]>
Commit | Line | Data |
---|---|---|
53e95fcf | 1 | /* Target-dependent code for the x86-64 for GDB, the GNU debugger. |
ce0eebec | 2 | |
51603483 | 3 | Copyright 2001, 2002, 2003 Free Software Foundation, Inc. |
53e95fcf JS |
4 | Contributed by Jiri Smid, SuSE Labs. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
c4f35dd8 MK |
24 | #include "arch-utils.h" |
25 | #include "block.h" | |
26 | #include "dummy-frame.h" | |
27 | #include "frame.h" | |
28 | #include "frame-base.h" | |
29 | #include "frame-unwind.h" | |
53e95fcf | 30 | #include "inferior.h" |
53e95fcf | 31 | #include "gdbcmd.h" |
c4f35dd8 MK |
32 | #include "gdbcore.h" |
33 | #include "objfiles.h" | |
53e95fcf JS |
34 | #include "regcache.h" |
35 | #include "symfile.h" | |
c4f35dd8 | 36 | |
82dbc5f7 | 37 | #include "gdb_assert.h" |
c4f35dd8 MK |
38 | |
39 | #include "x86-64-tdep.h" | |
40 | #include "i387-tdep.h" | |
53e95fcf | 41 | |
53e95fcf | 42 | /* Register numbers of various important registers. */ |
c4f35dd8 MK |
43 | |
44 | #define X86_64_RAX_REGNUM 0 /* %rax */ | |
45 | #define X86_64_RDX_REGNUM 3 /* %rdx */ | |
46 | #define X86_64_RDI_REGNUM 5 /* %rdi */ | |
47 | #define X86_64_RBP_REGNUM 6 /* %rbp */ | |
48 | #define X86_64_RSP_REGNUM 7 /* %rsp */ | |
49 | #define X86_64_RIP_REGNUM 16 /* %rip */ | |
50 | #define X86_64_EFLAGS_REGNUM 17 /* %eflags */ | |
51 | #define X86_64_ST0_REGNUM 22 /* %st0 */ | |
52 | #define X86_64_XMM0_REGNUM 38 /* %xmm0 */ | |
53 | #define X86_64_XMM1_REGNUM 39 /* %xmm1 */ | |
54 | ||
55 | struct x86_64_register_info | |
de220d0f | 56 | { |
de220d0f ML |
57 | char *name; |
58 | struct type **type; | |
59 | }; | |
53e95fcf | 60 | |
c4f35dd8 MK |
61 | static struct x86_64_register_info x86_64_register_info[] = |
62 | { | |
63 | { "rax", &builtin_type_int64 }, | |
64 | { "rbx", &builtin_type_int64 }, | |
65 | { "rcx", &builtin_type_int64 }, | |
66 | { "rdx", &builtin_type_int64 }, | |
67 | { "rsi", &builtin_type_int64 }, | |
68 | { "rdi", &builtin_type_int64 }, | |
69 | { "rbp", &builtin_type_void_data_ptr }, | |
70 | { "rsp", &builtin_type_void_data_ptr }, | |
71 | ||
72 | /* %r8 is indeed register number 8. */ | |
73 | { "r8", &builtin_type_int64 }, | |
74 | { "r9", &builtin_type_int64 }, | |
75 | { "r10", &builtin_type_int64 }, | |
76 | { "r11", &builtin_type_int64 }, | |
77 | { "r12", &builtin_type_int64 }, | |
78 | { "r13", &builtin_type_int64 }, | |
79 | { "r14", &builtin_type_int64 }, | |
80 | { "r15", &builtin_type_int64 }, | |
81 | { "rip", &builtin_type_void_func_ptr }, | |
82 | { "eflags", &builtin_type_int32 }, | |
83 | { "ds", &builtin_type_int32 }, | |
84 | { "es", &builtin_type_int32 }, | |
85 | { "fs", &builtin_type_int32 }, | |
86 | { "gs", &builtin_type_int32 }, | |
87 | ||
88 | /* %st0 is register number 22. */ | |
89 | { "st0", &builtin_type_i387_ext }, | |
90 | { "st1", &builtin_type_i387_ext }, | |
91 | { "st2", &builtin_type_i387_ext }, | |
92 | { "st3", &builtin_type_i387_ext }, | |
93 | { "st4", &builtin_type_i387_ext }, | |
94 | { "st5", &builtin_type_i387_ext }, | |
95 | { "st6", &builtin_type_i387_ext }, | |
96 | { "st7", &builtin_type_i387_ext }, | |
97 | { "fctrl", &builtin_type_int32 }, | |
98 | { "fstat", &builtin_type_int32 }, | |
99 | { "ftag", &builtin_type_int32 }, | |
100 | { "fiseg", &builtin_type_int32 }, | |
101 | { "fioff", &builtin_type_int32 }, | |
102 | { "foseg", &builtin_type_int32 }, | |
103 | { "fooff", &builtin_type_int32 }, | |
104 | { "fop", &builtin_type_int32 }, | |
105 | ||
106 | /* %xmm0 is register number 38. */ | |
107 | { "xmm0", &builtin_type_v4sf }, | |
108 | { "xmm1", &builtin_type_v4sf }, | |
109 | { "xmm2", &builtin_type_v4sf }, | |
110 | { "xmm3", &builtin_type_v4sf }, | |
111 | { "xmm4", &builtin_type_v4sf }, | |
112 | { "xmm5", &builtin_type_v4sf }, | |
113 | { "xmm6", &builtin_type_v4sf }, | |
114 | { "xmm7", &builtin_type_v4sf }, | |
115 | { "xmm8", &builtin_type_v4sf }, | |
116 | { "xmm9", &builtin_type_v4sf }, | |
117 | { "xmm10", &builtin_type_v4sf }, | |
118 | { "xmm11", &builtin_type_v4sf }, | |
119 | { "xmm12", &builtin_type_v4sf }, | |
120 | { "xmm13", &builtin_type_v4sf }, | |
121 | { "xmm14", &builtin_type_v4sf }, | |
122 | { "xmm15", &builtin_type_v4sf }, | |
123 | { "mxcsr", &builtin_type_int32 } | |
0e04a514 ML |
124 | }; |
125 | ||
c4f35dd8 MK |
126 | /* Total number of registers. */ |
127 | #define X86_64_NUM_REGS \ | |
128 | (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0])) | |
de220d0f | 129 | |
c4f35dd8 | 130 | /* Return the name of register REGNUM. */ |
b6779aa2 | 131 | |
c4f35dd8 MK |
132 | static const char * |
133 | x86_64_register_name (int regnum) | |
53e95fcf | 134 | { |
c4f35dd8 MK |
135 | if (regnum >= 0 && regnum < X86_64_NUM_REGS) |
136 | return x86_64_register_info[regnum].name; | |
53e95fcf | 137 | |
c4f35dd8 | 138 | return NULL; |
53e95fcf JS |
139 | } |
140 | ||
141 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 142 | register REGNUM. */ |
53e95fcf | 143 | |
c4f35dd8 MK |
144 | static struct type * |
145 | x86_64_register_type (struct gdbarch *gdbarch, int regnum) | |
53e95fcf | 146 | { |
c4f35dd8 | 147 | gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS); |
4657573b | 148 | |
c4f35dd8 | 149 | return *x86_64_register_info[regnum].type; |
53e95fcf JS |
150 | } |
151 | ||
c4f35dd8 MK |
152 | /* DWARF Register Number Mapping as defined in the System V psABI, |
153 | section 3.6. */ | |
53e95fcf | 154 | |
c4f35dd8 | 155 | static int x86_64_dwarf_regmap[] = |
0e04a514 | 156 | { |
c4f35dd8 MK |
157 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
158 | X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 3, 2, | |
159 | 4, X86_64_RDI_REGNUM, | |
160 | ||
161 | /* Frame Pointer Register RBP. */ | |
162 | X86_64_RBP_REGNUM, | |
163 | ||
164 | /* Stack Pointer Register RSP. */ | |
