]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
61baf725 | 3 | Copyright (C) 1991-2017 Free Software Foundation, Inc. |
1bac305b | 4 | |
c906108c SS |
5 | Written by Fred Fish at Cygnus Support. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "bfd.h" | |
c906108c | 24 | #include "elf-bfd.h" |
31d99776 DJ |
25 | #include "elf/common.h" |
26 | #include "elf/internal.h" | |
c906108c SS |
27 | #include "elf/mips.h" |
28 | #include "symtab.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "buildsym.h" | |
32 | #include "stabsread.h" | |
33 | #include "gdb-stabs.h" | |
34 | #include "complaints.h" | |
35 | #include "demangle.h" | |
ccefe4c4 | 36 | #include "psympriv.h" |
0ba1096a | 37 | #include "filenames.h" |
55aa24fb SDJ |
38 | #include "probe.h" |
39 | #include "arch-utils.h" | |
07be84bf JK |
40 | #include "gdbtypes.h" |
41 | #include "value.h" | |
42 | #include "infcall.h" | |
0e30163f JK |
43 | #include "gdbthread.h" |
44 | #include "regcache.h" | |
0af1e9a5 | 45 | #include "bcache.h" |
cbb099e8 | 46 | #include "gdb_bfd.h" |
dc294be5 | 47 | #include "build-id.h" |
f00aae0f | 48 | #include "location.h" |
e1b2624a | 49 | #include "auxv.h" |
c906108c | 50 | |
a14ed312 | 51 | extern void _initialize_elfread (void); |
392a587b | 52 | |
b11896a5 | 53 | /* Forward declarations. */ |
e36122e9 TT |
54 | extern const struct sym_fns elf_sym_fns_gdb_index; |
55 | extern const struct sym_fns elf_sym_fns_lazy_psyms; | |
9291a0cd | 56 | |
c906108c | 57 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 58 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
59 | It's local to elf_symfile_read. */ |
60 | ||
c5aa993b JM |
61 | struct elfinfo |
62 | { | |
c5aa993b | 63 | asection *stabsect; /* Section pointer for .stab section */ |
c5aa993b JM |
64 | asection *mdebugsect; /* Section pointer for .mdebug section */ |
65 | }; | |
c906108c | 66 | |
5d9cf8a4 | 67 | /* Per-BFD data for probe info. */ |
55aa24fb | 68 | |
5d9cf8a4 | 69 | static const struct bfd_data *probe_key = NULL; |
55aa24fb | 70 | |
07be84bf JK |
71 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
72 | pointer where the given entry will jump to. It gets updated by the real | |
73 | function address during lazy ld.so resolving in the inferior. These | |
74 | minimal symbols are indexed for <tab>-completion. */ | |
75 | ||
76 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
77 | ||
31d99776 DJ |
78 | /* Locate the segments in ABFD. */ |
79 | ||
80 | static struct symfile_segment_data * | |
81 | elf_symfile_segments (bfd *abfd) | |
82 | { | |
83 | Elf_Internal_Phdr *phdrs, **segments; | |
84 | long phdrs_size; | |
85 | int num_phdrs, num_segments, num_sections, i; | |
86 | asection *sect; | |
87 | struct symfile_segment_data *data; | |
88 | ||
89 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
90 | if (phdrs_size == -1) | |
91 | return NULL; | |
92 | ||
224c3ddb | 93 | phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size); |
31d99776 DJ |
94 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); |
95 | if (num_phdrs == -1) | |
96 | return NULL; | |
97 | ||
98 | num_segments = 0; | |
8d749320 | 99 | segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs); |
31d99776 DJ |
100 | for (i = 0; i < num_phdrs; i++) |
101 | if (phdrs[i].p_type == PT_LOAD) | |
102 | segments[num_segments++] = &phdrs[i]; | |
103 | ||
104 | if (num_segments == 0) | |
105 | return NULL; | |
106 | ||
41bf6aca | 107 | data = XCNEW (struct symfile_segment_data); |
31d99776 | 108 | data->num_segments = num_segments; |
fc270c35 TT |
109 | data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments); |
110 | data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments); | |
31d99776 DJ |
111 | |
112 | for (i = 0; i < num_segments; i++) | |
113 | { | |
114 | data->segment_bases[i] = segments[i]->p_vaddr; | |
115 | data->segment_sizes[i] = segments[i]->p_memsz; | |
116 | } | |
117 | ||
118 | num_sections = bfd_count_sections (abfd); | |
fc270c35 | 119 | data->segment_info = XCNEWVEC (int, num_sections); |
31d99776 DJ |
120 | |
121 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
122 | { | |
123 | int j; | |
124 | CORE_ADDR vma; | |
125 | ||
126 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
127 | continue; | |
128 | ||
129 | vma = bfd_get_section_vma (abfd, sect); | |
130 | ||
131 | for (j = 0; j < num_segments; j++) | |
132 | if (segments[j]->p_memsz > 0 | |
133 | && vma >= segments[j]->p_vaddr | |
a366c65a | 134 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
135 | { |
136 | data->segment_info[i] = j + 1; | |
137 | break; | |
138 | } | |
139 | ||
ad09a548 DJ |
140 | /* We should have found a segment for every non-empty section. |
141 | If we haven't, we will not relocate this section by any | |
142 | offsets we apply to the segments. As an exception, do not | |
143 | warn about SHT_NOBITS sections; in normal ELF execution | |
144 | environments, SHT_NOBITS means zero-initialized and belongs | |
145 | in a segment, but in no-OS environments some tools (e.g. ARM | |
146 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
147 | uninitialized, it doesn't need a program header. Such | |
148 | binaries are not relocatable. */ | |
149 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
150 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
28ee876a | 151 | warning (_("Loadable section \"%s\" outside of ELF segments"), |
31d99776 DJ |
152 | bfd_section_name (abfd, sect)); |
153 | } | |
154 | ||
155 | return data; | |
156 | } | |
157 | ||
c906108c SS |
158 | /* We are called once per section from elf_symfile_read. We |
159 | need to examine each section we are passed, check to see | |
160 | if it is something we are interested in processing, and | |
161 | if so, stash away some access information for the section. | |
162 | ||
163 | For now we recognize the dwarf debug information sections and | |
164 | line number sections from matching their section names. The | |
165 | ELF definition is no real help here since it has no direct | |
166 | knowledge of DWARF (by design, so any debugging format can be | |
167 | used). | |
168 | ||
169 | We also recognize the ".stab" sections used by the Sun compilers | |
170 | released with Solaris 2. | |
171 | ||
172 | FIXME: The section names should not be hardwired strings (what | |
173 | should they be? I don't think most object file formats have enough | |
0963b4bd | 174 | section flags to specify what kind of debug section it is. |
c906108c SS |
175 | -kingdon). */ |
176 | ||
177 | static void | |
12b9c64f | 178 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 179 | { |
52f0bd74 | 180 | struct elfinfo *ei; |
c906108c SS |
181 | |
182 | ei = (struct elfinfo *) eip; | |
7ce59000 | 183 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 184 | { |
c5aa993b | 185 | ei->stabsect = sectp; |
c906108c | 186 | } |
6314a349 | 187 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 188 | { |
c5aa993b | 189 | ei->mdebugsect = sectp; |
c906108c SS |
190 | } |
191 | } | |
192 | ||
c906108c | 193 | static struct minimal_symbol * |
8dddcb8f | 194 | record_minimal_symbol (minimal_symbol_reader &reader, |
ce6c454e | 195 | const char *name, int name_len, bool copy_name, |
04a679b8 | 196 | CORE_ADDR address, |
f594e5e9 MC |
197 | enum minimal_symbol_type ms_type, |
198 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 199 | { |
5e2b427d UW |
