]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
f23631e4 | 3 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
990a07ab AC |
4 | 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free |
5 | Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "gdb_string.h" | |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "value.h" | |
29 | #include "gdbcore.h" | |
c906108c SS |
30 | #include "command.h" |
31 | #include "gdbcmd.h" | |
32 | #include "target.h" | |
33 | #include "language.h" | |
34 | #include "scm-lang.h" | |
35 | #include "demangle.h" | |
d16aafd8 | 36 | #include "doublest.h" |
5ae326fa | 37 | #include "gdb_assert.h" |
36160dc4 | 38 | #include "regcache.h" |
fe898f56 | 39 | #include "block.h" |
c906108c SS |
40 | |
41 | /* Prototypes for exported functions. */ | |
42 | ||
a14ed312 | 43 | void _initialize_values (void); |
c906108c SS |
44 | |
45 | /* Prototypes for local functions. */ | |
46 | ||
a14ed312 | 47 | static void show_values (char *, int); |
c906108c | 48 | |
a14ed312 | 49 | static void show_convenience (char *, int); |
c906108c | 50 | |
c906108c SS |
51 | |
52 | /* The value-history records all the values printed | |
53 | by print commands during this session. Each chunk | |
54 | records 60 consecutive values. The first chunk on | |
55 | the chain records the most recent values. | |
56 | The total number of values is in value_history_count. */ | |
57 | ||
58 | #define VALUE_HISTORY_CHUNK 60 | |
59 | ||
60 | struct value_history_chunk | |
c5aa993b JM |
61 | { |
62 | struct value_history_chunk *next; | |
f23631e4 | 63 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 64 | }; |
c906108c SS |
65 | |
66 | /* Chain of chunks now in use. */ | |
67 | ||
68 | static struct value_history_chunk *value_history_chain; | |
69 | ||
70 | static int value_history_count; /* Abs number of last entry stored */ | |
71 | \f | |
72 | /* List of all value objects currently allocated | |
73 | (except for those released by calls to release_value) | |
74 | This is so they can be freed after each command. */ | |
75 | ||
f23631e4 | 76 | static struct value *all_values; |
c906108c SS |
77 | |
78 | /* Allocate a value that has the correct length for type TYPE. */ | |
79 | ||
f23631e4 | 80 | struct value * |
fba45db2 | 81 | allocate_value (struct type *type) |
c906108c | 82 | { |
f23631e4 | 83 | struct value *val; |
c906108c SS |
84 | struct type *atype = check_typedef (type); |
85 | ||
86 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); | |
df407dfe | 87 | val->next = all_values; |
c906108c | 88 | all_values = val; |
df407dfe | 89 | val->type = type; |
4754a64e | 90 | val->enclosing_type = type; |
c906108c SS |
91 | VALUE_LVAL (val) = not_lval; |
92 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 93 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
94 | val->offset = 0; |
95 | val->bitpos = 0; | |
96 | val->bitsize = 0; | |
9ee8fc9d | 97 | VALUE_REGNUM (val) = -1; |
c906108c SS |
98 | VALUE_LAZY (val) = 0; |
99 | VALUE_OPTIMIZED_OUT (val) = 0; | |
c906108c SS |
100 | VALUE_EMBEDDED_OFFSET (val) = 0; |
101 | VALUE_POINTED_TO_OFFSET (val) = 0; | |
102 | val->modifiable = 1; | |
103 | return val; | |
104 | } | |
105 | ||
106 | /* Allocate a value that has the correct length | |
107 | for COUNT repetitions type TYPE. */ | |
108 | ||
f23631e4 | 109 | struct value * |
fba45db2 | 110 | allocate_repeat_value (struct type *type, int count) |
c906108c | 111 | { |
c5aa993b | 112 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
113 | /* FIXME-type-allocation: need a way to free this type when we are |
114 | done with it. */ | |
115 | struct type *range_type | |
c5aa993b JM |
116 | = create_range_type ((struct type *) NULL, builtin_type_int, |
117 | low_bound, count + low_bound - 1); | |
c906108c SS |
118 | /* FIXME-type-allocation: need a way to free this type when we are |
119 | done with it. */ | |
120 | return allocate_value (create_array_type ((struct type *) NULL, | |
121 | type, range_type)); | |
122 | } | |
123 | ||
df407dfe AC |
124 | /* Accessor methods. */ |
125 | ||
126 | struct type * | |
127 | value_type (struct value *value) | |
128 | { | |
129 | return value->type; | |
130 | } | |
131 | ||
132 | int | |
133 | value_offset (struct value *value) | |
134 | { | |
135 | return value->offset; | |
136 | } | |
137 | ||
138 | int | |
139 | value_bitpos (struct value *value) | |
140 | { | |
141 | return value->bitpos; | |
142 | } | |
143 | ||
144 | int | |
145 | value_bitsize (struct value *value) | |
146 | { | |
147 | return value->bitsize; | |
148 | } | |
149 | ||
990a07ab AC |
150 | bfd_byte * |
151 | value_contents_raw (struct value *value) | |
152 | { | |
153 | return value->aligner.contents + value->embedded_offset; | |
154 | } | |
155 | ||
156 | bfd_byte * | |
157 | value_contents_all_raw (struct value *value) | |
158 | { | |
159 | return value->aligner.contents; | |
160 | } | |
161 | ||
4754a64e AC |
162 | struct type * |
163 | value_enclosing_type (struct value *value) | |
164 | { | |
165 | return value->enclosing_type; | |
166 | } | |
167 | ||
46615f07 AC |
168 | const bfd_byte * |
169 | value_contents_all (struct value *value) | |
170 | { | |
171 | if (value->lazy) | |
172 | value_fetch_lazy (value); | |
173 | return value->aligner.contents; | |
174 | } | |
175 | ||
990a07ab | 176 | \f |
c906108c SS |
177 | /* Return a mark in the value chain. All values allocated after the |
178 | mark is obtained (except for those released) are subject to being freed | |
179 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 180 | struct value * |
fba45db2 | 181 | value_mark (void) |
c906108c SS |
182 | { |
183 | return all_values; | |
184 | } | |
185 | ||
186 | /* Free all values allocated since MARK was obtained by value_mark | |
187 | (except for those released). */ | |
188 | void | |
f23631e4 | 189 | value_free_to_mark (struct value *mark) |
c906108c | 190 | { |
f23631e4 AC |
191 | struct value *val; |
192 | struct value *next; | |
c906108c SS |
193 | |
194 | for (val = all_values; val && val != mark; val = next) | |
195 | { | |
df407dfe | 196 | next = val->next; |
c906108c SS |
197 | value_free (val); |
198 | } | |
199 | all_values = val; | |
200 | } | |
201 | ||
202 | /* Free all the values that have been allocated (except for those released). | |
203 | Called after each command, successful or not. */ | |
204 | ||
205 | void | |
fba45db2 | 206 | free_all_values (void) |
c906108c | 207 | { |
f23631e4 AC |
208 | struct value *val; |
209 | struct value *next; | |
c906108c SS |
210 | |
