a this pointer, but nothing | |
2746 | else seems to handle them right now, so we just pretend ourselves */ | |
2747 | nparms=0; | |
2748 | ||
2749 | if (TYPE_FN_FIELD_ARGS(fns_ptr,ix)) | |
2750 | { | |
2751 | while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID) | |
2752 | nparms++; | |
2753 | } | |
2754 | } | |
2755 | else | |
2756 | { | |
2757 | /* If it's not a method, this is the proper place */ | |
2758 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2759 | } | |
c906108c | 2760 | |
c5aa993b | 2761 | /* Prepare array of parameter types */ |
c906108c SS |
2762 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2763 | for (jj = 0; jj < nparms; jj++) | |
db577aea AC |
2764 | parm_types[jj] = (method |
2765 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj]) | |
2766 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); | |
c906108c SS |
2767 | |
2768 | /* Compare parameter types to supplied argument types */ | |
2769 | bv = rank_function (parm_types, nparms, arg_types, nargs); | |
c5aa993b | 2770 | |
c906108c | 2771 | if (!oload_champ_bv) |
c5aa993b JM |
2772 | { |
2773 | oload_champ_bv = bv; | |
2774 | oload_champ = 0; | |
2775 | champ_nparms = nparms; | |
2776 | } | |
c906108c | 2777 | else |
c5aa993b JM |
2778 | /* See whether current candidate is better or worse than previous best */ |
2779 | switch (compare_badness (bv, oload_champ_bv)) | |
2780 | { | |
2781 | case 0: | |
2782 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2783 | oload_ambig_champ = ix; | |
2784 | break; | |
2785 | case 1: | |
2786 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2787 | oload_ambig_champ = ix; | |
2788 | break; | |
2789 | case 2: | |
2790 | oload_champ_bv = bv; /* new champion, record details */ | |
2791 | oload_ambiguous = 0; | |
2792 | oload_champ = ix; | |
2793 | oload_ambig_champ = -1; | |
2794 | champ_nparms = nparms; | |
2795 | break; | |
2796 | case 3: | |
2797 | default: | |
2798 | break; | |
2799 | } | |
b8c9b27d | 2800 | xfree (parm_types); |
6b1ba9a0 ND |
2801 | if (overload_debug) |
2802 | { | |
2803 | if (method) | |
2804 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2805 | else | |
2806 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
2807 | for (jj = 0; jj < nargs; jj++) | |
2808 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); | |
2809 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2810 | } | |
c5aa993b | 2811 | } /* end loop over all candidates */ |
db577aea AC |
2812 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2813 | if they have the exact same goodness. This is because there is no | |
2814 | way to differentiate based on return type, which we need to in | |
2815 | cases like overloads of .begin() <It's both const and non-const> */ | |
2816 | #if 0 | |
c906108c SS |
2817 | if (oload_ambiguous) |
2818 | { | |
2819 | if (method) | |
c5aa993b JM |
2820 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2821 | obj_type_name, | |
2822 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2823 | name); | |
c906108c | 2824 | else |
c5aa993b JM |
2825 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2826 | func_name); | |
c906108c | 2827 | } |
db577aea | 2828 | #endif |
c906108c | 2829 | |
c5aa993b | 2830 | /* Check how bad the best match is */ |
c906108c SS |
2831 | for (ix = 1; ix <= nargs; ix++) |
2832 | { | |
6b1ba9a0 ND |
2833 | if (oload_champ_bv->rank[ix] >= 100) |
2834 | oload_incompatible = 1; /* truly mismatched types */ | |
2835 | ||
2836 | else if (oload_champ_bv->rank[ix] >= 10) | |
2837 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
c906108c SS |
2838 | } |
2839 | if (oload_incompatible) | |
2840 | { | |
2841 | if (method) | |
c5aa993b JM |
2842 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2843 | obj_type_name, | |
2844 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2845 | name); | |
c906108c | 2846 | else |
c5aa993b JM |
2847 | error ("Cannot resolve function %s to any overloaded instance", |
2848 | func_name); | |
c906108c SS |
2849 | } |
2850 | else if (oload_non_standard) | |
2851 | { | |
2852 | if (method) | |
c5aa993b JM |
2853 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2854 | obj_type_name, | |
