]>
Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
e53bef9f | 3 | Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
53e95fcf JS |
4 | Contributed by Jiri Smid, SuSE Labs. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
c4f35dd8 MK |
24 | #include "arch-utils.h" |
25 | #include "block.h" | |
26 | #include "dummy-frame.h" | |
27 | #include "frame.h" | |
28 | #include "frame-base.h" | |
29 | #include "frame-unwind.h" | |
53e95fcf | 30 | #include "inferior.h" |
53e95fcf | 31 | #include "gdbcmd.h" |
c4f35dd8 MK |
32 | #include "gdbcore.h" |
33 | #include "objfiles.h" | |
53e95fcf | 34 | #include "regcache.h" |
2c261fae | 35 | #include "regset.h" |
53e95fcf | 36 | #include "symfile.h" |
c4f35dd8 | 37 | |
82dbc5f7 | 38 | #include "gdb_assert.h" |
c4f35dd8 MK |
39 | |
40 | #include "x86-64-tdep.h" | |
41 | #include "i387-tdep.h" | |
53e95fcf | 42 | |
e53bef9f MK |
43 | /* Note that the AMD64 architecture was previously known as x86-64. |
44 | The latter is (forever) engraved into the canonical system name as | |
45 | returned bu config.guess, and used as the name for the AMD64 port | |
46 | of GNU/Linux. The BSD's have renamed their ports to amd64; they | |
47 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
48 | x86_64_-prefix since it's so much easier to type. */ | |
49 | ||
402ecd56 | 50 | /* Register information. */ |
c4f35dd8 | 51 | |
e53bef9f | 52 | struct amd64_register_info |
de220d0f | 53 | { |
de220d0f ML |
54 | char *name; |
55 | struct type **type; | |
56 | }; | |
53e95fcf | 57 | |
e53bef9f | 58 | static struct amd64_register_info amd64_register_info[] = |
c4f35dd8 MK |
59 | { |
60 | { "rax", &builtin_type_int64 }, | |
61 | { "rbx", &builtin_type_int64 }, | |
62 | { "rcx", &builtin_type_int64 }, | |
63 | { "rdx", &builtin_type_int64 }, | |
64 | { "rsi", &builtin_type_int64 }, | |
65 | { "rdi", &builtin_type_int64 }, | |
66 | { "rbp", &builtin_type_void_data_ptr }, | |
67 | { "rsp", &builtin_type_void_data_ptr }, | |
68 | ||
69 | /* %r8 is indeed register number 8. */ | |
70 | { "r8", &builtin_type_int64 }, | |
71 | { "r9", &builtin_type_int64 }, | |
72 | { "r10", &builtin_type_int64 }, | |
73 | { "r11", &builtin_type_int64 }, | |
74 | { "r12", &builtin_type_int64 }, | |
75 | { "r13", &builtin_type_int64 }, | |
76 | { "r14", &builtin_type_int64 }, | |
77 | { "r15", &builtin_type_int64 }, | |
78 | { "rip", &builtin_type_void_func_ptr }, | |
79 | { "eflags", &builtin_type_int32 }, | |
80 | { "ds", &builtin_type_int32 }, | |
81 | { "es", &builtin_type_int32 }, | |
82 | { "fs", &builtin_type_int32 }, | |
83 | { "gs", &builtin_type_int32 }, | |
84 | ||
85 | /* %st0 is register number 22. */ | |
86 | { "st0", &builtin_type_i387_ext }, | |
87 | { "st1", &builtin_type_i387_ext }, | |
88 | { "st2", &builtin_type_i387_ext }, | |
89 | { "st3", &builtin_type_i387_ext }, | |
90 | { "st4", &builtin_type_i387_ext }, | |
91 | { "st5", &builtin_type_i387_ext }, | |
92 | { "st6", &builtin_type_i387_ext }, | |
93 | { "st7", &builtin_type_i387_ext }, | |
94 | { "fctrl", &builtin_type_int32 }, | |
95 | { "fstat", &builtin_type_int32 }, | |
96 | { "ftag", &builtin_type_int32 }, | |
97 | { "fiseg", &builtin_type_int32 }, | |
98 | { "fioff", &builtin_type_int32 }, | |
99 | { "foseg", &builtin_type_int32 }, | |
100 | { "fooff", &builtin_type_int32 }, | |
101 | { "fop", &builtin_type_int32 }, | |
102 | ||
103 | /* %xmm0 is register number 38. */ | |
104 | { "xmm0", &builtin_type_v4sf }, | |
105 | { "xmm1", &builtin_type_v4sf }, | |
106 | { "xmm2", &builtin_type_v4sf }, | |
107 | { "xmm3", &builtin_type_v4sf }, | |
108 | { "xmm4", &builtin_type_v4sf }, | |
109 | { "xmm5", &builtin_type_v4sf }, | |
110 | { "xmm6", &builtin_type_v4sf }, | |
111 | { "xmm7", &builtin_type_v4sf }, | |
112 | { "xmm8", &builtin_type_v4sf }, | |
113 | { "xmm9", &builtin_type_v4sf }, | |
114 | { "xmm10", &builtin_type_v4sf }, | |
115 | { "xmm11", &builtin_type_v4sf }, | |
116 | { "xmm12", &builtin_type_v4sf }, | |
117 | { "xmm13", &builtin_type_v4sf }, | |
118 | { "xmm14", &builtin_type_v4sf }, | |
119 | { "xmm15", &builtin_type_v4sf }, | |
120 | { "mxcsr", &builtin_type_int32 } | |
0e04a514 ML |
121 | }; |
122 | ||
c4f35dd8 | 123 | /* Total number of registers. */ |
e53bef9f MK |
124 | #define AMD64_NUM_REGS \ |
125 | (sizeof (amd64_register_info) / sizeof (amd64_register_info[0])) | |
de220d0f | 126 | |
c4f35dd8 | 127 | /* Return the name of register REGNUM. */ |
b6779aa2 | 128 | |
c4f35dd8 | 129 | static const char * |
e53bef9f | 130 | amd64_register_name (int regnum) |
53e95fcf | 131 | { |
e53bef9f MK |
132 | if (regnum >= 0 && regnum < AMD64_NUM_REGS) |
133 | return amd64_register_info[regnum].name; | |
53e95fcf | 134 | |
c4f35dd8 | 135 | return NULL; |
53e95fcf JS |
136 | } |
137 | ||
138 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 139 | register REGNUM. */ |
53e95fcf | 140 | |
c4f35dd8 | 141 | static struct type * |
e53bef9f | 142 | amd64_register_type (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 143 | { |
e53bef9f | 144 | gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS); |
4657573b | 145 | |
e53bef9f | 146 | return *amd64_register_info[regnum].type; |
53e95fcf JS |
147 | } |
148 | ||
c4f35dd8 MK |
149 | /* DWARF Register Number Mapping as defined in the System V psABI, |
150 | section 3.6. */ | |
53e95fcf | 151 | |
e53bef9f | 152 | static int amd64_dwarf_regmap[] = |
0e04a514 | 153 | { |
c4f35dd8 | 154 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
