]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
b811d2c2 | 3 | Copyright (C) 1991-2020 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
c906108c | 24 | #include "elf-bfd.h" |
31d99776 DJ |
25 | #include "elf/common.h" |
26 | #include "elf/internal.h" | |
c906108c | 27 | #include "elf/mips.h" |
4de283e4 TT |
28 | #include "symtab.h" |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "stabsread.h" | |
4de283e4 TT |
32 | #include "complaints.h" |
33 | #include "demangle.h" | |
34 | #include "psympriv.h" | |
35 | #include "filenames.h" | |
36 | #include "probe.h" | |
37 | #include "arch-utils.h" | |
07be84bf | 38 | #include "gdbtypes.h" |
4de283e4 | 39 | #include "value.h" |
07be84bf | 40 | #include "infcall.h" |
4de283e4 | 41 | #include "gdbthread.h" |
00431a78 | 42 | #include "inferior.h" |
4de283e4 TT |
43 | #include "regcache.h" |
44 | #include "bcache.h" | |
45 | #include "gdb_bfd.h" | |
46 | #include "build-id.h" | |
f00aae0f | 47 | #include "location.h" |
4de283e4 | 48 | #include "auxv.h" |
0e8f53ba | 49 | #include "mdebugread.h" |
30d1f018 | 50 | #include "ctfread.h" |
31edb802 | 51 | #include "gdbsupport/gdb_string_view.h" |
0d79cdc4 AM |
52 | #include "gdbsupport/scoped_fd.h" |
53 | #include "debuginfod-support.h" | |
c906108c | 54 | |
3c0aa29a PA |
55 | /* Forward declarations. */ |
56 | extern const struct sym_fns elf_sym_fns_gdb_index; | |
57 | extern const struct sym_fns elf_sym_fns_debug_names; | |
58 | extern const struct sym_fns elf_sym_fns_lazy_psyms; | |
59 | ||
c906108c | 60 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 61 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
62 | It's local to elf_symfile_read. */ |
63 | ||
c5aa993b JM |
64 | struct elfinfo |
65 | { | |
c5aa993b | 66 | asection *stabsect; /* Section pointer for .stab section */ |
c5aa993b | 67 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
30d1f018 | 68 | asection *ctfsect; /* Section pointer for .ctf section */ |
c5aa993b | 69 | }; |
c906108c | 70 | |
814cf43a TT |
71 | /* Type for per-BFD data. */ |
72 | ||
73 | typedef std::vector<std::unique_ptr<probe>> elfread_data; | |
74 | ||
5d9cf8a4 | 75 | /* Per-BFD data for probe info. */ |
55aa24fb | 76 | |
814cf43a | 77 | static const struct bfd_key<elfread_data> probe_key; |
55aa24fb | 78 | |
07be84bf JK |
79 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
80 | pointer where the given entry will jump to. It gets updated by the real | |
81 | function address during lazy ld.so resolving in the inferior. These | |
82 | minimal symbols are indexed for <tab>-completion. */ | |
83 | ||
84 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
85 | ||
31d99776 DJ |
86 | /* Locate the segments in ABFD. */ |
87 | ||
62982abd | 88 | static symfile_segment_data_up |
31d99776 DJ |
89 | elf_symfile_segments (bfd *abfd) |
90 | { | |
91 | Elf_Internal_Phdr *phdrs, **segments; | |
92 | long phdrs_size; | |
93 | int num_phdrs, num_segments, num_sections, i; | |
94 | asection *sect; | |
31d99776 DJ |
95 | |
96 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
97 | if (phdrs_size == -1) | |
98 | return NULL; | |
99 | ||
224c3ddb | 100 | phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size); |
31d99776 DJ |
101 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); |
102 | if (num_phdrs == -1) | |
103 | return NULL; | |
104 | ||
105 | num_segments = 0; | |
8d749320 | 106 | segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs); |
31d99776 DJ |
107 | for (i = 0; i < num_phdrs; i++) |
108 | if (phdrs[i].p_type == PT_LOAD) | |
109 | segments[num_segments++] = &phdrs[i]; | |
110 | ||
111 | if (num_segments == 0) | |
112 | return NULL; | |
113 | ||
62982abd | 114 | symfile_segment_data_up data (new symfile_segment_data); |
68b888ff | 115 | data->segments.reserve (num_segments); |
31d99776 DJ |
116 | |
117 | for (i = 0; i < num_segments; i++) | |
68b888ff | 118 | data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz); |
31d99776 DJ |
119 | |
120 | num_sections = bfd_count_sections (abfd); | |
9005fbbb SM |
121 | |
122 | /* All elements are initialized to 0 (map to no segment). */ | |
123 | data->segment_info.resize (num_sections); | |
31d99776 DJ |
124 | |
125 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
126 | { | |
127 | int j; | |
31d99776 | 128 | |
fd361982 | 129 | if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) |
31d99776 DJ |
130 | continue; |
131 | ||
62b74cb8 | 132 | Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr; |
31d99776 DJ |
133 | |
134 | for (j = 0; j < num_segments; j++) | |
62b74cb8 | 135 | if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j])) |
31d99776 DJ |
136 | { |
137 | data->segment_info[i] = j + 1; | |
138 | break; | |
139 | } | |
140 | ||
ad09a548 DJ |
141 | /* We should have found a segment for every non-empty section. |
142 | If we haven't, we will not relocate this section by any | |
143 | offsets we apply to the segments. As an exception, do not | |
144 | warn about SHT_NOBITS sections; in normal ELF execution | |
145 | environments, SHT_NOBITS means zero-initialized and belongs | |
146 | in a segment, but in no-OS environments some tools (e.g. ARM | |
147 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
148 | uninitialized, it doesn't need a program header. Such | |
149 | binaries are not relocatable. */ | |
fd361982 AM |
150 | if (bfd_section_size (sect) > 0 && j == num_segments |
151 | && (bfd_section_flags (sect) & SEC_LOAD) != 0) | |
28ee876a | 152 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
fd361982 | 153 | bfd_section_name (sect)); |
31d99776 DJ |
154 | } |
155 | ||
156 | return data; | |
157 | } | |
158 | ||
c906108c SS |
159 | /* We are called once per section from elf_symfile_read. We |
160 | need to examine each section we are passed, check to see | |
161 | if it is something we are interested in processing, and | |
162 | if so, stash away some access information for the section. | |
163 | ||
164 | For now we recognize the dwarf debug information sections and | |
165 | line number sections from matching their section names. The | |
166 | ELF definition is no real help here since it has no direct | |
167 | knowledge of DWARF (by design, so any debugging format can be | |
168 | used). | |
169 | ||
170 | We also recognize the ".stab" sections used by the Sun compilers | |
171 | released with Solaris 2. | |
172 | ||
173 | FIXME: The section names should not be hardwired strings (what | |
174 | should they be? I don't think most object file formats have enough | |
0963b4bd | 175 | section flags to specify what kind of debug section it is. |
c906108c SS |
176 | -kingdon). */ |
177 | ||
178 | static void | |
08f93a1a | 179 | elf_locate_sections (asection *sectp, struct elfinfo *ei) |
c906108c | 180 | { |
7ce59000 | 181 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 182 | { |
c5aa993b | 183 | ei->stabsect = sectp; |
c906108c | 184 | } |
6314a349 | 185 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 186 | { |
c5aa993b | 187 | ei->mdebugsect = sectp; |
c906108c | 188 | } |
30d1f018 WP |
189 | else if (strcmp (sectp->name, ".ctf") == 0) |
190 | { | |
191 | ei->ctfsect = sectp; | |
192 | } | |
c906108c SS |
193 | } |
194 | ||
c906108c | 195 | static struct minimal_symbol * |
8dddcb8f | 196 | record_minimal_symbol (minimal_symbol_reader &reader, |
31edb802 | 197 | gdb::string_view name, bool copy_name, |
04a679b8 | 198 | CORE_ADDR address, |
f594e5e9 MC |
199 | enum minimal_symbol_type ms_type, |
200 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 201 | { |
08feed99 | 202 | struct gdbarch *gdbarch = objfile->arch (); |
5e2b427d | 203 | |
0875794a JK |
204 | if (ms_type == mst_text || ms_type == mst_file_text |
