]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Read ELF (Executable and Linking Format) object files for GDB. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, |
7b6bb8da | 4 | 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 |
9b254dd1 | 5 | Free Software Foundation, Inc. |
1bac305b | 6 | |
c906108c SS |
7 | Written by Fred Fish at Cygnus Support. |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 13 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 14 | (at your option) any later version. |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b | 21 | You should have received a copy of the GNU General Public License |
a9762ec7 | 22 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "bfd.h" | |
26 | #include "gdb_string.h" | |
27 | #include "elf-bfd.h" | |
31d99776 DJ |
28 | #include "elf/common.h" |
29 | #include "elf/internal.h" | |
c906108c SS |
30 | #include "elf/mips.h" |
31 | #include "symtab.h" | |
32 | #include "symfile.h" | |
33 | #include "objfiles.h" | |
34 | #include "buildsym.h" | |
35 | #include "stabsread.h" | |
36 | #include "gdb-stabs.h" | |
37 | #include "complaints.h" | |
38 | #include "demangle.h" | |
ccefe4c4 | 39 | #include "psympriv.h" |
0ba1096a | 40 | #include "filenames.h" |
07be84bf JK |
41 | #include "gdbtypes.h" |
42 | #include "value.h" | |
43 | #include "infcall.h" | |
c906108c | 44 | |
a14ed312 | 45 | extern void _initialize_elfread (void); |
392a587b | 46 | |
b11896a5 | 47 | /* Forward declarations. */ |
00b5771c | 48 | static const struct sym_fns elf_sym_fns_gdb_index; |
b11896a5 | 49 | static const struct sym_fns elf_sym_fns_lazy_psyms; |
9291a0cd | 50 | |
c906108c | 51 | /* The struct elfinfo is available only during ELF symbol table and |
6426a772 | 52 | psymtab reading. It is destroyed at the completion of psymtab-reading. |
c906108c SS |
53 | It's local to elf_symfile_read. */ |
54 | ||
c5aa993b JM |
55 | struct elfinfo |
56 | { | |
c5aa993b JM |
57 | asection *stabsect; /* Section pointer for .stab section */ |
58 | asection *stabindexsect; /* Section pointer for .stab.index section */ | |
59 | asection *mdebugsect; /* Section pointer for .mdebug section */ | |
60 | }; | |
c906108c | 61 | |
12b9c64f | 62 | static void free_elfinfo (void *); |
c906108c | 63 | |
07be84bf JK |
64 | /* Minimal symbols located at the GOT entries for .plt - that is the real |
65 | pointer where the given entry will jump to. It gets updated by the real | |
66 | function address during lazy ld.so resolving in the inferior. These | |
67 | minimal symbols are indexed for <tab>-completion. */ | |
68 | ||
69 | #define SYMBOL_GOT_PLT_SUFFIX "@got.plt" | |
70 | ||
31d99776 DJ |
71 | /* Locate the segments in ABFD. */ |
72 | ||
73 | static struct symfile_segment_data * | |
74 | elf_symfile_segments (bfd *abfd) | |
75 | { | |
76 | Elf_Internal_Phdr *phdrs, **segments; | |
77 | long phdrs_size; | |
78 | int num_phdrs, num_segments, num_sections, i; | |
79 | asection *sect; | |
80 | struct symfile_segment_data *data; | |
81 | ||
82 | phdrs_size = bfd_get_elf_phdr_upper_bound (abfd); | |
83 | if (phdrs_size == -1) | |
84 | return NULL; | |
85 | ||
86 | phdrs = alloca (phdrs_size); | |
87 | num_phdrs = bfd_get_elf_phdrs (abfd, phdrs); | |
88 | if (num_phdrs == -1) | |
89 | return NULL; | |
90 | ||
91 | num_segments = 0; | |
92 | segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs); | |
93 | for (i = 0; i < num_phdrs; i++) | |
94 | if (phdrs[i].p_type == PT_LOAD) | |
95 | segments[num_segments++] = &phdrs[i]; | |
96 | ||
97 | if (num_segments == 0) | |
98 | return NULL; | |
99 | ||
100 | data = XZALLOC (struct symfile_segment_data); | |
101 | data->num_segments = num_segments; | |
102 | data->segment_bases = XCALLOC (num_segments, CORE_ADDR); | |
103 | data->segment_sizes = XCALLOC (num_segments, CORE_ADDR); | |
104 | ||
105 | for (i = 0; i < num_segments; i++) | |
106 | { | |
107 | data->segment_bases[i] = segments[i]->p_vaddr; | |
108 | data->segment_sizes[i] = segments[i]->p_memsz; | |
109 | } | |
110 | ||
111 | num_sections = bfd_count_sections (abfd); | |
112 | data->segment_info = XCALLOC (num_sections, int); | |
113 | ||
114 | for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) | |
115 | { | |
116 | int j; | |
117 | CORE_ADDR vma; | |
118 | ||
119 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
120 | continue; | |
121 | ||
122 | vma = bfd_get_section_vma (abfd, sect); | |
123 | ||
124 | for (j = 0; j < num_segments; j++) | |
125 | if (segments[j]->p_memsz > 0 | |
126 | && vma >= segments[j]->p_vaddr | |
a366c65a | 127 | && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz) |
31d99776 DJ |
128 | { |
129 | data->segment_info[i] = j + 1; | |
130 | break; | |
131 | } | |
132 | ||
ad09a548 DJ |
133 | /* We should have found a segment for every non-empty section. |
134 | If we haven't, we will not relocate this section by any | |
135 | offsets we apply to the segments. As an exception, do not | |
136 | warn about SHT_NOBITS sections; in normal ELF execution | |
137 | environments, SHT_NOBITS means zero-initialized and belongs | |
138 | in a segment, but in no-OS environments some tools (e.g. ARM | |
139 | RealView) use SHT_NOBITS for uninitialized data. Since it is | |
140 | uninitialized, it doesn't need a program header. Such | |
141 | binaries are not relocatable. */ | |
142 | if (bfd_get_section_size (sect) > 0 && j == num_segments | |
143 | && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0) | |
31d99776 DJ |
144 | warning (_("Loadable segment \"%s\" outside of ELF segments"), |
145 | bfd_section_name (abfd, sect)); | |
146 | } | |
147 | ||
148 | return data; | |
149 | } | |
150 | ||
c906108c SS |
151 | /* We are called once per section from elf_symfile_read. We |
152 | need to examine each section we are passed, check to see | |
153 | if it is something we are interested in processing, and | |
154 | if so, stash away some access information for the section. | |
155 | ||
156 | For now we recognize the dwarf debug information sections and | |
157 | line number sections from matching their section names. The | |
158 | ELF definition is no real help here since it has no direct | |
159 | knowledge of DWARF (by design, so any debugging format can be | |
160 | used). | |
161 | ||
162 | We also recognize the ".stab" sections used by the Sun compilers | |
163 | released with Solaris 2. | |
164 | ||
165 | FIXME: The section names should not be hardwired strings (what | |
166 | should they be? I don't think most object file formats have enough | |
0963b4bd | 167 | section flags to specify what kind of debug section it is. |
c906108c SS |
168 | -kingdon). */ |
169 | ||
170 | static void | |
12b9c64f | 171 | elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip) |
c906108c | 172 | { |
52f0bd74 | 173 | struct elfinfo *ei; |
c906108c SS |
174 | |
175 | ei = (struct elfinfo *) eip; | |
7ce59000 | 176 | if (strcmp (sectp->name, ".stab") == 0) |
c906108c | 177 | { |
c5aa993b | 178 | ei->stabsect = sectp; |
c906108c | 179 | } |
6314a349 | 180 | else if (strcmp (sectp->name, ".stab.index") == 0) |
c906108c | 181 | { |
c5aa993b | 182 | ei->stabindexsect = sectp; |
c906108c | 183 | } |
6314a349 | 184 | else if (strcmp (sectp->name, ".mdebug") == 0) |
c906108c | 185 | { |
c5aa993b | 186 | ei->mdebugsect = sectp; |
c906108c SS |
187 | } |
188 | } | |
189 | ||
c906108c | 190 | static struct minimal_symbol * |
04a679b8 TT |
191 | record_minimal_symbol (const char *name, int name_len, int copy_name, |
192 | CORE_ADDR address, | |
f594e5e9 MC |
193 | enum minimal_symbol_type ms_type, |
194 | asection *bfd_section, struct objfile *objfile) | |
