]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 JB |
3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
0cc7d26f | 32 | #include "gdb_regex.h" |
8b93c638 JM |
33 | |
34 | #include "varobj.h" | |
28335dcc | 35 | #include "vec.h" |
6208b47d VP |
36 | #include "gdbthread.h" |
37 | #include "inferior.h" | |
8b93c638 | 38 | |
b6313243 TT |
39 | #if HAVE_PYTHON |
40 | #include "python/python.h" | |
41 | #include "python/python-internal.h" | |
42 | #else | |
43 | typedef int PyObject; | |
44 | #endif | |
45 | ||
8b93c638 JM |
46 | /* Non-zero if we want to see trace of varobj level stuff. */ |
47 | ||
48 | int varobjdebug = 0; | |
920d2a44 AC |
49 | static void |
50 | show_varobjdebug (struct ui_file *file, int from_tty, | |
51 | struct cmd_list_element *c, const char *value) | |
52 | { | |
53 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
54 | } | |
8b93c638 JM |
55 | |
56 | /* String representations of gdb's format codes */ | |
57 | char *varobj_format_string[] = | |
72330bd6 | 58 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
59 | |
60 | /* String representations of gdb's known languages */ | |
72330bd6 | 61 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 | 62 | |
0cc7d26f TT |
63 | /* True if we want to allow Python-based pretty-printing. */ |
64 | static int pretty_printing = 0; | |
65 | ||
66 | void | |
67 | varobj_enable_pretty_printing (void) | |
68 | { | |
69 | pretty_printing = 1; | |
70 | } | |
71 | ||
8b93c638 JM |
72 | /* Data structures */ |
73 | ||
74 | /* Every root variable has one of these structures saved in its | |
75 | varobj. Members which must be free'd are noted. */ | |
76 | struct varobj_root | |
72330bd6 | 77 | { |
8b93c638 | 78 | |
72330bd6 AC |
79 | /* Alloc'd expression for this parent. */ |
80 | struct expression *exp; | |
8b93c638 | 81 | |
72330bd6 AC |
82 | /* Block for which this expression is valid */ |
83 | struct block *valid_block; | |
8b93c638 | 84 | |
44a67aa7 VP |
85 | /* The frame for this expression. This field is set iff valid_block is |
86 | not NULL. */ | |
e64d9b3d | 87 | struct frame_id frame; |
8b93c638 | 88 | |
c5b48eac VP |
89 | /* The thread ID that this varobj_root belong to. This field |
90 | is only valid if valid_block is not NULL. | |
91 | When not 0, indicates which thread 'frame' belongs to. | |
92 | When 0, indicates that the thread list was empty when the varobj_root | |
93 | was created. */ | |
94 | int thread_id; | |
95 | ||
a5defcdc VP |
96 | /* If 1, the -var-update always recomputes the value in the |
97 | current thread and frame. Otherwise, variable object is | |
98 | always updated in the specific scope/thread/frame */ | |
99 | int floating; | |
73a93a32 | 100 | |
8756216b DP |
101 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
102 | to symbols that do not exist anymore. */ | |
103 | int is_valid; | |
104 | ||
72330bd6 AC |
105 | /* Language info for this variable and its children */ |
106 | struct language_specific *lang; | |
8b93c638 | 107 | |
72330bd6 AC |
108 | /* The varobj for this root node. */ |
109 | struct varobj *rootvar; | |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Next root variable */ |
112 | struct varobj_root *next; | |
113 | }; | |
8b93c638 JM |
114 | |
115 | /* Every variable in the system has a structure of this type defined | |
116 | for it. This structure holds all information necessary to manipulate | |
117 | a particular object variable. Members which must be freed are noted. */ | |
118 | struct varobj | |
72330bd6 | 119 | { |
8b93c638 | 120 | |
72330bd6 AC |
121 | /* Alloc'd name of the variable for this object.. If this variable is a |
122 | child, then this name will be the child's source name. | |
123 | (bar, not foo.bar) */ | |
124 | /* NOTE: This is the "expression" */ | |
125 | char *name; | |
8b93c638 | 126 | |
02142340 VP |
127 | /* Alloc'd expression for this child. Can be used to create a |
128 | root variable corresponding to this child. */ | |
129 | char *path_expr; | |
130 | ||
72330bd6 AC |
131 | /* The alloc'd name for this variable's object. This is here for |
132 | convenience when constructing this object's children. */ | |
133 | char *obj_name; | |
8b93c638 | 134 | |
72330bd6 AC |
135 | /* Index of this variable in its parent or -1 */ |
136 | int index; | |
8b93c638 | 137 | |
202ddcaa VP |
138 | /* The type of this variable. This can be NULL |
139 | for artifial variable objects -- currently, the "accessibility" | |
140 | variable objects in C++. */ | |
72330bd6 | 141 | struct type *type; |
8b93c638 | 142 | |
b20d8971 VP |
143 | /* The value of this expression or subexpression. A NULL value |
144 | indicates there was an error getting this value. | |
b2c2bd75 VP |
145 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
146 | the value is either NULL, or not lazy. */ | |
30b28db1 | 147 | struct value *value; |
8b93c638 | 148 | |
72330bd6 AC |
149 | /* The number of (immediate) children this variable has */ |
150 | int num_children; | |
8b93c638 | 151 | |
72330bd6 AC |
152 | /* If this object is a child, this points to its immediate parent. */ |
153 | struct varobj *parent; | |
8b93c638 | 154 | |
28335dcc VP |
155 | /* Children of this object. */ |
156 | VEC (varobj_p) *children; | |
8b93c638 | 157 | |
b6313243 TT |
158 | /* Whether the children of this varobj were requested. This field is |
159 | used to decide if dynamic varobj should recompute their children. | |
160 | In the event that the frontend never asked for the children, we | |
161 | can avoid that. */ | |
162 | int children_requested; | |
163 | ||
72330bd6 AC |
164 | /* Description of the root variable. Points to root variable for children. */ |
165 | struct varobj_root *root; | |
8b93c638 | 166 | |
72330bd6 AC |
167 | /* The format of the output for this object */ |
168 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
169 | |
170 | /* Was this variable updated via a varobj_set_value operation */ | |
171 | int updated; | |
85265413 NR |
172 | |
173 | /* Last print value. */ | |
174 | char *print_value; | |
25d5ea92 VP |
175 | |
176 | /* Is this variable frozen. Frozen variables are never implicitly | |
177 | updated by -var-update * | |
178 | or -var-update <direct-or-indirect-parent>. */ | |
179 | int frozen; | |
180 | ||
181 | /* Is the value of this variable intentionally not fetched? It is | |
182 | not fetched if either the variable is frozen, or any parents is | |
183 | frozen. */ | |
184 | int not_fetched; | |
b6313243 | 185 | |
0cc7d26f TT |
186 | /* Sub-range of children which the MI consumer has requested. If |
187 | FROM < 0 or TO < 0, means that all children have been | |
188 | requested. */ | |
189 | int from; | |
190 | int to; | |
191 | ||
192 | /* The pretty-printer constructor. If NULL, then the default | |
193 | pretty-printer will be looked up. If None, then no | |
194 | pretty-printer will be installed. */ | |
195 | PyObject *constructor; | |
196 | ||
b6313243 TT |
197 | /* The pretty-printer that has been constructed. If NULL, then a |
198 | new printer object is needed, and one will be constructed. */ | |
199 | PyObject *pretty_printer; | |
0cc7d26f TT |
200 | |
201 | /* The iterator returned by the printer's 'children' method, or NULL | |
202 | if not available. */ | |
203 | PyObject *child_iter; | |
204 | ||
205 | /* We request one extra item from the iterator, so that we can | |
206 | report to the caller whether there are more items than we have | |
207 | already reported. However, we don't want to install this value | |
208 | when we read it, because that will mess up future updates. So, | |
209 | we stash it here instead. */ | |
210 | PyObject *saved_item; | |
72330bd6 | 211 | }; |
8b93c638 | 212 | |
8b93c638 | 213 | struct cpstack |
72330bd6 AC |
214 | { |
215 | char *name; | |
216 | struct cpstack *next; | |
217 | }; | |
8b93c638 JM |
218 | |
219 | /* A list of varobjs */ | |
220 | ||
221 | struct vlist | |
72330bd6 AC |
222 | { |
223 | struct varobj *var; | |
224 | struct vlist *next; | |
225 | }; | |
8b93c638 JM |
226 | |
227 | /* Private function prototypes */ | |
228 | ||
229 | /* Helper functions for the above subcommands. */ | |
230 | ||
a14ed312 | 231 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 232 | |
a14ed312 KB |
233 | static void delete_variable_1 (struct cpstack **, int *, |
234 | struct varobj *, int, int); | |
8b93c638 | 235 | |
a14ed312 | 236 | static int install_variable (struct varobj *); |
8b93c638 | 237 | |
a14ed312 | 238 | static void uninstall_variable (struct varobj *); |
8b93c638 | 239 | |
a14ed312 | 240 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 241 | |
b6313243 TT |
242 | static struct varobj * |
243 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
244 | struct value *value); | |
245 | ||
8b93c638 JM |
246 | /* Utility routines */ |
247 | ||
a14ed312 | 248 | static struct varobj *new_variable (void); |
8b93c638 | 249 | |
a14ed312 | 250 | static struct varobj *new_root_variable (void); |
8b93c638 | 251 | |
a14ed312 | 252 | static void free_variable (struct varobj *var); |
8b93c638 | 253 | |
74b7792f AC |
254 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
255 | ||
a14ed312 | 256 | static struct type *get_type (struct varobj *var); |
8b93c638 | 257 | |
6e2a9270 VP |
258 | static struct type *get_value_type (struct varobj *var); |
259 | ||
a14ed312 | 260 | static struct type *get_target_type (struct type *); |
8b93c638 | 261 | |
a14ed312 | 262 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 263 | |
a14ed312 | 264 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 265 | |
a14ed312 | 266 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 267 | |
acd65feb VP |
268 | static int install_new_value (struct varobj *var, struct value *value, |
269 | int initial); | |
270 | ||
8b93c638 JM |
271 | /* Language-specific routines. */ |
272 | ||
a14ed312 | 273 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 274 | |
a14ed312 | 275 | static int number_of_children (struct varobj *); |
8b93c638 | 276 | |
a14ed312 | 277 | static char *name_of_variable (struct varobj *); |
8b93c638 | 278 | |
a14ed312 | 279 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 280 | |
30b28db1 | 281 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 282 | |
30b28db1 | 283 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 284 | |
de051565 MK |
285 | static char *my_value_of_variable (struct varobj *var, |
286 | enum varobj_display_formats format); | |
8b93c638 | 287 | |
85265413 | 288 | static char *value_get_print_value (struct value *value, |
b6313243 | 289 | enum varobj_display_formats format, |
d452c4bc | 290 | struct varobj *var); |
85265413 | 291 | |
b2c2bd75 VP |
292 | static int varobj_value_is_changeable_p (struct varobj *var); |
293 | ||
294 | static int is_root_p (struct varobj *var); | |
8b93c638 | 295 | |
b6313243 TT |
296 | static struct varobj * |
297 | varobj_add_child (struct varobj *var, const char *name, struct value *value); | |
298 | ||
8b93c638 JM |
299 | /* C implementation */ |
300 | ||
a14ed312 | 301 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 302 | |
a14ed312 | 303 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 304 | |
a14ed312 | 305 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 306 | |
02142340 VP |
307 | static char *c_path_expr_of_child (struct varobj *child); |
308 | ||
30b28db1 | 309 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 310 | |
30b28db1 | 311 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 312 | |
a14ed312 | 313 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 314 | |
de051565 MK |
315 | static char *c_value_of_variable (struct varobj *var, |
316 | enum varobj_display_formats format); | |
8b93c638 JM |
317 | |
318 | /* C++ implementation */ | |
319 | ||
a14ed312 | 320 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 321 | |
a14ed312 | 322 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 323 | |
a14ed312 | 324 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 325 | |
a14ed312 | 326 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 327 | |
02142340 VP |
328 | static char *cplus_path_expr_of_child (struct varobj *child); |
329 | ||
30b28db1 | 330 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 331 | |
30b28db1 | 332 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 333 | |
a14ed312 | 334 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 335 | |
de051565 MK |
336 | static char *cplus_value_of_variable (struct varobj *var, |
337 | enum varobj_display_formats format); | |
8b93c638 JM |
338 | |
339 | /* Java implementation */ | |
340 | ||
a14ed312 | 341 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 342 | |
a14ed312 | 343 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 344 | |
a14ed312 | 345 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 346 | |
02142340 VP |
347 | static char *java_path_expr_of_child (struct varobj *child); |
348 | ||
30b28db1 | 349 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 350 | |
30b28db1 | 351 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 352 | |
a14ed312 | 353 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 354 | |
de051565 MK |
355 | static char *java_value_of_variable (struct varobj *var, |
356 | enum varobj_display_formats format); | |
8b93c638 JM |
357 | |
358 | /* The language specific vector */ | |
359 | ||
360 | struct language_specific | |
72330bd6 | 361 | { |
8b93c638 | 362 | |
72330bd6 AC |
363 | /* The language of this variable */ |
364 | enum varobj_languages language; | |
8b93c638 | 365 | |
72330bd6 AC |
366 | /* The number of children of PARENT. */ |
367 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 368 | |
72330bd6 AC |
369 | /* The name (expression) of a root varobj. */ |
370 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 371 | |
72330bd6 AC |
372 | /* The name of the INDEX'th child of PARENT. */ |
373 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 374 | |
02142340 VP |
375 | /* Returns the rooted expression of CHILD, which is a variable |
376 | obtain that has some parent. */ | |
377 | char *(*path_expr_of_child) (struct varobj * child); | |
378 | ||
30b28db1 AC |
379 | /* The ``struct value *'' of the root variable ROOT. */ |
380 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 381 | |
30b28db1 AC |
382 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
383 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 384 | |
72330bd6 AC |
385 | /* The type of the INDEX'th child of PARENT. */ |
386 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 387 | |
72330bd6 | 388 | /* The current value of VAR. */ |
de051565 MK |
389 | char *(*value_of_variable) (struct varobj * var, |
390 | enum varobj_display_formats format); | |
72330bd6 | 391 | }; |
8b93c638 JM |
392 | |
393 | /* Array of known source language routines. */ | |
d5d6fca5 | 394 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
395 | /* Unknown (try treating as C */ |
396 | { | |
72330bd6 AC |
397 | vlang_unknown, |
398 | c_number_of_children, | |
399 | c_name_of_variable, | |
400 | c_name_of_child, | |
02142340 | 401 | c_path_expr_of_child, |
72330bd6 AC |
402 | c_value_of_root, |
403 | c_value_of_child, | |
404 | c_type_of_child, | |
72330bd6 | 405 | c_value_of_variable} |
8b93c638 JM |
406 | , |
407 | /* C */ | |
408 | { | |
72330bd6 AC |
409 | vlang_c, |
410 | c_number_of_children, | |
411 | c_name_of_variable, | |
412 | c_name_of_child, | |
02142340 | 413 | c_path_expr_of_child, |
72330bd6 AC |
414 | c_value_of_root, |
415 | c_value_of_child, | |
416 | c_type_of_child, | |
72330bd6 | 417 | c_value_of_variable} |
8b93c638 JM |
418 | , |
419 | /* C++ */ | |
420 | { | |
72330bd6 AC |
421 | vlang_cplus, |
422 | cplus_number_of_children, | |
423 | cplus_name_of_variable, | |
424 | cplus_name_of_child, | |