f82b2acd | 155 | X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1, |
c4f35dd8 MK |
156 | 4, X86_64_RDI_REGNUM, |
157 | ||
158 | /* Frame Pointer Register RBP. */ | |
159 | X86_64_RBP_REGNUM, | |
160 | ||
161 | /* Stack Pointer Register RSP. */ | |
162 | X86_64_RSP_REGNUM, | |
163 | ||
164 | /* Extended Integer Registers 8 - 15. */ | |
165 | 8, 9, 10, 11, 12, 13, 14, 15, | |
166 | ||
59207364 MK |
167 | /* Return Address RA. Mapped to RIP. */ |
168 | X86_64_RIP_REGNUM, | |
c4f35dd8 MK |
169 | |
170 | /* SSE Registers 0 - 7. */ | |
171 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
172 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
173 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
174 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
175 | ||
176 | /* Extended SSE Registers 8 - 15. */ | |
177 | X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9, | |
178 | X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11, | |
179 | X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13, | |
180 | X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15, | |
181 | ||
182 | /* Floating Point Registers 0-7. */ | |
f82b2acd | 183 | X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1, |
c4f35dd8 MK |
184 | X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3, |
185 | X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5, | |
186 | X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7 | |
187 | }; | |
0e04a514 | 188 | |
e53bef9f MK |
189 | static const int amd64_dwarf_regmap_len = |
190 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 191 | |
c4f35dd8 MK |
192 | /* Convert DWARF register number REG to the appropriate register |
193 | number used by GDB. */ | |
26abbdc4 | 194 | |
c4f35dd8 | 195 | static int |
e53bef9f | 196 | amd64_dwarf_reg_to_regnum (int reg) |
53e95fcf | 197 | { |
c4f35dd8 | 198 | int regnum = -1; |
53e95fcf | 199 | |
e53bef9f MK |
200 | if (reg >= 0 || reg < amd64_dwarf_regmap_len) |
201 | regnum = amd64_dwarf_regmap[reg]; | |
53e95fcf | 202 | |
c4f35dd8 MK |
203 | if (regnum == -1) |
204 | warning ("Unmapped DWARF Register #%d encountered\n", reg); | |
205 | ||
206 | return regnum; | |
53e95fcf | 207 | } |
d532c08f MK |
208 | |
209 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
210 | needs any special handling. */ | |
211 | ||
212 | static int | |
e53bef9f | 213 | amd64_convert_register_p (int regnum, struct type *type) |
d532c08f MK |
214 | { |
215 | return i386_fp_regnum_p (regnum); | |
216 | } | |
53e95fcf JS |
217 | \f |
218 | ||
efb1c01c MK |
219 | /* Register classes as defined in the psABI. */ |
220 | ||
221 | enum amd64_reg_class | |
222 | { | |
223 | AMD64_INTEGER, | |
224 | AMD64_SSE, | |
225 | AMD64_SSEUP, | |
226 | AMD64_X87, | |
227 | AMD64_X87UP, | |
228 | AMD64_COMPLEX_X87, | |
229 | AMD64_NO_CLASS, | |
230 | AMD64_MEMORY | |
231 | }; | |
232 | ||
233 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
234 | details. */ | |
235 | ||
236 | static enum amd64_reg_class | |
237 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
238 | { | |
239 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
240 | if (class1 == class2) | |
241 | return class1; | |
242 | ||
243 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
244 | is the other class. */ | |
245 | if (class1 == AMD64_NO_CLASS) | |
246 | return class2; | |
247 | if (class2 == AMD64_NO_CLASS) | |
248 | return class1; | |
249 | ||
250 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
251 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
252 | return AMD64_MEMORY; | |
253 | ||
254 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
255 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
256 | return AMD64_INTEGER; | |
257 | ||
258 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
259 | MEMORY is used as class. */ | |
260 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
261 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
262 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
263 | return AMD64_MEMORY; | |
264 | ||
265 | /* Rule (f): Otherwise class SSE is used. */ | |
266 | return AMD64_SSE; | |
267 | } | |
268 | ||
269 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
270 | ||
271 | /* Classify TYPE according to the rules for aggregate (structures and | |
272 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
273 | |
274 | static void | |
efb1c01c | 275 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
276 | { |
277 | int len = TYPE_LENGTH (type); | |
278 | ||
efb1c01c MK |
279 | /* 1. If the size of an object is larger than two eightbytes, or in |
280 | C++, is a non-POD structure or union type, or contains | |
281 | unaligned fields, it has class memory. */ | |
282 | if (len > 16) | |
53e95fcf | 283 | { |
efb1c01c MK |
284 | class[0] = class[1] = AMD64_MEMORY; |
285 | return; | |
53e95fcf | 286 | } |
efb1c01c MK |
287 | |
288 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
289 | class[0] = class[1] = AMD64_NO_CLASS; | |
290 | ||
291 | /* 3. Each field of an object is classified recursively so that | |
292 | always two fields are considered. The resulting class is | |
293 | calculated according to the classes of the fields in the | |
294 | eightbyte: */ | |
295 | ||
296 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 297 | { |
efb1c01c MK |
298 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
299 | ||
300 | /* All fields in an array have the same type. */ | |
