]>
Commit | Line | Data |
---|---|---|
53e95fcf | 1 | /* Target-dependent code for the x86-64 for GDB, the GNU debugger. |
ce0eebec | 2 | |
51603483 | 3 | Copyright 2001, 2002, 2003 Free Software Foundation, Inc. |
53e95fcf JS |
4 | Contributed by Jiri Smid, SuSE Labs. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
c4f35dd8 MK |
24 | #include "arch-utils.h" |
25 | #include "block.h" | |
26 | #include "dummy-frame.h" | |
27 | #include "frame.h" | |
28 | #include "frame-base.h" | |
29 | #include "frame-unwind.h" | |
53e95fcf | 30 | #include "inferior.h" |
53e95fcf | 31 | #include "gdbcmd.h" |
c4f35dd8 MK |
32 | #include "gdbcore.h" |
33 | #include "objfiles.h" | |
53e95fcf | 34 | #include "regcache.h" |
2c261fae | 35 | #include "regset.h" |
53e95fcf | 36 | #include "symfile.h" |
c4f35dd8 | 37 | |
82dbc5f7 | 38 | #include "gdb_assert.h" |
c4f35dd8 MK |
39 | |
40 | #include "x86-64-tdep.h" | |
41 | #include "i387-tdep.h" | |
53e95fcf | 42 | |
402ecd56 | 43 | /* Register information. */ |
c4f35dd8 MK |
44 | |
45 | struct x86_64_register_info | |
de220d0f | 46 | { |
de220d0f ML |
47 | char *name; |
48 | struct type **type; | |
49 | }; | |
53e95fcf | 50 | |
c4f35dd8 MK |
51 | static struct x86_64_register_info x86_64_register_info[] = |
52 | { | |
53 | { "rax", &builtin_type_int64 }, | |
54 | { "rbx", &builtin_type_int64 }, | |
55 | { "rcx", &builtin_type_int64 }, | |
56 | { "rdx", &builtin_type_int64 }, | |
57 | { "rsi", &builtin_type_int64 }, | |
58 | { "rdi", &builtin_type_int64 }, | |
59 | { "rbp", &builtin_type_void_data_ptr }, | |
60 | { "rsp", &builtin_type_void_data_ptr }, | |
61 | ||
62 | /* %r8 is indeed register number 8. */ | |
63 | { "r8", &builtin_type_int64 }, | |
64 | { "r9", &builtin_type_int64 }, | |
65 | { "r10", &builtin_type_int64 }, | |
66 | { "r11", &builtin_type_int64 }, | |
67 | { "r12", &builtin_type_int64 }, | |
68 | { "r13", &builtin_type_int64 }, | |
69 | { "r14", &builtin_type_int64 }, | |
70 | { "r15", &builtin_type_int64 }, | |
71 | { "rip", &builtin_type_void_func_ptr }, | |
72 | { "eflags", &builtin_type_int32 }, | |
73 | { "ds", &builtin_type_int32 }, | |
74 | { "es", &builtin_type_int32 }, | |
75 | { "fs", &builtin_type_int32 }, | |
76 | { "gs", &builtin_type_int32 }, | |
77 | ||
78 | /* %st0 is register number 22. */ | |
79 | { "st0", &builtin_type_i387_ext }, | |
80 | { "st1", &builtin_type_i387_ext }, | |
81 | { "st2", &builtin_type_i387_ext }, | |
82 | { "st3", &builtin_type_i387_ext }, | |
83 | { "st4", &builtin_type_i387_ext }, | |
84 | { "st5", &builtin_type_i387_ext }, | |
85 | { "st6", &builtin_type_i387_ext }, | |
86 | { "st7", &builtin_type_i387_ext }, | |
87 | { "fctrl", &builtin_type_int32 }, | |
88 | { "fstat", &builtin_type_int32 }, | |
89 | { "ftag", &builtin_type_int32 }, | |
90 | { "fiseg", &builtin_type_int32 }, | |
91 | { "fioff", &builtin_type_int32 }, | |
92 | { "foseg", &builtin_type_int32 }, | |
93 | { "fooff", &builtin_type_int32 }, | |
94 | { "fop", &builtin_type_int32 }, | |
95 | ||
96 | /* %xmm0 is register number 38. */ | |
97 | { "xmm0", &builtin_type_v4sf }, | |
98 | { "xmm1", &builtin_type_v4sf }, | |
99 | { "xmm2", &builtin_type_v4sf }, | |
100 | { "xmm3", &builtin_type_v4sf }, | |
101 | { "xmm4", &builtin_type_v4sf }, | |
102 | { "xmm5", &builtin_type_v4sf }, | |
103 | { "xmm6", &builtin_type_v4sf }, | |
104 | { "xmm7", &builtin_type_v4sf }, | |
105 | { "xmm8", &builtin_type_v4sf }, | |
106 | { "xmm9", &builtin_type_v4sf }, | |
107 | { "xmm10", &builtin_type_v4sf }, | |
108 | { "xmm11", &builtin_type_v4sf }, | |
109 | { "xmm12", &builtin_type_v4sf }, | |
110 | { "xmm13", &builtin_type_v4sf }, | |
111 | { "xmm14", &builtin_type_v4sf }, | |
112 | { "xmm15", &builtin_type_v4sf }, | |
113 | { "mxcsr", &builtin_type_int32 } | |
0e04a514 ML |
114 | }; |
115 | ||
c4f35dd8 MK |
116 | /* Total number of registers. */ |
117 | #define X86_64_NUM_REGS \ | |
118 | (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0])) | |
de220d0f | 119 | |
c4f35dd8 | 120 | /* Return the name of register REGNUM. */ |
b6779aa2 | 121 | |
c4f35dd8 MK |
122 | static const char * |
123 | x86_64_register_name (int regnum) | |
53e95fcf | 124 | { |
c4f35dd8 MK |
125 | if (regnum >= 0 && regnum < X86_64_NUM_REGS) |
126 | return x86_64_register_info[regnum].name; | |
53e95fcf | 127 | |
c4f35dd8 | 128 | return NULL; |
53e95fcf JS |
129 | } |
130 | ||
131 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 132 | register REGNUM. */ |
53e95fcf | 133 | |
c4f35dd8 MK |
134 | static struct type * |
135 | x86_64_register_type (struct gdbarch *gdbarch, int regnum) | |
53e95fcf | 136 | { |
c4f35dd8 | 137 | gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS); |
4657573b | 138 | |
c4f35dd8 | 139 | return *x86_64_register_info[regnum].type; |
53e95fcf JS |
140 | } |
141 | ||
c4f35dd8 MK |
142 | /* DWARF Register Number Mapping as defined in the System V psABI, |
143 | section 3.6. */ | |
53e95fcf | 144 | |
c4f35dd8 | 145 | static int x86_64_dwarf_regmap[] = |
0e04a514 | 146 | { |
c4f35dd8 | 147 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
f82b2acd | 148 | X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1, |
c4f35dd8 MK |
149 | 4, X86_64_RDI_REGNUM, |
150 | ||
151 | /* Frame Pointer Register RBP. */ | |
152 | X86_64_RBP_REGNUM, | |
153 | ||
154 | /* Stack Pointer Register RSP. */ | |
155 | X86_64_RSP_REGNUM, | |
