]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
9b254dd1 | 4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
4f2aea11 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
c906108c SS |
28 | #include "command.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "language.h" | |
c906108c | 32 | #include "demangle.h" |
d16aafd8 | 33 | #include "doublest.h" |
5ae326fa | 34 | #include "gdb_assert.h" |
36160dc4 | 35 | #include "regcache.h" |
fe898f56 | 36 | #include "block.h" |
27bc4d80 | 37 | #include "dfp.h" |
bccdca4a | 38 | #include "objfiles.h" |
79a45b7d | 39 | #include "valprint.h" |
c906108c | 40 | |
a08702d6 TJB |
41 | #include "python/python.h" |
42 | ||
c906108c SS |
43 | /* Prototypes for exported functions. */ |
44 | ||
a14ed312 | 45 | void _initialize_values (void); |
c906108c | 46 | |
91294c83 AC |
47 | struct value |
48 | { | |
49 | /* Type of value; either not an lval, or one of the various | |
50 | different possible kinds of lval. */ | |
51 | enum lval_type lval; | |
52 | ||
53 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
54 | int modifiable; | |
55 | ||
56 | /* Location of value (if lval). */ | |
57 | union | |
58 | { | |
59 | /* If lval == lval_memory, this is the address in the inferior. | |
60 | If lval == lval_register, this is the byte offset into the | |
61 | registers structure. */ | |
62 | CORE_ADDR address; | |
63 | ||
64 | /* Pointer to internal variable. */ | |
65 | struct internalvar *internalvar; | |
66 | } location; | |
67 | ||
68 | /* Describes offset of a value within lval of a structure in bytes. | |
69 | If lval == lval_memory, this is an offset to the address. If | |
70 | lval == lval_register, this is a further offset from | |
71 | location.address within the registers structure. Note also the | |
72 | member embedded_offset below. */ | |
73 | int offset; | |
74 | ||
75 | /* Only used for bitfields; number of bits contained in them. */ | |
76 | int bitsize; | |
77 | ||
78 | /* Only used for bitfields; position of start of field. For | |
32c9a795 MD |
79 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
80 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ | |
91294c83 AC |
81 | int bitpos; |
82 | ||
83 | /* Frame register value is relative to. This will be described in | |
84 | the lval enum above as "lval_register". */ | |
85 | struct frame_id frame_id; | |
86 | ||
87 | /* Type of the value. */ | |
88 | struct type *type; | |
89 | ||
90 | /* If a value represents a C++ object, then the `type' field gives | |
91 | the object's compile-time type. If the object actually belongs | |
92 | to some class derived from `type', perhaps with other base | |
93 | classes and additional members, then `type' is just a subobject | |
94 | of the real thing, and the full object is probably larger than | |
95 | `type' would suggest. | |
96 | ||
97 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
98 | can actually determine the object's run-time type by looking at | |
99 | the run-time type information in the vtable. When this | |
100 | information is available, we may elect to read in the entire | |
101 | object, for several reasons: | |
102 | ||
103 | - When printing the value, the user would probably rather see the | |
104 | full object, not just the limited portion apparent from the | |
105 | compile-time type. | |
106 | ||
107 | - If `type' has virtual base classes, then even printing `type' | |
108 | alone may require reaching outside the `type' portion of the | |
109 | object to wherever the virtual base class has been stored. | |
110 | ||
111 | When we store the entire object, `enclosing_type' is the run-time | |
112 | type -- the complete object -- and `embedded_offset' is the | |
113 | offset of `type' within that larger type, in bytes. The | |
114 | value_contents() macro takes `embedded_offset' into account, so | |
115 | most GDB code continues to see the `type' portion of the value, | |
116 | just as the inferior would. | |
117 | ||
118 | If `type' is a pointer to an object, then `enclosing_type' is a | |
119 | pointer to the object's run-time type, and `pointed_to_offset' is | |
120 | the offset in bytes from the full object to the pointed-to object | |
121 | -- that is, the value `embedded_offset' would have if we followed | |
122 | the pointer and fetched the complete object. (I don't really see | |
123 | the point. Why not just determine the run-time type when you | |
124 | indirect, and avoid the special case? The contents don't matter | |
125 | until you indirect anyway.) | |
126 | ||
127 | If we're not doing anything fancy, `enclosing_type' is equal to | |
128 | `type', and `embedded_offset' is zero, so everything works | |
129 | normally. */ | |
130 | struct type *enclosing_type; | |
131 | int embedded_offset; | |
132 | int pointed_to_offset; | |
133 | ||
134 | /* Values are stored in a chain, so that they can be deleted easily | |
135 | over calls to the inferior. Values assigned to internal | |
a08702d6 TJB |
136 | variables, put into the value history or exposed to Python are |
137 | taken off this list. */ | |
91294c83 AC |
138 | struct value *next; |
139 | ||
140 | /* Register number if the value is from a register. */ | |
141 | short regnum; | |
142 | ||
143 | /* If zero, contents of this value are in the contents field. If | |
9214ee5f DJ |
144 | nonzero, contents are in inferior. If the lval field is lval_memory, |
145 | the contents are in inferior memory at location.address plus offset. | |
146 | The lval field may also be lval_register. | |
91294c83 AC |
147 | |
148 | WARNING: This field is used by the code which handles watchpoints | |
149 | (see breakpoint.c) to decide whether a particular value can be | |
150 | watched by hardware watchpoints. If the lazy flag is set for | |
151 | some member of a value chain, it is assumed that this member of | |
152 | the chain doesn't need to be watched as part of watching the | |
153 | value itself. This is how GDB avoids watching the entire struct | |
154 | or array when the user wants to watch a single struct member or | |
155 | array element. If you ever change the way lazy flag is set and | |
156 | reset, be sure to consider this use as well! */ | |
157 | char lazy; | |
158 | ||
159 | /* If nonzero, this is the value of a variable which does not | |
160 | actually exist in the program. */ | |
161 | char optimized_out; | |
162 | ||
42be36b3 CT |
163 | /* If value is a variable, is it initialized or not. */ |
164 | int initialized; | |
165 | ||
91294c83 AC |
166 | /* Actual contents of the value. For use of this value; setting it |
167 | uses the stuff above. Not valid if lazy is nonzero. Target | |
168 | byte-order. We force it to be aligned properly for any possible | |
169 | value. Note that a value therefore extends beyond what is | |
170 | declared here. */ | |
171 | union | |
172 | { | |
fc1a4b47 | 173 | gdb_byte contents[1]; |
91294c83 AC |
174 | DOUBLEST force_doublest_align; |
175 | LONGEST force_longest_align; | |
176 | CORE_ADDR force_core_addr_align; | |
177 | void *force_pointer_align; | |
178 | } aligner; | |
179 | /* Do not add any new members here -- contents above will trash | |
180 | them. */ | |
181 | }; | |
182 | ||
c906108c SS |
183 | /* Prototypes for local functions. */ |
184 | ||
a14ed312 | 185 | static void show_values (char *, int); |
c906108c | 186 | |
a14ed312 | 187 | static void show_convenience (char *, int); |
c906108c | 188 | |
c906108c SS |
189 | |
190 | /* The value-history records all the values printed | |
191 | by print commands during this session. Each chunk | |
192 | records 60 consecutive values. The first chunk on | |
193 | the chain records the most recent values. | |
194 | The total number of values is in value_history_count. */ | |
195 | ||
196 | #define VALUE_HISTORY_CHUNK 60 | |
197 | ||
198 | struct value_history_chunk | |
c5aa993b JM |
199 | { |
200 | struct value_history_chunk *next; | |
f23631e4 | 201 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 202 | }; |
c906108c SS |
203 | |
204 | /* Chain of chunks now in use. */ | |
205 | ||
206 | static struct value_history_chunk *value_history_chain; | |
207 | ||
208 | static int value_history_count; /* Abs number of last entry stored */ | |
209 | \f | |
210 | /* List of all value objects currently allocated | |
211 | (except for those released by calls to release_value) | |
212 | This is so they can be freed after each command. */ | |
213 | ||
f23631e4 | 214 | static struct value *all_values; |
c906108c SS |
215 | |
216 | /* Allocate a value that has the correct length for type TYPE. */ | |
217 | ||
f23631e4 | 218 | struct value * |
fba45db2 | 219 | allocate_value (struct type *type) |
c906108c | 220 | { |
f23631e4 | 221 | struct value *val; |
c906108c SS |
222 | struct type *atype = check_typedef (type); |
223 | ||