165 | X86_64_RSP_REGNUM, | |
166 | ||
167 | /* Extended Integer Registers 8 - 15. */ | |
168 | 8, 9, 10, 11, 12, 13, 14, 15, | |
169 | ||
170 | /* Return Address RA. Not mapped. */ | |
171 | -1, | |
172 | ||
173 | /* SSE Registers 0 - 7. */ | |
174 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
175 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
176 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
177 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
178 | ||
179 | /* Extended SSE Registers 8 - 15. */ | |
180 | X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9, | |
181 | X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11, | |
182 | X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13, | |
183 | X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15, | |
184 | ||
185 | /* Floating Point Registers 0-7. */ | |
186 | X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1, | |
187 | X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3, | |
188 | X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5, | |
189 | X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7 | |
190 | }; | |
0e04a514 | 191 | |
c4f35dd8 MK |
192 | static const int x86_64_dwarf_regmap_len = |
193 | (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0])); | |
0e04a514 | 194 | |
c4f35dd8 MK |
195 | /* Convert DWARF register number REG to the appropriate register |
196 | number used by GDB. */ | |
26abbdc4 | 197 | |
c4f35dd8 MK |
198 | static int |
199 | x86_64_dwarf_reg_to_regnum (int reg) | |
53e95fcf | 200 | { |
c4f35dd8 | 201 | int regnum = -1; |
53e95fcf | 202 | |
c4f35dd8 MK |
203 | if (reg >= 0 || reg < x86_64_dwarf_regmap_len) |
204 | regnum = x86_64_dwarf_regmap[reg]; | |
53e95fcf | 205 | |
c4f35dd8 MK |
206 | if (regnum == -1) |
207 | warning ("Unmapped DWARF Register #%d encountered\n", reg); | |
208 | ||
209 | return regnum; | |
53e95fcf JS |
210 | } |
211 | \f | |
212 | ||
213 | /* The returning of values is done according to the special algorithm. | |
c4f35dd8 MK |
214 | Some types are returned in registers an some (big structures) in |
215 | memory. See the System V psABI for details. */ | |
53e95fcf JS |
216 | |
217 | #define MAX_CLASSES 4 | |
218 | ||
219 | enum x86_64_reg_class | |
220 | { | |
221 | X86_64_NO_CLASS, | |
222 | X86_64_INTEGER_CLASS, | |
223 | X86_64_INTEGERSI_CLASS, | |
224 | X86_64_SSE_CLASS, | |
225 | X86_64_SSESF_CLASS, | |
226 | X86_64_SSEDF_CLASS, | |
227 | X86_64_SSEUP_CLASS, | |
228 | X86_64_X87_CLASS, | |
229 | X86_64_X87UP_CLASS, | |
230 | X86_64_MEMORY_CLASS | |
231 | }; | |
232 | ||
233 | /* Return the union class of CLASS1 and CLASS2. | |
c4f35dd8 | 234 | See the System V psABI for details. */ |
53e95fcf JS |
235 | |
236 | static enum x86_64_reg_class | |
237 | merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) | |
238 | { | |
c4f35dd8 | 239 | /* Rule (a): If both classes are equal, this is the resulting class. */ |
53e95fcf JS |
240 | if (class1 == class2) |
241 | return class1; | |
242 | ||
c4f35dd8 | 243 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class |
26abbdc4 | 244 | is the other class. */ |
53e95fcf JS |
245 | if (class1 == X86_64_NO_CLASS) |
246 | return class2; | |
247 | if (class2 == X86_64_NO_CLASS) | |
248 | return class1; | |
249 | ||
c4f35dd8 | 250 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ |
53e95fcf JS |
251 | if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) |
252 | return X86_64_MEMORY_CLASS; | |
253 | ||
c4f35dd8 | 254 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ |
53e95fcf JS |
255 | if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) |
256 | || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) | |
257 | return X86_64_INTEGERSI_CLASS; | |
258 | if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS | |
259 | || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) | |
260 | return X86_64_INTEGER_CLASS; | |
261 | ||
c4f35dd8 MK |
262 | /* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is |
263 | used as class. */ | |
53e95fcf JS |
264 | if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS |
265 | || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS) | |
266 | return X86_64_MEMORY_CLASS; | |
267 | ||
c4f35dd8 | 268 | /* Rule (f): Otherwise class SSE is used. */ |
53e95fcf JS |
269 | return X86_64_SSE_CLASS; |
270 | } | |
271 | ||
26abbdc4 MK |
272 | /* Classify the argument type. CLASSES will be filled by the register |
273 | class used to pass each word of the operand. The number of words | |
274 | is returned. In case the parameter should be passed in memory, 0 | |
275 | is returned. As a special case for zero sized containers, | |
276 | classes[0] will be NO_CLASS and 1 is returned. | |
53e95fcf | 277 | |
c4f35dd8 | 278 | See the System V psABI for details. */ |
53e95fcf JS |
279 | |
280 | static int | |
281 | classify_argument (struct type *type, | |
282 | enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) | |
283 | { | |
284 | int bytes = TYPE_LENGTH (type); | |
285 | int words = (bytes + 8 - 1) / 8; | |
286 | ||
287 | switch (TYPE_CODE (type)) | |
288 | { | |
289 | case TYPE_CODE_ARRAY: | |
290 | case TYPE_CODE_STRUCT: | |
291 | case TYPE_CODE_UNION: | |
292 | { | |
293 | int i; | |
294 | enum x86_64_reg_class subclasses[MAX_CLASSES]; | |
295 | ||
296 | /* On x86-64 we pass structures larger than 16 bytes on the stack. */ | |
297 | if (bytes > 16) | |
298 | return 0; | |
299 | ||
300 | for (i = 0; i < words; i++) | |
301 | classes[i] = X86_64_NO_CLASS; | |
302 | ||
26abbdc4 MK |
303 | /* Zero sized arrays or structures are NO_CLASS. We return 0 |
304 | to signalize memory class, so handle it as special case. */ | |
53e95fcf JS |
305 | if (!words) |
306 | { | |
307 | classes[0] = X86_64_NO_CLASS; | |
308 | return 1; | |
309 | } | |