200 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
201 | ||
0875794a JK |
202 | if (ms_type == mst_text || ms_type == mst_file_text |
203 | || ms_type == mst_text_gnu_ifunc) | |
85ddcc70 | 204 | address = gdbarch_addr_bits_remove (gdbarch, address); |
c906108c | 205 | |
8dddcb8f TT |
206 | return reader.record_full (name, name_len, copy_name, address, |
207 | ms_type, | |
208 | gdb_bfd_section_index (objfile->obfd, | |
209 | bfd_section)); | |
c906108c SS |
210 | } |
211 | ||
7f86f058 | 212 | /* Read the symbol table of an ELF file. |
c906108c | 213 | |
62553543 | 214 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
215 | symbol table contains regular, dynamic, or synthetic symbols, add all |
216 | the global function and data symbols to the minimal symbol table. | |
c906108c | 217 | |
c5aa993b JM |
218 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
219 | defined in the ELF symbol table, which can be used to locate | |
220 | the beginnings of sections from each ".o" file that was linked to | |
221 | form the executable objfile. We gather any such info and record it | |
7f86f058 | 222 | in data structures hung off the objfile's private data. */ |
c906108c | 223 | |
6f610d07 UW |
224 | #define ST_REGULAR 0 |
225 | #define ST_DYNAMIC 1 | |
226 | #define ST_SYNTHETIC 2 | |
227 | ||
c906108c | 228 | static void |
8dddcb8f TT |
229 | elf_symtab_read (minimal_symbol_reader &reader, |
230 | struct objfile *objfile, int type, | |
04a679b8 | 231 | long number_of_symbols, asymbol **symbol_table, |
ce6c454e | 232 | bool copy_names) |
c906108c | 233 | { |
5e2b427d | 234 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 235 | asymbol *sym; |
c906108c | 236 | long i; |
c906108c SS |
237 | CORE_ADDR symaddr; |
238 | enum minimal_symbol_type ms_type; | |
18a94d75 DE |
239 | /* Name of the last file symbol. This is either a constant string or is |
240 | saved on the objfile's filename cache. */ | |
0af1e9a5 | 241 | const char *filesymname = ""; |
d2f4b8fe | 242 | struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile); |
d4f3574e | 243 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
3e29f34a MR |
244 | int elf_make_msymbol_special_p |
245 | = gdbarch_elf_make_msymbol_special_p (gdbarch); | |
c5aa993b | 246 | |
0cc7b392 | 247 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 248 | { |
0cc7b392 DJ |
249 | sym = symbol_table[i]; |
250 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 251 | { |
0cc7b392 | 252 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 253 | that are null strings (may happen). */ |
0cc7b392 DJ |
254 | continue; |
255 | } | |
c906108c | 256 | |
74763737 DJ |
257 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
258 | symbols which do not correspond to objects in the symbol table, | |
259 | but have some other target-specific meaning. */ | |
260 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
261 | { |
262 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
263 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
264 | continue; | |
265 | } | |
74763737 | 266 | |
6f610d07 | 267 | if (type == ST_DYNAMIC |
45dfa85a | 268 | && sym->section == bfd_und_section_ptr |
0cc7b392 DJ |
269 | && (sym->flags & BSF_FUNCTION)) |
270 | { | |
271 | struct minimal_symbol *msym; | |
02c75f72 | 272 | bfd *abfd = objfile->obfd; |
dea91a5c | 273 | asection *sect; |
0cc7b392 DJ |
274 | |
275 | /* Symbol is a reference to a function defined in | |
276 | a shared library. | |
277 | If its value is non zero then it is usually the address | |
278 | of the corresponding entry in the procedure linkage table, | |
279 | plus the desired section offset. | |
280 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 281 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
282 | for this symbol in the executable file, so we skip it. */ |
283 | symaddr = sym->value; | |
284 | if (symaddr == 0) | |
285 | continue; | |
02c75f72 UW |
286 | |
287 | /* sym->section is the undefined section. However, we want to | |
288 | record the section where the PLT stub resides with the | |
289 | minimal symbol. Search the section table for the one that | |
290 | covers the stub's address. */ | |
291 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
292 | { | |
293 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
294 | continue; | |
295 | ||
296 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
297 | && symaddr < bfd_get_section_vma (abfd, sect) | |
298 | + bfd_get_section_size (sect)) | |
299 | break; | |
300 | } | |
301 | if (!sect) | |
302 | continue; | |
303 | ||
828cfa8d JB |
304 | /* On ia64-hpux, we have discovered that the system linker |
305 | adds undefined symbols with nonzero addresses that cannot | |
306 | be right (their address points inside the code of another | |
307 | function in the .text section). This creates problems | |
308 | when trying to determine which symbol corresponds to | |
309 | a given address. | |
310 | ||
311 | We try to detect those buggy symbols by checking which | |
312 | section we think they correspond to. Normally, PLT symbols | |
313 | are stored inside their own section, and the typical name | |
314 | for that section is ".plt". So, if there is a ".plt" | |
315 | section, and yet the section name of our symbol does not | |
316 | start with ".plt", we ignore that symbol. */ | |
61012eef | 317 | if (!startswith (sect->name, ".plt") |
828cfa8d JB |
318 | && bfd_get_section_by_name (abfd, ".plt") != NULL) |
319 | continue; | |
320 | ||
0cc7b392 | 321 | msym = record_minimal_symbol |
8dddcb8f | 322 | (reader, sym->name, strlen (sym->name), copy_names, |
04a679b8 | 323 | symaddr, mst_solib_trampoline, sect, objfile); |
0cc7b392 | 324 | if (msym != NULL) |
9b807e7b MR |
325 | { |
326 | msym->filename = filesymname; | |
3e29f34a MR |
327 | if (elf_make_msymbol_special_p) |
328 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
9b807e7b | 329 | } |
0cc7b392 DJ |
330 | continue; |
331 | } | |
c906108c | 332 | |
0cc7b392 DJ |
333 | /* If it is a nonstripped executable, do not enter dynamic |
334 | symbols, as the dynamic symbol table is usually a subset | |
335 | of the main symbol table. */ | |
6f610d07 | 336 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
337 | continue; |
338 | if (sym->flags & BSF_FILE) | |
339 | { | |
9a3c8263 SM |
340 | filesymname |
341 | = (const char *) bcache (sym->name, strlen (sym->name) + 1, | |
342 | objfile->per_bfd->filename_cache); | |
0cc7b392 DJ |
343 | } |
344 | else if (sym->flags & BSF_SECTION_SYM) | |
345 | continue; | |
bb869963 SDJ |
346 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK |
347 | | BSF_GNU_UNIQUE)) | |
0cc7b392 DJ |
348 | { |
349 | struct minimal_symbol *msym; | |
350 | ||
351 | /* Select global/local/weak symbols. Note that bfd puts abs | |
352 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
353 | interested in will have a section. */ |
354 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 355 | symaddr = sym->value + sym->section->vma; |
0cc7b392 DJ |
356 | /* For non-absolute symbols, use the type of the section |
357 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 358 | no way of figuring this out for absolute symbols. */ |
45dfa85a | 359 | if (sym->section == bfd_abs_section_ptr) |
c906108c | 360 | { |
0cc7b392 DJ |
361 | /* This is a hack to get the minimal symbol type |
362 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