c906108c | 195 | { |
5e2b427d UW |
196 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
197 | ||
0875794a JK |
198 | if (ms_type == mst_text || ms_type == mst_file_text |
199 | || ms_type == mst_text_gnu_ifunc) | |
5e2b427d | 200 | address = gdbarch_smash_text_address (gdbarch, address); |
c906108c | 201 | |
04a679b8 TT |
202 | return prim_record_minimal_symbol_full (name, name_len, copy_name, address, |
203 | ms_type, bfd_section->index, | |
204 | bfd_section, objfile); | |
c906108c SS |
205 | } |
206 | ||
207 | /* | |
208 | ||
c5aa993b | 209 | LOCAL FUNCTION |
c906108c | 210 | |
c5aa993b | 211 | elf_symtab_read -- read the symbol table of an ELF file |
c906108c | 212 | |
c5aa993b | 213 | SYNOPSIS |
c906108c | 214 | |
6f610d07 | 215 | void elf_symtab_read (struct objfile *objfile, int type, |
62553543 | 216 | long number_of_symbols, asymbol **symbol_table) |
c906108c | 217 | |
c5aa993b | 218 | DESCRIPTION |
c906108c | 219 | |
62553543 | 220 | Given an objfile, a symbol table, and a flag indicating whether the |
6f610d07 UW |
221 | symbol table contains regular, dynamic, or synthetic symbols, add all |
222 | the global function and data symbols to the minimal symbol table. | |
c906108c | 223 | |
c5aa993b JM |
224 | In stabs-in-ELF, as implemented by Sun, there are some local symbols |
225 | defined in the ELF symbol table, which can be used to locate | |
226 | the beginnings of sections from each ".o" file that was linked to | |
227 | form the executable objfile. We gather any such info and record it | |
228 | in data structures hung off the objfile's private data. | |
c906108c | 229 | |
c5aa993b | 230 | */ |
c906108c | 231 | |
6f610d07 UW |
232 | #define ST_REGULAR 0 |
233 | #define ST_DYNAMIC 1 | |
234 | #define ST_SYNTHETIC 2 | |
235 | ||
c906108c | 236 | static void |
6f610d07 | 237 | elf_symtab_read (struct objfile *objfile, int type, |
04a679b8 TT |
238 | long number_of_symbols, asymbol **symbol_table, |
239 | int copy_names) | |
c906108c | 240 | { |
5e2b427d | 241 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c | 242 | asymbol *sym; |
c906108c | 243 | long i; |
c906108c | 244 | CORE_ADDR symaddr; |
d4f3574e | 245 | CORE_ADDR offset; |
c906108c SS |
246 | enum minimal_symbol_type ms_type; |
247 | /* If sectinfo is nonNULL, it contains section info that should end up | |
248 | filed in the objfile. */ | |
249 | struct stab_section_info *sectinfo = NULL; | |
250 | /* If filesym is nonzero, it points to a file symbol, but we haven't | |
251 | seen any section info for it yet. */ | |
252 | asymbol *filesym = 0; | |
1c9e8358 TT |
253 | /* Name of filesym. This is either a constant string or is saved on |
254 | the objfile's obstack. */ | |
255 | char *filesymname = ""; | |
0a6ddd08 | 256 | struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
d4f3574e | 257 | int stripped = (bfd_get_symcount (objfile->obfd) == 0); |
69feea6f | 258 | struct cleanup *back_to = make_cleanup (null_cleanup, NULL); |
c5aa993b | 259 | |
0cc7b392 | 260 | for (i = 0; i < number_of_symbols; i++) |
c906108c | 261 | { |
0cc7b392 DJ |
262 | sym = symbol_table[i]; |
263 | if (sym->name == NULL || *sym->name == '\0') | |
c906108c | 264 | { |
0cc7b392 | 265 | /* Skip names that don't exist (shouldn't happen), or names |
0963b4bd | 266 | that are null strings (may happen). */ |
0cc7b392 DJ |
267 | continue; |
268 | } | |
c906108c | 269 | |
74763737 DJ |
270 | /* Skip "special" symbols, e.g. ARM mapping symbols. These are |
271 | symbols which do not correspond to objects in the symbol table, | |
272 | but have some other target-specific meaning. */ | |
273 | if (bfd_is_target_special_symbol (objfile->obfd, sym)) | |
60c5725c DJ |
274 | { |
275 | if (gdbarch_record_special_symbol_p (gdbarch)) | |
276 | gdbarch_record_special_symbol (gdbarch, objfile, sym); | |
277 | continue; | |
278 | } | |
74763737 | 279 | |
0cc7b392 | 280 | offset = ANOFFSET (objfile->section_offsets, sym->section->index); |
6f610d07 | 281 | if (type == ST_DYNAMIC |
0cc7b392 DJ |
282 | && sym->section == &bfd_und_section |
283 | && (sym->flags & BSF_FUNCTION)) | |
284 | { | |
285 | struct minimal_symbol *msym; | |
02c75f72 UW |
286 | bfd *abfd = objfile->obfd; |
287 | asection *sect; | |
0cc7b392 DJ |
288 | |
289 | /* Symbol is a reference to a function defined in | |
290 | a shared library. | |
291 | If its value is non zero then it is usually the address | |
292 | of the corresponding entry in the procedure linkage table, | |
293 | plus the desired section offset. | |
294 | If its value is zero then the dynamic linker has to resolve | |
0963b4bd | 295 | the symbol. We are unable to find any meaningful address |
0cc7b392 DJ |
296 | for this symbol in the executable file, so we skip it. */ |
297 | symaddr = sym->value; | |
298 | if (symaddr == 0) | |
299 | continue; | |
02c75f72 UW |
300 | |
301 | /* sym->section is the undefined section. However, we want to | |
302 | record the section where the PLT stub resides with the | |
303 | minimal symbol. Search the section table for the one that | |
304 | covers the stub's address. */ | |
305 | for (sect = abfd->sections; sect != NULL; sect = sect->next) | |
306 | { | |
307 | if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) | |
308 | continue; | |
309 | ||
310 | if (symaddr >= bfd_get_section_vma (abfd, sect) | |
311 | && symaddr < bfd_get_section_vma (abfd, sect) | |
312 | + bfd_get_section_size (sect)) | |
313 | break; | |
314 | } | |
315 | if (!sect) | |
316 | continue; | |
317 | ||
318 | symaddr += ANOFFSET (objfile->section_offsets, sect->index); | |
319 | ||
0cc7b392 | 320 | msym = record_minimal_symbol |
04a679b8 TT |
321 | (sym->name, strlen (sym->name), copy_names, |
322 | symaddr, mst_solib_trampoline, sect, objfile); | |
0cc7b392 DJ |
323 | if (msym != NULL) |
324 | msym->filename = filesymname; | |
0cc7b392 DJ |
325 | continue; |
326 | } | |
c906108c | 327 | |
0cc7b392 DJ |
328 | /* If it is a nonstripped executable, do not enter dynamic |
329 | symbols, as the dynamic symbol table is usually a subset | |
330 | of the main symbol table. */ | |
6f610d07 | 331 | if (type == ST_DYNAMIC && !stripped) |
0cc7b392 DJ |
332 | continue; |
333 | if (sym->flags & BSF_FILE) | |
334 | { | |
335 | /* STT_FILE debugging symbol that helps stabs-in-elf debugging. | |
336 | Chain any old one onto the objfile; remember new sym. */ | |
337 | if (sectinfo != NULL) | |
c906108c | 338 | { |
0cc7b392 DJ |
339 | sectinfo->next = dbx->stab_section_info; |
340 | dbx->stab_section_info = sectinfo; | |
341 | sectinfo = NULL; | |
342 | } | |
343 | filesym = sym; | |
0cc7b392 DJ |
344 | filesymname = |
345 | obsavestring ((char *) filesym->name, strlen (filesym->name), | |
346 | &objfile->objfile_obstack); | |
0cc7b392 DJ |
347 | } |
348 | else if (sym->flags & BSF_SECTION_SYM) | |
349 | continue; | |
350 | else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK)) | |
351 | { | |
352 | struct minimal_symbol *msym; | |
353 | ||
354 | /* Select global/local/weak symbols. Note that bfd puts abs | |
355 | symbols in their own section, so all symbols we are | |
0963b4bd MS |
356 | interested in will have a section. */ |
357 | /* Bfd symbols are section relative. */ | |
0cc7b392 | 358 | symaddr = sym->value + sym->section->vma; |
45148c2e UW |
359 | /* Relocate all non-absolute and non-TLS symbols by the |
360 | section offset. */ | |
361 | if (sym->section != &bfd_abs_section | |
362 | && !(sym->section->flags & SEC_THREAD_LOCAL)) | |
0cc7b392 DJ |
363 | { |
364 | symaddr += offset; | |
c906108c | 365 | } |
0cc7b392 DJ |
366 | /* For non-absolute symbols, use the type of the section |