5b90c7b5 | 224 | val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
df407dfe | 225 | val->next = all_values; |
c906108c | 226 | all_values = val; |
df407dfe | 227 | val->type = type; |
4754a64e | 228 | val->enclosing_type = type; |
c906108c SS |
229 | VALUE_LVAL (val) = not_lval; |
230 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 231 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
232 | val->offset = 0; |
233 | val->bitpos = 0; | |
234 | val->bitsize = 0; | |
9ee8fc9d | 235 | VALUE_REGNUM (val) = -1; |
d69fe07e | 236 | val->lazy = 0; |
feb13ab0 | 237 | val->optimized_out = 0; |
13c3b5f5 | 238 | val->embedded_offset = 0; |
b44d461b | 239 | val->pointed_to_offset = 0; |
c906108c | 240 | val->modifiable = 1; |
42be36b3 | 241 | val->initialized = 1; /* Default to initialized. */ |
c906108c SS |
242 | return val; |
243 | } | |
244 | ||
245 | /* Allocate a value that has the correct length | |
938f5214 | 246 | for COUNT repetitions of type TYPE. */ |
c906108c | 247 | |
f23631e4 | 248 | struct value * |
fba45db2 | 249 | allocate_repeat_value (struct type *type, int count) |
c906108c | 250 | { |
c5aa993b | 251 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
252 | /* FIXME-type-allocation: need a way to free this type when we are |
253 | done with it. */ | |
254 | struct type *range_type | |
6d84d3d8 | 255 | = create_range_type ((struct type *) NULL, builtin_type_int32, |
c5aa993b | 256 | low_bound, count + low_bound - 1); |
c906108c SS |
257 | /* FIXME-type-allocation: need a way to free this type when we are |
258 | done with it. */ | |
259 | return allocate_value (create_array_type ((struct type *) NULL, | |
260 | type, range_type)); | |
261 | } | |
262 | ||
a08702d6 TJB |
263 | /* Needed if another module needs to maintain its on list of values. */ |
264 | void | |
265 | value_prepend_to_list (struct value **head, struct value *val) | |
266 | { | |
267 | val->next = *head; | |
268 | *head = val; | |
269 | } | |
270 | ||
271 | /* Needed if another module needs to maintain its on list of values. */ | |
272 | void | |
273 | value_remove_from_list (struct value **head, struct value *val) | |
274 | { | |
275 | struct value *prev; | |
276 | ||
277 | if (*head == val) | |
278 | *head = (*head)->next; | |
279 | else | |
280 | for (prev = *head; prev->next; prev = prev->next) | |
281 | if (prev->next == val) | |
282 | { | |
283 | prev->next = val->next; | |
284 | break; | |
285 | } | |
286 | } | |
287 | ||
df407dfe AC |
288 | /* Accessor methods. */ |
289 | ||
17cf0ecd AC |
290 | struct value * |
291 | value_next (struct value *value) | |
292 | { | |
293 | return value->next; | |
294 | } | |
295 | ||
df407dfe AC |
296 | struct type * |
297 | value_type (struct value *value) | |
298 | { | |
299 | return value->type; | |
300 | } | |
04624583 AC |
301 | void |
302 | deprecated_set_value_type (struct value *value, struct type *type) | |
303 | { | |
304 | value->type = type; | |
305 | } | |
df407dfe AC |
306 | |
307 | int | |
308 | value_offset (struct value *value) | |
309 | { | |
310 | return value->offset; | |
311 | } | |
f5cf64a7 AC |
312 | void |
313 | set_value_offset (struct value *value, int offset) | |
314 | { | |
315 | value->offset = offset; | |
316 | } | |
df407dfe AC |
317 | |
318 | int | |
319 | value_bitpos (struct value *value) | |
320 | { | |
321 | return value->bitpos; | |
322 | } | |
9bbda503 AC |
323 | void |
324 | set_value_bitpos (struct value *value, int bit) | |
325 | { | |
326 | value->bitpos = bit; | |
327 | } | |
df407dfe AC |
328 | |
329 | int | |
330 | value_bitsize (struct value *value) | |
331 | { | |
332 | return value->bitsize; | |
333 | } | |
9bbda503 AC |
334 | void |
335 | set_value_bitsize (struct value *value, int bit) | |
336 | { | |
337 | value->bitsize = bit; | |
338 | } | |
df407dfe | 339 | |
fc1a4b47 | 340 | gdb_byte * |
990a07ab AC |
341 | value_contents_raw (struct value *value) |
342 | { | |
343 | return value->aligner.contents + value->embedded_offset; | |
344 | } | |
345 | ||
fc1a4b47 | 346 | gdb_byte * |
990a07ab AC |
347 | value_contents_all_raw (struct value *value) |
348 | { | |
349 | return value->aligner.contents; | |
350 | } | |
351 | ||
4754a64e AC |
352 | struct type * |
353 | value_enclosing_type (struct value *value) | |
354 | { | |
355 | return value->enclosing_type; | |
356 | } | |
357 | ||
fc1a4b47 | 358 | const gdb_byte * |
46615f07 AC |
359 | value_contents_all (struct value *value) |
360 | { | |
361 | if (value->lazy) | |
362 | value_fetch_lazy (value); | |
363 | return value->aligner.contents; | |
364 | } | |
365 | ||
d69fe07e AC |
366 | int |
367 | value_lazy (struct value *value) | |
368 | { | |
369 | return value->lazy; | |
370 | } | |
371 | ||
dfa52d88 AC |
372 | void |
373 | set_value_lazy (struct value *value, int val) | |
374 | { | |
375 | value->lazy = val; | |
376 | } | |
377 | ||
fc1a4b47 | 378 | const gdb_byte * |
0fd88904 AC |
379 | value_contents (struct value *value) |
380 | { | |
381 | return value_contents_writeable (value); | |
382 | } | |
383 | ||
fc1a4b47 | 384 | gdb_byte * |
0fd88904 AC |
385 | value_contents_writeable (struct value *value) |
386 | { | |
387 | if (value->lazy) | |
388 | value_fetch_lazy (value); | |
fc0c53a0 | 389 | return value_contents_raw (value); |
0fd88904 AC |
390 | } |
391 | ||
a6c442d8 MK |
392 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
393 | this function is different from value_equal; in C the operator == | |
394 | can return 0 even if the two values being compared are equal. */ | |
395 | ||
396 | int | |
397 | value_contents_equal (struct value *val1, struct value *val2) | |
398 | { | |
399 | struct type *type1; | |
400 | struct type *type2; | |
401 | int len; | |
402 | ||
403 | type1 = check_typedef (value_type (val1)); | |
404 | type2 = check_typedef (value_type (val2)); | |
405 | len = TYPE_LENGTH (type1); | |
406 | if (len != TYPE_LENGTH (type2)) | |
407 | return 0; | |
408 | ||
409 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
410 | } | |
411 | ||
feb13ab0 AC |
412 | int |
413 | value_optimized_out (struct value *value) | |
414 | { | |
415 | return value->optimized_out; | |
416 | } | |
417 | ||
418 | void | |
419 | set_value_optimized_out (struct value *value, int val) | |
420 | { | |
421 | value->optimized_out = val; | |
422 | } | |
13c3b5f5 AC |
423 | |
424 | int | |
425 | value_embedded_offset (struct value *value) | |
426 | { | |
427 | return value->embedded_offset; | |
428 | } | |
429 | ||
430 | void | |
431 | set_value_embedded_offset (struct value *value, int val) | |
432 | { | |
433 | value->embedded_offset = val; | |
434 | } | |
b44d461b AC |
435 | |
436 | int | |
437 | value_pointed_to_offset (struct value *value) | |
438 | { | |
439 | return value->pointed_to_offset; | |
440 | } | |
441 | ||
442 | void | |
443 | set_value_pointed_to_offset (struct value *value, int val) | |
444 | { | |
445 | value->pointed_to_offset = val; | |
446 | } | |
13bb5560 AC |
447 | |
448 | enum lval_type * | |
449 | deprecated_value_lval_hack (struct value *value) | |
450 | { | |
451 | return &value->lval; | |
452 | } | |
453 | ||
454 | CORE_ADDR * | |
455 | deprecated_value_address_hack (struct value *value) | |
456 | { | |
457 | return &value->location.address; | |
458 | } | |
459 | ||
460 | struct internalvar ** | |
461 | deprecated_value_internalvar_hack (struct value *value) | |
462 | { | |
463 | return &value->location.internalvar; | |
464 | } | |
465 | ||
466 | struct frame_id * | |
467 | deprecated_value_frame_id_hack (struct value *value) | |
468 | { | |
469 | return &value->frame_id; | |
470 | } | |
471 | ||
472 | short * | |
473 | deprecated_value_regnum_hack (struct value *value) | |
474 | { | |
475 | return &value->regnum; | |
476 | } | |
88e3b34b AC |
477 | |
478 | int | |
479 | deprecated_value_modifiable (struct value *value) | |
480 | { | |
481 | return value->modifiable; | |
482 | } | |
483 | void | |
484 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
485 | { | |
486 | value->modifiable = modifiable; | |
487 | } | |
990a07ab | 488 | \f |
c906108c SS |
489 | /* Return a mark in the value chain. All values allocated after the |
490 | mark is obtained (except for those released) are subject to being freed | |
491 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 492 | struct value * |
fba45db2 | 493 | value_mark (void) |
c906108c SS |
494 | { |
495 | return all_values; | |
496 | } | |
497 | ||
498 | /* Free all values allocated since MARK was obtained by value_mark | |
499 | (except for those released). */ | |
500 | void | |
f23631e4 | 501 | value_free_to_mark (struct value *mark) |
c906108c | 502 | { |
f23631e4 AC |
503 | struct value *val; |
504 | struct value *next; | |
c906108c SS |
505 | |
506 | for (val = all_values; val && val != mark; val = next) | |
507 | { | |
df407dfe | 508 | next = val->next; |
c906108c SS |