363 | with special section indices for dynamic symbols. |
364 | ||
365 | NOTE: uweigand-20071112: Synthetic symbols do not | |
366 | have an ELF-private part, so do not touch those. */ | |
dea91a5c | 367 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
368 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
369 | ||
370 | switch (shndx) | |
c906108c | 371 | { |
0cc7b392 DJ |
372 | case SHN_MIPS_TEXT: |
373 | ms_type = mst_text; | |
374 | break; | |
375 | case SHN_MIPS_DATA: | |
376 | ms_type = mst_data; | |
377 | break; | |
378 | case SHN_MIPS_ACOMMON: | |
379 | ms_type = mst_bss; | |
380 | break; | |
381 | default: | |
382 | ms_type = mst_abs; | |
383 | } | |
384 | ||
385 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 386 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
387 | if (ms_type != mst_abs) |
388 | { | |
389 | if (sym->name[0] == '.') | |
390 | continue; | |
c906108c | 391 | } |
0cc7b392 DJ |
392 | } |
393 | else if (sym->section->flags & SEC_CODE) | |
394 | { | |
bb869963 | 395 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 396 | { |
0875794a JK |
397 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
398 | ms_type = mst_text_gnu_ifunc; | |
399 | else | |
400 | ms_type = mst_text; | |
0cc7b392 | 401 | } |
90359a16 JK |
402 | /* The BSF_SYNTHETIC check is there to omit ppc64 function |
403 | descriptors mistaken for static functions starting with 'L'. | |
404 | */ | |
405 | else if ((sym->name[0] == '.' && sym->name[1] == 'L' | |
406 | && (sym->flags & BSF_SYNTHETIC) == 0) | |
0cc7b392 DJ |
407 | || ((sym->flags & BSF_LOCAL) |
408 | && sym->name[0] == '$' | |
409 | && sym->name[1] == 'L')) | |
410 | /* Looks like a compiler-generated label. Skip | |
411 | it. The assembler should be skipping these (to | |
412 | keep executables small), but apparently with | |
413 | gcc on the (deleted) delta m88k SVR4, it loses. | |
414 | So to have us check too should be harmless (but | |
415 | I encourage people to fix this in the assembler | |
416 | instead of adding checks here). */ | |
417 | continue; | |
418 | else | |
419 | { | |
420 | ms_type = mst_file_text; | |
c906108c | 421 | } |
0cc7b392 DJ |
422 | } |
423 | else if (sym->section->flags & SEC_ALLOC) | |
424 | { | |
bb869963 | 425 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) |
c906108c | 426 | { |
0cc7b392 | 427 | if (sym->section->flags & SEC_LOAD) |
c906108c | 428 | { |
0cc7b392 | 429 | ms_type = mst_data; |
c906108c | 430 | } |
c906108c SS |
431 | else |
432 | { | |
0cc7b392 | 433 | ms_type = mst_bss; |
c906108c SS |
434 | } |
435 | } | |
0cc7b392 | 436 | else if (sym->flags & BSF_LOCAL) |
c906108c | 437 | { |
0cc7b392 DJ |
438 | if (sym->section->flags & SEC_LOAD) |
439 | { | |
440 | ms_type = mst_file_data; | |
c906108c SS |
441 | } |
442 | else | |
443 | { | |
0cc7b392 | 444 | ms_type = mst_file_bss; |
c906108c SS |
445 | } |
446 | } | |
447 | else | |
448 | { | |
0cc7b392 | 449 | ms_type = mst_unknown; |
c906108c | 450 | } |
0cc7b392 DJ |
451 | } |
452 | else | |
453 | { | |
454 | /* FIXME: Solaris2 shared libraries include lots of | |
dea91a5c | 455 | odd "absolute" and "undefined" symbols, that play |
0cc7b392 DJ |
456 | hob with actions like finding what function the PC |
457 | is in. Ignore them if they aren't text, data, or bss. */ | |
458 | /* ms_type = mst_unknown; */ | |
0963b4bd | 459 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
460 | } |
461 | msym = record_minimal_symbol | |
8dddcb8f | 462 | (reader, sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 463 | ms_type, sym->section, objfile); |
6f610d07 | 464 | |
0cc7b392 DJ |
465 | if (msym) |
466 | { | |
6f610d07 | 467 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an |
24c274a1 | 468 | ELF-private part. */ |
6f610d07 | 469 | if (type != ST_SYNTHETIC) |
24c274a1 AM |
470 | { |
471 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
472 | elf_symbol_type *elf_sym = (elf_symbol_type *) sym; | |
473 | SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size); | |
474 | } | |
dea91a5c | 475 | |
a103a963 | 476 | msym->filename = filesymname; |
3e29f34a MR |
477 | if (elf_make_msymbol_special_p) |
478 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 479 | } |
2eaf8d2a | 480 | |
715c6909 TT |
481 | /* If we see a default versioned symbol, install it under |
482 | its version-less name. */ | |
483 | if (msym != NULL) | |
484 | { | |
485 | const char *atsign = strchr (sym->name, '@'); | |
486 | ||
487 | if (atsign != NULL && atsign[1] == '@' && atsign > sym->name) | |
488 | { | |
489 | int len = atsign - sym->name; | |
490 | ||
ce6c454e | 491 | record_minimal_symbol (reader, sym->name, len, true, symaddr, |
715c6909 TT |
492 | ms_type, sym->section, objfile); |
493 | } | |
494 | } | |
495 | ||
2eaf8d2a DJ |
496 | /* For @plt symbols, also record a trampoline to the |
497 | destination symbol. The @plt symbol will be used in | |
498 | disassembly, and the trampoline will be used when we are | |
499 | trying to find the target. */ | |
500 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
501 | { | |
502 | int len = strlen (sym->name); | |
503 | ||
504 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
505 | { | |
2eaf8d2a DJ |
506 | struct minimal_symbol *mtramp; |
507 | ||
ce6c454e TT |
508 | mtramp = record_minimal_symbol (reader, sym->name, len - 4, |
509 | true, symaddr, | |
2eaf8d2a DJ |
510 | mst_solib_trampoline, |
511 | sym->section, objfile); | |
512 | if (mtramp) | |
513 | { | |
d9eaeb59 | 514 | SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym)); |
422d65e7 | 515 | mtramp->created_by_gdb = 1; |
2eaf8d2a | 516 | mtramp->filename = filesymname; |
3e29f34a MR |
517 | if (elf_make_msymbol_special_p) |
518 | gdbarch_elf_make_msymbol_special (gdbarch, | |
519 | sym, mtramp); | |
2eaf8d2a DJ |
520 | } |
521 | } | |
522 | } | |
c906108c | 523 | } |
c906108c SS |
524 | } |
525 | } | |
526 | ||
07be84bf JK |
527 | /* Build minimal symbols named `[email protected]' (see SYMBOL_GOT_PLT_SUFFIX) |
528 | for later look ups of which function to call when user requests | |
529 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
530 | library defining `function' we cannot yet know while reading OBJFILE which | |
531 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
532 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
533 | ||
534 | static void | |
8dddcb8f TT |
535 | elf_rel_plt_read (minimal_symbol_reader &reader, |
536 | struct objfile *objfile, asymbol **dyn_symbol_table) | |
07be84bf JK |
537 | { |
538 | bfd *obfd = objfile->obfd; | |
539 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
540 | asection *plt, *relplt, *got_plt; | |
07be84bf JK |
541 | int plt_elf_idx; |
542 | bfd_size_type reloc_count, reloc; | |
543 | char *string_buffer = NULL; | |
544 | size_t string_buffer_size = 0; | |
545 | struct cleanup *back_to; | |
df6d5441 | 546 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
547 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
548 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
549 | ||
550 | if (objfile->separate_debug_objfile_backlink) | |
551 | return; | |
552 | ||
553 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
554 | if (plt == NULL) | |
555 | return; | |
556 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
557 | ||
558 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
559 | if (got_plt == NULL) | |
4b7d1f7f WN |
560 | { |