367 | they are relative to, to intuit text/data. Bfd provides | |
0963b4bd | 368 | no way of figuring this out for absolute symbols. */ |
0cc7b392 | 369 | if (sym->section == &bfd_abs_section) |
c906108c | 370 | { |
0cc7b392 DJ |
371 | /* This is a hack to get the minimal symbol type |
372 | right for Irix 5, which has absolute addresses | |
6f610d07 UW |
373 | with special section indices for dynamic symbols. |
374 | ||
375 | NOTE: uweigand-20071112: Synthetic symbols do not | |
376 | have an ELF-private part, so do not touch those. */ | |
4fbb74a6 | 377 | unsigned int shndx = type == ST_SYNTHETIC ? 0 : |
0cc7b392 DJ |
378 | ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx; |
379 | ||
380 | switch (shndx) | |
c906108c | 381 | { |
0cc7b392 DJ |
382 | case SHN_MIPS_TEXT: |
383 | ms_type = mst_text; | |
384 | break; | |
385 | case SHN_MIPS_DATA: | |
386 | ms_type = mst_data; | |
387 | break; | |
388 | case SHN_MIPS_ACOMMON: | |
389 | ms_type = mst_bss; | |
390 | break; | |
391 | default: | |
392 | ms_type = mst_abs; | |
393 | } | |
394 | ||
395 | /* If it is an Irix dynamic symbol, skip section name | |
0963b4bd | 396 | symbols, relocate all others by section offset. */ |
0cc7b392 DJ |
397 | if (ms_type != mst_abs) |
398 | { | |
399 | if (sym->name[0] == '.') | |
400 | continue; | |
d4f3574e | 401 | symaddr += offset; |
c906108c | 402 | } |
0cc7b392 DJ |
403 | } |
404 | else if (sym->section->flags & SEC_CODE) | |
405 | { | |
08232497 | 406 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
c906108c | 407 | { |
0875794a JK |
408 | if (sym->flags & BSF_GNU_INDIRECT_FUNCTION) |
409 | ms_type = mst_text_gnu_ifunc; | |
410 | else | |
411 | ms_type = mst_text; | |
0cc7b392 DJ |
412 | } |
413 | else if ((sym->name[0] == '.' && sym->name[1] == 'L') | |
414 | || ((sym->flags & BSF_LOCAL) | |
415 | && sym->name[0] == '$' | |
416 | && sym->name[1] == 'L')) | |
417 | /* Looks like a compiler-generated label. Skip | |
418 | it. The assembler should be skipping these (to | |
419 | keep executables small), but apparently with | |
420 | gcc on the (deleted) delta m88k SVR4, it loses. | |
421 | So to have us check too should be harmless (but | |
422 | I encourage people to fix this in the assembler | |
423 | instead of adding checks here). */ | |
424 | continue; | |
425 | else | |
426 | { | |
427 | ms_type = mst_file_text; | |
c906108c | 428 | } |
0cc7b392 DJ |
429 | } |
430 | else if (sym->section->flags & SEC_ALLOC) | |
431 | { | |
432 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) | |
c906108c | 433 | { |
0cc7b392 | 434 | if (sym->section->flags & SEC_LOAD) |
c906108c | 435 | { |
0cc7b392 | 436 | ms_type = mst_data; |
c906108c | 437 | } |
c906108c SS |
438 | else |
439 | { | |
0cc7b392 | 440 | ms_type = mst_bss; |
c906108c SS |
441 | } |
442 | } | |
0cc7b392 | 443 | else if (sym->flags & BSF_LOCAL) |
c906108c | 444 | { |
0cc7b392 DJ |
445 | /* Named Local variable in a Data section. |
446 | Check its name for stabs-in-elf. */ | |
447 | int special_local_sect; | |
d7f9d729 | 448 | |
0cc7b392 DJ |
449 | if (strcmp ("Bbss.bss", sym->name) == 0) |
450 | special_local_sect = SECT_OFF_BSS (objfile); | |
451 | else if (strcmp ("Ddata.data", sym->name) == 0) | |
452 | special_local_sect = SECT_OFF_DATA (objfile); | |
453 | else if (strcmp ("Drodata.rodata", sym->name) == 0) | |
454 | special_local_sect = SECT_OFF_RODATA (objfile); | |
455 | else | |
456 | special_local_sect = -1; | |
457 | if (special_local_sect >= 0) | |
c906108c | 458 | { |
0cc7b392 DJ |
459 | /* Found a special local symbol. Allocate a |
460 | sectinfo, if needed, and fill it in. */ | |
461 | if (sectinfo == NULL) | |
c906108c | 462 | { |
0cc7b392 DJ |
463 | int max_index; |
464 | size_t size; | |
465 | ||
25c2f6ab PP |
466 | max_index = SECT_OFF_BSS (objfile); |
467 | if (objfile->sect_index_data > max_index) | |
468 | max_index = objfile->sect_index_data; | |
469 | if (objfile->sect_index_rodata > max_index) | |
470 | max_index = objfile->sect_index_rodata; | |
0cc7b392 DJ |
471 | |
472 | /* max_index is the largest index we'll | |
473 | use into this array, so we must | |
474 | allocate max_index+1 elements for it. | |
475 | However, 'struct stab_section_info' | |
476 | already includes one element, so we | |
477 | need to allocate max_index aadditional | |
478 | elements. */ | |
479 | size = (sizeof (struct stab_section_info) | |
c05d19c5 | 480 | + (sizeof (CORE_ADDR) * max_index)); |
0cc7b392 DJ |
481 | sectinfo = (struct stab_section_info *) |
482 | xmalloc (size); | |
69feea6f | 483 | make_cleanup (xfree, sectinfo); |
0cc7b392 DJ |
484 | memset (sectinfo, 0, size); |
485 | sectinfo->num_sections = max_index; | |
486 | if (filesym == NULL) | |
c906108c | 487 | { |
0cc7b392 | 488 | complaint (&symfile_complaints, |
3e43a32a MS |
489 | _("elf/stab section information %s " |
490 | "without a preceding file symbol"), | |
0cc7b392 DJ |
491 | sym->name); |
492 | } | |
493 | else | |
494 | { | |
495 | sectinfo->filename = | |
496 | (char *) filesym->name; | |
c906108c | 497 | } |
c906108c | 498 | } |
0cc7b392 DJ |
499 | if (sectinfo->sections[special_local_sect] != 0) |
500 | complaint (&symfile_complaints, | |
3e43a32a MS |
501 | _("duplicated elf/stab section " |
502 | "information for %s"), | |
0cc7b392 DJ |
503 | sectinfo->filename); |
504 | /* BFD symbols are section relative. */ | |
505 | symaddr = sym->value + sym->section->vma; | |
506 | /* Relocate non-absolute symbols by the | |
507 | section offset. */ | |
508 | if (sym->section != &bfd_abs_section) | |
509 | symaddr += offset; | |
510 | sectinfo->sections[special_local_sect] = symaddr; | |
511 | /* The special local symbols don't go in the | |
512 | minimal symbol table, so ignore this one. */ | |
513 | continue; | |
514 | } | |
515 | /* Not a special stabs-in-elf symbol, do regular | |
516 | symbol processing. */ | |
517 | if (sym->section->flags & SEC_LOAD) | |
518 | { | |
519 | ms_type = mst_file_data; | |
c906108c SS |
520 | } |
521 | else | |
522 | { | |
0cc7b392 | 523 | ms_type = mst_file_bss; |
c906108c SS |
524 | } |
525 | } | |
526 | else | |
527 | { | |
0cc7b392 | 528 | ms_type = mst_unknown; |
c906108c | 529 | } |
0cc7b392 DJ |
530 | } |
531 | else | |
532 | { | |
533 | /* FIXME: Solaris2 shared libraries include lots of | |
534 | odd "absolute" and "undefined" symbols, that play | |
535 | hob with actions like finding what function the PC | |
536 | is in. Ignore them if they aren't text, data, or bss. */ | |
537 | /* ms_type = mst_unknown; */ | |
0963b4bd | 538 | continue; /* Skip this symbol. */ |
0cc7b392 DJ |
539 | } |
540 | msym = record_minimal_symbol | |
04a679b8 | 541 | (sym->name, strlen (sym->name), copy_names, symaddr, |
0cc7b392 | 542 | ms_type, sym->section, objfile); |
6f610d07 | 543 | |
0cc7b392 DJ |
544 | if (msym) |
545 | { | |
546 | /* Pass symbol size field in via BFD. FIXME!!! */ | |
6f610d07 UW |
547 | elf_symbol_type *elf_sym; |
548 | ||
549 | /* NOTE: uweigand-20071112: A synthetic symbol does not have an | |
550 | ELF-private part. However, in some cases (e.g. synthetic | |
551 | 'dot' symbols on ppc64) the udata.p entry is set to point back | |
552 | to the original ELF symbol it was derived from. Get the size | |
553 | from that symbol. */ | |
554 | if (type != ST_SYNTHETIC) | |
555 | elf_sym = (elf_symbol_type *) sym; | |
556 | else | |
557 | elf_sym = (elf_symbol_type *) sym->udata.p; | |
558 | ||
559 | if (elf_sym) | |
560 | MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size; | |
a103a963 DJ |
561 | |
562 | msym->filename = filesymname; | |
563 | gdbarch_elf_make_msymbol_special (gdbarch, sym, msym); | |