509 | value_free (val); |
510 | } | |
511 | all_values = val; | |
512 | } | |
513 | ||
514 | /* Free all the values that have been allocated (except for those released). | |
515 | Called after each command, successful or not. */ | |
516 | ||
517 | void | |
fba45db2 | 518 | free_all_values (void) |
c906108c | 519 | { |
f23631e4 AC |
520 | struct value *val; |
521 | struct value *next; | |
c906108c SS |
522 | |
523 | for (val = all_values; val; val = next) | |
524 | { | |
df407dfe | 525 | next = val->next; |
c906108c SS |
526 | value_free (val); |
527 | } | |
528 | ||
529 | all_values = 0; | |
530 | } | |
531 | ||
532 | /* Remove VAL from the chain all_values | |
533 | so it will not be freed automatically. */ | |
534 | ||
535 | void | |
f23631e4 | 536 | release_value (struct value *val) |
c906108c | 537 | { |
f23631e4 | 538 | struct value *v; |
c906108c SS |
539 | |
540 | if (all_values == val) | |
541 | { | |
542 | all_values = val->next; | |
543 | return; | |
544 | } | |
545 | ||
546 | for (v = all_values; v; v = v->next) | |
547 | { | |
548 | if (v->next == val) | |
549 | { | |
550 | v->next = val->next; | |
551 | break; | |
552 | } | |
553 | } | |
554 | } | |
555 | ||
556 | /* Release all values up to mark */ | |
f23631e4 AC |
557 | struct value * |
558 | value_release_to_mark (struct value *mark) | |
c906108c | 559 | { |
f23631e4 AC |
560 | struct value *val; |
561 | struct value *next; | |
c906108c | 562 | |
df407dfe AC |
563 | for (val = next = all_values; next; next = next->next) |
564 | if (next->next == mark) | |
c906108c | 565 | { |
df407dfe AC |
566 | all_values = next->next; |
567 | next->next = NULL; | |
c906108c SS |
568 | return val; |
569 | } | |
570 | all_values = 0; | |
571 | return val; | |
572 | } | |
573 | ||
574 | /* Return a copy of the value ARG. | |
575 | It contains the same contents, for same memory address, | |
576 | but it's a different block of storage. */ | |
577 | ||
f23631e4 AC |
578 | struct value * |
579 | value_copy (struct value *arg) | |
c906108c | 580 | { |
4754a64e | 581 | struct type *encl_type = value_enclosing_type (arg); |
f23631e4 | 582 | struct value *val = allocate_value (encl_type); |
df407dfe | 583 | val->type = arg->type; |
c906108c | 584 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 585 | val->location = arg->location; |
df407dfe AC |
586 | val->offset = arg->offset; |
587 | val->bitpos = arg->bitpos; | |
588 | val->bitsize = arg->bitsize; | |
1df6926e | 589 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 590 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 591 | val->lazy = arg->lazy; |
feb13ab0 | 592 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 593 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 594 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 595 | val->modifiable = arg->modifiable; |
d69fe07e | 596 | if (!value_lazy (val)) |
c906108c | 597 | { |
990a07ab | 598 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 599 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
600 | |
601 | } | |
602 | return val; | |
603 | } | |
604 | \f | |
605 | /* Access to the value history. */ | |
606 | ||
607 | /* Record a new value in the value history. | |
608 | Returns the absolute history index of the entry. | |
609 | Result of -1 indicates the value was not saved; otherwise it is the | |
610 | value history index of this new item. */ | |
611 | ||
612 | int | |
f23631e4 | 613 | record_latest_value (struct value *val) |
c906108c SS |
614 | { |
615 | int i; | |
616 | ||
617 | /* We don't want this value to have anything to do with the inferior anymore. | |
618 | In particular, "set $1 = 50" should not affect the variable from which | |
619 | the value was taken, and fast watchpoints should be able to assume that | |
620 | a value on the value history never changes. */ | |
d69fe07e | 621 | if (value_lazy (val)) |
c906108c SS |
622 | value_fetch_lazy (val); |
623 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
624 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
625 | but the current contents of that location. c'est la vie... */ | |
626 | val->modifiable = 0; | |
627 | release_value (val); | |
628 | ||
629 | /* Here we treat value_history_count as origin-zero | |
630 | and applying to the value being stored now. */ | |
631 | ||
632 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
633 | if (i == 0) | |
634 | { | |
f23631e4 | 635 | struct value_history_chunk *new |
c5aa993b JM |
636 | = (struct value_history_chunk *) |
637 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
638 | memset (new->values, 0, sizeof new->values); |
639 | new->next = value_history_chain; | |
640 | value_history_chain = new; | |
641 | } | |
642 | ||
643 | value_history_chain->values[i] = val; | |
644 | ||
645 | /* Now we regard value_history_count as origin-one | |
646 | and applying to the value just stored. */ | |
647 | ||
648 | return ++value_history_count; | |
649 | } | |
650 | ||
651 | /* Return a copy of the value in the history with sequence number NUM. */ | |
652 | ||
f23631e4 | 653 | struct value * |
fba45db2 | 654 | access_value_history (int num) |
c906108c | 655 | { |
f23631e4 | 656 | struct value_history_chunk *chunk; |
52f0bd74 AC |
657 | int i; |
658 | int absnum = num; | |
c906108c SS |
659 | |
660 | if (absnum <= 0) | |
661 | absnum += value_history_count; | |
662 | ||
663 | if (absnum <= 0) | |
664 | { | |
665 | if (num == 0) | |
8a3fe4f8 | 666 | error (_("The history is empty.")); |
c906108c | 667 | else if (num == 1) |
8a3fe4f8 | 668 | error (_("There is only one value in the history.")); |
c906108c | 669 | else |
8a3fe4f8 | 670 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
671 | } |
672 | if (absnum > value_history_count) | |
8a3fe4f8 | 673 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
674 | |
675 | absnum--; | |
676 | ||
677 | /* Now absnum is always absolute and origin zero. */ | |
678 | ||
679 | chunk = value_history_chain; | |
680 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
681 | i > 0; i--) | |
682 | chunk = chunk->next; | |
683 | ||
684 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
685 | } | |
686 | ||
c906108c | 687 | static void |
fba45db2 | 688 | show_values (char *num_exp, int from_tty) |
c906108c | 689 | { |
52f0bd74 | 690 | int i; |
f23631e4 | 691 | struct value *val; |
c906108c SS |
692 | static int num = 1; |
693 | ||
694 | if (num_exp) | |
695 | { | |
f132ba9d TJB |
696 | /* "show values +" should print from the stored position. |
697 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 698 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 699 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
700 | } |
701 | else | |
702 | { | |
f132ba9d | 703 | /* "show values" means print the last 10 values. */ |
c906108c SS |
704 | num = value_history_count - 9; |
705 | } | |
706 | ||
707 | if (num <= 0) | |
708 | num = 1; | |
709 | ||
710 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
711 | { | |
79a45b7d | 712 | struct value_print_options opts; |
c906108c | 713 | val = access_value_history (i); |
a3f17187 | 714 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
715 | get_user_print_options (&opts); |
716 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 717 | printf_filtered (("\n")); |
c906108c SS |
718 | } |
719 | ||
f132ba9d | 720 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
721 | num += 10; |
722 | ||
723 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
724 | "show values +". If num_exp is null, this is unnecessary, since |
725 | "show values +" is not useful after "show values". */ | |
c906108c SS |
726 | if (from_tty && num_exp) |
727 | { | |
728 | num_exp[0] = '+'; | |
729 | num_exp[1] = '\0'; | |
730 | } | |
731 | } | |
732 | \f | |
733 | /* Internal variables. These are variables within the debugger | |
734 | that hold values assigned by debugger commands. | |
735 | The user refers to them with a '$' prefix | |
736 | that does not appear in the variable names stored internally. */ | |
737 | ||
738 | static struct internalvar *internalvars; | |
739 | ||
53e5f3cf AS |
740 | /* If the variable does not already exist create it and give it the value given. |
741 | If no value is given then the default is zero. */ | |
742 | static void | |
743 | init_if_undefined_command (char* args, int from_tty) | |
744 | { | |
745 | struct internalvar* intvar; | |
746 | ||
747 | /* Parse the expression - this is taken from set_command(). */ | |
748 | struct expression *expr = parse_expression (args); | |
749 | register struct cleanup *old_chain = | |
750 | make_cleanup (free_current_contents, &expr); | |
751 | ||
752 | /* Validate the expression. | |
753 | Was the expression an assignment? | |
754 | Or even an expression at all? */ | |
755 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