561 | /* For platforms where there is no separate .got.plt. */ | |
562 | got_plt = bfd_get_section_by_name (obfd, ".got"); | |
563 | if (got_plt == NULL) | |
564 | return; | |
565 | } | |
07be84bf JK |
566 | |
567 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
568 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
569 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
570 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
571 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
572 | break; | |
573 | if (relplt == NULL) | |
574 | return; | |
575 | ||
576 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
577 | return; | |
578 | ||
579 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
580 | ||
581 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
582 | for (reloc = 0; reloc < reloc_count; reloc++) | |
583 | { | |
22e048c9 | 584 | const char *name; |
07be84bf JK |
585 | struct minimal_symbol *msym; |
586 | CORE_ADDR address; | |
587 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
588 | size_t name_len; | |
589 | ||
590 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
591 | name_len = strlen (name); | |
592 | address = relplt->relocation[reloc].address; | |
593 | ||
594 | /* Does the pointer reside in the .got.plt section? */ | |
595 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
596 | && address < bfd_get_section_vma (obfd, got_plt) | |
597 | + bfd_get_section_size (got_plt))) | |
598 | continue; | |
599 | ||
600 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
601 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
602 | may not yet have been loaded. */ | |
603 | ||
3807f613 | 604 | if (string_buffer_size < name_len + got_suffix_len + 1) |
07be84bf JK |
605 | { |
606 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
224c3ddb | 607 | string_buffer = (char *) xrealloc (string_buffer, string_buffer_size); |
07be84bf JK |
608 | } |
609 | memcpy (string_buffer, name, name_len); | |
610 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
3807f613 | 611 | got_suffix_len + 1); |
07be84bf | 612 | |
8dddcb8f TT |
613 | msym = record_minimal_symbol (reader, string_buffer, |
614 | name_len + got_suffix_len, | |
ce6c454e | 615 | true, address, mst_slot_got_plt, got_plt, |
07be84bf JK |
616 | objfile); |
617 | if (msym) | |
d9eaeb59 | 618 | SET_MSYMBOL_SIZE (msym, ptr_size); |
07be84bf JK |
619 | } |
620 | ||
621 | do_cleanups (back_to); | |
622 | } | |
623 | ||
624 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
625 | ||
626 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
627 | ||
628 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
629 | ||
630 | struct elf_gnu_ifunc_cache | |
631 | { | |
632 | /* This is always a function entry address, not a function descriptor. */ | |
633 | CORE_ADDR addr; | |
634 | ||
635 | char name[1]; | |
636 | }; | |
637 | ||
638 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
639 | ||
640 | static hashval_t | |
641 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
642 | { | |
9a3c8263 SM |
643 | const struct elf_gnu_ifunc_cache *a |
644 | = (const struct elf_gnu_ifunc_cache *) a_voidp; | |
07be84bf JK |
645 | |
646 | return htab_hash_string (a->name); | |
647 | } | |
648 | ||
649 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
650 | ||
651 | static int | |
652 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
653 | { | |
9a3c8263 SM |
654 | const struct elf_gnu_ifunc_cache *a |
655 | = (const struct elf_gnu_ifunc_cache *) a_voidp; | |
656 | const struct elf_gnu_ifunc_cache *b | |
657 | = (const struct elf_gnu_ifunc_cache *) b_voidp; | |
07be84bf JK |
658 | |
659 | return strcmp (a->name, b->name) == 0; | |
660 | } | |
661 | ||
662 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
663 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
664 | valid and therefore they were successfully recorded, return 0 otherwise. | |
665 | ||
666 | Function does not expect a duplicate entry. Use | |
667 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
668 | exists. */ | |
669 | ||
670 | static int | |
671 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
672 | { | |
7cbd4a93 | 673 | struct bound_minimal_symbol msym; |
07be84bf JK |
674 | asection *sect; |
675 | struct objfile *objfile; | |
676 | htab_t htab; | |
677 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
678 | void **slot; | |
679 | ||
680 | msym = lookup_minimal_symbol_by_pc (addr); | |
7cbd4a93 | 681 | if (msym.minsym == NULL) |
07be84bf | 682 | return 0; |
77e371c0 | 683 | if (BMSYMBOL_VALUE_ADDRESS (msym) != addr) |
07be84bf JK |
684 | return 0; |
685 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
efd66ac6 | 686 | sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section; |
e27d198c | 687 | objfile = msym.objfile; |
07be84bf JK |
688 | |
689 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
690 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
691 | reside also in ".opd" for ppc64 function descriptor. */ | |
692 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
693 | return 0; | |
694 | ||
9a3c8263 | 695 | htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); |
07be84bf JK |
696 | if (htab == NULL) |
697 | { | |
698 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
699 | elf_gnu_ifunc_cache_eq, | |
700 | NULL, &objfile->objfile_obstack, | |
701 | hashtab_obstack_allocate, | |
702 | dummy_obstack_deallocate); | |
703 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
704 | } | |
705 | ||
706 | entry_local.addr = addr; | |
707 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
708 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
709 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
224c3ddb SM |
710 | entry_p |
711 | = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack); | |
07be84bf JK |
712 | |
713 | slot = htab_find_slot (htab, entry_p, INSERT); | |
714 | if (*slot != NULL) | |
715 | { | |
9a3c8263 SM |
716 | struct elf_gnu_ifunc_cache *entry_found_p |
717 | = (struct elf_gnu_ifunc_cache *) *slot; | |
df6d5441 | 718 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
719 | |
720 | if (entry_found_p->addr != addr) | |
721 | { | |
722 | /* This case indicates buggy inferior program, the resolved address | |
723 | should never change. */ | |
724 | ||
725 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
726 | "function_address from %s to %s"), | |
727 | name, paddress (gdbarch, entry_found_p->addr), | |
728 | paddress (gdbarch, addr)); | |
729 | } | |
730 | ||
731 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
732 | } | |
733 | *slot = entry_p; | |
734 | ||
735 | return 1; | |
736 | } | |
737 | ||
738 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
739 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
740 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
741 | ||
742 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
743 | function. */ | |
744 | ||
745 | static int | |
746 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
747 | { | |
748 | struct objfile *objfile; | |
749 | ||
750 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
751 | { | |
752 | htab_t htab; | |
753 | struct elf_gnu_ifunc_cache *entry_p; | |
754 | void **slot; | |
755 | ||
9a3c8263 | 756 | htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); |
07be84bf JK |
757 | if (htab == NULL) |
758 | continue; | |
759 | ||
224c3ddb SM |