211 | for (val = all_values; val; val = next) | |
212 | { | |
df407dfe | 213 | next = val->next; |
c906108c SS |
214 | value_free (val); |
215 | } | |
216 | ||
217 | all_values = 0; | |
218 | } | |
219 | ||
220 | /* Remove VAL from the chain all_values | |
221 | so it will not be freed automatically. */ | |
222 | ||
223 | void | |
f23631e4 | 224 | release_value (struct value *val) |
c906108c | 225 | { |
f23631e4 | 226 | struct value *v; |
c906108c SS |
227 | |
228 | if (all_values == val) | |
229 | { | |
230 | all_values = val->next; | |
231 | return; | |
232 | } | |
233 | ||
234 | for (v = all_values; v; v = v->next) | |
235 | { | |
236 | if (v->next == val) | |
237 | { | |
238 | v->next = val->next; | |
239 | break; | |
240 | } | |
241 | } | |
242 | } | |
243 | ||
244 | /* Release all values up to mark */ | |
f23631e4 AC |
245 | struct value * |
246 | value_release_to_mark (struct value *mark) | |
c906108c | 247 | { |
f23631e4 AC |
248 | struct value *val; |
249 | struct value *next; | |
c906108c | 250 | |
df407dfe AC |
251 | for (val = next = all_values; next; next = next->next) |
252 | if (next->next == mark) | |
c906108c | 253 | { |
df407dfe AC |
254 | all_values = next->next; |
255 | next->next = NULL; | |
c906108c SS |
256 | return val; |
257 | } | |
258 | all_values = 0; | |
259 | return val; | |
260 | } | |
261 | ||
262 | /* Return a copy of the value ARG. | |
263 | It contains the same contents, for same memory address, | |
264 | but it's a different block of storage. */ | |
265 | ||
f23631e4 AC |
266 | struct value * |
267 | value_copy (struct value *arg) | |
c906108c | 268 | { |
4754a64e | 269 | struct type *encl_type = value_enclosing_type (arg); |
f23631e4 | 270 | struct value *val = allocate_value (encl_type); |
df407dfe | 271 | val->type = arg->type; |
c906108c SS |
272 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
273 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
df407dfe AC |
274 | val->offset = arg->offset; |
275 | val->bitpos = arg->bitpos; | |
276 | val->bitsize = arg->bitsize; | |
1df6926e | 277 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 278 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
c906108c SS |
279 | VALUE_LAZY (val) = VALUE_LAZY (arg); |
280 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); | |
281 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg); | |
282 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg); | |
c906108c SS |
283 | val->modifiable = arg->modifiable; |
284 | if (!VALUE_LAZY (val)) | |
285 | { | |
990a07ab | 286 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 287 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
288 | |
289 | } | |
290 | return val; | |
291 | } | |
292 | \f | |
293 | /* Access to the value history. */ | |
294 | ||
295 | /* Record a new value in the value history. | |
296 | Returns the absolute history index of the entry. | |
297 | Result of -1 indicates the value was not saved; otherwise it is the | |
298 | value history index of this new item. */ | |
299 | ||
300 | int | |
f23631e4 | 301 | record_latest_value (struct value *val) |
c906108c SS |
302 | { |
303 | int i; | |
304 | ||
305 | /* We don't want this value to have anything to do with the inferior anymore. | |
306 | In particular, "set $1 = 50" should not affect the variable from which | |
307 | the value was taken, and fast watchpoints should be able to assume that | |
308 | a value on the value history never changes. */ | |
309 | if (VALUE_LAZY (val)) | |
310 | value_fetch_lazy (val); | |
311 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
312 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
313 | but the current contents of that location. c'est la vie... */ | |
314 | val->modifiable = 0; | |
315 | release_value (val); | |
316 | ||
317 | /* Here we treat value_history_count as origin-zero | |
318 | and applying to the value being stored now. */ | |
319 | ||
320 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
321 | if (i == 0) | |
322 | { | |
f23631e4 | 323 | struct value_history_chunk *new |
c5aa993b JM |
324 | = (struct value_history_chunk *) |
325 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
326 | memset (new->values, 0, sizeof new->values); |
327 | new->next = value_history_chain; | |
328 | value_history_chain = new; | |
329 | } | |
330 | ||
331 | value_history_chain->values[i] = val; | |
332 | ||
333 | /* Now we regard value_history_count as origin-one | |
334 | and applying to the value just stored. */ | |
335 | ||
336 | return ++value_history_count; | |
337 | } | |
338 | ||
339 | /* Return a copy of the value in the history with sequence number NUM. */ | |
340 | ||
f23631e4 | 341 | struct value * |
fba45db2 | 342 | access_value_history (int num) |
c906108c | 343 | { |
f23631e4 | 344 | struct value_history_chunk *chunk; |
52f0bd74 AC |
345 | int i; |
346 | int absnum = num; | |
c906108c SS |
347 | |
348 | if (absnum <= 0) | |
349 | absnum += value_history_count; | |
350 | ||
351 | if (absnum <= 0) | |
352 | { | |
353 | if (num == 0) | |
354 | error ("The history is empty."); | |
355 | else if (num == 1) | |
356 | error ("There is only one value in the history."); | |
357 | else | |
358 | error ("History does not go back to $$%d.", -num); | |
359 | } | |
360 | if (absnum > value_history_count) | |
361 | error ("History has not yet reached $%d.", absnum); | |
362 | ||
363 | absnum--; | |
364 | ||
365 | /* Now absnum is always absolute and origin zero. */ | |
366 | ||
367 | chunk = value_history_chain; | |
368 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
369 | i > 0; i--) | |
370 | chunk = chunk->next; | |
371 | ||
372 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
373 | } | |
374 | ||
375 | /* Clear the value history entirely. | |
376 | Must be done when new symbol tables are loaded, | |
377 | because the type pointers become invalid. */ | |
378 | ||
379 | void | |
fba45db2 | 380 | clear_value_history (void) |
c906108c | 381 | { |
f23631e4 | 382 | struct value_history_chunk *next; |
52f0bd74 | 383 | int i; |
f23631e4 | 384 | struct value *val; |
c906108c SS |
385 | |
386 | while (value_history_chain) | |
387 | { | |
388 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
389 | if ((val = value_history_chain->values[i]) != NULL) | |
b8c9b27d | 390 | xfree (val); |
c906108c | 391 | next = value_history_chain->next; |
b8c9b27d | 392 | xfree (value_history_chain); |
c906108c SS |
393 | value_history_chain = next; |
394 | } | |
395 | value_history_count = 0; | |
396 | } | |
397 | ||
