]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
0fb0cc75 | 4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
7b6bb8da | 5 | 2009, 2010, 2011 Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
e17c207e | 23 | #include "arch-utils.h" |
c906108c SS |
24 | #include "gdb_string.h" |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "gdbcore.h" | |
c906108c SS |
29 | #include "command.h" |
30 | #include "gdbcmd.h" | |
31 | #include "target.h" | |
32 | #include "language.h" | |
c906108c | 33 | #include "demangle.h" |
d16aafd8 | 34 | #include "doublest.h" |
5ae326fa | 35 | #include "gdb_assert.h" |
36160dc4 | 36 | #include "regcache.h" |
fe898f56 | 37 | #include "block.h" |
27bc4d80 | 38 | #include "dfp.h" |
bccdca4a | 39 | #include "objfiles.h" |
79a45b7d | 40 | #include "valprint.h" |
bc3b79fd | 41 | #include "cli/cli-decode.h" |
8af8e3bc | 42 | #include "exceptions.h" |
a08702d6 TJB |
43 | #include "python/python.h" |
44 | ||
0914bcdb SS |
45 | #include "tracepoint.h" |
46 | ||
581e13c1 | 47 | /* Prototypes for exported functions. */ |
c906108c | 48 | |
a14ed312 | 49 | void _initialize_values (void); |
c906108c | 50 | |
bc3b79fd TJB |
51 | /* Definition of a user function. */ |
52 | struct internal_function | |
53 | { | |
54 | /* The name of the function. It is a bit odd to have this in the | |
55 | function itself -- the user might use a differently-named | |
56 | convenience variable to hold the function. */ | |
57 | char *name; | |
58 | ||
59 | /* The handler. */ | |
60 | internal_function_fn handler; | |
61 | ||
62 | /* User data for the handler. */ | |
63 | void *cookie; | |
64 | }; | |
65 | ||
4e07d55f PA |
66 | /* Defines an [OFFSET, OFFSET + LENGTH) range. */ |
67 | ||
68 | struct range | |
69 | { | |
70 | /* Lowest offset in the range. */ | |
71 | int offset; | |
72 | ||
73 | /* Length of the range. */ | |
74 | int length; | |
75 | }; | |
76 | ||
77 | typedef struct range range_s; | |
78 | ||
79 | DEF_VEC_O(range_s); | |
80 | ||
81 | /* Returns true if the ranges defined by [offset1, offset1+len1) and | |
82 | [offset2, offset2+len2) overlap. */ | |
83 | ||
84 | static int | |
85 | ranges_overlap (int offset1, int len1, | |
86 | int offset2, int len2) | |
87 | { | |
88 | ULONGEST h, l; | |
89 | ||
90 | l = max (offset1, offset2); | |
91 | h = min (offset1 + len1, offset2 + len2); | |
92 | return (l < h); | |
93 | } | |
94 | ||
95 | /* Returns true if the first argument is strictly less than the | |
96 | second, useful for VEC_lower_bound. We keep ranges sorted by | |
97 | offset and coalesce overlapping and contiguous ranges, so this just | |
98 | compares the starting offset. */ | |
99 | ||
100 | static int | |
101 | range_lessthan (const range_s *r1, const range_s *r2) | |
102 | { | |
103 | return r1->offset < r2->offset; | |
104 | } | |
105 | ||
106 | /* Returns true if RANGES contains any range that overlaps [OFFSET, | |
107 | OFFSET+LENGTH). */ | |
108 | ||
109 | static int | |
110 | ranges_contain (VEC(range_s) *ranges, int offset, int length) | |
111 | { | |
112 | range_s what; | |
113 | int i; | |
114 | ||
115 | what.offset = offset; | |
116 | what.length = length; | |
117 | ||
118 | /* We keep ranges sorted by offset and coalesce overlapping and | |
119 | contiguous ranges, so to check if a range list contains a given | |
120 | range, we can do a binary search for the position the given range | |
121 | would be inserted if we only considered the starting OFFSET of | |
122 | ranges. We call that position I. Since we also have LENGTH to | |
123 | care for (this is a range afterall), we need to check if the | |
124 | _previous_ range overlaps the I range. E.g., | |
125 | ||
126 | R | |
127 | |---| | |
128 | |---| |---| |------| ... |--| | |
129 | 0 1 2 N | |
130 | ||
131 | I=1 | |
132 | ||
133 | In the case above, the binary search would return `I=1', meaning, | |
134 | this OFFSET should be inserted at position 1, and the current | |
135 | position 1 should be pushed further (and before 2). But, `0' | |
136 | overlaps with R. | |
137 | ||
138 | Then we need to check if the I range overlaps the I range itself. | |
139 | E.g., | |
140 | ||
141 | R | |
142 | |---| | |
143 | |---| |---| |-------| ... |--| | |
144 | 0 1 2 N | |
145 | ||
146 | I=1 | |
147 | */ | |
148 | ||
149 | i = VEC_lower_bound (range_s, ranges, &what, range_lessthan); | |
150 | ||
151 | if (i > 0) | |
152 | { | |
153 | struct range *bef = VEC_index (range_s, ranges, i - 1); | |
154 | ||
155 | if (ranges_overlap (bef->offset, bef->length, offset, length)) | |
156 | return 1; | |
157 | } | |
158 | ||
159 | if (i < VEC_length (range_s, ranges)) | |
160 | { | |
161 | struct range *r = VEC_index (range_s, ranges, i); | |
162 | ||
163 | if (ranges_overlap (r->offset, r->length, offset, length)) | |
164 | return 1; | |
165 | } | |
166 | ||
167 | return 0; | |
168 | } | |
169 | ||
bc3b79fd TJB |
170 | static struct cmd_list_element *functionlist; |
171 | ||
91294c83 AC |
172 | struct value |
173 | { | |
174 | /* Type of value; either not an lval, or one of the various | |
175 | different possible kinds of lval. */ | |
176 | enum lval_type lval; | |
177 | ||
178 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
179 | int modifiable; | |
180 | ||
181 | /* Location of value (if lval). */ | |
182 | union | |
183 | { | |
184 | /* If lval == lval_memory, this is the address in the inferior. | |
185 | If lval == lval_register, this is the byte offset into the | |
186 | registers structure. */ | |
187 | CORE_ADDR address; | |
188 | ||
189 | /* Pointer to internal variable. */ | |
190 | struct internalvar *internalvar; | |
5f5233d4 PA |
191 | |
192 | /* If lval == lval_computed, this is a set of function pointers | |
193 | to use to access and describe the value, and a closure pointer | |
194 | for them to use. */ | |
195 | struct | |
196 | { | |
197 | struct lval_funcs *funcs; /* Functions to call. */ | |
198 | void *closure; /* Closure for those functions to use. */ | |
199 | } computed; | |
91294c83 AC |
200 | } location; |
201 | ||
202 | /* Describes offset of a value within lval of a structure in bytes. | |
203 | If lval == lval_memory, this is an offset to the address. If | |
204 | lval == lval_register, this is a further offset from | |
205 | location.address within the registers structure. Note also the | |
206 | member embedded_offset below. */ | |
207 | int offset; | |
208 | ||
209 | /* Only used for bitfields; number of bits contained in them. */ | |
210 | int bitsize; | |
211 | ||
212 | /* Only used for bitfields; position of start of field. For | |
32c9a795 | 213 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
581e13c1 | 214 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ |
91294c83 AC |
215 | int bitpos; |
216 | ||
4ea48cc1 DJ |
217 | /* Only used for bitfields; the containing value. This allows a |
218 | single read from the target when displaying multiple | |
219 | bitfields. */ | |
220 | struct value *parent; | |
221 | ||
91294c83 AC |
222 | /* Frame register value is relative to. This will be described in |
223 | the lval enum above as "lval_register". */ | |
224 | struct frame_id frame_id; | |
225 | ||
226 | /* Type of the value. */ | |
227 | struct type *type; | |
228 | ||
229 | /* If a value represents a C++ object, then the `type' field gives | |
230 | the object's compile-time type. If the object actually belongs | |
231 | to some class derived from `type', perhaps with other base | |
232 | classes and additional members, then `type' is just a subobject | |
233 | of the real thing, and the full object is probably larger than | |
234 | `type' would suggest. | |
235 | ||
236 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
237 | can actually determine the object's run-time type by looking at | |
238 | the run-time type information in the vtable. When this | |
239 | information is available, we may elect to read in the entire | |
240 | object, for several reasons: | |
241 | ||
242 | - When printing the value, the user would probably rather see the | |
243 | full object, not just the limited portion apparent from the | |
244 | compile-time type. | |
245 | ||
246 | - If `type' has virtual base classes, then even printing `type' | |
247 | alone may require reaching outside the `type' portion of the | |
248 | object to wherever the virtual base class has been stored. | |
249 | ||
250 | When we store the entire object, `enclosing_type' is the run-time | |
251 | type -- the complete object -- and `embedded_offset' is the | |
252 | offset of `type' within that larger type, in bytes. The | |
253 | value_contents() macro takes `embedded_offset' into account, so | |
254 | most GDB code continues to see the `type' portion of the value, | |
255 | just as the inferior would. | |
256 | ||
257 | If `type' is a pointer to an object, then `enclosing_type' is a | |
258 | pointer to the object's run-time type, and `pointed_to_offset' is | |
259 | the offset in bytes from the full object to the pointed-to object | |
260 | -- that is, the value `embedded_offset' would have if we followed | |
261 | the pointer and fetched the complete object. (I don't really see | |
262 | the point. Why not just determine the run-time type when you | |
263 | indirect, and avoid the special case? The contents don't matter | |
264 | until you indirect anyway.) | |
265 | ||
266 | If we're not doing anything fancy, `enclosing_type' is equal to | |
267 | `type', and `embedded_offset' is zero, so everything works | |
268 | normally. */ | |
269 | struct type *enclosing_type; | |
270 | int embedded_offset; | |
271 | int pointed_to_offset; | |
272 | ||
273 | /* Values are stored in a chain, so that they can be deleted easily | |
274 | over calls to the inferior. Values assigned to internal | |
a08702d6 TJB |
275 | variables, put into the value history or exposed to Python are |
276 | taken off this list. */ | |
91294c83 AC |
277 | struct value *next; |
278 | ||
279 | /* Register number if the value is from a register. */ | |
280 | short regnum; | |
281 | ||
282 | /* If zero, contents of this value are in the contents field. If | |
9214ee5f DJ |
283 | nonzero, contents are in inferior. If the lval field is lval_memory, |
284 | the contents are in inferior memory at location.address plus offset. | |
285 | The lval field may also be lval_register. | |
91294c83 AC |
286 | |
287 | WARNING: This field is used by the code which handles watchpoints | |
288 | (see breakpoint.c) to decide whether a particular value can be | |
289 | watched by hardware watchpoints. If the lazy flag is set for | |
290 | some member of a value chain, it is assumed that this member of | |
291 | the chain doesn't need to be watched as part of watching the | |
292 | value itself. This is how GDB avoids watching the entire struct | |
293 | or array when the user wants to watch a single struct member or | |
294 | array element. If you ever change the way lazy flag is set and | |
295 | reset, be sure to consider this use as well! */ | |
296 | char lazy; | |
297 | ||
298 | /* If nonzero, this is the value of a variable which does not | |
299 | actually exist in the program. */ | |
300 | char optimized_out; | |
301 | ||
42be36b3 CT |
302 | /* If value is a variable, is it initialized or not. */ |
303 | int initialized; | |
304 | ||
4e5d721f DE |
305 | /* If value is from the stack. If this is set, read_stack will be |
306 | used instead of read_memory to enable extra caching. */ | |
307 | int stack; | |
308 | ||
3e3d7139 JG |
309 | /* Actual contents of the value. Target byte-order. NULL or not |
310 | valid if lazy is nonzero. */ | |
311 | gdb_byte *contents; | |
828d3400 | 312 | |
4e07d55f PA |
313 | /* Unavailable ranges in CONTENTS. We mark unavailable ranges, |
314 | rather than available, since the common and default case is for a | |
315 | value to be available. This is filled in at value read time. */ | |
316 | VEC(range_s) *unavailable; | |
317 | ||
828d3400 DJ |
318 | /* The number of references to this value. When a value is created, |
319 | the value chain holds a reference, so REFERENCE_COUNT is 1. If | |
320 | release_value is called, this value is removed from the chain but | |
321 | the caller of release_value now has a reference to this value. | |
322 | The caller must arrange for a call to value_free later. */ | |
323 | int reference_count; | |
91294c83 AC |
324 | }; |
325 | ||
4e07d55f PA |
326 | int |
327 | value_bytes_available (const struct value *value, int offset, int length) | |
328 | { | |
329 | gdb_assert (!value->lazy); | |
330 | ||
331 | return !ranges_contain (value->unavailable, offset, length); | |
332 | } | |
333 | ||
ec0a52e1 PA |
334 | int |
335 | value_entirely_available (struct value *value) | |
336 | { | |
337 | /* We can only tell whether the whole value is available when we try | |
338 | to read it. */ | |
339 | if (value->lazy) | |
340 | value_fetch_lazy (value); | |
341 | ||
342 | if (VEC_empty (range_s, value->unavailable)) | |
343 | return 1; | |
344 | return 0; | |
345 | } | |
346 | ||
4e07d55f PA |
347 | void |
348 | mark_value_bytes_unavailable (struct value *value, int offset, int length) | |
349 | { | |
350 | range_s newr; | |
351 | int i; | |
352 | ||
353 | /* Insert the range sorted. If there's overlap or the new range | |
354 | would be contiguous with an existing range, merge. */ | |
355 | ||
356 | newr.offset = offset; | |
357 | newr.length = length; | |
358 | ||
359 | /* Do a binary search for the position the given range would be | |
360 | inserted if we only considered the starting OFFSET of ranges. | |
361 | Call that position I. Since we also have LENGTH to care for | |
362 | (this is a range afterall), we need to check if the _previous_ | |
363 | range overlaps the I range. E.g., calling R the new range: | |
364 | ||
365 | #1 - overlaps with previous | |
366 | ||
367 | R | |
368 | |-...-| | |
369 | |---| |---| |------| ... |--| | |
370 | 0 1 2 N | |
371 | ||
372 | I=1 | |
373 | ||
374 | In the case #1 above, the binary search would return `I=1', | |
375 | meaning, this OFFSET should be inserted at position 1, and the | |
376 | current position 1 should be pushed further (and become 2). But, | |
377 | note that `0' overlaps with R, so we want to merge them. | |
378 | ||
379 | A similar consideration needs to be taken if the new range would | |
380 | be contiguous with the previous range: | |
381 | ||
382 | #2 - contiguous with previous | |
383 | ||
384 | R | |
385 | |-...-| | |
386 | |--| |---| |------| ... |--| | |
387 | 0 1 2 N | |
388 | ||
389 | I=1 | |
390 | ||
391 | If there's no overlap with the previous range, as in: | |
392 | ||
393 | #3 - not overlapping and not contiguous | |
394 | ||
395 | R | |
396 | |-...-| | |
397 | |--| |---| |------| ... |--| | |