205 | || ms_type == mst_text_gnu_ifunc) | |
85ddcc70 | 206 | address = gdbarch_addr_bits_remove (gdbarch, address); |
c906108c | 207 | |
44e4c775 AB |
208 | /* We only setup section information for allocatable sections. Usually |
209 | we'd only expect to find msymbols for allocatable sections, but if the | |
210 | ELF is malformed then this might not be the case. In that case don't | |
211 | create an msymbol that references an uninitialised section object. */ | |
212 | int section_index = 0; | |
213 | if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC) | |
214 | section_index = gdb_bfd_section_index (objfile->obfd, bfd_section); | |
215 | ||
4b610737 | 216 | struct minimal_symbol *result |
44e4c775 | 217 | = reader.record_full (name, copy_name, address, ms_type, section_index); |
4b610737 TT |
218 | if ((objfile->flags & OBJF_MAINLINE) == 0 |
219 | && (ms_type == mst_data || ms_type == mst_bss)) | |
220 | result->maybe_copied = 1; | |
221 | ||
222 | return result; | |
c906108c SS |
223 | } |
224 | ||
7f86f058 | 225 | /* Read the symbol table of an ELF file. |
c906108c | 226 | |
62553543 | 227 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
228 | symbol table contains regular, dynamic, or synthetic symbols, add all |
229 | the global function and data symbols to the minimal symbol table. | |
c906108c | 230 | |
c5aa993b JM |
231 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
232 | defined in the ELF symbol table, which can be used to locate | |
233 | the beginnings of sections from each ".o" file that was linked to | |
234 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 235 | in data structures hung off the objfile's private data. */ |
c906108c | 236 | |
6f610d07 UW |
237 | #define ST_REGULAR 0 |
238 | #define ST_DYNAMIC 1 | |
239 | #define ST_SYNTHETIC 2 | |
240 | ||
c906108c | 241 | static void |
8dddcb8f TT |
242 | elf_symtab_read (minimal_symbol_reader &reader, |
243 | struct objfile *objfile, int type, | |
04a679b8 | 244 | long number_of_symbols, asymbol **symbol_table, |
ce6c454e | 245 | bool copy_names) |
c906108c | 246 | { |
08feed99 | 247 | struct gdbarch *gdbarch = objfile->arch (); |
c906108c | 248 | asymbol *sym; |
c906108c | 249 | long i; |
c906108c SS |
250 | CORE_ADDR symaddr; |
251 | enum minimal_symbol_type ms_type; | |
18a94d75 DE |
252 | /* Name of the last file symbol. This is either a constant string or is |
253 | saved on the objfile's filename cache. */ | |
0af1e9a5 | 254 | const char *filesymname = ""; |
d4f3574e | 255 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
3e29f34a MR |
256 | int elf_make_msymbol_special_p |
257 | = gdbarch_elf_make_msymbol_special_p (gdbarch); | |
c5aa993b | 258 | |
0cc7b392 | 259 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 260 | { |
0cc7b392 DJ |
261 | sym = symbol_table[i]; |
262 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 263 | { |
0cc7b392 | 264 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 265 | that are null strings (may happen). */ |
0cc7b392 DJ |
266 | continue; |
267 | } | |
c906108c | 268 | |
74763737 DJ |
269 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
270 | symbols which do not correspond to objects in the symbol table, | |
271 | but have some other target-specific meaning. */ | |
272 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
273 | { |
274 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
275 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
276 | continue; | |
277 | } | |
74763737 | 278 | |
6f610d07 | 279 | if (type == ST_DYNAMIC |
45dfa85a | 280 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
281 | && (sym->flags & BSF_FUNCTION)) |
282 | { | |
283 | struct minimal_symbol *msym; | |
02c75f72 | 284 | bfd *abfd = objfile->obfd; |
dea91a5c | 285 | asection *sect; |
0cc7b392 DJ |
286 | |
287 | /* Symbol is a reference to a function defined in | |
288 | a shared library. | |
289 | If its value is non zero then it is usually the address | |
290 | of the corresponding entry in the procedure linkage table, | |
291 | plus the desired section offset. | |
292 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 293 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
294 | for this symbol in the executable file, so we skip it. */ |
295 | symaddr = sym->value; | |
296 | if (symaddr == 0) | |
297 | continue; | |
02c75f72 UW |
298 | |
299 | /* sym->section is the undefined section. However, we want to | |
300 | record the section where the PLT stub resides with the | |
301 | minimal symbol. Search the section table for the one that | |
302 | covers the stub's address. */ | |
303 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
304 | { | |
fd361982 | 305 | if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) |
02c75f72 UW |
306 | continue; |
307 | ||
fd361982 AM |
308 | if (symaddr >= bfd_section_vma (sect) |
309 | && symaddr < bfd_section_vma (sect) | |
310 | + bfd_section_size (sect)) | |
02c75f72 UW |
311 | break; |
312 | } | |
313 | if (!sect) | |
314 | continue; | |
315 | ||
828cfa8d JB |
316 | /* On ia64-hpux, we have discovered that the system linker |
317 | adds undefined symbols with nonzero addresses that cannot | |
318 | be right (their address points inside the code of another | |
319 | function in the .text section). This creates problems | |
320 | when trying to determine which symbol corresponds to | |
321 | a given address. | |
322 | ||
323 | We try to detect those buggy symbols by checking which | |
324 | section we think they correspond to. Normally, PLT symbols | |
325 | are stored inside their own section, and the typical name | |
326 | for that section is ".plt". So, if there is a ".plt" | |
327 | section, and yet the section name of our symbol does not | |
328 | start with ".plt", we ignore that symbol. */ | |
61012eef | 329 | if (!startswith (sect->name, ".plt") |
828cfa8d JB |
330 | && bfd_get_section_by_name (abfd, ".plt") != NULL) |
331 | continue; | |
332 | ||
0cc7b392 | 333 | msym = record_minimal_symbol |
31edb802 | 334 | (reader, sym->name, copy_names, |
04a679b8 | 335 | symaddr, mst_solib_trampoline, sect, objfile); |
0cc7b392 | 336 | if (msym != NULL) |
9b807e7b MR |
337 | { |
338 | msym->filename = filesymname; | |
3e29f34a MR |
339 | if (elf_make_msymbol_special_p) |
340 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
9b807e7b | 341 | } |
0cc7b392 DJ |
342 | continue; |
343 | } | |
c906108c | 344 | |
0cc7b392 DJ |
345 | /* If it is a nonstripped executable, do not enter dynamic |
346 | symbols, as the dynamic symbol table is usually a subset | |
347 | of the main symbol table. */ | |
6f610d07 | 348 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
349 | continue; |
350 | if (sym->flags & BSF_FILE) | |
be1e3d3e | 351 | filesymname = objfile->intern (sym->name); |
0cc7b392 DJ |
352 | else if (sym->flags & BSF_SECTION_SYM) |
353 | continue; | |
bb869963 SDJ |
354 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
355 | | BSF_GNU_UNIQUE)) | |
0cc7b392 DJ |
356 | { |
357 | struct minimal_symbol *msym; | |
358 | ||
359 | /* Select global/local/weak symbols. Note that bfd puts abs | |
360 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
361 | interested in will have a section. */ |
362 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 363 | symaddr = sym->value + sym->section->vma; |
0cc7b392 DJ |
364 | /* For non-absolute symbols, use the type of the section |
365 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 366 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 367 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 368 | { |
0cc7b392 DJ |
369 | /* This is a hack to get the minimal symbol type |
370 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