310 | switch (TYPE_CODE (type)) | |
311 | { | |
312 | case TYPE_CODE_STRUCT: | |
313 | { | |
314 | int j; | |
0004e5a2 | 315 | for (j = 0; j < TYPE_NFIELDS (type); ++j) |
53e95fcf | 316 | { |
0004e5a2 | 317 | int num = classify_argument (TYPE_FIELDS (type)[j].type, |
53e95fcf | 318 | subclasses, |
8dda9770 ML |
319 | (TYPE_FIELDS (type)[j].loc. |
320 | bitpos + bit_offset) % 256); | |
53e95fcf JS |
321 | if (!num) |
322 | return 0; | |
323 | for (i = 0; i < num; i++) | |
324 | { | |
325 | int pos = | |
8dda9770 ML |
326 | (TYPE_FIELDS (type)[j].loc.bitpos + |
327 | bit_offset) / 8 / 8; | |
53e95fcf JS |
328 | classes[i + pos] = |
329 | merge_classes (subclasses[i], classes[i + pos]); | |
330 | } | |
331 | } | |
332 | } | |
333 | break; | |
334 | case TYPE_CODE_ARRAY: | |
335 | { | |
336 | int num; | |
337 | ||
0004e5a2 | 338 | num = classify_argument (TYPE_TARGET_TYPE (type), |
53e95fcf JS |
339 | subclasses, bit_offset); |
340 | if (!num) | |
341 | return 0; | |
342 | ||
343 | /* The partial classes are now full classes. */ | |
344 | if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) | |
345 | subclasses[0] = X86_64_SSE_CLASS; | |
346 | if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4) | |
347 | subclasses[0] = X86_64_INTEGER_CLASS; | |
348 | ||
349 | for (i = 0; i < words; i++) | |
350 | classes[i] = subclasses[i % num]; | |
351 | } | |
352 | break; | |
353 | case TYPE_CODE_UNION: | |
354 | { | |
355 | int j; | |
356 | { | |
0004e5a2 | 357 | for (j = 0; j < TYPE_NFIELDS (type); ++j) |
53e95fcf JS |
358 | { |
359 | int num; | |
0004e5a2 | 360 | num = classify_argument (TYPE_FIELDS (type)[j].type, |
53e95fcf JS |
361 | subclasses, bit_offset); |
362 | if (!num) | |
363 | return 0; | |
364 | for (i = 0; i < num; i++) | |
365 | classes[i] = merge_classes (subclasses[i], classes[i]); | |
366 | } | |
367 | } | |
368 | } | |
369 | break; | |
4657573b ML |
370 | default: |
371 | break; | |
53e95fcf JS |
372 | } |
373 | /* Final merger cleanup. */ | |
374 | for (i = 0; i < words; i++) | |
375 | { | |
376 | /* If one class is MEMORY, everything should be passed in | |
377 | memory. */ | |
378 | if (classes[i] == X86_64_MEMORY_CLASS) | |
379 | return 0; | |
380 | ||
381 | /* The X86_64_SSEUP_CLASS should be always preceeded by | |
382 | X86_64_SSE_CLASS. */ | |
383 | if (classes[i] == X86_64_SSEUP_CLASS | |
384 | && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS)) | |
385 | classes[i] = X86_64_SSE_CLASS; | |
386 | ||
26abbdc4 | 387 | /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */ |
53e95fcf JS |
388 | if (classes[i] == X86_64_X87UP_CLASS |
389 | && (i == 0 || classes[i - 1] != X86_64_X87_CLASS)) | |
390 | classes[i] = X86_64_SSE_CLASS; | |
391 | } | |
392 | return words; | |
393 | } | |
394 | break; | |
395 | case TYPE_CODE_FLT: | |
396 | switch (bytes) | |
397 | { | |
398 | case 4: | |
399 | if (!(bit_offset % 64)) | |
400 | classes[0] = X86_64_SSESF_CLASS; | |
401 | else | |
402 | classes[0] = X86_64_SSE_CLASS; | |
403 | return 1; | |
404 | case 8: | |
405 | classes[0] = X86_64_SSEDF_CLASS; | |
406 | return 1; | |
407 | case 16: | |
408 | classes[0] = X86_64_X87_CLASS; | |
409 | classes[1] = X86_64_X87UP_CLASS; | |
410 | return 2; | |
411 | } | |
412 | break; | |
50c46a0d EZ |
413 | case TYPE_CODE_ENUM: |
414 | case TYPE_CODE_REF: | |
53e95fcf JS |
415 | case TYPE_CODE_INT: |
416 | case TYPE_CODE_PTR: | |
417 | switch (bytes) | |
418 | { | |
419 | case 1: | |
420 | case 2: | |
421 | case 4: | |
422 | case 8: | |
423 | if (bytes * 8 + bit_offset <= 32) | |
424 | classes[0] = X86_64_INTEGERSI_CLASS; | |
425 | else | |
426 | classes[0] = X86_64_INTEGER_CLASS; | |
427 | return 1; | |
428 | case 16: | |
429 | classes[0] = classes[1] = X86_64_INTEGER_CLASS; | |
430 | return 2; | |
431 | default: | |
432 | break; | |
433 | } | |
434 | case TYPE_CODE_VOID: | |
435 | return 0; | |
8dda9770 | 436 | default: /* Avoid warning. */ |
4657573b | 437 | break; |
53e95fcf | 438 | } |
ce0eebec AC |
439 | internal_error (__FILE__, __LINE__, |
440 | "classify_argument: unknown argument type"); | |
53e95fcf JS |
441 | } |
442 | ||
26abbdc4 MK |
443 | /* Examine the argument and set *INT_NREGS and *SSE_NREGS to the |
444 | number of registers required based on the information passed in | |
445 | CLASSES. Return 0 if parameter should be passed in memory. */ | |
53e95fcf JS |
446 | |
447 | static int | |
448 | examine_argument (enum x86_64_reg_class classes[MAX_CLASSES], | |
449 | int n, int *int_nregs, int *sse_nregs) | |
450 | { | |
451 | *int_nregs = 0; | |
452 | *sse_nregs = 0; | |
453 | if (!n) | |
454 | return 0; | |
455 | for (n--; n >= 0; n--) | |
456 | switch (classes[n]) | |
457 | { | |
458 | case X86_64_INTEGER_CLASS: | |
459 | case X86_64_INTEGERSI_CLASS: | |
460 | (*int_nregs)++; | |
461 | break; | |
462 | case X86_64_SSE_CLASS: | |
463 | case X86_64_SSESF_CLASS: | |
464 | case X86_64_SSEDF_CLASS: | |
465 | (*sse_nregs)++; | |
466 | break; | |
467 | case X86_64_NO_CLASS: | |
468 | case X86_64_SSEUP_CLASS: | |
469 | case X86_64_X87_CLASS: | |
470 | case X86_64_X87UP_CLASS: | |
471 | break; | |
472 | case X86_64_MEMORY_CLASS: | |
ce0eebec AC |
473 | internal_error (__FILE__, __LINE__, |
474 | "examine_argument: unexpected memory class"); | |
53e95fcf JS |
475 | } |
476 | return 1; | |
477 | } | |
478 | ||
479 | #define RET_INT_REGS 2 | |
480 | #define RET_SSE_REGS 2 | |
481 | ||
482 | /* Check if the structure in value_type is returned in registers or in | |
26abbdc4 MK |
483 | memory. If this function returns 1, GDB will call |
484 | STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else | |
485 | STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */ | |
c4f35dd8 MK |
486 | |
487 | static int | |
53e95fcf JS |
488 | x86_64_use_struct_convention (int gcc_p, struct type *value_type) |