398 | static void | |
fba45db2 | 399 | show_values (char *num_exp, int from_tty) |
c906108c | 400 | { |
52f0bd74 | 401 | int i; |
f23631e4 | 402 | struct value *val; |
c906108c SS |
403 | static int num = 1; |
404 | ||
405 | if (num_exp) | |
406 | { | |
c5aa993b JM |
407 | /* "info history +" should print from the stored position. |
408 | "info history <exp>" should print around value number <exp>. */ | |
c906108c | 409 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 410 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
411 | } |
412 | else | |
413 | { | |
414 | /* "info history" means print the last 10 values. */ | |
415 | num = value_history_count - 9; | |
416 | } | |
417 | ||
418 | if (num <= 0) | |
419 | num = 1; | |
420 | ||
421 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
422 | { | |
423 | val = access_value_history (i); | |
424 | printf_filtered ("$%d = ", i); | |
425 | value_print (val, gdb_stdout, 0, Val_pretty_default); | |
426 | printf_filtered ("\n"); | |
427 | } | |
428 | ||
429 | /* The next "info history +" should start after what we just printed. */ | |
430 | num += 10; | |
431 | ||
432 | /* Hitting just return after this command should do the same thing as | |
433 | "info history +". If num_exp is null, this is unnecessary, since | |
434 | "info history +" is not useful after "info history". */ | |
435 | if (from_tty && num_exp) | |
436 | { | |
437 | num_exp[0] = '+'; | |
438 | num_exp[1] = '\0'; | |
439 | } | |
440 | } | |
441 | \f | |
442 | /* Internal variables. These are variables within the debugger | |
443 | that hold values assigned by debugger commands. | |
444 | The user refers to them with a '$' prefix | |
445 | that does not appear in the variable names stored internally. */ | |
446 | ||
447 | static struct internalvar *internalvars; | |
448 | ||
449 | /* Look up an internal variable with name NAME. NAME should not | |
450 | normally include a dollar sign. | |
451 | ||
452 | If the specified internal variable does not exist, | |
453 | one is created, with a void value. */ | |
454 | ||
455 | struct internalvar * | |
fba45db2 | 456 | lookup_internalvar (char *name) |
c906108c | 457 | { |
52f0bd74 | 458 | struct internalvar *var; |
c906108c SS |
459 | |
460 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 461 | if (strcmp (var->name, name) == 0) |
c906108c SS |
462 | return var; |
463 | ||
464 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
465 | var->name = concat (name, NULL); | |
466 | var->value = allocate_value (builtin_type_void); | |
467 | release_value (var->value); | |
468 | var->next = internalvars; | |
469 | internalvars = var; | |
470 | return var; | |
471 | } | |
472 | ||
f23631e4 | 473 | struct value * |
fba45db2 | 474 | value_of_internalvar (struct internalvar *var) |
c906108c | 475 | { |
f23631e4 | 476 | struct value *val; |
c906108c | 477 | |
c906108c SS |
478 | val = value_copy (var->value); |
479 | if (VALUE_LAZY (val)) | |
480 | value_fetch_lazy (val); | |
481 | VALUE_LVAL (val) = lval_internalvar; | |
482 | VALUE_INTERNALVAR (val) = var; | |
483 | return val; | |
484 | } | |
485 | ||
486 | void | |
fba45db2 | 487 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 488 | int bitsize, struct value *newval) |
c906108c | 489 | { |
52f0bd74 | 490 | char *addr = VALUE_CONTENTS (var->value) + offset; |
c906108c | 491 | |
c906108c SS |
492 | if (bitsize) |
493 | modify_field (addr, value_as_long (newval), | |
494 | bitpos, bitsize); | |
495 | else | |
df407dfe | 496 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
497 | } |
498 | ||
499 | void | |
f23631e4 | 500 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 501 | { |
f23631e4 | 502 | struct value *newval; |
c906108c | 503 | |
c906108c SS |
504 | newval = value_copy (val); |
505 | newval->modifiable = 1; | |
506 | ||
507 | /* Force the value to be fetched from the target now, to avoid problems | |
508 | later when this internalvar is referenced and the target is gone or | |
509 | has changed. */ | |
510 | if (VALUE_LAZY (newval)) | |
511 | value_fetch_lazy (newval); | |
512 | ||
513 | /* Begin code which must not call error(). If var->value points to | |
514 | something free'd, an error() obviously leaves a dangling pointer. | |
515 | But we also get a danling pointer if var->value points to | |
516 | something in the value chain (i.e., before release_value is | |
517 | called), because after the error free_all_values will get called before | |
518 | long. */ | |
b8c9b27d | 519 | xfree (var->value); |
c906108c SS |
520 | var->value = newval; |
521 | release_value (newval); | |
522 | /* End code which must not call error(). */ | |
523 | } | |
524 | ||
525 | char * | |
fba45db2 | 526 | internalvar_name (struct internalvar *var) |
c906108c SS |
527 | { |
528 | return var->name; | |
529 | } | |
530 | ||
531 | /* Free all internalvars. Done when new symtabs are loaded, | |
532 | because that makes the values invalid. */ | |
533 | ||
534 | void | |
fba45db2 | 535 | clear_internalvars (void) |
c906108c | 536 | { |
52f0bd74 | 537 | struct internalvar *var; |
c906108c SS |
538 | |
539 | while (internalvars) | |
540 | { | |
541 | var = internalvars; | |
542 | internalvars = var->next; | |
b8c9b27d KB |
543 | xfree (var->name); |
544 | xfree (var->value); | |
545 | xfree (var); | |
c906108c SS |
546 | } |
547 | } | |
548 | ||
549 | static void | |
fba45db2 | 550 | show_convenience (char *ignore, int from_tty) |
c906108c | 551 | { |
52f0bd74 | 552 | struct internalvar *var; |
c906108c SS |
553 | int varseen = 0; |
554 | ||
555 | for (var = internalvars; var; var = var->next) | |
556 | { | |
c906108c SS |
557 | if (!varseen) |
558 | { | |
559 | varseen = 1; | |
560 | } | |
561 | printf_filtered ("$%s = ", var->name); | |
562 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); | |
563 | printf_filtered ("\n"); | |
564 | } | |
565 | if (!varseen) | |
566 | printf_unfiltered ("No debugger convenience variables now defined.\n\ | |
567 | Convenience variables have names starting with \"$\";\n\ | |
568 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
569 | } | |
570 | \f | |
571 | /* Extract a value as a C number (either long or double). | |
572 | Knows how to convert fixed values to double, or | |
573 | floating values to long. | |
574 | Does not deallocate the value. */ | |
575 | ||
576 | LONGEST | |
f23631e4 | 577 | value_as_long (struct value *val) |
c906108c SS |
578 | { |
579 | /* This coerces arrays and functions, which is necessary (e.g. | |
580 | in disassemble_command). It also dereferences references, which | |