02142340 | 425 | cplus_path_expr_of_child, |
72330bd6 AC |
426 | cplus_value_of_root, |
427 | cplus_value_of_child, | |
428 | cplus_type_of_child, | |
72330bd6 | 429 | cplus_value_of_variable} |
8b93c638 JM |
430 | , |
431 | /* Java */ | |
432 | { | |
72330bd6 AC |
433 | vlang_java, |
434 | java_number_of_children, | |
435 | java_name_of_variable, | |
436 | java_name_of_child, | |
02142340 | 437 | java_path_expr_of_child, |
72330bd6 AC |
438 | java_value_of_root, |
439 | java_value_of_child, | |
440 | java_type_of_child, | |
72330bd6 | 441 | java_value_of_variable} |
8b93c638 JM |
442 | }; |
443 | ||
444 | /* A little convenience enum for dealing with C++/Java */ | |
445 | enum vsections | |
72330bd6 AC |
446 | { |
447 | v_public = 0, v_private, v_protected | |
448 | }; | |
8b93c638 JM |
449 | |
450 | /* Private data */ | |
451 | ||
452 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 453 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
454 | |
455 | /* Header of the list of root variable objects */ | |
456 | static struct varobj_root *rootlist; | |
8b93c638 JM |
457 | |
458 | /* Prime number indicating the number of buckets in the hash table */ | |
459 | /* A prime large enough to avoid too many colisions */ | |
460 | #define VAROBJ_TABLE_SIZE 227 | |
461 | ||
462 | /* Pointer to the varobj hash table (built at run time) */ | |
463 | static struct vlist **varobj_table; | |
464 | ||
8b93c638 JM |
465 | /* Is the variable X one of our "fake" children? */ |
466 | #define CPLUS_FAKE_CHILD(x) \ | |
467 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
468 | \f | |
469 | ||
470 | /* API Implementation */ | |
b2c2bd75 VP |
471 | static int |
472 | is_root_p (struct varobj *var) | |
473 | { | |
474 | return (var->root->rootvar == var); | |
475 | } | |
8b93c638 | 476 | |
d452c4bc UW |
477 | #ifdef HAVE_PYTHON |
478 | /* Helper function to install a Python environment suitable for | |
479 | use during operations on VAR. */ | |
480 | struct cleanup * | |
481 | varobj_ensure_python_env (struct varobj *var) | |
482 | { | |
483 | return ensure_python_env (var->root->exp->gdbarch, | |
484 | var->root->exp->language_defn); | |
485 | } | |
486 | #endif | |
487 | ||
8b93c638 JM |
488 | /* Creates a varobj (not its children) */ |
489 | ||
7d8547c9 AC |
490 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
491 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
492 | ||
493 | static struct frame_info * | |
494 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
495 | { | |
496 | struct frame_info *frame = NULL; | |
497 | ||
498 | if (frame_addr == (CORE_ADDR) 0) | |
499 | return NULL; | |
500 | ||
9d49bdc2 PA |
501 | for (frame = get_current_frame (); |
502 | frame != NULL; | |
503 | frame = get_prev_frame (frame)) | |
7d8547c9 | 504 | { |
1fac167a UW |
505 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
506 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
507 | Truncate the frame base address in the same manner before | |
508 | comparing it against our argument. */ | |
509 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
510 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
511 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) | |
512 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
513 | ||
514 | if (frame_base == frame_addr) | |
7d8547c9 AC |
515 | return frame; |
516 | } | |
9d49bdc2 PA |
517 | |
518 | return NULL; | |
7d8547c9 AC |
519 | } |
520 | ||
8b93c638 JM |
521 | struct varobj * |
522 | varobj_create (char *objname, | |
72330bd6 | 523 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
524 | { |
525 | struct varobj *var; | |
2c67cb8b AC |
526 | struct frame_info *fi; |
527 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
528 | struct block *block; |
529 | struct cleanup *old_chain; | |
530 | ||
531 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
532 | var = new_root_variable (); | |
74b7792f | 533 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
534 | |
535 | if (expression != NULL) | |
536 | { | |
537 | char *p; | |
538 | enum varobj_languages lang; | |
e55dccf0 | 539 | struct value *value = NULL; |
8b93c638 | 540 | |
9d49bdc2 PA |
541 | /* Parse and evaluate the expression, filling in as much of the |
542 | variable's data as possible. */ | |
543 | ||
544 | if (has_stack_frames ()) | |
545 | { | |
546 | /* Allow creator to specify context of variable */ | |
547 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
548 | fi = get_selected_frame (NULL); | |
549 | else | |
550 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
551 | lookup using the frame ID and not just the frame's | |
552 | ``address''. This, of course, means an interface | |
553 | change. However, with out that interface change ISAs, | |
554 | such as the ia64 with its two stacks, won't work. | |
555 | Similar goes for the case where there is a frameless | |
556 | function. */ | |
557 | fi = find_frame_addr_in_frame_chain (frame); | |
558 | } | |
8b93c638 | 559 | else |
9d49bdc2 | 560 | fi = NULL; |
8b93c638 | 561 | |
73a93a32 JI |
562 | /* frame = -2 means always use selected frame */ |
563 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 564 | var->root->floating = 1; |
73a93a32 | 565 | |
8b93c638 JM |
566 | block = NULL; |
567 | if (fi != NULL) | |
ae767bfb | 568 | block = get_frame_block (fi, 0); |
8b93c638 JM |
569 | |
570 | p = expression; | |
571 | innermost_block = NULL; | |
73a93a32 JI |
572 | /* Wrap the call to parse expression, so we can |
573 | return a sensible error. */ | |
574 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
575 | { | |
576 | return NULL; | |
577 | } | |
8b93c638 JM |
578 | |
579 | /* Don't allow variables to be created for types. */ | |
580 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
581 | { | |
582 | do_cleanups (old_chain); | |
bc8332bb AC |
583 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
584 | " as an expression.\n"); | |
8b93c638 JM |
585 | return NULL; |
586 | } | |
587 | ||
588 | var->format = variable_default_display (var); | |
589 | var->root->valid_block = innermost_block; | |
1b36a34b | 590 | var->name = xstrdup (expression); |
02142340 | 591 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 592 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
593 | |
594 | /* When the frame is different from the current frame, | |
595 | we must select the appropriate frame before parsing | |
596 | the expression, otherwise the value will not be current. | |
597 | Since select_frame is so benign, just call it for all cases. */ | |
4e22772d | 598 | if (innermost_block) |
8b93c638 | 599 | { |
4e22772d JK |
600 | /* User could specify explicit FRAME-ADDR which was not found but |
601 | EXPRESSION is frame specific and we would not be able to evaluate | |
602 | it correctly next time. With VALID_BLOCK set we must also set | |
603 | FRAME and THREAD_ID. */ | |
604 | if (fi == NULL) | |
605 | error (_("Failed to find the specified frame")); | |
606 | ||
7a424e99 | 607 | var->root->frame = get_frame_id (fi); |
c5b48eac | 608 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 609 | old_fi = get_selected_frame (NULL); |
c5b48eac | 610 | select_frame (fi); |
8b93c638 JM |
611 | } |
612 | ||
340a7723 | 613 | /* We definitely need to catch errors here. |
8b93c638 JM |
614 | If evaluate_expression succeeds we got the value we wanted. |
615 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 616 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
617 | { |
618 | /* Error getting the value. Try to at least get the | |
619 | right type. */ | |
620 | struct value *type_only_value = evaluate_type (var->root->exp); | |
621 | var->type = value_type (type_only_value); | |
622 | } | |
623 | else | |
624 | var->type = value_type (value); | |
acd65feb | 625 | |
acd65feb | 626 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
627 | |
628 | /* Set language info */ | |
629 | lang = variable_language (var); | |
d5d6fca5 | 630 | var->root->lang = &languages[lang]; |
8b93c638 JM |
631 | |
632 | /* Set ourselves as our root */ | |
633 | var->root->rootvar = var; | |
634 | ||
635 | /* Reset the selected frame */ | |
e21458b2 | 636 | if (old_fi != NULL) |
0f7d239c | 637 | select_frame (old_fi); |
8b93c638 JM |
638 | } |
639 | ||
73a93a32 JI |
640 | /* If the variable object name is null, that means this |
641 | is a temporary variable, so don't install it. */ | |
642 | ||
643 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 644 | { |
1b36a34b | 645 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
646 | |
647 | /* If a varobj name is duplicated, the install will fail so | |
648 | we must clenup */ | |
649 | if (!install_variable (var)) | |
650 | { | |
651 | do_cleanups (old_chain); | |
652 | return NULL; | |
653 | } | |
654 | } | |
655 | ||
656 | discard_cleanups (old_chain); | |
657 | return var; | |
658 | } | |
659 | ||
660 | /* Generates an unique name that can be used for a varobj */ | |
661 | ||
662 | char * | |
663 | varobj_gen_name (void) | |
664 | { | |
665 | static int id = 0; | |
e64d9b3d | 666 | char *obj_name; |
8b93c638 JM |
667 | |
668 | /* generate a name for this object */ | |
669 | id++; | |
b435e160 | 670 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 671 | |
e64d9b3d | 672 | return obj_name; |
8b93c638 JM |
673 | } |
674 | ||
61d8f275 JK |
675 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
676 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
677 | |
678 | struct varobj * | |
679 | varobj_get_handle (char *objname) | |
680 | { | |
681 | struct vlist *cv; | |
682 | const char *chp; | |
683 | unsigned int index = 0; | |
684 | unsigned int i = 1; | |
685 | ||
686 | for (chp = objname; *chp; chp++) | |
687 | { | |
688 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
689 | } | |
690 | ||
691 | cv = *(varobj_table + index); | |
692 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
693 | cv = cv->next; | |
694 | ||
695 | if (cv == NULL) | |
8a3fe4f8 | 696 | error (_("Variable object not found")); |
8b93c638 JM |
697 | |
698 | return cv->var; | |
699 | } | |
700 | ||
701 | /* Given the handle, return the name of the object */ | |
702 | ||
703 | char * | |
704 | varobj_get_objname (struct varobj *var) | |
705 | { | |
706 | return var->obj_name; | |
707 | } | |
708 | ||
709 | /* Given the handle, return the expression represented by the object */ | |
710 | ||
711 | char * | |
712 | varobj_get_expression (struct varobj *var) | |
713 | { | |
714 | return name_of_variable (var); | |
715 | } | |
716 | ||
717 | /* Deletes a varobj and all its children if only_children == 0, | |
718 | otherwise deletes only the children; returns a malloc'ed list of all the | |
719 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
720 | ||
721 | int | |
722 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
723 | { | |
724 | int delcount; | |
725 | int mycount; | |
726 | struct cpstack *result = NULL; | |
727 | char **cp; | |
728 | ||
729 | /* Initialize a stack for temporary results */ | |
730 | cppush (&result, NULL); | |
731 | ||
732 | if (only_children) | |
733 | /* Delete only the variable children */ | |
734 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
735 | else | |
736 | /* Delete the variable and all its children */ | |
737 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
738 | ||
739 | /* We may have been asked to return a list of what has been deleted */ | |
740 | if (dellist != NULL) | |
741 | { | |
742 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
743 | ||
744 | cp = *dellist; | |
745 | mycount = delcount; | |
746 | *cp = cppop (&result); | |
747 | while ((*cp != NULL) && (mycount > 0)) | |
748 | { | |
749 | mycount--; | |
750 | cp++; | |
751 | *cp = cppop (&result); | |
752 | } | |
753 | ||
754 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 755 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 756 | mycount); |
8b93c638 JM |
757 | } |
758 | ||
759 | return delcount; | |
760 | } | |
761 | ||
b6313243 TT |
762 | /* Convenience function for varobj_set_visualizer. Instantiate a |
763 | pretty-printer for a given value. */ | |
764 | static PyObject * | |
765 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
766 | { | |
767 | #if HAVE_PYTHON | |
768 | PyObject *val_obj = NULL; | |
769 | PyObject *printer; | |
b6313243 | 770 | |
b6313243 | 771 | val_obj = value_to_value_object (value); |
b6313243 TT |
772 | if (! val_obj) |
773 | return NULL; | |
774 | ||
775 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
776 | Py_DECREF (val_obj); | |
777 | return printer; | |
778 | #endif | |
779 | return NULL; | |
780 | } | |
781 | ||
8b93c638 JM |
782 | /* Set/Get variable object display format */ |
783 | ||
784 | enum varobj_display_formats | |
785 | varobj_set_display_format (struct varobj *var, | |
786 | enum varobj_display_formats format) | |
787 | { | |
788 | switch (format) | |
789 | { | |
790 | case FORMAT_NATURAL: | |
791 | case FORMAT_BINARY: | |
792 | case FORMAT_DECIMAL: | |
793 | case FORMAT_HEXADECIMAL: | |
794 | case FORMAT_OCTAL: | |
795 | var->format = format; | |
796 | break; | |
797 | ||
798 | default: | |
799 | var->format = variable_default_display (var); | |
800 | } | |
801 | ||
ae7d22a6 VP |
802 | if (varobj_value_is_changeable_p (var) |
803 | && var->value && !value_lazy (var->value)) | |
804 | { | |
6c761d9c | 805 | xfree (var->print_value); |
d452c4bc | 806 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
807 | } |
808 | ||
8b93c638 JM |
809 | return var->format; |
810 | } | |
811 | ||
812 | enum varobj_display_formats | |
813 | varobj_get_display_format (struct varobj *var) | |
814 | { | |
815 | return var->format; | |
816 | } | |
817 | ||
b6313243 TT |
818 | char * |
819 | varobj_get_display_hint (struct varobj *var) | |
820 | { | |
821 | char *result = NULL; | |
822 | ||
823 | #if HAVE_PYTHON | |
d452c4bc UW |
824 | struct cleanup *back_to = varobj_ensure_python_env (var); |
825 | ||
b6313243 TT |
826 | if (var->pretty_printer) |
827 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
828 | |
829 | do_cleanups (back_to); | |
b6313243 TT |
830 | #endif |
831 | ||
832 | return result; | |
833 | } | |
834 | ||
0cc7d26f TT |
835 | /* Return true if the varobj has items after TO, false otherwise. */ |
836 | ||
837 | int | |
838 | varobj_has_more (struct varobj *var, int to) | |
839 | { | |
840 | if (VEC_length (varobj_p, var->children) > to) | |
841 | return 1; | |
842 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
843 | && var->saved_item != NULL); | |
844 | } | |
845 | ||
c5b48eac VP |
846 | /* If the variable object is bound to a specific thread, that |
847 | is its evaluation can always be done in context of a frame | |
848 | inside that thread, returns GDB id of the thread -- which | |
849 | is always positive. Otherwise, returns -1. */ | |
850 | int | |
851 | varobj_get_thread_id (struct varobj *var) | |
852 | { | |
853 | if (var->root->valid_block && var->root->thread_id > 0) | |
854 | return var->root->thread_id; | |
855 | else | |
856 | return -1; | |
857 | } | |
858 | ||
25d5ea92 VP |
859 | void |
860 | varobj_set_frozen (struct varobj *var, int frozen) | |
861 | { | |
862 | /* When a variable is unfrozen, we don't fetch its value. | |
863 | The 'not_fetched' flag remains set, so next -var-update | |
864 | won't complain. | |
865 | ||
866 | We don't fetch the value, because for structures the client | |
867 | should do -var-update anyway. It would be bad to have different | |
868 | client-size logic for structure and other types. */ | |
869 | var->frozen = frozen; | |
870 | } | |
871 | ||
872 | int | |
873 | varobj_get_frozen (struct varobj *var) | |
874 | { | |
875 | return var->frozen; | |
876 | } | |
877 | ||
0cc7d26f TT |
878 | /* A helper function that restricts a range to what is actually |