371 | with special section indices for dynamic symbols. |
372 | ||
373 | NOTE: uweigand-20071112: Synthetic symbols do not | |
374 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 375 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
376 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
377 | ||
378 | switch (shndx) | |
c906108c | 379 | { |
0cc7b392 DJ |
380 | case SHN_MIPS_TEXT: |
381 | ms_type = mst_text; | |
382 | break; | |
383 | case SHN_MIPS_DATA: | |
384 | ms_type = mst_data; | |
385 | break; | |
386 | case SHN_MIPS_ACOMMON: | |
387 | ms_type = mst_bss; | |
388 | break; | |
389 | default: | |
390 | ms_type = mst_abs; | |
391 | } | |
392 | ||
393 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 394 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
395 | if (ms_type != mst_abs) |
396 | { | |
397 | if (sym->name[0] == '.') | |
398 | continue; | |
c906108c | 399 | } |
0cc7b392 DJ |
400 | } |
401 | else if (sym->section->flags & SEC_CODE) | |
402 | { | |
bb869963 | 403 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 404 | { |
0875794a JK |
405 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
406 | ms_type = mst_text_gnu_ifunc; | |
407 | else | |
408 | ms_type = mst_text; | |
0cc7b392 | 409 | } |
90359a16 JK |
410 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
411 | descriptors mistaken for static functions starting with 'L'. | |
412 | */ | |
413 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
414 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
415 | || ((sym->flags & BSF_LOCAL) |
416 | && sym->name[0] == '$' | |
417 | && sym->name[1] == 'L')) | |
418 | /* Looks like a compiler-generated label. Skip | |
419 | it. The assembler should be skipping these (to | |
420 | keep executables small), but apparently with | |
421 | gcc on the (deleted) delta m88k SVR4, it loses. | |
422 | So to have us check too should be harmless (but | |
423 | I encourage people to fix this in the assembler | |
424 | instead of adding checks here). */ | |
425 | continue; | |
426 | else | |
427 | { | |
428 | ms_type = mst_file_text; | |
c906108c | 429 | } |
0cc7b392 DJ |
430 | } |
431 | else if (sym->section->flags & SEC_ALLOC) | |
432 | { | |
bb869963 | 433 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 434 | { |
f50776aa PA |
435 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
436 | { | |
437 | ms_type = mst_data_gnu_ifunc; | |
438 | } | |
439 | else if (sym->section->flags & SEC_LOAD) | |
c906108c | 440 | { |
0cc7b392 | 441 | ms_type = mst_data; |
c906108c | 442 | } |
c906108c SS |
443 | else |
444 | { | |
0cc7b392 | 445 | ms_type = mst_bss; |
c906108c SS |
446 | } |
447 | } | |
0cc7b392 | 448 | else if (sym->flags & BSF_LOCAL) |
c906108c | 449 | { |
0cc7b392 DJ |
450 | if (sym->section->flags & SEC_LOAD) |
451 | { | |
452 | ms_type = mst_file_data; | |
c906108c SS |
453 | } |
454 | else | |
455 | { | |
0cc7b392 | 456 | ms_type = mst_file_bss; |
c906108c SS |
457 | } |
458 | } | |
459 | else | |
460 | { | |
0cc7b392 | 461 | ms_type = mst_unknown; |
c906108c | 462 | } |
0cc7b392 DJ |
463 | } |
464 | else | |
465 | { | |
466 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 467 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
468 | hob with actions like finding what function the PC |
469 | is in. Ignore them if they aren't text, data, or bss. */ | |
470 | /* ms_type = mst_unknown; */ | |
0963b4bd | 471 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
472 | } |
473 | msym = record_minimal_symbol | |
31edb802 | 474 | (reader, sym->name, copy_names, symaddr, |
0cc7b392 | 475 | ms_type, sym->section, objfile); |
6f610d07 | 476 | |
0cc7b392 DJ |
477 | if (msym) |
478 | { | |
6f610d07 | 479 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
24c274a1 | 480 | ELF-private part. */ |
6f610d07 | 481 | if (type != ST_SYNTHETIC) |
24c274a1 AM |
482 | { |
483 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
484 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; | |
485 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); | |
486 | } | |
dea91a5c | 487 | |
a103a963 | 488 | msym->filename = filesymname; |
3e29f34a MR |
489 | if (elf_make_msymbol_special_p) |
490 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 491 | } |
2eaf8d2a | 492 | |
715c6909 TT |
493 | /* If we see a default versioned symbol, install it under |
494 | its version-less name. */ | |
495 | if (msym != NULL) | |
496 | { | |
497 | const char *atsign = strchr (sym->name, '@'); | |
498 | ||
499 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) | |
500 | { | |
501 | int len = atsign - sym->name; | |
502 | ||
31edb802 CB |
503 | record_minimal_symbol (reader, |
504 | gdb::string_view (sym->name, len), | |
505 | true, symaddr, ms_type, sym->section, | |
506 | objfile); | |
715c6909 TT |
507 | } |
508 | } | |
509 | ||
2eaf8d2a DJ |
510 | /* For @plt symbols, also record a trampoline to the |
511 | destination symbol. The @plt symbol will be used in | |
512 | disassembly, and the trampoline will be used when we are | |
513 | trying to find the target. */ | |
514 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
515 | { | |
516 | int len = strlen (sym->name); | |
517 | ||
518 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
519 | { | |
2eaf8d2a DJ |
520 | struct minimal_symbol *mtramp; |
521 | ||
31edb802 CB |
522 | mtramp = record_minimal_symbol |
523 | (reader, gdb::string_view (sym->name, len - 4), true, | |
524 | symaddr, mst_solib_trampoline, sym->section, objfile); | |
2eaf8d2a DJ |
525 | if (mtramp) |
526 | { | |
d9eaeb59 | 527 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
422d65e7 | 528 | mtramp->created_by_gdb = 1; |
2eaf8d2a | 529 | mtramp->filename = filesymname; |
3e29f34a MR |
530 | if (elf_make_msymbol_special_p) |
531 | gdbarch_elf_make_msymbol_special (gdbarch, | |
532 | sym, mtramp); | |
2eaf8d2a DJ |
533 | } |
534 | } | |
535 | } | |
c906108c | 536 | } |
c906108c SS |
537 | } |
538 | } | |
539 | ||
07be84bf JK |
540 | /* Build minimal symbols named `[email protected]' (see SYMBOL_GOT_PLT_SUFFIX) |
541 | for later look ups of which function to call when user requests | |
542 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
543 | library defining `function' we cannot yet know while reading OBJFILE which | |
544 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
545 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
546 | ||
547 | static void | |
8dddcb8f TT |
548 | elf_rel_plt_read (minimal_symbol_reader &reader, |
549 | struct objfile *objfile, asymbol **dyn_symbol_table) | |
07be84bf JK |
550 | { |
551 | bfd *obfd = objfile->obfd; | |
552 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
02e169e2 | 553 | asection *relplt, *got_plt; |
07be84bf | 554 | bfd_size_type reloc_count, reloc; |
08feed99 | 555 | struct gdbarch *gdbarch = objfile->arch (); |
07be84bf JK |
556 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
557 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
558 | ||
559 | if (objfile->separate_debug_objfile_backlink) | |
560 | return; | |
561 | ||
07be84bf JK |
562 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); |
563 | if (got_plt == NULL) | |
4b7d1f7f WN |
564 | { |
565 | /* For platforms where there is no separate .got.plt. */ | |
566 | got_plt = bfd_get_section_by_name (obfd, ".got"); | |
567 | if (got_plt == NULL) | |
568 | return; | |
569 | } | |
07be84bf | 570 | |
02e169e2 PA |
571 | /* Depending on system, we may find jump slots in a relocation |
572 | section for either .got.plt or .plt. */ | |
573 | asection *plt = bfd_get_section_by_name (obfd, ".plt"); | |
574 | int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1; | |
575 | ||