398 | 0 1 2 N | |
399 | ||
400 | I=1 | |
401 | ||
402 | or if I is 0: | |
403 | ||
404 | #4 - R is the range with lowest offset | |
405 | ||
406 | R | |
407 | |-...-| | |
408 | |--| |---| |------| ... |--| | |
409 | 0 1 2 N | |
410 | ||
411 | I=0 | |
412 | ||
413 | ... we just push the new range to I. | |
414 | ||
415 | All the 4 cases above need to consider that the new range may | |
416 | also overlap several of the ranges that follow, or that R may be | |
417 | contiguous with the following range, and merge. E.g., | |
418 | ||
419 | #5 - overlapping following ranges | |
420 | ||
421 | R | |
422 | |------------------------| | |
423 | |--| |---| |------| ... |--| | |
424 | 0 1 2 N | |
425 | ||
426 | I=0 | |
427 | ||
428 | or: | |
429 | ||
430 | R | |
431 | |-------| | |
432 | |--| |---| |------| ... |--| | |
433 | 0 1 2 N | |
434 | ||
435 | I=1 | |
436 | ||
437 | */ | |
438 | ||
439 | i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan); | |
440 | if (i > 0) | |
441 | { | |
442 | struct range *bef = VEC_index (range_s, value->unavailable, i - i); | |
443 | ||
444 | if (ranges_overlap (bef->offset, bef->length, offset, length)) | |
445 | { | |
446 | /* #1 */ | |
447 | ULONGEST l = min (bef->offset, offset); | |
448 | ULONGEST h = max (bef->offset + bef->length, offset + length); | |
449 | ||
450 | bef->offset = l; | |
451 | bef->length = h - l; | |
452 | i--; | |
453 | } | |
454 | else if (offset == bef->offset + bef->length) | |
455 | { | |
456 | /* #2 */ | |
457 | bef->length += length; | |
458 | i--; | |
459 | } | |
460 | else | |
461 | { | |
462 | /* #3 */ | |
463 | VEC_safe_insert (range_s, value->unavailable, i, &newr); | |
464 | } | |
465 | } | |
466 | else | |
467 | { | |
468 | /* #4 */ | |
469 | VEC_safe_insert (range_s, value->unavailable, i, &newr); | |
470 | } | |
471 | ||
472 | /* Check whether the ranges following the one we've just added or | |
473 | touched can be folded in (#5 above). */ | |
474 | if (i + 1 < VEC_length (range_s, value->unavailable)) | |
475 | { | |
476 | struct range *t; | |
477 | struct range *r; | |
478 | int removed = 0; | |
479 | int next = i + 1; | |
480 | ||
481 | /* Get the range we just touched. */ | |
482 | t = VEC_index (range_s, value->unavailable, i); | |
483 | removed = 0; | |
484 | ||
485 | i = next; | |
486 | for (; VEC_iterate (range_s, value->unavailable, i, r); i++) | |
487 | if (r->offset <= t->offset + t->length) | |
488 | { | |
489 | ULONGEST l, h; | |
490 | ||
491 | l = min (t->offset, r->offset); | |
492 | h = max (t->offset + t->length, r->offset + r->length); | |
493 | ||
494 | t->offset = l; | |
495 | t->length = h - l; | |
496 | ||
497 | removed++; | |
498 | } | |
499 | else | |
500 | { | |
501 | /* If we couldn't merge this one, we won't be able to | |
502 | merge following ones either, since the ranges are | |
503 | always sorted by OFFSET. */ | |
504 | break; | |
505 | } | |
506 | ||
507 | if (removed != 0) | |
508 | VEC_block_remove (range_s, value->unavailable, next, removed); | |
509 | } | |
510 | } | |
511 | ||
c8c1c22f PA |
512 | /* Find the first range in RANGES that overlaps the range defined by |
513 | OFFSET and LENGTH, starting at element POS in the RANGES vector, | |
514 | Returns the index into RANGES where such overlapping range was | |
515 | found, or -1 if none was found. */ | |
516 | ||
517 | static int | |
518 | find_first_range_overlap (VEC(range_s) *ranges, int pos, | |
519 | int offset, int length) | |
520 | { | |
521 | range_s *r; | |
522 | int i; | |
523 | ||
524 | for (i = pos; VEC_iterate (range_s, ranges, i, r); i++) | |
525 | if (ranges_overlap (r->offset, r->length, offset, length)) | |
526 | return i; | |
527 | ||
528 | return -1; | |
529 | } | |
530 | ||
531 | int | |
532 | value_available_contents_eq (const struct value *val1, int offset1, | |
533 | const struct value *val2, int offset2, | |
534 | int length) | |
535 | { | |
536 | int org_len = length; | |
537 | int org_offset1 = offset1; | |
538 | int org_offset2 = offset2; | |
539 | int idx1 = 0, idx2 = 0; | |
540 | int prev_avail; | |
541 | ||
542 | /* This routine is used by printing routines, where we should | |
543 | already have read the value. Note that we only know whether a | |
544 | value chunk is available if we've tried to read it. */ | |
545 | gdb_assert (!val1->lazy && !val2->lazy); | |
546 | ||
547 | /* The offset from either ORG_OFFSET1 or ORG_OFFSET2 where the | |
548 | available contents we haven't compared yet start. */ | |
549 | prev_avail = 0; | |
550 | ||
551 | while (length > 0) | |
552 | { | |
553 | range_s *r1, *r2; | |
554 | ULONGEST l1, h1; | |
555 | ULONGEST l2, h2; | |
556 | ||
557 | idx1 = find_first_range_overlap (val1->unavailable, idx1, | |
558 | offset1, length); | |
559 | idx2 = find_first_range_overlap (val2->unavailable, idx2, | |
560 | offset2, length); | |
561 | ||
562 | /* The usual case is for both values to be completely available. */ | |
563 | if (idx1 == -1 && idx2 == -1) | |
564 | return (memcmp (val1->contents + org_offset1 + prev_avail, | |
565 | val2->contents + org_offset2 + prev_avail, | |
566 | org_len - prev_avail) == 0); | |
567 | /* The contents only match equal if the available set matches as | |
568 | well. */ | |
569 | else if (idx1 == -1 || idx2 == -1) | |
570 | return 0; | |
571 | ||
572 | gdb_assert (idx1 != -1 && idx2 != -1); | |
573 | ||
574 | r1 = VEC_index (range_s, val1->unavailable, idx1); | |
575 | r2 = VEC_index (range_s, val2->unavailable, idx2); | |
576 | ||
577 | /* Get the unavailable windows intersected by the incoming | |
578 | ranges. The first and last ranges that overlap the argument | |
579 | range may be wider than said incoming arguments ranges. */ | |
580 | l1 = max (offset1, r1->offset); | |
581 | h1 = min (offset1 + length, r1->offset + r1->length); | |
582 | ||
583 | l2 = max (offset2, r2->offset); | |
584 | h2 = min (offset2 + length, r2->offset + r2->length); | |
585 | ||
586 | /* Make them relative to the respective start offsets, so we can | |
587 | compare them for equality. */ | |
588 | l1 -= offset1; | |
589 | h1 -= offset1; | |
590 | ||
591 | l2 -= offset2; | |
592 | h2 -= offset2; | |
593 | ||
594 | /* Different availability, no match. */ | |
595 | if (l1 != l2 || h1 != h2) | |
596 | return 0; | |
597 | ||
598 | /* Compare the _available_ contents. */ | |
599 | if (memcmp (val1->contents + org_offset1 + prev_avail, | |
600 | val2->contents + org_offset2 + prev_avail, | |
601 | l2 - prev_avail) != 0) | |
602 | return 0; | |
603 | ||
604 | prev_avail += h1; | |
605 | length -= h1; | |
606 | offset1 += h1; | |
607 | offset2 += h1; | |
608 | } | |
609 | ||
610 | return 1; | |
611 | } | |
612 | ||
581e13c1 | 613 | /* Prototypes for local functions. */ |
c906108c | 614 | |
a14ed312 | 615 | static void show_values (char *, int); |
c906108c | 616 | |
a14ed312 | 617 | static void show_convenience (char *, int); |
c906108c | 618 | |
c906108c SS |
619 | |
620 | /* The value-history records all the values printed | |
621 | by print commands during this session. Each chunk | |
622 | records 60 consecutive values. The first chunk on | |
623 | the chain records the most recent values. | |
624 | The total number of values is in value_history_count. */ | |
625 | ||
626 | #define VALUE_HISTORY_CHUNK 60 | |
627 | ||
628 | struct value_history_chunk | |
c5aa993b JM |
629 | { |
630 | struct value_history_chunk *next; | |
f23631e4 | 631 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 632 | }; |
c906108c SS |
633 | |
634 | /* Chain of chunks now in use. */ | |
635 | ||
636 | static struct value_history_chunk *value_history_chain; | |
637 | ||
581e13c1 | 638 | static int value_history_count; /* Abs number of last entry stored. */ |
bc3b79fd | 639 | |
c906108c SS |
640 | \f |
641 | /* List of all value objects currently allocated | |
642 | (except for those released by calls to release_value) | |
643 | This is so they can be freed after each command. */ | |
644 | ||
f23631e4 | 645 | static struct value *all_values; |
c906108c | 646 | |
3e3d7139 JG |
647 | /* Allocate a lazy value for type TYPE. Its actual content is |
648 | "lazily" allocated too: the content field of the return value is | |
649 | NULL; it will be allocated when it is fetched from the target. */ | |
c906108c | 650 | |
f23631e4 | 651 | struct value * |
3e3d7139 | 652 | allocate_value_lazy (struct type *type) |
c906108c | 653 | { |
f23631e4 | 654 | struct value *val; |
c54eabfa JK |
655 | |
656 | /* Call check_typedef on our type to make sure that, if TYPE | |
657 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
658 | of the target type instead of zero. However, we do not | |
659 | replace the typedef type by the target type, because we want | |
660 | to keep the typedef in order to be able to set the VAL's type | |
661 | description correctly. */ | |
662 | check_typedef (type); | |
c906108c | 663 | |
3e3d7139 JG |
664 | val = (struct value *) xzalloc (sizeof (struct value)); |
665 | val->contents = NULL; | |
df407dfe | 666 | val->next = all_values; |
c906108c | 667 | all_values = val; |
df407dfe | 668 | val->type = type; |
4754a64e | 669 | val->enclosing_type = type; |
c906108c | 670 | VALUE_LVAL (val) = not_lval; |
42ae5230 | 671 | val->location.address = 0; |
1df6926e | 672 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
673 | val->offset = 0; |
674 | val->bitpos = 0; | |
675 | val->bitsize = 0; | |
9ee8fc9d | 676 | VALUE_REGNUM (val) = -1; |
3e3d7139 | 677 | val->lazy = 1; |
feb13ab0 | 678 | val->optimized_out = 0; |
13c3b5f5 | 679 | val->embedded_offset = 0; |
b44d461b | 680 | val->pointed_to_offset = 0; |
c906108c | 681 | val->modifiable = 1; |
42be36b3 | 682 | val->initialized = 1; /* Default to initialized. */ |
828d3400 DJ |
683 | |
684 | /* Values start out on the all_values chain. */ | |
685 | val->reference_count = 1; | |
686 | ||
c906108c SS |
687 | return val; |
688 | } | |
689 | ||
3e3d7139 JG |
690 | /* Allocate the contents of VAL if it has not been allocated yet. */ |
691 | ||
692 | void | |
693 | allocate_value_contents (struct value *val) | |
694 | { | |
695 | if (!val->contents) | |
696 | val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); | |
697 | } | |
698 | ||
699 | /* Allocate a value and its contents for type TYPE. */ | |
700 | ||
701 | struct value * | |
702 | allocate_value (struct type *type) | |
703 | { | |
704 | struct value *val = allocate_value_lazy (type); | |
a109c7c1 | 705 | |
3e3d7139 JG |
706 | allocate_value_contents (val); |
707 | val->lazy = 0; | |
708 | return val; | |
709 | } | |
710 | ||
c906108c | 711 | /* Allocate a value that has the correct length |
938f5214 | 712 | for COUNT repetitions of type TYPE. */ |
c906108c | 713 | |
f23631e4 | 714 | struct value * |
fba45db2 | 715 | allocate_repeat_value (struct type *type, int count) |
c906108c | 716 | { |
c5aa993b | 717 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
718 | /* FIXME-type-allocation: need a way to free this type when we are |
719 | done with it. */ | |
e3506a9f UW |
720 | struct type *array_type |
721 | = lookup_array_range_type (type, low_bound, count + low_bound - 1); | |
a109c7c1 | 722 | |
e3506a9f | 723 | return allocate_value (array_type); |
c906108c SS |
724 | } |
725 | ||
5f5233d4 PA |
726 | struct value * |
727 | allocate_computed_value (struct type *type, | |
728 | struct lval_funcs *funcs, | |
729 | void *closure) | |
730 | { | |
41e8491f | 731 | struct value *v = allocate_value_lazy (type); |
a109c7c1 | 732 | |
5f5233d4 PA |
733 | VALUE_LVAL (v) = lval_computed; |
734 | v->location.computed.funcs = funcs; | |
735 | v->location.computed.closure = closure; | |
5f5233d4 PA |
736 | |
737 | return v; | |
738 | } | |
739 | ||
df407dfe AC |
740 | /* Accessor methods. */ |
741 | ||
17cf0ecd AC |
742 | struct value * |
743 | value_next (struct value *value) | |
744 | { | |
745 | return value->next; | |
746 | } | |
747 | ||
df407dfe | 748 | struct type * |
0e03807e | 749 | value_type (const struct value *value) |
df407dfe AC |
750 | { |
751 | return value->type; | |
752 | } | |
04624583 AC |
753 | void |
754 | deprecated_set_value_type (struct value *value, struct type *type) | |
755 | { | |
756 | value->type = type; | |
757 | } | |
df407dfe AC |
758 | |
759 | int | |
0e03807e | 760 | value_offset (const struct value *value) |
df407dfe AC |
761 | { |
762 | return value->offset; | |
763 | } | |
f5cf64a7 AC |
764 | void |
765 | set_value_offset (struct value *value, int offset) | |
766 | { | |
767 | value->offset = offset; | |
768 | } | |
df407dfe AC |
769 | |
770 | int | |
0e03807e | 771 | value_bitpos (const struct value *value) |
df407dfe AC |
772 | { |
773 | return value->bitpos; | |
774 | } | |
9bbda503 AC |
775 | void |
776 | set_value_bitpos (struct value *value, int bit) | |
777 | { | |
778 | value->bitpos = bit; | |
779 | } | |
df407dfe AC |
780 | |
781 | int | |
0e03807e | 782 | value_bitsize (const struct value *value) |
df407dfe AC |
783 | { |
784 | return value->bitsize; | |
785 | } | |
9bbda503 AC |
786 | void |
787 | set_value_bitsize (struct value *value, int bit) | |
788 | { | |
789 | value->bitsize = bit; | |
790 | } | |
df407dfe | 791 | |
4ea48cc1 DJ |
792 | struct value * |
793 | value_parent (struct value *value) | |
794 | { | |
795 | return value->parent; | |
796 | } | |
797 | ||
fc1a4b47 | 798 | gdb_byte * |
990a07ab AC |
799 | value_contents_raw (struct value *value) |
800 | { | |
3e3d7139 JG |
801 | allocate_value_contents (value); |
802 | return value->contents + value->embedded_offset; | |
990a07ab AC |
803 | } |
804 | ||
fc1a4b47 | 805 | gdb_byte * |
990a07ab AC |
806 | value_contents_all_raw (struct value *value) |
807 | { | |
3e3d7139 JG |
808 | allocate_value_contents (value); |
809 | return value->contents; | |
990a07ab AC |
810 | } |
811 | ||
4754a64e AC |
812 | struct type * |
813 | value_enclosing_type (struct value *value) | |
814 | { | |
815 | return value->enclosing_type; | |
816 | } | |
817 | ||
0e03807e | 818 | static void |
4e07d55f | 819 | require_not_optimized_out (const struct value *value) |
0e03807e TT |
820 | { |
821 | if (value->optimized_out) | |
822 | error (_("value has been optimized out")); | |
823 | } | |
824 | ||
4e07d55f PA |
825 | static void |
826 | require_available (const struct value *value) | |
827 | { | |
828 | if (!VEC_empty (range_s, value->unavailable)) | |
8af8e3bc | 829 | throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); |
4e07d55f PA |
830 | } |
831 | ||
fc1a4b47 | 832 | const gdb_byte * |
0e03807e | 833 | value_contents_for_printing (struct value *value) |
46615f07 AC |
834 | { |
835 | if (value->lazy) | |
836 | value_fetch_lazy (value); | |
3e3d7139 | 837 | return value->contents; |
46615f07 AC |
838 | } |
839 | ||
de4127a3 PA |