0cc7b392 | 564 | } |
2eaf8d2a DJ |
565 | |
566 | /* For @plt symbols, also record a trampoline to the | |
567 | destination symbol. The @plt symbol will be used in | |
568 | disassembly, and the trampoline will be used when we are | |
569 | trying to find the target. */ | |
570 | if (msym && ms_type == mst_text && type == ST_SYNTHETIC) | |
571 | { | |
572 | int len = strlen (sym->name); | |
573 | ||
574 | if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0) | |
575 | { | |
2eaf8d2a DJ |
576 | struct minimal_symbol *mtramp; |
577 | ||
04a679b8 TT |
578 | mtramp = record_minimal_symbol (sym->name, len - 4, 1, |
579 | symaddr, | |
2eaf8d2a DJ |
580 | mst_solib_trampoline, |
581 | sym->section, objfile); | |
582 | if (mtramp) | |
583 | { | |
584 | MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym); | |
585 | mtramp->filename = filesymname; | |
586 | gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp); | |
587 | } | |
588 | } | |
589 | } | |
c906108c | 590 | } |
c906108c | 591 | } |
69feea6f | 592 | do_cleanups (back_to); |
c906108c SS |
593 | } |
594 | ||
07be84bf JK |
595 | /* Build minimal symbols named `[email protected]' (see SYMBOL_GOT_PLT_SUFFIX) |
596 | for later look ups of which function to call when user requests | |
597 | a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target | |
598 | library defining `function' we cannot yet know while reading OBJFILE which | |
599 | of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later | |
600 | DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */ | |
601 | ||
602 | static void | |
603 | elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table) | |
604 | { | |
605 | bfd *obfd = objfile->obfd; | |
606 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
607 | asection *plt, *relplt, *got_plt; | |
608 | unsigned u; | |
609 | int plt_elf_idx; | |
610 | bfd_size_type reloc_count, reloc; | |
611 | char *string_buffer = NULL; | |
612 | size_t string_buffer_size = 0; | |
613 | struct cleanup *back_to; | |
614 | struct gdbarch *gdbarch = objfile->gdbarch; | |
615 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | |
616 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
617 | ||
618 | if (objfile->separate_debug_objfile_backlink) | |
619 | return; | |
620 | ||
621 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
622 | if (plt == NULL) | |
623 | return; | |
624 | plt_elf_idx = elf_section_data (plt)->this_idx; | |
625 | ||
626 | got_plt = bfd_get_section_by_name (obfd, ".got.plt"); | |
627 | if (got_plt == NULL) | |
628 | return; | |
629 | ||
630 | /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */ | |
631 | for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next) | |
632 | if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx | |
633 | && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL | |
634 | || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA)) | |
635 | break; | |
636 | if (relplt == NULL) | |
637 | return; | |
638 | ||
639 | if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE)) | |
640 | return; | |
641 | ||
642 | back_to = make_cleanup (free_current_contents, &string_buffer); | |
643 | ||
644 | reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize; | |
645 | for (reloc = 0; reloc < reloc_count; reloc++) | |
646 | { | |
647 | const char *name, *name_got_plt; | |
648 | struct minimal_symbol *msym; | |
649 | CORE_ADDR address; | |
650 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
651 | size_t name_len; | |
652 | ||
653 | name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr); | |
654 | name_len = strlen (name); | |
655 | address = relplt->relocation[reloc].address; | |
656 | ||
657 | /* Does the pointer reside in the .got.plt section? */ | |
658 | if (!(bfd_get_section_vma (obfd, got_plt) <= address | |
659 | && address < bfd_get_section_vma (obfd, got_plt) | |
660 | + bfd_get_section_size (got_plt))) | |
661 | continue; | |
662 | ||
663 | /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in | |
664 | OBJFILE the symbol is undefined and the objfile having NAME defined | |
665 | may not yet have been loaded. */ | |
666 | ||
667 | if (string_buffer_size < name_len + got_suffix_len) | |
668 | { | |
669 | string_buffer_size = 2 * (name_len + got_suffix_len); | |
670 | string_buffer = xrealloc (string_buffer, string_buffer_size); | |
671 | } | |
672 | memcpy (string_buffer, name, name_len); | |
673 | memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX, | |
674 | got_suffix_len); | |
675 | ||
676 | msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len, | |
677 | 1, address, mst_slot_got_plt, got_plt, | |
678 | objfile); | |
679 | if (msym) | |
680 | MSYMBOL_SIZE (msym) = ptr_size; | |
681 | } | |
682 | ||
683 | do_cleanups (back_to); | |
684 | } | |
685 | ||
686 | /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */ | |
687 | ||
688 | static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data; | |
689 | ||
690 | /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */ | |
691 | ||
692 | struct elf_gnu_ifunc_cache | |
693 | { | |
694 | /* This is always a function entry address, not a function descriptor. */ | |
695 | CORE_ADDR addr; | |
696 | ||
697 | char name[1]; | |
698 | }; | |
699 | ||
700 | /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */ | |
701 | ||
702 | static hashval_t | |
703 | elf_gnu_ifunc_cache_hash (const void *a_voidp) | |
704 | { | |
705 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
706 | ||
707 | return htab_hash_string (a->name); | |
708 | } | |
709 | ||
710 | /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */ | |
711 | ||
712 | static int | |
713 | elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp) | |
714 | { | |
715 | const struct elf_gnu_ifunc_cache *a = a_voidp; | |
716 | const struct elf_gnu_ifunc_cache *b = b_voidp; | |
717 | ||
718 | return strcmp (a->name, b->name) == 0; | |
719 | } | |
720 | ||
721 | /* Record the target function address of a STT_GNU_IFUNC function NAME is the | |
722 | function entry address ADDR. Return 1 if NAME and ADDR are considered as | |
723 | valid and therefore they were successfully recorded, return 0 otherwise. | |
724 | ||
725 | Function does not expect a duplicate entry. Use | |
726 | elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already | |
727 | exists. */ | |
728 | ||
729 | static int | |
730 | elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr) | |
731 | { | |
732 | struct minimal_symbol *msym; | |
733 | asection *sect; | |
734 | struct objfile *objfile; | |
735 | htab_t htab; | |
736 | struct elf_gnu_ifunc_cache entry_local, *entry_p; | |
737 | void **slot; | |
738 | ||
739 | msym = lookup_minimal_symbol_by_pc (addr); | |
740 | if (msym == NULL) | |
741 | return 0; | |
742 | if (SYMBOL_VALUE_ADDRESS (msym) != addr) | |
743 | return 0; | |
744 | /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */ | |
745 | sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section; | |
746 | objfile = SYMBOL_OBJ_SECTION (msym)->objfile; | |
747 | ||
748 | /* If .plt jumps back to .plt the symbol is still deferred for later | |
749 | resolution and it has no use for GDB. Besides ".text" this symbol can | |
750 | reside also in ".opd" for ppc64 function descriptor. */ | |
751 | if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0) | |
752 | return 0; | |
753 | ||
754 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
755 | if (htab == NULL) | |
756 | { | |
757 | htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash, | |
758 | elf_gnu_ifunc_cache_eq, | |
759 | NULL, &objfile->objfile_obstack, | |