2855 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2856 | name); | |
c906108c | 2857 | else |
c5aa993b JM |
2858 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2859 | func_name); | |
c906108c SS |
2860 | } |
2861 | ||
2862 | if (method) | |
2863 | { | |
2864 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
c5aa993b | 2865 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2866 | else |
c5aa993b | 2867 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2868 | } |
2869 | else | |
2870 | { | |
2871 | *symp = oload_syms[oload_champ]; | |
b8c9b27d | 2872 | xfree (func_name); |
c906108c SS |
2873 | } |
2874 | ||
2875 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); | |
2876 | } | |
2877 | ||
2878 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2879 | of type TYPE. If TYPE does not have a destructor, or | |
2880 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2881 | int | |
fba45db2 | 2882 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2883 | { |
2884 | /* destructors are a special case. */ | |
2885 | ||
2886 | if (name[0] == '~') | |
2887 | { | |
2888 | char *dname = type_name_no_tag (type); | |
2889 | char *cp = strchr (dname, '<'); | |
2890 | unsigned int len; | |
2891 | ||
2892 | /* Do not compare the template part for template classes. */ | |
2893 | if (cp == NULL) | |
2894 | len = strlen (dname); | |
2895 | else | |
2896 | len = cp - dname; | |
2897 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2898 | error ("name of destructor must equal name of class"); | |
2899 | else | |
2900 | return 1; | |
2901 | } | |
2902 | return 0; | |
2903 | } | |
2904 | ||
2905 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2906 | return 1 if the component named NAME from the ultimate | |
2907 | target structure/union is defined, otherwise, return 0. */ | |
2908 | ||
2909 | static int | |
fba45db2 | 2910 | check_field_in (register struct type *type, const char *name) |
c906108c SS |
2911 | { |
2912 | register int i; | |
2913 | ||
2914 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2915 | { | |
2916 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2917 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2918 | return 1; |
2919 | } | |
2920 | ||
2921 | /* C++: If it was not found as a data field, then try to | |
2922 | return it as a pointer to a method. */ | |
2923 | ||
2924 | /* Destructors are a special case. */ | |
2925 | if (destructor_name_p (name, type)) | |
2926 | { | |
2927 | int m_index, f_index; | |
2928 | ||
2929 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2930 | } | |
2931 | ||
2932 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2933 | { | |
db577aea | 2934 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2935 | return 1; |
2936 | } | |
2937 | ||
2938 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2939 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2940 | return 1; | |
c5aa993b | 2941 | |
c906108c SS |
2942 | return 0; |
2943 | } | |
2944 | ||
2945 | ||
2946 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2947 | return 1 if the component named NAME from the ultimate | |
2948 | target structure/union is defined, otherwise, return 0. */ | |
2949 | ||
2950 | int | |
fba45db2 | 2951 | check_field (register value_ptr arg1, const char *name) |
c906108c SS |
2952 | { |
2953 | register struct type *t; | |
2954 | ||
2955 | COERCE_ARRAY (arg1); | |
2956 | ||
2957 | t = VALUE_TYPE (arg1); | |
2958 | ||
2959 | /* Follow pointers until we get to a non-pointer. */ | |
2960 | ||
2961 | for (;;) | |
2962 | { | |
2963 | CHECK_TYPEDEF (t); | |
2964 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2965 | break; | |
2966 | t = TYPE_TARGET_TYPE (t); | |
2967 | } | |
2968 | ||
2969 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2970 | error ("not implemented: member type in check_field"); | |
2971 | ||
c5aa993b | 2972 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2973 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2974 | error ("Internal error: `this' is not an aggregate"); | |
2975 | ||
2976 | return check_field_in (t, name); | |
2977 | } | |
2978 | ||
2979 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2980 | return the address of this member as a "pointer to member" | |