760 | entry_p = ((struct elf_gnu_ifunc_cache *) |
761 | alloca (sizeof (*entry_p) + strlen (name))); | |
07be84bf JK |
762 | strcpy (entry_p->name, name); |
763 | ||
764 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
765 | if (slot == NULL) | |
766 | continue; | |
9a3c8263 | 767 | entry_p = (struct elf_gnu_ifunc_cache *) *slot; |
07be84bf JK |
768 | gdb_assert (entry_p != NULL); |
769 | ||
770 | if (addr_p) | |
771 | *addr_p = entry_p->addr; | |
772 | return 1; | |
773 | } | |
774 | ||
775 | return 0; | |
776 | } | |
777 | ||
778 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
779 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
780 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
781 | ||
782 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
783 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
784 | prevent cache entries duplicates. */ | |
785 | ||
786 | static int | |
787 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
788 | { | |
789 | char *name_got_plt; | |
790 | struct objfile *objfile; | |
791 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
792 | ||
224c3ddb | 793 | name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1); |
07be84bf JK |
794 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); |
795 | ||
796 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
797 | { | |
798 | bfd *obfd = objfile->obfd; | |
df6d5441 | 799 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
07be84bf JK |
800 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
801 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
802 | CORE_ADDR pointer_address, addr; | |
803 | asection *plt; | |
224c3ddb | 804 | gdb_byte *buf = (gdb_byte *) alloca (ptr_size); |
3b7344d5 | 805 | struct bound_minimal_symbol msym; |
07be84bf JK |
806 | |
807 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
3b7344d5 | 808 | if (msym.minsym == NULL) |
07be84bf | 809 | continue; |
3b7344d5 | 810 | if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt) |
07be84bf | 811 | continue; |
77e371c0 | 812 | pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); |
07be84bf JK |
813 | |
814 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
815 | if (plt == NULL) | |
816 | continue; | |
817 | ||
3b7344d5 | 818 | if (MSYMBOL_SIZE (msym.minsym) != ptr_size) |
07be84bf JK |
819 | continue; |
820 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
821 | continue; | |
822 | addr = extract_typed_address (buf, ptr_type); | |
823 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
824 | ¤t_target); | |
4b7d1f7f | 825 | addr = gdbarch_addr_bits_remove (gdbarch, addr); |
07be84bf JK |
826 | |
827 | if (addr_p) | |
828 | *addr_p = addr; | |
829 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
830 | return 1; | |
831 | } | |
832 | ||
833 | return 0; | |
834 | } | |
835 | ||
836 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
837 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
838 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
839 | ||
840 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
841 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
842 | ||
843 | static int | |
844 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
845 | { | |
846 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
847 | return 1; | |
dea91a5c | 848 | |
07be84bf JK |
849 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) |
850 | return 1; | |
851 | ||
852 | return 0; | |
853 | } | |
854 | ||
855 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
856 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
857 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
858 | */ | |
859 | ||
860 | static CORE_ADDR | |
861 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
862 | { | |
2c02bd72 | 863 | const char *name_at_pc; |
07be84bf JK |
864 | CORE_ADDR start_at_pc, address; |
865 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
866 | struct value *function, *address_val; | |
e1b2624a AA |
867 | CORE_ADDR hwcap = 0; |
868 | struct value *hwcap_val; | |
07be84bf JK |
869 | |
870 | /* Try first any non-intrusive methods without an inferior call. */ | |
871 | ||
872 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
873 | && start_at_pc == pc) | |
874 | { | |
875 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
876 | return address; | |
877 | } | |
878 | else | |
879 | name_at_pc = NULL; | |
880 | ||
881 | function = allocate_value (func_func_type); | |
1a088441 | 882 | VALUE_LVAL (function) = lval_memory; |
07be84bf JK |
883 | set_value_address (function, pc); |
884 | ||
e1b2624a AA |
885 | /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as |
886 | parameter. FUNCTION is the function entry address. ADDRESS may be a | |
887 | function descriptor. */ | |
07be84bf | 888 | |
e1b2624a AA |
889 | target_auxv_search (¤t_target, AT_HWCAP, &hwcap); |
890 | hwcap_val = value_from_longest (builtin_type (gdbarch) | |
891 | ->builtin_unsigned_long, hwcap); | |
892 | address_val = call_function_by_hand (function, 1, &hwcap_val); | |
07be84bf JK |
893 | address = value_as_address (address_val); |
894 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
895 | ¤t_target); | |
4b7d1f7f | 896 | address = gdbarch_addr_bits_remove (gdbarch, address); |
07be84bf JK |
897 | |
898 | if (name_at_pc) | |
899 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
900 | ||
901 | return address; | |
902 | } | |
903 | ||
0e30163f JK |
904 | /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */ |
905 | ||
906 | static void | |
907 | elf_gnu_ifunc_resolver_stop (struct breakpoint *b) | |
908 | { | |
909 | struct breakpoint *b_return; | |
910 | struct frame_info *prev_frame = get_prev_frame (get_current_frame ()); | |
911 | struct frame_id prev_frame_id = get_stack_frame_id (prev_frame); | |
912 | CORE_ADDR prev_pc = get_frame_pc (prev_frame); | |
5d5658a1 | 913 | int thread_id = ptid_to_global_thread_id (inferior_ptid); |
0e30163f JK |
914 | |
915 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
916 | ||
917 | for (b_return = b->related_breakpoint; b_return != b; | |
918 | b_return = b_return->related_breakpoint) | |
919 | { | |
920 | gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return); | |
921 | gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL); | |
922 | gdb_assert (frame_id_p (b_return->frame_id)); | |
923 | ||
924 | if (b_return->thread == thread_id | |
925 | && b_return->loc->requested_address == prev_pc | |
926 | && frame_id_eq (b_return->frame_id, prev_frame_id)) | |
927 | break; | |
928 | } | |
929 | ||
930 | if (b_return == b) | |
931 | { | |
932 | struct symtab_and_line sal; | |
933 | ||
934 | /* No need to call find_pc_line for symbols resolving as this is only | |
935 | a helper breakpointer never shown to the user. */ | |
936 | ||
937 | init_sal (&sal); | |
938 | sal.pspace = current_inferior ()->pspace; | |
939 | sal.pc = prev_pc; | |
940 | sal.section = find_pc_overlay (sal.pc); | |
941 | sal.explicit_pc = 1; | |
942 | b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal, | |
943 | prev_frame_id, | |
944 | bp_gnu_ifunc_resolver_return); | |
945 | ||
c70a6932 JK |
946 | /* set_momentary_breakpoint invalidates PREV_FRAME. */ |
947 | prev_frame = NULL; | |
948 | ||
0e30163f JK |
949 | /* Add new b_return to the ring list b->related_breakpoint. */ |
950 | gdb_assert (b_return->related_breakpoint == b_return); | |