489 | { | |
490 | enum x86_64_reg_class class[MAX_CLASSES]; | |
491 | int n = classify_argument (value_type, class, 0); | |
492 | int needed_intregs; | |
493 | int needed_sseregs; | |
494 | ||
495 | return (!n || | |
496 | !examine_argument (class, n, &needed_intregs, &needed_sseregs) || | |
497 | needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS); | |
498 | } | |
499 | ||
53e95fcf JS |
500 | /* Extract from an array REGBUF containing the (raw) register state, a |
501 | function return value of TYPE, and copy that, in virtual format, | |
502 | into VALBUF. */ | |
503 | ||
c4f35dd8 | 504 | static void |
48037ead ML |
505 | x86_64_extract_return_value (struct type *type, struct regcache *regcache, |
506 | void *valbuf) | |
53e95fcf JS |
507 | { |
508 | enum x86_64_reg_class class[MAX_CLASSES]; | |
509 | int n = classify_argument (type, class, 0); | |
510 | int needed_intregs; | |
511 | int needed_sseregs; | |
512 | int intreg = 0; | |
513 | int ssereg = 0; | |
514 | int offset = 0; | |
c4f35dd8 MK |
515 | int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM }; |
516 | int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM }; | |
53e95fcf JS |
517 | |
518 | if (!n || | |
519 | !examine_argument (class, n, &needed_intregs, &needed_sseregs) || | |
520 | needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS) | |
521 | { /* memory class */ | |
522 | CORE_ADDR addr; | |
c4f35dd8 | 523 | regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr); |
53e95fcf JS |
524 | read_memory (addr, valbuf, TYPE_LENGTH (type)); |
525 | return; | |
526 | } | |
527 | else | |
528 | { | |
529 | int i; | |
530 | for (i = 0; i < n; i++) | |
531 | { | |
532 | switch (class[i]) | |
533 | { | |
534 | case X86_64_NO_CLASS: | |
535 | break; | |
536 | case X86_64_INTEGER_CLASS: | |
48037ead ML |
537 | regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2], |
538 | (char *) valbuf + offset); | |
53e95fcf JS |
539 | offset += 8; |
540 | intreg += 2; | |
541 | break; | |
542 | case X86_64_INTEGERSI_CLASS: | |
48037ead ML |
543 | regcache_cooked_read_part (regcache, ret_int_r[intreg / 2], |
544 | 0, 4, (char *) valbuf + offset); | |
53e95fcf JS |
545 | offset += 8; |
546 | intreg++; | |
547 | break; | |
548 | case X86_64_SSEDF_CLASS: | |
549 | case X86_64_SSESF_CLASS: | |
550 | case X86_64_SSE_CLASS: | |
48037ead ML |
551 | regcache_cooked_read_part (regcache, |
552 | ret_sse_r[(ssereg + 1) / 2], 0, 8, | |
553 | (char *) valbuf + offset); | |
53e95fcf JS |
554 | offset += 8; |
555 | ssereg += 2; | |
556 | break; | |
557 | case X86_64_SSEUP_CLASS: | |
48037ead ML |
558 | regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2], |
559 | 0, 8, (char *) valbuf + offset); | |
53e95fcf JS |
560 | offset += 8; |
561 | ssereg++; | |
562 | break; | |
563 | case X86_64_X87_CLASS: | |
c4f35dd8 | 564 | regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM, |
48037ead | 565 | 0, 8, (char *) valbuf + offset); |
53e95fcf JS |
566 | offset += 8; |
567 | break; | |
568 | case X86_64_X87UP_CLASS: | |
c4f35dd8 | 569 | regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM, |
48037ead | 570 | 8, 2, (char *) valbuf + offset); |
53e95fcf JS |
571 | offset += 8; |
572 | break; | |
573 | case X86_64_MEMORY_CLASS: | |
574 | default: | |
575 | internal_error (__FILE__, __LINE__, | |
576 | "Unexpected argument class"); | |
577 | } | |
578 | } | |
579 | } | |
580 | } | |
581 | ||
53e95fcf | 582 | #define INT_REGS 6 |
c4f35dd8 | 583 | #define SSE_REGS 8 |
53e95fcf | 584 | |
c4f35dd8 MK |
585 | static CORE_ADDR |
586 | x86_64_push_arguments (struct regcache *regcache, int nargs, | |
587 | struct value **args, CORE_ADDR sp) | |
53e95fcf JS |
588 | { |
589 | int intreg = 0; | |
590 | int ssereg = 0; | |
591 | int i; | |
c4f35dd8 MK |
592 | static int int_parameter_registers[INT_REGS] = |
593 | { | |
594 | X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */ | |
595 | X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */ | |
596 | 8, 9 /* %r8, %r9 */ | |
ce0eebec | 597 | }; |
c4f35dd8 MK |
598 | /* %xmm0 - %xmm7 */ |
599 | static int sse_parameter_registers[SSE_REGS] = | |
600 | { | |
601 | X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM, | |
602 | X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3, | |
603 | X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5, | |
604 | X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7, | |
ce0eebec AC |
605 | }; |
606 | int stack_values_count = 0; | |
82dbc5f7 | 607 | int *stack_values; |
e9f30c21 | 608 | stack_values = alloca (nargs * sizeof (int)); |
53e95fcf JS |
609 | for (i = 0; i < nargs; i++) |
610 | { | |
611 | enum x86_64_reg_class class[MAX_CLASSES]; | |
612 | int n = classify_argument (args[i]->type, class, 0); | |
613 | int needed_intregs; | |
614 | int needed_sseregs; | |
615 | ||
616 | if (!n || | |
617 | !examine_argument (class, n, &needed_intregs, &needed_sseregs) | |
82dbc5f7 AC |
618 | || intreg / 2 + needed_intregs > INT_REGS |
619 | || ssereg / 2 + needed_sseregs > SSE_REGS) | |
ce0eebec AC |
620 | { /* memory class */ |
621 | stack_values[stack_values_count++] = i; | |
53e95fcf JS |
622 | } |
623 | else | |
624 | { | |
625 | int j; | |
626 | for (j = 0; j < n; j++) | |
627 | { | |
628 | int offset = 0; | |
629 | switch (class[j]) | |
630 | { | |
631 | case X86_64_NO_CLASS: | |
632 | break; | |
633 | case X86_64_INTEGER_CLASS: | |
c4f35dd8 MK |
634 | regcache_cooked_write |
635 | (regcache, int_parameter_registers[(intreg + 1) / 2], | |
636 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
53e95fcf JS |
637 | offset += 8; |
638 | intreg += 2; | |
639 | break; | |
640 | case X86_64_INTEGERSI_CLASS: | |
50c46a0d | 641 | { |
c4f35dd8 MK |
642 | LONGEST val = extract_signed_integer |
643 | (VALUE_CONTENTS_ALL (args[i]) + offset, 4); | |