2981 | type. If INTYPE is non-null, then it will be the type | |
2982 | of the member we are looking for. This will help us resolve | |
2983 | "pointers to member functions". This function is used | |
2984 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2985 | ||
2986 | value_ptr | |
fba45db2 KB |
2987 | value_struct_elt_for_reference (struct type *domain, int offset, |
2988 | struct type *curtype, char *name, | |
2989 | struct type *intype) | |
c906108c SS |
2990 | { |
2991 | register struct type *t = curtype; | |
2992 | register int i; | |
2993 | value_ptr v; | |
2994 | ||
c5aa993b | 2995 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2996 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2997 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
2998 | ||
2999 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3000 | { | |
3001 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3002 | |
c906108c SS |
3003 | if (t_field_name && STREQ (t_field_name, name)) |
3004 | { | |
3005 | if (TYPE_FIELD_STATIC (t, i)) | |
3006 | { | |
3007 | v = value_static_field (t, i); | |
3008 | if (v == NULL) | |
3009 | error ("Internal error: could not find static variable %s", | |
3010 | name); | |
3011 | return v; | |
3012 | } | |
3013 | if (TYPE_FIELD_PACKED (t, i)) | |
3014 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3015 | |
c906108c SS |
3016 | return value_from_longest |
3017 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3018 | domain)), | |
3019 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3020 | } | |
3021 | } | |
3022 | ||
3023 | /* C++: If it was not found as a data field, then try to | |
3024 | return it as a pointer to a method. */ | |
3025 | ||
3026 | /* Destructors are a special case. */ | |
3027 | if (destructor_name_p (name, t)) | |
3028 | { | |
3029 | error ("member pointers to destructors not implemented yet"); | |
3030 | } | |
3031 | ||
3032 | /* Perform all necessary dereferencing. */ | |
3033 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3034 | intype = TYPE_TARGET_TYPE (intype); | |
3035 | ||
3036 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3037 | { | |
3038 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3039 | char dem_opname[64]; | |
3040 | ||
c5aa993b JM |
3041 | if (strncmp (t_field_name, "__", 2) == 0 || |
3042 | strncmp (t_field_name, "op", 2) == 0 || | |
3043 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3044 | { |
c5aa993b JM |
3045 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3046 | t_field_name = dem_opname; | |
3047 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3048 | t_field_name = dem_opname; |
c906108c SS |
3049 | } |
3050 | if (t_field_name && STREQ (t_field_name, name)) | |
3051 | { | |
3052 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3053 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3054 | |
c906108c SS |
3055 | if (intype == 0 && j > 1) |
3056 | error ("non-unique member `%s' requires type instantiation", name); | |
3057 | if (intype) | |
3058 | { | |
3059 | while (j--) | |
3060 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3061 | break; | |
3062 | if (j < 0) | |
3063 | error ("no member function matches that type instantiation"); | |
3064 | } | |
3065 | else | |
3066 | j = 0; | |
c5aa993b | 3067 | |
c906108c SS |
3068 | if (TYPE_FN_FIELD_STUB (f, j)) |
3069 | check_stub_method (t, i, j); | |
3070 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3071 | { | |
3072 | return value_from_longest | |
3073 | (lookup_reference_type | |
3074 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3075 | domain)), | |
3076 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3077 | } | |
3078 | else | |
3079 | { | |
3080 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3081 | 0, VAR_NAMESPACE, 0, NULL); | |
3082 | if (s == NULL) | |
3083 | { | |
3084 | v = 0; | |
3085 | } | |
3086 | else | |
3087 | { | |
3088 | v = read_var_value (s, 0); | |
3089 | #if 0 | |
3090 | VALUE_TYPE (v) = lookup_reference_type | |
3091 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3092 | domain)); | |
3093 | #endif | |
3094 | } | |
3095 | return v; | |
3096 | } | |
3097 | } | |
3098 | } | |
3099 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3100 | { | |