951 | b_return->related_breakpoint = b->related_breakpoint; | |
952 | b->related_breakpoint = b_return; | |
953 | } | |
954 | } | |
955 | ||
956 | /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */ | |
957 | ||
958 | static void | |
959 | elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b) | |
960 | { | |
961 | struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); | |
962 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
963 | struct type *value_type = TYPE_TARGET_TYPE (func_func_type); | |
964 | struct regcache *regcache = get_thread_regcache (inferior_ptid); | |
6a3a010b | 965 | struct value *func_func; |
0e30163f JK |
966 | struct value *value; |
967 | CORE_ADDR resolved_address, resolved_pc; | |
968 | struct symtab_and_line sal; | |
f1310107 | 969 | struct symtabs_and_lines sals, sals_end; |
0e30163f JK |
970 | |
971 | gdb_assert (b->type == bp_gnu_ifunc_resolver_return); | |
972 | ||
0e30163f JK |
973 | while (b->related_breakpoint != b) |
974 | { | |
975 | struct breakpoint *b_next = b->related_breakpoint; | |
976 | ||
977 | switch (b->type) | |
978 | { | |
979 | case bp_gnu_ifunc_resolver: | |
980 | break; | |
981 | case bp_gnu_ifunc_resolver_return: | |
982 | delete_breakpoint (b); | |
983 | break; | |
984 | default: | |
985 | internal_error (__FILE__, __LINE__, | |
986 | _("handle_inferior_event: Invalid " | |
987 | "gnu-indirect-function breakpoint type %d"), | |
988 | (int) b->type); | |
989 | } | |
990 | b = b_next; | |
991 | } | |
992 | gdb_assert (b->type == bp_gnu_ifunc_resolver); | |
6a3a010b MR |
993 | gdb_assert (b->loc->next == NULL); |
994 | ||
995 | func_func = allocate_value (func_func_type); | |
1a088441 | 996 | VALUE_LVAL (func_func) = lval_memory; |
6a3a010b MR |
997 | set_value_address (func_func, b->loc->related_address); |
998 | ||
999 | value = allocate_value (value_type); | |
1000 | gdbarch_return_value (gdbarch, func_func, value_type, regcache, | |
1001 | value_contents_raw (value), NULL); | |
1002 | resolved_address = value_as_address (value); | |
1003 | resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1004 | resolved_address, | |
1005 | ¤t_target); | |
4b7d1f7f | 1006 | resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc); |
0e30163f | 1007 | |
f8eba3c6 | 1008 | gdb_assert (current_program_space == b->pspace || b->pspace == NULL); |
f00aae0f KS |
1009 | elf_gnu_ifunc_record_cache (event_location_to_string (b->location), |
1010 | resolved_pc); | |
0e30163f JK |
1011 | |
1012 | sal = find_pc_line (resolved_pc, 0); | |
1013 | sals.nelts = 1; | |
1014 | sals.sals = &sal; | |
f1310107 | 1015 | sals_end.nelts = 0; |
0e30163f JK |
1016 | |
1017 | b->type = bp_breakpoint; | |
c2f4122d | 1018 | update_breakpoint_locations (b, current_program_space, sals, sals_end); |
0e30163f JK |
1019 | } |
1020 | ||
2750ef27 TT |
1021 | /* A helper function for elf_symfile_read that reads the minimal |
1022 | symbols. */ | |
c906108c SS |
1023 | |
1024 | static void | |
5f6cac40 TT |
1025 | elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags, |
1026 | const struct elfinfo *ei) | |
c906108c | 1027 | { |
63524580 | 1028 | bfd *synth_abfd, *abfd = objfile->obfd; |
62553543 EZ |
1029 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1030 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1031 | asymbol *synthsyms; | |
d2f4b8fe | 1032 | struct dbx_symfile_info *dbx; |
c906108c | 1033 | |
45cfd468 DE |
1034 | if (symtab_create_debug) |
1035 | { | |
1036 | fprintf_unfiltered (gdb_stdlog, | |
1037 | "Reading minimal symbols of objfile %s ...\n", | |
4262abfb | 1038 | objfile_name (objfile)); |
45cfd468 DE |
1039 | } |
1040 | ||
5f6cac40 TT |
1041 | /* If we already have minsyms, then we can skip some work here. |
1042 | However, if there were stabs or mdebug sections, we go ahead and | |
1043 | redo all the work anyway, because the psym readers for those | |
1044 | kinds of debuginfo need extra information found here. This can | |
1045 | go away once all types of symbols are in the per-BFD object. */ | |
1046 | if (objfile->per_bfd->minsyms_read | |
1047 | && ei->stabsect == NULL | |
1048 | && ei->mdebugsect == NULL) | |
1049 | { | |
1050 | if (symtab_create_debug) | |
1051 | fprintf_unfiltered (gdb_stdlog, | |
1052 | "... minimal symbols previously read\n"); | |
1053 | return; | |
1054 | } | |
1055 | ||
d25e8719 | 1056 | minimal_symbol_reader reader (objfile); |
c906108c | 1057 | |
0963b4bd | 1058 | /* Allocate struct to keep track of the symfile. */ |
d2f4b8fe TT |
1059 | dbx = XCNEW (struct dbx_symfile_info); |
1060 | set_objfile_data (objfile, dbx_objfile_data_key, dbx); | |
c906108c | 1061 | |
18a94d75 | 1062 | /* Process the normal ELF symbol table first. */ |
c906108c | 1063 | |
62553543 EZ |
1064 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1065 | if (storage_needed < 0) | |
3e43a32a MS |
1066 | error (_("Can't read symbols from %s: %s"), |
1067 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1068 | bfd_errmsg (bfd_get_error ())); |
1069 | ||
1070 | if (storage_needed > 0) | |
1071 | { | |
80c57053 JK |
1072 | /* Memory gets permanently referenced from ABFD after |
1073 | bfd_canonicalize_symtab so it must not get freed before ABFD gets. */ | |
1074 | ||
224c3ddb | 1075 | symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); |
62553543 EZ |
1076 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); |
1077 | ||
1078 | if (symcount < 0) | |
3e43a32a MS |
1079 | error (_("Can't read symbols from %s: %s"), |
1080 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1081 | bfd_errmsg (bfd_get_error ())); |
1082 | ||
ce6c454e TT |
1083 | elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table, |
1084 | false); | |
62553543 | 1085 | } |
c906108c SS |
1086 | |
1087 | /* Add the dynamic symbols. */ | |
1088 | ||
62553543 EZ |
1089 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1090 | ||
1091 | if (storage_needed > 0) | |
1092 | { | |
3f1eff0a JK |
1093 | /* Memory gets permanently referenced from ABFD after |
1094 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1095 | It happens only in the case when elf_slurp_reloc_table sees | |
1096 | asection->relocation NULL. Determining which section is asection is | |
1097 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1098 | implementation detail, though. */ | |
1099 | ||
224c3ddb | 1100 | dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed); |
62553543 EZ |
1101 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1102 | dyn_symbol_table); | |
1103 | ||
1104 | if (dynsymcount < 0) | |
3e43a32a MS |
1105 | error (_("Can't read symbols from %s: %s"), |
1106 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1107 | bfd_errmsg (bfd_get_error ())); |
1108 | ||
8dddcb8f | 1109 | elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount, |
ce6c454e | 1110 | dyn_symbol_table, false); |
07be84bf | 1111 | |
8dddcb8f | 1112 | elf_rel_plt_read (reader, objfile, dyn_symbol_table); |
62553543 EZ |
1113 | } |
1114 | ||
63524580 JK |
1115 | /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from |
1116 | elfutils (eu-strip) moves even the .symtab section into the .debug file. | |
1117 | ||
1118 | bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol | |
1119 | 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code | |
1120 | address. But with eu-strip files bfd_get_synthetic_symtab would fail to | |
1121 | read the code address from .opd while it reads the .symtab section from | |