576 | int got_plt_elf_idx = elf_section_data (got_plt)->this_idx; | |
577 | ||
07be84bf JK |
578 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ |
579 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
02e169e2 PA |
580 | { |
581 | const auto &this_hdr = elf_section_data (relplt)->this_hdr; | |
582 | ||
583 | if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA) | |
584 | { | |
585 | if (this_hdr.sh_info == plt_elf_idx | |
586 | || this_hdr.sh_info == got_plt_elf_idx) | |
587 | break; | |
588 | } | |
589 | } | |
07be84bf JK |
590 | if (relplt == NULL) |
591 | return; | |
592 | ||
593 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
594 | return; | |
595 | ||
26fcd5d7 | 596 | std::string string_buffer; |
07be84bf | 597 | |
02e169e2 PA |
598 | /* Does ADDRESS reside in SECTION of OBFD? */ |
599 | auto within_section = [obfd] (asection *section, CORE_ADDR address) | |
600 | { | |
601 | if (section == NULL) | |
602 | return false; | |
603 | ||
fd361982 AM |
604 | return (bfd_section_vma (section) <= address |
605 | && (address < bfd_section_vma (section) | |
606 | + bfd_section_size (section))); | |
02e169e2 PA |
607 | }; |
608 | ||
07be84bf JK |
609 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; |
610 | for (reloc = 0; reloc < reloc_count; reloc++) | |
611 | { | |
22e048c9 | 612 | const char *name; |
07be84bf JK |
613 | struct minimal_symbol *msym; |
614 | CORE_ADDR address; | |
26fcd5d7 | 615 | const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX; |
07be84bf | 616 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); |
07be84bf JK |
617 | |
618 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
07be84bf JK |
619 | address = relplt->relocation[reloc].address; |
620 | ||
02e169e2 PA |
621 | asection *msym_section; |
622 | ||
623 | /* Does the pointer reside in either the .got.plt or .plt | |
624 | sections? */ | |
625 | if (within_section (got_plt, address)) | |
626 | msym_section = got_plt; | |
627 | else if (within_section (plt, address)) | |
628 | msym_section = plt; | |
629 | else | |
07be84bf JK |
630 | continue; |
631 | ||
f50776aa PA |
632 | /* We cannot check if NAME is a reference to |
633 | mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the | |
634 | symbol is undefined and the objfile having NAME defined may | |
635 | not yet have been loaded. */ | |
07be84bf | 636 | |
26fcd5d7 TT |
637 | string_buffer.assign (name); |
638 | string_buffer.append (got_suffix, got_suffix + got_suffix_len); | |
07be84bf | 639 | |
31edb802 | 640 | msym = record_minimal_symbol (reader, string_buffer, |
02e169e2 PA |
641 | true, address, mst_slot_got_plt, |
642 | msym_section, objfile); | |
07be84bf | 643 | if (msym) |
d9eaeb59 | 644 | SET_MSYMBOL_SIZE (msym, ptr_size); |
07be84bf | 645 | } |
07be84bf JK |
646 | } |
647 | ||
648 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
649 | ||
8127a2fa TT |
650 | static const struct objfile_key<htab, htab_deleter> |
651 | elf_objfile_gnu_ifunc_cache_data; | |
07be84bf JK |
652 | |
653 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
654 | ||
655 | struct elf_gnu_ifunc_cache | |
656 | { | |
657 | /* This is always a function entry address, not a function descriptor. */ | |
658 | CORE_ADDR addr; | |
659 | ||
660 | char name[1]; | |
661 | }; | |
662 | ||
663 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
664 | ||
665 | static hashval_t | |
666 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
667 | { | |
9a3c8263 SM |
668 | const struct elf_gnu_ifunc_cache *a |
669 | = (const struct elf_gnu_ifunc_cache *) a_voidp; | |
07be84bf JK |
670 | |
671 | return htab_hash_string (a->name); | |
672 | } | |
673 | ||
674 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
675 | ||
676 | static int | |
677 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
678 | { | |
9a3c8263 SM |
679 | const struct elf_gnu_ifunc_cache *a |
680 | = (const struct elf_gnu_ifunc_cache *) a_voidp; | |
681 | const struct elf_gnu_ifunc_cache *b | |
682 | = (const struct elf_gnu_ifunc_cache *) b_voidp; | |
07be84bf JK |
683 | |
684 | return strcmp (a->name, b->name) == 0; | |
685 | } | |
686 | ||
687 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
688 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
689 | valid and therefore they were successfully recorded, return 0 otherwise. | |
690 | ||
691 | Function does not expect a duplicate entry. Use | |
692 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
693 | exists. */ | |
694 | ||
695 | static int | |
696 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
697 | { | |
7cbd4a93 | 698 | struct bound_minimal_symbol msym; |
07be84bf JK |
699 | struct objfile *objfile; |
700 | htab_t htab; | |
701 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
702 | void **slot; | |
703 | ||
704 | msym = lookup_minimal_symbol_by_pc (addr); | |
7cbd4a93 | 705 | if (msym.minsym == NULL) |
07be84bf | 706 | return 0; |
77e371c0 | 707 | if (BMSYMBOL_VALUE_ADDRESS (msym) != addr) |
07be84bf | 708 | return 0; |
e27d198c | 709 | objfile = msym.objfile; |
07be84bf JK |
710 | |
711 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
1adeb822 | 712 | resolution and it has no use for GDB. */ |
c9d95fa3 | 713 | const char *target_name = msym.minsym->linkage_name (); |
1adeb822 PA |
714 | size_t len = strlen (target_name); |
715 | ||
716 | /* Note we check the symbol's name instead of checking whether the | |
717 | symbol is in the .plt section because some systems have @plt | |
718 | symbols in the .text section. */ | |
719 | if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0) | |
07be84bf JK |
720 | return 0; |
721 | ||
8127a2fa | 722 | htab = elf_objfile_gnu_ifunc_cache_data.get (objfile); |
07be84bf JK |
723 | if (htab == NULL) |
724 | { | |
8127a2fa TT |
725 | htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash, |
726 | elf_gnu_ifunc_cache_eq, | |
727 | NULL, xcalloc, xfree); | |
728 | elf_objfile_gnu_ifunc_cache_data.set (objfile, htab); | |
07be84bf JK |
729 | } |
730 | ||
731 | entry_local.addr = addr; | |
732 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
733 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
734 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
224c3ddb SM |
735 | entry_p |
736 | = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack); | |
07be84bf JK |
737 | |
738 | slot = htab_find_slot (htab, entry_p, INSERT); | |
739 | if (*slot != NULL) | |
740 | { | |
9a3c8263 SM |
741 | struct elf_gnu_ifunc_cache *entry_found_p |
742 | = (struct elf_gnu_ifunc_cache *) *slot; | |
08feed99 | 743 | struct gdbarch *gdbarch = objfile->arch (); |
07be84bf JK |
744 | |
745 | if (entry_found_p->addr != addr) | |
746 | { | |
747 | /* This case indicates buggy inferior program, the resolved address | |
748 | should never change. */ | |
749 | ||
750 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
751 | "function_address from %s to %s"), | |
752 | name, paddress (gdbarch, entry_found_p->addr), | |
753 | paddress (gdbarch, addr)); | |
754 | } | |
755 | ||
756 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
757 | } | |
758 | *slot = entry_p; | |
759 | ||
760 | return 1; | |
761 | } | |
762 | ||
763 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
764 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
765 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
766 | ||
767 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
768 | function. */ | |
769 | ||
770 | static int | |
771 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
772 | { | |
2030c079 | 773 | for (objfile *objfile : current_program_space->objfiles ()) |
07be84bf JK |
774 | { |
775 | htab_t htab; | |
776 | struct elf_gnu_ifunc_cache *entry_p; | |
777 | void **slot; | |