301 | amd64_classify (subtype, class); | |
302 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
303 | class[1] = class[0]; | |
8ffd9b1b | 304 | } |
53e95fcf JS |
305 | else |
306 | { | |
efb1c01c | 307 | int i; |
53e95fcf | 308 | |
efb1c01c MK |
309 | /* Structure or union. */ |
310 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
311 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
312 | ||
313 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 314 | { |
efb1c01c MK |
315 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
316 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
317 | enum amd64_reg_class subclass[2]; | |
318 | ||
319 | gdb_assert (pos == 0 || pos == 1); | |
320 | ||
321 | amd64_classify (subtype, subclass); | |
322 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
323 | if (pos == 0) | |
324 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 325 | } |
53e95fcf | 326 | } |
efb1c01c MK |
327 | |
328 | /* 4. Then a post merger cleanup is done: */ | |
329 | ||
330 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
331 | passed in memory. */ | |
332 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
333 | class[0] = class[1] = AMD64_MEMORY; | |
334 | ||
335 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
336 | SSE. */ | |
337 | if (class[0] == AMD64_SSEUP) | |
338 | class[0] = AMD64_SSE; | |
339 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
340 | class[1] = AMD64_SSE; | |
341 | } | |
342 | ||
343 | /* Classify TYPE, and store the result in CLASS. */ | |
344 | ||
345 | static void | |
346 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
347 | { | |
348 | enum type_code code = TYPE_CODE (type); | |
349 | int len = TYPE_LENGTH (type); | |
350 | ||
351 | class[0] = class[1] = AMD64_NO_CLASS; | |
352 | ||
353 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
354 | long, long long, and pointers are in the INTEGER class. */ | |
355 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM | |
356 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) | |
357 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
358 | class[0] = AMD64_INTEGER; | |
359 | ||
360 | /* Arguments of types float, double and __m64 are in class SSE. */ | |
361 | else if (code == TYPE_CODE_FLT && (len == 4 || len == 8)) | |
362 | /* FIXME: __m64 . */ | |
363 | class[0] = AMD64_SSE; | |
364 | ||
365 | /* Arguments of types __float128 and __m128 are split into two | |
366 | halves. The least significant ones belong to class SSE, the most | |
367 | significant one to class SSEUP. */ | |
368 | /* FIXME: __float128, __m128. */ | |
369 | ||
370 | /* The 64-bit mantissa of arguments of type long double belongs to | |
371 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
372 | class X87UP. */ | |
373 | else if (code == TYPE_CODE_FLT && len == 16) | |
374 | /* Class X87 and X87UP. */ | |
375 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
376 | ||
377 | /* Aggregates. */ | |
378 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
379 | || code == TYPE_CODE_UNION) | |
380 | amd64_classify_aggregate (type, class); | |
381 | } | |
382 | ||
383 | static enum return_value_convention | |
384 | amd64_return_value (struct gdbarch *gdbarch, struct type *type, | |
385 | struct regcache *regcache, | |
386 | void *readbuf, const void *writebuf) | |
387 | { | |
388 | enum amd64_reg_class class[2]; | |
389 | int len = TYPE_LENGTH (type); | |
390 | static int integer_regnum[] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM }; | |
391 | static int sse_regnum[] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM }; | |
392 | int integer_reg = 0; | |
393 | int sse_reg = 0; | |
394 | int i; | |
395 | ||
396 | gdb_assert (!(readbuf && writebuf)); | |
397 | ||
398 | /* 1. Classify the return type with the classification algorithm. */ | |
399 | amd64_classify (type, class); | |
400 | ||
401 | /* 2. If the type has class MEMORY, then the caller provides space | |
402 | for the return value and passes the address of this storage in | |
403 | %rdi as if it were the first argument to the function. In | |
404 | effect, this address becomes a hidden first argument. */ | |
405 | if (class[0] == AMD64_MEMORY) | |
406 | return RETURN_VALUE_STRUCT_CONVENTION; | |
407 | ||
408 | gdb_assert (class[1] != AMD64_MEMORY); | |
409 | gdb_assert (len <= 16); | |
410 | ||
411 | for (i = 0; len > 0; i++, len -= 8) | |
412 | { | |
413 | int regnum = -1; | |
414 | int offset = 0; | |
415 | ||
416 | switch (class[i]) | |
417 | { | |
418 | case AMD64_INTEGER: | |
419 | /* 3. If the class is INTEGER, the next available register | |
420 | of the sequence %rax, %rdx is used. */ | |
421 | regnum = integer_regnum[integer_reg++]; | |
422 | break; | |
423 | ||
424 | case AMD64_SSE: | |
425 | /* 4. If the class is SSE, the next available SSE register | |
426 | of the sequence %xmm0, %xmm1 is used. */ | |
427 | regnum = sse_regnum[sse_reg++]; | |
428 | break; | |
429 | ||
430 | case AMD64_SSEUP: | |
431 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
432 | upper half of the last used SSE register. */ | |
433 | gdb_assert (sse_reg > 0); | |
434 | regnum = sse_regnum[sse_reg - 1]; | |
435 | offset = 8; | |
436 | break; | |
437 | ||
438 | case AMD64_X87: | |
439 | /* 6. If the class is X87, the value is returned on the X87 | |
440 | stack in %st0 as 80-bit x87 number. */ | |
441 | regnum = X86_64_ST0_REGNUM; | |
442 | if (writebuf) | |