156 | ||
157 | /* Extended Integer Registers 8 - 15. */ | |
158 | 8, 9, 10, 11, 12, 13, 14, 15, | |
159 | ||
160 | /* Return Address RA. Not mapped. */ | |
161 | -1, | |
162 | ||
163 | /* SSE Registers 0 - 7. */ | |
164 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
165 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
166 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
167 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
168 | ||
169 | /* Extended SSE Registers 8 - 15. */ | |
170 | X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9, | |
171 | X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11, | |
172 | X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13, | |
173 | X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15, | |
174 | ||
175 | /* Floating Point Registers 0-7. */ | |
f82b2acd | 176 | X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1, |
c4f35dd8 MK |
177 | X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3, |
178 | X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5, | |
179 | X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7 | |
180 | }; | |
0e04a514 | 181 | |
c4f35dd8 MK |
182 | static const int x86_64_dwarf_regmap_len = |
183 | (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0])); | |
0e04a514 | 184 | |
c4f35dd8 MK |
185 | /* Convert DWARF register number REG to the appropriate register |
186 | number used by GDB. */ | |
26abbdc4 | 187 | |
c4f35dd8 MK |
188 | static int |
189 | x86_64_dwarf_reg_to_regnum (int reg) | |
53e95fcf | 190 | { |
c4f35dd8 | 191 | int regnum = -1; |
53e95fcf | 192 | |
c4f35dd8 MK |
193 | if (reg >= 0 || reg < x86_64_dwarf_regmap_len) |
194 | regnum = x86_64_dwarf_regmap[reg]; | |
53e95fcf | 195 | |
c4f35dd8 MK |
196 | if (regnum == -1) |
197 | warning ("Unmapped DWARF Register #%d encountered\n", reg); | |
198 | ||
199 | return regnum; | |
53e95fcf | 200 | } |
d532c08f MK |
201 | |
202 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
203 | needs any special handling. */ | |
204 | ||
205 | static int | |
206 | x86_64_convert_register_p (int regnum, struct type *type) | |
207 | { | |
208 | return i386_fp_regnum_p (regnum); | |
209 | } | |
53e95fcf JS |
210 | \f |
211 | ||
efb1c01c MK |
212 | /* Register classes as defined in the psABI. */ |
213 | ||
214 | enum amd64_reg_class | |
215 | { | |
216 | AMD64_INTEGER, | |
217 | AMD64_SSE, | |
218 | AMD64_SSEUP, | |
219 | AMD64_X87, | |
220 | AMD64_X87UP, | |
221 | AMD64_COMPLEX_X87, | |
222 | AMD64_NO_CLASS, | |
223 | AMD64_MEMORY | |
224 | }; | |
225 | ||
226 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
227 | details. */ | |
228 | ||
229 | static enum amd64_reg_class | |
230 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
231 | { | |
232 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
233 | if (class1 == class2) | |
234 | return class1; | |
235 | ||
236 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
237 | is the other class. */ | |
238 | if (class1 == AMD64_NO_CLASS) | |
239 | return class2; | |
240 | if (class2 == AMD64_NO_CLASS) | |
241 | return class1; | |
242 | ||
243 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
244 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
245 | return AMD64_MEMORY; | |
246 | ||
247 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
248 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
249 | return AMD64_INTEGER; | |
250 | ||
251 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
252 | MEMORY is used as class. */ | |
253 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
254 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
255 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
256 | return AMD64_MEMORY; | |
257 | ||
258 | /* Rule (f): Otherwise class SSE is used. */ | |
259 | return AMD64_SSE; | |
260 | } | |
261 | ||
262 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
263 | ||
264 | /* Classify TYPE according to the rules for aggregate (structures and | |
265 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
266 | |
267 | static void | |
efb1c01c | 268 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
269 | { |
270 | int len = TYPE_LENGTH (type); | |
271 | ||
efb1c01c MK |
272 | /* 1. If the size of an object is larger than two eightbytes, or in |
273 | C++, is a non-POD structure or union type, or contains | |
274 | unaligned fields, it has class memory. */ | |
275 | if (len > 16) | |
53e95fcf | 276 | { |
efb1c01c MK |
277 | class[0] = class[1] = AMD64_MEMORY; |
278 | return; | |
53e95fcf | 279 | } |
efb1c01c MK |
280 | |
281 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
282 | class[0] = class[1] = AMD64_NO_CLASS; | |
283 | ||
284 | /* 3. Each field of an object is classified recursively so that | |
285 | always two fields are considered. The resulting class is | |
286 | calculated according to the classes of the fields in the | |
287 | eightbyte: */ | |
288 | ||
289 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 290 | { |
efb1c01c MK |
291 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
292 | ||
293 | /* All fields in an array have the same type. */ | |
294 | amd64_classify (subtype, class); | |
295 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
296 | class[1] = class[0]; | |
8ffd9b1b | 297 | } |
53e95fcf JS |
298 | else |
299 | { | |
efb1c01c | 300 | int i; |