840 | const gdb_byte * |
841 | value_contents_for_printing_const (const struct value *value) | |
842 | { | |
843 | gdb_assert (!value->lazy); | |
844 | return value->contents; | |
845 | } | |
846 | ||
0e03807e TT |
847 | const gdb_byte * |
848 | value_contents_all (struct value *value) | |
849 | { | |
850 | const gdb_byte *result = value_contents_for_printing (value); | |
851 | require_not_optimized_out (value); | |
4e07d55f | 852 | require_available (value); |
0e03807e TT |
853 | return result; |
854 | } | |
855 | ||
39d37385 PA |
856 | /* Copy LENGTH bytes of SRC value's contents starting at SRC_OFFSET, |
857 | into DST value's contents, starting at DST_OFFSET. If unavailable | |
858 | contents are being copied from SRC, the corresponding DST contents | |
859 | are marked unavailable accordingly. Neither DST nor SRC may be | |
860 | lazy values. */ | |
861 | ||
862 | void | |
863 | value_contents_copy_raw (struct value *dst, int dst_offset, | |
864 | struct value *src, int src_offset, int length) | |
865 | { | |
866 | range_s *r; | |
867 | int i; | |
868 | ||
869 | /* A lazy DST would make that this copy operation useless, since as | |
870 | soon as DST's contents were un-lazied (by a later value_contents | |
871 | call, say), the contents would be overwritten. A lazy SRC would | |
872 | mean we'd be copying garbage. */ | |
873 | gdb_assert (!dst->lazy && !src->lazy); | |
874 | ||
875 | /* Copy the data. */ | |
876 | memcpy (value_contents_all_raw (dst) + dst_offset, | |
877 | value_contents_all_raw (src) + src_offset, | |
878 | length); | |
879 | ||
880 | /* Copy the meta-data, adjusted. */ | |
881 | for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++) | |
882 | { | |
883 | ULONGEST h, l; | |
884 | ||
885 | l = max (r->offset, src_offset); | |
886 | h = min (r->offset + r->length, src_offset + length); | |
887 | ||
888 | if (l < h) | |
889 | mark_value_bytes_unavailable (dst, | |
890 | dst_offset + (l - src_offset), | |
891 | h - l); | |
892 | } | |
893 | } | |
894 | ||
895 | /* Copy LENGTH bytes of SRC value's contents starting at SRC_OFFSET | |
896 | byte, into DST value's contents, starting at DST_OFFSET. If | |
897 | unavailable contents are being copied from SRC, the corresponding | |
898 | DST contents are marked unavailable accordingly. DST must not be | |
899 | lazy. If SRC is lazy, it will be fetched now. If SRC is not valid | |
900 | (is optimized out), an error is thrown. */ | |
901 | ||
902 | void | |
903 | value_contents_copy (struct value *dst, int dst_offset, | |
904 | struct value *src, int src_offset, int length) | |
905 | { | |
906 | require_not_optimized_out (src); | |
907 | ||
908 | if (src->lazy) | |
909 | value_fetch_lazy (src); | |
910 | ||
911 | value_contents_copy_raw (dst, dst_offset, src, src_offset, length); | |
912 | } | |
913 | ||
d69fe07e AC |
914 | int |
915 | value_lazy (struct value *value) | |
916 | { | |
917 | return value->lazy; | |
918 | } | |
919 | ||
dfa52d88 AC |
920 | void |
921 | set_value_lazy (struct value *value, int val) | |
922 | { | |
923 | value->lazy = val; | |
924 | } | |
925 | ||
4e5d721f DE |
926 | int |
927 | value_stack (struct value *value) | |
928 | { | |
929 | return value->stack; | |
930 | } | |
931 | ||
932 | void | |
933 | set_value_stack (struct value *value, int val) | |
934 | { | |
935 | value->stack = val; | |
936 | } | |
937 | ||
fc1a4b47 | 938 | const gdb_byte * |
0fd88904 AC |
939 | value_contents (struct value *value) |
940 | { | |
0e03807e TT |
941 | const gdb_byte *result = value_contents_writeable (value); |
942 | require_not_optimized_out (value); | |
4e07d55f | 943 | require_available (value); |
0e03807e | 944 | return result; |
0fd88904 AC |
945 | } |
946 | ||
fc1a4b47 | 947 | gdb_byte * |
0fd88904 AC |
948 | value_contents_writeable (struct value *value) |
949 | { | |
950 | if (value->lazy) | |
951 | value_fetch_lazy (value); | |
fc0c53a0 | 952 | return value_contents_raw (value); |
0fd88904 AC |
953 | } |
954 | ||
a6c442d8 MK |
955 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
956 | this function is different from value_equal; in C the operator == | |
957 | can return 0 even if the two values being compared are equal. */ | |
958 | ||
959 | int | |
960 | value_contents_equal (struct value *val1, struct value *val2) | |
961 | { | |
962 | struct type *type1; | |
963 | struct type *type2; | |
964 | int len; | |
965 | ||
966 | type1 = check_typedef (value_type (val1)); | |
967 | type2 = check_typedef (value_type (val2)); | |
968 | len = TYPE_LENGTH (type1); | |
969 | if (len != TYPE_LENGTH (type2)) | |
970 | return 0; | |
971 | ||
972 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
973 | } | |
974 | ||
feb13ab0 AC |
975 | int |
976 | value_optimized_out (struct value *value) | |
977 | { | |
978 | return value->optimized_out; | |
979 | } | |
980 | ||
981 | void | |
982 | set_value_optimized_out (struct value *value, int val) | |
983 | { | |
984 | value->optimized_out = val; | |
985 | } | |
13c3b5f5 | 986 | |
0e03807e TT |
987 | int |
988 | value_entirely_optimized_out (const struct value *value) | |
989 | { | |
990 | if (!value->optimized_out) | |
991 | return 0; | |
992 | if (value->lval != lval_computed | |
ba19bb4d | 993 | || !value->location.computed.funcs->check_any_valid) |
0e03807e | 994 | return 1; |
b65c7efe | 995 | return !value->location.computed.funcs->check_any_valid (value); |
0e03807e TT |
996 | } |
997 | ||
998 | int | |
999 | value_bits_valid (const struct value *value, int offset, int length) | |
1000 | { | |
e7303042 | 1001 | if (!value->optimized_out) |
0e03807e TT |
1002 | return 1; |
1003 | if (value->lval != lval_computed | |
1004 | || !value->location.computed.funcs->check_validity) | |
1005 | return 0; | |
1006 | return value->location.computed.funcs->check_validity (value, offset, | |
1007 | length); | |
1008 | } | |
1009 | ||
8cf6f0b1 TT |
1010 | int |
1011 | value_bits_synthetic_pointer (const struct value *value, | |
1012 | int offset, int length) | |
1013 | { | |
e7303042 | 1014 | if (value->lval != lval_computed |
8cf6f0b1 TT |
1015 | || !value->location.computed.funcs->check_synthetic_pointer) |
1016 | return 0; | |
1017 | return value->location.computed.funcs->check_synthetic_pointer (value, | |
1018 | offset, | |
1019 | length); | |
1020 | } | |
1021 | ||
13c3b5f5 AC |
1022 | int |
1023 | value_embedded_offset (struct value *value) | |
1024 | { | |
1025 | return value->embedded_offset; | |
1026 | } | |
1027 | ||
1028 | void | |
1029 | set_value_embedded_offset (struct value *value, int val) | |
1030 | { | |
1031 | value->embedded_offset = val; | |
1032 | } | |
b44d461b AC |
1033 | |
1034 | int | |
1035 | value_pointed_to_offset (struct value *value) | |
1036 | { | |
1037 | return value->pointed_to_offset; | |
1038 | } | |
1039 | ||
1040 | void | |
1041 | set_value_pointed_to_offset (struct value *value, int val) | |
1042 | { | |
1043 | value->pointed_to_offset = val; | |
1044 | } | |
13bb5560 | 1045 | |
5f5233d4 PA |
1046 | struct lval_funcs * |
1047 | value_computed_funcs (struct value *v) | |
1048 | { | |
1049 | gdb_assert (VALUE_LVAL (v) == lval_computed); | |
1050 | ||
1051 | return v->location.computed.funcs; | |
1052 | } | |
1053 | ||
1054 | void * | |
0e03807e | 1055 | value_computed_closure (const struct value *v) |
5f5233d4 | 1056 | { |
0e03807e | 1057 | gdb_assert (v->lval == lval_computed); |
5f5233d4 PA |
1058 | |
1059 | return v->location.computed.closure; | |
1060 | } | |
1061 | ||
13bb5560 AC |
1062 | enum lval_type * |
1063 | deprecated_value_lval_hack (struct value *value) | |
1064 | { | |
1065 | return &value->lval; | |
1066 | } | |
1067 | ||
42ae5230 | 1068 | CORE_ADDR |
de4127a3 | 1069 | value_address (const struct value *value) |
42ae5230 TT |
1070 | { |
1071 | if (value->lval == lval_internalvar | |
1072 | || value->lval == lval_internalvar_component) | |
1073 | return 0; | |
1074 | return value->location.address + value->offset; | |
1075 | } | |
1076 | ||
1077 | CORE_ADDR | |
1078 | value_raw_address (struct value *value) | |
1079 | { | |
1080 | if (value->lval == lval_internalvar | |
1081 | || value->lval == lval_internalvar_component) | |
1082 | return 0; | |
1083 | return value->location.address; | |
1084 | } | |
1085 | ||
1086 | void | |
1087 | set_value_address (struct value *value, CORE_ADDR addr) | |
13bb5560 | 1088 | { |
42ae5230 TT |
1089 | gdb_assert (value->lval != lval_internalvar |
1090 | && value->lval != lval_internalvar_component); | |
1091 | value->location.address = addr; | |
13bb5560 AC |
1092 | } |
1093 | ||
1094 | struct internalvar ** | |
1095 | deprecated_value_internalvar_hack (struct value *value) | |
1096 | { | |
1097 | return &value->location.internalvar; | |
1098 | } | |
1099 | ||
1100 | struct frame_id * | |
1101 | deprecated_value_frame_id_hack (struct value *value) | |
1102 | { | |
1103 | return &value->frame_id; | |
1104 | } | |
1105 | ||
1106 | short * | |
1107 | deprecated_value_regnum_hack (struct value *value) | |
1108 | { | |
1109 | return &value->regnum; | |
1110 | } | |
88e3b34b AC |
1111 | |
1112 | int | |
1113 | deprecated_value_modifiable (struct value *value) | |
1114 | { | |
1115 | return value->modifiable; | |
1116 | } | |
1117 | void | |
1118 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
1119 | { | |
1120 | value->modifiable = modifiable; | |
1121 | } | |
990a07ab | 1122 | \f |
c906108c SS |
1123 | /* Return a mark in the value chain. All values allocated after the |
1124 | mark is obtained (except for those released) are subject to being freed | |
1125 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 1126 | struct value * |
fba45db2 | 1127 | value_mark (void) |
c906108c SS |
1128 | { |
1129 | return all_values; | |
1130 | } | |
1131 | ||
828d3400 DJ |
1132 | /* Take a reference to VAL. VAL will not be deallocated until all |
1133 | references are released. */ | |
1134 | ||
1135 | void | |
1136 | value_incref (struct value *val) | |
1137 | { | |
1138 | val->reference_count++; | |
1139 | } | |
1140 | ||
1141 | /* Release a reference to VAL, which was acquired with value_incref. | |
1142 | This function is also called to deallocate values from the value | |
1143 | chain. */ | |
1144 | ||
3e3d7139 JG |
1145 | void |
1146 | value_free (struct value *val) | |
1147 | { | |
1148 | if (val) | |
5f5233d4 | 1149 | { |
828d3400 DJ |
1150 | gdb_assert (val->reference_count > 0); |
1151 | val->reference_count--; | |
1152 | if (val->reference_count > 0) | |
1153 | return; | |
1154 | ||
4ea48cc1 DJ |
1155 | /* If there's an associated parent value, drop our reference to |
1156 | it. */ | |
1157 | if (val->parent != NULL) | |
1158 | value_free (val->parent); | |
1159 | ||
5f5233d4 PA |
1160 | if (VALUE_LVAL (val) == lval_computed) |
1161 | { | |
1162 | struct lval_funcs *funcs = val->location.computed.funcs; | |
1163 | ||
1164 | if (funcs->free_closure) | |
1165 | funcs->free_closure (val); | |
1166 | } | |
1167 | ||
1168 | xfree (val->contents); | |
4e07d55f | 1169 | VEC_free (range_s, val->unavailable); |
5f5233d4 | 1170 | } |
3e3d7139 JG |
1171 | xfree (val); |
1172 | } | |
1173 | ||
c906108c SS |
1174 | /* Free all values allocated since MARK was obtained by value_mark |
1175 | (except for those released). */ | |
1176 | void | |
f23631e4 | 1177 | value_free_to_mark (struct value *mark) |
c906108c | 1178 | { |
f23631e4 AC |
1179 | struct value *val; |
1180 | struct value *next; | |
c906108c SS |
1181 | |
1182 | for (val = all_values; val && val != mark; val = next) | |
1183 | { | |
df407dfe | 1184 | next = val->next; |
c906108c SS |
1185 | value_free (val); |
1186 | } | |
1187 | all_values = val; | |
1188 | } | |
1189 | ||
1190 | /* Free all the values that have been allocated (except for those released). | |
725e88af DE |
1191 | Call after each command, successful or not. |
1192 | In practice this is called before each command, which is sufficient. */ | |
c906108c SS |
1193 | |
1194 | void | |
fba45db2 | 1195 | free_all_values (void) |
c906108c | 1196 | { |
f23631e4 AC |
1197 | struct value *val; |
1198 | struct value *next; | |
c906108c SS |
1199 | |
1200 | for (val = all_values; val; val = next) | |
1201 | { | |
df407dfe | 1202 | next = val->next; |
c906108c SS |
1203 | value_free (val); |
1204 | } | |
1205 | ||
1206 | all_values = 0; | |
1207 | } | |
1208 | ||
0cf6dd15 TJB |
1209 | /* Frees all the elements in a chain of values. */ |
1210 | ||
1211 | void | |
1212 | free_value_chain (struct value *v) | |
1213 | { | |
1214 | struct value *next; | |
1215 | ||
1216 | for (; v; v = next) | |
1217 | { | |
1218 | next = value_next (v); | |
1219 | value_free (v); | |
1220 | } | |
1221 | } | |
1222 | ||
c906108c SS |
1223 | /* Remove VAL from the chain all_values |
1224 | so it will not be freed automatically. */ | |
1225 | ||
1226 | void | |
f23631e4 | 1227 | release_value (struct value *val) |
c906108c | 1228 | { |
f23631e4 | 1229 | struct value *v; |
c906108c SS |
1230 | |
1231 | if (all_values == val) | |
1232 | { | |
1233 | all_values = val->next; | |
06a64a0b | 1234 | val->next = NULL; |
c906108c SS |
1235 | return; |
1236 | } | |
1237 | ||
1238 | for (v = all_values; v; v = v->next) | |
1239 | { | |
1240 | if (v->next == val) | |
1241 | { | |
1242 | v->next = val->next; | |
06a64a0b | 1243 | val->next = NULL; |
c906108c SS |
1244 | break; |
1245 | } | |
1246 | } | |
1247 | } | |
1248 | ||
1249 | /* Release all values up to mark */ | |
f23631e4 AC |
1250 | struct value * |
1251 | value_release_to_mark (struct value *mark) | |
c906108c | 1252 | { |
f23631e4 AC |
1253 | struct value *val; |
1254 | struct value *next; | |
c906108c | 1255 | |
df407dfe AC |
1256 | for (val = next = all_values; next; next = next->next) |
1257 | if (next->next == mark) | |
c906108c | 1258 | { |
df407dfe AC |
1259 | all_values = next->next; |
1260 | next->next = NULL; | |
c906108c SS |
1261 | return val; |
1262 | } | |
1263 | all_values = 0; | |
1264 | return val; | |
1265 | } | |
1266 | ||
1267 | /* Return a copy of the value ARG. | |
1268 | It contains the same contents, for same memory address, | |
1269 | but it's a different block of storage. */ | |
1270 | ||
f23631e4 AC |
1271 | struct value * |
1272 | value_copy (struct value *arg) | |
c906108c | 1273 | { |
4754a64e | 1274 | struct type *encl_type = value_enclosing_type (arg); |
3e3d7139 JG |
1275 | struct value *val; |
1276 | ||
1277 | if (value_lazy (arg)) | |
1278 | val = allocate_value_lazy (encl_type); | |
1279 | else | |
1280 | val = allocate_value (encl_type); | |
df407dfe | 1281 | val->type = arg->type; |
c906108c | 1282 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 1283 | val->location = arg->location; |
df407dfe AC |
1284 | val->offset = arg->offset; |
1285 | val->bitpos = arg->bitpos; | |