760 | hashtab_obstack_allocate, | |
761 | dummy_obstack_deallocate); | |
762 | set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab); | |
763 | } | |
764 | ||
765 | entry_local.addr = addr; | |
766 | obstack_grow (&objfile->objfile_obstack, &entry_local, | |
767 | offsetof (struct elf_gnu_ifunc_cache, name)); | |
768 | obstack_grow_str0 (&objfile->objfile_obstack, name); | |
769 | entry_p = obstack_finish (&objfile->objfile_obstack); | |
770 | ||
771 | slot = htab_find_slot (htab, entry_p, INSERT); | |
772 | if (*slot != NULL) | |
773 | { | |
774 | struct elf_gnu_ifunc_cache *entry_found_p = *slot; | |
775 | struct gdbarch *gdbarch = objfile->gdbarch; | |
776 | ||
777 | if (entry_found_p->addr != addr) | |
778 | { | |
779 | /* This case indicates buggy inferior program, the resolved address | |
780 | should never change. */ | |
781 | ||
782 | warning (_("gnu-indirect-function \"%s\" has changed its resolved " | |
783 | "function_address from %s to %s"), | |
784 | name, paddress (gdbarch, entry_found_p->addr), | |
785 | paddress (gdbarch, addr)); | |
786 | } | |
787 | ||
788 | /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */ | |
789 | } | |
790 | *slot = entry_p; | |
791 | ||
792 | return 1; | |
793 | } | |
794 | ||
795 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
796 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
797 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
798 | ||
799 | Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this | |
800 | function. */ | |
801 | ||
802 | static int | |
803 | elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p) | |
804 | { | |
805 | struct objfile *objfile; | |
806 | ||
807 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
808 | { | |
809 | htab_t htab; | |
810 | struct elf_gnu_ifunc_cache *entry_p; | |
811 | void **slot; | |
812 | ||
813 | htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data); | |
814 | if (htab == NULL) | |
815 | continue; | |
816 | ||
817 | entry_p = alloca (sizeof (*entry_p) + strlen (name)); | |
818 | strcpy (entry_p->name, name); | |
819 | ||
820 | slot = htab_find_slot (htab, entry_p, NO_INSERT); | |
821 | if (slot == NULL) | |
822 | continue; | |
823 | entry_p = *slot; | |
824 | gdb_assert (entry_p != NULL); | |
825 | ||
826 | if (addr_p) | |
827 | *addr_p = entry_p->addr; | |
828 | return 1; | |
829 | } | |
830 | ||
831 | return 0; | |
832 | } | |
833 | ||
834 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
835 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
836 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
837 | ||
838 | Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. | |
839 | elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to | |
840 | prevent cache entries duplicates. */ | |
841 | ||
842 | static int | |
843 | elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p) | |
844 | { | |
845 | char *name_got_plt; | |
846 | struct objfile *objfile; | |
847 | const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX); | |
848 | ||
849 | name_got_plt = alloca (strlen (name) + got_suffix_len + 1); | |
850 | sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name); | |
851 | ||
852 | ALL_PSPACE_OBJFILES (current_program_space, objfile) | |
853 | { | |
854 | bfd *obfd = objfile->obfd; | |
855 | struct gdbarch *gdbarch = objfile->gdbarch; | |
856 | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | |
857 | size_t ptr_size = TYPE_LENGTH (ptr_type); | |
858 | CORE_ADDR pointer_address, addr; | |
859 | asection *plt; | |
860 | gdb_byte *buf = alloca (ptr_size); | |
861 | struct minimal_symbol *msym; | |
862 | ||
863 | msym = lookup_minimal_symbol (name_got_plt, NULL, objfile); | |
864 | if (msym == NULL) | |
865 | continue; | |
866 | if (MSYMBOL_TYPE (msym) != mst_slot_got_plt) | |
867 | continue; | |
868 | pointer_address = SYMBOL_VALUE_ADDRESS (msym); | |
869 | ||
870 | plt = bfd_get_section_by_name (obfd, ".plt"); | |
871 | if (plt == NULL) | |
872 | continue; | |
873 | ||
874 | if (MSYMBOL_SIZE (msym) != ptr_size) | |
875 | continue; | |
876 | if (target_read_memory (pointer_address, buf, ptr_size) != 0) | |
877 | continue; | |
878 | addr = extract_typed_address (buf, ptr_type); | |
879 | addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, | |
880 | ¤t_target); | |
881 | ||
882 | if (addr_p) | |
883 | *addr_p = addr; | |
884 | if (elf_gnu_ifunc_record_cache (name, addr)) | |
885 | return 1; | |
886 | } | |
887 | ||
888 | return 0; | |
889 | } | |
890 | ||
891 | /* Try to find the target resolved function entry address of a STT_GNU_IFUNC | |
892 | function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P | |
893 | is not NULL) and the function returns 1. It returns 0 otherwise. | |
894 | ||
895 | Both the elf_objfile_gnu_ifunc_cache_data hash table and | |
896 | SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */ | |
897 | ||
898 | static int | |
899 | elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p) | |
900 | { | |
901 | if (elf_gnu_ifunc_resolve_by_cache (name, addr_p)) | |
902 | return 1; | |
903 | ||
904 | if (elf_gnu_ifunc_resolve_by_got (name, addr_p)) | |
905 | return 1; | |
906 | ||
907 | return 0; | |
908 | } | |
909 | ||
910 | /* Call STT_GNU_IFUNC - a function returning addresss of a real function to | |
911 | call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned | |
912 | is the entry point of the resolved STT_GNU_IFUNC target function to call. | |
913 | */ | |
914 | ||
915 | static CORE_ADDR | |
916 | elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc) | |
917 | { | |
918 | char *name_at_pc; | |
919 | CORE_ADDR start_at_pc, address; | |
920 | struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func; | |
921 | struct value *function, *address_val; | |
922 | ||
923 | /* Try first any non-intrusive methods without an inferior call. */ | |
924 | ||
925 | if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL) | |
926 | && start_at_pc == pc) | |
927 | { | |
928 | if (elf_gnu_ifunc_resolve_name (name_at_pc, &address)) | |
929 | return address; | |
930 | } | |
931 | else | |
932 | name_at_pc = NULL; | |
933 | ||
934 | function = allocate_value (func_func_type); | |
935 | set_value_address (function, pc); | |
936 | ||
937 | /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the | |
938 | function entry address. ADDRESS may be a function descriptor. */ | |
939 | ||
940 | address_val = call_function_by_hand (function, 0, NULL); | |
941 | address = value_as_address (address_val); | |
942 | address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
943 | ¤t_target); | |
944 | ||
945 | if (name_at_pc) | |
946 | elf_gnu_ifunc_record_cache (name_at_pc, address); | |
947 | ||
948 | return address; | |
949 | } | |
950 | ||
874f5765 TG |
951 | struct build_id |
952 | { | |
953 | size_t size; | |
954 | gdb_byte data[1]; | |
955 | }; | |
956 | ||
957 | /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */ | |
958 | ||
959 | static struct build_id * | |
960 | build_id_bfd_get (bfd *abfd) | |
961 | { | |
962 | struct build_id *retval; | |
963 | ||
964 | if (!bfd_check_format (abfd, bfd_object) | |
965 | || bfd_get_flavour (abfd) != bfd_target_elf_flavour | |
966 | || elf_tdata (abfd)->build_id == NULL) | |
967 | return NULL; | |
968 | ||
969 | retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size); | |
970 | retval->size = elf_tdata (abfd)->build_id_size; | |
971 | memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size); | |
972 | ||
973 | return retval; | |
974 | } | |
975 | ||
976 | /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */ | |
977 | ||
978 | static int | |
