]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
6aba47ca | 3 | Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
7b6bb8da | 4 | 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 |
9b254dd1 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 21 | |
0963b4bd | 22 | #include <ctype.h> /* XXX for isupper (). */ |
34e8f22d | 23 | |
c906108c SS |
24 | #include "defs.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
c906108c | 29 | #include "gdb_string.h" |
0963b4bd | 30 | #include "dis-asm.h" /* For register styles. */ |
4e052eda | 31 | #include "regcache.h" |
54483882 | 32 | #include "reggroups.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
4be87837 | 36 | #include "osabi.h" |
eb5492fa DJ |
37 | #include "frame-unwind.h" |
38 | #include "frame-base.h" | |
39 | #include "trad-frame.h" | |
842e1f1e DJ |
40 | #include "objfiles.h" |
41 | #include "dwarf2-frame.h" | |
e4c16157 | 42 | #include "gdbtypes.h" |
29d73ae4 | 43 | #include "prologue-value.h" |
123dc839 DJ |
44 | #include "target-descriptions.h" |
45 | #include "user-regs.h" | |
34e8f22d RE |
46 | |
47 | #include "arm-tdep.h" | |
26216b98 | 48 | #include "gdb/sim-arm.h" |
34e8f22d | 49 | |
082fc60d RE |
50 | #include "elf-bfd.h" |
51 | #include "coff/internal.h" | |
97e03143 | 52 | #include "elf/arm.h" |
c906108c | 53 | |
26216b98 | 54 | #include "gdb_assert.h" |
60c5725c | 55 | #include "vec.h" |
26216b98 | 56 | |
9779414d DJ |
57 | #include "features/arm-with-m.c" |
58 | ||
6529d2dd AC |
59 | static int arm_debug; |
60 | ||
082fc60d RE |
61 | /* Macros for setting and testing a bit in a minimal symbol that marks |
62 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 63 | is used for this purpose. |
082fc60d RE |
64 | |
65 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 66 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d | 67 | |
0963b4bd | 68 | #define MSYMBOL_SET_SPECIAL(msym) \ |
b887350f | 69 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
70 | |
71 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 72 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 73 | |
60c5725c DJ |
74 | /* Per-objfile data used for mapping symbols. */ |
75 | static const struct objfile_data *arm_objfile_data_key; | |
76 | ||
77 | struct arm_mapping_symbol | |
78 | { | |
79 | bfd_vma value; | |
80 | char type; | |
81 | }; | |
82 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
83 | DEF_VEC_O(arm_mapping_symbol_s); | |
84 | ||
85 | struct arm_per_objfile | |
86 | { | |
87 | VEC(arm_mapping_symbol_s) **section_maps; | |
88 | }; | |
89 | ||
afd7eef0 RE |
90 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
91 | static struct cmd_list_element *setarmcmdlist = NULL; | |
92 | static struct cmd_list_element *showarmcmdlist = NULL; | |
93 | ||
fd50bc42 RE |
94 | /* The type of floating-point to use. Keep this in sync with enum |
95 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
96 | static const char *fp_model_strings[] = | |
97 | { | |
98 | "auto", | |
99 | "softfpa", | |
100 | "fpa", | |
101 | "softvfp", | |
28e97307 DJ |
102 | "vfp", |
103 | NULL | |
fd50bc42 RE |
104 | }; |
105 | ||
106 | /* A variable that can be configured by the user. */ | |
107 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
108 | static const char *current_fp_model = "auto"; | |
109 | ||
28e97307 DJ |
110 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
111 | static const char *arm_abi_strings[] = | |
112 | { | |
113 | "auto", | |
114 | "APCS", | |
115 | "AAPCS", | |
116 | NULL | |
117 | }; | |
118 | ||
119 | /* A variable that can be configured by the user. */ | |
120 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
121 | static const char *arm_abi_string = "auto"; | |
122 | ||
0428b8f5 DJ |
123 | /* The execution mode to assume. */ |
124 | static const char *arm_mode_strings[] = | |
125 | { | |
126 | "auto", | |
127 | "arm", | |
68770265 MGD |
128 | "thumb", |
129 | NULL | |
0428b8f5 DJ |
130 | }; |
131 | ||
132 | static const char *arm_fallback_mode_string = "auto"; | |