53e95fcf | 301 | |
efb1c01c MK |
302 | /* Structure or union. */ |
303 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
304 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
305 | ||
306 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 307 | { |
efb1c01c MK |
308 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
309 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
310 | enum amd64_reg_class subclass[2]; | |
311 | ||
312 | gdb_assert (pos == 0 || pos == 1); | |
313 | ||
314 | amd64_classify (subtype, subclass); | |
315 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
316 | if (pos == 0) | |
317 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 318 | } |
53e95fcf | 319 | } |
efb1c01c MK |
320 | |
321 | /* 4. Then a post merger cleanup is done: */ | |
322 | ||
323 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
324 | passed in memory. */ | |
325 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
326 | class[0] = class[1] = AMD64_MEMORY; | |
327 | ||
328 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
329 | SSE. */ | |
330 | if (class[0] == AMD64_SSEUP) | |
331 | class[0] = AMD64_SSE; | |
332 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
333 | class[1] = AMD64_SSE; | |
334 | } | |
335 | ||
336 | /* Classify TYPE, and store the result in CLASS. */ | |
337 | ||
338 | static void | |
339 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
340 | { | |
341 | enum type_code code = TYPE_CODE (type); | |
342 | int len = TYPE_LENGTH (type); | |
343 | ||
344 | class[0] = class[1] = AMD64_NO_CLASS; | |
345 | ||
346 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
347 | long, long long, and pointers are in the INTEGER class. */ | |
348 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM | |
349 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) | |
350 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
351 | class[0] = AMD64_INTEGER; | |
352 | ||
353 | /* Arguments of types float, double and __m64 are in class SSE. */ | |
354 | else if (code == TYPE_CODE_FLT && (len == 4 || len == 8)) | |
355 | /* FIXME: __m64 . */ | |
356 | class[0] = AMD64_SSE; | |
357 | ||
358 | /* Arguments of types __float128 and __m128 are split into two | |
359 | halves. The least significant ones belong to class SSE, the most | |
360 | significant one to class SSEUP. */ | |
361 | /* FIXME: __float128, __m128. */ | |
362 | ||
363 | /* The 64-bit mantissa of arguments of type long double belongs to | |
364 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
365 | class X87UP. */ | |
366 | else if (code == TYPE_CODE_FLT && len == 16) | |
367 | /* Class X87 and X87UP. */ | |
368 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
369 | ||
370 | /* Aggregates. */ | |
371 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
372 | || code == TYPE_CODE_UNION) | |
373 | amd64_classify_aggregate (type, class); | |
374 | } | |
375 | ||
376 | static enum return_value_convention | |
377 | amd64_return_value (struct gdbarch *gdbarch, struct type *type, | |
378 | struct regcache *regcache, | |
379 | void *readbuf, const void *writebuf) | |
380 | { | |
381 | enum amd64_reg_class class[2]; | |
382 | int len = TYPE_LENGTH (type); | |
383 | static int integer_regnum[] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM }; | |
384 | static int sse_regnum[] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM }; | |
385 | int integer_reg = 0; | |
386 | int sse_reg = 0; | |
387 | int i; | |
388 | ||
389 | gdb_assert (!(readbuf && writebuf)); | |
390 | ||
391 | /* 1. Classify the return type with the classification algorithm. */ | |
392 | amd64_classify (type, class); | |
393 | ||
394 | /* 2. If the type has class MEMORY, then the caller provides space | |
395 | for the return value and passes the address of this storage in | |
396 | %rdi as if it were the first argument to the function. In | |
397 | effect, this address becomes a hidden first argument. */ | |
398 | if (class[0] == AMD64_MEMORY) | |
399 | return RETURN_VALUE_STRUCT_CONVENTION; | |
400 | ||
401 | gdb_assert (class[1] != AMD64_MEMORY); | |
402 | gdb_assert (len <= 16); | |
403 | ||
404 | for (i = 0; len > 0; i++, len -= 8) | |
405 | { | |
406 | int regnum = -1; | |
407 | int offset = 0; | |
408 | ||
409 | switch (class[i]) | |
410 | { | |
411 | case AMD64_INTEGER: | |
412 | /* 3. If the class is INTEGER, the next available register | |
413 | of the sequence %rax, %rdx is used. */ | |
414 | regnum = integer_regnum[integer_reg++]; | |
415 | break; | |
416 | ||
417 | case AMD64_SSE: | |
418 | /* 4. If the class is SSE, the next available SSE register | |
419 | of the sequence %xmm0, %xmm1 is used. */ | |
420 | regnum = sse_regnum[sse_reg++]; | |
421 | break; | |
422 | ||
423 | case AMD64_SSEUP: | |
424 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
425 | upper half of the last used SSE register. */ | |
426 | gdb_assert (sse_reg > 0); | |
427 | regnum = sse_regnum[sse_reg - 1]; | |
428 | offset = 8; | |
429 | break; | |
430 | ||
431 | case AMD64_X87: | |
432 | /* 6. If the class is X87, the value is returned on the X87 | |
433 | stack in %st0 as 80-bit x87 number. */ | |
434 | regnum = X86_64_ST0_REGNUM; | |
435 | if (writebuf) | |
436 | i387_return_value (gdbarch, regcache); | |
437 | break; | |
438 | ||
439 | case AMD64_X87UP: | |