1286 | val->bitsize = arg->bitsize; | |
1df6926e | 1287 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 1288 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 1289 | val->lazy = arg->lazy; |
feb13ab0 | 1290 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 1291 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 1292 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 1293 | val->modifiable = arg->modifiable; |
d69fe07e | 1294 | if (!value_lazy (val)) |
c906108c | 1295 | { |
990a07ab | 1296 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 1297 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
1298 | |
1299 | } | |
4e07d55f | 1300 | val->unavailable = VEC_copy (range_s, arg->unavailable); |
4ea48cc1 DJ |
1301 | val->parent = arg->parent; |
1302 | if (val->parent) | |
1303 | value_incref (val->parent); | |
5f5233d4 PA |
1304 | if (VALUE_LVAL (val) == lval_computed) |
1305 | { | |
1306 | struct lval_funcs *funcs = val->location.computed.funcs; | |
1307 | ||
1308 | if (funcs->copy_closure) | |
1309 | val->location.computed.closure = funcs->copy_closure (val); | |
1310 | } | |
c906108c SS |
1311 | return val; |
1312 | } | |
74bcbdf3 | 1313 | |
c37f7098 KW |
1314 | /* Return a version of ARG that is non-lvalue. */ |
1315 | ||
1316 | struct value * | |
1317 | value_non_lval (struct value *arg) | |
1318 | { | |
1319 | if (VALUE_LVAL (arg) != not_lval) | |
1320 | { | |
1321 | struct type *enc_type = value_enclosing_type (arg); | |
1322 | struct value *val = allocate_value (enc_type); | |
1323 | ||
1324 | memcpy (value_contents_all_raw (val), value_contents_all (arg), | |
1325 | TYPE_LENGTH (enc_type)); | |
1326 | val->type = arg->type; | |
1327 | set_value_embedded_offset (val, value_embedded_offset (arg)); | |
1328 | set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); | |
1329 | return val; | |
1330 | } | |
1331 | return arg; | |
1332 | } | |
1333 | ||
74bcbdf3 | 1334 | void |
0e03807e TT |
1335 | set_value_component_location (struct value *component, |
1336 | const struct value *whole) | |
74bcbdf3 | 1337 | { |
0e03807e | 1338 | if (whole->lval == lval_internalvar) |
74bcbdf3 PA |
1339 | VALUE_LVAL (component) = lval_internalvar_component; |
1340 | else | |
0e03807e | 1341 | VALUE_LVAL (component) = whole->lval; |
5f5233d4 | 1342 | |
74bcbdf3 | 1343 | component->location = whole->location; |
0e03807e | 1344 | if (whole->lval == lval_computed) |
5f5233d4 PA |
1345 | { |
1346 | struct lval_funcs *funcs = whole->location.computed.funcs; | |
1347 | ||
1348 | if (funcs->copy_closure) | |
1349 | component->location.computed.closure = funcs->copy_closure (whole); | |
1350 | } | |
74bcbdf3 PA |
1351 | } |
1352 | ||
c906108c SS |
1353 | \f |
1354 | /* Access to the value history. */ | |
1355 | ||
1356 | /* Record a new value in the value history. | |
1357 | Returns the absolute history index of the entry. | |
1358 | Result of -1 indicates the value was not saved; otherwise it is the | |
1359 | value history index of this new item. */ | |
1360 | ||
1361 | int | |
f23631e4 | 1362 | record_latest_value (struct value *val) |
c906108c SS |
1363 | { |
1364 | int i; | |
1365 | ||
1366 | /* We don't want this value to have anything to do with the inferior anymore. | |
1367 | In particular, "set $1 = 50" should not affect the variable from which | |
1368 | the value was taken, and fast watchpoints should be able to assume that | |
1369 | a value on the value history never changes. */ | |
d69fe07e | 1370 | if (value_lazy (val)) |
c906108c SS |
1371 | value_fetch_lazy (val); |
1372 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
1373 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
1374 | but the current contents of that location. c'est la vie... */ | |
1375 | val->modifiable = 0; | |
1376 | release_value (val); | |
1377 | ||
1378 | /* Here we treat value_history_count as origin-zero | |
1379 | and applying to the value being stored now. */ | |
1380 | ||
1381 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
1382 | if (i == 0) | |
1383 | { | |
f23631e4 | 1384 | struct value_history_chunk *new |
a109c7c1 MS |
1385 | = (struct value_history_chunk *) |
1386 | ||
c5aa993b | 1387 | xmalloc (sizeof (struct value_history_chunk)); |
c906108c SS |
1388 | memset (new->values, 0, sizeof new->values); |
1389 | new->next = value_history_chain; | |
1390 | value_history_chain = new; | |
1391 | } | |
1392 | ||
1393 | value_history_chain->values[i] = val; | |
1394 | ||
1395 | /* Now we regard value_history_count as origin-one | |
1396 | and applying to the value just stored. */ | |
1397 | ||
1398 | return ++value_history_count; | |
1399 | } | |
1400 | ||
1401 | /* Return a copy of the value in the history with sequence number NUM. */ | |
1402 | ||
f23631e4 | 1403 | struct value * |
fba45db2 | 1404 | access_value_history (int num) |
c906108c | 1405 | { |
f23631e4 | 1406 | struct value_history_chunk *chunk; |
52f0bd74 AC |
1407 | int i; |
1408 | int absnum = num; | |
c906108c SS |
1409 | |
1410 | if (absnum <= 0) | |
1411 | absnum += value_history_count; | |
1412 | ||
1413 | if (absnum <= 0) | |
1414 | { | |
1415 | if (num == 0) | |
8a3fe4f8 | 1416 | error (_("The history is empty.")); |
c906108c | 1417 | else if (num == 1) |
8a3fe4f8 | 1418 | error (_("There is only one value in the history.")); |
c906108c | 1419 | else |
8a3fe4f8 | 1420 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
1421 | } |
1422 | if (absnum > value_history_count) | |
8a3fe4f8 | 1423 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
1424 | |
1425 | absnum--; | |
1426 | ||
1427 | /* Now absnum is always absolute and origin zero. */ | |
1428 | ||
1429 | chunk = value_history_chain; | |
3e43a32a MS |
1430 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK |
1431 | - absnum / VALUE_HISTORY_CHUNK; | |
c906108c SS |
1432 | i > 0; i--) |
1433 | chunk = chunk->next; | |
1434 | ||
1435 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
1436 | } | |
1437 | ||
c906108c | 1438 | static void |
fba45db2 | 1439 | show_values (char *num_exp, int from_tty) |
c906108c | 1440 | { |
52f0bd74 | 1441 | int i; |
f23631e4 | 1442 | struct value *val; |
c906108c SS |
1443 | static int num = 1; |
1444 | ||
1445 | if (num_exp) | |
1446 | { | |
f132ba9d TJB |
1447 | /* "show values +" should print from the stored position. |
1448 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 1449 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 1450 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
1451 | } |
1452 | else | |
1453 | { | |
f132ba9d | 1454 | /* "show values" means print the last 10 values. */ |
c906108c SS |
1455 | num = value_history_count - 9; |
1456 | } | |
1457 | ||
1458 | if (num <= 0) | |
1459 | num = 1; | |
1460 | ||
1461 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
1462 | { | |
79a45b7d | 1463 | struct value_print_options opts; |
a109c7c1 | 1464 | |
c906108c | 1465 | val = access_value_history (i); |
a3f17187 | 1466 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
1467 | get_user_print_options (&opts); |
1468 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 1469 | printf_filtered (("\n")); |
c906108c SS |
1470 | } |
1471 | ||
f132ba9d | 1472 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
1473 | num += 10; |
1474 | ||
1475 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
1476 | "show values +". If num_exp is null, this is unnecessary, since |
1477 | "show values +" is not useful after "show values". */ | |
c906108c SS |
1478 | if (from_tty && num_exp) |
1479 | { | |
1480 | num_exp[0] = '+'; | |
1481 | num_exp[1] = '\0'; | |
1482 | } | |
1483 | } | |
1484 | \f | |
1485 | /* Internal variables. These are variables within the debugger | |
1486 | that hold values assigned by debugger commands. | |
1487 | The user refers to them with a '$' prefix | |
1488 | that does not appear in the variable names stored internally. */ | |
1489 | ||
4fa62494 UW |
1490 | struct internalvar |
1491 | { | |
1492 | struct internalvar *next; | |
1493 | char *name; | |
4fa62494 | 1494 | |
78267919 UW |
1495 | /* We support various different kinds of content of an internal variable. |
1496 | enum internalvar_kind specifies the kind, and union internalvar_data | |
1497 | provides the data associated with this particular kind. */ | |
1498 | ||
1499 | enum internalvar_kind | |
1500 | { | |
1501 | /* The internal variable is empty. */ | |
1502 | INTERNALVAR_VOID, | |
1503 | ||
1504 | /* The value of the internal variable is provided directly as | |
1505 | a GDB value object. */ | |
1506 | INTERNALVAR_VALUE, | |
1507 | ||
1508 | /* A fresh value is computed via a call-back routine on every | |
1509 | access to the internal variable. */ | |
1510 | INTERNALVAR_MAKE_VALUE, | |
4fa62494 | 1511 | |
78267919 UW |
1512 | /* The internal variable holds a GDB internal convenience function. */ |
1513 | INTERNALVAR_FUNCTION, | |
1514 | ||
cab0c772 UW |
1515 | /* The variable holds an integer value. */ |
1516 | INTERNALVAR_INTEGER, | |
1517 | ||
78267919 UW |
1518 | /* The variable holds a GDB-provided string. */ |
1519 | INTERNALVAR_STRING, | |
1520 | ||
1521 | } kind; | |
4fa62494 | 1522 | |
4fa62494 UW |
1523 | union internalvar_data |
1524 | { | |
78267919 UW |
1525 | /* A value object used with INTERNALVAR_VALUE. */ |
1526 | struct value *value; | |
1527 | ||
1528 | /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ | |
1529 | internalvar_make_value make_value; | |
1530 | ||
1531 | /* The internal function used with INTERNALVAR_FUNCTION. */ | |
1532 | struct | |
1533 | { | |
1534 | struct internal_function *function; | |
1535 | /* True if this is the canonical name for the function. */ | |
1536 | int canonical; | |
1537 | } fn; | |
1538 | ||
cab0c772 | 1539 | /* An integer value used with INTERNALVAR_INTEGER. */ |
78267919 UW |
1540 | struct |
1541 | { | |
1542 | /* If type is non-NULL, it will be used as the type to generate | |
1543 | a value for this internal variable. If type is NULL, a default | |
1544 | integer type for the architecture is used. */ | |
1545 | struct type *type; | |
cab0c772 UW |
1546 | LONGEST val; |
1547 | } integer; | |
1548 | ||
78267919 UW |
1549 | /* A string value used with INTERNALVAR_STRING. */ |
1550 | char *string; | |
4fa62494 UW |
1551 | } u; |
1552 | }; | |
1553 | ||
c906108c SS |
1554 | static struct internalvar *internalvars; |
1555 | ||
3e43a32a MS |
1556 | /* If the variable does not already exist create it and give it the |
1557 | value given. If no value is given then the default is zero. */ | |
53e5f3cf AS |
1558 | static void |
1559 | init_if_undefined_command (char* args, int from_tty) | |
1560 | { | |
1561 | struct internalvar* intvar; | |
1562 | ||
1563 | /* Parse the expression - this is taken from set_command(). */ | |
1564 | struct expression *expr = parse_expression (args); | |
1565 | register struct cleanup *old_chain = | |
1566 | make_cleanup (free_current_contents, &expr); | |
1567 | ||
1568 | /* Validate the expression. | |
1569 | Was the expression an assignment? | |
1570 | Or even an expression at all? */ | |
1571 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
1572 | error (_("Init-if-undefined requires an assignment expression.")); | |
1573 | ||
1574 | /* Extract the variable from the parsed expression. | |
1575 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
1576 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
3e43a32a MS |
1577 | error (_("The first parameter to init-if-undefined " |
1578 | "should be a GDB variable.")); | |
53e5f3cf AS |
1579 | intvar = expr->elts[2].internalvar; |
1580 | ||
1581 | /* Only evaluate the expression if the lvalue is void. | |
1582 | This may still fail if the expresssion is invalid. */ | |
78267919 | 1583 | if (intvar->kind == INTERNALVAR_VOID) |
53e5f3cf AS |
1584 | evaluate_expression (expr); |
1585 | ||
1586 | do_cleanups (old_chain); | |
1587 | } | |
1588 | ||
1589 | ||
c906108c SS |
1590 | /* Look up an internal variable with name NAME. NAME should not |
1591 | normally include a dollar sign. | |
1592 | ||
1593 | If the specified internal variable does not exist, | |
c4a3d09a | 1594 | the return value is NULL. */ |
c906108c SS |
1595 | |
1596 | struct internalvar * | |
bc3b79fd | 1597 | lookup_only_internalvar (const char *name) |
c906108c | 1598 | { |
52f0bd74 | 1599 | struct internalvar *var; |
c906108c SS |
1600 | |
1601 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 1602 | if (strcmp (var->name, name) == 0) |
c906108c SS |
1603 | return var; |
1604 | ||
c4a3d09a MF |
1605 | return NULL; |
1606 | } | |
1607 | ||
1608 | ||
1609 | /* Create an internal variable with name NAME and with a void value. | |
1610 | NAME should not normally include a dollar sign. */ | |
1611 | ||
1612 | struct internalvar * | |
bc3b79fd | 1613 | create_internalvar (const char *name) |
c4a3d09a MF |
1614 | { |
1615 | struct internalvar *var; | |
a109c7c1 | 1616 | |
c906108c | 1617 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 1618 | var->name = concat (name, (char *)NULL); |
78267919 | 1619 | var->kind = INTERNALVAR_VOID; |
c906108c SS |
1620 | var->next = internalvars; |
1621 | internalvars = var; | |
1622 | return var; | |
1623 | } | |
1624 | ||
4aa995e1 PA |
1625 | /* Create an internal variable with name NAME and register FUN as the |
1626 | function that value_of_internalvar uses to create a value whenever | |
1627 | this variable is referenced. NAME should not normally include a | |
1628 | dollar sign. */ | |
1629 | ||
1630 | struct internalvar * | |
1631 | create_internalvar_type_lazy (char *name, internalvar_make_value fun) | |
1632 | { | |
4fa62494 | 1633 | struct internalvar *var = create_internalvar (name); |
a109c7c1 | 1634 | |
78267919 UW |
1635 | var->kind = INTERNALVAR_MAKE_VALUE; |
1636 | var->u.make_value = fun; | |
4aa995e1 PA |
1637 | return var; |
1638 | } | |
c4a3d09a MF |
1639 | |
1640 | /* Look up an internal variable with name NAME. NAME should not | |
1641 | normally include a dollar sign. | |
1642 | ||
1643 | If the specified internal variable does not exist, | |
1644 | one is created, with a void value. */ | |
1645 | ||
1646 | struct internalvar * | |
bc3b79fd | 1647 | lookup_internalvar (const char *name) |
c4a3d09a MF |
1648 | { |
1649 | struct internalvar *var; | |
1650 | ||
1651 | var = lookup_only_internalvar (name); | |
1652 | if (var) | |
1653 | return var; | |
1654 | ||
1655 | return create_internalvar (name); | |
1656 | } | |
1657 | ||
78267919 UW |
1658 | /* Return current value of internal variable VAR. For variables that |
1659 | are not inherently typed, use a value type appropriate for GDBARCH. */ | |
1660 | ||
f23631e4 | 1661 | struct value * |
78267919 | 1662 | value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) |