644 | regcache_cooked_write_signed | |
645 | (regcache, int_parameter_registers[intreg / 2], val); | |
50c46a0d EZ |
646 | |
647 | offset += 8; | |
648 | intreg++; | |
649 | break; | |
650 | } | |
53e95fcf JS |
651 | case X86_64_SSEDF_CLASS: |
652 | case X86_64_SSESF_CLASS: | |
653 | case X86_64_SSE_CLASS: | |
c4f35dd8 MK |
654 | regcache_cooked_write |
655 | (regcache, sse_parameter_registers[(ssereg + 1) / 2], | |
656 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
53e95fcf JS |
657 | offset += 8; |
658 | ssereg += 2; | |
659 | break; | |
660 | case X86_64_SSEUP_CLASS: | |
c4f35dd8 MK |
661 | regcache_cooked_write |
662 | (regcache, sse_parameter_registers[ssereg / 2], | |
663 | VALUE_CONTENTS_ALL (args[i]) + offset); | |
53e95fcf JS |
664 | offset += 8; |
665 | ssereg++; | |
666 | break; | |
667 | case X86_64_X87_CLASS: | |
53e95fcf | 668 | case X86_64_MEMORY_CLASS: |
ce0eebec | 669 | stack_values[stack_values_count++] = i; |
82dbc5f7 AC |
670 | break; |
671 | case X86_64_X87UP_CLASS: | |
53e95fcf JS |
672 | break; |
673 | default: | |
674 | internal_error (__FILE__, __LINE__, | |
675 | "Unexpected argument class"); | |
676 | } | |
677 | intreg += intreg % 2; | |
678 | ssereg += ssereg % 2; | |
679 | } | |
680 | } | |
681 | } | |
c4f35dd8 MK |
682 | |
683 | /* Push any remaining arguments onto the stack. */ | |
82dbc5f7 AC |
684 | while (--stack_values_count >= 0) |
685 | { | |
e9f30c21 | 686 | struct value *arg = args[stack_values[stack_values_count]]; |
82dbc5f7 | 687 | int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); |
c4f35dd8 MK |
688 | |
689 | /* Make sure the stack stays eightbyte-aligned. */ | |
690 | sp -= (len + 7) & ~7; | |
82dbc5f7 AC |
691 | write_memory (sp, VALUE_CONTENTS_ALL (arg), len); |
692 | } | |
c4f35dd8 | 693 | |
53e95fcf JS |
694 | return sp; |
695 | } | |
696 | ||
697 | /* Write into the appropriate registers a function return value stored | |
698 | in VALBUF of type TYPE, given in virtual format. */ | |
c4f35dd8 MK |
699 | |
700 | static void | |
48037ead ML |
701 | x86_64_store_return_value (struct type *type, struct regcache *regcache, |
702 | const void *valbuf) | |
53e95fcf JS |
703 | { |
704 | int len = TYPE_LENGTH (type); | |
705 | ||
706 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
707 | { | |
c4f35dd8 MK |
708 | ULONGEST fstat; |
709 | char buf[FPU_REG_RAW_SIZE]; | |
710 | ||
711 | /* Returning floating-point values is a bit tricky. Apart from | |
712 | storing the return value in %st(0), we have to simulate the | |
713 | state of the FPU at function return point. */ | |
714 | ||
715 | /* Convert the value found in VALBUF to the extended | |
716 | floating-point format used by the FPU. This is probably | |
717 | not exactly how it would happen on the target itself, but | |
718 | it is the best we can do. */ | |
719 | convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext); | |
720 | regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf); | |
721 | ||
722 | /* Set the top of the floating-point register stack to 7. The | |
723 | actual value doesn't really matter, but 7 is what a normal | |
724 | function return would end up with if the program started out | |
725 | with a freshly initialized FPU. */ | |
726 | regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat); | |
727 | fstat |= (7 << 11); | |
728 | regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat); | |
729 | ||
730 | /* Mark %st(1) through %st(7) as empty. Since we set the top of | |
731 | the floating-point register stack to 7, the appropriate value | |
732 | for the tag word is 0x3fff. */ | |
733 | regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff); | |
53e95fcf JS |
734 | } |
735 | else | |
736 | { | |
737 | int low_size = REGISTER_RAW_SIZE (0); | |
738 | int high_size = REGISTER_RAW_SIZE (1); | |
739 | ||
740 | if (len <= low_size) | |
48037ead | 741 | regcache_cooked_write_part (regcache, 0, 0, len, valbuf); |
53e95fcf JS |
742 | else if (len <= (low_size + high_size)) |
743 | { | |
48037ead ML |
744 | regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf); |
745 | regcache_cooked_write_part (regcache, 1, 0, | |
746 | len - low_size, | |
747 | (const char *) valbuf + low_size); | |
53e95fcf JS |
748 | } |
749 | else | |
750 | internal_error (__FILE__, __LINE__, | |
751 | "Cannot store return value of %d bytes long.", len); | |
752 | } | |
753 | } | |
754 | \f | |
755 | ||
c4f35dd8 MK |
756 | static CORE_ADDR |
757 | x86_64_push_dummy_call (struct gdbarch *gdbarch, struct regcache *regcache, | |
758 | CORE_ADDR dummy_addr, int nargs, struct value **args, | |
759 | CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 760 | { |
c4f35dd8 MK |
761 | char buf[8]; |
762 | ||
763 | /* Pass arguments. */ | |
764 | sp = x86_64_push_arguments (regcache, nargs, args, sp); | |
765 | ||
766 | /* Pass "hidden" argument". */ | |
767 | if (struct_return) | |
768 | { | |
769 | store_unsigned_integer (buf, 8, struct_addr); | |
770 | regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf); | |
771 | } | |
772 | ||
773 | /* Store return address. */ | |
774 | sp -= 8; | |
775 | store_unsigned_integer (buf, 8, dummy_addr); | |
776 | write_memory (sp, buf, 8); | |
777 | ||
778 | /* Finally, update the stack pointer... */ | |
779 | store_unsigned_integer (buf, 8, sp); | |
780 | regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf); | |
781 | ||
782 | /* ...and fake a frame pointer. */ | |
783 | regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf); | |
784 | ||
785 | return sp; | |
53e95fcf | 786 | } |
c4f35dd8 MK |
787 | \f |
788 | ||
789 | /* The maximum number of saved registers. This should include %rip. */ | |
2b5e0749 | 790 | #define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS |
c4f35dd8 MK |
791 | |