756 | error (_("Init-if-undefined requires an assignment expression.")); | |
757 | ||
758 | /* Extract the variable from the parsed expression. | |
759 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
760 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
761 | error (_("The first parameter to init-if-undefined should be a GDB variable.")); | |
762 | intvar = expr->elts[2].internalvar; | |
763 | ||
764 | /* Only evaluate the expression if the lvalue is void. | |
765 | This may still fail if the expresssion is invalid. */ | |
766 | if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID) | |
767 | evaluate_expression (expr); | |
768 | ||
769 | do_cleanups (old_chain); | |
770 | } | |
771 | ||
772 | ||
c906108c SS |
773 | /* Look up an internal variable with name NAME. NAME should not |
774 | normally include a dollar sign. | |
775 | ||
776 | If the specified internal variable does not exist, | |
c4a3d09a | 777 | the return value is NULL. */ |
c906108c SS |
778 | |
779 | struct internalvar * | |
c4a3d09a | 780 | lookup_only_internalvar (char *name) |
c906108c | 781 | { |
52f0bd74 | 782 | struct internalvar *var; |
c906108c SS |
783 | |
784 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 785 | if (strcmp (var->name, name) == 0) |
c906108c SS |
786 | return var; |
787 | ||
c4a3d09a MF |
788 | return NULL; |
789 | } | |
790 | ||
791 | ||
792 | /* Create an internal variable with name NAME and with a void value. | |
793 | NAME should not normally include a dollar sign. */ | |
794 | ||
795 | struct internalvar * | |
796 | create_internalvar (char *name) | |
797 | { | |
798 | struct internalvar *var; | |
c906108c | 799 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 800 | var->name = concat (name, (char *)NULL); |
c906108c | 801 | var->value = allocate_value (builtin_type_void); |
0d20ae72 | 802 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
803 | release_value (var->value); |
804 | var->next = internalvars; | |
805 | internalvars = var; | |
806 | return var; | |
807 | } | |
808 | ||
c4a3d09a MF |
809 | |
810 | /* Look up an internal variable with name NAME. NAME should not | |
811 | normally include a dollar sign. | |
812 | ||
813 | If the specified internal variable does not exist, | |
814 | one is created, with a void value. */ | |
815 | ||
816 | struct internalvar * | |
817 | lookup_internalvar (char *name) | |
818 | { | |
819 | struct internalvar *var; | |
820 | ||
821 | var = lookup_only_internalvar (name); | |
822 | if (var) | |
823 | return var; | |
824 | ||
825 | return create_internalvar (name); | |
826 | } | |
827 | ||
f23631e4 | 828 | struct value * |
fba45db2 | 829 | value_of_internalvar (struct internalvar *var) |
c906108c | 830 | { |
f23631e4 | 831 | struct value *val; |
d3c139e9 AS |
832 | int i, j; |
833 | gdb_byte temp; | |
c906108c | 834 | |
c906108c | 835 | val = value_copy (var->value); |
d69fe07e | 836 | if (value_lazy (val)) |
c906108c SS |
837 | value_fetch_lazy (val); |
838 | VALUE_LVAL (val) = lval_internalvar; | |
839 | VALUE_INTERNALVAR (val) = var; | |
d3c139e9 AS |
840 | |
841 | /* Values are always stored in the target's byte order. When connected to a | |
842 | target this will most likely always be correct, so there's normally no | |
843 | need to worry about it. | |
844 | ||
845 | However, internal variables can be set up before the target endian is | |
846 | known and so may become out of date. Fix it up before anybody sees. | |
847 | ||
848 | Internal variables usually hold simple scalar values, and we can | |
849 | correct those. More complex values (e.g. structures and floating | |
850 | point types) are left alone, because they would be too complicated | |
851 | to correct. */ | |
852 | ||
0d20ae72 | 853 | if (var->endian != gdbarch_byte_order (current_gdbarch)) |
d3c139e9 AS |
854 | { |
855 | gdb_byte *array = value_contents_raw (val); | |
856 | struct type *type = check_typedef (value_enclosing_type (val)); | |
857 | switch (TYPE_CODE (type)) | |
858 | { | |
859 | case TYPE_CODE_INT: | |
860 | case TYPE_CODE_PTR: | |
861 | /* Reverse the bytes. */ | |
862 | for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--) | |
863 | { | |
864 | temp = array[j]; | |
865 | array[j] = array[i]; | |
866 | array[i] = temp; | |
867 | } | |
868 | break; | |
869 | } | |
870 | } | |
871 | ||
c906108c SS |
872 | return val; |
873 | } | |
874 | ||
875 | void | |
fba45db2 | 876 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 877 | int bitsize, struct value *newval) |
c906108c | 878 | { |
fc1a4b47 | 879 | gdb_byte *addr = value_contents_writeable (var->value) + offset; |
c906108c | 880 | |
c906108c SS |
881 | if (bitsize) |
882 | modify_field (addr, value_as_long (newval), | |
883 | bitpos, bitsize); | |
884 | else | |
0fd88904 | 885 | memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
886 | } |
887 | ||
888 | void | |
f23631e4 | 889 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 890 | { |
f23631e4 | 891 | struct value *newval; |
c906108c | 892 | |
c906108c SS |
893 | newval = value_copy (val); |
894 | newval->modifiable = 1; | |
895 | ||
896 | /* Force the value to be fetched from the target now, to avoid problems | |
897 | later when this internalvar is referenced and the target is gone or | |
898 | has changed. */ | |
d69fe07e | 899 | if (value_lazy (newval)) |
c906108c SS |
900 | value_fetch_lazy (newval); |
901 | ||
902 | /* Begin code which must not call error(). If var->value points to | |
903 | something free'd, an error() obviously leaves a dangling pointer. | |
904 | But we also get a danling pointer if var->value points to | |
905 | something in the value chain (i.e., before release_value is | |
906 | called), because after the error free_all_values will get called before | |
907 | long. */ | |
b8c9b27d | 908 | xfree (var->value); |
c906108c | 909 | var->value = newval; |
0d20ae72 | 910 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
911 | release_value (newval); |
912 | /* End code which must not call error(). */ | |
913 | } | |
914 | ||
915 | char * | |
fba45db2 | 916 | internalvar_name (struct internalvar *var) |
c906108c SS |
917 | { |
918 | return var->name; | |
919 | } | |
920 | ||
ae5a43e0 DJ |
921 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
922 | prevent cycles / duplicates. */ | |
923 | ||
924 | static void | |
925 | preserve_one_value (struct value *value, struct objfile *objfile, | |
926 | htab_t copied_types) | |
927 | { | |
928 | if (TYPE_OBJFILE (value->type) == objfile) | |
929 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
930 | ||
931 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
932 | value->enclosing_type = copy_type_recursive (objfile, | |
933 | value->enclosing_type, | |
934 | copied_types); | |
935 | } | |
936 | ||
937 | /* Update the internal variables and value history when OBJFILE is | |
938 | discarded; we must copy the types out of the objfile. New global types | |
939 | will be created for every convenience variable which currently points to | |
940 | this objfile's types, and the convenience variables will be adjusted to | |
941 | use the new global types. */ | |
c906108c SS |
942 | |
943 | void | |
ae5a43e0 | 944 | preserve_values (struct objfile *objfile) |
c906108c | 945 | { |
ae5a43e0 DJ |
946 | htab_t copied_types; |
947 | struct value_history_chunk *cur; | |
52f0bd74 | 948 | struct internalvar *var; |
a08702d6 | 949 | struct value *val; |
ae5a43e0 | 950 | int i; |
c906108c | 951 | |
ae5a43e0 DJ |
952 | /* Create the hash table. We allocate on the objfile's obstack, since |
953 | it is soon to be deleted. */ | |
954 | copied_types = create_copied_types_hash (objfile); | |
955 | ||
956 | for (cur = value_history_chain; cur; cur = cur->next) | |
957 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
958 | if (cur->values[i]) | |
959 | preserve_one_value (cur->values[i], objfile, copied_types); | |
960 | ||
961 | for (var = internalvars; var; var = var->next) | |
962 | preserve_one_value (var->value, objfile, copied_types); | |
963 | ||
a08702d6 TJB |
964 | for (val = values_in_python; val; val = val->next) |
965 | preserve_one_value (val, objfile, copied_types); | |
966 | ||
ae5a43e0 | 967 | htab_delete (copied_types); |
c906108c SS |
968 | } |
969 | ||
970 | static void | |
fba45db2 | 971 | show_convenience (char *ignore, int from_tty) |
c906108c | 972 | { |
52f0bd74 | 973 | struct internalvar *var; |
c906108c | 974 | int varseen = 0; |
79a45b7d | 975 | struct value_print_options opts; |
c906108c | 976 | |
79a45b7d | 977 | get_user_print_options (&opts); |
c906108c SS |
978 | for (var = internalvars; var; var = var->next) |
979 | { | |
c906108c SS |
980 | if (!varseen) |
981 | { | |
982 | varseen = 1; | |
983 | } | |
a3f17187 | 984 | printf_filtered (("$%s = "), var->name); |
d3c139e9 | 985 | value_print (value_of_internalvar (var), gdb_stdout, |