443 | i387_return_value (gdbarch, regcache); | |
444 | break; | |
445 | ||
446 | case AMD64_X87UP: | |
447 | /* 7. If the class is X87UP, the value is returned together | |
448 | with the previous X87 value in %st0. */ | |
449 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
450 | regnum = X86_64_ST0_REGNUM; | |
451 | offset = 8; | |
452 | len = 2; | |
453 | break; | |
454 | ||
455 | case AMD64_NO_CLASS: | |
456 | continue; | |
457 | ||
458 | default: | |
459 | gdb_assert (!"Unexpected register class."); | |
460 | } | |
461 | ||
462 | gdb_assert (regnum != -1); | |
463 | ||
464 | if (readbuf) | |
465 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
466 | (char *) readbuf + i * 8); | |
467 | if (writebuf) | |
468 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
469 | (const char *) writebuf + i * 8); | |
470 | } | |
471 | ||
472 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
473 | } |
474 | \f | |
475 | ||
720aa428 MK |
476 | static CORE_ADDR |
477 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
478 | struct value **args, CORE_ADDR sp) | |
479 | { | |
480 | static int integer_regnum[] = | |
481 | { | |
482 | X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */ | |
483 | X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */ | |
484 | 8, 9 /* %r8, %r9 */ | |
485 | }; | |
486 | static int sse_regnum[] = | |
487 | { | |
488 | /* %xmm0 ... %xmm7 */ | |
489 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
490 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
491 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
492 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
493 | }; | |
494 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
495 | int num_stack_args = 0; | |
496 | int num_elements = 0; | |
497 | int element = 0; | |
498 | int integer_reg = 0; | |
499 | int sse_reg = 0; | |
500 | int i; | |
501 | ||
502 | for (i = 0; i < nargs; i++) | |
503 | { | |
504 | struct type *type = VALUE_TYPE (args[i]); | |
505 | int len = TYPE_LENGTH (type); | |
506 | enum amd64_reg_class class[2]; | |
507 | int needed_integer_regs = 0; | |
508 | int needed_sse_regs = 0; | |
509 | int j; | |
510 | ||
511 | /* Classify argument. */ | |
512 | amd64_classify (type, class); | |
513 | ||
514 | /* Calculate the number of integer and SSE registers needed for | |
515 | this argument. */ | |
516 | for (j = 0; j < 2; j++) | |
517 | { | |
518 | if (class[j] == AMD64_INTEGER) | |
519 | needed_integer_regs++; | |
520 | else if (class[j] == AMD64_SSE) | |
521 | needed_sse_regs++; | |
522 | } | |
523 | ||
524 | /* Check whether enough registers are available, and if the | |
525 | argument should be passed in registers at all. */ | |
526 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
527 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
528 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
529 | { | |
530 | /* The argument will be passed on the stack. */ | |
531 | num_elements += ((len + 7) / 8); | |
532 | stack_args[num_stack_args++] = args[i]; | |
533 | } | |
534 | else | |
535 | { | |
536 | /* The argument will be passed in registers. */ | |
537 | char *valbuf = VALUE_CONTENTS (args[i]); | |
538 | char buf[8]; | |
539 | ||
540 | gdb_assert (len <= 16); | |
541 | ||
542 | for (j = 0; len > 0; j++, len -= 8) | |
543 | { | |
544 | int regnum = -1; | |
545 | int offset = 0; | |
546 | ||
547 | switch (class[j]) | |
548 | { | |
549 | case AMD64_INTEGER: | |
550 | regnum = integer_regnum[integer_reg++]; | |
551 | break; | |
552 | ||
553 | case AMD64_SSE: | |
554 | regnum = sse_regnum[sse_reg++]; | |
555 | break; | |
556 | ||
557 | case AMD64_SSEUP: | |
558 | gdb_assert (sse_reg > 0); | |
559 | regnum = sse_regnum[sse_reg - 1]; | |
560 | offset = 8; | |
561 | break; | |
562 | ||
563 | default: | |
564 | gdb_assert (!"Unexpected register class."); | |
565 | } | |
566 | ||
567 | gdb_assert (regnum != -1); | |
568 | memset (buf, 0, sizeof buf); | |
569 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
570 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
571 | } | |
572 | } | |
573 | } | |
574 | ||
575 | /* Allocate space for the arguments on the stack. */ | |
576 | sp -= num_elements * 8; | |
577 | ||
578 | /* The psABI says that "The end of the input argument area shall be | |
579 | aligned on a 16 byte boundary." */ | |
580 | sp &= ~0xf; | |
581 | ||
582 | /* Write out the arguments to the stack. */ | |
583 | for (i = 0; i < num_stack_args; i++) | |
584 | { | |
585 | struct type *type = VALUE_TYPE (stack_args[i]); | |
586 | char *valbuf = VALUE_CONTENTS (stack_args[i]); | |
587 | int len = TYPE_LENGTH (type); | |
588 | ||
589 | write_memory (sp + element * 8, valbuf, len); | |
590 | element += ((len + 7) / 8); | |
591 | } | |
592 | ||
593 | /* The psABI says that "For calls that may call functions that use | |
594 | varargs or stdargs (prototype-less calls or calls to functions | |
595 | containing ellipsis (...) in the declaration) %al is used as | |
596 | hidden argument to specify the number of SSE registers used. */ | |
597 | regcache_raw_write_unsigned (regcache, X86_64_RAX_REGNUM, sse_reg); | |
598 | return sp; | |
599 | } | |
600 | ||
c4f35dd8 | 601 | static CORE_ADDR |
e53bef9f MK |
602 | amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
603 | struct regcache *regcache, CORE_ADDR bp_addr, | |
604 | int nargs, struct value **args, CORE_ADDR sp, | |
605 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 606 | { |
c4f35dd8 MK |