792 | struct x86_64_frame_cache | |
793 | { | |
794 | /* Base address. */ | |
795 | CORE_ADDR base; | |
796 | CORE_ADDR sp_offset; | |
797 | CORE_ADDR pc; | |
798 | ||
799 | /* Saved registers. */ | |
800 | CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS]; | |
801 | CORE_ADDR saved_sp; | |
802 | ||
803 | /* Do we have a frame? */ | |
804 | int frameless_p; | |
805 | }; | |
8dda9770 | 806 | |
c4f35dd8 MK |
807 | /* Allocate and initialize a frame cache. */ |
808 | ||
809 | static struct x86_64_frame_cache * | |
810 | x86_64_alloc_frame_cache (void) | |
8dda9770 | 811 | { |
c4f35dd8 MK |
812 | struct x86_64_frame_cache *cache; |
813 | int i; | |
814 | ||
815 | cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache); | |
8dda9770 | 816 | |
c4f35dd8 MK |
817 | /* Base address. */ |
818 | cache->base = 0; | |
819 | cache->sp_offset = -8; | |
820 | cache->pc = 0; | |
821 | ||
822 | /* Saved registers. We initialize these to -1 since zero is a valid | |
823 | offset (that's where %rbp is supposed to be stored). */ | |
824 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
825 | cache->saved_regs[i] = -1; | |
826 | cache->saved_sp = 0; | |
827 | ||
828 | /* Frameless until proven otherwise. */ | |
829 | cache->frameless_p = 1; | |
830 | ||
831 | return cache; | |
8dda9770 | 832 | } |
53e95fcf | 833 | |
c4f35dd8 MK |
834 | /* Do a limited analysis of the prologue at PC and update CACHE |
835 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
836 | address where the analysis stopped. | |
837 | ||
838 | We will handle only functions beginning with: | |
839 | ||
840 | pushq %rbp 0x55 | |
841 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
842 | ||
843 | Any function that doesn't start with this sequence will be assumed | |
844 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
845 | ||
846 | static CORE_ADDR | |
847 | x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, | |
848 | struct x86_64_frame_cache *cache) | |
53e95fcf | 849 | { |
c4f35dd8 MK |
850 | static unsigned char proto[3] = { 0x48, 0x89, 0xe5 }; |
851 | unsigned char buf[3]; | |
852 | unsigned char op; | |
853 | ||
854 | if (current_pc <= pc) | |
855 | return current_pc; | |
856 | ||
857 | op = read_memory_unsigned_integer (pc, 1); | |
858 | ||
859 | if (op == 0x55) /* pushq %rbp */ | |
860 | { | |
861 | /* Take into account that we've executed the `pushq %rbp' that | |
862 | starts this instruction sequence. */ | |
863 | cache->saved_regs[X86_64_RBP_REGNUM] = 0; | |
864 | cache->sp_offset += 8; | |
865 | ||
866 | /* If that's all, return now. */ | |
867 | if (current_pc <= pc + 1) | |
868 | return current_pc; | |
869 | ||
870 | /* Check for `movq %rsp, %rbp'. */ | |
871 | read_memory (pc + 1, buf, 3); | |
872 | if (memcmp (buf, proto, 3) != 0) | |
873 | return pc + 1; | |
874 | ||
875 | /* OK, we actually have a frame. */ | |
876 | cache->frameless_p = 0; | |
877 | return pc + 4; | |
878 | } | |
879 | ||
880 | return pc; | |
53e95fcf JS |
881 | } |
882 | ||
c4f35dd8 MK |
883 | /* Return PC of first real instruction. */ |
884 | ||
885 | static CORE_ADDR | |
886 | x86_64_skip_prologue (CORE_ADDR start_pc) | |
53e95fcf | 887 | { |
c4f35dd8 MK |
888 | struct x86_64_frame_cache cache; |
889 | CORE_ADDR pc; | |
890 | ||
891 | pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache); | |
892 | if (cache.frameless_p) | |
893 | return start_pc; | |
894 | ||
895 | return pc; | |
53e95fcf | 896 | } |
c4f35dd8 | 897 | \f |
53e95fcf | 898 | |
c4f35dd8 MK |
899 | /* Normal frames. */ |
900 | ||
901 | static struct x86_64_frame_cache * | |
902 | x86_64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 903 | { |
c4f35dd8 MK |
904 | struct x86_64_frame_cache *cache; |
905 | char buf[8]; | |
6d686a84 | 906 | int i; |
6d686a84 | 907 | |
c4f35dd8 MK |
908 | if (*this_cache) |
909 | return *this_cache; | |
6d686a84 | 910 | |
c4f35dd8 MK |
911 | cache = x86_64_alloc_frame_cache (); |
912 | *this_cache = cache; | |
913 | ||
914 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
915 | cache->base = extract_unsigned_integer (buf, 8); | |
916 | if (cache->base == 0) | |
917 | return cache; | |
918 | ||
919 | /* For normal frames, %rip is stored at 8(%rbp). */ | |
920 | cache->saved_regs[X86_64_RIP_REGNUM] = 8; | |
921 | ||
922 | cache->pc = frame_func_unwind (next_frame); | |
923 | if (cache->pc != 0) | |
924 | x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); | |
925 | ||
926 | if (cache->frameless_p) | |
927 | { | |
928 | /* We didn't find a valid frame, which means that CACHE->base | |
929 | currently holds the frame pointer for our calling frame. If | |
930 | we're at the start of a function, or somewhere half-way its | |
931 | prologue, the function's frame probably hasn't been fully | |
932 | setup yet. Try to reconstruct the base address for the stack | |
933 | frame by looking at the stack pointer. For truly "frameless" | |
934 | functions this might work too. */ | |
935 | ||
936 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
937 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; | |
938 | } | |
939 | ||
940 | /* Now that we have the base address for the stack frame we can | |
941 | calculate the value of %rsp in the calling frame. */ | |
942 | cache->saved_sp = cache->base + 16; | |
943 | ||
944 | /* Adjust all the saved registers such that they contain addresses | |
945 | instead of offsets. */ | |
946 | for (i = 0; i < X86_64_NUM_SAVED_REGS; i++) | |
947 | if (cache->saved_regs[i] != -1) | |
948 | cache->saved_regs[i] += cache->base; | |
949 | ||
950 | return cache; | |
6d686a84 ML |
951 | } |
952 | ||
c4f35dd8 MK |
953 | static void |
954 | x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
955 | struct frame_id *this_id) | |
956 | { | |
957 | struct x86_64_frame_cache *cache = | |