440 | /* 7. If the class is X87UP, the value is returned together | |
441 | with the previous X87 value in %st0. */ | |
442 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
443 | regnum = X86_64_ST0_REGNUM; | |
444 | offset = 8; | |
445 | len = 2; | |
446 | break; | |
447 | ||
448 | case AMD64_NO_CLASS: | |
449 | continue; | |
450 | ||
451 | default: | |
452 | gdb_assert (!"Unexpected register class."); | |
453 | } | |
454 | ||
455 | gdb_assert (regnum != -1); | |
456 | ||
457 | if (readbuf) | |
458 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
459 | (char *) readbuf + i * 8); | |
460 | if (writebuf) | |
461 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
462 | (const char *) writebuf + i * 8); | |
463 | } | |
464 | ||
465 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
466 | } |
467 | \f | |
468 | ||
720aa428 MK |
469 | static CORE_ADDR |
470 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
471 | struct value **args, CORE_ADDR sp) | |
472 | { | |
473 | static int integer_regnum[] = | |
474 | { | |
475 | X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */ | |
476 | X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */ | |
477 | 8, 9 /* %r8, %r9 */ | |
478 | }; | |
479 | static int sse_regnum[] = | |
480 | { | |
481 | /* %xmm0 ... %xmm7 */ | |
482 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
483 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
484 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
485 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
486 | }; | |
487 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
488 | int num_stack_args = 0; | |
489 | int num_elements = 0; | |
490 | int element = 0; | |
491 | int integer_reg = 0; | |
492 | int sse_reg = 0; | |
493 | int i; | |
494 | ||
495 | for (i = 0; i < nargs; i++) | |
496 | { | |
497 | struct type *type = VALUE_TYPE (args[i]); | |
498 | int len = TYPE_LENGTH (type); | |
499 | enum amd64_reg_class class[2]; | |
500 | int needed_integer_regs = 0; | |
501 | int needed_sse_regs = 0; | |
502 | int j; | |
503 | ||
504 | /* Classify argument. */ | |
505 | amd64_classify (type, class); | |
506 | ||
507 | /* Calculate the number of integer and SSE registers needed for | |
508 | this argument. */ | |
509 | for (j = 0; j < 2; j++) | |
510 | { | |
511 | if (class[j] == AMD64_INTEGER) | |
512 | needed_integer_regs++; | |
513 | else if (class[j] == AMD64_SSE) | |
514 | needed_sse_regs++; | |
515 | } | |
516 | ||
517 | /* Check whether enough registers are available, and if the | |
518 | argument should be passed in registers at all. */ | |
519 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
520 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
521 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
522 | { | |
523 | /* The argument will be passed on the stack. */ | |
524 | num_elements += ((len + 7) / 8); | |
525 | stack_args[num_stack_args++] = args[i]; | |
526 | } | |
527 | else | |
528 | { | |
529 | /* The argument will be passed in registers. */ | |
530 | char *valbuf = VALUE_CONTENTS (args[i]); | |
531 | char buf[8]; | |
532 | ||
533 | gdb_assert (len <= 16); | |
534 | ||
535 | for (j = 0; len > 0; j++, len -= 8) | |
536 | { | |
537 | int regnum = -1; | |
538 | int offset = 0; | |
539 | ||
540 | switch (class[j]) | |
541 | { | |
542 | case AMD64_INTEGER: | |
543 | regnum = integer_regnum[integer_reg++]; | |
544 | break; | |
545 | ||
546 | case AMD64_SSE: | |
547 | regnum = sse_regnum[sse_reg++]; | |
548 | break; | |
549 | ||
550 | case AMD64_SSEUP: | |
551 | gdb_assert (sse_reg > 0); | |
552 | regnum = sse_regnum[sse_reg - 1]; | |
553 | offset = 8; | |
554 | break; | |
555 | ||
556 | default: | |
557 | gdb_assert (!"Unexpected register class."); | |
558 | } | |
559 | ||
560 | gdb_assert (regnum != -1); | |
561 | memset (buf, 0, sizeof buf); | |
562 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
563 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
564 | } | |
565 | } | |
566 | } | |
567 | ||
568 | /* Allocate space for the arguments on the stack. */ | |
569 | sp -= num_elements * 8; | |
570 | ||
571 | /* The psABI says that "The end of the input argument area shall be | |
572 | aligned on a 16 byte boundary." */ | |
573 | sp &= ~0xf; | |
574 | ||
575 | /* Write out the arguments to the stack. */ | |
576 | for (i = 0; i < num_stack_args; i++) | |
577 | { | |
578 | struct type *type = VALUE_TYPE (stack_args[i]); | |
579 | char *valbuf = VALUE_CONTENTS (stack_args[i]); | |
580 | int len = TYPE_LENGTH (type); | |
581 | ||
582 | write_memory (sp + element * 8, valbuf, len); | |
583 | element += ((len + 7) / 8); | |
584 | } | |
585 | ||
586 | /* The psABI says that "For calls that may call functions that use | |
587 | varargs or stdargs (prototype-less calls or calls to functions | |
588 | containing ellipsis (...) in the declaration) %al is used as | |
589 | hidden argument to specify the number of SSE registers used. */ | |
590 | regcache_raw_write_unsigned (regcache, X86_64_RAX_REGNUM, sse_reg); | |
591 | return sp; | |
592 | } | |
593 | ||
c4f35dd8 | 594 | static CORE_ADDR |
10f93086 MK |
595 | x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
596 | struct regcache *regcache, CORE_ADDR bp_addr, | |
597 | int nargs, struct value **args, CORE_ADDR sp, | |
598 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 599 | { |
c4f35dd8 MK |