3101 | value_ptr v; | |
3102 | int base_offset; | |
3103 | ||
3104 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3105 | base_offset = 0; | |
3106 | else | |
3107 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3108 | v = value_struct_elt_for_reference (domain, | |
3109 | offset + base_offset, | |
3110 | TYPE_BASECLASS (t, i), | |
3111 | name, | |
3112 | intype); | |
3113 | if (v) | |
3114 | return v; | |
3115 | } | |
3116 | return 0; | |
3117 | } | |
3118 | ||
3119 | ||
3120 | /* Find the real run-time type of a value using RTTI. | |
3121 | * V is a pointer to the value. | |
3122 | * A pointer to the struct type entry of the run-time type | |
3123 | * is returneed. | |
3124 | * FULL is a flag that is set only if the value V includes | |
3125 | * the entire contents of an object of the RTTI type. | |
3126 | * TOP is the offset to the top of the enclosing object of | |
3127 | * the real run-time type. This offset may be for the embedded | |
3128 | * object, or for the enclosing object of V. | |
3129 | * USING_ENC is the flag that distinguishes the two cases. | |
3130 | * If it is 1, then the offset is for the enclosing object, | |
3131 | * otherwise for the embedded object. | |
070ad9f0 DB |
3132 | * |
3133 | */ | |
c906108c SS |
3134 | |
3135 | struct type * | |
fba45db2 | 3136 | value_rtti_type (value_ptr v, int *full, int *top, int *using_enc) |
c906108c | 3137 | { |
c5aa993b JM |
3138 | struct type *known_type; |
3139 | struct type *rtti_type; | |
c906108c SS |
3140 | CORE_ADDR coreptr; |
3141 | value_ptr vp; | |
3142 | int using_enclosing = 0; | |
3143 | long top_offset = 0; | |
3144 | char rtti_type_name[256]; | |
3145 | ||
3146 | if (full) | |
3147 | *full = 0; | |
3148 | if (top) | |
3149 | *top = -1; | |
3150 | if (using_enc) | |
3151 | *using_enc = 0; | |
3152 | ||
c5aa993b | 3153 | /* Get declared type */ |
c906108c SS |
3154 | known_type = VALUE_TYPE (v); |
3155 | CHECK_TYPEDEF (known_type); | |
c5aa993b | 3156 | /* RTTI works only or class objects */ |
c906108c SS |
3157 | if (TYPE_CODE (known_type) != TYPE_CODE_CLASS) |
3158 | return NULL; | |
070ad9f0 DB |
3159 | if (TYPE_HAS_VTABLE(known_type)) |
3160 | { | |
3161 | /* If neither the declared type nor the enclosing type of the | |
3162 | * value structure has a HP ANSI C++ style virtual table, | |
3163 | * we can't do anything. */ | |
3164 | if (!TYPE_HAS_VTABLE (known_type)) | |
3165 | { | |
3166 | known_type = VALUE_ENCLOSING_TYPE (v); | |
3167 | CHECK_TYPEDEF (known_type); | |
3168 | if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) || | |
3169 | !TYPE_HAS_VTABLE (known_type)) | |
3170 | return NULL; /* No RTTI, or not HP-compiled types */ | |
3171 | CHECK_TYPEDEF (known_type); | |
3172 | using_enclosing = 1; | |
3173 | } | |
c906108c | 3174 | |
070ad9f0 DB |
3175 | if (using_enclosing && using_enc) |
3176 | *using_enc = 1; | |
3177 | ||
3178 | /* First get the virtual table address */ | |
3179 | coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v)) | |
3180 | + VALUE_OFFSET (v) | |
3181 | + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v))); | |
3182 | if (coreptr == 0) | |
3183 | return NULL; /* return silently -- maybe called on gdb-generated value */ | |
3184 | ||
3185 | /* Fetch the top offset of the object */ | |
3186 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3187 | vp = value_at (builtin_type_int, | |
3188 | coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET, | |
3189 | VALUE_BFD_SECTION (v)); | |
3190 | top_offset = value_as_long (vp); | |
3191 | if (top) | |
3192 | *top = top_offset; | |
3193 | ||
3194 | /* Fetch the typeinfo pointer */ | |
3195 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3196 | vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v)); | |
3197 | /* Indirect through the typeinfo pointer and retrieve the pointer | |
3198 | * to the string name */ | |
3199 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
3200 | if (!coreptr) | |
3201 | error ("Retrieved null typeinfo pointer in trying to determine run-time type"); | |
3202 | vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */ | |
3203 | /* FIXME possible 32x64 problem */ | |
3204 | ||
3205 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); | |