133 | static const char *arm_force_mode_string = "auto"; | |
134 | ||
94c30b78 | 135 | /* Number of different reg name sets (options). */ |
afd7eef0 | 136 | static int num_disassembly_options; |
bc90b915 | 137 | |
f32bf4a4 YQ |
138 | /* The standard register names, and all the valid aliases for them. Note |
139 | that `fp', `sp' and `pc' are not added in this alias list, because they | |
140 | have been added as builtin user registers in | |
141 | std-regs.c:_initialize_frame_reg. */ | |
123dc839 DJ |
142 | static const struct |
143 | { | |
144 | const char *name; | |
145 | int regnum; | |
146 | } arm_register_aliases[] = { | |
147 | /* Basic register numbers. */ | |
148 | { "r0", 0 }, | |
149 | { "r1", 1 }, | |
150 | { "r2", 2 }, | |
151 | { "r3", 3 }, | |
152 | { "r4", 4 }, | |
153 | { "r5", 5 }, | |
154 | { "r6", 6 }, | |
155 | { "r7", 7 }, | |
156 | { "r8", 8 }, | |
157 | { "r9", 9 }, | |
158 | { "r10", 10 }, | |
159 | { "r11", 11 }, | |
160 | { "r12", 12 }, | |
161 | { "r13", 13 }, | |
162 | { "r14", 14 }, | |
163 | { "r15", 15 }, | |
164 | /* Synonyms (argument and variable registers). */ | |
165 | { "a1", 0 }, | |
166 | { "a2", 1 }, | |
167 | { "a3", 2 }, | |
168 | { "a4", 3 }, | |
169 | { "v1", 4 }, | |
170 | { "v2", 5 }, | |
171 | { "v3", 6 }, | |
172 | { "v4", 7 }, | |
173 | { "v5", 8 }, | |
174 | { "v6", 9 }, | |
175 | { "v7", 10 }, | |
176 | { "v8", 11 }, | |
177 | /* Other platform-specific names for r9. */ | |
178 | { "sb", 9 }, | |
179 | { "tr", 9 }, | |
180 | /* Special names. */ | |
181 | { "ip", 12 }, | |
123dc839 | 182 | { "lr", 14 }, |
123dc839 DJ |
183 | /* Names used by GCC (not listed in the ARM EABI). */ |
184 | { "sl", 10 }, | |
123dc839 DJ |
185 | /* A special name from the older ATPCS. */ |
186 | { "wr", 7 }, | |
187 | }; | |
bc90b915 | 188 | |
123dc839 | 189 | static const char *const arm_register_names[] = |
da59e081 JM |
190 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
191 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
192 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
193 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
194 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
195 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 196 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 197 | |
afd7eef0 RE |
198 | /* Valid register name styles. */ |
199 | static const char **valid_disassembly_styles; | |
ed9a39eb | 200 | |
afd7eef0 RE |
201 | /* Disassembly style to use. Default to "std" register names. */ |
202 | static const char *disassembly_style; | |
96baa820 | 203 | |
ed9a39eb | 204 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
205 | style. */ |
206 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 207 | struct cmd_list_element *); |
afd7eef0 | 208 | static void set_disassembly_style (void); |
ed9a39eb | 209 | |
b508a996 | 210 | static void convert_from_extended (const struct floatformat *, const void *, |
be8626e0 | 211 | void *, int); |
b508a996 | 212 | static void convert_to_extended (const struct floatformat *, void *, |
be8626e0 | 213 | const void *, int); |
ed9a39eb | 214 | |
58d6951d DJ |
215 | static void arm_neon_quad_read (struct gdbarch *gdbarch, |
216 | struct regcache *regcache, | |
217 | int regnum, gdb_byte *buf); | |
218 | static void arm_neon_quad_write (struct gdbarch *gdbarch, | |
219 | struct regcache *regcache, | |
220 | int regnum, const gdb_byte *buf); | |
221 | ||
9b8d791a | 222 | struct arm_prologue_cache |
c3b4394c | 223 | { |
eb5492fa DJ |
224 | /* The stack pointer at the time this frame was created; i.e. the |
225 | caller's stack pointer when this function was called. It is used | |
226 | to identify this frame. */ | |
227 | CORE_ADDR prev_sp; | |
228 | ||
4be43953 DJ |
229 | /* The frame base for this frame is just prev_sp - frame size. |
230 | FRAMESIZE is the distance from the frame pointer to the | |
231 | initial stack pointer. */ | |
eb5492fa | 232 | |
c3b4394c | 233 | int framesize; |