607 | char buf[8]; |
608 | ||
609 | /* Pass arguments. */ | |
720aa428 | 610 | sp = amd64_push_arguments (regcache, nargs, args, sp); |
c4f35dd8 MK |
611 | |
612 | /* Pass "hidden" argument". */ | |
613 | if (struct_return) | |
614 | { | |
615 | store_unsigned_integer (buf, 8, struct_addr); | |
616 | regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf); | |
617 | } | |
618 | ||
619 | /* Store return address. */ | |
620 | sp -= 8; | |
10f93086 | 621 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
622 | write_memory (sp, buf, 8); |
623 | ||
624 | /* Finally, update the stack pointer... */ | |
625 | store_unsigned_integer (buf, 8, sp); | |
626 | regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf); | |
627 | ||
628 | /* ...and fake a frame pointer. */ | |
629 | regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf); | |
630 | ||
3e210248 | 631 | return sp + 16; |
53e95fcf | 632 | } |
c4f35dd8 MK |
633 | \f |
634 | ||
635 | /* The maximum number of saved registers. This should include %rip. */ | |
e53bef9f | 636 | #define AMD64_NUM_SAVED_REGS X86_64_NUM_GREGS |
c4f35dd8 | 637 | |
e53bef9f | 638 | struct amd64_frame_cache |
c4f35dd8 MK |
639 | { |
640 | /* Base address. */ | |
641 | CORE_ADDR base; | |
642 | CORE_ADDR sp_offset; | |
643 | CORE_ADDR pc; | |
644 | ||
645 | /* Saved registers. */ | |
e53bef9f | 646 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 MK |
647 | CORE_ADDR saved_sp; |
648 | ||
649 | /* Do we have a frame? */ | |
650 | int frameless_p; | |
651 | }; | |
8dda9770 | 652 | |
c4f35dd8 MK |
653 | /* Allocate and initialize a frame cache. */ |
654 | ||
e53bef9f MK |
655 | static struct amd64_frame_cache * |
656 | amd64_alloc_frame_cache (void) | |
8dda9770 | 657 | { |
e53bef9f | 658 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
659 | int i; |
660 | ||
e53bef9f | 661 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); |
8dda9770 | 662 | |
c4f35dd8 MK |
663 | /* Base address. */ |
664 | cache->base = 0; | |
665 | cache->sp_offset = -8; | |
666 | cache->pc = 0; | |
667 | ||
668 | /* Saved registers. We initialize these to -1 since zero is a valid | |
669 | offset (that's where %rbp is supposed to be stored). */ | |
e53bef9f | 670 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
671 | cache->saved_regs[i] = -1; |
672 | cache->saved_sp = 0; | |
673 | ||
674 | /* Frameless until proven otherwise. */ | |
675 | cache->frameless_p = 1; | |
676 | ||
677 | return cache; | |
8dda9770 | 678 | } |
53e95fcf | 679 | |
c4f35dd8 MK |
680 | /* Do a limited analysis of the prologue at PC and update CACHE |
681 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
682 | address where the analysis stopped. | |
683 | ||
684 | We will handle only functions beginning with: | |
685 | ||
686 | pushq %rbp 0x55 | |
687 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
688 | ||
689 | Any function that doesn't start with this sequence will be assumed | |
690 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
691 | ||
692 | static CORE_ADDR | |
e53bef9f MK |
693 | amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, |
694 | struct amd64_frame_cache *cache) | |
53e95fcf | 695 | { |
c4f35dd8 MK |
696 | static unsigned char proto[3] = { 0x48, 0x89, 0xe5 }; |
697 | unsigned char buf[3]; | |
698 | unsigned char op; | |
699 | ||
700 | if (current_pc <= pc) | |
701 | return current_pc; | |
702 | ||
703 | op = read_memory_unsigned_integer (pc, 1); | |
704 | ||
705 | if (op == 0x55) /* pushq %rbp */ | |
706 | { | |
707 | /* Take into account that we've executed the `pushq %rbp' that | |
708 | starts this instruction sequence. */ | |
709 | cache->saved_regs[X86_64_RBP_REGNUM] = 0; | |
710 | cache->sp_offset += 8; | |
711 | ||
712 | /* If that's all, return now. */ | |
713 | if (current_pc <= pc + 1) | |
714 | return current_pc; | |
715 | ||
716 | /* Check for `movq %rsp, %rbp'. */ | |
717 | read_memory (pc + 1, buf, 3); | |
718 | if (memcmp (buf, proto, 3) != 0) | |
719 | return pc + 1; | |
720 | ||
721 | /* OK, we actually have a frame. */ | |
722 | cache->frameless_p = 0; | |
723 | return pc + 4; | |
724 | } | |
725 | ||
726 | return pc; | |
53e95fcf JS |
727 | } |
728 | ||
c4f35dd8 MK |
729 | /* Return PC of first real instruction. */ |
730 | ||
731 | static CORE_ADDR | |
e53bef9f | 732 | amd64_skip_prologue (CORE_ADDR start_pc) |
53e95fcf | 733 | { |
e53bef9f | 734 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
735 | CORE_ADDR pc; |
736 | ||
e53bef9f | 737 | pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache); |
c4f35dd8 MK |
738 | if (cache.frameless_p) |
739 | return start_pc; | |
740 | ||
741 | return pc; | |
53e95fcf | 742 | } |
c4f35dd8 | 743 | \f |
53e95fcf | 744 | |
c4f35dd8 MK |
745 | /* Normal frames. */ |
746 | ||
e53bef9f MK |
747 | static struct amd64_frame_cache * |
748 | amd64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 749 | { |
e53bef9f | 750 | struct amd64_frame_cache *cache; |
c4f35dd8 | 751 | char buf[8]; |
6d686a84 | 752 | int i; |
6d686a84 | 753 | |
c4f35dd8 MK |
754 | if (*this_cache) |
755 | return *this_cache; | |
6d686a84 | 756 | |
e53bef9f | 757 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
758 | *this_cache = cache; |
759 | ||
c4f35dd8 MK |
760 | cache->pc = frame_func_unwind (next_frame); |
761 | if (cache->pc != 0) | |
e53bef9f | 762 | amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); |
c4f35dd8 MK |
763 | |
764 | if (cache->frameless_p) | |
765 | { | |