581 | I suspect is the most logical thing to do. */ | |
994b9211 | 582 | val = coerce_array (val); |
df407dfe | 583 | return unpack_long (value_type (val), VALUE_CONTENTS (val)); |
c906108c SS |
584 | } |
585 | ||
586 | DOUBLEST | |
f23631e4 | 587 | value_as_double (struct value *val) |
c906108c SS |
588 | { |
589 | DOUBLEST foo; | |
590 | int inv; | |
c5aa993b | 591 | |
df407dfe | 592 | foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv); |
c906108c SS |
593 | if (inv) |
594 | error ("Invalid floating value found in program."); | |
595 | return foo; | |
596 | } | |
4478b372 JB |
597 | /* Extract a value as a C pointer. Does not deallocate the value. |
598 | Note that val's type may not actually be a pointer; value_as_long | |
599 | handles all the cases. */ | |
c906108c | 600 | CORE_ADDR |
f23631e4 | 601 | value_as_address (struct value *val) |
c906108c SS |
602 | { |
603 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
604 | whether we want this to be true eventually. */ | |
605 | #if 0 | |
606 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
607 | non-address (e.g. argument to "signal", "info break", etc.), or | |
608 | for pointers to char, in which the low bits *are* significant. */ | |
c5aa993b | 609 | return ADDR_BITS_REMOVE (value_as_long (val)); |
c906108c | 610 | #else |
f312f057 JB |
611 | |
612 | /* There are several targets (IA-64, PowerPC, and others) which | |
613 | don't represent pointers to functions as simply the address of | |
614 | the function's entry point. For example, on the IA-64, a | |
615 | function pointer points to a two-word descriptor, generated by | |
616 | the linker, which contains the function's entry point, and the | |
617 | value the IA-64 "global pointer" register should have --- to | |
618 | support position-independent code. The linker generates | |
619 | descriptors only for those functions whose addresses are taken. | |
620 | ||
621 | On such targets, it's difficult for GDB to convert an arbitrary | |
622 | function address into a function pointer; it has to either find | |
623 | an existing descriptor for that function, or call malloc and | |
624 | build its own. On some targets, it is impossible for GDB to | |
625 | build a descriptor at all: the descriptor must contain a jump | |
626 | instruction; data memory cannot be executed; and code memory | |
627 | cannot be modified. | |
628 | ||
629 | Upon entry to this function, if VAL is a value of type `function' | |
630 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
631 | VALUE_ADDRESS (val) is the address of the function. This is what | |
632 | you'll get if you evaluate an expression like `main'. The call | |
633 | to COERCE_ARRAY below actually does all the usual unary | |
634 | conversions, which includes converting values of type `function' | |
635 | to `pointer to function'. This is the challenging conversion | |
636 | discussed above. Then, `unpack_long' will convert that pointer | |
637 | back into an address. | |
638 | ||
639 | So, suppose the user types `disassemble foo' on an architecture | |
640 | with a strange function pointer representation, on which GDB | |
641 | cannot build its own descriptors, and suppose further that `foo' | |
642 | has no linker-built descriptor. The address->pointer conversion | |
643 | will signal an error and prevent the command from running, even | |
644 | though the next step would have been to convert the pointer | |
645 | directly back into the same address. | |
646 | ||
647 | The following shortcut avoids this whole mess. If VAL is a | |
648 | function, just return its address directly. */ | |
df407dfe AC |
649 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
650 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
651 | return VALUE_ADDRESS (val); |
652 | ||
994b9211 | 653 | val = coerce_array (val); |
fc0c74b1 AC |
654 | |
655 | /* Some architectures (e.g. Harvard), map instruction and data | |
656 | addresses onto a single large unified address space. For | |
657 | instance: An architecture may consider a large integer in the | |
658 | range 0x10000000 .. 0x1000ffff to already represent a data | |
659 | addresses (hence not need a pointer to address conversion) while | |
660 | a small integer would still need to be converted integer to | |
661 | pointer to address. Just assume such architectures handle all | |
662 | integer conversions in a single function. */ | |
663 | ||
664 | /* JimB writes: | |
665 | ||
666 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
667 | must admonish GDB hackers to make sure its behavior matches the | |
668 | compiler's, whenever possible. | |
669 | ||
670 | In general, I think GDB should evaluate expressions the same way | |
671 | the compiler does. When the user copies an expression out of | |
672 | their source code and hands it to a `print' command, they should | |
673 | get the same value the compiler would have computed. Any | |
674 | deviation from this rule can cause major confusion and annoyance, | |
675 | and needs to be justified carefully. In other words, GDB doesn't | |
676 | really have the freedom to do these conversions in clever and | |
677 | useful ways. | |
678 | ||
679 | AndrewC pointed out that users aren't complaining about how GDB | |
680 | casts integers to pointers; they are complaining that they can't | |
681 | take an address from a disassembly listing and give it to `x/i'. | |
682 | This is certainly important. | |
683 | ||
79dd2d24 | 684 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
685 | makes it possible for GDB to "get it right" in all circumstances |
686 | --- the target has complete control over how things get done, so | |
687 | people can Do The Right Thing for their target without breaking | |
688 | anyone else. The standard doesn't specify how integers get | |
689 | converted to pointers; usually, the ABI doesn't either, but | |
690 | ABI-specific code is a more reasonable place to handle it. */ | |
691 | ||
df407dfe AC |
692 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
693 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
694 | && gdbarch_integer_to_address_p (current_gdbarch)) |
695 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
696 | VALUE_CONTENTS (val)); | |
fc0c74b1 | 697 | |
df407dfe | 698 | return unpack_long (value_type (val), VALUE_CONTENTS (val)); |
c906108c SS |
699 | #endif |
700 | } | |
701 | \f | |
702 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
703 | as a long, or as a double, assuming the raw data is described | |