1122 | a separate debug info file as the .opd section is SHT_NOBITS there. | |
1123 | ||
1124 | With SYNTH_ABFD the .opd section will be read from the original | |
1125 | backlinked binary where it is valid. */ | |
1126 | ||
1127 | if (objfile->separate_debug_objfile_backlink) | |
1128 | synth_abfd = objfile->separate_debug_objfile_backlink->obfd; | |
1129 | else | |
1130 | synth_abfd = abfd; | |
1131 | ||
62553543 EZ |
1132 | /* Add synthetic symbols - for instance, names for any PLT entries. */ |
1133 | ||
63524580 | 1134 | synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table, |
62553543 EZ |
1135 | dynsymcount, dyn_symbol_table, |
1136 | &synthsyms); | |
1137 | if (synthcount > 0) | |
1138 | { | |
62553543 EZ |
1139 | long i; |
1140 | ||
b22e99fd | 1141 | std::unique_ptr<asymbol *[]> |
d1e4a624 | 1142 | synth_symbol_table (new asymbol *[synthcount]); |
62553543 | 1143 | for (i = 0; i < synthcount; i++) |
9f20e3da | 1144 | synth_symbol_table[i] = synthsyms + i; |
8dddcb8f | 1145 | elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount, |
ce6c454e | 1146 | synth_symbol_table.get (), true); |
62553543 | 1147 | } |
c906108c | 1148 | |
7134143f DJ |
1149 | /* Install any minimal symbols that have been collected as the current |
1150 | minimal symbols for this objfile. The debug readers below this point | |
1151 | should not generate new minimal symbols; if they do it's their | |
1152 | responsibility to install them. "mdebug" appears to be the only one | |
1153 | which will do this. */ | |
1154 | ||
d25e8719 | 1155 | reader.install (); |
7134143f | 1156 | |
4f00dda3 DE |
1157 | if (symtab_create_debug) |
1158 | fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n"); | |
2750ef27 TT |
1159 | } |
1160 | ||
1161 | /* Scan and build partial symbols for a symbol file. | |
1162 | We have been initialized by a call to elf_symfile_init, which | |
1163 | currently does nothing. | |
1164 | ||
2750ef27 TT |
1165 | This function only does the minimum work necessary for letting the |
1166 | user "name" things symbolically; it does not read the entire symtab. | |
1167 | Instead, it reads the external and static symbols and puts them in partial | |
1168 | symbol tables. When more extensive information is requested of a | |
1169 | file, the corresponding partial symbol table is mutated into a full | |
1170 | fledged symbol table by going back and reading the symbols | |
1171 | for real. | |
1172 | ||
1173 | We look for sections with specific names, to tell us what debug | |
1174 | format to look for: FIXME!!! | |
1175 | ||
1176 | elfstab_build_psymtabs() handles STABS symbols; | |
1177 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1178 | ||
1179 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1180 | like a COFF symbol table, but has only the minimal information necessary | |
1181 | for linking. We process this also, and use the information to | |
1182 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1183 | capability even for files compiled without -g. */ | |
1184 | ||
1185 | static void | |
b15cc25c | 1186 | elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags) |
2750ef27 TT |
1187 | { |
1188 | bfd *abfd = objfile->obfd; | |
1189 | struct elfinfo ei; | |
1190 | ||
2750ef27 | 1191 | memset ((char *) &ei, 0, sizeof (ei)); |
12b9c64f | 1192 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c | 1193 | |
5f6cac40 TT |
1194 | elf_read_minimal_symbols (objfile, symfile_flags, &ei); |
1195 | ||
c906108c SS |
1196 | /* ELF debugging information is inserted into the psymtab in the |
1197 | order of least informative first - most informative last. Since | |
1198 | the psymtab table is searched `most recent insertion first' this | |
1199 | increases the probability that more detailed debug information | |
1200 | for a section is found. | |
1201 | ||
1202 | For instance, an object file might contain both .mdebug (XCOFF) | |
1203 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1204 | (searched last) and DWARF2 is inserted last (searched first). If | |
1205 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1206 | an included file XCOFF info is useless. */ |
c906108c SS |
1207 | |
1208 | if (ei.mdebugsect) | |
1209 | { | |
1210 | const struct ecoff_debug_swap *swap; | |
1211 | ||
1212 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1213 | information. */ |
c906108c SS |
1214 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1215 | if (swap) | |
d4f3574e | 1216 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1217 | } |
1218 | if (ei.stabsect) | |
1219 | { | |
1220 | asection *str_sect; | |
1221 | ||
1222 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1223 | a separate section. */ |
c906108c SS |
1224 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1225 | ||
1226 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1227 | if (str_sect) | |
1228 | elfstab_build_psymtabs (objfile, | |
086df311 | 1229 | ei.stabsect, |
c906108c SS |
1230 | str_sect->filepos, |
1231 | bfd_section_size (abfd, str_sect)); | |
1232 | } | |
9291a0cd | 1233 | |
251d32d9 | 1234 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 | 1235 | { |
3e03848b JK |
1236 | /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug |
1237 | information present in OBJFILE. If there is such debug info present | |
1238 | never use .gdb_index. */ | |
1239 | ||
1240 | if (!objfile_has_partial_symbols (objfile) | |
1241 | && dwarf2_initialize_objfile (objfile)) | |
8fb8eb5c | 1242 | objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index); |
b11896a5 TT |
1243 | else |
1244 | { | |
1245 | /* It is ok to do this even if the stabs reader made some | |
1246 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1247 | set, and so our lazy reader function will still be called | |
1248 | when needed. */ | |
8fb8eb5c | 1249 | objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms); |
b11896a5 TT |
1250 | } |
1251 | } | |
3e43a32a MS |
1252 | /* If the file has its own symbol tables it has no separate debug |
1253 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1254 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
8a92335b JK |
1255 | `.note.gnu.build-id'. |
1256 | ||
1257 | .gnu_debugdata is !objfile_has_partial_symbols because it contains only | |
1258 | .symtab, not .debug_* section. But if we already added .gnu_debugdata as | |
1259 | an objfile via find_separate_debug_file_in_section there was no separate | |
1260 | debug info available. Therefore do not attempt to search for another one, | |
1261 | objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to | |
1262 | be NULL and we would possibly violate it. */ | |
1263 | ||
1264 | else if (!objfile_has_partial_symbols (objfile) | |
1265 | && objfile->separate_debug_objfile == NULL | |
1266 | && objfile->separate_debug_objfile_backlink == NULL) | |
9cce227f TG |
1267 | { |
1268 | char *debugfile; | |
1269 | ||
1270 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1271 | ||
1272 | if (debugfile == NULL) | |
1273 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1274 | ||
1275 | if (debugfile) | |
1276 | { | |
8ac244b4 | 1277 | struct cleanup *cleanup = make_cleanup (xfree, debugfile); |
9cce227f | 1278 | bfd *abfd = symfile_bfd_open (debugfile); |
d7f9d729 | 1279 | |
8ac244b4 | 1280 | make_cleanup_bfd_unref (abfd); |
24ba069a | 1281 | symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile); |