766 | /* We didn't find a valid frame, which means that CACHE->base | |
767 | currently holds the frame pointer for our calling frame. If | |
768 | we're at the start of a function, or somewhere half-way its | |
769 | prologue, the function's frame probably hasn't been fully | |
770 | setup yet. Try to reconstruct the base address for the stack | |
771 | frame by looking at the stack pointer. For truly "frameless" | |
772 | functions this might work too. */ | |
773 | ||
774 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
775 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; | |
776 | } | |
35883a3f MK |
777 | else |
778 | { | |
779 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
780 | cache->base = extract_unsigned_integer (buf, 8); | |
781 | } | |
c4f35dd8 MK |
782 | |
783 | /* Now that we have the base address for the stack frame we can | |
784 | calculate the value of %rsp in the calling frame. */ | |
785 | cache->saved_sp = cache->base + 16; | |
786 | ||
35883a3f MK |
787 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
788 | frame we find it at the same offset from the reconstructed base | |
789 | address. */ | |
790 | cache->saved_regs[X86_64_RIP_REGNUM] = 8; | |
791 | ||
c4f35dd8 MK |
792 | /* Adjust all the saved registers such that they contain addresses |
793 | instead of offsets. */ | |
e53bef9f | 794 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
795 | if (cache->saved_regs[i] != -1) |
796 | cache->saved_regs[i] += cache->base; | |
797 | ||
798 | return cache; | |
6d686a84 ML |
799 | } |
800 | ||
c4f35dd8 | 801 | static void |
e53bef9f MK |
802 | amd64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
803 | struct frame_id *this_id) | |
c4f35dd8 | 804 | { |
e53bef9f MK |
805 | struct amd64_frame_cache *cache = |
806 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
807 | |
808 | /* This marks the outermost frame. */ | |
809 | if (cache->base == 0) | |
810 | return; | |
811 | ||
812 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
813 | } | |
e76e1718 | 814 | |
c4f35dd8 | 815 | static void |
e53bef9f MK |
816 | amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache, |
817 | int regnum, int *optimizedp, | |
818 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
819 | int *realnump, void *valuep) | |
53e95fcf | 820 | { |
e53bef9f MK |
821 | struct amd64_frame_cache *cache = |
822 | amd64_frame_cache (next_frame, this_cache); | |
e76e1718 | 823 | |
c4f35dd8 | 824 | gdb_assert (regnum >= 0); |
b1ab997b | 825 | |
c4f35dd8 MK |
826 | if (regnum == SP_REGNUM && cache->saved_sp) |
827 | { | |
828 | *optimizedp = 0; | |
829 | *lvalp = not_lval; | |
830 | *addrp = 0; | |
831 | *realnump = -1; | |
832 | if (valuep) | |
833 | { | |
834 | /* Store the value. */ | |
835 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
836 | } | |
837 | return; | |
838 | } | |
e76e1718 | 839 | |
e53bef9f | 840 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
c4f35dd8 MK |
841 | { |
842 | *optimizedp = 0; | |
843 | *lvalp = lval_memory; | |
844 | *addrp = cache->saved_regs[regnum]; | |
845 | *realnump = -1; | |
846 | if (valuep) | |
847 | { | |
848 | /* Read the value in from memory. */ | |
849 | read_memory (*addrp, valuep, | |
850 | register_size (current_gdbarch, regnum)); | |
851 | } | |
852 | return; | |
853 | } | |
e76e1718 | 854 | |
c4f35dd8 MK |
855 | frame_register_unwind (next_frame, regnum, |
856 | optimizedp, lvalp, addrp, realnump, valuep); | |
857 | } | |
e76e1718 | 858 | |
e53bef9f | 859 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
860 | { |
861 | NORMAL_FRAME, | |
e53bef9f MK |
862 | amd64_frame_this_id, |
863 | amd64_frame_prev_register | |
c4f35dd8 | 864 | }; |
e76e1718 | 865 | |
c4f35dd8 | 866 | static const struct frame_unwind * |
e53bef9f | 867 | amd64_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 868 | { |
e53bef9f | 869 | return &amd64_frame_unwind; |
c4f35dd8 MK |
870 | } |
871 | \f | |
e76e1718 | 872 | |
c4f35dd8 MK |
873 | /* Signal trampolines. */ |
874 | ||
875 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
876 | 64-bit variants. This would require using identical frame caches | |
877 | on both platforms. */ | |
878 | ||
e53bef9f MK |
879 | static struct amd64_frame_cache * |
880 | amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
c4f35dd8 | 881 | { |
e53bef9f | 882 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
883 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
884 | CORE_ADDR addr; | |
885 | char buf[8]; | |
2b5e0749 | 886 | int i; |
c4f35dd8 MK |
887 | |
888 | if (*this_cache) | |
889 | return *this_cache; | |
890 | ||
e53bef9f | 891 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
892 | |
893 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
894 | cache->base = extract_unsigned_integer (buf, 8) - 8; | |
895 | ||
896 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 | 897 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 898 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
899 | for (i = 0; i < tdep->sc_num_regs; i++) |
900 | if (tdep->sc_reg_offset[i] != -1) | |
901 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
902 | |
903 | *this_cache = cache; | |
904 | return cache; | |
53e95fcf JS |
905 | } |
906 | ||
c4f35dd8 | 907 | static void |
e53bef9f MK |
908 | amd64_sigtramp_frame_this_id (struct frame_info *next_frame, |
909 | void **this_cache, struct frame_id *this_id) | |
c4f35dd8 | 910 | { |
e53bef9f MK |