3206 | ||
3207 | read_memory_string (coreptr, rtti_type_name, 256); | |
3208 | ||
3209 | if (strlen (rtti_type_name) == 0) | |
3210 | error ("Retrieved null type name from typeinfo"); | |
3211 | ||
3212 | /* search for type */ | |
3213 | rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1); | |
3214 | ||
3215 | if (!rtti_type) | |
3216 | error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name); | |
3217 | CHECK_TYPEDEF (rtti_type); | |
3218 | #if 0 | |
3219 | printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1); | |
3220 | #endif | |
3221 | /* Check whether we have the entire object */ | |
3222 | if (full /* Non-null pointer passed */ | |
3223 | && | |
3224 | /* Either we checked on the whole object in hand and found the | |
3225 | top offset to be zero */ | |
3226 | (((top_offset == 0) && | |
3227 | using_enclosing && | |
3228 | TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type)) | |
3229 | || | |
3230 | /* Or we checked on the embedded object and top offset was the | |
3231 | same as the embedded offset */ | |
3232 | ((top_offset == VALUE_EMBEDDED_OFFSET (v)) && | |
3233 | !using_enclosing && | |
3234 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type)))) | |
3235 | ||
3236 | *full = 1; | |
3237 | } | |
3238 | else | |
3239 | /* | |
3240 | Right now this is G++ RTTI. Plan on this changing in the | |
3241 | future as i get around to setting the vtables properly for G++ | |
802db21b | 3242 | compiled stuff. Also, i'll be using the type info functions, |
070ad9f0 DB |
3243 | which are always right. Deal with it until then. |
3244 | */ | |
3245 | { | |
3246 | CORE_ADDR vtbl; | |
3247 | struct minimal_symbol *minsym; | |
3248 | struct symbol *sym; | |
3249 | char *demangled_name; | |
3250 | struct type *btype; | |
3251 | /* If the type has no vptr fieldno, try to get it filled in */ | |
3252 | if (TYPE_VPTR_FIELDNO(known_type) < 0) | |
3253 | fill_in_vptr_fieldno(known_type); | |
3254 | ||
3255 | /* If we still can't find one, give up */ | |
3256 | if (TYPE_VPTR_FIELDNO(known_type) < 0) | |
3257 | return NULL; | |
c5aa993b | 3258 | |
070ad9f0 DB |
3259 | /* Make sure our basetype and known type match, otherwise, cast |
3260 | so we can get at the vtable properly. | |
3261 | */ | |
3262 | btype = TYPE_VPTR_BASETYPE (known_type); | |
3263 | CHECK_TYPEDEF (btype); | |
3264 | if (btype != known_type ) | |
3265 | { | |
3266 | v = value_cast (btype, v); | |
3267 | if (using_enc) | |
3268 | *using_enc=1; | |
3269 | } | |
3270 | /* | |
802db21b | 3271 | We can't use value_ind here, because it would want to use RTTI, and |
070ad9f0 DB |
3272 | we'd waste a bunch of time figuring out we already know the type. |
3273 | Besides, we don't care about the type, just the actual pointer | |
3274 | */ | |
85c9a9d5 | 3275 | if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0) |
070ad9f0 | 3276 | return NULL; |
c5aa993b | 3277 | |
070ad9f0 DB |
3278 | /* |
3279 | If we are enclosed by something that isn't us, adjust the | |
3280 | address properly and set using_enclosing. | |
3281 | */ | |
3282 | if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v)) | |
3283 | { | |
3284 | value_ptr tempval; | |
3285 | tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type)); | |
3286 | VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8); | |
3287 | vtbl=value_as_pointer(tempval); | |
3288 | using_enclosing=1; | |
3289 | } | |
3290 | else | |
3291 | { | |
3292 | vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type))); | |
3293 | using_enclosing=0; | |
3294 | } | |
c906108c | 3295 | |
070ad9f0 DB |
3296 | /* Try to find a symbol that is the vtable */ |
3297 | minsym=lookup_minimal_symbol_by_pc(vtbl); | |
3298 | if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name)) | |
3299 | return NULL; | |
c906108c | 3300 | |
070ad9f0 DB |
3301 | /* If we just skip the prefix, we get screwed by namespaces */ |
3302 | demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI); | |
3303 | *(strchr(demangled_name,' '))=0; | |
c906108c | 3304 | |
070ad9f0 DB |
3305 | /* Lookup the type for the name */ |
3306 | rtti_type=lookup_typename(demangled_name, (struct block *)0,1); | |
c5aa993b | 3307 | |
070ad9f0 DB |
3308 | if (rtti_type==NULL) |