879 | available in a VEC. This follows the usual rules for the meaning | |
880 | of FROM and TO -- if either is negative, the entire range is | |
881 | used. */ | |
882 | ||
883 | static void | |
884 | restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
885 | { | |
886 | if (*from < 0 || *to < 0) | |
887 | { | |
888 | *from = 0; | |
889 | *to = VEC_length (varobj_p, children); | |
890 | } | |
891 | else | |
892 | { | |
893 | if (*from > VEC_length (varobj_p, children)) | |
894 | *from = VEC_length (varobj_p, children); | |
895 | if (*to > VEC_length (varobj_p, children)) | |
896 | *to = VEC_length (varobj_p, children); | |
897 | if (*from > *to) | |
898 | *from = *to; | |
899 | } | |
900 | } | |
901 | ||
902 | /* A helper for update_dynamic_varobj_children that installs a new | |
903 | child when needed. */ | |
904 | ||
905 | static void | |
906 | install_dynamic_child (struct varobj *var, | |
907 | VEC (varobj_p) **changed, | |
908 | VEC (varobj_p) **new, | |
909 | VEC (varobj_p) **unchanged, | |
910 | int *cchanged, | |
911 | int index, | |
912 | const char *name, | |
913 | struct value *value) | |
914 | { | |
915 | if (VEC_length (varobj_p, var->children) < index + 1) | |
916 | { | |
917 | /* There's no child yet. */ | |
918 | struct varobj *child = varobj_add_child (var, name, value); | |
919 | if (new) | |
920 | { | |
921 | VEC_safe_push (varobj_p, *new, child); | |
922 | *cchanged = 1; | |
923 | } | |
924 | } | |
925 | else | |
926 | { | |
927 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
928 | if (install_new_value (existing, value, 0)) | |
929 | { | |
930 | if (changed) | |
931 | VEC_safe_push (varobj_p, *changed, existing); | |
932 | } | |
933 | else if (unchanged) | |
934 | VEC_safe_push (varobj_p, *unchanged, existing); | |
935 | } | |
936 | } | |
937 | ||
938 | #if HAVE_PYTHON | |
939 | ||
940 | static int | |
941 | dynamic_varobj_has_child_method (struct varobj *var) | |
942 | { | |
943 | struct cleanup *back_to; | |
944 | PyObject *printer = var->pretty_printer; | |
945 | int result; | |
946 | ||
947 | back_to = varobj_ensure_python_env (var); | |
948 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
949 | do_cleanups (back_to); | |
950 | return result; | |
951 | } | |
952 | ||
953 | #endif | |
954 | ||
b6313243 TT |
955 | static int |
956 | update_dynamic_varobj_children (struct varobj *var, | |
957 | VEC (varobj_p) **changed, | |
0cc7d26f TT |
958 | VEC (varobj_p) **new, |
959 | VEC (varobj_p) **unchanged, | |
960 | int *cchanged, | |
961 | int update_children, | |
962 | int from, | |
963 | int to) | |
b6313243 TT |
964 | { |
965 | #if HAVE_PYTHON | |
b6313243 TT |
966 | struct cleanup *back_to; |
967 | PyObject *children; | |
b6313243 | 968 | int i; |
b6313243 | 969 | PyObject *printer = var->pretty_printer; |
b6313243 | 970 | |
d452c4bc | 971 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
972 | |
973 | *cchanged = 0; | |
974 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
975 | { | |
976 | do_cleanups (back_to); | |
977 | return 0; | |
978 | } | |
979 | ||
0cc7d26f | 980 | if (update_children || !var->child_iter) |
b6313243 | 981 | { |
0cc7d26f TT |
982 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, |
983 | NULL); | |
b6313243 | 984 | |
0cc7d26f TT |
985 | if (!children) |
986 | { | |
987 | gdbpy_print_stack (); | |
988 | error (_("Null value returned for children")); | |
989 | } | |
b6313243 | 990 | |
0cc7d26f | 991 | make_cleanup_py_decref (children); |
b6313243 | 992 | |
0cc7d26f TT |
993 | if (!PyIter_Check (children)) |
994 | error (_("Returned value is not iterable")); | |
995 | ||
996 | Py_XDECREF (var->child_iter); | |
997 | var->child_iter = PyObject_GetIter (children); | |
998 | if (!var->child_iter) | |
999 | { | |
1000 | gdbpy_print_stack (); | |
1001 | error (_("Could not get children iterator")); | |
1002 | } | |
1003 | ||
1004 | Py_XDECREF (var->saved_item); | |
1005 | var->saved_item = NULL; | |
1006 | ||
1007 | i = 0; | |
b6313243 | 1008 | } |
0cc7d26f TT |
1009 | else |
1010 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 1011 | |
0cc7d26f TT |
1012 | /* We ask for one extra child, so that MI can report whether there |
1013 | are more children. */ | |
1014 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 1015 | { |
0cc7d26f | 1016 | PyObject *item; |
b6313243 | 1017 | |
0cc7d26f TT |
1018 | /* See if there was a leftover from last time. */ |
1019 | if (var->saved_item) | |
1020 | { | |
1021 | item = var->saved_item; | |
1022 | var->saved_item = NULL; | |
1023 | } | |
1024 | else | |
1025 | item = PyIter_Next (var->child_iter); | |
b6313243 | 1026 | |
0cc7d26f TT |
1027 | if (!item) |
1028 | break; | |
b6313243 | 1029 | |
0cc7d26f TT |
1030 | /* We don't want to push the extra child on any report list. */ |
1031 | if (to < 0 || i < to) | |
b6313243 | 1032 | { |
0cc7d26f TT |
1033 | PyObject *py_v; |
1034 | char *name; | |
1035 | struct value *v; | |
1036 | struct cleanup *inner; | |
1037 | int can_mention = from < 0 || i >= from; | |
1038 | ||
1039 | inner = make_cleanup_py_decref (item); | |
1040 | ||
1041 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
1042 | error (_("Invalid item from the child list")); | |
1043 | ||
1044 | v = convert_value_from_python (py_v); | |
1045 | install_dynamic_child (var, can_mention ? changed : NULL, | |
1046 | can_mention ? new : NULL, | |
1047 | can_mention ? unchanged : NULL, | |
1048 | can_mention ? cchanged : NULL, i, name, v); | |
1049 | do_cleanups (inner); | |
b6313243 | 1050 | } |
0cc7d26f | 1051 | else |
b6313243 | 1052 | { |
0cc7d26f TT |
1053 | Py_XDECREF (var->saved_item); |
1054 | var->saved_item = item; | |
b6313243 | 1055 | |
0cc7d26f TT |
1056 | /* We want to truncate the child list just before this |
1057 | element. */ | |
1058 | break; | |
1059 | } | |
b6313243 TT |
1060 | } |
1061 | ||
1062 | if (i < VEC_length (varobj_p, var->children)) | |
1063 | { | |
0cc7d26f TT |
1064 | int j; |
1065 | *cchanged = 1; | |
1066 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
1067 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
1068 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 1069 | } |
0cc7d26f TT |
1070 | |
1071 | /* If there are fewer children than requested, note that the list of | |
1072 | children changed. */ | |
1073 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
1074 | *cchanged = 1; | |
1075 | ||
b6313243 TT |
1076 | var->num_children = VEC_length (varobj_p, var->children); |
1077 | ||
1078 | do_cleanups (back_to); | |
1079 | ||
b6313243 TT |
1080 | return 1; |
1081 | #else | |
1082 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
1083 | #endif | |
1084 | } | |
25d5ea92 | 1085 | |
8b93c638 JM |
1086 | int |
1087 | varobj_get_num_children (struct varobj *var) | |
1088 | { | |
1089 | if (var->num_children == -1) | |
b6313243 | 1090 | { |
0cc7d26f TT |
1091 | if (var->pretty_printer) |
1092 | { | |
1093 | int dummy; | |
1094 | ||
1095 | /* If we have a dynamic varobj, don't report -1 children. | |
1096 | So, try to fetch some children first. */ | |
1097 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, | |
1098 | 0, 0, 0); | |
1099 | } | |
1100 | else | |
b6313243 TT |
1101 | var->num_children = number_of_children (var); |
1102 | } | |
8b93c638 | 1103 | |
0cc7d26f | 1104 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
1105 | } |
1106 | ||
1107 | /* Creates a list of the immediate children of a variable object; | |
1108 | the return code is the number of such children or -1 on error */ | |
1109 | ||
d56d46f5 | 1110 | VEC (varobj_p)* |
0cc7d26f | 1111 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 JM |
1112 | { |
1113 | struct varobj *child; | |
1114 | char *name; | |
b6313243 TT |
1115 | int i, children_changed; |
1116 | ||
1117 | var->children_requested = 1; | |
1118 | ||
0cc7d26f TT |
1119 | if (var->pretty_printer) |
1120 | { | |
b6313243 TT |
1121 | /* This, in theory, can result in the number of children changing without |
1122 | frontend noticing. But well, calling -var-list-children on the same | |
1123 | varobj twice is not something a sane frontend would do. */ | |
0cc7d26f TT |
1124 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, |
1125 | 0, 0, *to); | |
1126 | restrict_range (var->children, from, to); | |
1127 | return var->children; | |
1128 | } | |
8b93c638 | 1129 | |
8b93c638 JM |
1130 | if (var->num_children == -1) |
1131 | var->num_children = number_of_children (var); | |
1132 | ||
74a44383 DJ |
1133 | /* If that failed, give up. */ |
1134 | if (var->num_children == -1) | |
d56d46f5 | 1135 | return var->children; |
74a44383 | 1136 | |
28335dcc VP |
1137 | /* If we're called when the list of children is not yet initialized, |
1138 | allocate enough elements in it. */ | |
1139 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
1140 | VEC_safe_push (varobj_p, var->children, NULL); | |
1141 | ||
8b93c638 JM |
1142 | for (i = 0; i < var->num_children; i++) |
1143 | { | |
d56d46f5 | 1144 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1145 | |
1146 | if (existing == NULL) | |
1147 | { | |
1148 | /* Either it's the first call to varobj_list_children for | |
1149 | this variable object, and the child was never created, | |
1150 | or it was explicitly deleted by the client. */ | |
1151 | name = name_of_child (var, i); | |
1152 | existing = create_child (var, i, name); | |
1153 | VEC_replace (varobj_p, var->children, i, existing); | |
1154 | } | |
8b93c638 JM |
1155 | } |
1156 | ||
0cc7d26f | 1157 | restrict_range (var->children, from, to); |
d56d46f5 | 1158 | return var->children; |
8b93c638 JM |
1159 | } |
1160 | ||
b6313243 TT |
1161 | static struct varobj * |
1162 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1163 | { | |
1164 | varobj_p v = create_child_with_value (var, | |
1165 | VEC_length (varobj_p, var->children), | |
1166 | name, value); | |
1167 | VEC_safe_push (varobj_p, var->children, v); | |
b6313243 TT |
1168 | return v; |
1169 | } | |
1170 | ||
8b93c638 JM |
1171 | /* Obtain the type of an object Variable as a string similar to the one gdb |
1172 | prints on the console */ | |
1173 | ||
1174 | char * | |
1175 | varobj_get_type (struct varobj *var) | |
1176 | { | |
8b93c638 | 1177 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1178 | NULL, too.) |
1179 | Do not return a type for invalid variables as well. */ | |
1180 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1181 | return NULL; |
1182 | ||
1a4300e9 | 1183 | return type_to_string (var->type); |
8b93c638 JM |
1184 | } |
1185 | ||
1ecb4ee0 DJ |
1186 | /* Obtain the type of an object variable. */ |
1187 | ||
1188 | struct type * | |
1189 | varobj_get_gdb_type (struct varobj *var) | |
1190 | { | |
1191 | return var->type; | |
1192 | } | |
1193 | ||
02142340 VP |
1194 | /* Return a pointer to the full rooted expression of varobj VAR. |
1195 | If it has not been computed yet, compute it. */ | |
1196 | char * | |
1197 | varobj_get_path_expr (struct varobj *var) | |
1198 | { | |
1199 | if (var->path_expr != NULL) | |
1200 | return var->path_expr; | |
1201 | else | |
1202 | { | |
1203 | /* For root varobjs, we initialize path_expr | |
1204 | when creating varobj, so here it should be | |
1205 | child varobj. */ | |
1206 | gdb_assert (!is_root_p (var)); | |
1207 | return (*var->root->lang->path_expr_of_child) (var); | |
1208 | } | |
1209 | } | |
1210 | ||
8b93c638 JM |
1211 | enum varobj_languages |
1212 | varobj_get_language (struct varobj *var) | |
1213 | { | |
1214 | return variable_language (var); | |
1215 | } | |
1216 | ||
1217 | int | |
1218 | varobj_get_attributes (struct varobj *var) | |
1219 | { | |
1220 | int attributes = 0; | |
1221 | ||
340a7723 | 1222 | if (varobj_editable_p (var)) |
8b93c638 JM |
1223 | /* FIXME: define masks for attributes */ |
1224 | attributes |= 0x00000001; /* Editable */ | |
1225 | ||
1226 | return attributes; | |
1227 | } | |
1228 | ||
0cc7d26f TT |
1229 | int |
1230 | varobj_pretty_printed_p (struct varobj *var) | |
1231 | { | |
1232 | return var->pretty_printer != NULL; | |
1233 | } | |
1234 | ||
de051565 MK |
1235 | char * |
1236 | varobj_get_formatted_value (struct varobj *var, | |
1237 | enum varobj_display_formats format) | |
1238 | { | |
1239 | return my_value_of_variable (var, format); | |
1240 | } | |
1241 | ||
8b93c638 JM |
1242 | char * |
1243 | varobj_get_value (struct varobj *var) | |
1244 | { | |
de051565 | 1245 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1246 | } |
1247 | ||
1248 | /* Set the value of an object variable (if it is editable) to the | |
1249 | value of the given expression */ | |
1250 | /* Note: Invokes functions that can call error() */ | |
1251 | ||
1252 | int | |
1253 | varobj_set_value (struct varobj *var, char *expression) | |
1254 | { | |
30b28db1 | 1255 | struct value *val; |
8b93c638 | 1256 | int offset = 0; |
a6c442d8 | 1257 | int error = 0; |
8b93c638 JM |
1258 | |
1259 | /* The argument "expression" contains the variable's new value. | |
1260 | We need to first construct a legal expression for this -- ugh! */ | |
1261 | /* Does this cover all the bases? */ | |
1262 | struct expression *exp; | |
30b28db1 | 1263 | struct value *value; |
8b93c638 | 1264 | int saved_input_radix = input_radix; |
340a7723 NR |
1265 | char *s = expression; |
1266 | int i; | |
8b93c638 | 1267 | |
340a7723 | 1268 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1269 | |
340a7723 NR |
1270 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
1271 | exp = parse_exp_1 (&s, 0, 0); | |
1272 | if (!gdb_evaluate_expression (exp, &value)) | |
1273 | { | |
1274 | /* We cannot proceed without a valid expression. */ | |
1275 | xfree (exp); | |
1276 | return 0; | |
8b93c638 JM |
1277 | } |
1278 | ||
340a7723 NR |
1279 | /* All types that are editable must also be changeable. */ |
1280 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1281 | ||
1282 | /* The value of a changeable variable object must not be lazy. */ | |
1283 | gdb_assert (!value_lazy (var->value)); | |
1284 | ||
1285 | /* Need to coerce the input. We want to check if the | |
1286 | value of the variable object will be different | |
1287 | after assignment, and the first thing value_assign | |
1288 | does is coerce the input. | |
1289 | For example, if we are assigning an array to a pointer variable we | |
1290 | should compare the pointer with the the array's address, not with the | |
1291 | array's content. */ | |
1292 | value = coerce_array (value); | |
1293 | ||
1294 | /* The new value may be lazy. gdb_value_assign, or | |
1295 | rather value_contents, will take care of this. | |
1296 | If fetching of the new value will fail, gdb_value_assign | |
1297 | with catch the exception. */ | |
1298 | if (!gdb_value_assign (var->value, value, &val)) | |
1299 | return 0; | |
1300 | ||
1301 | /* If the value has changed, record it, so that next -var-update can | |
1302 | report this change. If a variable had a value of '1', we've set it | |
1303 | to '333' and then set again to '1', when -var-update will report this | |
1304 | variable as changed -- because the first assignment has set the | |
1305 | 'updated' flag. There's no need to optimize that, because return value | |
1306 | of -var-update should be considered an approximation. */ | |
1307 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
1308 | input_radix = saved_input_radix; | |
1309 | return 1; | |
8b93c638 JM |
1310 | } |
1311 | ||
0cc7d26f TT |
1312 | #if HAVE_PYTHON |
1313 | ||
1314 | /* A helper function to install a constructor function and visualizer | |
1315 | in a varobj. */ | |
1316 | ||
1317 | static void | |
1318 | install_visualizer (struct varobj *var, PyObject *constructor, | |
1319 | PyObject *visualizer) | |
1320 | { | |
1321 | Py_XDECREF (var->constructor); | |
1322 | var->constructor = constructor; | |