704 | by type TYPE. Knows how to convert different sizes of values | |
705 | and can convert between fixed and floating point. We don't assume | |
706 | any alignment for the raw data. Return value is in host byte order. | |
707 | ||
708 | If you want functions and arrays to be coerced to pointers, and | |
709 | references to be dereferenced, call value_as_long() instead. | |
710 | ||
711 | C++: It is assumed that the front-end has taken care of | |
712 | all matters concerning pointers to members. A pointer | |
713 | to member which reaches here is considered to be equivalent | |
714 | to an INT (or some size). After all, it is only an offset. */ | |
715 | ||
716 | LONGEST | |
66140c26 | 717 | unpack_long (struct type *type, const char *valaddr) |
c906108c | 718 | { |
52f0bd74 AC |
719 | enum type_code code = TYPE_CODE (type); |
720 | int len = TYPE_LENGTH (type); | |
721 | int nosign = TYPE_UNSIGNED (type); | |
c906108c SS |
722 | |
723 | if (current_language->la_language == language_scm | |
724 | && is_scmvalue_type (type)) | |
725 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
726 | ||
727 | switch (code) | |
728 | { | |
729 | case TYPE_CODE_TYPEDEF: | |
730 | return unpack_long (check_typedef (type), valaddr); | |
731 | case TYPE_CODE_ENUM: | |
732 | case TYPE_CODE_BOOL: | |
733 | case TYPE_CODE_INT: | |
734 | case TYPE_CODE_CHAR: | |
735 | case TYPE_CODE_RANGE: | |
736 | if (nosign) | |
737 | return extract_unsigned_integer (valaddr, len); | |
738 | else | |
739 | return extract_signed_integer (valaddr, len); | |
740 | ||
741 | case TYPE_CODE_FLT: | |
96d2f608 | 742 | return extract_typed_floating (valaddr, type); |
c906108c SS |
743 | |
744 | case TYPE_CODE_PTR: | |
745 | case TYPE_CODE_REF: | |
746 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 747 | whether we want this to be true eventually. */ |
4478b372 | 748 | return extract_typed_address (valaddr, type); |
c906108c SS |
749 | |
750 | case TYPE_CODE_MEMBER: | |
751 | error ("not implemented: member types in unpack_long"); | |
752 | ||
753 | default: | |
754 | error ("Value can't be converted to integer."); | |
755 | } | |
c5aa993b | 756 | return 0; /* Placate lint. */ |
c906108c SS |
757 | } |
758 | ||
759 | /* Return a double value from the specified type and address. | |
760 | INVP points to an int which is set to 0 for valid value, | |
761 | 1 for invalid value (bad float format). In either case, | |
762 | the returned double is OK to use. Argument is in target | |
763 | format, result is in host format. */ | |
764 | ||
765 | DOUBLEST | |
66140c26 | 766 | unpack_double (struct type *type, const char *valaddr, int *invp) |
c906108c SS |
767 | { |
768 | enum type_code code; | |
769 | int len; | |
770 | int nosign; | |
771 | ||
772 | *invp = 0; /* Assume valid. */ | |
773 | CHECK_TYPEDEF (type); | |
774 | code = TYPE_CODE (type); | |
775 | len = TYPE_LENGTH (type); | |
776 | nosign = TYPE_UNSIGNED (type); | |
777 | if (code == TYPE_CODE_FLT) | |
778 | { | |
75bc7ddf AC |
779 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
780 | floating-point value was valid (using the macro | |
781 | INVALID_FLOAT). That test/macro have been removed. | |
782 | ||
783 | It turns out that only the VAX defined this macro and then | |
784 | only in a non-portable way. Fixing the portability problem | |
785 | wouldn't help since the VAX floating-point code is also badly | |
786 | bit-rotten. The target needs to add definitions for the | |
787 | methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these | |
788 | exactly describe the target floating-point format. The | |
789 | problem here is that the corresponding floatformat_vax_f and | |
790 | floatformat_vax_d values these methods should be set to are | |
791 | also not defined either. Oops! | |
792 | ||
793 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
794 | definitions and the new cases for floatformat_is_valid (). */ |
795 | ||
796 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
797 | { | |
798 | *invp = 1; | |
799 | return 0.0; | |
800 | } | |
801 | ||
96d2f608 | 802 | return extract_typed_floating (valaddr, type); |
c906108c SS |
803 | } |
804 | else if (nosign) | |
805 | { | |
806 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 807 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
808 | } |
809 | else | |
810 | { | |
811 | /* Signed -- we are OK with unpack_long. */ | |
812 | return unpack_long (type, valaddr); | |
813 | } | |
814 | } | |
815 | ||
816 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
817 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
818 | We don't assume any alignment for the raw data. Return value is in | |
819 | host byte order. | |
820 | ||
821 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 822 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
823 | |
824 | C++: It is assumed that the front-end has taken care of | |
825 | all matters concerning pointers to members. A pointer | |
826 | to member which reaches here is considered to be equivalent | |
827 | to an INT (or some size). After all, it is only an offset. */ | |
828 | ||
829 | CORE_ADDR | |
66140c26 | 830 | unpack_pointer (struct type *type, const char *valaddr) |
c906108c SS |
831 | { |
832 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
833 | whether we want this to be true eventually. */ | |
834 | return unpack_long (type, valaddr); | |
835 | } | |
4478b372 | 836 | |
c906108c | 837 | \f |
2c2738a0 DC |
838 | /* Get the value of the FIELDN'th field (which must be static) of |
839 | TYPE. Return NULL if the field doesn't exist or has been | |
840 | optimized out. */ | |
c906108c | 841 | |
f23631e4 | 842 | struct value * |
fba45db2 | 843 | value_static_field (struct type *type, int fieldno) |
c906108c | 844 | { |
948e66d9 DJ |
845 | struct value *retval; |
846 | ||
c906108c SS |
847 | if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) |
848 | { | |
948e66d9 | 849 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 850 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
851 | } |
852 | else | |
853 | { | |
854 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
176620f1 | 855 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL); |
948e66d9 | 856 | if (sym == NULL) |
c906108c SS |
857 | { |
858 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
859 | as non-debuggable symbols */ |
860 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
861 | if (!msym) |
862 | return NULL; | |
863 | else | |