79a45b7d | 986 | &opts); |
a3f17187 | 987 | printf_filtered (("\n")); |
c906108c SS |
988 | } |
989 | if (!varseen) | |
a3f17187 AC |
990 | printf_unfiltered (_("\ |
991 | No debugger convenience variables now defined.\n\ | |
c906108c | 992 | Convenience variables have names starting with \"$\";\n\ |
a3f17187 | 993 | use \"set\" as in \"set $foo = 5\" to define them.\n")); |
c906108c SS |
994 | } |
995 | \f | |
996 | /* Extract a value as a C number (either long or double). | |
997 | Knows how to convert fixed values to double, or | |
998 | floating values to long. | |
999 | Does not deallocate the value. */ | |
1000 | ||
1001 | LONGEST | |
f23631e4 | 1002 | value_as_long (struct value *val) |
c906108c SS |
1003 | { |
1004 | /* This coerces arrays and functions, which is necessary (e.g. | |
1005 | in disassemble_command). It also dereferences references, which | |
1006 | I suspect is the most logical thing to do. */ | |
994b9211 | 1007 | val = coerce_array (val); |
0fd88904 | 1008 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1009 | } |
1010 | ||
1011 | DOUBLEST | |
f23631e4 | 1012 | value_as_double (struct value *val) |
c906108c SS |
1013 | { |
1014 | DOUBLEST foo; | |
1015 | int inv; | |
c5aa993b | 1016 | |
0fd88904 | 1017 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 1018 | if (inv) |
8a3fe4f8 | 1019 | error (_("Invalid floating value found in program.")); |
c906108c SS |
1020 | return foo; |
1021 | } | |
4ef30785 | 1022 | |
4478b372 JB |
1023 | /* Extract a value as a C pointer. Does not deallocate the value. |
1024 | Note that val's type may not actually be a pointer; value_as_long | |
1025 | handles all the cases. */ | |
c906108c | 1026 | CORE_ADDR |
f23631e4 | 1027 | value_as_address (struct value *val) |
c906108c SS |
1028 | { |
1029 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1030 | whether we want this to be true eventually. */ | |
1031 | #if 0 | |
bf6ae464 | 1032 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
1033 | non-address (e.g. argument to "signal", "info break", etc.), or |
1034 | for pointers to char, in which the low bits *are* significant. */ | |
bf6ae464 | 1035 | return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val)); |
c906108c | 1036 | #else |
f312f057 JB |
1037 | |
1038 | /* There are several targets (IA-64, PowerPC, and others) which | |
1039 | don't represent pointers to functions as simply the address of | |
1040 | the function's entry point. For example, on the IA-64, a | |
1041 | function pointer points to a two-word descriptor, generated by | |
1042 | the linker, which contains the function's entry point, and the | |
1043 | value the IA-64 "global pointer" register should have --- to | |
1044 | support position-independent code. The linker generates | |
1045 | descriptors only for those functions whose addresses are taken. | |
1046 | ||
1047 | On such targets, it's difficult for GDB to convert an arbitrary | |
1048 | function address into a function pointer; it has to either find | |
1049 | an existing descriptor for that function, or call malloc and | |
1050 | build its own. On some targets, it is impossible for GDB to | |
1051 | build a descriptor at all: the descriptor must contain a jump | |
1052 | instruction; data memory cannot be executed; and code memory | |
1053 | cannot be modified. | |
1054 | ||
1055 | Upon entry to this function, if VAL is a value of type `function' | |
1056 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
1057 | VALUE_ADDRESS (val) is the address of the function. This is what | |
1058 | you'll get if you evaluate an expression like `main'. The call | |
1059 | to COERCE_ARRAY below actually does all the usual unary | |
1060 | conversions, which includes converting values of type `function' | |
1061 | to `pointer to function'. This is the challenging conversion | |
1062 | discussed above. Then, `unpack_long' will convert that pointer | |
1063 | back into an address. | |
1064 | ||
1065 | So, suppose the user types `disassemble foo' on an architecture | |
1066 | with a strange function pointer representation, on which GDB | |
1067 | cannot build its own descriptors, and suppose further that `foo' | |
1068 | has no linker-built descriptor. The address->pointer conversion | |
1069 | will signal an error and prevent the command from running, even | |
1070 | though the next step would have been to convert the pointer | |
1071 | directly back into the same address. | |
1072 | ||
1073 | The following shortcut avoids this whole mess. If VAL is a | |
1074 | function, just return its address directly. */ | |
df407dfe AC |
1075 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
1076 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
1077 | return VALUE_ADDRESS (val); |
1078 | ||
994b9211 | 1079 | val = coerce_array (val); |
fc0c74b1 AC |
1080 | |
1081 | /* Some architectures (e.g. Harvard), map instruction and data | |
1082 | addresses onto a single large unified address space. For | |
1083 | instance: An architecture may consider a large integer in the | |
1084 | range 0x10000000 .. 0x1000ffff to already represent a data | |
1085 | addresses (hence not need a pointer to address conversion) while | |
1086 | a small integer would still need to be converted integer to | |
1087 | pointer to address. Just assume such architectures handle all | |
1088 | integer conversions in a single function. */ | |
1089 | ||
1090 | /* JimB writes: | |
1091 | ||
1092 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
1093 | must admonish GDB hackers to make sure its behavior matches the | |
1094 | compiler's, whenever possible. | |
1095 | ||
1096 | In general, I think GDB should evaluate expressions the same way | |
1097 | the compiler does. When the user copies an expression out of | |
1098 | their source code and hands it to a `print' command, they should | |
1099 | get the same value the compiler would have computed. Any | |
1100 | deviation from this rule can cause major confusion and annoyance, | |
1101 | and needs to be justified carefully. In other words, GDB doesn't | |
1102 | really have the freedom to do these conversions in clever and | |
1103 | useful ways. | |
1104 | ||
1105 | AndrewC pointed out that users aren't complaining about how GDB | |
1106 | casts integers to pointers; they are complaining that they can't | |
1107 | take an address from a disassembly listing and give it to `x/i'. | |
1108 | This is certainly important. | |
1109 | ||
79dd2d24 | 1110 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
1111 | makes it possible for GDB to "get it right" in all circumstances |
1112 | --- the target has complete control over how things get done, so | |
1113 | people can Do The Right Thing for their target without breaking | |
1114 | anyone else. The standard doesn't specify how integers get | |
1115 | converted to pointers; usually, the ABI doesn't either, but | |
1116 | ABI-specific code is a more reasonable place to handle it. */ | |
1117 | ||
df407dfe AC |
1118 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
1119 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
1120 | && gdbarch_integer_to_address_p (current_gdbarch)) |
1121 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
0fd88904 | 1122 | value_contents (val)); |
fc0c74b1 | 1123 | |
0fd88904 | 1124 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1125 | #endif |
1126 | } | |
1127 | \f | |
1128 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1129 | as a long, or as a double, assuming the raw data is described | |
1130 | by type TYPE. Knows how to convert different sizes of values | |
1131 | and can convert between fixed and floating point. We don't assume | |
1132 | any alignment for the raw data. Return value is in host byte order. | |
1133 | ||
1134 | If you want functions and arrays to be coerced to pointers, and | |
1135 | references to be dereferenced, call value_as_long() instead. | |
1136 | ||
1137 | C++: It is assumed that the front-end has taken care of | |
1138 | all matters concerning pointers to members. A pointer | |
1139 | to member which reaches here is considered to be equivalent | |
1140 | to an INT (or some size). After all, it is only an offset. */ | |
1141 | ||
1142 | LONGEST | |
fc1a4b47 | 1143 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 1144 | { |
52f0bd74 AC |
1145 | enum type_code code = TYPE_CODE (type); |
1146 | int len = TYPE_LENGTH (type); | |
1147 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 1148 | |
c906108c SS |
1149 | switch (code) |
1150 | { | |
1151 | case TYPE_CODE_TYPEDEF: | |
1152 | return unpack_long (check_typedef (type), valaddr); | |
1153 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1154 | case TYPE_CODE_FLAGS: |
c906108c SS |
1155 | case TYPE_CODE_BOOL: |
1156 | case TYPE_CODE_INT: | |
1157 | case TYPE_CODE_CHAR: | |