911 | struct amd64_frame_cache *cache = |
912 | amd64_sigtramp_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
913 | |
914 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
915 | } | |
916 | ||
917 | static void | |
e53bef9f MK |
918 | amd64_sigtramp_frame_prev_register (struct frame_info *next_frame, |
919 | void **this_cache, | |
920 | int regnum, int *optimizedp, | |
921 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
922 | int *realnump, void *valuep) | |
c4f35dd8 MK |
923 | { |
924 | /* Make sure we've initialized the cache. */ | |
e53bef9f | 925 | amd64_sigtramp_frame_cache (next_frame, this_cache); |
c4f35dd8 | 926 | |
e53bef9f MK |
927 | amd64_frame_prev_register (next_frame, this_cache, regnum, |
928 | optimizedp, lvalp, addrp, realnump, valuep); | |
c4f35dd8 MK |
929 | } |
930 | ||
e53bef9f | 931 | static const struct frame_unwind amd64_sigtramp_frame_unwind = |
c4f35dd8 MK |
932 | { |
933 | SIGTRAMP_FRAME, | |
e53bef9f MK |
934 | amd64_sigtramp_frame_this_id, |
935 | amd64_sigtramp_frame_prev_register | |
c4f35dd8 MK |
936 | }; |
937 | ||
938 | static const struct frame_unwind * | |
e53bef9f | 939 | amd64_sigtramp_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 940 | { |
336d1bba | 941 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
c4f35dd8 MK |
942 | char *name; |
943 | ||
944 | find_pc_partial_function (pc, &name, NULL, NULL); | |
945 | if (PC_IN_SIGTRAMP (pc, name)) | |
1c3545ae MK |
946 | { |
947 | gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr); | |
948 | ||
e53bef9f | 949 | return &amd64_sigtramp_frame_unwind; |
1c3545ae | 950 | } |
c4f35dd8 MK |
951 | |
952 | return NULL; | |
953 | } | |
954 | \f | |
955 | ||
956 | static CORE_ADDR | |
e53bef9f | 957 | amd64_frame_base_address (struct frame_info *next_frame, void **this_cache) |
c4f35dd8 | 958 | { |
e53bef9f MK |
959 | struct amd64_frame_cache *cache = |
960 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
961 | |
962 | return cache->base; | |
963 | } | |
964 | ||
e53bef9f | 965 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 966 | { |
e53bef9f MK |
967 | &amd64_frame_unwind, |
968 | amd64_frame_base_address, | |
969 | amd64_frame_base_address, | |
970 | amd64_frame_base_address | |
c4f35dd8 MK |
971 | }; |
972 | ||
166f4c7b | 973 | static struct frame_id |
e53bef9f | 974 | amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 975 | { |
c4f35dd8 MK |
976 | char buf[8]; |
977 | CORE_ADDR fp; | |
978 | ||
979 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
980 | fp = extract_unsigned_integer (buf, 8); | |
981 | ||
982 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
983 | } |
984 | ||
8b148df9 AC |
985 | /* 16 byte align the SP per frame requirements. */ |
986 | ||
987 | static CORE_ADDR | |
e53bef9f | 988 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
989 | { |
990 | return sp & -(CORE_ADDR)16; | |
991 | } | |
473f17b0 MK |
992 | \f |
993 | ||
994 | /* Supply register REGNUM from the floating-point register set REGSET | |
995 | to register cache REGCACHE. If REGNUM is -1, do this for all | |
996 | registers in REGSET. */ | |
997 | ||
998 | static void | |
e53bef9f MK |
999 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
1000 | int regnum, const void *fpregs, size_t len) | |
473f17b0 MK |
1001 | { |
1002 | const struct gdbarch_tdep *tdep = regset->descr; | |
1003 | ||
1004 | gdb_assert (len == tdep->sizeof_fpregset); | |
1005 | x86_64_supply_fxsave (regcache, regnum, fpregs); | |
1006 | } | |
8b148df9 | 1007 | |
c6b33596 MK |
1008 | /* Return the appropriate register set for the core section identified |
1009 | by SECT_NAME and SECT_SIZE. */ | |
1010 | ||
1011 | static const struct regset * | |
e53bef9f MK |
1012 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
1013 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
1014 | { |
1015 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1016 | ||
1017 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
1018 | { | |
1019 | if (tdep->fpregset == NULL) | |
1020 | { | |
1021 | tdep->fpregset = XMALLOC (struct regset); | |
1022 | tdep->fpregset->descr = tdep; | |
e53bef9f | 1023 | tdep->fpregset->supply_regset = amd64_supply_fpregset; |
c6b33596 MK |
1024 | } |
1025 | ||
1026 | return tdep->fpregset; | |
1027 | } | |
1028 | ||
1029 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
1030 | } | |
1031 | \f | |
1032 | ||
2213a65d | 1033 | void |
0c1a73d6 | 1034 | x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1035 | { |
0c1a73d6 | 1036 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1037 | |
473f17b0 MK |
1038 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
1039 | floating-point registers. */ | |
1040 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
1041 | ||
5716833c MK |
1042 | /* AMD64 has an FPU and 16 SSE registers. */ |
1043 | tdep->st0_regnum = X86_64_ST0_REGNUM; | |
0c1a73d6 | 1044 | tdep->num_xmm_regs = 16; |
53e95fcf | 1045 | |
0c1a73d6 | 1046 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1047 | set_gdbarch_long_bit (gdbarch, 64); |
1048 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1049 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1050 | ||
e53bef9f MK |
1051 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
1052 | up 128 bits, even though it's still based on the i387 extended | |
1053 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
1054 | set_gdbarch_long_double_bit (gdbarch, 128); |
1055 | ||
e53bef9f MK |