3309 | return NULL; | |
c5aa993b | 3310 | |
070ad9f0 DB |
3311 | if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1) |
3312 | { | |
3313 | if (top) | |
3314 | *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8; | |
3315 | if (top && ((*top) >0)) | |
3316 | { | |
3317 | if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type)) | |
3318 | { | |
3319 | if (full) | |
3320 | *full=0; | |
3321 | } | |
3322 | else | |
3323 | { | |
3324 | if (full) | |
3325 | *full=1; | |
3326 | } | |
3327 | } | |
3328 | } | |
3329 | else | |
3330 | { | |
3331 | if (full) | |
3332 | *full=1; | |
3333 | } | |
3334 | if (using_enc) | |
3335 | *using_enc=using_enclosing; | |
3336 | } | |
c906108c SS |
3337 | return rtti_type; |
3338 | } | |
3339 | ||
3340 | /* Given a pointer value V, find the real (RTTI) type | |
3341 | of the object it points to. | |
3342 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3343 | and refer to the values computed for the object pointed to. */ | |
3344 | ||
3345 | struct type * | |
fba45db2 | 3346 | value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc) |
c906108c SS |
3347 | { |
3348 | value_ptr target; | |
3349 | ||
3350 | target = value_ind (v); | |
3351 | ||
3352 | return value_rtti_type (target, full, top, using_enc); | |
3353 | } | |
3354 | ||
3355 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3356 | if that is different from the enclosing type, create a new value | |
3357 | using the real run-time type as the enclosing type (and of the same | |
3358 | type as ARGP) and return it, with the embedded offset adjusted to | |
3359 | be the correct offset to the enclosed object | |
3360 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3361 | parameters, computed by value_rtti_type(). If these are available, | |
3362 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3363 | (Pass RTYPE == NULL if they're not available */ | |
3364 | ||
3365 | value_ptr | |
fba45db2 KB |
3366 | value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop, |
3367 | int xusing_enc) | |
c906108c | 3368 | { |
c5aa993b | 3369 | struct type *real_type; |
c906108c SS |
3370 | int full = 0; |
3371 | int top = -1; | |
3372 | int using_enc = 0; | |
3373 | value_ptr new_val; | |
3374 | ||
3375 | if (rtype) | |
3376 | { | |
3377 | real_type = rtype; | |
3378 | full = xfull; | |
3379 | top = xtop; | |
3380 | using_enc = xusing_enc; | |
3381 | } | |
3382 | else | |
3383 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3384 | ||
3385 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3386 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3387 | return argp; | |
3388 | ||
3389 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3390 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3391 | if (full) |
3392 | { | |
3393 | VALUE_ENCLOSING_TYPE (argp) = real_type; | |
3394 | return argp; | |
3395 | } | |
3396 | ||
3397 | /* Check if object is in memory */ | |
3398 | if (VALUE_LVAL (argp) != lval_memory) | |
3399 | { | |
3400 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3401 | |
c906108c SS |
3402 | return argp; |
3403 | } | |
c5aa993b | 3404 | |
c906108c SS |
3405 | /* All other cases -- retrieve the complete object */ |
3406 | /* Go back by the computed top_offset from the beginning of the object, | |
3407 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3408 | used for its computation. */ | |
3409 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3410 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3411 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3412 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3413 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3414 | return new_val; | |
3415 | } | |
3416 | ||
3417 | ||
3418 | ||
3419 | ||
3420 | /* C++: return the value of the class instance variable, if one exists. | |
3421 | Flag COMPLAIN signals an error if the request is made in an | |
3422 | inappropriate context. */ | |
3423 | ||
3424 | value_ptr | |
fba45db2 | 3425 | value_of_this (int complain) |
c906108c SS |
3426 | { |
3427 | struct symbol *func, *sym; | |
3428 | struct block *b; | |
3429 | int i; | |
3430 | static const char funny_this[] = "this"; | |
3431 | value_ptr this; | |
3432 | ||