958 | x86_64_frame_cache (next_frame, this_cache); | |
959 | ||
960 | /* This marks the outermost frame. */ | |
961 | if (cache->base == 0) | |
962 | return; | |
963 | ||
964 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
965 | } | |
e76e1718 | 966 | |
c4f35dd8 MK |
967 | static void |
968 | x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
969 | int regnum, int *optimizedp, | |
970 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
971 | int *realnump, void *valuep) | |
53e95fcf | 972 | { |
c4f35dd8 MK |
973 | struct x86_64_frame_cache *cache = |
974 | x86_64_frame_cache (next_frame, this_cache); | |
e76e1718 | 975 | |
c4f35dd8 | 976 | gdb_assert (regnum >= 0); |
b1ab997b | 977 | |
c4f35dd8 MK |
978 | if (regnum == SP_REGNUM && cache->saved_sp) |
979 | { | |
980 | *optimizedp = 0; | |
981 | *lvalp = not_lval; | |
982 | *addrp = 0; | |
983 | *realnump = -1; | |
984 | if (valuep) | |
985 | { | |
986 | /* Store the value. */ | |
987 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
988 | } | |
989 | return; | |
990 | } | |
e76e1718 | 991 | |
c4f35dd8 MK |
992 | if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
993 | { | |
994 | *optimizedp = 0; | |
995 | *lvalp = lval_memory; | |
996 | *addrp = cache->saved_regs[regnum]; | |
997 | *realnump = -1; | |
998 | if (valuep) | |
999 | { | |
1000 | /* Read the value in from memory. */ | |
1001 | read_memory (*addrp, valuep, | |
1002 | register_size (current_gdbarch, regnum)); | |
1003 | } | |
1004 | return; | |
1005 | } | |
e76e1718 | 1006 | |
c4f35dd8 MK |
1007 | frame_register_unwind (next_frame, regnum, |
1008 | optimizedp, lvalp, addrp, realnump, valuep); | |
1009 | } | |
e76e1718 | 1010 | |
c4f35dd8 MK |
1011 | static const struct frame_unwind x86_64_frame_unwind = |
1012 | { | |
1013 | NORMAL_FRAME, | |
1014 | x86_64_frame_this_id, | |
1015 | x86_64_frame_prev_register | |
1016 | }; | |
e76e1718 | 1017 | |
c4f35dd8 MK |
1018 | static const struct frame_unwind * |
1019 | x86_64_frame_p (CORE_ADDR pc) | |
1020 | { | |
1021 | return &x86_64_frame_unwind; | |
1022 | } | |
1023 | \f | |
e76e1718 | 1024 | |
c4f35dd8 MK |
1025 | /* Signal trampolines. */ |
1026 | ||
1027 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
1028 | 64-bit variants. This would require using identical frame caches | |
1029 | on both platforms. */ | |
1030 | ||
1031 | static struct x86_64_frame_cache * | |
1032 | x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1033 | { | |
1034 | struct x86_64_frame_cache *cache; | |
1035 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1036 | CORE_ADDR addr; | |
1037 | char buf[8]; | |
2b5e0749 | 1038 | int i; |
c4f35dd8 MK |
1039 | |
1040 | if (*this_cache) | |
1041 | return *this_cache; | |
1042 | ||
1043 | cache = x86_64_alloc_frame_cache (); | |
1044 | ||
1045 | frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf); | |
1046 | cache->base = extract_unsigned_integer (buf, 8) - 8; | |
1047 | ||
1048 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 MK |
1049 | gdb_assert (tdep->sc_reg_offset); |
1050 | gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS); | |
1051 | for (i = 0; i < tdep->sc_num_regs; i++) | |
1052 | if (tdep->sc_reg_offset[i] != -1) | |
1053 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
1054 | |
1055 | *this_cache = cache; | |
1056 | return cache; | |
53e95fcf JS |
1057 | } |
1058 | ||
c4f35dd8 MK |
1059 | static void |
1060 | x86_64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1061 | void **this_cache, struct frame_id *this_id) | |
1062 | { | |
1063 | struct x86_64_frame_cache *cache = | |
1064 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
1065 | ||
1066 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
1067 | } | |
1068 | ||
1069 | static void | |
1070 | x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
1071 | void **this_cache, | |
1072 | int regnum, int *optimizedp, | |
1073 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1074 | int *realnump, void *valuep) | |
1075 | { | |
1076 | /* Make sure we've initialized the cache. */ | |
1077 | x86_64_sigtramp_frame_cache (next_frame, this_cache); | |
1078 | ||
1079 | x86_64_frame_prev_register (next_frame, this_cache, regnum, | |
1080 | optimizedp, lvalp, addrp, realnump, valuep); | |
1081 | } | |
1082 | ||
1083 | static const struct frame_unwind x86_64_sigtramp_frame_unwind = | |
1084 | { | |
1085 | SIGTRAMP_FRAME, | |
1086 | x86_64_sigtramp_frame_this_id, | |
1087 | x86_64_sigtramp_frame_prev_register | |
1088 | }; | |
1089 | ||
1090 | static const struct frame_unwind * | |
1091 | x86_64_sigtramp_frame_p (CORE_ADDR pc) | |
1092 | { | |
1093 | char *name; | |
1094 | ||
1095 | find_pc_partial_function (pc, &name, NULL, NULL); | |
1096 | if (PC_IN_SIGTRAMP (pc, name)) | |
1097 | return &x86_64_sigtramp_frame_unwind; | |
1098 | ||
1099 | return NULL; | |
1100 | } | |
1101 | \f | |
1102 | ||
1103 | static CORE_ADDR | |
1104 | x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
1105 | { | |
1106 | struct x86_64_frame_cache *cache = | |
1107 | x86_64_frame_cache (next_frame, this_cache); | |
1108 | ||
1109 | return cache->base; | |
1110 | } | |
1111 | ||
1112 | static const struct frame_base x86_64_frame_base = | |
1113 | { | |
1114 | &x86_64_frame_unwind, | |
1115 | x86_64_frame_base_address, | |
1116 | x86_64_frame_base_address, | |
1117 | x86_64_frame_base_address | |
1118 | }; | |
1119 | ||
166f4c7b ML |
1120 | static void |
1121 | x86_64_save_dummy_frame_tos (CORE_ADDR sp) | |
1122 | { | |
c4f35dd8 | 1123 | generic_save_dummy_frame_tos (sp + 16); |
166f4c7b ML |
1124 | } |
1125 | ||
1126 | static struct frame_id | |
c4f35dd8 | 1127 | x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 1128 | { |
c4f35dd8 MK |
1129 | char buf[8]; |
1130 | CORE_ADDR fp; | |
1131 | ||
1132 | frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf); | |