1056 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
1057 | set_gdbarch_register_name (gdbarch, amd64_register_name); | |
1058 | set_gdbarch_register_type (gdbarch, amd64_register_type); | |
b83b026c MK |
1059 | |
1060 | /* Register numbers of various important registers. */ | |
c4f35dd8 MK |
1061 | set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */ |
1062 | set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */ | |
1063 | set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */ | |
1064 | set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 1065 | |
e53bef9f MK |
1066 | /* The "default" register numbering scheme for AMD64 is referred to |
1067 | as the "DWARF Register Number Mapping" in the System V psABI. | |
1068 | The preferred debugging format for all known AMD64 targets is | |
1069 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
1070 | DWARF-1), but we provide the same mapping just in case. This | |
1071 | mapping is also used for stabs, which GCC does support. */ | |
1072 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1073 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1074 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
de220d0f | 1075 | |
c4f35dd8 | 1076 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 1077 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 1078 | |
c4f35dd8 | 1079 | /* Call dummy code. */ |
e53bef9f MK |
1080 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
1081 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 1082 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 1083 | |
e53bef9f | 1084 | set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p); |
d532c08f MK |
1085 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
1086 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1087 | ||
efb1c01c | 1088 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
e53bef9f | 1089 | /* Override, since this is handled by amd64_extract_return_value. */ |
b83b026c | 1090 | set_gdbarch_extract_struct_value_address (gdbarch, NULL); |
53e95fcf | 1091 | |
e53bef9f | 1092 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 1093 | |
c4f35dd8 | 1094 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 1095 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 1096 | tdep->mm0_regnum = -1; |
2213a65d | 1097 | |
e53bef9f | 1098 | set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id); |
53e95fcf | 1099 | |
b83b026c | 1100 | /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now, |
e53bef9f | 1101 | since all supported AMD64 targets are ELF, but that might change |
b83b026c | 1102 | in the future. */ |
8a8ab2b9 | 1103 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); |
c4f35dd8 | 1104 | |
e53bef9f MK |
1105 | frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer); |
1106 | frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer); | |
1107 | frame_base_set_default (gdbarch, &amd64_frame_base); | |
c6b33596 MK |
1108 | |
1109 | /* If we have a register mapping, enable the generic core file support. */ | |
1110 | if (tdep->gregset_reg_offset) | |
1111 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 1112 | amd64_regset_from_core_section); |
c4f35dd8 MK |
1113 | } |
1114 | \f | |
1115 | ||
5716833c | 1116 | #define I387_ST0_REGNUM X86_64_ST0_REGNUM |
c4f35dd8 | 1117 | |
41d041d6 MK |
1118 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
1119 | sense that the instruction pointer and data pointer are simply | |
1120 | 64-bit offsets into the code segment and the data segment instead | |
1121 | of a selector offset pair. The functions below store the upper 32 | |
1122 | bits of these pointers (instead of just the 16-bits of the segment | |
1123 | selector). */ | |
1124 | ||
1125 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
1126 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
1127 | -1, do this for all registers. This function masks off any of the | |
1128 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
1129 | |
1130 | void | |
41d041d6 MK |
1131 | x86_64_supply_fxsave (struct regcache *regcache, int regnum, |
1132 | const void *fxsave) | |
c4f35dd8 | 1133 | { |
41d041d6 | 1134 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 MK |
1135 | |
1136 | if (fxsave) | |
1137 | { | |
41d041d6 MK |
1138 | const char *regs = fxsave; |
1139 | ||
0485f6ad | 1140 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
41d041d6 | 1141 | regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); |
0485f6ad | 1142 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
41d041d6 | 1143 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); |
c4f35dd8 | 1144 | } |
0c1a73d6 MK |
1145 | } |
1146 | ||
c4f35dd8 | 1147 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
0485f6ad | 1148 | *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do |
c4f35dd8 MK |
1149 | this for all registers. This function doesn't touch any of the |
1150 | reserved bits in *FXSAVE. */ | |
1151 | ||
53e95fcf | 1152 | void |
c4f35dd8 | 1153 | x86_64_fill_fxsave (char *fxsave, int regnum) |
53e95fcf | 1154 | { |
c4f35dd8 | 1155 | i387_fill_fxsave (fxsave, regnum); |
53e95fcf | 1156 | |
c4f35dd8 | 1157 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
088ce440 | 1158 | regcache_collect (I387_FISEG_REGNUM, fxsave + 12); |
c4f35dd8 | 1159 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
088ce440 | 1160 | regcache_collect (I387_FOSEG_REGNUM, fxsave + 20); |
53e95fcf | 1161 | } |