1158 | case TYPE_CODE_RANGE: | |
0d5de010 | 1159 | case TYPE_CODE_MEMBERPTR: |
c906108c SS |
1160 | if (nosign) |
1161 | return extract_unsigned_integer (valaddr, len); | |
1162 | else | |
1163 | return extract_signed_integer (valaddr, len); | |
1164 | ||
1165 | case TYPE_CODE_FLT: | |
96d2f608 | 1166 | return extract_typed_floating (valaddr, type); |
c906108c | 1167 | |
4ef30785 TJB |
1168 | case TYPE_CODE_DECFLOAT: |
1169 | /* libdecnumber has a function to convert from decimal to integer, but | |
1170 | it doesn't work when the decimal number has a fractional part. */ | |
ba759613 | 1171 | return decimal_to_doublest (valaddr, len); |
4ef30785 | 1172 | |
c906108c SS |
1173 | case TYPE_CODE_PTR: |
1174 | case TYPE_CODE_REF: | |
1175 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 1176 | whether we want this to be true eventually. */ |
4478b372 | 1177 | return extract_typed_address (valaddr, type); |
c906108c | 1178 | |
c906108c | 1179 | default: |
8a3fe4f8 | 1180 | error (_("Value can't be converted to integer.")); |
c906108c | 1181 | } |
c5aa993b | 1182 | return 0; /* Placate lint. */ |
c906108c SS |
1183 | } |
1184 | ||
1185 | /* Return a double value from the specified type and address. | |
1186 | INVP points to an int which is set to 0 for valid value, | |
1187 | 1 for invalid value (bad float format). In either case, | |
1188 | the returned double is OK to use. Argument is in target | |
1189 | format, result is in host format. */ | |
1190 | ||
1191 | DOUBLEST | |
fc1a4b47 | 1192 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c SS |
1193 | { |
1194 | enum type_code code; | |
1195 | int len; | |
1196 | int nosign; | |
1197 | ||
1198 | *invp = 0; /* Assume valid. */ | |
1199 | CHECK_TYPEDEF (type); | |
1200 | code = TYPE_CODE (type); | |
1201 | len = TYPE_LENGTH (type); | |
1202 | nosign = TYPE_UNSIGNED (type); | |
1203 | if (code == TYPE_CODE_FLT) | |
1204 | { | |
75bc7ddf AC |
1205 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
1206 | floating-point value was valid (using the macro | |
1207 | INVALID_FLOAT). That test/macro have been removed. | |
1208 | ||
1209 | It turns out that only the VAX defined this macro and then | |
1210 | only in a non-portable way. Fixing the portability problem | |
1211 | wouldn't help since the VAX floating-point code is also badly | |
1212 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 1213 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
1214 | exactly describe the target floating-point format. The |
1215 | problem here is that the corresponding floatformat_vax_f and | |
1216 | floatformat_vax_d values these methods should be set to are | |
1217 | also not defined either. Oops! | |
1218 | ||
1219 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
1220 | definitions and the new cases for floatformat_is_valid (). */ |
1221 | ||
1222 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
1223 | { | |
1224 | *invp = 1; | |
1225 | return 0.0; | |
1226 | } | |
1227 | ||
96d2f608 | 1228 | return extract_typed_floating (valaddr, type); |
c906108c | 1229 | } |
4ef30785 | 1230 | else if (code == TYPE_CODE_DECFLOAT) |
ba759613 | 1231 | return decimal_to_doublest (valaddr, len); |
c906108c SS |
1232 | else if (nosign) |
1233 | { | |
1234 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 1235 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
1236 | } |
1237 | else | |
1238 | { | |
1239 | /* Signed -- we are OK with unpack_long. */ | |
1240 | return unpack_long (type, valaddr); | |
1241 | } | |
1242 | } | |
1243 | ||
1244 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1245 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
1246 | We don't assume any alignment for the raw data. Return value is in | |
1247 | host byte order. | |
1248 | ||
1249 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 1250 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
1251 | |
1252 | C++: It is assumed that the front-end has taken care of | |
1253 | all matters concerning pointers to members. A pointer | |
1254 | to member which reaches here is considered to be equivalent | |
1255 | to an INT (or some size). After all, it is only an offset. */ | |
1256 | ||
1257 | CORE_ADDR | |
fc1a4b47 | 1258 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
1259 | { |
1260 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1261 | whether we want this to be true eventually. */ | |
1262 | return unpack_long (type, valaddr); | |
1263 | } | |
4478b372 | 1264 | |
c906108c | 1265 | \f |
2c2738a0 DC |
1266 | /* Get the value of the FIELDN'th field (which must be static) of |
1267 | TYPE. Return NULL if the field doesn't exist or has been | |
1268 | optimized out. */ | |
c906108c | 1269 | |
f23631e4 | 1270 | struct value * |
fba45db2 | 1271 | value_static_field (struct type *type, int fieldno) |
c906108c | 1272 | { |
948e66d9 DJ |
1273 | struct value *retval; |
1274 | ||
d6a843b5 | 1275 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) |
c906108c | 1276 | { |
948e66d9 | 1277 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1278 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
1279 | } |
1280 | else | |
1281 | { | |
1282 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
2570f2b7 | 1283 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
948e66d9 | 1284 | if (sym == NULL) |
c906108c SS |
1285 | { |
1286 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
1287 | as non-debuggable symbols */ |
1288 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
1289 | if (!msym) |
1290 | return NULL; | |
1291 | else | |
c5aa993b | 1292 | { |
948e66d9 | 1293 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1294 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
1295 | } |
1296 | } | |
1297 | else | |
1298 | { | |
948e66d9 DJ |
1299 | /* SYM should never have a SYMBOL_CLASS which will require |
1300 | read_var_value to use the FRAME parameter. */ | |
1301 | if (symbol_read_needs_frame (sym)) | |
8a3fe4f8 AC |
1302 | warning (_("static field's value depends on the current " |
1303 | "frame - bad debug info?")); | |
948e66d9 | 1304 | retval = read_var_value (sym, NULL); |
2b127877 | 1305 | } |
948e66d9 DJ |
1306 | if (retval && VALUE_LVAL (retval) == lval_memory) |
1307 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
1308 | VALUE_ADDRESS (retval)); | |
c906108c | 1309 | } |
948e66d9 | 1310 | return retval; |
c906108c SS |
1311 | } |
1312 | ||
2b127877 DB |
1313 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
1314 | You have to be careful here, since the size of the data area for the value | |
1315 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
1316 | than the old enclosing type, you have to allocate more space for the data. | |
1317 | The return value is a pointer to the new version of this value structure. */ | |
1318 | ||
f23631e4 AC |
1319 | struct value * |
1320 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 1321 | { |
4754a64e | 1322 | if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val))) |
2b127877 | 1323 | { |
4754a64e | 1324 | val->enclosing_type = new_encl_type; |
2b127877 DB |
1325 | return val; |
1326 | } | |
1327 | else | |
1328 | { | |
f23631e4 AC |
1329 | struct value *new_val; |
1330 | struct value *prev; | |
2b127877 | 1331 | |
f23631e4 | 1332 | new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); |
cc303028 | 1333 | |
4754a64e | 1334 | new_val->enclosing_type = new_encl_type; |
cc303028 | 1335 | |
2b127877 DB |
1336 | /* We have to make sure this ends up in the same place in the value |
1337 | chain as the original copy, so it's clean-up behavior is the same. | |
1338 | If the value has been released, this is a waste of time, but there | |
1339 | is no way to tell that in advance, so... */ | |
1340 | ||
1341 | if (val != all_values) | |
1342 | { | |
1343 | for (prev = all_values; prev != NULL; prev = prev->next) | |
1344 | { | |
1345 | if (prev->next == val) | |
1346 | { | |
1347 | prev->next = new_val; | |
1348 | break; | |
1349 | } | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | return new_val; | |
1354 | } | |
1355 | } | |
1356 | ||
c906108c SS |
1357 | /* Given a value ARG1 (offset by OFFSET bytes) |
1358 | of a struct or union type ARG_TYPE, | |
1359 | extract and return the value of one of its (non-static) fields. | |
1360 | FIELDNO says which field. */ | |
1361 | ||
f23631e4 AC |
1362 | struct value * |
1363 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 1364 | int fieldno, struct type *arg_type) |
c906108c | 1365 | { |
f23631e4 | 1366 | struct value *v; |
52f0bd74 | 1367 | struct type *type; |
c906108c SS |
1368 | |
1369 | CHECK_TYPEDEF (arg_type); | |
1370 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
1371 | ||
1372 | /* Handle packed fields */ | |
1373 | ||
1374 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
1375 | { | |