979 | build_id_verify (const char *filename, struct build_id *check) | |
980 | { | |
981 | bfd *abfd; | |
982 | struct build_id *found = NULL; | |
983 | int retval = 0; | |
984 | ||
985 | /* We expect to be silent on the non-existing files. */ | |
986 | abfd = bfd_open_maybe_remote (filename); | |
987 | if (abfd == NULL) | |
988 | return 0; | |
989 | ||
990 | found = build_id_bfd_get (abfd); | |
991 | ||
992 | if (found == NULL) | |
993 | warning (_("File \"%s\" has no build-id, file skipped"), filename); | |
994 | else if (found->size != check->size | |
995 | || memcmp (found->data, check->data, found->size) != 0) | |
3e43a32a MS |
996 | warning (_("File \"%s\" has a different build-id, file skipped"), |
997 | filename); | |
874f5765 TG |
998 | else |
999 | retval = 1; | |
1000 | ||
516ba659 | 1001 | gdb_bfd_close_or_warn (abfd); |
874f5765 TG |
1002 | |
1003 | xfree (found); | |
1004 | ||
1005 | return retval; | |
1006 | } | |
1007 | ||
1008 | static char * | |
1009 | build_id_to_debug_filename (struct build_id *build_id) | |
1010 | { | |
1011 | char *link, *debugdir, *retval = NULL; | |
1012 | ||
1013 | /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */ | |
1014 | link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1 | |
1015 | + 2 * build_id->size + (sizeof ".debug" - 1) + 1); | |
1016 | ||
1017 | /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will | |
1018 | cause "/.build-id/..." lookups. */ | |
1019 | ||
1020 | debugdir = debug_file_directory; | |
1021 | do | |
1022 | { | |
1023 | char *s, *debugdir_end; | |
1024 | gdb_byte *data = build_id->data; | |
1025 | size_t size = build_id->size; | |
1026 | ||
1027 | while (*debugdir == DIRNAME_SEPARATOR) | |
1028 | debugdir++; | |
1029 | ||
1030 | debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR); | |
1031 | if (debugdir_end == NULL) | |
1032 | debugdir_end = &debugdir[strlen (debugdir)]; | |
1033 | ||
1034 | memcpy (link, debugdir, debugdir_end - debugdir); | |
1035 | s = &link[debugdir_end - debugdir]; | |
1036 | s += sprintf (s, "/.build-id/"); | |
1037 | if (size > 0) | |
1038 | { | |
1039 | size--; | |
1040 | s += sprintf (s, "%02x", (unsigned) *data++); | |
1041 | } | |
1042 | if (size > 0) | |
1043 | *s++ = '/'; | |
1044 | while (size-- > 0) | |
1045 | s += sprintf (s, "%02x", (unsigned) *data++); | |
1046 | strcpy (s, ".debug"); | |
1047 | ||
1048 | /* lrealpath() is expensive even for the usually non-existent files. */ | |
1049 | if (access (link, F_OK) == 0) | |
1050 | retval = lrealpath (link); | |
1051 | ||
1052 | if (retval != NULL && !build_id_verify (retval, build_id)) | |
1053 | { | |
1054 | xfree (retval); | |
1055 | retval = NULL; | |
1056 | } | |
1057 | ||
1058 | if (retval != NULL) | |
1059 | break; | |
1060 | ||
1061 | debugdir = debugdir_end; | |
1062 | } | |
1063 | while (*debugdir != 0); | |
1064 | ||
1065 | return retval; | |
1066 | } | |
1067 | ||
1068 | static char * | |
1069 | find_separate_debug_file_by_buildid (struct objfile *objfile) | |
1070 | { | |
874f5765 TG |
1071 | struct build_id *build_id; |
1072 | ||
1073 | build_id = build_id_bfd_get (objfile->obfd); | |
1074 | if (build_id != NULL) | |
1075 | { | |
1076 | char *build_id_name; | |
1077 | ||
1078 | build_id_name = build_id_to_debug_filename (build_id); | |
1079 | xfree (build_id); | |
1080 | /* Prevent looping on a stripped .debug file. */ | |
0ba1096a KT |
1081 | if (build_id_name != NULL |
1082 | && filename_cmp (build_id_name, objfile->name) == 0) | |
874f5765 TG |
1083 | { |
1084 | warning (_("\"%s\": separate debug info file has no debug info"), | |
1085 | build_id_name); | |
1086 | xfree (build_id_name); | |
1087 | } | |
1088 | else if (build_id_name != NULL) | |
1089 | return build_id_name; | |
1090 | } | |
1091 | return NULL; | |
1092 | } | |
1093 | ||
c906108c SS |
1094 | /* Scan and build partial symbols for a symbol file. |
1095 | We have been initialized by a call to elf_symfile_init, which | |
1096 | currently does nothing. | |
1097 | ||
1098 | SECTION_OFFSETS is a set of offsets to apply to relocate the symbols | |
1099 | in each section. We simplify it down to a single offset for all | |
1100 | symbols. FIXME. | |
1101 | ||
c906108c SS |
1102 | This function only does the minimum work necessary for letting the |
1103 | user "name" things symbolically; it does not read the entire symtab. | |
1104 | Instead, it reads the external and static symbols and puts them in partial | |
1105 | symbol tables. When more extensive information is requested of a | |
1106 | file, the corresponding partial symbol table is mutated into a full | |
1107 | fledged symbol table by going back and reading the symbols | |
1108 | for real. | |
1109 | ||
1110 | We look for sections with specific names, to tell us what debug | |
1111 | format to look for: FIXME!!! | |
1112 | ||
c906108c SS |
1113 | elfstab_build_psymtabs() handles STABS symbols; |
1114 | mdebug_build_psymtabs() handles ECOFF debugging information. | |
1115 | ||
1116 | Note that ELF files have a "minimal" symbol table, which looks a lot | |
1117 | like a COFF symbol table, but has only the minimal information necessary | |
1118 | for linking. We process this also, and use the information to | |
1119 | build gdb's minimal symbol table. This gives us some minimal debugging | |
1120 | capability even for files compiled without -g. */ | |
1121 | ||
1122 | static void | |
f4352531 | 1123 | elf_symfile_read (struct objfile *objfile, int symfile_flags) |
c906108c SS |
1124 | { |
1125 | bfd *abfd = objfile->obfd; | |
1126 | struct elfinfo ei; | |
1127 | struct cleanup *back_to; | |
62553543 EZ |
1128 | long symcount = 0, dynsymcount = 0, synthcount, storage_needed; |
1129 | asymbol **symbol_table = NULL, **dyn_symbol_table = NULL; | |
1130 | asymbol *synthsyms; | |
c906108c SS |
1131 | |
1132 | init_minimal_symbol_collection (); | |
56e290f4 | 1133 | back_to = make_cleanup_discard_minimal_symbols (); |
c906108c SS |
1134 | |
1135 | memset ((char *) &ei, 0, sizeof (ei)); | |
1136 | ||
0963b4bd | 1137 | /* Allocate struct to keep track of the symfile. */ |
0a6ddd08 | 1138 | objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *) |
7936743b | 1139 | xmalloc (sizeof (struct dbx_symfile_info)); |
3e43a32a MS |
1140 | memset ((char *) objfile->deprecated_sym_stab_info, |
1141 | 0, sizeof (struct dbx_symfile_info)); | |
12b9c64f | 1142 | make_cleanup (free_elfinfo, (void *) objfile); |
c906108c | 1143 | |
3e43a32a MS |
1144 | /* Process the normal ELF symbol table first. This may write some |
1145 | chain of info into the dbx_symfile_info in | |
1146 | objfile->deprecated_sym_stab_info, which can later be used by | |
1147 | elfstab_offset_sections. */ | |
c906108c | 1148 | |
62553543 EZ |
1149 | storage_needed = bfd_get_symtab_upper_bound (objfile->obfd); |
1150 | if (storage_needed < 0) | |
3e43a32a MS |
1151 | error (_("Can't read symbols from %s: %s"), |
1152 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1153 | bfd_errmsg (bfd_get_error ())); |
1154 | ||
1155 | if (storage_needed > 0) | |
1156 | { | |
1157 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
1158 | make_cleanup (xfree, symbol_table); | |
1159 | symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table); | |
1160 | ||
1161 | if (symcount < 0) | |
3e43a32a MS |
1162 | error (_("Can't read symbols from %s: %s"), |
1163 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1164 | bfd_errmsg (bfd_get_error ())); |
1165 | ||
04a679b8 | 1166 | elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0); |
62553543 | 1167 | } |
c906108c SS |
1168 | |
1169 | /* Add the dynamic symbols. */ | |
1170 | ||