eb5492fa DJ |
234 | |
235 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 236 | int framereg; |
eb5492fa DJ |
237 | |
238 | /* Saved register offsets. */ | |
239 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 240 | }; |
ed9a39eb | 241 | |
0d39a070 DJ |
242 | static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, |
243 | CORE_ADDR prologue_start, | |
244 | CORE_ADDR prologue_end, | |
245 | struct arm_prologue_cache *cache); | |
246 | ||
cca44b1b JB |
247 | /* Architecture version for displaced stepping. This effects the behaviour of |
248 | certain instructions, and really should not be hard-wired. */ | |
249 | ||
250 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
251 | ||
bc90b915 FN |
252 | /* Addresses for calling Thumb functions have the bit 0 set. |
253 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
254 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
255 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
256 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
257 | ||
94c30b78 | 258 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
259 | |
260 | int arm_apcs_32 = 1; | |
261 | ||
9779414d DJ |
262 | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
263 | ||
264 | static int | |
265 | arm_psr_thumb_bit (struct gdbarch *gdbarch) | |
266 | { | |
267 | if (gdbarch_tdep (gdbarch)->is_m) | |
268 | return XPSR_T; | |
269 | else | |
270 | return CPSR_T; | |
271 | } | |
272 | ||
b39cc962 DJ |
273 | /* Determine if FRAME is executing in Thumb mode. */ |
274 | ||
25b41d01 | 275 | int |
b39cc962 DJ |
276 | arm_frame_is_thumb (struct frame_info *frame) |
277 | { | |
278 | CORE_ADDR cpsr; | |
9779414d | 279 | ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
b39cc962 DJ |
280 | |
281 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
282 | directly (from a signal frame or dummy frame) or by interpreting | |
283 | the saved LR (from a prologue or DWARF frame). So consult it and | |
284 | trust the unwinders. */ | |
285 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
286 | ||
9779414d | 287 | return (cpsr & t_bit) != 0; |
b39cc962 DJ |
288 | } |
289 | ||
60c5725c DJ |
290 | /* Callback for VEC_lower_bound. */ |
291 | ||
292 | static inline int | |
293 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
294 | const struct arm_mapping_symbol *rhs) | |
295 | { | |
296 | return lhs->value < rhs->value; | |
297 | } | |
298 | ||
f9d67f43 DJ |
299 | /* Search for the mapping symbol covering MEMADDR. If one is found, |
300 | return its type. Otherwise, return 0. If START is non-NULL, | |
301 | set *START to the location of the mapping symbol. */ | |
c906108c | 302 | |
f9d67f43 DJ |
303 | static char |
304 | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | |
c906108c | 305 | { |
60c5725c | 306 | struct obj_section *sec; |
0428b8f5 | 307 | |
60c5725c DJ |
308 | /* If there are mapping symbols, consult them. */ |
309 | sec = find_pc_section (memaddr); | |
310 | if (sec != NULL) | |
311 | { | |
312 | struct arm_per_objfile *data; | |
313 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
314 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
315 | 0 }; | |
60c5725c DJ |
316 | unsigned int idx; |
317 | ||
318 | data = objfile_data (sec->objfile, arm_objfile_data_key); | |
319 | if (data != NULL) | |
320 | { | |
321 | map = data->section_maps[sec->the_bfd_section->index]; | |
322 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
323 | { | |
324 | struct arm_mapping_symbol *map_sym; | |
325 | ||
326 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
327 | arm_compare_mapping_symbols); | |
328 | ||
329 | /* VEC_lower_bound finds the earliest ordered insertion | |
330 | point. If the following symbol starts at this exact | |
331 | address, we use that; otherwise, the preceding | |
332 | mapping symbol covers this address. */ | |
333 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
334 | { | |
335 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