778 | ||
8127a2fa | 779 | htab = elf_objfile_gnu_ifunc_cache_data.get (objfile); |
07be84bf JK |
780 | if (htab == NULL) |
781 | continue; | |
782 | ||
224c3ddb SM |
783 | entry_p = ((struct elf_gnu_ifunc_cache *) |
784 | alloca (sizeof (*entry_p) + strlen (name))); | |
07be84bf JK |
785 | strcpy (entry_p->name, name); |
786 | ||
787 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
788 | if (slot == NULL) | |
789 | continue; | |
9a3c8263 | 790 | entry_p = (struct elf_gnu_ifunc_cache *) *slot; |
07be84bf JK |
791 | gdb_assert (entry_p != NULL); |
792 | ||
793 | if (addr_p) | |
794 | *addr_p = entry_p->addr; | |
795 | return 1; | |
796 | } | |
797 | ||
798 | return 0; | |
799 | } | |
800 | ||
801 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
802 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
803 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
804 | ||
805 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
806 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
807 | prevent cache entries duplicates. */ | |
808 | ||
809 | static int | |
810 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
811 | { | |
812 | char *name_got_plt; | |
07be84bf JK |
813 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); |
814 | ||
224c3ddb | 815 | name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1); |
07be84bf JK |
816 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); |
817 | ||
2030c079 | 818 | for (objfile *objfile : current_program_space->objfiles ()) |
07be84bf JK |
819 | { |
820 | bfd *obfd = objfile->obfd; | |
08feed99 | 821 | struct gdbarch *gdbarch = objfile->arch (); |
07be84bf JK |
822 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
823 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
824 | CORE_ADDR pointer_address, addr; | |
825 | asection *plt; | |
224c3ddb | 826 | gdb_byte *buf = (gdb_byte *) alloca (ptr_size); |
3b7344d5 | 827 | struct bound_minimal_symbol msym; |
07be84bf JK |
828 | |
829 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
3b7344d5 | 830 | if (msym.minsym == NULL) |
07be84bf | 831 | continue; |
3b7344d5 | 832 | if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt) |
07be84bf | 833 | continue; |
77e371c0 | 834 | pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); |
07be84bf JK |
835 | |
836 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
837 | if (plt == NULL) | |
838 | continue; | |
839 | ||
3b7344d5 | 840 | if (MSYMBOL_SIZE (msym.minsym) != ptr_size) |
07be84bf JK |
841 | continue; |
842 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
843 | continue; | |
844 | addr = extract_typed_address (buf, ptr_type); | |
8b88a78e PA |
845 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, |
846 | current_top_target ()); | |
4b7d1f7f | 847 | addr = gdbarch_addr_bits_remove (gdbarch, addr); |
07be84bf | 848 | |
07be84bf | 849 | if (elf_gnu_ifunc_record_cache (name, addr)) |
28f4fa4d PA |
850 | { |
851 | if (addr_p != NULL) | |
852 | *addr_p = addr; | |
853 | return 1; | |
854 | } | |
07be84bf JK |
855 | } |
856 | ||
857 | return 0; | |
858 | } | |
859 | ||
860 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
861 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
ececd218 | 862 | is not NULL) and the function returns true. It returns false otherwise. |
07be84bf JK |
863 | |
864 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
865 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
866 | ||
ececd218 | 867 | static bool |
07be84bf JK |
868 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) |
869 | { | |
870 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
ececd218 | 871 | return true; |
dea91a5c | 872 | |
07be84bf | 873 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
ececd218 | 874 | return true; |
07be84bf | 875 | |
ececd218 | 876 | return false; |
07be84bf JK |
877 | } |
878 | ||
879 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
880 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
881 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
882 | */ | |
883 | ||
884 | static CORE_ADDR | |
885 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
886 | { | |
2c02bd72 | 887 | const char *name_at_pc; |
07be84bf JK |
888 | CORE_ADDR start_at_pc, address; |
889 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
890 | struct value *function, *address_val; | |
e1b2624a AA |
891 | CORE_ADDR hwcap = 0; |
892 | struct value *hwcap_val; | |
07be84bf JK |
893 | |
894 | /* Try first any non-intrusive methods without an inferior call. */ | |
895 | ||
896 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
897 | && start_at_pc == pc) | |
898 | { | |
899 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
900 | return address; | |
901 | } | |
902 | else | |
903 | name_at_pc = NULL; | |
904 | ||
905 | function = allocate_value (func_func_type); | |
1a088441 | 906 | VALUE_LVAL (function) = lval_memory; |
07be84bf JK |
907 | set_value_address (function, pc); |
908 | ||
e1b2624a AA |
909 | /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as |
910 | parameter. FUNCTION is the function entry address. ADDRESS may be a | |
911 | function descriptor. */ | |
07be84bf | 912 | |
8b88a78e | 913 | target_auxv_search (current_top_target (), AT_HWCAP, &hwcap); |
e1b2624a AA |
914 | hwcap_val = value_from_longest (builtin_type (gdbarch) |
915 | ->builtin_unsigned_long, hwcap); | |
e71585ff | 916 | address_val = call_function_by_hand (function, NULL, hwcap_val); |
07be84bf | 917 | address = value_as_address (address_val); |
8b88a78e | 918 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ()); |
4b7d1f7f | 919 | address = gdbarch_addr_bits_remove (gdbarch, address); |
07be84bf JK |
920 | |
921 | if (name_at_pc) | |
922 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
923 | ||
924 | return address; | |
925 | } | |
926 | ||
0e30163f JK |
927 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
928 | ||
929 | static void | |
930 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
931 | { | |
932 | struct breakpoint *b_return; | |
933 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
934 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
935 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
00431a78 | 936 | int thread_id = inferior_thread ()->global_num; |
0e30163f JK |
937 | |
938 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
939 | ||
940 | for (b_return = b->related_breakpoint; b_return != b; | |
941 | b_return = b_return->related_breakpoint) | |
942 | { | |
943 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
944 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
945 | gdb_assert (frame_id_p (b_return->frame_id)); | |
946 | ||
947 | if (b_return->thread == thread_id | |
948 | && b_return->loc->requested_address == prev_pc | |
949 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
950 | break; | |
951 | } | |
952 | ||
953 | if (b_return == b) | |
954 | { | |
0e30163f JK |
955 | /* No need to call find_pc_line for symbols resolving as this is only |
956 | a helper breakpointer never shown to the user. */ | |
957 | ||
51abb421 | 958 | symtab_and_line sal; |
0e30163f JK |
959 | sal.pspace = current_inferior ()->pspace; |
960 | sal.pc = prev_pc; | |
961 | sal.section = find_pc_overlay (sal.pc); | |
962 | sal.explicit_pc = 1; | |
454dafbd TT |
963 | b_return |
964 | = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
965 | prev_frame_id, | |
966 | bp_gnu_ifunc_resolver_return).release (); | |
0e30163f | 967 | |
c70a6932 JK |
968 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
969 | prev_frame = NULL; | |
970 | ||
0e30163f JK |
971 | /* Add new b_return to the ring list b->related_breakpoint. */ |