62553543 EZ |
1171 | storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd); |
1172 | ||
1173 | if (storage_needed > 0) | |
1174 | { | |
3f1eff0a JK |
1175 | /* Memory gets permanently referenced from ABFD after |
1176 | bfd_get_synthetic_symtab so it must not get freed before ABFD gets. | |
1177 | It happens only in the case when elf_slurp_reloc_table sees | |
1178 | asection->relocation NULL. Determining which section is asection is | |
1179 | done by _bfd_elf_get_synthetic_symtab which is all a bfd | |
1180 | implementation detail, though. */ | |
1181 | ||
1182 | dyn_symbol_table = bfd_alloc (abfd, storage_needed); | |
62553543 EZ |
1183 | dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd, |
1184 | dyn_symbol_table); | |
1185 | ||
1186 | if (dynsymcount < 0) | |
3e43a32a MS |
1187 | error (_("Can't read symbols from %s: %s"), |
1188 | bfd_get_filename (objfile->obfd), | |
62553543 EZ |
1189 | bfd_errmsg (bfd_get_error ())); |
1190 | ||
04a679b8 | 1191 | elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0); |
07be84bf JK |
1192 | |
1193 | elf_rel_plt_read (objfile, dyn_symbol_table); | |
62553543 EZ |
1194 | } |
1195 | ||
1196 | /* Add synthetic symbols - for instance, names for any PLT entries. */ | |
1197 | ||
1198 | synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table, | |
1199 | dynsymcount, dyn_symbol_table, | |
1200 | &synthsyms); | |
1201 | if (synthcount > 0) | |
1202 | { | |
1203 | asymbol **synth_symbol_table; | |
1204 | long i; | |
1205 | ||
1206 | make_cleanup (xfree, synthsyms); | |
1207 | synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount); | |
1208 | for (i = 0; i < synthcount; i++) | |
9f20e3da | 1209 | synth_symbol_table[i] = synthsyms + i; |
62553543 | 1210 | make_cleanup (xfree, synth_symbol_table); |
3e43a32a MS |
1211 | elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, |
1212 | synth_symbol_table, 1); | |
62553543 | 1213 | } |
c906108c | 1214 | |
7134143f DJ |
1215 | /* Install any minimal symbols that have been collected as the current |
1216 | minimal symbols for this objfile. The debug readers below this point | |
1217 | should not generate new minimal symbols; if they do it's their | |
1218 | responsibility to install them. "mdebug" appears to be the only one | |
1219 | which will do this. */ | |
1220 | ||
1221 | install_minimal_symbols (objfile); | |
1222 | do_cleanups (back_to); | |
1223 | ||
c906108c | 1224 | /* Now process debugging information, which is contained in |
0963b4bd | 1225 | special ELF sections. */ |
c906108c | 1226 | |
0963b4bd | 1227 | /* We first have to find them... */ |
12b9c64f | 1228 | bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei); |
c906108c SS |
1229 | |
1230 | /* ELF debugging information is inserted into the psymtab in the | |
1231 | order of least informative first - most informative last. Since | |
1232 | the psymtab table is searched `most recent insertion first' this | |
1233 | increases the probability that more detailed debug information | |
1234 | for a section is found. | |
1235 | ||
1236 | For instance, an object file might contain both .mdebug (XCOFF) | |
1237 | and .debug_info (DWARF2) sections then .mdebug is inserted first | |
1238 | (searched last) and DWARF2 is inserted last (searched first). If | |
1239 | we don't do this then the XCOFF info is found first - for code in | |
0963b4bd | 1240 | an included file XCOFF info is useless. */ |
c906108c SS |
1241 | |
1242 | if (ei.mdebugsect) | |
1243 | { | |
1244 | const struct ecoff_debug_swap *swap; | |
1245 | ||
1246 | /* .mdebug section, presumably holding ECOFF debugging | |
c5aa993b | 1247 | information. */ |
c906108c SS |
1248 | swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
1249 | if (swap) | |
d4f3574e | 1250 | elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect); |
c906108c SS |
1251 | } |
1252 | if (ei.stabsect) | |
1253 | { | |
1254 | asection *str_sect; | |
1255 | ||
1256 | /* Stab sections have an associated string table that looks like | |
c5aa993b | 1257 | a separate section. */ |
c906108c SS |
1258 | str_sect = bfd_get_section_by_name (abfd, ".stabstr"); |
1259 | ||
1260 | /* FIXME should probably warn about a stab section without a stabstr. */ | |
1261 | if (str_sect) | |
1262 | elfstab_build_psymtabs (objfile, | |
086df311 | 1263 | ei.stabsect, |
c906108c SS |
1264 | str_sect->filepos, |
1265 | bfd_section_size (abfd, str_sect)); | |
1266 | } | |
9291a0cd | 1267 | |
b11896a5 TT |
1268 | if (dwarf2_has_info (objfile)) |
1269 | { | |
1270 | if (dwarf2_initialize_objfile (objfile)) | |
1271 | objfile->sf = &elf_sym_fns_gdb_index; | |
1272 | else | |
1273 | { | |
1274 | /* It is ok to do this even if the stabs reader made some | |
1275 | partial symbols, because OBJF_PSYMTABS_READ has not been | |
1276 | set, and so our lazy reader function will still be called | |
1277 | when needed. */ | |
1278 | objfile->sf = &elf_sym_fns_lazy_psyms; | |
1279 | } | |
1280 | } | |
3e43a32a MS |
1281 | /* If the file has its own symbol tables it has no separate debug |
1282 | info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to | |
1283 | SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with | |
1284 | `.note.gnu.build-id'. */ | |
b11896a5 | 1285 | else if (!objfile_has_partial_symbols (objfile)) |
9cce227f TG |
1286 | { |
1287 | char *debugfile; | |
1288 | ||
1289 | debugfile = find_separate_debug_file_by_buildid (objfile); | |
1290 | ||
1291 | if (debugfile == NULL) | |
1292 | debugfile = find_separate_debug_file_by_debuglink (objfile); | |
1293 | ||
1294 | if (debugfile) | |
1295 | { | |
1296 | bfd *abfd = symfile_bfd_open (debugfile); | |
d7f9d729 | 1297 | |
9cce227f TG |
1298 | symbol_file_add_separate (abfd, symfile_flags, objfile); |
1299 | xfree (debugfile); | |
1300 | } | |
1301 | } | |
c906108c SS |
1302 | } |
1303 | ||
b11896a5 TT |
1304 | /* Callback to lazily read psymtabs. */ |
1305 | ||
1306 | static void | |
1307 | read_psyms (struct objfile *objfile) | |
1308 | { | |
1309 | if (dwarf2_has_info (objfile)) | |
1310 | dwarf2_build_psymtabs (objfile); | |
1311 | } | |
1312 | ||
0a6ddd08 AC |
1313 | /* This cleans up the objfile's deprecated_sym_stab_info pointer, and |
1314 | the chain of stab_section_info's, that might be dangling from | |
1315 | it. */ | |
c906108c SS |
1316 | |
1317 | static void | |
12b9c64f | 1318 | free_elfinfo (void *objp) |
c906108c | 1319 | { |
c5aa993b | 1320 | struct objfile *objfile = (struct objfile *) objp; |
0a6ddd08 | 1321 | struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info; |
c906108c SS |
1322 | struct stab_section_info *ssi, *nssi; |
1323 | ||
1324 | ssi = dbxinfo->stab_section_info; | |
1325 | while (ssi) | |
1326 | { | |
1327 | nssi = ssi->next; | |
2dc74dc1 | 1328 | xfree (ssi); |
c906108c SS |
1329 | ssi = nssi; |
1330 | } | |
1331 | ||
1332 | dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */ | |
1333 | } | |
1334 | ||
1335 | ||
1336 | /* Initialize anything that needs initializing when a completely new symbol | |
1337 | file is specified (not just adding some symbols from another file, e.g. a | |
1338 | shared library). | |
1339 | ||
3e43a32a MS |
1340 | We reinitialize buildsym, since we may be reading stabs from an ELF |
1341 | file. */ | |
c906108c SS |
1342 | |
1343 | static void | |
fba45db2 | 1344 | elf_new_init (struct objfile *ignore) |
c906108c SS |
1345 | { |
1346 | stabsread_new_init (); | |
1347 | buildsym_new_init (); | |
1348 | } | |
1349 | ||
1350 | /* Perform any local cleanups required when we are done with a particular | |
1351 | objfile. I.E, we are in the process of discarding all symbol information | |