c5aa993b | 864 | { |
948e66d9 | 865 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 866 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
867 | } |
868 | } | |
869 | else | |
870 | { | |
948e66d9 DJ |
871 | /* SYM should never have a SYMBOL_CLASS which will require |
872 | read_var_value to use the FRAME parameter. */ | |
873 | if (symbol_read_needs_frame (sym)) | |
874 | warning ("static field's value depends on the current " | |
875 | "frame - bad debug info?"); | |
876 | retval = read_var_value (sym, NULL); | |
2b127877 | 877 | } |
948e66d9 DJ |
878 | if (retval && VALUE_LVAL (retval) == lval_memory) |
879 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
880 | VALUE_ADDRESS (retval)); | |
c906108c | 881 | } |
948e66d9 | 882 | return retval; |
c906108c SS |
883 | } |
884 | ||
2b127877 DB |
885 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
886 | You have to be careful here, since the size of the data area for the value | |
887 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
888 | than the old enclosing type, you have to allocate more space for the data. | |
889 | The return value is a pointer to the new version of this value structure. */ | |
890 | ||
f23631e4 AC |
891 | struct value * |
892 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 893 | { |
4754a64e | 894 | if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val))) |
2b127877 | 895 | { |
4754a64e | 896 | val->enclosing_type = new_encl_type; |
2b127877 DB |
897 | return val; |
898 | } | |
899 | else | |
900 | { | |
f23631e4 AC |
901 | struct value *new_val; |
902 | struct value *prev; | |
2b127877 | 903 | |
f23631e4 | 904 | new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); |
cc303028 | 905 | |
4754a64e | 906 | new_val->enclosing_type = new_encl_type; |
cc303028 | 907 | |
2b127877 DB |
908 | /* We have to make sure this ends up in the same place in the value |
909 | chain as the original copy, so it's clean-up behavior is the same. | |
910 | If the value has been released, this is a waste of time, but there | |
911 | is no way to tell that in advance, so... */ | |
912 | ||
913 | if (val != all_values) | |
914 | { | |
915 | for (prev = all_values; prev != NULL; prev = prev->next) | |
916 | { | |
917 | if (prev->next == val) | |
918 | { | |
919 | prev->next = new_val; | |
920 | break; | |
921 | } | |
922 | } | |
923 | } | |
924 | ||
925 | return new_val; | |
926 | } | |
927 | } | |
928 | ||
c906108c SS |
929 | /* Given a value ARG1 (offset by OFFSET bytes) |
930 | of a struct or union type ARG_TYPE, | |
931 | extract and return the value of one of its (non-static) fields. | |
932 | FIELDNO says which field. */ | |
933 | ||
f23631e4 AC |
934 | struct value * |
935 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 936 | int fieldno, struct type *arg_type) |
c906108c | 937 | { |
f23631e4 | 938 | struct value *v; |
52f0bd74 | 939 | struct type *type; |
c906108c SS |
940 | |
941 | CHECK_TYPEDEF (arg_type); | |
942 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
943 | ||
944 | /* Handle packed fields */ | |
945 | ||
946 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
947 | { | |
948 | v = value_from_longest (type, | |
949 | unpack_field_as_long (arg_type, | |
950 | VALUE_CONTENTS (arg1) | |
c5aa993b | 951 | + offset, |
c906108c | 952 | fieldno)); |
df407dfe AC |
953 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
954 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
955 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 956 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
957 | } |
958 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
959 | { | |
960 | /* This field is actually a base subobject, so preserve the | |
961 | entire object's contents for later references to virtual | |
962 | bases, etc. */ | |
4754a64e | 963 | v = allocate_value (value_enclosing_type (arg1)); |
df407dfe | 964 | v->type = type; |
c906108c SS |
965 | if (VALUE_LAZY (arg1)) |
966 | VALUE_LAZY (v) = 1; | |
967 | else | |
990a07ab | 968 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), |
4754a64e | 969 | TYPE_LENGTH (value_enclosing_type (arg1))); |
df407dfe | 970 | v->offset = value_offset (arg1); |
c906108c | 971 | VALUE_EMBEDDED_OFFSET (v) |
c5aa993b JM |
972 | = offset + |
973 | VALUE_EMBEDDED_OFFSET (arg1) + | |
974 | TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
c906108c SS |
975 | } |
976 | else | |
977 | { | |
978 | /* Plain old data member */ | |
979 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
980 | v = allocate_value (type); | |
981 | if (VALUE_LAZY (arg1)) | |
982 | VALUE_LAZY (v) = 1; | |
983 | else | |
990a07ab AC |
984 | memcpy (value_contents_raw (v), |
985 | value_contents_raw (arg1) + offset, | |
c906108c | 986 | TYPE_LENGTH (type)); |
df407dfe AC |
987 | v->offset = (value_offset (arg1) + offset |
988 | + VALUE_EMBEDDED_OFFSET (arg1)); | |
c906108c SS |
989 | } |
990 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
991 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
992 | VALUE_LVAL (v) = lval_internalvar_component; | |
993 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
9ee8fc9d | 994 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 995 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c | 996 | /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset |
c5aa993b | 997 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */ |
c906108c SS |
998 | return v; |
999 | } | |
1000 | ||
1001 | /* Given a value ARG1 of a struct or union type, | |
1002 | extract and return the value of one of its (non-static) fields. | |
1003 | FIELDNO says which field. */ | |
1004 | ||
f23631e4 | 1005 | struct value * |
aa1ee363 | 1006 | value_field (struct value *arg1, int fieldno) |
c906108c | 1007 | { |
df407dfe | 1008 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1009 | } |
1010 | ||
1011 | /* Return a non-virtual function as a value. | |
1012 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1013 | J is an index into F which provides the desired method. |
1014 | ||
1015 | We only use the symbol for its address, so be happy with either a | |
1016 | full symbol or a minimal symbol. | |
1017 | */ | |
c906108c | 1018 | |
f23631e4 AC |
1019 | struct value * |
1020 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1021 | int offset) |
c906108c | 1022 | { |
f23631e4 | 1023 | struct value *v; |
52f0bd74 | 1024 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1025 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1026 | struct symbol *sym; |