1323 | ||
1324 | Py_XDECREF (var->pretty_printer); | |
1325 | var->pretty_printer = visualizer; | |
1326 | ||
1327 | Py_XDECREF (var->child_iter); | |
1328 | var->child_iter = NULL; | |
1329 | } | |
1330 | ||
1331 | /* Install the default visualizer for VAR. */ | |
1332 | ||
1333 | static void | |
1334 | install_default_visualizer (struct varobj *var) | |
1335 | { | |
1336 | if (pretty_printing) | |
1337 | { | |
1338 | PyObject *pretty_printer = NULL; | |
1339 | ||
1340 | if (var->value) | |
1341 | { | |
1342 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1343 | if (! pretty_printer) | |
1344 | { | |
1345 | gdbpy_print_stack (); | |
1346 | error (_("Cannot instantiate printer for default visualizer")); | |
1347 | } | |
1348 | } | |
1349 | ||
1350 | if (pretty_printer == Py_None) | |
1351 | { | |
1352 | Py_DECREF (pretty_printer); | |
1353 | pretty_printer = NULL; | |
1354 | } | |
1355 | ||
1356 | install_visualizer (var, NULL, pretty_printer); | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1361 | make a new object. */ | |
1362 | ||
1363 | static void | |
1364 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1365 | { | |
1366 | PyObject *pretty_printer; | |
1367 | ||
1368 | Py_INCREF (constructor); | |
1369 | if (constructor == Py_None) | |
1370 | pretty_printer = NULL; | |
1371 | else | |
1372 | { | |
1373 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1374 | if (! pretty_printer) | |
1375 | { | |
1376 | gdbpy_print_stack (); | |
1377 | Py_DECREF (constructor); | |
1378 | constructor = Py_None; | |
1379 | Py_INCREF (constructor); | |
1380 | } | |
1381 | ||
1382 | if (pretty_printer == Py_None) | |
1383 | { | |
1384 | Py_DECREF (pretty_printer); | |
1385 | pretty_printer = NULL; | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | install_visualizer (var, constructor, pretty_printer); | |
1390 | } | |
1391 | ||
1392 | #endif /* HAVE_PYTHON */ | |
1393 | ||
1394 | /* A helper function for install_new_value. This creates and installs | |
1395 | a visualizer for VAR, if appropriate. */ | |
1396 | ||
1397 | static void | |
1398 | install_new_value_visualizer (struct varobj *var) | |
1399 | { | |
1400 | #if HAVE_PYTHON | |
1401 | /* If the constructor is None, then we want the raw value. If VAR | |
1402 | does not have a value, just skip this. */ | |
1403 | if (var->constructor != Py_None && var->value) | |
1404 | { | |
1405 | struct cleanup *cleanup; | |
1406 | PyObject *pretty_printer = NULL; | |
1407 | ||
1408 | cleanup = varobj_ensure_python_env (var); | |
1409 | ||
1410 | if (!var->constructor) | |
1411 | install_default_visualizer (var); | |
1412 | else | |
1413 | construct_visualizer (var, var->constructor); | |
1414 | ||
1415 | do_cleanups (cleanup); | |
1416 | } | |
1417 | #else | |
1418 | /* Do nothing. */ | |
1419 | #endif | |
1420 | } | |
1421 | ||
acd65feb VP |
1422 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1423 | this is the first assignement after the variable object was just | |
1424 | created, or changed type. In that case, just assign the value | |
1425 | and return 0. | |
ee342b23 VP |
1426 | Otherwise, assign the new value, and return 1 if the value is different |
1427 | from the current one, 0 otherwise. The comparison is done on textual | |
1428 | representation of value. Therefore, some types need not be compared. E.g. | |
1429 | for structures the reported value is always "{...}", so no comparison is | |
1430 | necessary here. If the old value was NULL and new one is not, or vice versa, | |
1431 | we always return 1. | |
b26ed50d VP |
1432 | |
1433 | The VALUE parameter should not be released -- the function will | |
1434 | take care of releasing it when needed. */ | |
acd65feb VP |
1435 | static int |
1436 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1437 | { | |
1438 | int changeable; | |
1439 | int need_to_fetch; | |
1440 | int changed = 0; | |
25d5ea92 | 1441 | int intentionally_not_fetched = 0; |
7a4d50bf | 1442 | char *print_value = NULL; |
acd65feb | 1443 | |
acd65feb VP |
1444 | /* We need to know the varobj's type to decide if the value should |
1445 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1446 | a type. */ | |
1447 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1448 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1449 | |
1450 | /* If the type has custom visualizer, we consider it to be always | |
1451 | changeable. FIXME: need to make sure this behaviour will not | |
1452 | mess up read-sensitive values. */ | |
1453 | if (var->pretty_printer) | |
1454 | changeable = 1; | |
1455 | ||
acd65feb VP |
1456 | need_to_fetch = changeable; |
1457 | ||
b26ed50d VP |
1458 | /* We are not interested in the address of references, and given |
1459 | that in C++ a reference is not rebindable, it cannot | |
1460 | meaningfully change. So, get hold of the real value. */ | |
1461 | if (value) | |
0cc7d26f | 1462 | value = coerce_ref (value); |
b26ed50d | 1463 | |
acd65feb VP |
1464 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1465 | /* For unions, we need to fetch the value implicitly because | |
1466 | of implementation of union member fetch. When gdb | |
1467 | creates a value for a field and the value of the enclosing | |
1468 | structure is not lazy, it immediately copies the necessary | |
1469 | bytes from the enclosing values. If the enclosing value is | |
1470 | lazy, the call to value_fetch_lazy on the field will read | |
1471 | the data from memory. For unions, that means we'll read the | |
1472 | same memory more than once, which is not desirable. So | |
1473 | fetch now. */ | |
1474 | need_to_fetch = 1; | |
1475 | ||
1476 | /* The new value might be lazy. If the type is changeable, | |
1477 | that is we'll be comparing values of this type, fetch the | |
1478 | value now. Otherwise, on the next update the old value | |
1479 | will be lazy, which means we've lost that old value. */ | |
1480 | if (need_to_fetch && value && value_lazy (value)) | |
1481 | { | |
25d5ea92 VP |
1482 | struct varobj *parent = var->parent; |
1483 | int frozen = var->frozen; | |
1484 | for (; !frozen && parent; parent = parent->parent) | |
1485 | frozen |= parent->frozen; | |
1486 | ||
1487 | if (frozen && initial) | |
1488 | { | |
1489 | /* For variables that are frozen, or are children of frozen | |
1490 | variables, we don't do fetch on initial assignment. | |
1491 | For non-initial assignemnt we do the fetch, since it means we're | |
1492 | explicitly asked to compare the new value with the old one. */ | |
1493 | intentionally_not_fetched = 1; | |
1494 | } | |
1495 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1496 | { |
acd65feb VP |
1497 | /* Set the value to NULL, so that for the next -var-update, |
1498 | we don't try to compare the new value with this value, | |
1499 | that we couldn't even read. */ | |
1500 | value = NULL; | |
1501 | } | |
acd65feb VP |
1502 | } |
1503 | ||
b6313243 | 1504 | |
7a4d50bf VP |
1505 | /* Below, we'll be comparing string rendering of old and new |
1506 | values. Don't get string rendering if the value is | |
1507 | lazy -- if it is, the code above has decided that the value | |
1508 | should not be fetched. */ | |
0cc7d26f | 1509 | if (value && !value_lazy (value) && !var->pretty_printer) |
d452c4bc | 1510 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1511 | |
acd65feb VP |
1512 | /* If the type is changeable, compare the old and the new values. |
1513 | If this is the initial assignment, we don't have any old value | |
1514 | to compare with. */ | |
7a4d50bf | 1515 | if (!initial && changeable) |
acd65feb VP |
1516 | { |
1517 | /* If the value of the varobj was changed by -var-set-value, then the | |
1518 | value in the varobj and in the target is the same. However, that value | |
1519 | is different from the value that the varobj had after the previous | |
57e66780 | 1520 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1521 | if (var->updated) |
57e66780 | 1522 | { |
57e66780 DJ |
1523 | changed = 1; |
1524 | } | |
0cc7d26f | 1525 | else if (! var->pretty_printer) |
acd65feb VP |
1526 | { |
1527 | /* Try to compare the values. That requires that both | |
1528 | values are non-lazy. */ | |
25d5ea92 VP |
1529 | if (var->not_fetched && value_lazy (var->value)) |
1530 | { | |
1531 | /* This is a frozen varobj and the value was never read. | |
1532 | Presumably, UI shows some "never read" indicator. | |
1533 | Now that we've fetched the real value, we need to report | |
1534 | this varobj as changed so that UI can show the real | |
1535 | value. */ | |
1536 | changed = 1; | |
1537 | } | |
1538 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1539 | /* Equal. */ |
1540 | ; | |
1541 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1542 | { |
57e66780 DJ |
1543 | changed = 1; |
1544 | } | |
acd65feb VP |
1545 | else |
1546 | { | |
1547 | gdb_assert (!value_lazy (var->value)); | |
1548 | gdb_assert (!value_lazy (value)); | |
85265413 | 1549 | |
57e66780 | 1550 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1551 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1552 | changed = 1; |
acd65feb VP |
1553 | } |
1554 | } | |
1555 | } | |
85265413 | 1556 | |
ee342b23 VP |
1557 | if (!initial && !changeable) |
1558 | { | |
1559 | /* For values that are not changeable, we don't compare the values. | |
1560 | However, we want to notice if a value was not NULL and now is NULL, | |
1561 | or vise versa, so that we report when top-level varobjs come in scope | |
1562 | and leave the scope. */ | |
1563 | changed = (var->value != NULL) != (value != NULL); | |
1564 | } | |
1565 | ||
acd65feb | 1566 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1567 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1568 | value_free (var->value); |
1569 | var->value = value; | |
0cc7d26f TT |
1570 | if (value != NULL) |
1571 | value_incref (value); | |
25d5ea92 VP |
1572 | if (value && value_lazy (value) && intentionally_not_fetched) |
1573 | var->not_fetched = 1; | |
1574 | else | |
1575 | var->not_fetched = 0; | |
acd65feb | 1576 | var->updated = 0; |
85265413 | 1577 | |
0cc7d26f TT |
1578 | install_new_value_visualizer (var); |
1579 | ||
1580 | /* If we installed a pretty-printer, re-compare the printed version | |
1581 | to see if the variable changed. */ | |
1582 | if (var->pretty_printer) | |
1583 | { | |
1584 | xfree (print_value); | |
1585 | print_value = value_get_print_value (var->value, var->format, var); | |
1586 | if (!var->print_value || strcmp (var->print_value, print_value) != 0) | |
1587 | changed = 1; | |
1588 | } | |
1589 | if (var->print_value) | |
1590 | xfree (var->print_value); | |
1591 | var->print_value = print_value; | |
1592 | ||
b26ed50d | 1593 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1594 | |
1595 | return changed; | |
1596 | } | |
acd65feb | 1597 | |
0cc7d26f TT |
1598 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1599 | and TO are out parameters; *FROM and *TO will be set to the | |
1600 | selected sub-range of VAR. If no range was selected using | |
1601 | -var-set-update-range, then both will be -1. */ | |
1602 | void | |
1603 | varobj_get_child_range (struct varobj *var, int *from, int *to) | |
b6313243 | 1604 | { |
0cc7d26f TT |
1605 | *from = var->from; |
1606 | *to = var->to; | |
b6313243 TT |
1607 | } |
1608 | ||
0cc7d26f TT |
1609 | /* Set the selected sub-range of children of VAR to start at index |
1610 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1611 | this is interpreted as a request for all children. */ | |
1612 | void | |
1613 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1614 | { |
0cc7d26f TT |
1615 | var->from = from; |
1616 | var->to = to; | |
b6313243 TT |
1617 | } |
1618 | ||
1619 | void | |
1620 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1621 | { | |
1622 | #if HAVE_PYTHON | |
1623 | PyObject *mainmod, *globals, *pretty_printer, *constructor; | |
1624 | struct cleanup *back_to, *value; | |
b6313243 | 1625 | |
d452c4bc | 1626 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1627 | |
1628 | mainmod = PyImport_AddModule ("__main__"); | |
1629 | globals = PyModule_GetDict (mainmod); | |
1630 | Py_INCREF (globals); | |
1631 | make_cleanup_py_decref (globals); | |
1632 | ||
1633 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1634 | |
0cc7d26f | 1635 | if (! constructor) |
b6313243 TT |
1636 | { |
1637 | gdbpy_print_stack (); | |
da1f2771 | 1638 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1639 | } |
1640 | ||
0cc7d26f TT |
1641 | construct_visualizer (var, constructor); |
1642 | Py_XDECREF (constructor); | |
b6313243 | 1643 | |
0cc7d26f TT |
1644 | /* If there are any children now, wipe them. */ |
1645 | varobj_delete (var, NULL, 1 /* children only */); | |
1646 | var->num_children = -1; | |
b6313243 TT |
1647 | |
1648 | do_cleanups (back_to); | |
1649 | #else | |
da1f2771 | 1650 | error (_("Python support required")); |
b6313243 TT |
1651 | #endif |
1652 | } | |
1653 | ||
8b93c638 JM |
1654 | /* Update the values for a variable and its children. This is a |
1655 | two-pronged attack. First, re-parse the value for the root's | |
1656 | expression to see if it's changed. Then go all the way | |
1657 | through its children, reconstructing them and noting if they've | |
1658 | changed. | |
1659 | ||
25d5ea92 VP |
1660 | The EXPLICIT parameter specifies if this call is result |
1661 | of MI request to update this specific variable, or | |
1662 | result of implicit -var-update *. For implicit request, we don't | |
1663 | update frozen variables. | |
705da579 KS |
1664 | |
1665 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1666 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1667 | to point to the new varobj. */ | |
8b93c638 | 1668 | |
f7f9ae2c | 1669 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1670 | { |
1671 | int changed = 0; | |
25d5ea92 | 1672 | int type_changed = 0; |
8b93c638 JM |
1673 | int i; |
1674 | int vleft; | |
8b93c638 JM |
1675 | struct varobj *v; |
1676 | struct varobj **cv; | |
2c67cb8b | 1677 | struct varobj **templist = NULL; |
30b28db1 | 1678 | struct value *new; |
b6313243 | 1679 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1680 | VEC (varobj_update_result) *result = NULL; |
e64d9b3d | 1681 | struct frame_info *fi; |
8b93c638 | 1682 | |
25d5ea92 VP |
1683 | /* Frozen means frozen -- we don't check for any change in |
1684 | this varobj, including its going out of scope, or | |
1685 | changing type. One use case for frozen varobjs is | |
1686 | retaining previously evaluated expressions, and we don't | |
1687 | want them to be reevaluated at all. */ | |
1688 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1689 | return result; |
8756216b DP |
1690 | |
1691 | if (!(*varp)->root->is_valid) | |
f7f9ae2c VP |
1692 | { |
1693 | varobj_update_result r = {*varp}; | |
1694 | r.status = VAROBJ_INVALID; | |
1695 | VEC_safe_push (varobj_update_result, result, &r); | |
1696 | return result; | |
1697 | } | |
8b93c638 | 1698 | |
25d5ea92 | 1699 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1700 | { |
f7f9ae2c VP |
1701 | varobj_update_result r = {*varp}; |
1702 | r.status = VAROBJ_IN_SCOPE; | |
1703 | ||
25d5ea92 VP |
1704 | /* Update the root variable. value_of_root can return NULL |
1705 | if the variable is no longer around, i.e. we stepped out of | |
1706 | the frame in which a local existed. We are letting the | |
1707 | value_of_root variable dispose of the varobj if the type | |
1708 | has changed. */ | |
25d5ea92 | 1709 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1710 | r.varobj = *varp; |
1711 | ||
1712 | r.type_changed = type_changed; | |
ea56f9c2 | 1713 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1714 | r.changed = 1; |
ea56f9c2 | 1715 | |
25d5ea92 | 1716 | if (new == NULL) |