972 | gdb_assert (b_return->related_breakpoint == b_return); | |
973 | b_return->related_breakpoint = b->related_breakpoint; | |
974 | b->related_breakpoint = b_return; | |
975 | } | |
976 | } | |
977 | ||
978 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
979 | ||
980 | static void | |
981 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
982 | { | |
00431a78 | 983 | thread_info *thread = inferior_thread (); |
0e30163f JK |
984 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); |
985 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
986 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
00431a78 | 987 | struct regcache *regcache = get_thread_regcache (thread); |
6a3a010b | 988 | struct value *func_func; |
0e30163f JK |
989 | struct value *value; |
990 | CORE_ADDR resolved_address, resolved_pc; | |
0e30163f JK |
991 | |
992 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
993 | ||
0e30163f JK |
994 | while (b->related_breakpoint != b) |
995 | { | |
996 | struct breakpoint *b_next = b->related_breakpoint; | |
997 | ||
998 | switch (b->type) | |
999 | { | |
1000 | case bp_gnu_ifunc_resolver: | |
1001 | break; | |
1002 | case bp_gnu_ifunc_resolver_return: | |
1003 | delete_breakpoint (b); | |
1004 | break; | |
1005 | default: | |
1006 | internal_error (__FILE__, __LINE__, | |
1007 | _("handle_inferior_event: Invalid " | |
1008 | "gnu-indirect-function breakpoint type %d"), | |
1009 | (int) b->type); | |
1010 | } | |
1011 | b = b_next; | |
1012 | } | |
1013 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
1014 | gdb_assert (b->loc->next == NULL); |
1015 | ||
1016 | func_func = allocate_value (func_func_type); | |
1a088441 | 1017 | VALUE_LVAL (func_func) = lval_memory; |
6a3a010b MR |
1018 | set_value_address (func_func, b->loc->related_address); |
1019 | ||
1020 | value = allocate_value (value_type); | |
1021 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
1022 | value_contents_raw (value), NULL); | |
1023 | resolved_address = value_as_address (value); | |
1024 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1025 | resolved_address, | |
8b88a78e | 1026 | current_top_target ()); |
4b7d1f7f | 1027 | resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); |
0e30163f | 1028 | |
f8eba3c6 | 1029 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
d28cd78a | 1030 | elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()), |
f00aae0f | 1031 | resolved_pc); |
0e30163f | 1032 | |
0e30163f | 1033 | b->type = bp_breakpoint; |
6c5b2ebe | 1034 | update_breakpoint_locations (b, current_program_space, |
79188d8d PA |
1035 | find_function_start_sal (resolved_pc, NULL, true), |
1036 | {}); | |
0e30163f JK |
1037 | } |
1038 | ||
2750ef27 TT |
1039 | /* A helper function for elf_symfile_read that reads the minimal |
1040 | symbols. */ | |
c906108c SS |
1041 | |
1042 | static void | |
5f6cac40 TT |
1043 | elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, |
1044 | const struct elfinfo *ei) | |
c906108c | 1045 | { |
63524580 | 1046 | bfd *synth_abfd, *abfd = objfile->obfd; |
62553543 EZ |
1047 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1048 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1049 | asymbol *synthsyms; | |
c906108c | 1050 | |
45cfd468 DE |
1051 | if (symtab_create_debug) |
1052 | { | |
1053 | fprintf_unfiltered (gdb_stdlog, | |
1054 | "Reading minimal symbols of objfile %s ...\n", | |
4262abfb | 1055 | objfile_name (objfile)); |
45cfd468 DE |
1056 | } |
1057 | ||
5f6cac40 TT |
1058 | /* If we already have minsyms, then we can skip some work here. |
1059 | However, if there were stabs or mdebug sections, we go ahead and | |
1060 | redo all the work anyway, because the psym readers for those | |
1061 | kinds of debuginfo need extra information found here. This can | |
1062 | go away once all types of symbols are in the per-BFD object. */ | |
1063 | if (objfile->per_bfd->minsyms_read | |
1064 | && ei->stabsect == NULL | |
30d1f018 WP |
1065 | && ei->mdebugsect == NULL |
1066 | && ei->ctfsect == NULL) | |
5f6cac40 TT |
1067 | { |
1068 | if (symtab_create_debug) | |
1069 | fprintf_unfiltered (gdb_stdlog, | |
1070 | "... minimal symbols previously read\n"); | |
1071 | return; | |
1072 | } | |
1073 | ||
d25e8719 | 1074 | minimal_symbol_reader reader (objfile); |
c906108c | 1075 | |
18a94d75 | 1076 | /* Process the normal ELF symbol table first. */ |
c906108c | 1077 | |
62553543 EZ |
1078 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1079 | if (storage_needed < 0) | |
3e43a32a MS |
1080 | error (_("Can't read symbols from %s: %s"), |
1081 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1082 | bfd_errmsg (bfd_get_error ())); |
1083 | ||
1084 | if (storage_needed > 0) | |
1085 | { | |
80c57053 JK |
1086 | /* Memory gets permanently referenced from ABFD after |
1087 | bfd_canonicalize_symtab so it must not get freed before ABFD gets. */ | |
1088 | ||
224c3ddb | 1089 | symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); |
62553543 EZ |
1090 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
1091 | ||
1092 | if (symcount < 0) | |
3e43a32a MS |
1093 | error (_("Can't read symbols from %s: %s"), |
1094 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1095 | bfd_errmsg (bfd_get_error ())); |
1096 | ||
ce6c454e TT |
1097 | elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table, |
1098 | false); | |
62553543 | 1099 | } |
c906108c SS |
1100 | |
1101 | /* Add the dynamic symbols. */ | |
1102 | ||
62553543 EZ |
1103 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1104 | ||
1105 | if (storage_needed > 0) | |
1106 | { | |
3f1eff0a JK |
1107 | /* Memory gets permanently referenced from ABFD after |
1108 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1109 | It happens only in the case when elf_slurp_reloc_table sees | |
1110 | asection->relocation NULL. Determining which section is asection is | |
1111 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1112 | implementation detail, though. */ | |
1113 | ||
224c3ddb | 1114 | dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); |
62553543 EZ |
1115 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1116 | dyn_symbol_table); | |
1117 | ||
1118 | if (dynsymcount < 0) | |
3e43a32a MS |
1119 | error (_("Can't read symbols from %s: %s"), |
1120 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1121 | bfd_errmsg (bfd_get_error ())); |
1122 | ||
8dddcb8f | 1123 | elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount, |
ce6c454e | 1124 | dyn_symbol_table, false); |
07be84bf | 1125 | |
8dddcb8f | 1126 | elf_rel_plt_read (reader, objfile, dyn_symbol_table); |
62553543 EZ |
1127 | } |
1128 | ||
63524580 JK |
1129 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1130 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1131 | ||
1132 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1133 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1134 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1135 | read the code address from .opd while it reads the .symtab section from | |
1136 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1137 | ||
1138 | With SYNTH_ABFD the .opd section will be read from the original | |
1139 | backlinked binary where it is valid. */ | |
1140 | ||
1141 | if (objfile->separate_debug_objfile_backlink) | |
1142 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1143 | else | |
1144 | synth_abfd = abfd; | |
1145 | ||
62553543 EZ |
1146 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1147 | ||
63524580 | 1148 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1149 | dynsymcount, dyn_symbol_table, |
1150 | &synthsyms); | |
1151 | if (synthcount > 0) | |
1152 | { | |
62553543 EZ |
1153 | long i; |
1154 | ||