600 | char buf[8]; |
601 | ||
602 | /* Pass arguments. */ | |
720aa428 | 603 | sp = amd64_push_arguments (regcache, nargs, args, sp); |
c4f35dd8 MK |
604 | |
605 | /* Pass "hidden" argument". */ | |
606 | if (struct_return) | |
607 | { | |
608 | store_unsigned_integer (buf, 8, struct_addr); | |
609 | regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf); | |
610 | } | |
611 | ||
612 | /* Store return address. */ | |
613 | sp -= 8; | |
10f93086 | 614 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
615 | write_memory (sp, buf, 8); |
616 | ||
617 | /* Finally, update the stack pointer... */ | |
618 | store_unsigned_integer (buf, 8, sp); | |
619 | regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf); | |
620 | ||
621 | /* ...and fake a frame pointer. */ | |
622 | regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf); | |
623 | ||
3e210248 | 624 | return sp + 16; |
53e95fcf | 625 | } |
c4f35dd8 MK |
626 | \f |
627 | ||
628 | /* The maximum number of saved registers. This should include %rip. */ | |
2b5e0749 | 629 | #define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS |
c4f35dd8 MK |
630 | |
631 | struct x86_64_frame_cache | |
632 | { | |
633 | /* Base address. */ | |
634 | CORE_ADDR base; | |
635 | CORE_ADDR sp_offset; | |
636 | CORE_ADDR pc; | |
637 | ||
638 | /* Saved registers. */ | |
639 | CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS]; | |
640 | CORE_ADDR saved_sp; | |
641 | ||
642 | /* Do we have a frame? */ | |
643 | int frameless_p; | |
644 | }; | |
8dda9770 | 645 | |
c4f35dd8 MK |
646 | /* Allocate and initialize a frame cache. */ |
647 | ||
648 | static struct x86_64_frame_cache * | |
649 | x86_64_alloc_frame_cache (void) | |
8dda9770 | 650 | { |
c4f35dd8 MK |
651 | struct x86_64_frame_cache *cache; |
652 | int i; | |
653 | ||
654 | cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache); | |
8dda9770 | 655 | |
c4f35dd8 MK |
656 | /* Base address. */ |
657 | cache->base = 0; | |
658 | cache->sp_offset = -8; | |
659 | cache->pc = 0; | |
660 | ||
661 | /* Saved registers. We initialize these to -1 since zero is a valid | |
662 | offset (that's where %rbp is supposed to be stored). */ | |
663 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
664 | cache->saved_regs[i] = -1; | |
665 | cache->saved_sp = 0; | |
666 | ||
667 | /* Frameless until proven otherwise. */ | |
668 | cache->frameless_p = 1; | |
669 | ||
670 | return cache; | |
8dda9770 | 671 | } |
53e95fcf | 672 | |
c4f35dd8 MK |
673 | /* Do a limited analysis of the prologue at PC and update CACHE |
674 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
675 | address where the analysis stopped. | |
676 | ||
677 | We will handle only functions beginning with: | |
678 | ||
679 | pushq %rbp 0x55 | |
680 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
681 | ||
682 | Any function that doesn't start with this sequence will be assumed | |
683 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
684 | ||
685 | static CORE_ADDR | |
686 | x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, | |
687 | struct x86_64_frame_cache *cache) | |
53e95fcf | 688 | { |
c4f35dd8 MK |
689 | static unsigned char proto[3] = { 0x48, 0x89, 0xe5 }; |
690 | unsigned char buf[3]; | |
691 | unsigned char op; | |
692 | ||
693 | if (current_pc <= pc) | |
694 | return current_pc; | |
695 | ||
696 | op = read_memory_unsigned_integer (pc, 1); | |
697 | ||
698 | if (op == 0x55) /* pushq %rbp */ | |
699 | { | |
700 | /* Take into account that we've executed the `pushq %rbp' that | |
701 | starts this instruction sequence. */ | |
702 | cache->saved_regs[X86_64_RBP_REGNUM] = 0; | |
703 | cache->sp_offset += 8; | |
704 | ||
705 | /* If that's all, return now. */ | |
706 | if (current_pc <= pc + 1) | |
707 | return current_pc; | |
708 | ||
709 | /* Check for `movq %rsp, %rbp'. */ | |
710 | read_memory (pc + 1, buf, 3); | |
711 | if (memcmp (buf, proto, 3) != 0) | |
712 | return pc + 1; | |
713 | ||
714 | /* OK, we actually have a frame. */ | |
715 | cache->frameless_p = 0; | |
716 | return pc + 4; | |
717 | } | |
718 | ||
719 | return pc; | |
53e95fcf JS |
720 | } |
721 | ||
c4f35dd8 MK |
722 | /* Return PC of first real instruction. */ |
723 | ||
724 | static CORE_ADDR | |
725 | x86_64_skip_prologue (CORE_ADDR start_pc) | |
53e95fcf | 726 | { |
c4f35dd8 MK |
727 | struct x86_64_frame_cache cache; |
728 | CORE_ADDR pc; | |
729 | ||
730 | pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache); | |
731 | if (cache.frameless_p) | |
732 | return start_pc; | |
733 | ||
734 | return pc; | |
53e95fcf | 735 | } |
c4f35dd8 | 736 | \f |
53e95fcf | 737 | |
c4f35dd8 MK |
738 | /* Normal frames. */ |
739 | ||
740 | static struct x86_64_frame_cache * | |
741 | x86_64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 742 | { |
c4f35dd8 MK |
743 | struct x86_64_frame_cache *cache; |
744 | char buf[8]; | |
6d686a84 | 745 | int i; |
6d686a84 | 746 | |
c4f35dd8 MK |
747 | if (*this_cache) |
748 | return *this_cache; | |
6d686a84 | 749 | |
c4f35dd8 MK |
750 | cache = x86_64_alloc_frame_cache (); |
751 | *this_cache = cache; | |
752 | ||
c4f35dd8 MK |
753 | cache->pc = frame_func_unwind (next_frame); |
754 | if (cache->pc != 0) | |
755 | x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); | |
756 | ||
757 | if (cache->frameless_p) | |
758 | { | |