f7f9ae2c | 1717 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1718 | r.value_installed = 1; |
f7f9ae2c VP |
1719 | |
1720 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1721 | { |
0b4bc29a JK |
1722 | if (r.type_changed || r.changed) |
1723 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1724 | return result; |
1725 | } | |
1726 | ||
1727 | VEC_safe_push (varobj_update_result, stack, &r); | |
1728 | } | |
1729 | else | |
1730 | { | |
1731 | varobj_update_result r = {*varp}; | |
1732 | VEC_safe_push (varobj_update_result, stack, &r); | |
b20d8971 | 1733 | } |
8b93c638 | 1734 | |
8756216b | 1735 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1736 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1737 | { |
b6313243 TT |
1738 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1739 | struct varobj *v = r.varobj; | |
1740 | ||
1741 | VEC_pop (varobj_update_result, stack); | |
1742 | ||
1743 | /* Update this variable, unless it's a root, which is already | |
1744 | updated. */ | |
1745 | if (!r.value_installed) | |
1746 | { | |
1747 | new = value_of_child (v->parent, v->index); | |
1748 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1749 | { | |
1750 | r.changed = 1; | |
1751 | v->updated = 0; | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | /* We probably should not get children of a varobj that has a | |
1756 | pretty-printer, but for which -var-list-children was never | |
0cc7d26f | 1757 | invoked. */ |
b6313243 TT |
1758 | if (v->pretty_printer) |
1759 | { | |
0cc7d26f | 1760 | VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; |
26f9bcee | 1761 | int i, children_changed = 0; |
b6313243 TT |
1762 | |
1763 | if (v->frozen) | |
1764 | continue; | |
1765 | ||
0cc7d26f TT |
1766 | if (!v->children_requested) |
1767 | { | |
1768 | int dummy; | |
1769 | ||
1770 | /* If we initially did not have potential children, but | |
1771 | now we do, consider the varobj as changed. | |
1772 | Otherwise, if children were never requested, consider | |
1773 | it as unchanged -- presumably, such varobj is not yet | |
1774 | expanded in the UI, so we need not bother getting | |
1775 | it. */ | |
1776 | if (!varobj_has_more (v, 0)) | |
1777 | { | |
1778 | update_dynamic_varobj_children (v, NULL, NULL, NULL, | |
1779 | &dummy, 0, 0, 0); | |
1780 | if (varobj_has_more (v, 0)) | |
1781 | r.changed = 1; | |
1782 | } | |
1783 | ||
1784 | if (r.changed) | |
1785 | VEC_safe_push (varobj_update_result, result, &r); | |
1786 | ||
1787 | continue; | |
1788 | } | |
1789 | ||
b6313243 TT |
1790 | /* If update_dynamic_varobj_children returns 0, then we have |
1791 | a non-conforming pretty-printer, so we skip it. */ | |
0cc7d26f TT |
1792 | if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, |
1793 | &children_changed, 1, | |
1794 | v->from, v->to)) | |
b6313243 | 1795 | { |
0cc7d26f | 1796 | if (children_changed || new) |
b6313243 | 1797 | { |
0cc7d26f TT |
1798 | r.children_changed = 1; |
1799 | r.new = new; | |
b6313243 | 1800 | } |
0cc7d26f TT |
1801 | /* Push in reverse order so that the first child is |
1802 | popped from the work stack first, and so will be | |
1803 | added to result first. This does not affect | |
1804 | correctness, just "nicer". */ | |
1805 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) | |
b6313243 | 1806 | { |
0cc7d26f | 1807 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
b6313243 | 1808 | varobj_update_result r = {tmp}; |
0cc7d26f | 1809 | r.changed = 1; |
b6313243 TT |
1810 | r.value_installed = 1; |
1811 | VEC_safe_push (varobj_update_result, stack, &r); | |
1812 | } | |
0cc7d26f TT |
1813 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1814 | { | |
1815 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
1816 | if (!tmp->frozen) | |
1817 | { | |
1818 | varobj_update_result r = {tmp}; | |
1819 | r.value_installed = 1; | |
1820 | VEC_safe_push (varobj_update_result, stack, &r); | |
1821 | } | |
1822 | } | |
b6313243 TT |
1823 | if (r.changed || r.children_changed) |
1824 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f TT |
1825 | |
1826 | /* Free CHANGED and UNCHANGED, but not NEW, because NEW | |
1827 | has been put into the result vector. */ | |
1828 | VEC_free (varobj_p, changed); | |
1829 | VEC_free (varobj_p, unchanged); | |
1830 | ||
b6313243 TT |
1831 | continue; |
1832 | } | |
1833 | } | |
28335dcc VP |
1834 | |
1835 | /* Push any children. Use reverse order so that the first | |
1836 | child is popped from the work stack first, and so | |
1837 | will be added to result first. This does not | |
1838 | affect correctness, just "nicer". */ | |
1839 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1840 | { |
28335dcc VP |
1841 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1842 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1843 | if (c != NULL && !c->frozen) |
28335dcc | 1844 | { |
b6313243 TT |
1845 | varobj_update_result r = {c}; |
1846 | VEC_safe_push (varobj_update_result, stack, &r); | |
28335dcc | 1847 | } |
8b93c638 | 1848 | } |
b6313243 TT |
1849 | |
1850 | if (r.changed || r.type_changed) | |
1851 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1852 | } |
1853 | ||
b6313243 TT |
1854 | VEC_free (varobj_update_result, stack); |
1855 | ||
f7f9ae2c | 1856 | return result; |
8b93c638 JM |
1857 | } |
1858 | \f | |
1859 | ||
1860 | /* Helper functions */ | |
1861 | ||
1862 | /* | |
1863 | * Variable object construction/destruction | |
1864 | */ | |
1865 | ||
1866 | static int | |
fba45db2 KB |
1867 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1868 | int only_children_p) | |
8b93c638 JM |
1869 | { |
1870 | int delcount = 0; | |
1871 | ||
1872 | delete_variable_1 (resultp, &delcount, var, | |
1873 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1874 | ||
1875 | return delcount; | |
1876 | } | |
1877 | ||
1878 | /* Delete the variable object VAR and its children */ | |
1879 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1880 | and the parent is not removed we dump core. It must be always | |
1881 | initially called with remove_from_parent_p set */ | |
1882 | static void | |
72330bd6 AC |
1883 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1884 | struct varobj *var, int only_children_p, | |
1885 | int remove_from_parent_p) | |
8b93c638 | 1886 | { |
28335dcc | 1887 | int i; |
8b93c638 JM |
1888 | |
1889 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1890 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1891 | { | |
1892 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1893 | if (!child) |
1894 | continue; | |
8b93c638 | 1895 | if (!remove_from_parent_p) |
28335dcc VP |
1896 | child->parent = NULL; |
1897 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1898 | } |
28335dcc | 1899 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1900 | |
1901 | /* if we were called to delete only the children we are done here */ | |
1902 | if (only_children_p) | |
1903 | return; | |
1904 | ||
1905 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1906 | /* If the name is null, this is a temporary variable, that has not |
1907 | yet been installed, don't report it, it belongs to the caller... */ | |
1908 | if (var->obj_name != NULL) | |
8b93c638 | 1909 | { |
5b616ba1 | 1910 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1911 | *delcountp = *delcountp + 1; |
1912 | } | |
1913 | ||
1914 | /* If this variable has a parent, remove it from its parent's list */ | |
1915 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1916 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1917 | expensive list search to find the element to remove when we are | |
1918 | discarding the list afterwards */ | |
72330bd6 | 1919 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1920 | { |
28335dcc | 1921 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1922 | } |
72330bd6 | 1923 | |
73a93a32 JI |
1924 | if (var->obj_name != NULL) |
1925 | uninstall_variable (var); | |
8b93c638 JM |
1926 | |
1927 | /* Free memory associated with this variable */ | |
1928 | free_variable (var); | |
1929 | } | |
1930 | ||
1931 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1932 | static int | |
fba45db2 | 1933 | install_variable (struct varobj *var) |
8b93c638 JM |
1934 | { |
1935 | struct vlist *cv; | |
1936 | struct vlist *newvl; | |
1937 | const char *chp; | |
1938 | unsigned int index = 0; | |
1939 | unsigned int i = 1; | |
1940 | ||
1941 | for (chp = var->obj_name; *chp; chp++) | |
1942 | { | |
1943 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1944 | } | |
1945 | ||
1946 | cv = *(varobj_table + index); | |
1947 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1948 | cv = cv->next; | |
1949 | ||
1950 | if (cv != NULL) | |
8a3fe4f8 | 1951 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1952 | |
1953 | /* Add varobj to hash table */ | |
1954 | newvl = xmalloc (sizeof (struct vlist)); | |
1955 | newvl->next = *(varobj_table + index); | |
1956 | newvl->var = var; | |
1957 | *(varobj_table + index) = newvl; | |
1958 | ||
1959 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1960 | if (is_root_p (var)) |
8b93c638 JM |
1961 | { |
1962 | /* Add to list of root variables */ | |
1963 | if (rootlist == NULL) | |
1964 | var->root->next = NULL; | |
1965 | else | |
1966 | var->root->next = rootlist; | |
1967 | rootlist = var->root; | |
8b93c638 JM |
1968 | } |
1969 | ||
1970 | return 1; /* OK */ | |
1971 | } | |
1972 | ||
1973 | /* Unistall the object VAR. */ | |
1974 | static void | |
fba45db2 | 1975 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1976 | { |
1977 | struct vlist *cv; | |
1978 | struct vlist *prev; | |
1979 | struct varobj_root *cr; | |
1980 | struct varobj_root *prer; | |
1981 | const char *chp; | |
1982 | unsigned int index = 0; | |
1983 | unsigned int i = 1; | |
1984 | ||
1985 | /* Remove varobj from hash table */ | |
1986 | for (chp = var->obj_name; *chp; chp++) | |
1987 | { | |
1988 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1989 | } | |
1990 | ||
1991 | cv = *(varobj_table + index); | |
1992 | prev = NULL; | |
1993 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1994 | { | |
1995 | prev = cv; | |
1996 | cv = cv->next; | |
1997 | } | |
1998 | ||
1999 | if (varobjdebug) | |
2000 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2001 | ||
2002 | if (cv == NULL) | |
2003 | { | |
72330bd6 AC |
2004 | warning |
2005 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2006 | var->obj_name); | |
8b93c638 JM |
2007 | return; |
2008 | } | |
2009 | ||
2010 | if (prev == NULL) | |
2011 | *(varobj_table + index) = cv->next; | |
2012 | else | |
2013 | prev->next = cv->next; | |
2014 | ||
b8c9b27d | 2015 | xfree (cv); |
8b93c638 JM |
2016 | |
2017 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 2018 | if (is_root_p (var)) |
8b93c638 JM |
2019 | { |
2020 | /* Remove from list of root variables */ | |
2021 | if (rootlist == var->root) | |
2022 | rootlist = var->root->next; | |
2023 | else | |
2024 | { | |
2025 | prer = NULL; | |
2026 | cr = rootlist; | |
2027 | while ((cr != NULL) && (cr->rootvar != var)) | |
2028 | { | |
2029 | prer = cr; | |
2030 | cr = cr->next; | |
2031 | } | |
2032 | if (cr == NULL) | |
2033 | { | |
72330bd6 AC |
2034 | warning |
2035 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
2036 | var->obj_name); | |
8b93c638 JM |
2037 | return; |
2038 | } | |
2039 | if (prer == NULL) | |
2040 | rootlist = NULL; | |
2041 | else | |
2042 | prer->next = cr->next; | |
2043 | } | |
8b93c638 JM |
2044 | } |
2045 | ||
2046 | } | |
2047 | ||
8b93c638 JM |
2048 | /* Create and install a child of the parent of the given name */ |
2049 | static struct varobj * | |
fba45db2 | 2050 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
2051 | { |
2052 | return create_child_with_value (parent, index, name, | |
2053 | value_of_child (parent, index)); | |
2054 | } | |
2055 | ||
2056 | static struct varobj * | |
2057 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
2058 | struct value *value) | |
8b93c638 JM |
2059 | { |
2060 | struct varobj *child; | |
2061 | char *childs_name; | |
2062 | ||
2063 | child = new_variable (); | |
2064 | ||
2065 | /* name is allocated by name_of_child */ | |
b6313243 TT |
2066 | /* FIXME: xstrdup should not be here. */ |
2067 | child->name = xstrdup (name); | |
8b93c638 | 2068 | child->index = index; |
8b93c638 JM |
2069 | child->parent = parent; |
2070 | child->root = parent->root; | |
b435e160 | 2071 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
2072 | child->obj_name = childs_name; |
2073 | install_variable (child); | |
2074 | ||
acd65feb VP |
2075 | /* Compute the type of the child. Must do this before |
2076 | calling install_new_value. */ | |
2077 | if (value != NULL) | |
2078 | /* If the child had no evaluation errors, var->value | |
2079 | will be non-NULL and contain a valid type. */ | |
2080 | child->type = value_type (value); | |
2081 | else | |
2082 | /* Otherwise, we must compute the type. */ | |
2083 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
2084 | child->index); | |
2085 | install_new_value (child, value, 1); | |
2086 | ||
8b93c638 JM |
2087 | return child; |
2088 | } | |
8b93c638 JM |
2089 | \f |
2090 | ||
2091 | /* | |
2092 | * Miscellaneous utility functions. | |
2093 | */ | |
2094 | ||
2095 | /* Allocate memory and initialize a new variable */ | |
2096 | static struct varobj * | |
2097 | new_variable (void) | |
2098 | { | |
2099 | struct varobj *var; | |
2100 | ||
2101 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
2102 | var->name = NULL; | |
02142340 | 2103 | var->path_expr = NULL; |
8b93c638 JM |
2104 | var->obj_name = NULL; |
2105 | var->index = -1; | |
2106 | var->type = NULL; | |
2107 | var->value = NULL; | |
8b93c638 JM |
2108 | var->num_children = -1; |
2109 | var->parent = NULL; | |
2110 | var->children = NULL; | |
2111 | var->format = 0; | |
2112 | var->root = NULL; | |
fb9b6b35 | 2113 | var->updated = 0; |
85265413 | 2114 | var->print_value = NULL; |
25d5ea92 VP |
2115 | var->frozen = 0; |
2116 | var->not_fetched = 0; | |
b6313243 | 2117 | var->children_requested = 0; |
0cc7d26f TT |
2118 | var->from = -1; |
2119 | var->to = -1; | |
2120 | var->constructor = 0; | |
b6313243 | 2121 | var->pretty_printer = 0; |
0cc7d26f TT |
2122 | var->child_iter = 0; |
2123 | var->saved_item = 0; | |
8b93c638 JM |
2124 | |
2125 | return var; | |
2126 | } | |
2127 | ||
2128 | /* Allocate memory and initialize a new root variable */ | |
2129 | static struct varobj * | |
2130 | new_root_variable (void) | |
2131 | { | |
2132 | struct varobj *var = new_variable (); | |
2133 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
2134 | var->root->lang = NULL; | |
2135 | var->root->exp = NULL; | |
2136 | var->root->valid_block = NULL; | |
7a424e99 | 2137 | var->root->frame = null_frame_id; |
a5defcdc | 2138 | var->root->floating = 0; |
8b93c638 | 2139 | var->root->rootvar = NULL; |
8756216b | 2140 | var->root->is_valid = 1; |
8b93c638 JM |
2141 | |
2142 | return var; | |
2143 | } | |
2144 | ||
2145 | /* Free any allocated memory associated with VAR. */ | |
2146 | static void | |
fba45db2 | 2147 | free_variable (struct varobj *var) |
8b93c638 | 2148 | { |
d452c4bc UW |
2149 | #if HAVE_PYTHON |
2150 | if (var->pretty_printer) | |
2151 | { | |
2152 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
0cc7d26f TT |
2153 | Py_XDECREF (var->constructor); |
2154 | Py_XDECREF (var->pretty_printer); | |
2155 | Py_XDECREF (var->child_iter); | |
2156 | Py_XDECREF (var->saved_item); | |
d452c4bc UW |
2157 | do_cleanups (cleanup); |
2158 | } | |
2159 | #endif | |
2160 | ||
36746093 JK |
2161 | value_free (var->value); |
2162 | ||
8b93c638 | 2163 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2164 | if (is_root_p (var)) |
8b93c638 | 2165 | { |