0478d61c | 1027 | struct minimal_symbol *msym; |
c906108c | 1028 | |
176620f1 | 1029 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL); |
5ae326fa | 1030 | if (sym != NULL) |
0478d61c | 1031 | { |
5ae326fa AC |
1032 | msym = NULL; |
1033 | } | |
1034 | else | |
1035 | { | |
1036 | gdb_assert (sym == NULL); | |
0478d61c | 1037 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1038 | if (msym == NULL) |
1039 | return NULL; | |
0478d61c FF |
1040 | } |
1041 | ||
c906108c | 1042 | v = allocate_value (ftype); |
0478d61c FF |
1043 | if (sym) |
1044 | { | |
1045 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1046 | } | |
1047 | else | |
1048 | { | |
1049 | VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym); | |
1050 | } | |
c906108c SS |
1051 | |
1052 | if (arg1p) | |
c5aa993b | 1053 | { |
df407dfe | 1054 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1055 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1056 | value_addr (*arg1p))); | |
1057 | ||
070ad9f0 | 1058 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1059 | VALUE_OFFSET (*arg1p) += offset; |
1060 | */ | |
c906108c SS |
1061 | } |
1062 | ||
1063 | return v; | |
1064 | } | |
1065 | ||
c906108c SS |
1066 | \f |
1067 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1068 | VALADDR. | |
1069 | ||
1070 | Extracting bits depends on endianness of the machine. Compute the | |
1071 | number of least significant bits to discard. For big endian machines, | |
1072 | we compute the total number of bits in the anonymous object, subtract | |
1073 | off the bit count from the MSB of the object to the MSB of the | |
1074 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1075 | count. For little endian machines, the discard count is simply the | |
1076 | number of bits from the LSB of the anonymous object to the LSB of the | |
1077 | bitfield. | |
1078 | ||
1079 | If the field is signed, we also do sign extension. */ | |
1080 | ||
1081 | LONGEST | |
66140c26 | 1082 | unpack_field_as_long (struct type *type, const char *valaddr, int fieldno) |
c906108c SS |
1083 | { |
1084 | ULONGEST val; | |
1085 | ULONGEST valmask; | |
1086 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1087 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1088 | int lsbcount; | |
1089 | struct type *field_type; | |
1090 | ||
1091 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1092 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1093 | CHECK_TYPEDEF (field_type); | |
1094 | ||
1095 | /* Extract bits. See comment above. */ | |
1096 | ||
1097 | if (BITS_BIG_ENDIAN) | |
1098 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1099 | else | |
1100 | lsbcount = (bitpos % 8); | |
1101 | val >>= lsbcount; | |
1102 | ||
1103 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1104 | If the field is signed, and is negative, then sign extend. */ | |
1105 | ||
1106 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1107 | { | |
1108 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1109 | val &= valmask; | |
1110 | if (!TYPE_UNSIGNED (field_type)) | |
1111 | { | |
1112 | if (val & (valmask ^ (valmask >> 1))) | |
1113 | { | |
1114 | val |= ~valmask; | |
1115 | } | |
1116 | } | |
1117 | } | |
1118 | return (val); | |
1119 | } | |
1120 | ||
1121 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1122 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1123 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1124 | indicate which bits (in target bit order) comprise the bitfield. |
1125 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1126 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1127 | |
1128 | void | |
fba45db2 | 1129 | modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1130 | { |
f4e88c8e PH |
1131 | ULONGEST oword; |
1132 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1133 | |
1134 | /* If a negative fieldval fits in the field in question, chop | |
1135 | off the sign extension bits. */ | |
f4e88c8e PH |
1136 | if ((~fieldval & ~(mask >> 1)) == 0) |
1137 | fieldval &= mask; | |
c906108c SS |
1138 | |
1139 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1140 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1141 | { |
1142 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1143 | we don't have a sprintf_longest. */ |
c906108c SS |
1144 | warning ("Value does not fit in %d bits.", bitsize); |
1145 | ||
1146 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1147 | fieldval &= mask; |
c906108c SS |
1148 | } |
1149 | ||
f4e88c8e | 1150 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1151 | |
1152 | /* Shifting for bit field depends on endianness of the target machine. */ | |
1153 | if (BITS_BIG_ENDIAN) | |
1154 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
1155 | ||
f4e88c8e | 1156 | oword &= ~(mask << bitpos); |
c906108c SS |
1157 | oword |= fieldval << bitpos; |
1158 | ||
f4e88c8e | 1159 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1160 | } |
1161 | \f | |
1162 | /* Convert C numbers into newly allocated values */ | |
1163 | ||
f23631e4 | 1164 | struct value * |
aa1ee363 | 1165 | value_from_longest (struct type *type, LONGEST num) |
c906108c | 1166 | { |
f23631e4 | 1167 | struct value *val = allocate_value (type); |
52f0bd74 AC |
1168 | enum type_code code; |
1169 | int len; | |
c5aa993b | 1170 | retry: |
c906108c SS |
1171 | code = TYPE_CODE (type); |
1172 | len = TYPE_LENGTH (type); | |
1173 | ||
1174 | switch (code) | |
1175 | { | |
1176 | case TYPE_CODE_TYPEDEF: | |
1177 | type = check_typedef (type); | |
1178 | goto retry; | |
1179 | case TYPE_CODE_INT: | |
1180 | case TYPE_CODE_CHAR: | |
1181 | case TYPE_CODE_ENUM: | |
1182 | case TYPE_CODE_BOOL: | |
1183 | case TYPE_CODE_RANGE: | |
990a07ab | 1184 | store_signed_integer (value_contents_raw (val), len, num); |
c906108c | 1185 | break; |
c5aa993b | 1186 | |
c906108c SS |
1187 | case TYPE_CODE_REF: |
1188 | case TYPE_CODE_PTR: | |
990a07ab | 1189 | store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num); |
c906108c | 1190 | break; |
c5aa993b | 1191 | |
c906108c SS |
1192 | default: |
1193 | error ("Unexpected type (%d) encountered for integer constant.", code); | |
1194 | } | |
1195 | return val; | |
1196 | } | |
1197 | ||
4478b372 JB |
1198 | |
1199 | /* Create a value representing a pointer of type TYPE to the address | |
1200 | ADDR. */ | |
f23631e4 | 1201 | struct value * |
4478b372 JB |
1202 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1203 | { | |
f23631e4 | 1204 | struct value *val = allocate_value (type); |