3433 | if (selected_frame == 0) | |
3434 | { | |
3435 | if (complain) | |
c5aa993b JM |
3436 | error ("no frame selected"); |
3437 | else | |
3438 | return 0; | |
c906108c SS |
3439 | } |
3440 | ||
3441 | func = get_frame_function (selected_frame); | |
3442 | if (!func) | |
3443 | { | |
3444 | if (complain) | |
3445 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3446 | else |
3447 | return 0; | |
c906108c SS |
3448 | } |
3449 | ||
3450 | b = SYMBOL_BLOCK_VALUE (func); | |
3451 | i = BLOCK_NSYMS (b); | |
3452 | if (i <= 0) | |
3453 | { | |
3454 | if (complain) | |
c5aa993b JM |
3455 | error ("no args, no `this'"); |
3456 | else | |
3457 | return 0; | |
c906108c SS |
3458 | } |
3459 | ||
3460 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3461 | symbol instead of the LOC_ARG one (if both exist). */ | |
3462 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
3463 | if (sym == NULL) | |
3464 | { | |
3465 | if (complain) | |
3466 | error ("current stack frame not in method"); | |
3467 | else | |
3468 | return NULL; | |
3469 | } | |
3470 | ||
3471 | this = read_var_value (sym, selected_frame); | |
3472 | if (this == 0 && complain) | |
3473 | error ("`this' argument at unknown address"); | |
3474 | return this; | |
3475 | } | |
3476 | ||
3477 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3478 | long, starting at LOWBOUND. The result has the same lower bound as | |
3479 | the original ARRAY. */ | |
3480 | ||
3481 | value_ptr | |
fba45db2 | 3482 | value_slice (value_ptr array, int lowbound, int length) |
c906108c SS |
3483 | { |
3484 | struct type *slice_range_type, *slice_type, *range_type; | |
3485 | LONGEST lowerbound, upperbound, offset; | |
3486 | value_ptr slice; | |
3487 | struct type *array_type; | |
3488 | array_type = check_typedef (VALUE_TYPE (array)); | |
3489 | COERCE_VARYING_ARRAY (array, array_type); | |
3490 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3491 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3492 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3493 | error ("cannot take slice of non-array"); | |
3494 | range_type = TYPE_INDEX_TYPE (array_type); | |
3495 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3496 | error ("slice from bad array or bitstring"); | |
3497 | if (lowbound < lowerbound || length < 0 | |
3498 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3499 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3500 | || (current_language->la_language == language_chill |
3501 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3502 | error ("slice out of range"); | |
3503 | /* FIXME-type-allocation: need a way to free this type when we are | |
3504 | done with it. */ | |
c5aa993b | 3505 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3506 | TYPE_TARGET_TYPE (range_type), |
3507 | lowbound, lowbound + length - 1); | |
3508 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3509 | { | |
3510 | int i; | |
c5aa993b | 3511 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3512 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3513 | slice = value_zero (slice_type, not_lval); | |
3514 | for (i = 0; i < length; i++) | |
3515 | { | |
3516 | int element = value_bit_index (array_type, | |
3517 | VALUE_CONTENTS (array), | |
3518 | lowbound + i); | |
3519 | if (element < 0) | |
3520 | error ("internal error accessing bitstring"); | |
3521 | else if (element > 0) | |
3522 | { | |
3523 | int j = i % TARGET_CHAR_BIT; | |
3524 | if (BITS_BIG_ENDIAN) | |
3525 | j = TARGET_CHAR_BIT - 1 - j; | |
3526 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3527 | } | |
3528 | } | |
3529 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
3530 | can be used on the LHS, but that may require extensions to |
3531 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3532 | } |
3533 | else | |
3534 | { | |
3535 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3536 | offset | |
3537 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3538 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3539 | slice_range_type); |
3540 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3541 | slice = allocate_value (slice_type); | |
3542 | if (VALUE_LAZY (array)) | |
3543 | VALUE_LAZY (slice) = 1; | |
3544 | else | |