1133 | fp = extract_unsigned_integer (buf, 8); | |
1134 | ||
1135 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
1136 | } |
1137 | ||
2213a65d | 1138 | void |
0c1a73d6 | 1139 | x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1140 | { |
0c1a73d6 | 1141 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1142 | |
b83b026c | 1143 | /* The x86-64 has 16 SSE registers. */ |
0c1a73d6 | 1144 | tdep->num_xmm_regs = 16; |
53e95fcf | 1145 | |
0c1a73d6 | 1146 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1147 | set_gdbarch_long_bit (gdbarch, 64); |
1148 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1149 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1150 | ||
b83b026c MK |
1151 | /* In contrast to the i386, on the x86-64 a `long double' actually |
1152 | takes up 128 bits, even though it's still based on the i387 | |
1153 | extended floating-point format which has only 80 significant bits. */ | |
1154 | set_gdbarch_long_double_bit (gdbarch, 128); | |
1155 | ||
53e95fcf | 1156 | set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS); |
c4f35dd8 MK |
1157 | set_gdbarch_register_name (gdbarch, x86_64_register_name); |
1158 | set_gdbarch_register_type (gdbarch, x86_64_register_type); | |
b83b026c MK |
1159 | |
1160 | /* Register numbers of various important registers. */ | |
c4f35dd8 MK |
1161 | set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */ |
1162 | set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */ | |
1163 | set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */ | |
1164 | set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */ | |
b83b026c MK |
1165 | |
1166 | /* The "default" register numbering scheme for the x86-64 is | |
c4f35dd8 MK |
1167 | referred to as the "DWARF Register Number Mapping" in the System |
1168 | V psABI. The preferred debugging format for all known x86-64 | |
1169 | targets is actually DWARF2, and GCC doesn't seem to support DWARF | |
1170 | (that is DWARF-1), but we provide the same mapping just in case. | |
1171 | This mapping is also used for stabs, which GCC does support. */ | |
1172 | set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1173 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
1174 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum); | |
de220d0f | 1175 | |
c4f35dd8 MK |
1176 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
1177 | be in use on any of the supported x86-64 targets. */ | |
53e95fcf | 1178 | |
c4f35dd8 MK |
1179 | /* Call dummy code. */ |
1180 | set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call); | |
53e95fcf | 1181 | |
48037ead | 1182 | set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value); |
48037ead | 1183 | set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value); |
b83b026c MK |
1184 | /* Override, since this is handled by x86_64_extract_return_value. */ |
1185 | set_gdbarch_extract_struct_value_address (gdbarch, NULL); | |
1186 | set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention); | |
53e95fcf | 1187 | |
b83b026c | 1188 | set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue); |
53e95fcf | 1189 | |
c4f35dd8 | 1190 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d MK |
1191 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
1192 | ||
c4f35dd8 MK |
1193 | set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id); |
1194 | set_gdbarch_save_dummy_frame_tos (gdbarch, x86_64_save_dummy_frame_tos); | |
53e95fcf | 1195 | |
b83b026c MK |
1196 | /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now, |
1197 | since all supported x86-64 targets are ELF, but that might change | |
1198 | in the future. */ | |
8a8ab2b9 | 1199 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); |
c4f35dd8 MK |
1200 | |
1201 | frame_unwind_append_predicate (gdbarch, x86_64_sigtramp_frame_p); | |
1202 | frame_unwind_append_predicate (gdbarch, x86_64_frame_p); | |
1203 | frame_base_set_default (gdbarch, &x86_64_frame_base); | |
1204 | } | |
1205 | \f | |
1206 | ||
1207 | #define I387_FISEG_REGNUM FISEG_REGNUM | |
1208 | #define I387_FOSEG_REGNUM FOSEG_REGNUM | |
1209 | ||
1210 | /* The 64-bit FXSAVE format differs from the 32-bit format in the | |
1211 | sense that the instruction pointer and data pointer are simply | |
1212 | 64-bit offsets into the code segment and the data segment instead | |
1213 | of a selector offset pair. The functions below store the upper 32 | |
1214 | bits of these pointers (instead of just the 16-bits of the segment | |
1215 | selector). */ | |
1216 | ||
1217 | /* Fill GDB's register array with the floating-point and SSE register | |
1218 | values in *FXSAVE. This function masks off any of the reserved | |
1219 | bits in *FXSAVE. */ | |
1220 | ||
1221 | void | |
1222 | x86_64_supply_fxsave (char *fxsave) | |
1223 | { | |
1224 | i387_supply_fxsave (fxsave); | |
1225 | ||
1226 | if (fxsave) | |
1227 | { | |
1228 | supply_register (I387_FISEG_REGNUM, fxsave + 12); | |
1229 | supply_register (I387_FOSEG_REGNUM, fxsave + 20); | |
1230 | } | |
0c1a73d6 MK |
1231 | } |
1232 | ||
c4f35dd8 MK |
1233 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
1234 | *FXSAVE with the value in GDB's register array. If REGNUM is -1, do | |
1235 | this for all registers. This function doesn't touch any of the | |
1236 | reserved bits in *FXSAVE. */ | |
1237 | ||
53e95fcf | 1238 | void |
c4f35dd8 | 1239 | x86_64_fill_fxsave (char *fxsave, int regnum) |
53e95fcf | 1240 | { |
c4f35dd8 | 1241 | i387_fill_fxsave (fxsave, regnum); |
53e95fcf | 1242 | |
c4f35dd8 MK |
1243 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
1244 | regcache_collect (regnum, fxsave + 12); | |
1245 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) | |
1246 | regcache_collect (regnum, fxsave + 20); | |
53e95fcf | 1247 | } |