759 | /* We didn't find a valid frame, which means that CACHE->base | |
760 | currently holds the frame pointer for our calling frame. If | |
761 | we're at the start of a function, or somewhere half-way its | |
762 | prologue, the function's frame probably hasn't been fully | |
763 | setup yet. Try to reconstruct the base address for the stack | |
764 | frame by looking at the stack pointer. For truly "frameless" | |
765 | functions this might work too. */ | |
766 | ||
767 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
768 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; | |
769 | } | |
35883a3f MK |
770 | else |
771 | { | |
772 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
773 | cache->base = extract_unsigned_integer (buf, 8); | |
774 | } | |
c4f35dd8 MK |
775 | |
776 | /* Now that we have the base address for the stack frame we can | |
777 | calculate the value of %rsp in the calling frame. */ | |
778 | cache->saved_sp = cache->base + 16; | |
779 | ||
35883a3f MK |
780 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
781 | frame we find it at the same offset from the reconstructed base | |
782 | address. */ | |
783 | cache->saved_regs[X86_64_RIP_REGNUM] = 8; | |
784 | ||
c4f35dd8 MK |
785 | /* Adjust all the saved registers such that they contain addresses |
786 | instead of offsets. */ | |
787 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
788 | if (cache->saved_regs[i] != -1) | |
789 | cache->saved_regs[i] += cache->base; | |
790 | ||
791 | return cache; | |
6d686a84 ML |
792 | } |
793 | ||
c4f35dd8 MK |
794 | static void |
795 | x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
796 | struct frame_id *this_id) | |
797 | { | |
798 | struct x86_64_frame_cache *cache = | |
799 | x86_64_frame_cache (next_frame, this_cache); | |
800 | ||
801 | /* This marks the outermost frame. */ | |
802 | if (cache->base == 0) | |
803 | return; | |
804 | ||
805 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
806 | } | |
e76e1718 | 807 | |
c4f35dd8 MK |
808 | static void |
809 | x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
810 | int regnum, int *optimizedp, | |
811 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
812 | int *realnump, void *valuep) | |
53e95fcf | 813 | { |
c4f35dd8 MK |
814 | struct x86_64_frame_cache *cache = |
815 | x86_64_frame_cache (next_frame, this_cache); | |
e76e1718 | 816 | |
c4f35dd8 | 817 | gdb_assert (regnum >= 0); |
b1ab997b | 818 | |
c4f35dd8 MK |
819 | if (regnum == SP_REGNUM && cache->saved_sp) |
820 | { | |
821 | *optimizedp = 0; | |
822 | *lvalp = not_lval; | |
823 | *addrp = 0; | |
824 | *realnump = -1; | |
825 | if (valuep) | |
826 | { | |
827 | /* Store the value. */ | |
828 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
829 | } | |
830 | return; | |
831 | } | |
e76e1718 | 832 | |
c4f35dd8 MK |
833 | if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
834 | { | |
835 | *optimizedp = 0; | |
836 | *lvalp = lval_memory; | |
837 | *addrp = cache->saved_regs[regnum]; | |
838 | *realnump = -1; | |
839 | if (valuep) | |
840 | { | |
841 | /* Read the value in from memory. */ | |
842 | read_memory (*addrp, valuep, | |
843 | register_size (current_gdbarch, regnum)); | |
844 | } | |
845 | return; | |
846 | } | |
e76e1718 | 847 | |
c4f35dd8 MK |
848 | frame_register_unwind (next_frame, regnum, |
849 | optimizedp, lvalp, addrp, realnump, valuep); | |
850 | } | |
e76e1718 | 851 | |
c4f35dd8 MK |
852 | static const struct frame_unwind x86_64_frame_unwind = |
853 | { | |
854 | NORMAL_FRAME, | |
855 | x86_64_frame_this_id, | |
856 | x86_64_frame_prev_register | |
857 | }; | |
e76e1718 | 858 | |
c4f35dd8 | 859 | static const struct frame_unwind * |
336d1bba | 860 | x86_64_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 MK |
861 | { |
862 | return &x86_64_frame_unwind; | |
863 | } | |
864 | \f | |
e76e1718 | 865 | |
c4f35dd8 MK |
866 | /* Signal trampolines. */ |
867 | ||
868 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
869 | 64-bit variants. This would require using identical frame caches | |
870 | on both platforms. */ | |
871 | ||
872 | static struct x86_64_frame_cache * | |
873 | x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
874 | { | |
875 | struct x86_64_frame_cache *cache; | |
876 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
877 | CORE_ADDR addr; | |
878 | char buf[8]; | |
2b5e0749 | 879 | int i; |
c4f35dd8 MK |
880 | |
881 | if (*this_cache) | |
882 | return *this_cache; | |
883 | ||
884 | cache = x86_64_alloc_frame_cache (); | |
885 | ||
886 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
887 | cache->base = extract_unsigned_integer (buf, 8) - 8; | |
888 | ||
889 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 MK |
890 | gdb_assert (tdep->sc_reg_offset); |
891 | gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS); | |
892 | for (i = 0; i < tdep->sc_num_regs; i++) | |
893 | if (tdep->sc_reg_offset[i] != -1) | |
894 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
895 | |
896 | *this_cache = cache; | |
897 | return cache; | |
53e95fcf JS |
898 | } |
899 | ||
c4f35dd8 MK |
900 | static void |
901 | x86_64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
902 | void **this_cache, struct frame_id *this_id) | |
903 | { | |
904 | struct x86_64_frame_cache *cache = | |
905 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
906 | ||