3545 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3546 | TYPE_LENGTH (slice_type)); | |
3547 | if (VALUE_LVAL (array) == lval_internalvar) | |
3548 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3549 | else | |
3550 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3551 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3552 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3553 | } | |
3554 | return slice; | |
3555 | } | |
3556 | ||
3557 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3558 | value as a fixed-length array. */ | |
3559 | ||
3560 | value_ptr | |
fba45db2 | 3561 | varying_to_slice (value_ptr varray) |
c906108c SS |
3562 | { |
3563 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3564 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3565 | VALUE_CONTENTS (varray) | |
3566 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3567 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3568 | } | |
3569 | ||
070ad9f0 DB |
3570 | /* Create a value for a FORTRAN complex number. Currently most of |
3571 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3572 | composed of 2 doubles. This really should be a smarter routine | |
3573 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3574 | doubles. FIXME: fmb */ |
c906108c SS |
3575 | |
3576 | value_ptr | |
fba45db2 | 3577 | value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type) |
c906108c SS |
3578 | { |
3579 | register value_ptr val; | |
3580 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3581 | ||
3582 | val = allocate_value (type); | |
3583 | arg1 = value_cast (real_type, arg1); | |
3584 | arg2 = value_cast (real_type, arg2); | |
3585 | ||
3586 | memcpy (VALUE_CONTENTS_RAW (val), | |
3587 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3588 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3589 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3590 | return val; | |
3591 | } | |
3592 | ||
3593 | /* Cast a value into the appropriate complex data type. */ | |
3594 | ||
3595 | static value_ptr | |
fba45db2 | 3596 | cast_into_complex (struct type *type, register value_ptr val) |
c906108c SS |
3597 | { |
3598 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3599 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3600 | { | |
3601 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
3602 | value_ptr re_val = allocate_value (val_real_type); | |
3603 | value_ptr im_val = allocate_value (val_real_type); | |
3604 | ||
3605 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3606 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3607 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3608 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3609 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3610 | |
3611 | return value_literal_complex (re_val, im_val, type); | |
3612 | } | |
3613 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3614 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3615 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3616 | else | |
3617 | error ("cannot cast non-number to complex"); | |
3618 | } | |
3619 | ||
3620 | void | |
fba45db2 | 3621 | _initialize_valops (void) |
c906108c SS |
3622 | { |
3623 | #if 0 | |
3624 | add_show_from_set | |
c5aa993b | 3625 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3626 | "Set automatic abandonment of expressions upon failure.", |
3627 | &setlist), | |
3628 | &showlist); | |
3629 | #endif | |
3630 | ||
3631 | add_show_from_set | |
c5aa993b | 3632 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3633 | "Set overload resolution in evaluating C++ functions.", |
3634 | &setlist), | |
3635 | &showlist); | |
3636 | overload_resolution = 1; | |
3637 | ||
242bfc55 FN |
3638 | add_show_from_set ( |
3639 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3640 | (char *) &unwind_on_signal_p, | |
3641 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3642 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3643 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3644 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3645 | The default is to stop in the frame where the signal was received.", &setlist), | |
3646 | &showlist); | |
c906108c | 3647 | } |