8ac244b4 | 1282 | do_cleanups (cleanup); |
9cce227f TG |
1283 | } |
1284 | } | |
c906108c SS |
1285 | } |
1286 | ||
b11896a5 TT |
1287 | /* Callback to lazily read psymtabs. */ |
1288 | ||
1289 | static void | |
1290 | read_psyms (struct objfile *objfile) | |
1291 | { | |
251d32d9 | 1292 | if (dwarf2_has_info (objfile, NULL)) |
b11896a5 TT |
1293 | dwarf2_build_psymtabs (objfile); |
1294 | } | |
1295 | ||
c906108c SS |
1296 | /* Initialize anything that needs initializing when a completely new symbol |
1297 | file is specified (not just adding some symbols from another file, e.g. a | |
1298 | shared library). | |
1299 | ||
3e43a32a MS |
1300 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1301 | file. */ | |
c906108c SS |
1302 | |
1303 | static void | |
fba45db2 | 1304 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1305 | { |
1306 | stabsread_new_init (); | |
1307 | buildsym_new_init (); | |
1308 | } | |
1309 | ||
1310 | /* Perform any local cleanups required when we are done with a particular | |
1311 | objfile. I.E, we are in the process of discarding all symbol information | |
1312 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1313 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1314 | |
1315 | static void | |
fba45db2 | 1316 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1317 | { |
fe3e1990 | 1318 | dwarf2_free_objfile (objfile); |
c906108c SS |
1319 | } |
1320 | ||
db7a9bcd | 1321 | /* ELF specific initialization routine for reading symbols. */ |
c906108c SS |
1322 | |
1323 | static void | |
fba45db2 | 1324 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1325 | { |
1326 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1327 | find this causes a significant slowdown in gdb then we could | |
1328 | set it in the debug symbol readers only when necessary. */ | |
1329 | objfile->flags |= OBJF_REORDERED; | |
1330 | } | |
1331 | ||
55aa24fb SDJ |
1332 | /* Implementation of `sym_get_probes', as documented in symfile.h. */ |
1333 | ||
1334 | static VEC (probe_p) * | |
1335 | elf_get_probes (struct objfile *objfile) | |
1336 | { | |
5d9cf8a4 | 1337 | VEC (probe_p) *probes_per_bfd; |
55aa24fb SDJ |
1338 | |
1339 | /* Have we parsed this objfile's probes already? */ | |
9a3c8263 | 1340 | probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key); |
55aa24fb | 1341 | |
5d9cf8a4 | 1342 | if (!probes_per_bfd) |
55aa24fb SDJ |
1343 | { |
1344 | int ix; | |
1345 | const struct probe_ops *probe_ops; | |
1346 | ||
1347 | /* Here we try to gather information about all types of probes from the | |
1348 | objfile. */ | |
1349 | for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops); | |
1350 | ix++) | |
5d9cf8a4 | 1351 | probe_ops->get_probes (&probes_per_bfd, objfile); |
55aa24fb | 1352 | |
5d9cf8a4 | 1353 | if (probes_per_bfd == NULL) |
55aa24fb | 1354 | { |
5d9cf8a4 TT |
1355 | VEC_reserve (probe_p, probes_per_bfd, 1); |
1356 | gdb_assert (probes_per_bfd != NULL); | |
55aa24fb SDJ |
1357 | } |
1358 | ||
5d9cf8a4 | 1359 | set_bfd_data (objfile->obfd, probe_key, probes_per_bfd); |
55aa24fb SDJ |
1360 | } |
1361 | ||
5d9cf8a4 | 1362 | return probes_per_bfd; |
55aa24fb SDJ |
1363 | } |
1364 | ||
55aa24fb SDJ |
1365 | /* Helper function used to free the space allocated for storing SystemTap |
1366 | probe information. */ | |
1367 | ||
1368 | static void | |
5d9cf8a4 | 1369 | probe_key_free (bfd *abfd, void *d) |
55aa24fb SDJ |
1370 | { |
1371 | int ix; | |
9a3c8263 | 1372 | VEC (probe_p) *probes = (VEC (probe_p) *) d; |
55aa24fb SDJ |
1373 | struct probe *probe; |
1374 | ||
1375 | for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++) | |
1376 | probe->pops->destroy (probe); | |
1377 | ||
1378 | VEC_free (probe_p, probes); | |
1379 | } | |
1380 | ||
c906108c | 1381 | \f |
55aa24fb SDJ |
1382 | |
1383 | /* Implementation `sym_probe_fns', as documented in symfile.h. */ | |
1384 | ||
1385 | static const struct sym_probe_fns elf_probe_fns = | |
1386 | { | |
25f9533e | 1387 | elf_get_probes, /* sym_get_probes */ |
55aa24fb SDJ |
1388 | }; |
1389 | ||
c906108c SS |
1390 | /* Register that we are able to handle ELF object file formats. */ |
1391 | ||
00b5771c | 1392 | static const struct sym_fns elf_sym_fns = |
c906108c | 1393 | { |
3e43a32a MS |
1394 | elf_new_init, /* init anything gbl to entire symtab */ |
1395 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1396 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1397 | NULL, /* sym_read_psymbols */ |
1398 | elf_symfile_finish, /* finished with file, cleanup */ | |
1399 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1400 | elf_symfile_segments, /* Get segment information from a file. */ | |
1401 | NULL, | |
1402 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1403 | &elf_probe_fns, /* sym_probe_fns */ |
b11896a5 TT |
1404 | &psym_functions |
1405 | }; | |
1406 | ||
1407 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1408 | psymbols. */ | |
1409 | ||
e36122e9 | 1410 | const struct sym_fns elf_sym_fns_lazy_psyms = |
b11896a5 | 1411 | { |
b11896a5 TT |
1412 | elf_new_init, /* init anything gbl to entire symtab */ |
1413 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1414 | elf_symfile_read, /* read a symbol file into symtab */ | |
1415 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1416 | elf_symfile_finish, /* finished with file, cleanup */ |
1417 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1418 | elf_symfile_segments, /* Get segment information from a file. */ | |
1419 | NULL, | |
1420 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1421 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1422 | &psym_functions |
c906108c SS |
1423 | }; |
1424 | ||
9291a0cd TT |
1425 | /* The same as elf_sym_fns, but not registered and uses the |
1426 | DWARF-specific GNU index rather than psymtab. */ | |
e36122e9 | 1427 | const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd | 1428 | { |
3e43a32a MS |
1429 | elf_new_init, /* init anything gbl to entire symab */ |
1430 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1431 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1432 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1433 | elf_symfile_finish, /* finished with file, cleanup */ |
1434 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1435 | elf_symfile_segments, /* Get segment information from a file. */ | |
1436 | NULL, | |
1437 | default_symfile_relocate, /* Relocate a debug section. */ | |
55aa24fb | 1438 | &elf_probe_fns, /* sym_probe_fns */ |
00b5771c | 1439 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1440 | }; |
1441 | ||
07be84bf JK |
1442 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1443 | ||
1444 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1445 | { | |
1446 | elf_gnu_ifunc_resolve_addr, | |
1447 | elf_gnu_ifunc_resolve_name, | |
0e30163f JK |
1448 | elf_gnu_ifunc_resolver_stop, |
1449 | elf_gnu_ifunc_resolver_return_stop | |
07be84bf JK |
1450 | }; |
1451 | ||
c906108c | 1452 | void |
fba45db2 | 1453 | _initialize_elfread (void) |
c906108c | 1454 | { |
5d9cf8a4 | 1455 | probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free); |
c256e171 | 1456 | add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns); |
07be84bf JK |
1457 | |
1458 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1459 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1460 | } |