990a07ab | 1205 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1206 | return val; |
1207 | } | |
1208 | ||
1209 | ||
0f71a2f6 | 1210 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1211 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1212 | This is analogous to value_from_longest, which also does not |
1213 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1214 | ||
f23631e4 | 1215 | struct value * |
fba45db2 | 1216 | value_from_string (char *ptr) |
0f71a2f6 | 1217 | { |
f23631e4 | 1218 | struct value *val; |
c5aa993b | 1219 | int len = strlen (ptr); |
0f71a2f6 | 1220 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1221 | struct type *string_char_type; |
1222 | struct type *rangetype; | |
1223 | struct type *stringtype; | |
1224 | ||
1225 | rangetype = create_range_type ((struct type *) NULL, | |
1226 | builtin_type_int, | |
1227 | lowbound, len + lowbound - 1); | |
1228 | string_char_type = language_string_char_type (current_language, | |
1229 | current_gdbarch); | |
1230 | stringtype = create_array_type ((struct type *) NULL, | |
1231 | string_char_type, | |
1232 | rangetype); | |
0f71a2f6 | 1233 | val = allocate_value (stringtype); |
990a07ab | 1234 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1235 | return val; |
1236 | } | |
1237 | ||
f23631e4 | 1238 | struct value * |
fba45db2 | 1239 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1240 | { |
f23631e4 | 1241 | struct value *val = allocate_value (type); |
c906108c | 1242 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1243 | enum type_code code = TYPE_CODE (base_type); |
1244 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1245 | |
1246 | if (code == TYPE_CODE_FLT) | |
1247 | { | |
990a07ab | 1248 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1249 | } |
1250 | else | |
1251 | error ("Unexpected type encountered for floating constant."); | |
1252 | ||
1253 | return val; | |
1254 | } | |
994b9211 AC |
1255 | |
1256 | struct value * | |
1257 | coerce_ref (struct value *arg) | |
1258 | { | |
df407dfe | 1259 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1260 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1261 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1262 | unpack_pointer (value_type (arg), |
994b9211 AC |
1263 | VALUE_CONTENTS (arg))); |
1264 | return arg; | |
1265 | } | |
1266 | ||
1267 | struct value * | |
1268 | coerce_array (struct value *arg) | |
1269 | { | |
1270 | arg = coerce_ref (arg); | |
1271 | if (current_language->c_style_arrays | |
df407dfe | 1272 | && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY) |
994b9211 | 1273 | arg = value_coerce_array (arg); |
df407dfe | 1274 | if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC) |
994b9211 AC |
1275 | arg = value_coerce_function (arg); |
1276 | return arg; | |
1277 | } | |
1278 | ||
1279 | struct value * | |
1280 | coerce_number (struct value *arg) | |
1281 | { | |
1282 | arg = coerce_array (arg); | |
1283 | arg = coerce_enum (arg); | |
1284 | return arg; | |
1285 | } | |
1286 | ||
1287 | struct value * | |
1288 | coerce_enum (struct value *arg) | |
1289 | { | |
df407dfe | 1290 | if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM) |
994b9211 AC |
1291 | arg = value_cast (builtin_type_unsigned_int, arg); |
1292 | return arg; | |
1293 | } | |
c906108c | 1294 | \f |
c906108c | 1295 | |
74055713 AC |
1296 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
1297 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE | |
1298 | is the type (which is known to be struct, union or array). | |
c906108c SS |
1299 | |
1300 | On most machines, the struct convention is used unless we are | |
1301 | using gcc and the type is of a special size. */ | |
1302 | /* As of about 31 Mar 93, GCC was changed to be compatible with the | |
1303 | native compiler. GCC 2.3.3 was the last release that did it the | |
1304 | old way. Since gcc2_compiled was not changed, we have no | |
1305 | way to correctly win in all cases, so we just do the right thing | |
1306 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1307 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1308 | would cause more chaos than dealing with some struct returns being | |
1309 | handled wrong. */ | |
bc87dfa0 AC |
1310 | /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is |
1311 | dead. */ | |
c906108c SS |
1312 | |
1313 | int | |
fba45db2 | 1314 | generic_use_struct_convention (int gcc_p, struct type *value_type) |
c5aa993b | 1315 | { |
bc87dfa0 AC |
1316 | return !(TYPE_LENGTH (value_type) == 1 |
1317 | || TYPE_LENGTH (value_type) == 2 | |
1318 | || TYPE_LENGTH (value_type) == 4 | |
1319 | || TYPE_LENGTH (value_type) == 8); | |
c906108c SS |
1320 | } |
1321 | ||
48436ce6 AC |
1322 | /* Return true if the function returning the specified type is using |
1323 | the convention of returning structures in memory (passing in the | |
1324 | address as a hidden first parameter). GCC_P is nonzero if compiled | |
c906108c SS |
1325 | with GCC. */ |
1326 | ||
1327 | int | |
48436ce6 | 1328 | using_struct_return (struct type *value_type, int gcc_p) |
c906108c | 1329 | { |
52f0bd74 | 1330 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1331 | |
1332 | if (code == TYPE_CODE_ERROR) | |
1333 | error ("Function return type unknown."); | |
1334 | ||
667e784f AC |
1335 | if (code == TYPE_CODE_VOID) |
1336 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1337 | code in "print_return_value". */ |
667e784f AC |
1338 | return 0; |
1339 | ||
92ad9cd9 AC |
1340 | /* Probe the architecture for the return-value convention. */ |
1341 | return (gdbarch_return_value (current_gdbarch, value_type, | |
1342 | NULL, NULL, NULL) | |
31db7b6c | 1343 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
1344 | } |
1345 | ||
c906108c | 1346 | void |
fba45db2 | 1347 | _initialize_values (void) |
c906108c SS |
1348 | { |
1349 | add_cmd ("convenience", no_class, show_convenience, | |
c5aa993b | 1350 | "Debugger convenience (\"$foo\") variables.\n\ |
c906108c SS |
1351 | These variables are created when you assign them values;\n\ |
1352 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1353 | A few convenience variables are given values automatically:\n\ | |
1354 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1355 | \"$__\" holds the contents of the last address examined with \"x\".", | |
1356 | &showlist); | |
1357 | ||
1358 | add_cmd ("values", no_class, show_values, | |
1359 | "Elements of value history around item number IDX (or last ten).", | |
1360 | &showlist); | |
1361 | } |