336 | if (map_sym->value == map_key.value) | |
f9d67f43 DJ |
337 | { |
338 | if (start) | |
339 | *start = map_sym->value + obj_section_addr (sec); | |
340 | return map_sym->type; | |
341 | } | |
60c5725c DJ |
342 | } |
343 | ||
344 | if (idx > 0) | |
345 | { | |
346 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
f9d67f43 DJ |
347 | if (start) |
348 | *start = map_sym->value + obj_section_addr (sec); | |
349 | return map_sym->type; | |
60c5725c DJ |
350 | } |
351 | } | |
352 | } | |
353 | } | |
354 | ||
f9d67f43 DJ |
355 | return 0; |
356 | } | |
357 | ||
50e98be4 DJ |
358 | static CORE_ADDR arm_get_next_pc_raw (struct frame_info *frame, |
359 | CORE_ADDR pc, int insert_bkpt); | |
360 | ||
f9d67f43 DJ |
361 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
362 | function. This function should be called for addresses unrelated to | |
363 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
364 | ||
365 | static int | |
9779414d | 366 | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
f9d67f43 DJ |
367 | { |
368 | struct obj_section *sec; | |
369 | struct minimal_symbol *sym; | |
370 | char type; | |
371 | ||
372 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
373 | if (IS_THUMB_ADDR (memaddr)) | |
374 | return 1; | |
375 | ||
376 | /* If the user wants to override the symbol table, let him. */ | |
377 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
378 | return 0; | |
379 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
380 | return 1; | |
381 | ||
9779414d DJ |
382 | /* ARM v6-M and v7-M are always in Thumb mode. */ |
383 | if (gdbarch_tdep (gdbarch)->is_m) | |
384 | return 1; | |
385 | ||
f9d67f43 DJ |
386 | /* If there are mapping symbols, consult them. */ |
387 | type = arm_find_mapping_symbol (memaddr, NULL); | |
388 | if (type) | |
389 | return type == 't'; | |
390 | ||
ed9a39eb | 391 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
392 | sym = lookup_minimal_symbol_by_pc (memaddr); |
393 | if (sym) | |
0428b8f5 DJ |
394 | return (MSYMBOL_IS_SPECIAL (sym)); |
395 | ||
396 | /* If the user wants to override the fallback mode, let them. */ | |
397 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
398 | return 0; | |
399 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
400 | return 1; | |
401 | ||
402 | /* If we couldn't find any symbol, but we're talking to a running | |
403 | target, then trust the current value of $cpsr. This lets | |
404 | "display/i $pc" always show the correct mode (though if there is | |
405 | a symbol table we will not reach here, so it still may not be | |
50e98be4 DJ |
406 | displayed in the mode it will be executed). |
407 | ||
408 | As a further heuristic if we detect that we are doing a single-step we | |
409 | see what state executing the current instruction ends up with us being | |
410 | in. */ | |
0428b8f5 | 411 | if (target_has_registers) |
50e98be4 DJ |
412 | { |
413 | struct frame_info *current_frame = get_current_frame (); | |
414 | CORE_ADDR current_pc = get_frame_pc (current_frame); | |
415 | int is_thumb = arm_frame_is_thumb (current_frame); | |
416 | CORE_ADDR next_pc; | |
417 | if (memaddr == current_pc) | |
418 | return is_thumb; | |
419 | else | |
420 | { | |
421 | struct gdbarch *gdbarch = get_frame_arch (current_frame); | |
422 | next_pc = arm_get_next_pc_raw (current_frame, current_pc, FALSE); | |
423 | if (memaddr == gdbarch_addr_bits_remove (gdbarch, next_pc)) | |
424 | return IS_THUMB_ADDR (next_pc); | |
425 | else | |
426 | return is_thumb; | |
427 | } | |
428 | } | |
0428b8f5 DJ |
429 | |
430 | /* Otherwise we're out of luck; we assume ARM. */ | |
431 | return 0; | |
c906108c SS |
432 | } |
433 | ||
181c1381 | 434 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 435 | static CORE_ADDR |
24568a2c | 436 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 437 | { |
a3a2ee65 | 438 | if (arm_apcs_32) |
dd6be234 | 439 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 440 | else |
a3a2ee65 | 441 | return (val & 0x03fffffc); |
c906108c SS |