1352 | for an objfile, freeing up all memory held for it, and unlinking the | |
0963b4bd | 1353 | objfile struct from the global list of known objfiles. */ |
c906108c SS |
1354 | |
1355 | static void | |
fba45db2 | 1356 | elf_symfile_finish (struct objfile *objfile) |
c906108c | 1357 | { |
0a6ddd08 | 1358 | if (objfile->deprecated_sym_stab_info != NULL) |
c906108c | 1359 | { |
0a6ddd08 | 1360 | xfree (objfile->deprecated_sym_stab_info); |
c906108c | 1361 | } |
fe3e1990 DJ |
1362 | |
1363 | dwarf2_free_objfile (objfile); | |
c906108c SS |
1364 | } |
1365 | ||
1366 | /* ELF specific initialization routine for reading symbols. | |
1367 | ||
1368 | It is passed a pointer to a struct sym_fns which contains, among other | |
1369 | things, the BFD for the file whose symbols are being read, and a slot for | |
1370 | a pointer to "private data" which we can fill with goodies. | |
1371 | ||
1372 | For now at least, we have nothing in particular to do, so this function is | |
0963b4bd | 1373 | just a stub. */ |
c906108c SS |
1374 | |
1375 | static void | |
fba45db2 | 1376 | elf_symfile_init (struct objfile *objfile) |
c906108c SS |
1377 | { |
1378 | /* ELF objects may be reordered, so set OBJF_REORDERED. If we | |
1379 | find this causes a significant slowdown in gdb then we could | |
1380 | set it in the debug symbol readers only when necessary. */ | |
1381 | objfile->flags |= OBJF_REORDERED; | |
1382 | } | |
1383 | ||
1384 | /* When handling an ELF file that contains Sun STABS debug info, | |
1385 | some of the debug info is relative to the particular chunk of the | |
1386 | section that was generated in its individual .o file. E.g. | |
1387 | offsets to static variables are relative to the start of the data | |
1388 | segment *for that module before linking*. This information is | |
1389 | painfully squirreled away in the ELF symbol table as local symbols | |
1390 | with wierd names. Go get 'em when needed. */ | |
1391 | ||
1392 | void | |
fba45db2 | 1393 | elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst) |
c906108c | 1394 | { |
72b9f47f | 1395 | const char *filename = pst->filename; |
0a6ddd08 | 1396 | struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info; |
c906108c SS |
1397 | struct stab_section_info *maybe = dbx->stab_section_info; |
1398 | struct stab_section_info *questionable = 0; | |
1399 | int i; | |
c906108c SS |
1400 | |
1401 | /* The ELF symbol info doesn't include path names, so strip the path | |
1402 | (if any) from the psymtab filename. */ | |
0ba1096a | 1403 | filename = lbasename (filename); |
c906108c SS |
1404 | |
1405 | /* FIXME: This linear search could speed up significantly | |
1406 | if it was chained in the right order to match how we search it, | |
0963b4bd | 1407 | and if we unchained when we found a match. */ |
c906108c SS |
1408 | for (; maybe; maybe = maybe->next) |
1409 | { | |
1410 | if (filename[0] == maybe->filename[0] | |
0ba1096a | 1411 | && filename_cmp (filename, maybe->filename) == 0) |
c906108c SS |
1412 | { |
1413 | /* We found a match. But there might be several source files | |
1414 | (from different directories) with the same name. */ | |
1415 | if (0 == maybe->found) | |
1416 | break; | |
c5aa993b | 1417 | questionable = maybe; /* Might use it later. */ |
c906108c SS |
1418 | } |
1419 | } | |
1420 | ||
1421 | if (maybe == 0 && questionable != 0) | |
1422 | { | |
23136709 | 1423 | complaint (&symfile_complaints, |
3e43a32a MS |
1424 | _("elf/stab section information questionable for %s"), |
1425 | filename); | |
c906108c SS |
1426 | maybe = questionable; |
1427 | } | |
1428 | ||
1429 | if (maybe) | |
1430 | { | |
1431 | /* Found it! Allocate a new psymtab struct, and fill it in. */ | |
1432 | maybe->found++; | |
1433 | pst->section_offsets = (struct section_offsets *) | |
8b92e4d5 | 1434 | obstack_alloc (&objfile->objfile_obstack, |
a39a16c4 MM |
1435 | SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
1436 | for (i = 0; i < maybe->num_sections; i++) | |
a4c8257b | 1437 | (pst->section_offsets)->offsets[i] = maybe->sections[i]; |
c906108c SS |
1438 | return; |
1439 | } | |
1440 | ||
1441 | /* We were unable to find any offsets for this file. Complain. */ | |
c5aa993b | 1442 | if (dbx->stab_section_info) /* If there *is* any info, */ |
23136709 | 1443 | complaint (&symfile_complaints, |
e2e0b3e5 | 1444 | _("elf/stab section information missing for %s"), filename); |
c906108c SS |
1445 | } |
1446 | \f | |
1447 | /* Register that we are able to handle ELF object file formats. */ | |
1448 | ||
00b5771c | 1449 | static const struct sym_fns elf_sym_fns = |
c906108c SS |
1450 | { |
1451 | bfd_target_elf_flavour, | |
3e43a32a MS |
1452 | elf_new_init, /* init anything gbl to entire symtab */ |
1453 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1454 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 TT |
1455 | NULL, /* sym_read_psymbols */ |
1456 | elf_symfile_finish, /* finished with file, cleanup */ | |
1457 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1458 | elf_symfile_segments, /* Get segment information from a file. */ | |
1459 | NULL, | |
1460 | default_symfile_relocate, /* Relocate a debug section. */ | |
1461 | &psym_functions | |
1462 | }; | |
1463 | ||
1464 | /* The same as elf_sym_fns, but not registered and lazily reads | |
1465 | psymbols. */ | |
1466 | ||
1467 | static const struct sym_fns elf_sym_fns_lazy_psyms = | |
1468 | { | |
1469 | bfd_target_elf_flavour, | |
1470 | elf_new_init, /* init anything gbl to entire symtab */ | |
1471 | elf_symfile_init, /* read initial info, setup for sym_read() */ | |
1472 | elf_symfile_read, /* read a symbol file into symtab */ | |
1473 | read_psyms, /* sym_read_psymbols */ | |
3e43a32a MS |
1474 | elf_symfile_finish, /* finished with file, cleanup */ |
1475 | default_symfile_offsets, /* Translate ext. to int. relocation */ | |
1476 | elf_symfile_segments, /* Get segment information from a file. */ | |
1477 | NULL, | |
1478 | default_symfile_relocate, /* Relocate a debug section. */ | |
00b5771c | 1479 | &psym_functions |
c906108c SS |
1480 | }; |
1481 | ||
9291a0cd TT |
1482 | /* The same as elf_sym_fns, but not registered and uses the |
1483 | DWARF-specific GNU index rather than psymtab. */ | |
00b5771c | 1484 | static const struct sym_fns elf_sym_fns_gdb_index = |
9291a0cd TT |
1485 | { |
1486 | bfd_target_elf_flavour, | |
3e43a32a MS |
1487 | elf_new_init, /* init anything gbl to entire symab */ |
1488 | elf_symfile_init, /* read initial info, setup for sym_red() */ | |
1489 | elf_symfile_read, /* read a symbol file into symtab */ | |
b11896a5 | 1490 | NULL, /* sym_read_psymbols */ |
3e43a32a MS |
1491 | elf_symfile_finish, /* finished with file, cleanup */ |
1492 | default_symfile_offsets, /* Translate ext. to int. relocatin */ | |
1493 | elf_symfile_segments, /* Get segment information from a file. */ | |
1494 | NULL, | |
1495 | default_symfile_relocate, /* Relocate a debug section. */ | |
00b5771c | 1496 | &dwarf2_gdb_index_functions |
9291a0cd TT |
1497 | }; |
1498 | ||
07be84bf JK |
1499 | /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */ |
1500 | ||
1501 | static const struct gnu_ifunc_fns elf_gnu_ifunc_fns = | |
1502 | { | |
1503 | elf_gnu_ifunc_resolve_addr, | |
1504 | elf_gnu_ifunc_resolve_name, | |
1505 | }; | |
1506 | ||
c906108c | 1507 | void |
fba45db2 | 1508 | _initialize_elfread (void) |
c906108c SS |
1509 | { |
1510 | add_symtab_fns (&elf_sym_fns); | |
07be84bf JK |
1511 | |
1512 | elf_objfile_gnu_ifunc_cache_data = register_objfile_data (); | |
1513 | gnu_ifunc_fns_p = &elf_gnu_ifunc_fns; | |
c906108c | 1514 | } |