c906108c | 1663 | { |
f23631e4 | 1664 | struct value *val; |
0914bcdb SS |
1665 | struct trace_state_variable *tsv; |
1666 | ||
1667 | /* If there is a trace state variable of the same name, assume that | |
1668 | is what we really want to see. */ | |
1669 | tsv = find_trace_state_variable (var->name); | |
1670 | if (tsv) | |
1671 | { | |
1672 | tsv->value_known = target_get_trace_state_variable_value (tsv->number, | |
1673 | &(tsv->value)); | |
1674 | if (tsv->value_known) | |
1675 | val = value_from_longest (builtin_type (gdbarch)->builtin_int64, | |
1676 | tsv->value); | |
1677 | else | |
1678 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
1679 | return val; | |
1680 | } | |
c906108c | 1681 | |
78267919 | 1682 | switch (var->kind) |
5f5233d4 | 1683 | { |
78267919 UW |
1684 | case INTERNALVAR_VOID: |
1685 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
1686 | break; | |
4fa62494 | 1687 | |
78267919 UW |
1688 | case INTERNALVAR_FUNCTION: |
1689 | val = allocate_value (builtin_type (gdbarch)->internal_fn); | |
1690 | break; | |
4fa62494 | 1691 | |
cab0c772 UW |
1692 | case INTERNALVAR_INTEGER: |
1693 | if (!var->u.integer.type) | |
78267919 | 1694 | val = value_from_longest (builtin_type (gdbarch)->builtin_int, |
cab0c772 | 1695 | var->u.integer.val); |
78267919 | 1696 | else |
cab0c772 UW |
1697 | val = value_from_longest (var->u.integer.type, var->u.integer.val); |
1698 | break; | |
1699 | ||
78267919 UW |
1700 | case INTERNALVAR_STRING: |
1701 | val = value_cstring (var->u.string, strlen (var->u.string), | |
1702 | builtin_type (gdbarch)->builtin_char); | |
1703 | break; | |
4fa62494 | 1704 | |
78267919 UW |
1705 | case INTERNALVAR_VALUE: |
1706 | val = value_copy (var->u.value); | |
4aa995e1 PA |
1707 | if (value_lazy (val)) |
1708 | value_fetch_lazy (val); | |
78267919 | 1709 | break; |
4aa995e1 | 1710 | |
78267919 UW |
1711 | case INTERNALVAR_MAKE_VALUE: |
1712 | val = (*var->u.make_value) (gdbarch, var); | |
1713 | break; | |
1714 | ||
1715 | default: | |
9b20d036 | 1716 | internal_error (__FILE__, __LINE__, _("bad kind")); |
78267919 UW |
1717 | } |
1718 | ||
1719 | /* Change the VALUE_LVAL to lval_internalvar so that future operations | |
1720 | on this value go back to affect the original internal variable. | |
1721 | ||
1722 | Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have | |
1723 | no underlying modifyable state in the internal variable. | |
1724 | ||
1725 | Likewise, if the variable's value is a computed lvalue, we want | |
1726 | references to it to produce another computed lvalue, where | |
1727 | references and assignments actually operate through the | |
1728 | computed value's functions. | |
1729 | ||
1730 | This means that internal variables with computed values | |
1731 | behave a little differently from other internal variables: | |
1732 | assignments to them don't just replace the previous value | |
1733 | altogether. At the moment, this seems like the behavior we | |
1734 | want. */ | |
1735 | ||
1736 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
1737 | && val->lval != lval_computed) | |
1738 | { | |
1739 | VALUE_LVAL (val) = lval_internalvar; | |
1740 | VALUE_INTERNALVAR (val) = var; | |
5f5233d4 | 1741 | } |
d3c139e9 | 1742 | |
4fa62494 UW |
1743 | return val; |
1744 | } | |
d3c139e9 | 1745 | |
4fa62494 UW |
1746 | int |
1747 | get_internalvar_integer (struct internalvar *var, LONGEST *result) | |
1748 | { | |
3158c6ed | 1749 | if (var->kind == INTERNALVAR_INTEGER) |
4fa62494 | 1750 | { |
cab0c772 UW |
1751 | *result = var->u.integer.val; |
1752 | return 1; | |
3158c6ed | 1753 | } |
d3c139e9 | 1754 | |
3158c6ed PA |
1755 | if (var->kind == INTERNALVAR_VALUE) |
1756 | { | |
1757 | struct type *type = check_typedef (value_type (var->u.value)); | |
1758 | ||
1759 | if (TYPE_CODE (type) == TYPE_CODE_INT) | |
1760 | { | |
1761 | *result = value_as_long (var->u.value); | |
1762 | return 1; | |
1763 | } | |
4fa62494 | 1764 | } |
3158c6ed PA |
1765 | |
1766 | return 0; | |
4fa62494 | 1767 | } |
d3c139e9 | 1768 | |
4fa62494 UW |
1769 | static int |
1770 | get_internalvar_function (struct internalvar *var, | |
1771 | struct internal_function **result) | |
1772 | { | |
78267919 | 1773 | switch (var->kind) |
d3c139e9 | 1774 | { |
78267919 UW |
1775 | case INTERNALVAR_FUNCTION: |
1776 | *result = var->u.fn.function; | |
4fa62494 | 1777 | return 1; |
d3c139e9 | 1778 | |
4fa62494 UW |
1779 | default: |
1780 | return 0; | |
1781 | } | |
c906108c SS |
1782 | } |
1783 | ||
1784 | void | |
fba45db2 | 1785 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 1786 | int bitsize, struct value *newval) |
c906108c | 1787 | { |
4fa62494 | 1788 | gdb_byte *addr; |
c906108c | 1789 | |
78267919 | 1790 | switch (var->kind) |
4fa62494 | 1791 | { |
78267919 UW |
1792 | case INTERNALVAR_VALUE: |
1793 | addr = value_contents_writeable (var->u.value); | |
4fa62494 UW |
1794 | |
1795 | if (bitsize) | |
50810684 | 1796 | modify_field (value_type (var->u.value), addr + offset, |
4fa62494 UW |
1797 | value_as_long (newval), bitpos, bitsize); |
1798 | else | |
1799 | memcpy (addr + offset, value_contents (newval), | |
1800 | TYPE_LENGTH (value_type (newval))); | |
1801 | break; | |
78267919 UW |
1802 | |
1803 | default: | |
1804 | /* We can never get a component of any other kind. */ | |
9b20d036 | 1805 | internal_error (__FILE__, __LINE__, _("set_internalvar_component")); |
4fa62494 | 1806 | } |
c906108c SS |
1807 | } |
1808 | ||
1809 | void | |
f23631e4 | 1810 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 1811 | { |
78267919 | 1812 | enum internalvar_kind new_kind; |
4fa62494 | 1813 | union internalvar_data new_data = { 0 }; |
c906108c | 1814 | |
78267919 | 1815 | if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) |
bc3b79fd TJB |
1816 | error (_("Cannot overwrite convenience function %s"), var->name); |
1817 | ||
4fa62494 | 1818 | /* Prepare new contents. */ |
78267919 | 1819 | switch (TYPE_CODE (check_typedef (value_type (val)))) |
4fa62494 UW |
1820 | { |
1821 | case TYPE_CODE_VOID: | |
78267919 | 1822 | new_kind = INTERNALVAR_VOID; |
4fa62494 UW |
1823 | break; |
1824 | ||
1825 | case TYPE_CODE_INTERNAL_FUNCTION: | |
1826 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
78267919 UW |
1827 | new_kind = INTERNALVAR_FUNCTION; |
1828 | get_internalvar_function (VALUE_INTERNALVAR (val), | |
1829 | &new_data.fn.function); | |
1830 | /* Copies created here are never canonical. */ | |
4fa62494 UW |
1831 | break; |
1832 | ||
4fa62494 | 1833 | default: |
78267919 UW |
1834 | new_kind = INTERNALVAR_VALUE; |
1835 | new_data.value = value_copy (val); | |
1836 | new_data.value->modifiable = 1; | |
4fa62494 UW |
1837 | |
1838 | /* Force the value to be fetched from the target now, to avoid problems | |
1839 | later when this internalvar is referenced and the target is gone or | |
1840 | has changed. */ | |
78267919 UW |
1841 | if (value_lazy (new_data.value)) |
1842 | value_fetch_lazy (new_data.value); | |
4fa62494 UW |
1843 | |
1844 | /* Release the value from the value chain to prevent it from being | |
1845 | deleted by free_all_values. From here on this function should not | |
1846 | call error () until new_data is installed into the var->u to avoid | |
1847 | leaking memory. */ | |
78267919 | 1848 | release_value (new_data.value); |
4fa62494 UW |
1849 | break; |
1850 | } | |
1851 | ||
1852 | /* Clean up old contents. */ | |
1853 | clear_internalvar (var); | |
1854 | ||
1855 | /* Switch over. */ | |
78267919 | 1856 | var->kind = new_kind; |
4fa62494 | 1857 | var->u = new_data; |
c906108c SS |
1858 | /* End code which must not call error(). */ |
1859 | } | |
1860 | ||
4fa62494 UW |
1861 | void |
1862 | set_internalvar_integer (struct internalvar *var, LONGEST l) | |
1863 | { | |
1864 | /* Clean up old contents. */ | |
1865 | clear_internalvar (var); | |
1866 | ||
cab0c772 UW |
1867 | var->kind = INTERNALVAR_INTEGER; |
1868 | var->u.integer.type = NULL; | |
1869 | var->u.integer.val = l; | |
78267919 UW |
1870 | } |
1871 | ||
1872 | void | |
1873 | set_internalvar_string (struct internalvar *var, const char *string) | |
1874 | { | |
1875 | /* Clean up old contents. */ | |
1876 | clear_internalvar (var); | |
1877 | ||
1878 | var->kind = INTERNALVAR_STRING; | |
1879 | var->u.string = xstrdup (string); | |
4fa62494 UW |
1880 | } |
1881 | ||
1882 | static void | |
1883 | set_internalvar_function (struct internalvar *var, struct internal_function *f) | |
1884 | { | |
1885 | /* Clean up old contents. */ | |
1886 | clear_internalvar (var); | |
1887 | ||
78267919 UW |
1888 | var->kind = INTERNALVAR_FUNCTION; |
1889 | var->u.fn.function = f; | |
1890 | var->u.fn.canonical = 1; | |
1891 | /* Variables installed here are always the canonical version. */ | |
4fa62494 UW |
1892 | } |
1893 | ||
1894 | void | |
1895 | clear_internalvar (struct internalvar *var) | |
1896 | { | |
1897 | /* Clean up old contents. */ | |
78267919 | 1898 | switch (var->kind) |
4fa62494 | 1899 | { |
78267919 UW |
1900 | case INTERNALVAR_VALUE: |
1901 | value_free (var->u.value); | |
1902 | break; | |
1903 | ||
1904 | case INTERNALVAR_STRING: | |
1905 | xfree (var->u.string); | |
4fa62494 UW |
1906 | break; |
1907 | ||
1908 | default: | |
4fa62494 UW |
1909 | break; |
1910 | } | |
1911 | ||
78267919 UW |
1912 | /* Reset to void kind. */ |
1913 | var->kind = INTERNALVAR_VOID; | |
4fa62494 UW |
1914 | } |
1915 | ||
c906108c | 1916 | char * |
fba45db2 | 1917 | internalvar_name (struct internalvar *var) |
c906108c SS |
1918 | { |
1919 | return var->name; | |
1920 | } | |
1921 | ||
4fa62494 UW |
1922 | static struct internal_function * |
1923 | create_internal_function (const char *name, | |
1924 | internal_function_fn handler, void *cookie) | |
bc3b79fd | 1925 | { |
bc3b79fd | 1926 | struct internal_function *ifn = XNEW (struct internal_function); |
a109c7c1 | 1927 | |
bc3b79fd TJB |
1928 | ifn->name = xstrdup (name); |
1929 | ifn->handler = handler; | |
1930 | ifn->cookie = cookie; | |
4fa62494 | 1931 | return ifn; |
bc3b79fd TJB |
1932 | } |
1933 | ||
1934 | char * | |
1935 | value_internal_function_name (struct value *val) | |
1936 | { | |
4fa62494 UW |
1937 | struct internal_function *ifn; |
1938 | int result; | |
1939 | ||
1940 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
1941 | result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); | |
1942 | gdb_assert (result); | |
1943 | ||
bc3b79fd TJB |
1944 | return ifn->name; |
1945 | } | |
1946 | ||
1947 | struct value * | |
d452c4bc UW |
1948 | call_internal_function (struct gdbarch *gdbarch, |
1949 | const struct language_defn *language, | |
1950 | struct value *func, int argc, struct value **argv) | |
bc3b79fd | 1951 | { |
4fa62494 UW |
1952 | struct internal_function *ifn; |
1953 | int result; | |
1954 | ||
1955 | gdb_assert (VALUE_LVAL (func) == lval_internalvar); | |
1956 | result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); | |
1957 | gdb_assert (result); | |
1958 | ||
d452c4bc | 1959 | return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); |
bc3b79fd TJB |
1960 | } |
1961 | ||
1962 | /* The 'function' command. This does nothing -- it is just a | |
1963 | placeholder to let "help function NAME" work. This is also used as | |
1964 | the implementation of the sub-command that is created when | |
1965 | registering an internal function. */ | |
1966 | static void | |
1967 | function_command (char *command, int from_tty) | |
1968 | { | |
1969 | /* Do nothing. */ | |
1970 | } | |
1971 | ||
1972 | /* Clean up if an internal function's command is destroyed. */ | |
1973 | static void | |
1974 | function_destroyer (struct cmd_list_element *self, void *ignore) | |
1975 | { | |
1976 | xfree (self->name); | |
1977 | xfree (self->doc); | |
1978 | } | |
1979 | ||
1980 | /* Add a new internal function. NAME is the name of the function; DOC | |
1981 | is a documentation string describing the function. HANDLER is | |
1982 | called when the function is invoked. COOKIE is an arbitrary | |
1983 | pointer which is passed to HANDLER and is intended for "user | |
1984 | data". */ | |
1985 | void | |
1986 | add_internal_function (const char *name, const char *doc, | |
1987 | internal_function_fn handler, void *cookie) | |
1988 | { | |
1989 | struct cmd_list_element *cmd; | |
4fa62494 | 1990 | struct internal_function *ifn; |
bc3b79fd | 1991 | struct internalvar *var = lookup_internalvar (name); |
4fa62494 UW |
1992 | |
1993 | ifn = create_internal_function (name, handler, cookie); | |
1994 | set_internalvar_function (var, ifn); | |
bc3b79fd TJB |
1995 | |
1996 | cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, | |
1997 | &functionlist); | |
1998 | cmd->destroyer = function_destroyer; | |
1999 | } | |
2000 | ||
ae5a43e0 DJ |
2001 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
2002 | prevent cycles / duplicates. */ | |
2003 | ||
4e7a5ef5 | 2004 | void |
ae5a43e0 DJ |
2005 | preserve_one_value (struct value *value, struct objfile *objfile, |
2006 | htab_t copied_types) | |
2007 | { | |
2008 | if (TYPE_OBJFILE (value->type) == objfile) | |
2009 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
2010 | ||
2011 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
2012 | value->enclosing_type = copy_type_recursive (objfile, | |
2013 | value->enclosing_type, | |
2014 | copied_types); | |
2015 | } | |
2016 | ||
78267919 UW |
2017 | /* Likewise for internal variable VAR. */ |
2018 | ||
2019 | static void | |
2020 | preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, | |
2021 | htab_t copied_types) | |
2022 | { | |
2023 | switch (var->kind) | |
2024 | { | |
cab0c772 UW |
2025 | case INTERNALVAR_INTEGER: |
2026 | if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) | |
2027 | var->u.integer.type | |
2028 | = copy_type_recursive (objfile, var->u.integer.type, copied_types); | |
2029 | break; | |
2030 | ||
78267919 UW |
2031 | case INTERNALVAR_VALUE: |
2032 | preserve_one_value (var->u.value, objfile, copied_types); | |
2033 | break; | |
2034 | } | |
2035 | } | |
2036 | ||
ae5a43e0 DJ |
2037 | /* Update the internal variables and value history when OBJFILE is |
2038 | discarded; we must copy the types out of the objfile. New global types | |
2039 | will be created for every convenience variable which currently points to | |
2040 | this objfile's types, and the convenience variables will be adjusted to | |
2041 | use the new global types. */ | |
c906108c SS |
2042 | |
2043 | void | |
ae5a43e0 | 2044 | preserve_values (struct objfile *objfile) |
c906108c | 2045 | { |
ae5a43e0 DJ |
2046 | htab_t copied_types; |
2047 | struct value_history_chunk *cur; | |
52f0bd74 | 2048 | struct internalvar *var; |
ae5a43e0 | 2049 | int i; |
c906108c | 2050 | |
ae5a43e0 DJ |