1376 | v = value_from_longest (type, | |
1377 | unpack_field_as_long (arg_type, | |
0fd88904 | 1378 | value_contents (arg1) |
c5aa993b | 1379 | + offset, |
c906108c | 1380 | fieldno)); |
df407dfe AC |
1381 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
1382 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
1383 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 1384 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
1385 | } |
1386 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
1387 | { | |
1388 | /* This field is actually a base subobject, so preserve the | |
1389 | entire object's contents for later references to virtual | |
1390 | bases, etc. */ | |
4754a64e | 1391 | v = allocate_value (value_enclosing_type (arg1)); |
df407dfe | 1392 | v->type = type; |
a4e2ee12 DJ |
1393 | |
1394 | /* Lazy register values with offsets are not supported. */ | |
1395 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1396 | value_fetch_lazy (arg1); | |
1397 | ||
1398 | if (value_lazy (arg1)) | |
dfa52d88 | 1399 | set_value_lazy (v, 1); |
c906108c | 1400 | else |
990a07ab | 1401 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), |
4754a64e | 1402 | TYPE_LENGTH (value_enclosing_type (arg1))); |
df407dfe | 1403 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
1404 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
1405 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
1406 | } |
1407 | else | |
1408 | { | |
1409 | /* Plain old data member */ | |
1410 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
1411 | v = allocate_value (type); | |
a4e2ee12 DJ |
1412 | |
1413 | /* Lazy register values with offsets are not supported. */ | |
1414 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1415 | value_fetch_lazy (arg1); | |
1416 | ||
1417 | if (value_lazy (arg1)) | |
dfa52d88 | 1418 | set_value_lazy (v, 1); |
c906108c | 1419 | else |
990a07ab AC |
1420 | memcpy (value_contents_raw (v), |
1421 | value_contents_raw (arg1) + offset, | |
c906108c | 1422 | TYPE_LENGTH (type)); |
df407dfe | 1423 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 1424 | + value_embedded_offset (arg1)); |
c906108c SS |
1425 | } |
1426 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
1427 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
1428 | VALUE_LVAL (v) = lval_internalvar_component; | |
7d85ee02 | 1429 | v->location = arg1->location; |
9ee8fc9d | 1430 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1431 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
1432 | return v; |
1433 | } | |
1434 | ||
1435 | /* Given a value ARG1 of a struct or union type, | |
1436 | extract and return the value of one of its (non-static) fields. | |
1437 | FIELDNO says which field. */ | |
1438 | ||
f23631e4 | 1439 | struct value * |
aa1ee363 | 1440 | value_field (struct value *arg1, int fieldno) |
c906108c | 1441 | { |
df407dfe | 1442 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1443 | } |
1444 | ||
1445 | /* Return a non-virtual function as a value. | |
1446 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1447 | J is an index into F which provides the desired method. |
1448 | ||
1449 | We only use the symbol for its address, so be happy with either a | |
1450 | full symbol or a minimal symbol. | |
1451 | */ | |
c906108c | 1452 | |
f23631e4 AC |
1453 | struct value * |
1454 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1455 | int offset) |
c906108c | 1456 | { |
f23631e4 | 1457 | struct value *v; |
52f0bd74 | 1458 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1459 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1460 | struct symbol *sym; |
0478d61c | 1461 | struct minimal_symbol *msym; |
c906108c | 1462 | |
2570f2b7 | 1463 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); |
5ae326fa | 1464 | if (sym != NULL) |
0478d61c | 1465 | { |
5ae326fa AC |
1466 | msym = NULL; |
1467 | } | |
1468 | else | |
1469 | { | |
1470 | gdb_assert (sym == NULL); | |
0478d61c | 1471 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1472 | if (msym == NULL) |
1473 | return NULL; | |
0478d61c FF |
1474 | } |
1475 | ||
c906108c | 1476 | v = allocate_value (ftype); |
0478d61c FF |
1477 | if (sym) |
1478 | { | |
1479 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1480 | } | |
1481 | else | |
1482 | { | |
bccdca4a UW |
1483 | /* The minimal symbol might point to a function descriptor; |
1484 | resolve it to the actual code address instead. */ | |
1485 | struct objfile *objfile = msymbol_objfile (msym); | |
1486 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
1487 | ||
1488 | VALUE_ADDRESS (v) | |
1489 | = gdbarch_convert_from_func_ptr_addr | |
1490 | (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target); | |
0478d61c | 1491 | } |
c906108c SS |
1492 | |
1493 | if (arg1p) | |
c5aa993b | 1494 | { |
df407dfe | 1495 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1496 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1497 | value_addr (*arg1p))); | |
1498 | ||
070ad9f0 | 1499 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1500 | VALUE_OFFSET (*arg1p) += offset; |
1501 | */ | |
c906108c SS |
1502 | } |
1503 | ||
1504 | return v; | |
1505 | } | |
1506 | ||
c906108c SS |
1507 | \f |
1508 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1509 | VALADDR. | |
1510 | ||
1511 | Extracting bits depends on endianness of the machine. Compute the | |
1512 | number of least significant bits to discard. For big endian machines, | |
1513 | we compute the total number of bits in the anonymous object, subtract | |
1514 | off the bit count from the MSB of the object to the MSB of the | |
1515 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1516 | count. For little endian machines, the discard count is simply the | |
1517 | number of bits from the LSB of the anonymous object to the LSB of the | |
1518 | bitfield. | |
1519 | ||
1520 | If the field is signed, we also do sign extension. */ | |
1521 | ||
1522 | LONGEST | |
fc1a4b47 | 1523 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) |
c906108c SS |
1524 | { |
1525 | ULONGEST val; | |
1526 | ULONGEST valmask; | |
1527 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1528 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1529 | int lsbcount; | |
1530 | struct type *field_type; | |
1531 | ||
1532 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1533 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1534 | CHECK_TYPEDEF (field_type); | |
1535 | ||
1536 | /* Extract bits. See comment above. */ | |
1537 | ||
32c9a795 | 1538 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1539 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
1540 | else | |
1541 | lsbcount = (bitpos % 8); | |
1542 | val >>= lsbcount; | |
1543 | ||
1544 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1545 | If the field is signed, and is negative, then sign extend. */ | |
1546 | ||
1547 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1548 | { | |
1549 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1550 | val &= valmask; | |
1551 | if (!TYPE_UNSIGNED (field_type)) | |
1552 | { | |
1553 | if (val & (valmask ^ (valmask >> 1))) | |
1554 | { | |
1555 | val |= ~valmask; | |
1556 | } | |
1557 | } | |
1558 | } | |
1559 | return (val); | |
1560 | } | |
1561 | ||
1562 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1563 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1564 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1565 | indicate which bits (in target bit order) comprise the bitfield. |
1566 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1567 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1568 | |
1569 | void | |
fc1a4b47 | 1570 | modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1571 | { |
f4e88c8e PH |
1572 | ULONGEST oword; |
1573 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1574 | |
1575 | /* If a negative fieldval fits in the field in question, chop | |
1576 | off the sign extension bits. */ | |
f4e88c8e PH |
1577 | if ((~fieldval & ~(mask >> 1)) == 0) |
1578 | fieldval &= mask; | |
c906108c SS |
1579 | |
1580 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1581 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1582 | { |
1583 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1584 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 1585 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
1586 | |
1587 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1588 | fieldval &= mask; |
c906108c SS |
1589 | } |
1590 | ||
f4e88c8e | 1591 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1592 | |
1593 | /* Shifting for bit field depends on endianness of the target machine. */ | |
32c9a795 | 1594 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1595 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1596 | ||