3038237c | 2166 | xfree (var->root->exp); |
8038e1e2 | 2167 | xfree (var->root); |
8b93c638 JM |
2168 | } |
2169 | ||
8038e1e2 AC |
2170 | xfree (var->name); |
2171 | xfree (var->obj_name); | |
85265413 | 2172 | xfree (var->print_value); |
02142340 | 2173 | xfree (var->path_expr); |
8038e1e2 | 2174 | xfree (var); |
8b93c638 JM |
2175 | } |
2176 | ||
74b7792f AC |
2177 | static void |
2178 | do_free_variable_cleanup (void *var) | |
2179 | { | |
2180 | free_variable (var); | |
2181 | } | |
2182 | ||
2183 | static struct cleanup * | |
2184 | make_cleanup_free_variable (struct varobj *var) | |
2185 | { | |
2186 | return make_cleanup (do_free_variable_cleanup, var); | |
2187 | } | |
2188 | ||
6766a268 DJ |
2189 | /* This returns the type of the variable. It also skips past typedefs |
2190 | to return the real type of the variable. | |
94b66fa7 KS |
2191 | |
2192 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2193 | except within get_target_type and get_type. */ | |
8b93c638 | 2194 | static struct type * |
fba45db2 | 2195 | get_type (struct varobj *var) |
8b93c638 JM |
2196 | { |
2197 | struct type *type; | |
2198 | type = var->type; | |
2199 | ||
6766a268 DJ |
2200 | if (type != NULL) |
2201 | type = check_typedef (type); | |
8b93c638 JM |
2202 | |
2203 | return type; | |
2204 | } | |
2205 | ||
6e2a9270 VP |
2206 | /* Return the type of the value that's stored in VAR, |
2207 | or that would have being stored there if the | |
2208 | value were accessible. | |
2209 | ||
2210 | This differs from VAR->type in that VAR->type is always | |
2211 | the true type of the expession in the source language. | |
2212 | The return value of this function is the type we're | |
2213 | actually storing in varobj, and using for displaying | |
2214 | the values and for comparing previous and new values. | |
2215 | ||
2216 | For example, top-level references are always stripped. */ | |
2217 | static struct type * | |
2218 | get_value_type (struct varobj *var) | |
2219 | { | |
2220 | struct type *type; | |
2221 | ||
2222 | if (var->value) | |
2223 | type = value_type (var->value); | |
2224 | else | |
2225 | type = var->type; | |
2226 | ||
2227 | type = check_typedef (type); | |
2228 | ||
2229 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2230 | type = get_target_type (type); | |
2231 | ||
2232 | type = check_typedef (type); | |
2233 | ||
2234 | return type; | |
2235 | } | |
2236 | ||
8b93c638 | 2237 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2238 | past typedefs, just like get_type (). |
2239 | ||
2240 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2241 | except within get_target_type and get_type. */ | |
8b93c638 | 2242 | static struct type * |
fba45db2 | 2243 | get_target_type (struct type *type) |
8b93c638 JM |
2244 | { |
2245 | if (type != NULL) | |
2246 | { | |
2247 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2248 | if (type != NULL) |
2249 | type = check_typedef (type); | |
8b93c638 JM |
2250 | } |
2251 | ||
2252 | return type; | |
2253 | } | |
2254 | ||
2255 | /* What is the default display for this variable? We assume that | |
2256 | everything is "natural". Any exceptions? */ | |
2257 | static enum varobj_display_formats | |
fba45db2 | 2258 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2259 | { |
2260 | return FORMAT_NATURAL; | |
2261 | } | |
2262 | ||
8b93c638 JM |
2263 | /* FIXME: The following should be generic for any pointer */ |
2264 | static void | |
fba45db2 | 2265 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2266 | { |
2267 | struct cpstack *s; | |
2268 | ||
2269 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2270 | s->name = name; | |
2271 | s->next = *pstack; | |
2272 | *pstack = s; | |
2273 | } | |
2274 | ||
2275 | /* FIXME: The following should be generic for any pointer */ | |
2276 | static char * | |
fba45db2 | 2277 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2278 | { |
2279 | struct cpstack *s; | |
2280 | char *v; | |
2281 | ||
2282 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2283 | return NULL; | |
2284 | ||
2285 | s = *pstack; | |
2286 | v = s->name; | |
2287 | *pstack = (*pstack)->next; | |
b8c9b27d | 2288 | xfree (s); |
8b93c638 JM |
2289 | |
2290 | return v; | |
2291 | } | |
2292 | \f | |
2293 | /* | |
2294 | * Language-dependencies | |
2295 | */ | |
2296 | ||
2297 | /* Common entry points */ | |
2298 | ||
2299 | /* Get the language of variable VAR. */ | |
2300 | static enum varobj_languages | |
fba45db2 | 2301 | variable_language (struct varobj *var) |
8b93c638 JM |
2302 | { |
2303 | enum varobj_languages lang; | |
2304 | ||
2305 | switch (var->root->exp->language_defn->la_language) | |
2306 | { | |
2307 | default: | |
2308 | case language_c: | |
2309 | lang = vlang_c; | |
2310 | break; | |
2311 | case language_cplus: | |
2312 | lang = vlang_cplus; | |
2313 | break; | |
2314 | case language_java: | |
2315 | lang = vlang_java; | |
2316 | break; | |
2317 | } | |
2318 | ||
2319 | return lang; | |
2320 | } | |
2321 | ||
2322 | /* Return the number of children for a given variable. | |
2323 | The result of this function is defined by the language | |
2324 | implementation. The number of children returned by this function | |
2325 | is the number of children that the user will see in the variable | |
2326 | display. */ | |
2327 | static int | |
fba45db2 | 2328 | number_of_children (struct varobj *var) |
8b93c638 JM |
2329 | { |
2330 | return (*var->root->lang->number_of_children) (var);; | |
2331 | } | |
2332 | ||
2333 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
2334 | static char * | |
fba45db2 | 2335 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2336 | { |
2337 | return (*var->root->lang->name_of_variable) (var); | |
2338 | } | |
2339 | ||
2340 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
2341 | static char * | |
fba45db2 | 2342 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2343 | { |
2344 | return (*var->root->lang->name_of_child) (var, index); | |
2345 | } | |
2346 | ||
a5defcdc VP |
2347 | /* What is the ``struct value *'' of the root variable VAR? |
2348 | For floating variable object, evaluation can get us a value | |
2349 | of different type from what is stored in varobj already. In | |
2350 | that case: | |
2351 | - *type_changed will be set to 1 | |
2352 | - old varobj will be freed, and new one will be | |
2353 | created, with the same name. | |
2354 | - *var_handle will be set to the new varobj | |
2355 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2356 | static struct value * |
fba45db2 | 2357 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2358 | { |
73a93a32 JI |
2359 | struct varobj *var; |
2360 | ||
2361 | if (var_handle == NULL) | |
2362 | return NULL; | |
2363 | ||
2364 | var = *var_handle; | |
2365 | ||
2366 | /* This should really be an exception, since this should | |
2367 | only get called with a root variable. */ | |
2368 | ||
b2c2bd75 | 2369 | if (!is_root_p (var)) |
73a93a32 JI |
2370 | return NULL; |
2371 | ||
a5defcdc | 2372 | if (var->root->floating) |
73a93a32 JI |
2373 | { |
2374 | struct varobj *tmp_var; | |
2375 | char *old_type, *new_type; | |
6225abfa | 2376 | |
73a93a32 JI |
2377 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2378 | USE_SELECTED_FRAME); | |
2379 | if (tmp_var == NULL) | |
2380 | { | |
2381 | return NULL; | |
2382 | } | |
6225abfa | 2383 | old_type = varobj_get_type (var); |
73a93a32 | 2384 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2385 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2386 | { |
fcacd99f VP |
2387 | /* The expression presently stored inside var->root->exp |
2388 | remembers the locations of local variables relatively to | |
2389 | the frame where the expression was created (in DWARF location | |
2390 | button, for example). Naturally, those locations are not | |
2391 | correct in other frames, so update the expression. */ | |
2392 | ||
2393 | struct expression *tmp_exp = var->root->exp; | |
2394 | var->root->exp = tmp_var->root->exp; | |
2395 | tmp_var->root->exp = tmp_exp; | |
2396 | ||
73a93a32 JI |
2397 | varobj_delete (tmp_var, NULL, 0); |
2398 | *type_changed = 0; | |
2399 | } | |
2400 | else | |
2401 | { | |
1b36a34b | 2402 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2403 | tmp_var->from = var->from; |
2404 | tmp_var->to = var->to; | |
a5defcdc VP |
2405 | varobj_delete (var, NULL, 0); |
2406 | ||
73a93a32 JI |
2407 | install_variable (tmp_var); |
2408 | *var_handle = tmp_var; | |
705da579 | 2409 | var = *var_handle; |
73a93a32 JI |
2410 | *type_changed = 1; |
2411 | } | |
74dddad3 MS |
2412 | xfree (old_type); |
2413 | xfree (new_type); | |
73a93a32 JI |
2414 | } |
2415 | else | |
2416 | { | |
2417 | *type_changed = 0; | |
2418 | } | |
2419 | ||
2420 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2421 | } |
2422 | ||
30b28db1 AC |
2423 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
2424 | static struct value * | |
fba45db2 | 2425 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2426 | { |
30b28db1 | 2427 | struct value *value; |
8b93c638 JM |
2428 | |
2429 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2430 | ||
8b93c638 JM |
2431 | return value; |
2432 | } | |
2433 | ||
8b93c638 JM |
2434 | /* GDB already has a command called "value_of_variable". Sigh. */ |
2435 | static char * | |
de051565 | 2436 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2437 | { |
8756216b | 2438 | if (var->root->is_valid) |
0cc7d26f TT |
2439 | { |
2440 | if (var->pretty_printer) | |
2441 | return value_get_print_value (var->value, var->format, var); | |
2442 | return (*var->root->lang->value_of_variable) (var, format); | |
2443 | } | |
8756216b DP |
2444 | else |
2445 | return NULL; | |
8b93c638 JM |
2446 | } |
2447 | ||
85265413 | 2448 | static char * |
b6313243 | 2449 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2450 | struct varobj *var) |
85265413 | 2451 | { |
57e66780 DJ |
2452 | struct ui_file *stb; |
2453 | struct cleanup *old_chain; | |
fbb8f299 | 2454 | gdb_byte *thevalue = NULL; |
79a45b7d | 2455 | struct value_print_options opts; |
fbb8f299 | 2456 | int len = 0; |
57e66780 DJ |
2457 | |
2458 | if (value == NULL) | |
2459 | return NULL; | |
2460 | ||
b6313243 TT |
2461 | #if HAVE_PYTHON |
2462 | { | |
d452c4bc UW |
2463 | struct cleanup *back_to = varobj_ensure_python_env (var); |
2464 | PyObject *value_formatter = var->pretty_printer; | |
2465 | ||
0cc7d26f | 2466 | if (value_formatter) |
b6313243 | 2467 | { |
0cc7d26f TT |
2468 | /* First check to see if we have any children at all. If so, |
2469 | we simply return {...}. */ | |
2470 | if (dynamic_varobj_has_child_method (var)) | |
2471 | return xstrdup ("{...}"); | |
b6313243 | 2472 | |
0cc7d26f | 2473 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
b6313243 | 2474 | { |
0cc7d26f TT |
2475 | char *hint; |
2476 | struct value *replacement; | |
2477 | int string_print = 0; | |
2478 | PyObject *output = NULL; | |
2479 | ||
2480 | hint = gdbpy_get_display_hint (value_formatter); | |
2481 | if (hint) | |
2482 | { | |
2483 | if (!strcmp (hint, "string")) | |
2484 | string_print = 1; | |
2485 | xfree (hint); | |
2486 | } | |
b6313243 | 2487 | |
0cc7d26f TT |
2488 | output = apply_varobj_pretty_printer (value_formatter, |
2489 | &replacement); | |
2490 | if (output) | |
2491 | { | |
2492 | PyObject *py_str | |
2493 | = python_string_to_target_python_string (output); | |
2494 | if (py_str) | |
2495 | { | |
2496 | char *s = PyString_AsString (py_str); | |
2497 | len = PyString_Size (py_str); | |
2498 | thevalue = xmemdup (s, len + 1, len + 1); | |
2499 | Py_DECREF (py_str); | |
2500 | } | |
2501 | Py_DECREF (output); | |
fbb8f299 | 2502 | } |
0cc7d26f TT |
2503 | if (thevalue && !string_print) |
2504 | { | |
2505 | do_cleanups (back_to); | |
2506 | return thevalue; | |
2507 | } | |
2508 | if (replacement) | |
2509 | value = replacement; | |
b6313243 | 2510 | } |
b6313243 | 2511 | } |
d452c4bc | 2512 | do_cleanups (back_to); |
b6313243 TT |
2513 | } |
2514 | #endif | |
2515 | ||
57e66780 DJ |
2516 | stb = mem_fileopen (); |
2517 | old_chain = make_cleanup_ui_file_delete (stb); | |
2518 | ||
79a45b7d TT |
2519 | get_formatted_print_options (&opts, format_code[(int) format]); |
2520 | opts.deref_ref = 0; | |
b6313243 TT |
2521 | opts.raw = 1; |
2522 | if (thevalue) | |
2523 | { | |
50810684 | 2524 | struct gdbarch *gdbarch = get_type_arch (value_type (value)); |
b6313243 | 2525 | make_cleanup (xfree, thevalue); |
50810684 | 2526 | LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char, |
fbb8f299 | 2527 | thevalue, len, 0, &opts); |
b6313243 TT |
2528 | } |
2529 | else | |
2530 | common_val_print (value, stb, 0, &opts, current_language); | |
759ef836 | 2531 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2532 | |
85265413 NR |
2533 | do_cleanups (old_chain); |
2534 | return thevalue; | |
2535 | } | |
2536 | ||
340a7723 NR |
2537 | int |
2538 | varobj_editable_p (struct varobj *var) | |
2539 | { | |
2540 | struct type *type; | |
2541 | struct value *value; | |
2542 | ||
2543 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2544 | return 0; | |
2545 | ||
2546 | type = get_value_type (var); | |
2547 | ||
2548 | switch (TYPE_CODE (type)) | |
2549 | { | |
2550 | case TYPE_CODE_STRUCT: | |
2551 | case TYPE_CODE_UNION: | |
2552 | case TYPE_CODE_ARRAY: | |
2553 | case TYPE_CODE_FUNC: | |
2554 | case TYPE_CODE_METHOD: | |
2555 | return 0; | |
2556 | break; | |
2557 | ||
2558 | default: | |
2559 | return 1; | |
2560 | break; | |
2561 | } | |
2562 | } | |
2563 | ||
acd65feb VP |
2564 | /* Return non-zero if changes in value of VAR |
2565 | must be detected and reported by -var-update. | |
2566 | Return zero is -var-update should never report | |
2567 | changes of such values. This makes sense for structures | |
2568 | (since the changes in children values will be reported separately), | |
2569 | or for artifical objects (like 'public' pseudo-field in C++). | |
2570 | ||
2571 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2572 | for the value of this variable object. */ | |
8b93c638 | 2573 | static int |
b2c2bd75 | 2574 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2575 | { |
2576 | int r; | |
2577 | struct type *type; | |
2578 | ||
2579 | if (CPLUS_FAKE_CHILD (var)) | |
2580 | return 0; | |
2581 | ||
6e2a9270 | 2582 | type = get_value_type (var); |
8b93c638 JM |
2583 | |
2584 | switch (TYPE_CODE (type)) | |
2585 | { | |
72330bd6 AC |
2586 | case TYPE_CODE_STRUCT: |
2587 | case TYPE_CODE_UNION: | |
2588 | case TYPE_CODE_ARRAY: | |
2589 | r = 0; | |
2590 | break; | |
8b93c638 | 2591 | |
72330bd6 AC |
2592 | default: |
2593 | r = 1; | |
8b93c638 JM |
2594 | } |
2595 | ||
2596 | return r; | |
2597 | } | |
2598 | ||
5a413362 VP |
2599 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2600 | selected frame, and not bound to thread/frame. Such variable objects | |
2601 | are created using '@' as frame specifier to -var-create. */ | |
2602 | int | |
2603 | varobj_floating_p (struct varobj *var) | |
2604 | { | |
2605 | return var->root->floating; | |
2606 | } | |
2607 | ||
2024f65a VP |
2608 | /* Given the value and the type of a variable object, |
2609 | adjust the value and type to those necessary | |
2610 | for getting children of the variable object. | |
2611 | This includes dereferencing top-level references | |
2612 | to all types and dereferencing pointers to | |
2613 | structures. | |
2614 | ||
2615 | Both TYPE and *TYPE should be non-null. VALUE | |
2616 | can be null if we want to only translate type. | |
2617 | *VALUE can be null as well -- if the parent | |
02142340 VP |
2618 | value is not known. |
2619 | ||
2620 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2621 | depending on whether pointer was dereferenced |
02142340 | 2622 | in this function. */ |