2051 | /* Create the hash table. We allocate on the objfile's obstack, since |
2052 | it is soon to be deleted. */ | |
2053 | copied_types = create_copied_types_hash (objfile); | |
2054 | ||
2055 | for (cur = value_history_chain; cur; cur = cur->next) | |
2056 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
2057 | if (cur->values[i]) | |
2058 | preserve_one_value (cur->values[i], objfile, copied_types); | |
2059 | ||
2060 | for (var = internalvars; var; var = var->next) | |
78267919 | 2061 | preserve_one_internalvar (var, objfile, copied_types); |
ae5a43e0 | 2062 | |
4e7a5ef5 | 2063 | preserve_python_values (objfile, copied_types); |
a08702d6 | 2064 | |
ae5a43e0 | 2065 | htab_delete (copied_types); |
c906108c SS |
2066 | } |
2067 | ||
2068 | static void | |
fba45db2 | 2069 | show_convenience (char *ignore, int from_tty) |
c906108c | 2070 | { |
e17c207e | 2071 | struct gdbarch *gdbarch = get_current_arch (); |
52f0bd74 | 2072 | struct internalvar *var; |
c906108c | 2073 | int varseen = 0; |
79a45b7d | 2074 | struct value_print_options opts; |
c906108c | 2075 | |
79a45b7d | 2076 | get_user_print_options (&opts); |
c906108c SS |
2077 | for (var = internalvars; var; var = var->next) |
2078 | { | |
c906108c SS |
2079 | if (!varseen) |
2080 | { | |
2081 | varseen = 1; | |
2082 | } | |
a3f17187 | 2083 | printf_filtered (("$%s = "), var->name); |
78267919 | 2084 | value_print (value_of_internalvar (gdbarch, var), gdb_stdout, |
79a45b7d | 2085 | &opts); |
a3f17187 | 2086 | printf_filtered (("\n")); |
c906108c SS |
2087 | } |
2088 | if (!varseen) | |
3e43a32a MS |
2089 | printf_unfiltered (_("No debugger convenience variables now defined.\n" |
2090 | "Convenience variables have " | |
2091 | "names starting with \"$\";\n" | |
2092 | "use \"set\" as in \"set " | |
2093 | "$foo = 5\" to define them.\n")); | |
c906108c SS |
2094 | } |
2095 | \f | |
2096 | /* Extract a value as a C number (either long or double). | |
2097 | Knows how to convert fixed values to double, or | |
2098 | floating values to long. | |
2099 | Does not deallocate the value. */ | |
2100 | ||
2101 | LONGEST | |
f23631e4 | 2102 | value_as_long (struct value *val) |
c906108c SS |
2103 | { |
2104 | /* This coerces arrays and functions, which is necessary (e.g. | |
2105 | in disassemble_command). It also dereferences references, which | |
2106 | I suspect is the most logical thing to do. */ | |
994b9211 | 2107 | val = coerce_array (val); |
0fd88904 | 2108 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2109 | } |
2110 | ||
2111 | DOUBLEST | |
f23631e4 | 2112 | value_as_double (struct value *val) |
c906108c SS |
2113 | { |
2114 | DOUBLEST foo; | |
2115 | int inv; | |
c5aa993b | 2116 | |
0fd88904 | 2117 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 2118 | if (inv) |
8a3fe4f8 | 2119 | error (_("Invalid floating value found in program.")); |
c906108c SS |
2120 | return foo; |
2121 | } | |
4ef30785 | 2122 | |
581e13c1 | 2123 | /* Extract a value as a C pointer. Does not deallocate the value. |
4478b372 JB |
2124 | Note that val's type may not actually be a pointer; value_as_long |
2125 | handles all the cases. */ | |
c906108c | 2126 | CORE_ADDR |
f23631e4 | 2127 | value_as_address (struct value *val) |
c906108c | 2128 | { |
50810684 UW |
2129 | struct gdbarch *gdbarch = get_type_arch (value_type (val)); |
2130 | ||
c906108c SS |
2131 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
2132 | whether we want this to be true eventually. */ | |
2133 | #if 0 | |
bf6ae464 | 2134 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
2135 | non-address (e.g. argument to "signal", "info break", etc.), or |
2136 | for pointers to char, in which the low bits *are* significant. */ | |
50810684 | 2137 | return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); |
c906108c | 2138 | #else |
f312f057 JB |
2139 | |
2140 | /* There are several targets (IA-64, PowerPC, and others) which | |
2141 | don't represent pointers to functions as simply the address of | |
2142 | the function's entry point. For example, on the IA-64, a | |
2143 | function pointer points to a two-word descriptor, generated by | |
2144 | the linker, which contains the function's entry point, and the | |
2145 | value the IA-64 "global pointer" register should have --- to | |
2146 | support position-independent code. The linker generates | |
2147 | descriptors only for those functions whose addresses are taken. | |
2148 | ||
2149 | On such targets, it's difficult for GDB to convert an arbitrary | |
2150 | function address into a function pointer; it has to either find | |
2151 | an existing descriptor for that function, or call malloc and | |
2152 | build its own. On some targets, it is impossible for GDB to | |
2153 | build a descriptor at all: the descriptor must contain a jump | |
2154 | instruction; data memory cannot be executed; and code memory | |
2155 | cannot be modified. | |
2156 | ||
2157 | Upon entry to this function, if VAL is a value of type `function' | |
2158 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
42ae5230 | 2159 | value_address (val) is the address of the function. This is what |
f312f057 JB |
2160 | you'll get if you evaluate an expression like `main'. The call |
2161 | to COERCE_ARRAY below actually does all the usual unary | |
2162 | conversions, which includes converting values of type `function' | |
2163 | to `pointer to function'. This is the challenging conversion | |
2164 | discussed above. Then, `unpack_long' will convert that pointer | |
2165 | back into an address. | |
2166 | ||
2167 | So, suppose the user types `disassemble foo' on an architecture | |
2168 | with a strange function pointer representation, on which GDB | |
2169 | cannot build its own descriptors, and suppose further that `foo' | |
2170 | has no linker-built descriptor. The address->pointer conversion | |
2171 | will signal an error and prevent the command from running, even | |
2172 | though the next step would have been to convert the pointer | |
2173 | directly back into the same address. | |
2174 | ||
2175 | The following shortcut avoids this whole mess. If VAL is a | |
2176 | function, just return its address directly. */ | |
df407dfe AC |
2177 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
2178 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
42ae5230 | 2179 | return value_address (val); |
f312f057 | 2180 | |
994b9211 | 2181 | val = coerce_array (val); |
fc0c74b1 AC |
2182 | |
2183 | /* Some architectures (e.g. Harvard), map instruction and data | |
2184 | addresses onto a single large unified address space. For | |
2185 | instance: An architecture may consider a large integer in the | |
2186 | range 0x10000000 .. 0x1000ffff to already represent a data | |
2187 | addresses (hence not need a pointer to address conversion) while | |
2188 | a small integer would still need to be converted integer to | |
2189 | pointer to address. Just assume such architectures handle all | |
2190 | integer conversions in a single function. */ | |
2191 | ||
2192 | /* JimB writes: | |
2193 | ||
2194 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
2195 | must admonish GDB hackers to make sure its behavior matches the | |
2196 | compiler's, whenever possible. | |
2197 | ||
2198 | In general, I think GDB should evaluate expressions the same way | |
2199 | the compiler does. When the user copies an expression out of | |
2200 | their source code and hands it to a `print' command, they should | |
2201 | get the same value the compiler would have computed. Any | |
2202 | deviation from this rule can cause major confusion and annoyance, | |
2203 | and needs to be justified carefully. In other words, GDB doesn't | |
2204 | really have the freedom to do these conversions in clever and | |
2205 | useful ways. | |
2206 | ||
2207 | AndrewC pointed out that users aren't complaining about how GDB | |
2208 | casts integers to pointers; they are complaining that they can't | |
2209 | take an address from a disassembly listing and give it to `x/i'. | |
2210 | This is certainly important. | |
2211 | ||
79dd2d24 | 2212 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
2213 | makes it possible for GDB to "get it right" in all circumstances |
2214 | --- the target has complete control over how things get done, so | |
2215 | people can Do The Right Thing for their target without breaking | |
2216 | anyone else. The standard doesn't specify how integers get | |
2217 | converted to pointers; usually, the ABI doesn't either, but | |
2218 | ABI-specific code is a more reasonable place to handle it. */ | |
2219 | ||
df407dfe AC |
2220 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
2221 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
50810684 UW |
2222 | && gdbarch_integer_to_address_p (gdbarch)) |
2223 | return gdbarch_integer_to_address (gdbarch, value_type (val), | |
0fd88904 | 2224 | value_contents (val)); |
fc0c74b1 | 2225 | |
0fd88904 | 2226 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2227 | #endif |
2228 | } | |
2229 | \f | |
2230 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
2231 | as a long, or as a double, assuming the raw data is described | |
2232 | by type TYPE. Knows how to convert different sizes of values | |
2233 | and can convert between fixed and floating point. We don't assume | |
2234 | any alignment for the raw data. Return value is in host byte order. | |
2235 | ||
2236 | If you want functions and arrays to be coerced to pointers, and | |
2237 | references to be dereferenced, call value_as_long() instead. | |
2238 | ||
2239 | C++: It is assumed that the front-end has taken care of | |
2240 | all matters concerning pointers to members. A pointer | |
2241 | to member which reaches here is considered to be equivalent | |
2242 | to an INT (or some size). After all, it is only an offset. */ | |
2243 | ||
2244 | LONGEST | |
fc1a4b47 | 2245 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 2246 | { |
e17a4113 | 2247 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
52f0bd74 AC |
2248 | enum type_code code = TYPE_CODE (type); |
2249 | int len = TYPE_LENGTH (type); | |
2250 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 2251 | |
c906108c SS |
2252 | switch (code) |
2253 | { | |
2254 | case TYPE_CODE_TYPEDEF: | |
2255 | return unpack_long (check_typedef (type), valaddr); | |
2256 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2257 | case TYPE_CODE_FLAGS: |
c906108c SS |
2258 | case TYPE_CODE_BOOL: |
2259 | case TYPE_CODE_INT: | |
2260 | case TYPE_CODE_CHAR: | |
2261 | case TYPE_CODE_RANGE: | |
0d5de010 | 2262 | case TYPE_CODE_MEMBERPTR: |
c906108c | 2263 | if (nosign) |
e17a4113 | 2264 | return extract_unsigned_integer (valaddr, len, byte_order); |
c906108c | 2265 | else |
e17a4113 | 2266 | return extract_signed_integer (valaddr, len, byte_order); |
c906108c SS |
2267 | |
2268 | case TYPE_CODE_FLT: | |
96d2f608 | 2269 | return extract_typed_floating (valaddr, type); |
c906108c | 2270 | |
4ef30785 TJB |
2271 | case TYPE_CODE_DECFLOAT: |
2272 | /* libdecnumber has a function to convert from decimal to integer, but | |
2273 | it doesn't work when the decimal number has a fractional part. */ | |
e17a4113 | 2274 | return decimal_to_doublest (valaddr, len, byte_order); |
4ef30785 | 2275 | |
c906108c SS |
2276 | case TYPE_CODE_PTR: |
2277 | case TYPE_CODE_REF: | |
2278 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 2279 | whether we want this to be true eventually. */ |
4478b372 | 2280 | return extract_typed_address (valaddr, type); |
c906108c | 2281 | |
c906108c | 2282 | default: |
8a3fe4f8 | 2283 | error (_("Value can't be converted to integer.")); |
c906108c | 2284 | } |
c5aa993b | 2285 | return 0; /* Placate lint. */ |
c906108c SS |
2286 | } |
2287 | ||
2288 | /* Return a double value from the specified type and address. | |
2289 | INVP points to an int which is set to 0 for valid value, | |
2290 | 1 for invalid value (bad float format). In either case, | |
2291 | the returned double is OK to use. Argument is in target | |
2292 | format, result is in host format. */ | |
2293 | ||
2294 | DOUBLEST | |
fc1a4b47 | 2295 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c | 2296 | { |
e17a4113 | 2297 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
c906108c SS |
2298 | enum type_code code; |
2299 | int len; | |
2300 | int nosign; | |
2301 | ||
581e13c1 | 2302 | *invp = 0; /* Assume valid. */ |
c906108c SS |
2303 | CHECK_TYPEDEF (type); |
2304 | code = TYPE_CODE (type); | |
2305 | len = TYPE_LENGTH (type); | |
2306 | nosign = TYPE_UNSIGNED (type); | |
2307 | if (code == TYPE_CODE_FLT) | |
2308 | { | |
75bc7ddf AC |
2309 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
2310 | floating-point value was valid (using the macro | |
2311 | INVALID_FLOAT). That test/macro have been removed. | |
2312 | ||
2313 | It turns out that only the VAX defined this macro and then | |
2314 | only in a non-portable way. Fixing the portability problem | |
2315 | wouldn't help since the VAX floating-point code is also badly | |
2316 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 2317 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
2318 | exactly describe the target floating-point format. The |
2319 | problem here is that the corresponding floatformat_vax_f and | |
2320 | floatformat_vax_d values these methods should be set to are | |
2321 | also not defined either. Oops! | |
2322 | ||
2323 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
2324 | definitions and the new cases for floatformat_is_valid (). */ |
2325 | ||
2326 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
2327 | { | |
2328 | *invp = 1; | |
2329 | return 0.0; | |
2330 | } | |
2331 | ||
96d2f608 | 2332 | return extract_typed_floating (valaddr, type); |
c906108c | 2333 | } |
4ef30785 | 2334 | else if (code == TYPE_CODE_DECFLOAT) |
e17a4113 | 2335 | return decimal_to_doublest (valaddr, len, byte_order); |
c906108c SS |
2336 | else if (nosign) |
2337 | { | |
2338 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 2339 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
2340 | } |
2341 | else | |
2342 | { | |
2343 | /* Signed -- we are OK with unpack_long. */ | |
2344 | return unpack_long (type, valaddr); | |
2345 | } | |
2346 | } | |
2347 | ||
2348 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
2349 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
2350 | We don't assume any alignment for the raw data. Return value is in | |
2351 | host byte order. | |
2352 | ||
2353 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 2354 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
2355 | |
2356 | C++: It is assumed that the front-end has taken care of | |
2357 | all matters concerning pointers to members. A pointer | |