907 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
908 | } | |
909 | ||
910 | static void | |
911 | x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
912 | void **this_cache, | |
913 | int regnum, int *optimizedp, | |
914 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
915 | int *realnump, void *valuep) | |
916 | { | |
917 | /* Make sure we've initialized the cache. */ | |
918 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
919 | ||
920 | x86_64_frame_prev_register (next_frame, this_cache, regnum, | |
921 | optimizedp, lvalp, addrp, realnump, valuep); | |
922 | } | |
923 | ||
924 | static const struct frame_unwind x86_64_sigtramp_frame_unwind = | |
925 | { | |
926 | SIGTRAMP_FRAME, | |
927 | x86_64_sigtramp_frame_this_id, | |
928 | x86_64_sigtramp_frame_prev_register | |
929 | }; | |
930 | ||
931 | static const struct frame_unwind * | |
336d1bba | 932 | x86_64_sigtramp_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 933 | { |
336d1bba | 934 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
c4f35dd8 MK |
935 | char *name; |
936 | ||
937 | find_pc_partial_function (pc, &name, NULL, NULL); | |
938 | if (PC_IN_SIGTRAMP (pc, name)) | |
1c3545ae MK |
939 | { |
940 | gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr); | |
941 | ||
942 | return &x86_64_sigtramp_frame_unwind; | |
943 | } | |
c4f35dd8 MK |
944 | |
945 | return NULL; | |
946 | } | |
947 | \f | |
948 | ||
949 | static CORE_ADDR | |
950 | x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
951 | { | |
952 | struct x86_64_frame_cache *cache = | |
953 | x86_64_frame_cache (next_frame, this_cache); | |
954 | ||
955 | return cache->base; | |
956 | } | |
957 | ||
958 | static const struct frame_base x86_64_frame_base = | |
959 | { | |
960 | &x86_64_frame_unwind, | |
961 | x86_64_frame_base_address, | |
962 | x86_64_frame_base_address, | |
963 | x86_64_frame_base_address | |
964 | }; | |
965 | ||
166f4c7b | 966 | static struct frame_id |
c4f35dd8 | 967 | x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 968 | { |
c4f35dd8 MK |
969 | char buf[8]; |
970 | CORE_ADDR fp; | |
971 | ||
972 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
973 | fp = extract_unsigned_integer (buf, 8); | |
974 | ||
975 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
976 | } |
977 | ||
8b148df9 AC |
978 | /* 16 byte align the SP per frame requirements. */ |
979 | ||
980 | static CORE_ADDR | |
981 | x86_64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
982 | { | |
983 | return sp & -(CORE_ADDR)16; | |
984 | } | |
473f17b0 MK |
985 | \f |
986 | ||
987 | /* Supply register REGNUM from the floating-point register set REGSET | |
988 | to register cache REGCACHE. If REGNUM is -1, do this for all | |
989 | registers in REGSET. */ | |
990 | ||
991 | static void | |
992 | x86_64_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
993 | int regnum, const void *fpregs, size_t len) | |
994 | { | |
995 | const struct gdbarch_tdep *tdep = regset->descr; | |
996 | ||
997 | gdb_assert (len == tdep->sizeof_fpregset); | |
998 | x86_64_supply_fxsave (regcache, regnum, fpregs); | |
999 | } | |
8b148df9 | 1000 | |
c6b33596 MK |
1001 | /* Return the appropriate register set for the core section identified |
1002 | by SECT_NAME and SECT_SIZE. */ | |
1003 | ||
1004 | static const struct regset * | |
1005 | x86_64_regset_from_core_section (struct gdbarch *gdbarch, | |
1006 | const char *sect_name, size_t sect_size) | |
1007 | { | |
1008 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1009 | ||
1010 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
1011 | { | |
1012 | if (tdep->fpregset == NULL) | |
1013 | { | |
1014 | tdep->fpregset = XMALLOC (struct regset); | |
1015 | tdep->fpregset->descr = tdep; | |
1016 | tdep->fpregset->supply_regset = x86_64_supply_fpregset; | |
1017 | } | |
1018 | ||
1019 | return tdep->fpregset; | |
1020 | } | |
1021 | ||
1022 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
1023 | } | |
1024 | \f | |
1025 | ||
2213a65d | 1026 | void |
0c1a73d6 | 1027 | x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1028 | { |
0c1a73d6 | 1029 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1030 | |
473f17b0 MK |
1031 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
1032 | floating-point registers. */ | |
1033 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
1034 | ||
5716833c MK |
1035 | /* AMD64 has an FPU and 16 SSE registers. */ |
1036 | tdep->st0_regnum = X86_64_ST0_REGNUM; | |
0c1a73d6 | 1037 | tdep->num_xmm_regs = 16; |
53e95fcf | 1038 | |
0c1a73d6 | 1039 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1040 | set_gdbarch_long_bit (gdbarch, 64); |
1041 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1042 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1043 | ||
b83b026c MK |
1044 | /* In contrast to the i386, on the x86-64 a `long double' actually |
1045 | takes up 128 bits, even though it's still based on the i387 | |
1046 | extended floating-point format which has only 80 significant bits. */ | |
1047 | set_gdbarch_long_double_bit (gdbarch, 128); | |
1048 | ||
53e95fcf | 1049 | set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS); |
c4f35dd8 MK |
1050 | set_gdbarch_register_name (gdbarch, x86_64_register_name); |
1051 | set_gdbarch_register_type (gdbarch, x86_64_register_type); | |
b83b026c MK |
1052 | |