b22e99fd | 1155 | std::unique_ptr<asymbol *[]> |
d1e4a624 | 1156 | synth_symbol_table (new asymbol *[synthcount]); |
62553543 | 1157 | for (i = 0; i < synthcount; i++) |
9f20e3da | 1158 | synth_symbol_table[i] = synthsyms + i; |
8dddcb8f | 1159 | elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount, |
ce6c454e | 1160 | synth_symbol_table.get (), true); |
ba713918 AL |
1161 | |
1162 | xfree (synthsyms); | |
1163 | synthsyms = NULL; | |
62553543 | 1164 | } |
c906108c | 1165 | |
7134143f DJ |
1166 | /* Install any minimal symbols that have been collected as the current |
1167 | minimal symbols for this objfile. The debug readers below this point | |
1168 | should not generate new minimal symbols; if they do it's their | |
1169 | responsibility to install them. "mdebug" appears to be the only one | |
1170 | which will do this. */ | |
1171 | ||
d25e8719 | 1172 | reader.install (); |
7134143f | 1173 | |
4f00dda3 DE |
1174 | if (symtab_create_debug) |
1175 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
2750ef27 TT |
1176 | } |
1177 | ||
1178 | /* Scan and build partial symbols for a symbol file. | |
1179 | We have been initialized by a call to elf_symfile_init, which | |
1180 | currently does nothing. | |
1181 | ||
2750ef27 TT |
1182 | This function only does the minimum work necessary for letting the |
1183 | user "name" things symbolically; it does not read the entire symtab. | |
1184 | Instead, it reads the external and static symbols and puts them in partial | |
1185 | symbol tables. When more extensive information is requested of a | |
1186 | file, the corresponding partial symbol table is mutated into a full | |
1187 | fledged symbol table by going back and reading the symbols | |
1188 | for real. | |
1189 | ||
1190 | We look for sections with specific names, to tell us what debug | |
1191 | format to look for: FIXME!!! | |
1192 | ||
1193 | elfstab_build_psymtabs() handles STABS symbols; | |
1194 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1195 | ||
1196 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1197 | like a COFF symbol table, but has only the minimal information necessary | |
1198 | for linking. We process this also, and use the information to | |
1199 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1200 | capability even for files compiled without -g. */ | |
1201 | ||
1202 | static void | |
b15cc25c | 1203 | elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags) |
2750ef27 TT |
1204 | { |
1205 | bfd *abfd = objfile->obfd; | |
1206 | struct elfinfo ei; | |
30d1f018 | 1207 | bool has_dwarf2 = true; |
2750ef27 | 1208 | |
2750ef27 | 1209 | memset ((char *) &ei, 0, sizeof (ei)); |
97cbe998 | 1210 | if (!(objfile->flags & OBJF_READNEVER)) |
08f93a1a TT |
1211 | { |
1212 | for (asection *sect : gdb_bfd_sections (abfd)) | |
1213 | elf_locate_sections (sect, &ei); | |
1214 | } | |
c906108c | 1215 | |
5f6cac40 TT |
1216 | elf_read_minimal_symbols (objfile, symfile_flags, &ei); |
1217 | ||
c906108c SS |
1218 | /* ELF debugging information is inserted into the psymtab in the |
1219 | order of least informative first - most informative last. Since | |
1220 | the psymtab table is searched `most recent insertion first' this | |
1221 | increases the probability that more detailed debug information | |
1222 | for a section is found. | |
1223 | ||
1224 | For instance, an object file might contain both .mdebug (XCOFF) | |
1225 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1226 | (searched last) and DWARF2 is inserted last (searched first). If | |
1227 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1228 | an included file XCOFF info is useless. */ |
c906108c SS |
1229 | |
1230 | if (ei.mdebugsect) | |
1231 | { | |
1232 | const struct ecoff_debug_swap *swap; | |
1233 | ||
1234 | /* .mdebug section, presumably holding ECOFF debugging | |
dda83cd7 | 1235 | information. */ |
c906108c SS |
1236 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1237 | if (swap) | |
d4f3574e | 1238 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1239 | } |
1240 | if (ei.stabsect) | |
1241 | { | |
1242 | asection *str_sect; | |
1243 | ||
1244 | /* Stab sections have an associated string table that looks like | |
dda83cd7 | 1245 | a separate section. */ |
c906108c SS |
1246 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1247 | ||
1248 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1249 | if (str_sect) | |
1250 | elfstab_build_psymtabs (objfile, | |
086df311 | 1251 | ei.stabsect, |
c906108c | 1252 | str_sect->filepos, |
fd361982 | 1253 | bfd_section_size (str_sect)); |
c906108c | 1254 | } |
9291a0cd | 1255 | |
4b610737 | 1256 | if (dwarf2_has_info (objfile, NULL, true)) |
b11896a5 | 1257 | { |
3c0aa29a | 1258 | dw_index_kind index_kind; |
3e03848b | 1259 | |
3c0aa29a PA |
1260 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF |
1261 | debug information present in OBJFILE. If there is such debug | |
1262 | info present never use an index. */ | |
1263 | if (!objfile_has_partial_symbols (objfile) | |
1264 | && dwarf2_initialize_objfile (objfile, &index_kind)) | |
1265 | { | |
1266 | switch (index_kind) | |
1267 | { | |
1268 | case dw_index_kind::GDB_INDEX: | |
1269 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); | |
1270 | break; | |
1271 | case dw_index_kind::DEBUG_NAMES: | |
1272 | objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names); | |
1273 | break; | |
1274 | } | |
1275 | } | |
1276 | else | |
b11896a5 TT |
1277 | { |
1278 | /* It is ok to do this even if the stabs reader made some | |
1279 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1280 | set, and so our lazy reader function will still be called | |
1281 | when needed. */ | |
8fb8eb5c | 1282 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
b11896a5 TT |
1283 | } |
1284 | } | |
3e43a32a MS |
1285 | /* If the file has its own symbol tables it has no separate debug |
1286 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1287 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
8a92335b JK |
1288 | `.note.gnu.build-id'. |
1289 | ||
1290 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only | |
1291 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as | |
1292 | an objfile via find_separate_debug_file_in_section there was no separate | |
1293 | debug info available. Therefore do not attempt to search for another one, | |
1294 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to | |
1295 | be NULL and we would possibly violate it. */ | |
1296 | ||
1297 | else if (!objfile_has_partial_symbols (objfile) | |
1298 | && objfile->separate_debug_objfile == NULL | |
1299 | && objfile->separate_debug_objfile_backlink == NULL) | |
9cce227f | 1300 | { |
a8dbfd58 | 1301 | std::string debugfile = find_separate_debug_file_by_buildid (objfile); |
9cce227f | 1302 | |
a8dbfd58 SM |
1303 | if (debugfile.empty ()) |
1304 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
9cce227f | 1305 | |
a8dbfd58 | 1306 | if (!debugfile.empty ()) |
9cce227f | 1307 | { |
b926417a | 1308 | gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ())); |
d7f9d729 | 1309 | |
b926417a | 1310 | symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (), |
192b62ce | 1311 | symfile_flags, objfile); |
9cce227f | 1312 | } |
0d79cdc4 AM |
1313 | else |
1314 | { | |
30d1f018 | 1315 | has_dwarf2 = false; |
0d79cdc4 AM |
1316 | const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd); |
1317 | ||
1318 | if (build_id != nullptr) | |
1319 | { | |
1320 | gdb::unique_xmalloc_ptr<char> symfile_path; | |
1321 | scoped_fd fd (debuginfod_debuginfo_query (build_id->data, | |
1322 | build_id->size, | |
1323 | objfile->original_name, | |
1324 | &symfile_path)); | |
1325 | ||