2358 | to member which reaches here is considered to be equivalent | |
2359 | to an INT (or some size). After all, it is only an offset. */ | |
2360 | ||
2361 | CORE_ADDR | |
fc1a4b47 | 2362 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
2363 | { |
2364 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
2365 | whether we want this to be true eventually. */ | |
2366 | return unpack_long (type, valaddr); | |
2367 | } | |
4478b372 | 2368 | |
c906108c | 2369 | \f |
1596cb5d | 2370 | /* Get the value of the FIELDNO'th field (which must be static) of |
2c2738a0 | 2371 | TYPE. Return NULL if the field doesn't exist or has been |
581e13c1 | 2372 | optimized out. */ |
c906108c | 2373 | |
f23631e4 | 2374 | struct value * |
fba45db2 | 2375 | value_static_field (struct type *type, int fieldno) |
c906108c | 2376 | { |
948e66d9 DJ |
2377 | struct value *retval; |
2378 | ||
1596cb5d | 2379 | switch (TYPE_FIELD_LOC_KIND (type, fieldno)) |
c906108c | 2380 | { |
1596cb5d | 2381 | case FIELD_LOC_KIND_PHYSADDR: |
52e9fde8 SS |
2382 | retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), |
2383 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); | |
1596cb5d DE |
2384 | break; |
2385 | case FIELD_LOC_KIND_PHYSNAME: | |
c906108c SS |
2386 | { |
2387 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
581e13c1 | 2388 | /* TYPE_FIELD_NAME (type, fieldno); */ |
2570f2b7 | 2389 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
94af9270 | 2390 | |
948e66d9 | 2391 | if (sym == NULL) |
c906108c | 2392 | { |
a109c7c1 | 2393 | /* With some compilers, e.g. HP aCC, static data members are |
581e13c1 | 2394 | reported as non-debuggable symbols. */ |
a109c7c1 MS |
2395 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, |
2396 | NULL, NULL); | |
2397 | ||
c906108c SS |
2398 | if (!msym) |
2399 | return NULL; | |
2400 | else | |
c5aa993b | 2401 | { |
52e9fde8 SS |
2402 | retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), |
2403 | SYMBOL_VALUE_ADDRESS (msym)); | |
c906108c SS |
2404 | } |
2405 | } | |
2406 | else | |
515ed532 | 2407 | retval = value_of_variable (sym, NULL); |
1596cb5d | 2408 | break; |
c906108c | 2409 | } |
1596cb5d | 2410 | default: |
f3574227 | 2411 | gdb_assert_not_reached ("unexpected field location kind"); |
1596cb5d DE |
2412 | } |
2413 | ||
948e66d9 | 2414 | return retval; |
c906108c SS |
2415 | } |
2416 | ||
4dfea560 DE |
2417 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
2418 | You have to be careful here, since the size of the data area for the value | |
2419 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
2420 | than the old enclosing type, you have to allocate more space for the | |
2421 | data. */ | |
2b127877 | 2422 | |
4dfea560 DE |
2423 | void |
2424 | set_value_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 2425 | { |
3e3d7139 JG |
2426 | if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) |
2427 | val->contents = | |
2428 | (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); | |
2429 | ||
2430 | val->enclosing_type = new_encl_type; | |
2b127877 DB |
2431 | } |
2432 | ||
c906108c SS |
2433 | /* Given a value ARG1 (offset by OFFSET bytes) |
2434 | of a struct or union type ARG_TYPE, | |
2435 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 2436 | FIELDNO says which field. */ |
c906108c | 2437 | |
f23631e4 AC |
2438 | struct value * |
2439 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 2440 | int fieldno, struct type *arg_type) |
c906108c | 2441 | { |
f23631e4 | 2442 | struct value *v; |
52f0bd74 | 2443 | struct type *type; |
c906108c SS |
2444 | |
2445 | CHECK_TYPEDEF (arg_type); | |
2446 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
c54eabfa JK |
2447 | |
2448 | /* Call check_typedef on our type to make sure that, if TYPE | |
2449 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
2450 | of the target type instead of zero. However, we do not | |
2451 | replace the typedef type by the target type, because we want | |
2452 | to keep the typedef in order to be able to print the type | |
2453 | description correctly. */ | |
2454 | check_typedef (type); | |
c906108c SS |
2455 | |
2456 | /* Handle packed fields */ | |
2457 | ||
2458 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
2459 | { | |
4ea48cc1 DJ |
2460 | /* Create a new value for the bitfield, with bitpos and bitsize |
2461 | set. If possible, arrange offset and bitpos so that we can | |
2462 | do a single aligned read of the size of the containing type. | |
2463 | Otherwise, adjust offset to the byte containing the first | |
2464 | bit. Assume that the address, offset, and embedded offset | |
2465 | are sufficiently aligned. */ | |
2466 | int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
2467 | int container_bitsize = TYPE_LENGTH (type) * 8; | |
2468 | ||
2469 | v = allocate_value_lazy (type); | |
df407dfe | 2470 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); |
4ea48cc1 DJ |
2471 | if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize |
2472 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) | |
2473 | v->bitpos = bitpos % container_bitsize; | |
2474 | else | |
2475 | v->bitpos = bitpos % 8; | |
38f12cfc TT |
2476 | v->offset = (value_embedded_offset (arg1) |
2477 | + offset | |
2478 | + (bitpos - v->bitpos) / 8); | |
4ea48cc1 DJ |
2479 | v->parent = arg1; |
2480 | value_incref (v->parent); | |
2481 | if (!value_lazy (arg1)) | |
2482 | value_fetch_lazy (v); | |
c906108c SS |
2483 | } |
2484 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
2485 | { | |
2486 | /* This field is actually a base subobject, so preserve the | |
39d37385 PA |
2487 | entire object's contents for later references to virtual |
2488 | bases, etc. */ | |
a4e2ee12 DJ |
2489 | |
2490 | /* Lazy register values with offsets are not supported. */ | |
2491 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
2492 | value_fetch_lazy (arg1); | |
2493 | ||
2494 | if (value_lazy (arg1)) | |
3e3d7139 | 2495 | v = allocate_value_lazy (value_enclosing_type (arg1)); |
c906108c | 2496 | else |
3e3d7139 JG |
2497 | { |
2498 | v = allocate_value (value_enclosing_type (arg1)); | |
39d37385 PA |
2499 | value_contents_copy_raw (v, 0, arg1, 0, |
2500 | TYPE_LENGTH (value_enclosing_type (arg1))); | |
3e3d7139 JG |
2501 | } |
2502 | v->type = type; | |
df407dfe | 2503 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
2504 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
2505 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
2506 | } |
2507 | else | |
2508 | { | |
2509 | /* Plain old data member */ | |
2510 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
a4e2ee12 DJ |
2511 | |
2512 | /* Lazy register values with offsets are not supported. */ | |
2513 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
2514 | value_fetch_lazy (arg1); | |
2515 | ||
2516 | if (value_lazy (arg1)) | |
3e3d7139 | 2517 | v = allocate_value_lazy (type); |
c906108c | 2518 | else |
3e3d7139 JG |
2519 | { |
2520 | v = allocate_value (type); | |
39d37385 PA |
2521 | value_contents_copy_raw (v, value_embedded_offset (v), |
2522 | arg1, value_embedded_offset (arg1) + offset, | |
2523 | TYPE_LENGTH (type)); | |
3e3d7139 | 2524 | } |
df407dfe | 2525 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 2526 | + value_embedded_offset (arg1)); |
c906108c | 2527 | } |
74bcbdf3 | 2528 | set_value_component_location (v, arg1); |
9ee8fc9d | 2529 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 2530 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
2531 | return v; |
2532 | } | |
2533 | ||
2534 | /* Given a value ARG1 of a struct or union type, | |
2535 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 2536 | FIELDNO says which field. */ |
c906108c | 2537 | |
f23631e4 | 2538 | struct value * |
aa1ee363 | 2539 | value_field (struct value *arg1, int fieldno) |
c906108c | 2540 | { |
df407dfe | 2541 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
2542 | } |
2543 | ||
2544 | /* Return a non-virtual function as a value. | |
2545 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
2546 | J is an index into F which provides the desired method. |
2547 | ||
2548 | We only use the symbol for its address, so be happy with either a | |
581e13c1 | 2549 | full symbol or a minimal symbol. */ |
c906108c | 2550 | |
f23631e4 | 2551 | struct value * |
3e43a32a MS |
2552 | value_fn_field (struct value **arg1p, struct fn_field *f, |
2553 | int j, struct type *type, | |
fba45db2 | 2554 | int offset) |
c906108c | 2555 | { |
f23631e4 | 2556 | struct value *v; |
52f0bd74 | 2557 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 2558 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 2559 | struct symbol *sym; |
0478d61c | 2560 | struct minimal_symbol *msym; |
c906108c | 2561 | |
2570f2b7 | 2562 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); |
5ae326fa | 2563 | if (sym != NULL) |
0478d61c | 2564 | { |
5ae326fa AC |
2565 | msym = NULL; |
2566 | } | |
2567 | else | |
2568 | { | |
2569 | gdb_assert (sym == NULL); | |
0478d61c | 2570 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
2571 | if (msym == NULL) |
2572 | return NULL; | |
0478d61c FF |
2573 | } |
2574 | ||
c906108c | 2575 | v = allocate_value (ftype); |
0478d61c FF |
2576 | if (sym) |
2577 | { | |
42ae5230 | 2578 | set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); |
0478d61c FF |
2579 | } |
2580 | else | |
2581 | { | |
bccdca4a UW |
2582 | /* The minimal symbol might point to a function descriptor; |
2583 | resolve it to the actual code address instead. */ | |
2584 | struct objfile *objfile = msymbol_objfile (msym); | |
2585 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
2586 | ||
42ae5230 TT |
2587 | set_value_address (v, |
2588 | gdbarch_convert_from_func_ptr_addr | |
2589 | (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target)); | |
0478d61c | 2590 | } |
c906108c SS |
2591 | |
2592 | if (arg1p) | |
c5aa993b | 2593 | { |
df407dfe | 2594 | if (type != value_type (*arg1p)) |
c5aa993b JM |
2595 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
2596 | value_addr (*arg1p))); | |
2597 | ||
070ad9f0 | 2598 | /* Move the `this' pointer according to the offset. |
581e13c1 | 2599 | VALUE_OFFSET (*arg1p) += offset; */ |
c906108c SS |
2600 | } |
2601 | ||
2602 | return v; | |
2603 | } | |
2604 | ||
c906108c | 2605 | \f |
c906108c | 2606 | |
5467c6c8 PA |
2607 | /* Helper function for both unpack_value_bits_as_long and |
2608 | unpack_bits_as_long. See those functions for more details on the | |
2609 | interface; the only difference is that this function accepts either | |
2610 | a NULL or a non-NULL ORIGINAL_VALUE. */ | |
c906108c | 2611 | |
5467c6c8 PA |
2612 | static int |
2613 | unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr, | |
2614 | int embedded_offset, int bitpos, int bitsize, | |
2615 | const struct value *original_value, | |
2616 | LONGEST *result) | |
c906108c | 2617 | { |
4ea48cc1 | 2618 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); |
c906108c SS |
2619 | ULONGEST val; |
2620 | ULONGEST valmask; | |
c906108c | 2621 | int lsbcount; |
4a76eae5 | 2622 | int bytes_read; |
5467c6c8 | 2623 | int read_offset; |
c906108c | 2624 | |
4a76eae5 DJ |
2625 | /* Read the minimum number of bytes required; there may not be |
2626 | enough bytes to read an entire ULONGEST. */ | |
c906108c | 2627 | CHECK_TYPEDEF (field_type); |
4a76eae5 DJ |
2628 | if (bitsize) |
2629 | bytes_read = ((bitpos % 8) + bitsize + 7) / 8; | |
2630 | else | |
2631 | bytes_read = TYPE_LENGTH (field_type); | |
2632 | ||
5467c6c8 PA |
2633 | read_offset = bitpos / 8; |
2634 | ||
2635 | if (original_value != NULL | |
2636 | && !value_bytes_available (original_value, embedded_offset + read_offset, | |
2637 | bytes_read)) | |
2638 | return 0; | |
2639 | ||
2640 | val = extract_unsigned_integer (valaddr + embedded_offset + read_offset, | |
4a76eae5 | 2641 | bytes_read, byte_order); |
c906108c | 2642 | |
581e13c1 | 2643 | /* Extract bits. See comment above. */ |
c906108c | 2644 | |
4ea48cc1 | 2645 | if (gdbarch_bits_big_endian (get_type_arch (field_type))) |
4a76eae5 | 2646 | lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); |
c906108c SS |
2647 | else |
2648 | lsbcount = (bitpos % 8); | |
2649 | val >>= lsbcount; | |
2650 | ||
2651 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
581e13c1 | 2652 | If the field is signed, and is negative, then sign extend. */ |
c906108c SS |
2653 | |
2654 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
2655 | { | |
2656 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
2657 | val &= valmask; | |
2658 | if (!TYPE_UNSIGNED (field_type)) | |
2659 | { | |
2660 | if (val & (valmask ^ (valmask >> 1))) | |
2661 | { | |
2662 | val |= ~valmask; | |
2663 | } | |
2664 | } | |
2665 | } | |
5467c6c8 PA |
2666 | |
2667 | *result = val; | |
2668 | return 1; | |
c906108c SS |
2669 | } |
2670 | ||
5467c6c8 PA |
2671 | /* Unpack a bitfield of the specified FIELD_TYPE, from the object at |
2672 | VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT. | |
2673 | VALADDR points to the contents of ORIGINAL_VALUE, which must not be | |
2674 | NULL. The bitfield starts at BITPOS bits and contains BITSIZE | |
2675 | bits. | |
4ea48cc1 | 2676 | |
5467c6c8 PA |
2677 | Returns false if the value contents are unavailable, otherwise |
2678 | returns true, indicating a valid value has been stored in *RESULT. | |
2679 | ||
2680 | Extracting bits depends on endianness of the machine. Compute the | |
2681 | number of least significant bits to discard. For big endian machines, | |
2682 | we compute the total number of bits in the anonymous object, subtract | |
2683 | off the bit count from the MSB of the object to the MSB of the | |
2684 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
2685 | count. For little endian machines, the discard count is simply the | |
2686 | number of bits from the LSB of the anonymous object to the LSB of the | |
2687 | bitfield. | |
2688 | ||
2689 | If the field is signed, we also do sign extension. */ | |
2690 | ||
2691 | int | |
2692 | unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr, | |
2693 | int embedded_offset, int bitpos, int bitsize, | |
2694 | const struct value *original_value, | |
2695 | LONGEST *result) | |
2696 | { | |
2697 | gdb_assert (original_value != NULL); | |
2698 | ||
2699 | return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset, | |
2700 | bitpos, bitsize, original_value, result); | |
2701 | ||
2702 | } | |
2703 | ||
2704 | /* Unpack a field FIELDNO of the specified TYPE, from the object at | |
2705 | VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of | |
2706 | ORIGINAL_VALUE. See unpack_value_bits_as_long for more | |
2707 | details. */ | |
2708 | ||
2709 | static int | |