2024f65a VP |
2623 | static void |
2624 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2625 | struct type **type, |
2626 | int *was_ptr) | |
2024f65a VP |
2627 | { |
2628 | gdb_assert (type && *type); | |
2629 | ||
02142340 VP |
2630 | if (was_ptr) |
2631 | *was_ptr = 0; | |
2632 | ||
2024f65a VP |
2633 | *type = check_typedef (*type); |
2634 | ||
2635 | /* The type of value stored in varobj, that is passed | |
2636 | to us, is already supposed to be | |
2637 | reference-stripped. */ | |
2638 | ||
2639 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2640 | ||
2641 | /* Pointers to structures are treated just like | |
2642 | structures when accessing children. Don't | |
2643 | dererences pointers to other types. */ | |
2644 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2645 | { | |
2646 | struct type *target_type = get_target_type (*type); | |
2647 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2648 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2649 | { | |
2650 | if (value && *value) | |
3f4178d6 DJ |
2651 | { |
2652 | int success = gdb_value_ind (*value, value); | |
2653 | if (!success) | |
2654 | *value = NULL; | |
2655 | } | |
2024f65a | 2656 | *type = target_type; |
02142340 VP |
2657 | if (was_ptr) |
2658 | *was_ptr = 1; | |
2024f65a VP |
2659 | } |
2660 | } | |
2661 | ||
2662 | /* The 'get_target_type' function calls check_typedef on | |
2663 | result, so we can immediately check type code. No | |
2664 | need to call check_typedef here. */ | |
2665 | } | |
2666 | ||
8b93c638 JM |
2667 | /* C */ |
2668 | static int | |
fba45db2 | 2669 | c_number_of_children (struct varobj *var) |
8b93c638 | 2670 | { |
2024f65a VP |
2671 | struct type *type = get_value_type (var); |
2672 | int children = 0; | |
8b93c638 | 2673 | struct type *target; |
8b93c638 | 2674 | |
02142340 | 2675 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2676 | target = get_target_type (type); |
8b93c638 JM |
2677 | |
2678 | switch (TYPE_CODE (type)) | |
2679 | { | |
2680 | case TYPE_CODE_ARRAY: | |
2681 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2682 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2683 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2684 | else | |
74a44383 DJ |
2685 | /* If we don't know how many elements there are, don't display |
2686 | any. */ | |
2687 | children = 0; | |
8b93c638 JM |
2688 | break; |
2689 | ||
2690 | case TYPE_CODE_STRUCT: | |
2691 | case TYPE_CODE_UNION: | |
2692 | children = TYPE_NFIELDS (type); | |
2693 | break; | |
2694 | ||
2695 | case TYPE_CODE_PTR: | |
2024f65a VP |
2696 | /* The type here is a pointer to non-struct. Typically, pointers |
2697 | have one child, except for function ptrs, which have no children, | |
2698 | and except for void*, as we don't know what to show. | |
2699 | ||
0755e6c1 FN |
2700 | We can show char* so we allow it to be dereferenced. If you decide |
2701 | to test for it, please mind that a little magic is necessary to | |
2702 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
2703 | TYPE_NAME == "char" */ | |
2024f65a VP |
2704 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2705 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2706 | children = 0; | |
2707 | else | |
2708 | children = 1; | |
8b93c638 JM |
2709 | break; |
2710 | ||
2711 | default: | |
2712 | /* Other types have no children */ | |
2713 | break; | |
2714 | } | |
2715 | ||
2716 | return children; | |
2717 | } | |
2718 | ||
2719 | static char * | |
fba45db2 | 2720 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2721 | { |
1b36a34b | 2722 | return xstrdup (parent->name); |
8b93c638 JM |
2723 | } |
2724 | ||
bbec2603 VP |
2725 | /* Return the value of element TYPE_INDEX of a structure |
2726 | value VALUE. VALUE's type should be a structure, | |
2727 | or union, or a typedef to struct/union. | |
2728 | ||
2729 | Returns NULL if getting the value fails. Never throws. */ | |
2730 | static struct value * | |
2731 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2732 | { |
bbec2603 VP |
2733 | struct value *result = NULL; |
2734 | volatile struct gdb_exception e; | |
8b93c638 | 2735 | |
bbec2603 VP |
2736 | struct type *type = value_type (value); |
2737 | type = check_typedef (type); | |
2738 | ||
2739 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2740 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2741 | |
bbec2603 VP |
2742 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2743 | { | |
d6a843b5 | 2744 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2745 | result = value_static_field (type, type_index); |
2746 | else | |
2747 | result = value_primitive_field (value, 0, type_index, type); | |
2748 | } | |
2749 | if (e.reason < 0) | |
2750 | { | |
2751 | return NULL; | |
2752 | } | |
2753 | else | |
2754 | { | |
2755 | return result; | |
2756 | } | |
2757 | } | |
2758 | ||
2759 | /* Obtain the information about child INDEX of the variable | |
2760 | object PARENT. | |
2761 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2762 | to the parent. | |
2763 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2764 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2765 | ||
2766 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2767 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2768 | to NULL. */ | |
2769 | static void | |
2770 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2771 | char **cname, struct value **cvalue, struct type **ctype, |
2772 | char **cfull_expression) | |
bbec2603 VP |
2773 | { |
2774 | struct value *value = parent->value; | |
2024f65a | 2775 | struct type *type = get_value_type (parent); |
02142340 VP |
2776 | char *parent_expression = NULL; |
2777 | int was_ptr; | |
bbec2603 VP |
2778 | |
2779 | if (cname) | |
2780 | *cname = NULL; | |
2781 | if (cvalue) | |
2782 | *cvalue = NULL; | |
2783 | if (ctype) | |
2784 | *ctype = NULL; | |
02142340 VP |
2785 | if (cfull_expression) |
2786 | { | |
2787 | *cfull_expression = NULL; | |
2788 | parent_expression = varobj_get_path_expr (parent); | |
2789 | } | |
2790 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2791 | |
8b93c638 JM |
2792 | switch (TYPE_CODE (type)) |
2793 | { | |
2794 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2795 | if (cname) |
2796 | *cname = xstrprintf ("%d", index | |
2797 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2798 | ||
2799 | if (cvalue && value) | |
2800 | { | |
2801 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2497b498 | 2802 | gdb_value_subscript (value, real_index, cvalue); |
bbec2603 VP |
2803 | } |
2804 | ||
2805 | if (ctype) | |
2806 | *ctype = get_target_type (type); | |
2807 | ||
02142340 VP |
2808 | if (cfull_expression) |
2809 | *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression, | |
2810 | index | |
2811 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2812 | ||
2813 | ||
8b93c638 JM |
2814 | break; |
2815 | ||
2816 | case TYPE_CODE_STRUCT: | |
2817 | case TYPE_CODE_UNION: | |
bbec2603 | 2818 | if (cname) |
1b36a34b | 2819 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2820 | |
2821 | if (cvalue && value) | |
2822 | { | |
2823 | /* For C, varobj index is the same as type index. */ | |
2824 | *cvalue = value_struct_element_index (value, index); | |
2825 | } | |
2826 | ||
2827 | if (ctype) | |
2828 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2829 | ||
02142340 VP |
2830 | if (cfull_expression) |
2831 | { | |
2832 | char *join = was_ptr ? "->" : "."; | |
2833 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2834 | TYPE_FIELD_NAME (type, index)); | |
2835 | } | |
2836 | ||
8b93c638 JM |
2837 | break; |
2838 | ||
2839 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2840 | if (cname) |
2841 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2842 | |
bbec2603 | 2843 | if (cvalue && value) |
3f4178d6 DJ |
2844 | { |
2845 | int success = gdb_value_ind (value, cvalue); | |
2846 | if (!success) | |
2847 | *cvalue = NULL; | |
2848 | } | |
bbec2603 | 2849 | |
2024f65a VP |
2850 | /* Don't use get_target_type because it calls |
2851 | check_typedef and here, we want to show the true | |
2852 | declared type of the variable. */ | |
bbec2603 | 2853 | if (ctype) |
2024f65a | 2854 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2855 | |
2856 | if (cfull_expression) | |
2857 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2858 | |
8b93c638 JM |
2859 | break; |
2860 | ||
2861 | default: | |
2862 | /* This should not happen */ | |
bbec2603 VP |
2863 | if (cname) |
2864 | *cname = xstrdup ("???"); | |
02142340 VP |
2865 | if (cfull_expression) |
2866 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2867 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2868 | } |
bbec2603 | 2869 | } |
8b93c638 | 2870 | |
bbec2603 VP |
2871 | static char * |
2872 | c_name_of_child (struct varobj *parent, int index) | |
2873 | { | |
2874 | char *name; | |
02142340 | 2875 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2876 | return name; |
2877 | } | |
2878 | ||
02142340 VP |
2879 | static char * |
2880 | c_path_expr_of_child (struct varobj *child) | |
2881 | { | |
2882 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2883 | &child->path_expr); | |
2884 | return child->path_expr; | |
2885 | } | |
2886 | ||
c5b48eac VP |
2887 | /* If frame associated with VAR can be found, switch |
2888 | to it and return 1. Otherwise, return 0. */ | |
2889 | static int | |
2890 | check_scope (struct varobj *var) | |
2891 | { | |
2892 | struct frame_info *fi; | |
2893 | int scope; | |
2894 | ||
2895 | fi = frame_find_by_id (var->root->frame); | |
2896 | scope = fi != NULL; | |
2897 | ||
2898 | if (fi) | |
2899 | { | |
2900 | CORE_ADDR pc = get_frame_pc (fi); | |
2901 | if (pc < BLOCK_START (var->root->valid_block) || | |
2902 | pc >= BLOCK_END (var->root->valid_block)) | |
2903 | scope = 0; | |
2904 | else | |
2905 | select_frame (fi); | |
2906 | } | |
2907 | return scope; | |
2908 | } | |
2909 | ||
30b28db1 | 2910 | static struct value * |
fba45db2 | 2911 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2912 | { |
5e572bb4 | 2913 | struct value *new_val = NULL; |
73a93a32 | 2914 | struct varobj *var = *var_handle; |
8b93c638 | 2915 | struct frame_info *fi; |
c5b48eac | 2916 | int within_scope = 0; |
6208b47d VP |
2917 | struct cleanup *back_to; |
2918 | ||
73a93a32 | 2919 | /* Only root variables can be updated... */ |
b2c2bd75 | 2920 | if (!is_root_p (var)) |
73a93a32 JI |
2921 | /* Not a root var */ |
2922 | return NULL; | |
2923 | ||
4f8d22e3 | 2924 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2925 | |
8b93c638 | 2926 | /* Determine whether the variable is still around. */ |
a5defcdc | 2927 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2928 | within_scope = 1; |
c5b48eac VP |
2929 | else if (var->root->thread_id == 0) |
2930 | { | |
2931 | /* The program was single-threaded when the variable object was | |
2932 | created. Technically, it's possible that the program became | |
2933 | multi-threaded since then, but we don't support such | |
2934 | scenario yet. */ | |
2935 | within_scope = check_scope (var); | |
2936 | } | |
8b93c638 JM |
2937 | else |
2938 | { | |
c5b48eac VP |
2939 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2940 | if (in_thread_list (ptid)) | |
d2353924 | 2941 | { |
c5b48eac VP |
2942 | switch_to_thread (ptid); |
2943 | within_scope = check_scope (var); | |
2944 | } | |
8b93c638 | 2945 | } |
72330bd6 | 2946 | |
8b93c638 JM |
2947 | if (within_scope) |
2948 | { | |
73a93a32 | 2949 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2950 | expression fails we want to just return NULL. */ |
2951 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2952 | return new_val; |
2953 | } | |
2954 | ||
6208b47d VP |
2955 | do_cleanups (back_to); |
2956 | ||
8b93c638 JM |
2957 | return NULL; |
2958 | } | |
2959 | ||
30b28db1 | 2960 | static struct value * |
fba45db2 | 2961 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2962 | { |
bbec2603 | 2963 | struct value *value = NULL; |
02142340 | 2964 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2965 | |
2966 | return value; | |
2967 | } | |
2968 | ||
2969 | static struct type * | |
fba45db2 | 2970 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2971 | { |
bbec2603 | 2972 | struct type *type = NULL; |
02142340 | 2973 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2974 | return type; |
2975 | } | |
2976 | ||
8b93c638 | 2977 | static char * |
de051565 | 2978 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2979 | { |
14b3d9c9 JB |
2980 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2981 | it will print out its children instead of "{...}". So we need to | |
2982 | catch that case explicitly. */ | |
2983 | struct type *type = get_type (var); | |
e64d9b3d | 2984 | |
b6313243 TT |
2985 | /* If we have a custom formatter, return whatever string it has |
2986 | produced. */ | |
2987 | if (var->pretty_printer && var->print_value) | |
2988 | return xstrdup (var->print_value); | |
2989 | ||
14b3d9c9 JB |
2990 | /* Strip top-level references. */ |
2991 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2992 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2993 | ||
2994 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2995 | { |
2996 | case TYPE_CODE_STRUCT: | |
2997 | case TYPE_CODE_UNION: | |
2998 | return xstrdup ("{...}"); | |
2999 | /* break; */ | |
3000 | ||
3001 | case TYPE_CODE_ARRAY: | |
3002 | { | |
e64d9b3d | 3003 | char *number; |
b435e160 | 3004 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 3005 | return (number); |
8b93c638 JM |
3006 | } |
3007 | /* break; */ | |
3008 | ||
3009 | default: | |
3010 | { | |
575bbeb6 KS |
3011 | if (var->value == NULL) |
3012 | { | |
3013 | /* This can happen if we attempt to get the value of a struct | |
3014 | member when the parent is an invalid pointer. This is an | |
3015 | error condition, so we should tell the caller. */ | |
3016 | return NULL; | |
3017 | } | |
3018 | else | |
3019 | { | |
25d5ea92 VP |
3020 | if (var->not_fetched && value_lazy (var->value)) |
3021 | /* Frozen variable and no value yet. We don't | |
3022 | implicitly fetch the value. MI response will | |
3023 | use empty string for the value, which is OK. */ | |
3024 | return NULL; | |
3025 | ||
b2c2bd75 | 3026 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 3027 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
3028 | |
3029 | /* If the specified format is the current one, | |
3030 | we can reuse print_value */ | |
3031 | if (format == var->format) | |
3032 | return xstrdup (var->print_value); | |
3033 | else | |
d452c4bc | 3034 | return value_get_print_value (var->value, format, var); |
85265413 | 3035 | } |
e64d9b3d | 3036 | } |
8b93c638 JM |
3037 | } |
3038 | } | |
3039 | \f | |
3040 | ||
3041 | /* C++ */ | |
3042 | ||
3043 | static int | |
fba45db2 | 3044 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
3045 | { |
3046 | struct type *type; | |
3047 | int children, dont_know; | |
3048 | ||
3049 | dont_know = 1; | |
3050 | children = 0; | |
3051 | ||
3052 | if (!CPLUS_FAKE_CHILD (var)) | |
3053 | { | |
2024f65a | 3054 | type = get_value_type (var); |
02142340 | 3055 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3056 | |
3057 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 3058 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
3059 | { |
3060 | int kids[3]; | |
3061 | ||
3062 | cplus_class_num_children (type, kids); | |
3063 | if (kids[v_public] != 0) | |
3064 | children++; | |
3065 | if (kids[v_private] != 0) | |
3066 | children++; | |
3067 | if (kids[v_protected] != 0) | |
3068 | children++; | |
3069 | ||
3070 | /* Add any baseclasses */ | |
3071 | children += TYPE_N_BASECLASSES (type); | |
3072 | dont_know = 0; | |
3073 | ||
3074 | /* FIXME: save children in var */ | |