1053 | /* Register numbers of various important registers. */ | |
c4f35dd8 MK |
1054 | set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */ |
1055 | set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */ | |
1056 | set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */ | |
1057 | set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */ | |
b83b026c MK |
1058 | |
1059 | /* The "default" register numbering scheme for the x86-64 is | |
c4f35dd8 MK |
1060 | referred to as the "DWARF Register Number Mapping" in the System |
1061 | V psABI. The preferred debugging format for all known x86-64 | |
1062 | targets is actually DWARF2, and GCC doesn't seem to support DWARF | |
1063 | (that is DWARF-1), but we provide the same mapping just in case. | |
1064 | This mapping is also used for stabs, which GCC does support. */ | |
1065 | set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1066 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1067 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
de220d0f | 1068 | |
c4f35dd8 MK |
1069 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
1070 | be in use on any of the supported x86-64 targets. */ | |
53e95fcf | 1071 | |
c4f35dd8 MK |
1072 | /* Call dummy code. */ |
1073 | set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call); | |
8b148df9 AC |
1074 | set_gdbarch_frame_align (gdbarch, x86_64_frame_align); |
1075 | set_gdbarch_frame_red_zone_size (gdbarch, 128); | |
53e95fcf | 1076 | |
d532c08f MK |
1077 | set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p); |
1078 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); | |
1079 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1080 | ||
efb1c01c | 1081 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
b83b026c MK |
1082 | /* Override, since this is handled by x86_64_extract_return_value. */ |
1083 | set_gdbarch_extract_struct_value_address (gdbarch, NULL); | |
53e95fcf | 1084 | |
b83b026c | 1085 | set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue); |
53e95fcf | 1086 | |
c4f35dd8 | 1087 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 1088 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 1089 | tdep->mm0_regnum = -1; |
2213a65d | 1090 | |
c4f35dd8 | 1091 | set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id); |
53e95fcf | 1092 | |
b83b026c MK |
1093 | /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now, |
1094 | since all supported x86-64 targets are ELF, but that might change | |
1095 | in the future. */ | |
8a8ab2b9 | 1096 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); |
c4f35dd8 | 1097 | |
336d1bba AC |
1098 | frame_unwind_append_sniffer (gdbarch, x86_64_sigtramp_frame_sniffer); |
1099 | frame_unwind_append_sniffer (gdbarch, x86_64_frame_sniffer); | |
c4f35dd8 | 1100 | frame_base_set_default (gdbarch, &x86_64_frame_base); |
c6b33596 MK |
1101 | |
1102 | /* If we have a register mapping, enable the generic core file support. */ | |
1103 | if (tdep->gregset_reg_offset) | |
1104 | set_gdbarch_regset_from_core_section (gdbarch, | |
1105 | x86_64_regset_from_core_section); | |
c4f35dd8 MK |
1106 | } |
1107 | \f | |
1108 | ||
5716833c | 1109 | #define I387_ST0_REGNUM X86_64_ST0_REGNUM |
c4f35dd8 | 1110 | |
41d041d6 MK |
1111 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
1112 | sense that the instruction pointer and data pointer are simply | |
1113 | 64-bit offsets into the code segment and the data segment instead | |
1114 | of a selector offset pair. The functions below store the upper 32 | |
1115 | bits of these pointers (instead of just the 16-bits of the segment | |
1116 | selector). */ | |
1117 | ||
1118 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
1119 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
1120 | -1, do this for all registers. This function masks off any of the | |
1121 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
1122 | |
1123 | void | |
41d041d6 MK |
1124 | x86_64_supply_fxsave (struct regcache *regcache, int regnum, |
1125 | const void *fxsave) | |
c4f35dd8 | 1126 | { |
41d041d6 | 1127 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 MK |
1128 | |
1129 | if (fxsave) | |
1130 | { | |
41d041d6 MK |
1131 | const char *regs = fxsave; |
1132 | ||
0485f6ad | 1133 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
41d041d6 | 1134 | regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); |
0485f6ad | 1135 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
41d041d6 | 1136 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); |
c4f35dd8 | 1137 | } |
0c1a73d6 MK |
1138 | } |
1139 | ||
c4f35dd8 | 1140 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
0485f6ad | 1141 | *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do |
c4f35dd8 MK |
1142 | this for all registers. This function doesn't touch any of the |
1143 | reserved bits in *FXSAVE. */ | |
1144 | ||
53e95fcf | 1145 | void |
c4f35dd8 | 1146 | x86_64_fill_fxsave (char *fxsave, int regnum) |
53e95fcf | 1147 | { |
c4f35dd8 | 1148 | i387_fill_fxsave (fxsave, regnum); |
53e95fcf | 1149 | |
c4f35dd8 | 1150 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
088ce440 | 1151 | regcache_collect (I387_FISEG_REGNUM, fxsave + 12); |
c4f35dd8 | 1152 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
088ce440 | 1153 | regcache_collect (I387_FOSEG_REGNUM, fxsave + 20); |
53e95fcf | 1154 | } |