1326 | if (fd.get () >= 0) | |
1327 | { | |
1328 | /* File successfully retrieved from server. */ | |
1329 | gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ())); | |
1330 | ||
1331 | if (debug_bfd == nullptr) | |
1332 | warning (_("File \"%s\" from debuginfod cannot be opened as bfd"), | |
1333 | objfile->original_name); | |
1334 | else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data)) | |
1335 | { | |
1336 | symbol_file_add_separate (debug_bfd.get (), symfile_path.get (), | |
1337 | symfile_flags, objfile); | |
1338 | has_dwarf2 = true; | |
1339 | } | |
1340 | } | |
1341 | } | |
1342 | } | |
30d1f018 WP |
1343 | } |
1344 | ||
1345 | /* Read the CTF section only if there is no DWARF info. */ | |
1346 | if (!has_dwarf2 && ei.ctfsect) | |
1347 | { | |
1348 | elfctf_build_psymtabs (objfile); | |
9cce227f | 1349 | } |
c906108c SS |
1350 | } |
1351 | ||
b11896a5 TT |
1352 | /* Callback to lazily read psymtabs. */ |
1353 | ||
1354 | static void | |
1355 | read_psyms (struct objfile *objfile) | |
1356 | { | |
251d32d9 | 1357 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1358 | dwarf2_build_psymtabs (objfile); |
1359 | } | |
1360 | ||
c906108c SS |
1361 | /* Initialize anything that needs initializing when a completely new symbol |
1362 | file is specified (not just adding some symbols from another file, e.g. a | |
caa429d8 | 1363 | shared library). */ |
c906108c SS |
1364 | |
1365 | static void | |
fba45db2 | 1366 | elf_new_init (struct objfile *ignore) |
c906108c | 1367 | { |
c906108c SS |
1368 | } |
1369 | ||
1370 | /* Perform any local cleanups required when we are done with a particular | |
1371 | objfile. I.E, we are in the process of discarding all symbol information | |
1372 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1373 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1374 | |
1375 | static void | |
fba45db2 | 1376 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1377 | { |
c906108c SS |
1378 | } |
1379 | ||
db7a9bcd | 1380 | /* ELF specific initialization routine for reading symbols. */ |
c906108c SS |
1381 | |
1382 | static void | |
fba45db2 | 1383 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1384 | { |
1385 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1386 | find this causes a significant slowdown in gdb then we could | |
1387 | set it in the debug symbol readers only when necessary. */ | |
1388 | objfile->flags |= OBJF_REORDERED; | |
1389 | } | |
1390 | ||
55aa24fb SDJ |
1391 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ |
1392 | ||
814cf43a | 1393 | static const elfread_data & |
55aa24fb SDJ |
1394 | elf_get_probes (struct objfile *objfile) |
1395 | { | |
814cf43a | 1396 | elfread_data *probes_per_bfd = probe_key.get (objfile->obfd); |
55aa24fb | 1397 | |
aaa63a31 | 1398 | if (probes_per_bfd == NULL) |
55aa24fb | 1399 | { |
814cf43a | 1400 | probes_per_bfd = probe_key.emplace (objfile->obfd); |
55aa24fb SDJ |
1401 | |
1402 | /* Here we try to gather information about all types of probes from the | |
1403 | objfile. */ | |
935676c9 | 1404 | for (const static_probe_ops *ops : all_static_probe_ops) |
0782db84 | 1405 | ops->get_probes (probes_per_bfd, objfile); |
55aa24fb SDJ |
1406 | } |
1407 | ||
aaa63a31 | 1408 | return *probes_per_bfd; |
55aa24fb SDJ |
1409 | } |
1410 | ||
c906108c | 1411 | \f |
55aa24fb SDJ |
1412 | |
1413 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1414 | ||
1415 | static const struct sym_probe_fns elf_probe_fns = | |
1416 | { | |
25f9533e | 1417 | elf_get_probes, /* sym_get_probes */ |
55aa24fb SDJ |
1418 | }; |
1419 | ||
c906108c SS |
1420 | /* Register that we are able to handle ELF object file formats. */ |
1421 | ||
00b5771c | 1422 | static const struct sym_fns elf_sym_fns = |
c906108c | 1423 | { |
3e43a32a MS |
1424 | elf_new_init, /* init anything gbl to entire symtab */ |
1425 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1426 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1427 | NULL, /* sym_read_psymbols */ |
1428 | elf_symfile_finish, /* finished with file, cleanup */ | |
1429 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1430 | elf_symfile_segments, /* Get segment information from a file. */ | |
1431 | NULL, | |
1432 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1433 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1434 | &psym_functions |
1435 | }; | |
1436 | ||
1437 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1438 | psymbols. */ | |
1439 | ||
e36122e9 | 1440 | const struct sym_fns elf_sym_fns_lazy_psyms = |
b11896a5 | 1441 | { |
b11896a5 TT |
1442 | elf_new_init, /* init anything gbl to entire symtab */ |
1443 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1444 | elf_symfile_read, /* read a symbol file into symtab */ | |
1445 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1446 | elf_symfile_finish, /* finished with file, cleanup */ |
1447 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1448 | elf_symfile_segments, /* Get segment information from a file. */ | |
1449 | NULL, | |
1450 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1451 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1452 | &psym_functions |
c906108c SS |
1453 | }; |
1454 | ||
9291a0cd TT |
1455 | /* The same as elf_sym_fns, but not registered and uses the |
1456 | DWARF-specific GNU index rather than psymtab. */ | |
e36122e9 | 1457 | const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd | 1458 | { |
3e43a32a MS |
1459 | elf_new_init, /* init anything gbl to entire symab */ |
1460 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1461 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1462 | NULL, /* sym_read_psymbols */ |
3e43a32a | 1463 | elf_symfile_finish, /* finished with file, cleanup */ |
405feb71 | 1464 | default_symfile_offsets, /* Translate ext. to int. relocation */ |
3e43a32a MS |
1465 | elf_symfile_segments, /* Get segment information from a file. */ |
1466 | NULL, | |
1467 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1468 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1469 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1470 | }; |
1471 | ||
927aa2e7 JK |
1472 | /* The same as elf_sym_fns, but not registered and uses the |
1473 | DWARF-specific .debug_names index rather than psymtab. */ | |
1474 | const struct sym_fns elf_sym_fns_debug_names = | |
1475 | { | |
1476 | elf_new_init, /* init anything gbl to entire symab */ | |
1477 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1478 | elf_symfile_read, /* read a symbol file into symtab */ | |
1479 | NULL, /* sym_read_psymbols */ | |
1480 | elf_symfile_finish, /* finished with file, cleanup */ | |
405feb71 | 1481 | default_symfile_offsets, /* Translate ext. to int. relocation */ |
927aa2e7 JK |
1482 | elf_symfile_segments, /* Get segment information from a file. */ |
1483 | NULL, | |
1484 | default_symfile_relocate, /* Relocate a debug section. */ | |
1485 | &elf_probe_fns, /* sym_probe_fns */ | |
1486 | &dwarf2_debug_names_functions | |
1487 | }; | |
1488 | ||
07be84bf JK |
1489 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1490 | ||
1491 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1492 | { | |
1493 | elf_gnu_ifunc_resolve_addr, | |
1494 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1495 | elf_gnu_ifunc_resolver_stop, |
1496 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1497 | }; |
1498 | ||
6c265988 | 1499 | void _initialize_elfread (); |
c906108c | 1500 | void |
6c265988 | 1501 | _initialize_elfread () |
c906108c | 1502 | { |
c256e171 | 1503 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
07be84bf | 1504 | |
07be84bf | 1505 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; |
c906108c | 1506 | } |