f4e88c8e | 1597 | oword &= ~(mask << bitpos); |
c906108c SS |
1598 | oword |= fieldval << bitpos; |
1599 | ||
f4e88c8e | 1600 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1601 | } |
1602 | \f | |
14d06750 | 1603 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 1604 | |
14d06750 DJ |
1605 | void |
1606 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 1607 | { |
52f0bd74 | 1608 | int len; |
14d06750 DJ |
1609 | |
1610 | type = check_typedef (type); | |
c906108c SS |
1611 | len = TYPE_LENGTH (type); |
1612 | ||
14d06750 | 1613 | switch (TYPE_CODE (type)) |
c906108c | 1614 | { |
c906108c SS |
1615 | case TYPE_CODE_INT: |
1616 | case TYPE_CODE_CHAR: | |
1617 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1618 | case TYPE_CODE_FLAGS: |
c906108c SS |
1619 | case TYPE_CODE_BOOL: |
1620 | case TYPE_CODE_RANGE: | |
0d5de010 | 1621 | case TYPE_CODE_MEMBERPTR: |
14d06750 | 1622 | store_signed_integer (buf, len, num); |
c906108c | 1623 | break; |
c5aa993b | 1624 | |
c906108c SS |
1625 | case TYPE_CODE_REF: |
1626 | case TYPE_CODE_PTR: | |
14d06750 | 1627 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 1628 | break; |
c5aa993b | 1629 | |
c906108c | 1630 | default: |
14d06750 DJ |
1631 | error (_("Unexpected type (%d) encountered for integer constant."), |
1632 | TYPE_CODE (type)); | |
c906108c | 1633 | } |
14d06750 DJ |
1634 | } |
1635 | ||
1636 | ||
1637 | /* Convert C numbers into newly allocated values. */ | |
1638 | ||
1639 | struct value * | |
1640 | value_from_longest (struct type *type, LONGEST num) | |
1641 | { | |
1642 | struct value *val = allocate_value (type); | |
1643 | ||
1644 | pack_long (value_contents_raw (val), type, num); | |
1645 | ||
c906108c SS |
1646 | return val; |
1647 | } | |
1648 | ||
4478b372 JB |
1649 | |
1650 | /* Create a value representing a pointer of type TYPE to the address | |
1651 | ADDR. */ | |
f23631e4 | 1652 | struct value * |
4478b372 JB |
1653 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1654 | { | |
f23631e4 | 1655 | struct value *val = allocate_value (type); |
990a07ab | 1656 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1657 | return val; |
1658 | } | |
1659 | ||
1660 | ||
0f71a2f6 | 1661 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1662 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1663 | This is analogous to value_from_longest, which also does not |
1664 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1665 | ||
f23631e4 | 1666 | struct value * |
fba45db2 | 1667 | value_from_string (char *ptr) |
0f71a2f6 | 1668 | { |
f23631e4 | 1669 | struct value *val; |
c5aa993b | 1670 | int len = strlen (ptr); |
0f71a2f6 | 1671 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1672 | struct type *string_char_type; |
1673 | struct type *rangetype; | |
1674 | struct type *stringtype; | |
1675 | ||
1676 | rangetype = create_range_type ((struct type *) NULL, | |
6d84d3d8 | 1677 | builtin_type_int32, |
f290d38e AC |
1678 | lowbound, len + lowbound - 1); |
1679 | string_char_type = language_string_char_type (current_language, | |
1680 | current_gdbarch); | |
1681 | stringtype = create_array_type ((struct type *) NULL, | |
1682 | string_char_type, | |
1683 | rangetype); | |
0f71a2f6 | 1684 | val = allocate_value (stringtype); |
990a07ab | 1685 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1686 | return val; |
1687 | } | |
1688 | ||
8acb6b92 TT |
1689 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
1690 | is non-null, and whose memory address (in the inferior) is | |
1691 | ADDRESS. */ | |
1692 | ||
1693 | struct value * | |
1694 | value_from_contents_and_address (struct type *type, | |
1695 | const gdb_byte *valaddr, | |
1696 | CORE_ADDR address) | |
1697 | { | |
1698 | struct value *v = allocate_value (type); | |
1699 | if (valaddr == NULL) | |
1700 | set_value_lazy (v, 1); | |
1701 | else | |
1702 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); | |
1703 | VALUE_ADDRESS (v) = address; | |
1704 | if (address != 0) | |
1705 | VALUE_LVAL (v) = lval_memory; | |
1706 | return v; | |
1707 | } | |
1708 | ||
f23631e4 | 1709 | struct value * |
fba45db2 | 1710 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1711 | { |
f23631e4 | 1712 | struct value *val = allocate_value (type); |
c906108c | 1713 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1714 | enum type_code code = TYPE_CODE (base_type); |
1715 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1716 | |
1717 | if (code == TYPE_CODE_FLT) | |
1718 | { | |
990a07ab | 1719 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1720 | } |
1721 | else | |
8a3fe4f8 | 1722 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
1723 | |
1724 | return val; | |
1725 | } | |
994b9211 | 1726 | |
27bc4d80 | 1727 | struct value * |
4ef30785 | 1728 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
1729 | { |
1730 | struct value *val = allocate_value (type); | |
27bc4d80 | 1731 | |
4ef30785 | 1732 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 | 1733 | |
27bc4d80 TJB |
1734 | return val; |
1735 | } | |
1736 | ||
994b9211 AC |
1737 | struct value * |
1738 | coerce_ref (struct value *arg) | |
1739 | { | |
df407dfe | 1740 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1741 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1742 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1743 | unpack_pointer (value_type (arg), |
0fd88904 | 1744 | value_contents (arg))); |
994b9211 AC |
1745 | return arg; |
1746 | } | |
1747 | ||
1748 | struct value * | |
1749 | coerce_array (struct value *arg) | |
1750 | { | |
f3134b88 TT |
1751 | struct type *type; |
1752 | ||
994b9211 | 1753 | arg = coerce_ref (arg); |
f3134b88 TT |
1754 | type = check_typedef (value_type (arg)); |
1755 | ||
1756 | switch (TYPE_CODE (type)) | |
1757 | { | |
1758 | case TYPE_CODE_ARRAY: | |
1759 | if (current_language->c_style_arrays) | |
1760 | arg = value_coerce_array (arg); | |
1761 | break; | |
1762 | case TYPE_CODE_FUNC: | |
1763 | arg = value_coerce_function (arg); | |
1764 | break; | |
1765 | } | |
994b9211 AC |
1766 | return arg; |
1767 | } | |
c906108c | 1768 | \f |
c906108c | 1769 | |
48436ce6 AC |
1770 | /* Return true if the function returning the specified type is using |
1771 | the convention of returning structures in memory (passing in the | |
82585c72 | 1772 | address as a hidden first parameter). */ |
c906108c SS |
1773 | |
1774 | int | |
c055b101 | 1775 | using_struct_return (struct type *func_type, struct type *value_type) |
c906108c | 1776 | { |
52f0bd74 | 1777 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1778 | |
1779 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 1780 | error (_("Function return type unknown.")); |
c906108c | 1781 | |
667e784f AC |
1782 | if (code == TYPE_CODE_VOID) |
1783 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1784 | code in "print_return_value". */ |
667e784f AC |
1785 | return 0; |
1786 | ||
92ad9cd9 | 1787 | /* Probe the architecture for the return-value convention. */ |
c055b101 | 1788 | return (gdbarch_return_value (current_gdbarch, func_type, value_type, |
92ad9cd9 | 1789 | NULL, NULL, NULL) |
31db7b6c | 1790 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
1791 | } |
1792 | ||
42be36b3 CT |
1793 | /* Set the initialized field in a value struct. */ |
1794 | ||
1795 | void | |
1796 | set_value_initialized (struct value *val, int status) | |
1797 | { | |
1798 | val->initialized = status; | |
1799 | } | |
1800 | ||
1801 | /* Return the initialized field in a value struct. */ | |
1802 | ||
1803 | int | |
1804 | value_initialized (struct value *val) | |
1805 | { | |
1806 | return val->initialized; | |
1807 | } | |
1808 | ||
c906108c | 1809 | void |
fba45db2 | 1810 | _initialize_values (void) |
c906108c | 1811 | { |
1a966eab AC |
1812 | add_cmd ("convenience", no_class, show_convenience, _("\ |
1813 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 1814 | These variables are created when you assign them values;\n\ |
1a966eab AC |
1815 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
1816 | \n\ | |
c906108c SS |
1817 | A few convenience variables are given values automatically:\n\ |
1818 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 1819 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
1820 | &showlist); |
1821 | ||
1822 | add_cmd ("values", no_class, show_values, | |
1a966eab | 1823 | _("Elements of value history around item number IDX (or last ten)."), |
c906108c | 1824 | &showlist); |
53e5f3cf AS |
1825 | |
1826 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
1827 | Initialize a convenience variable if necessary.\n\ | |
1828 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
1829 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
1830 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
1831 | VARIABLE is already initialized.")); | |
c906108c | 1832 | } |