2710 | unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr, | |
2711 | int embedded_offset, int fieldno, | |
2712 | const struct value *val, LONGEST *result) | |
4ea48cc1 DJ |
2713 | { |
2714 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
2715 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
2716 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
2717 | ||
5467c6c8 PA |
2718 | return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset, |
2719 | bitpos, bitsize, val, | |
2720 | result); | |
2721 | } | |
2722 | ||
2723 | /* Unpack a field FIELDNO of the specified TYPE, from the object at | |
2724 | VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of | |
2725 | ORIGINAL_VALUE, which must not be NULL. See | |
2726 | unpack_value_bits_as_long for more details. */ | |
2727 | ||
2728 | int | |
2729 | unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, | |
2730 | int embedded_offset, int fieldno, | |
2731 | const struct value *val, LONGEST *result) | |
2732 | { | |
2733 | gdb_assert (val != NULL); | |
2734 | ||
2735 | return unpack_value_field_as_long_1 (type, valaddr, embedded_offset, | |
2736 | fieldno, val, result); | |
2737 | } | |
2738 | ||
2739 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous | |
2740 | object at VALADDR. See unpack_value_bits_as_long for more details. | |
2741 | This function differs from unpack_value_field_as_long in that it | |
2742 | operates without a struct value object. */ | |
2743 | ||
2744 | LONGEST | |
2745 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) | |
2746 | { | |
2747 | LONGEST result; | |
2748 | ||
2749 | unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result); | |
2750 | return result; | |
2751 | } | |
2752 | ||
2753 | /* Return a new value with type TYPE, which is FIELDNO field of the | |
2754 | object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents | |
2755 | of VAL. If the VAL's contents required to extract the bitfield | |
2756 | from are unavailable, the new value is correspondingly marked as | |
2757 | unavailable. */ | |
2758 | ||
2759 | struct value * | |
2760 | value_field_bitfield (struct type *type, int fieldno, | |
2761 | const gdb_byte *valaddr, | |
2762 | int embedded_offset, const struct value *val) | |
2763 | { | |
2764 | LONGEST l; | |
2765 | ||
2766 | if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno, | |
2767 | val, &l)) | |
2768 | { | |
2769 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
2770 | struct value *retval = allocate_value (field_type); | |
2771 | mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type)); | |
2772 | return retval; | |
2773 | } | |
2774 | else | |
2775 | { | |
2776 | return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l); | |
2777 | } | |
4ea48cc1 DJ |
2778 | } |
2779 | ||
c906108c SS |
2780 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
2781 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
2782 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
581e13c1 | 2783 | indicate which bits (in target bit order) comprise the bitfield. |
19f220c3 | 2784 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and |
f4e88c8e | 2785 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ |
c906108c SS |
2786 | |
2787 | void | |
50810684 UW |
2788 | modify_field (struct type *type, gdb_byte *addr, |
2789 | LONGEST fieldval, int bitpos, int bitsize) | |
c906108c | 2790 | { |
e17a4113 | 2791 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
f4e88c8e PH |
2792 | ULONGEST oword; |
2793 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
19f220c3 JK |
2794 | int bytesize; |
2795 | ||
2796 | /* Normalize BITPOS. */ | |
2797 | addr += bitpos / 8; | |
2798 | bitpos %= 8; | |
c906108c SS |
2799 | |
2800 | /* If a negative fieldval fits in the field in question, chop | |
2801 | off the sign extension bits. */ | |
f4e88c8e PH |
2802 | if ((~fieldval & ~(mask >> 1)) == 0) |
2803 | fieldval &= mask; | |
c906108c SS |
2804 | |
2805 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 2806 | if (0 != (fieldval & ~mask)) |
c906108c SS |
2807 | { |
2808 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 2809 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 2810 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
2811 | |
2812 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 2813 | fieldval &= mask; |
c906108c SS |
2814 | } |
2815 | ||
19f220c3 JK |
2816 | /* Ensure no bytes outside of the modified ones get accessed as it may cause |
2817 | false valgrind reports. */ | |
2818 | ||
2819 | bytesize = (bitpos + bitsize + 7) / 8; | |
2820 | oword = extract_unsigned_integer (addr, bytesize, byte_order); | |
c906108c SS |
2821 | |
2822 | /* Shifting for bit field depends on endianness of the target machine. */ | |
50810684 | 2823 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
19f220c3 | 2824 | bitpos = bytesize * 8 - bitpos - bitsize; |
c906108c | 2825 | |
f4e88c8e | 2826 | oword &= ~(mask << bitpos); |
c906108c SS |
2827 | oword |= fieldval << bitpos; |
2828 | ||
19f220c3 | 2829 | store_unsigned_integer (addr, bytesize, byte_order, oword); |
c906108c SS |
2830 | } |
2831 | \f | |
14d06750 | 2832 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 2833 | |
14d06750 DJ |
2834 | void |
2835 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 2836 | { |
e17a4113 | 2837 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
52f0bd74 | 2838 | int len; |
14d06750 DJ |
2839 | |
2840 | type = check_typedef (type); | |
c906108c SS |
2841 | len = TYPE_LENGTH (type); |
2842 | ||
14d06750 | 2843 | switch (TYPE_CODE (type)) |
c906108c | 2844 | { |
c906108c SS |
2845 | case TYPE_CODE_INT: |
2846 | case TYPE_CODE_CHAR: | |
2847 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2848 | case TYPE_CODE_FLAGS: |
c906108c SS |
2849 | case TYPE_CODE_BOOL: |
2850 | case TYPE_CODE_RANGE: | |
0d5de010 | 2851 | case TYPE_CODE_MEMBERPTR: |
e17a4113 | 2852 | store_signed_integer (buf, len, byte_order, num); |
c906108c | 2853 | break; |
c5aa993b | 2854 | |
c906108c SS |
2855 | case TYPE_CODE_REF: |
2856 | case TYPE_CODE_PTR: | |
14d06750 | 2857 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 2858 | break; |
c5aa993b | 2859 | |
c906108c | 2860 | default: |
14d06750 DJ |
2861 | error (_("Unexpected type (%d) encountered for integer constant."), |
2862 | TYPE_CODE (type)); | |
c906108c | 2863 | } |
14d06750 DJ |
2864 | } |
2865 | ||
2866 | ||
595939de PM |
2867 | /* Pack NUM into BUF using a target format of TYPE. */ |
2868 | ||
2869 | void | |
2870 | pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) | |
2871 | { | |
2872 | int len; | |
2873 | enum bfd_endian byte_order; | |
2874 | ||
2875 | type = check_typedef (type); | |
2876 | len = TYPE_LENGTH (type); | |
2877 | byte_order = gdbarch_byte_order (get_type_arch (type)); | |
2878 | ||
2879 | switch (TYPE_CODE (type)) | |
2880 | { | |
2881 | case TYPE_CODE_INT: | |
2882 | case TYPE_CODE_CHAR: | |
2883 | case TYPE_CODE_ENUM: | |
2884 | case TYPE_CODE_FLAGS: | |
2885 | case TYPE_CODE_BOOL: | |
2886 | case TYPE_CODE_RANGE: | |
2887 | case TYPE_CODE_MEMBERPTR: | |
2888 | store_unsigned_integer (buf, len, byte_order, num); | |
2889 | break; | |
2890 | ||
2891 | case TYPE_CODE_REF: | |
2892 | case TYPE_CODE_PTR: | |
2893 | store_typed_address (buf, type, (CORE_ADDR) num); | |
2894 | break; | |
2895 | ||
2896 | default: | |
3e43a32a MS |
2897 | error (_("Unexpected type (%d) encountered " |
2898 | "for unsigned integer constant."), | |
595939de PM |
2899 | TYPE_CODE (type)); |
2900 | } | |
2901 | } | |
2902 | ||
2903 | ||
14d06750 DJ |
2904 | /* Convert C numbers into newly allocated values. */ |
2905 | ||
2906 | struct value * | |
2907 | value_from_longest (struct type *type, LONGEST num) | |
2908 | { | |
2909 | struct value *val = allocate_value (type); | |
2910 | ||
2911 | pack_long (value_contents_raw (val), type, num); | |
c906108c SS |
2912 | return val; |
2913 | } | |
2914 | ||
4478b372 | 2915 | |
595939de PM |
2916 | /* Convert C unsigned numbers into newly allocated values. */ |
2917 | ||
2918 | struct value * | |
2919 | value_from_ulongest (struct type *type, ULONGEST num) | |
2920 | { | |
2921 | struct value *val = allocate_value (type); | |
2922 | ||
2923 | pack_unsigned_long (value_contents_raw (val), type, num); | |
2924 | ||
2925 | return val; | |
2926 | } | |
2927 | ||
2928 | ||
4478b372 JB |
2929 | /* Create a value representing a pointer of type TYPE to the address |
2930 | ADDR. */ | |
f23631e4 | 2931 | struct value * |
4478b372 JB |
2932 | value_from_pointer (struct type *type, CORE_ADDR addr) |
2933 | { | |
f23631e4 | 2934 | struct value *val = allocate_value (type); |
a109c7c1 | 2935 | |
cab0c772 | 2936 | store_typed_address (value_contents_raw (val), check_typedef (type), addr); |
4478b372 JB |
2937 | return val; |
2938 | } | |
2939 | ||
2940 | ||
8acb6b92 TT |
2941 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
2942 | is non-null, and whose memory address (in the inferior) is | |
2943 | ADDRESS. */ | |
2944 | ||
2945 | struct value * | |
2946 | value_from_contents_and_address (struct type *type, | |
2947 | const gdb_byte *valaddr, | |
2948 | CORE_ADDR address) | |
2949 | { | |
41e8491f | 2950 | struct value *v; |
a109c7c1 | 2951 | |
8acb6b92 | 2952 | if (valaddr == NULL) |
41e8491f | 2953 | v = allocate_value_lazy (type); |
8acb6b92 | 2954 | else |
41e8491f JK |
2955 | { |
2956 | v = allocate_value (type); | |
2957 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); | |
2958 | } | |
42ae5230 | 2959 | set_value_address (v, address); |
33d502b4 | 2960 | VALUE_LVAL (v) = lval_memory; |
8acb6b92 TT |
2961 | return v; |
2962 | } | |
2963 | ||
f23631e4 | 2964 | struct value * |
fba45db2 | 2965 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 2966 | { |
f23631e4 | 2967 | struct value *val = allocate_value (type); |
c906108c | 2968 | struct type *base_type = check_typedef (type); |
52f0bd74 | 2969 | enum type_code code = TYPE_CODE (base_type); |
c906108c SS |
2970 | |
2971 | if (code == TYPE_CODE_FLT) | |
2972 | { | |
990a07ab | 2973 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
2974 | } |
2975 | else | |
8a3fe4f8 | 2976 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
2977 | |
2978 | return val; | |
2979 | } | |
994b9211 | 2980 | |
27bc4d80 | 2981 | struct value * |
4ef30785 | 2982 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
2983 | { |
2984 | struct value *val = allocate_value (type); | |
27bc4d80 | 2985 | |
4ef30785 | 2986 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 TJB |
2987 | return val; |
2988 | } | |
2989 | ||
994b9211 AC |
2990 | struct value * |
2991 | coerce_ref (struct value *arg) | |
2992 | { | |
df407dfe | 2993 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
a109c7c1 | 2994 | |
994b9211 AC |
2995 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
2996 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 2997 | unpack_pointer (value_type (arg), |
0fd88904 | 2998 | value_contents (arg))); |
994b9211 AC |
2999 | return arg; |
3000 | } | |
3001 | ||
3002 | struct value * | |
3003 | coerce_array (struct value *arg) | |
3004 | { | |
f3134b88 TT |
3005 | struct type *type; |
3006 | ||
994b9211 | 3007 | arg = coerce_ref (arg); |
f3134b88 TT |
3008 | type = check_typedef (value_type (arg)); |
3009 | ||
3010 | switch (TYPE_CODE (type)) | |
3011 | { | |
3012 | case TYPE_CODE_ARRAY: | |
7346b668 | 3013 | if (!TYPE_VECTOR (type) && current_language->c_style_arrays) |
f3134b88 TT |
3014 | arg = value_coerce_array (arg); |
3015 | break; | |
3016 | case TYPE_CODE_FUNC: | |
3017 | arg = value_coerce_function (arg); | |
3018 | break; | |
3019 | } | |
994b9211 AC |
3020 | return arg; |
3021 | } | |
c906108c | 3022 | \f |
c906108c | 3023 | |
48436ce6 AC |
3024 | /* Return true if the function returning the specified type is using |
3025 | the convention of returning structures in memory (passing in the | |
82585c72 | 3026 | address as a hidden first parameter). */ |
c906108c SS |
3027 | |
3028 | int | |
d80b854b UW |
3029 | using_struct_return (struct gdbarch *gdbarch, |
3030 | struct type *func_type, struct type *value_type) | |
c906108c | 3031 | { |
52f0bd74 | 3032 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
3033 | |
3034 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 3035 | error (_("Function return type unknown.")); |
c906108c | 3036 | |
667e784f AC |
3037 | if (code == TYPE_CODE_VOID) |
3038 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 3039 | code in "print_return_value". */ |
667e784f AC |
3040 | return 0; |
3041 | ||
92ad9cd9 | 3042 | /* Probe the architecture for the return-value convention. */ |
d80b854b | 3043 | return (gdbarch_return_value (gdbarch, func_type, value_type, |
92ad9cd9 | 3044 | NULL, NULL, NULL) |
31db7b6c | 3045 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
3046 | } |
3047 | ||
42be36b3 CT |
3048 | /* Set the initialized field in a value struct. */ |
3049 | ||
3050 | void | |
3051 | set_value_initialized (struct value *val, int status) | |
3052 | { | |
3053 | val->initialized = status; | |
3054 | } | |
3055 | ||
3056 | /* Return the initialized field in a value struct. */ | |
3057 | ||
3058 | int | |
3059 | value_initialized (struct value *val) | |
3060 | { | |
3061 | return val->initialized; | |
3062 | } | |
3063 | ||
c906108c | 3064 | void |
fba45db2 | 3065 | _initialize_values (void) |
c906108c | 3066 | { |
1a966eab AC |
3067 | add_cmd ("convenience", no_class, show_convenience, _("\ |
3068 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 3069 | These variables are created when you assign them values;\n\ |
1a966eab AC |
3070 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
3071 | \n\ | |
c906108c SS |
3072 | A few convenience variables are given values automatically:\n\ |
3073 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 3074 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
3075 | &showlist); |
3076 | ||
3e43a32a MS |
3077 | add_cmd ("values", no_class, show_values, _("\ |
3078 | Elements of value history around item number IDX (or last ten)."), | |
c906108c | 3079 | &showlist); |
53e5f3cf AS |
3080 | |
3081 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
3082 | Initialize a convenience variable if necessary.\n\ | |
3083 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
3084 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
3085 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
3086 | VARIABLE is already initialized.")); | |
bc3b79fd TJB |
3087 | |
3088 | add_prefix_cmd ("function", no_class, function_command, _("\ | |
3089 | Placeholder command for showing help on convenience functions."), | |
3090 | &functionlist, "function ", 0, &cmdlist); | |
c906108c | 3091 | } |