3075 | } | |
3076 | } | |
3077 | else | |
3078 | { | |
3079 | int kids[3]; | |
3080 | ||
2024f65a | 3081 | type = get_value_type (var->parent); |
02142340 | 3082 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3083 | |
3084 | cplus_class_num_children (type, kids); | |
6e382aa3 | 3085 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 3086 | children = kids[v_public]; |
6e382aa3 | 3087 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
3088 | children = kids[v_private]; |
3089 | else | |
3090 | children = kids[v_protected]; | |
3091 | dont_know = 0; | |
3092 | } | |
3093 | ||
3094 | if (dont_know) | |
3095 | children = c_number_of_children (var); | |
3096 | ||
3097 | return children; | |
3098 | } | |
3099 | ||
3100 | /* Compute # of public, private, and protected variables in this class. | |
3101 | That means we need to descend into all baseclasses and find out | |
3102 | how many are there, too. */ | |
3103 | static void | |
1669605f | 3104 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 | 3105 | { |
d48cc9dd DJ |
3106 | int i, vptr_fieldno; |
3107 | struct type *basetype = NULL; | |
8b93c638 JM |
3108 | |
3109 | children[v_public] = 0; | |
3110 | children[v_private] = 0; | |
3111 | children[v_protected] = 0; | |
3112 | ||
d48cc9dd | 3113 | vptr_fieldno = get_vptr_fieldno (type, &basetype); |
8b93c638 JM |
3114 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) |
3115 | { | |
d48cc9dd DJ |
3116 | /* If we have a virtual table pointer, omit it. Even if virtual |
3117 | table pointers are not specifically marked in the debug info, | |
3118 | they should be artificial. */ | |
3119 | if ((type == basetype && i == vptr_fieldno) | |
3120 | || TYPE_FIELD_ARTIFICIAL (type, i)) | |
8b93c638 JM |
3121 | continue; |
3122 | ||
3123 | if (TYPE_FIELD_PROTECTED (type, i)) | |
3124 | children[v_protected]++; | |
3125 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
3126 | children[v_private]++; | |
3127 | else | |
3128 | children[v_public]++; | |
3129 | } | |
3130 | } | |
3131 | ||
3132 | static char * | |
fba45db2 | 3133 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3134 | { |
3135 | return c_name_of_variable (parent); | |
3136 | } | |
3137 | ||
2024f65a VP |
3138 | enum accessibility { private_field, protected_field, public_field }; |
3139 | ||
3140 | /* Check if field INDEX of TYPE has the specified accessibility. | |
3141 | Return 0 if so and 1 otherwise. */ | |
3142 | static int | |
3143 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 3144 | { |
2024f65a VP |
3145 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
3146 | return 1; | |
3147 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
3148 | return 1; | |
3149 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
3150 | && !TYPE_FIELD_PROTECTED (type, index)) | |
3151 | return 1; | |
3152 | else | |
3153 | return 0; | |
3154 | } | |
3155 | ||
3156 | static void | |
3157 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
3158 | char **cname, struct value **cvalue, struct type **ctype, |
3159 | char **cfull_expression) | |
2024f65a | 3160 | { |
348144ba | 3161 | char *name = NULL; |
2024f65a | 3162 | struct value *value; |
8b93c638 | 3163 | struct type *type; |
02142340 VP |
3164 | int was_ptr; |
3165 | char *parent_expression = NULL; | |
8b93c638 | 3166 | |
2024f65a VP |
3167 | if (cname) |
3168 | *cname = NULL; | |
3169 | if (cvalue) | |
3170 | *cvalue = NULL; | |
3171 | if (ctype) | |
3172 | *ctype = NULL; | |
02142340 VP |
3173 | if (cfull_expression) |
3174 | *cfull_expression = NULL; | |
2024f65a | 3175 | |
8b93c638 JM |
3176 | if (CPLUS_FAKE_CHILD (parent)) |
3177 | { | |
2024f65a VP |
3178 | value = parent->parent->value; |
3179 | type = get_value_type (parent->parent); | |
02142340 VP |
3180 | if (cfull_expression) |
3181 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
3182 | } |
3183 | else | |
2024f65a VP |
3184 | { |
3185 | value = parent->value; | |
3186 | type = get_value_type (parent); | |
02142340 VP |
3187 | if (cfull_expression) |
3188 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 3189 | } |
8b93c638 | 3190 | |
02142340 | 3191 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
3192 | |
3193 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 3194 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 3195 | { |
02142340 | 3196 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
3197 | if (CPLUS_FAKE_CHILD (parent)) |
3198 | { | |
6e382aa3 JJ |
3199 | /* The fields of the class type are ordered as they |
3200 | appear in the class. We are given an index for a | |
3201 | particular access control type ("public","protected", | |
3202 | or "private"). We must skip over fields that don't | |
3203 | have the access control we are looking for to properly | |
3204 | find the indexed field. */ | |
3205 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 3206 | enum accessibility acc = public_field; |
d48cc9dd DJ |
3207 | int vptr_fieldno; |
3208 | struct type *basetype = NULL; | |
3209 | ||
3210 | vptr_fieldno = get_vptr_fieldno (type, &basetype); | |
6e382aa3 | 3211 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 3212 | acc = private_field; |
6e382aa3 | 3213 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
3214 | acc = protected_field; |
3215 | ||
3216 | while (index >= 0) | |
6e382aa3 | 3217 | { |
d48cc9dd DJ |
3218 | if ((type == basetype && type_index == vptr_fieldno) |
3219 | || TYPE_FIELD_ARTIFICIAL (type, type_index)) | |
2024f65a VP |
3220 | ; /* ignore vptr */ |
3221 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
3222 | --index; |
3223 | ++type_index; | |
6e382aa3 | 3224 | } |
2024f65a VP |
3225 | --type_index; |
3226 | ||
3227 | if (cname) | |
3228 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
3229 | ||
3230 | if (cvalue && value) | |
3231 | *cvalue = value_struct_element_index (value, type_index); | |
3232 | ||
3233 | if (ctype) | |
3234 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
3235 | |
3236 | if (cfull_expression) | |
3237 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
3238 | join, | |
3239 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
3240 | } |
3241 | else if (index < TYPE_N_BASECLASSES (type)) | |
3242 | { | |
3243 | /* This is a baseclass. */ | |
3244 | if (cname) | |
3245 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
3246 | ||
3247 | if (cvalue && value) | |
0cc7d26f | 3248 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 | 3249 | |
2024f65a VP |
3250 | if (ctype) |
3251 | { | |
3252 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3253 | } | |
02142340 VP |
3254 | |
3255 | if (cfull_expression) | |
3256 | { | |
3257 | char *ptr = was_ptr ? "*" : ""; | |
3258 | /* Cast the parent to the base' type. Note that in gdb, | |
3259 | expression like | |
3260 | (Base1)d | |
3261 | will create an lvalue, for all appearences, so we don't | |
3262 | need to use more fancy: | |
3263 | *(Base1*)(&d) | |
3264 | construct. */ | |
3265 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
3266 | ptr, | |
3267 | TYPE_FIELD_NAME (type, index), | |
3268 | ptr, | |
3269 | parent_expression); | |
3270 | } | |
8b93c638 | 3271 | } |
8b93c638 JM |
3272 | else |
3273 | { | |
348144ba | 3274 | char *access = NULL; |
6e382aa3 | 3275 | int children[3]; |
2024f65a | 3276 | cplus_class_num_children (type, children); |
6e382aa3 | 3277 | |
8b93c638 | 3278 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3279 | only be "public", "private", or "protected" |
3280 | ||
3281 | The special "fake" children are always output by varobj in | |
3282 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
3283 | index -= TYPE_N_BASECLASSES (type); |
3284 | switch (index) | |
3285 | { | |
3286 | case 0: | |
6e382aa3 | 3287 | if (children[v_public] > 0) |
2024f65a | 3288 | access = "public"; |
6e382aa3 | 3289 | else if (children[v_private] > 0) |
2024f65a | 3290 | access = "private"; |
6e382aa3 | 3291 | else |
2024f65a | 3292 | access = "protected"; |
6e382aa3 | 3293 | break; |
8b93c638 | 3294 | case 1: |
6e382aa3 | 3295 | if (children[v_public] > 0) |
8b93c638 | 3296 | { |
6e382aa3 | 3297 | if (children[v_private] > 0) |
2024f65a | 3298 | access = "private"; |
6e382aa3 | 3299 | else |
2024f65a | 3300 | access = "protected"; |
8b93c638 | 3301 | } |
6e382aa3 | 3302 | else if (children[v_private] > 0) |
2024f65a | 3303 | access = "protected"; |
6e382aa3 | 3304 | break; |
8b93c638 | 3305 | case 2: |
6e382aa3 | 3306 | /* Must be protected */ |
2024f65a | 3307 | access = "protected"; |
6e382aa3 | 3308 | break; |
8b93c638 JM |
3309 | default: |
3310 | /* error! */ | |
3311 | break; | |
3312 | } | |
348144ba MS |
3313 | |
3314 | gdb_assert (access); | |
2024f65a VP |
3315 | if (cname) |
3316 | *cname = xstrdup (access); | |
8b93c638 | 3317 | |
02142340 | 3318 | /* Value and type and full expression are null here. */ |
2024f65a | 3319 | } |
8b93c638 | 3320 | } |
8b93c638 JM |
3321 | else |
3322 | { | |
02142340 | 3323 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3324 | } |
3325 | } | |
8b93c638 | 3326 | |
2024f65a VP |
3327 | static char * |
3328 | cplus_name_of_child (struct varobj *parent, int index) | |
3329 | { | |
3330 | char *name = NULL; | |
02142340 | 3331 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3332 | return name; |
3333 | } | |
3334 | ||
02142340 VP |
3335 | static char * |
3336 | cplus_path_expr_of_child (struct varobj *child) | |
3337 | { | |
3338 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3339 | &child->path_expr); | |
3340 | return child->path_expr; | |
3341 | } | |
3342 | ||
30b28db1 | 3343 | static struct value * |
fba45db2 | 3344 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3345 | { |
73a93a32 | 3346 | return c_value_of_root (var_handle); |
8b93c638 JM |
3347 | } |
3348 | ||
30b28db1 | 3349 | static struct value * |
fba45db2 | 3350 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3351 | { |
2024f65a | 3352 | struct value *value = NULL; |
02142340 | 3353 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3354 | return value; |
3355 | } | |
3356 | ||
3357 | static struct type * | |
fba45db2 | 3358 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3359 | { |
2024f65a | 3360 | struct type *type = NULL; |
02142340 | 3361 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3362 | return type; |
3363 | } | |
3364 | ||
8b93c638 | 3365 | static char * |
de051565 | 3366 | cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 JM |
3367 | { |
3368 | ||
3369 | /* If we have one of our special types, don't print out | |
3370 | any value. */ | |
3371 | if (CPLUS_FAKE_CHILD (var)) | |
3372 | return xstrdup (""); | |
3373 | ||
de051565 | 3374 | return c_value_of_variable (var, format); |
8b93c638 JM |
3375 | } |
3376 | \f | |
3377 | /* Java */ | |
3378 | ||
3379 | static int | |
fba45db2 | 3380 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3381 | { |
3382 | return cplus_number_of_children (var); | |
3383 | } | |
3384 | ||
3385 | static char * | |
fba45db2 | 3386 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3387 | { |
3388 | char *p, *name; | |
3389 | ||
3390 | name = cplus_name_of_variable (parent); | |
3391 | /* If the name has "-" in it, it is because we | |
3392 | needed to escape periods in the name... */ | |
3393 | p = name; | |
3394 | ||
3395 | while (*p != '\000') | |
3396 | { | |
3397 | if (*p == '-') | |
3398 | *p = '.'; | |
3399 | p++; | |
3400 | } | |
3401 | ||
3402 | return name; | |
3403 | } | |
3404 | ||
3405 | static char * | |
fba45db2 | 3406 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3407 | { |
3408 | char *name, *p; | |
3409 | ||
3410 | name = cplus_name_of_child (parent, index); | |
3411 | /* Escape any periods in the name... */ | |
3412 | p = name; | |
3413 | ||
3414 | while (*p != '\000') | |
3415 | { | |
3416 | if (*p == '.') | |
3417 | *p = '-'; | |
3418 | p++; | |
3419 | } | |
3420 | ||
3421 | return name; | |
3422 | } | |
3423 | ||
02142340 VP |
3424 | static char * |
3425 | java_path_expr_of_child (struct varobj *child) | |
3426 | { | |
3427 | return NULL; | |
3428 | } | |
3429 | ||
30b28db1 | 3430 | static struct value * |
fba45db2 | 3431 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3432 | { |
73a93a32 | 3433 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3434 | } |
3435 | ||
30b28db1 | 3436 | static struct value * |
fba45db2 | 3437 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3438 | { |
3439 | return cplus_value_of_child (parent, index); | |
3440 | } | |
3441 | ||
3442 | static struct type * | |
fba45db2 | 3443 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3444 | { |
3445 | return cplus_type_of_child (parent, index); | |
3446 | } | |
3447 | ||
8b93c638 | 3448 | static char * |
de051565 | 3449 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3450 | { |
de051565 | 3451 | return cplus_value_of_variable (var, format); |
8b93c638 | 3452 | } |
54333c3b JK |
3453 | |
3454 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them | |
3455 | with an arbitrary caller supplied DATA pointer. */ | |
3456 | ||
3457 | void | |
3458 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3459 | { | |
3460 | struct varobj_root *var_root, *var_root_next; | |
3461 | ||
3462 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3463 | ||
3464 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3465 | { | |
3466 | var_root_next = var_root->next; | |
3467 | ||
3468 | (*func) (var_root->rootvar, data); | |
3469 | } | |
3470 | } | |
8b93c638 JM |
3471 | \f |
3472 | extern void _initialize_varobj (void); | |
3473 | void | |
3474 | _initialize_varobj (void) | |
3475 | { | |
3476 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3477 | ||
3478 | varobj_table = xmalloc (sizeof_table); | |
3479 | memset (varobj_table, 0, sizeof_table); | |
3480 | ||
85c07804 AC |
3481 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3482 | &varobjdebug, _("\ | |
3483 | Set varobj debugging."), _("\ | |
3484 | Show varobj debugging."), _("\ | |
3485 | When non-zero, varobj debugging is enabled."), | |
3486 | NULL, | |
920d2a44 | 3487 | show_varobjdebug, |
85c07804 | 3488 | &setlist, &showlist); |
8b93c638 | 3489 | } |
8756216b | 3490 | |
54333c3b JK |
3491 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3492 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3493 | |
54333c3b JK |
3494 | static void |
3495 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3496 | { |
54333c3b JK |
3497 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3498 | presently parsed expression refers to something that's gone. */ | |
3499 | if (var->root->floating) | |
3500 | return; | |
8756216b | 3501 | |
54333c3b JK |
3502 | /* global var must be re-evaluated. */ |
3503 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3504 | { |
54333c3b | 3505 | struct varobj *tmp_var; |
2dbd25e5 | 3506 | |
54333c3b JK |
3507 | /* Try to create a varobj with same expression. If we succeed |
3508 | replace the old varobj, otherwise invalidate it. */ | |
3509 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3510 | USE_CURRENT_FRAME); | |
3511 | if (tmp_var != NULL) | |
3512 | { | |
3513 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3514 | varobj_delete (var, NULL, 0); | |
3515 | install_variable (tmp_var); | |
2dbd25e5 | 3516 | } |
54333c3b JK |
3517 | else |
3518 | var->root->is_valid = 0; | |
2dbd25e5 | 3519 | } |
54333c3b JK |
3520 | else /* locals must be invalidated. */ |
3521 | var->root->is_valid = 0; | |
3522 | } | |
3523 | ||
3524 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3525 | are defined on globals. | |
3526 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3527 | ||
3528 | void | |
3529 | varobj_invalidate (void) | |
3530 | { | |
3531 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3532 | } |