442 | } |
443 | ||
181c1381 RE |
444 | /* When reading symbols, we need to zap the low bit of the address, |
445 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 446 | static CORE_ADDR |
24568a2c | 447 | arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val) |
181c1381 RE |
448 | { |
449 | return val & ~1; | |
450 | } | |
451 | ||
0d39a070 DJ |
452 | /* Return 1 if PC is the start of a compiler helper function which |
453 | can be safely ignored during prologue skipping. */ | |
454 | static int | |
455 | skip_prologue_function (CORE_ADDR pc) | |
456 | { | |
457 | struct minimal_symbol *msym; | |
458 | const char *name; | |
459 | ||
460 | msym = lookup_minimal_symbol_by_pc (pc); | |
461 | if (msym == NULL || SYMBOL_VALUE_ADDRESS (msym) != pc) | |
462 | return 0; | |
463 | ||
464 | name = SYMBOL_LINKAGE_NAME (msym); | |
465 | if (name == NULL) | |
466 | return 0; | |
467 | ||
468 | /* The GNU linker's Thumb call stub to foo is named | |
469 | __foo_from_thumb. */ | |
470 | if (strstr (name, "_from_thumb") != NULL) | |
471 | name += 2; | |
472 | ||
473 | /* On soft-float targets, __truncdfsf2 is called to convert promoted | |
474 | arguments to their argument types in non-prototyped | |
475 | functions. */ | |
476 | if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0) | |
477 | return 1; | |
478 | if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0) | |
479 | return 1; | |
480 | ||
ec3d575a UW |
481 | /* Internal functions related to thread-local storage. */ |
482 | if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0) | |
483 | return 1; | |
484 | if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0) | |
485 | return 1; | |
486 | ||
0d39a070 DJ |
487 | return 0; |
488 | } | |
489 | ||
490 | /* Support routines for instruction parsing. */ | |
491 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
492 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
493 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
494 | #define sbits(obj,st,fn) \ | |
495 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
496 | #define BranchDest(addr,instr) \ | |
497 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
498 | ||
621c6d5b YQ |
499 | /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
500 | the first 16-bit of instruction, and INSN2 is the second 16-bit of | |
501 | instruction. */ | |
502 | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | |
503 | ((bits ((insn1), 0, 3) << 12) \ | |
504 | | (bits ((insn1), 10, 10) << 11) \ | |
505 | | (bits ((insn2), 12, 14) << 8) \ | |
506 | | bits ((insn2), 0, 7)) | |
507 | ||
508 | /* Extract the immediate from instruction movw/movt of encoding A. INSN is | |
509 | the 32-bit instruction. */ | |
510 | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | |
511 | ((bits ((insn), 16, 19) << 12) \ | |
512 | | bits ((insn), 0, 11)) | |
513 | ||
ec3d575a UW |
514 | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
515 | ||
516 | static unsigned int | |
517 | thumb_expand_immediate (unsigned int imm) | |
518 | { | |
519 | unsigned int count = imm >> 7; | |
520 | ||
521 | if (count < 8) | |
522 | switch (count / 2) | |
523 | { | |
524 | case 0: | |
525 | return imm & 0xff; | |
526 | case 1: | |
527 | return (imm & 0xff) | ((imm & 0xff) << 16); | |
528 | case 2: | |
529 | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | |
530 | case 3: | |
531 | return (imm & 0xff) | ((imm & 0xff) << 8) | |
532 | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | |
533 | } | |
534 | ||
535 | return (0x80 | (imm & 0x7f)) << (32 - count); | |
536 | } | |
537 | ||
538 | /* Return 1 if the 16-bit Thumb instruction INST might change | |
539 | control flow, 0 otherwise. */ | |
540 | ||
541 | static int | |
542 | thumb_instruction_changes_pc (unsigned short inst) | |
543 | { | |
544 | if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
545 | return 1; | |
546 | ||
547 | if ((inst & 0xf000) == 0xd000) /* conditional branch */ | |
548 | return 1; | |
549 | ||
550 | if ((inst & 0xf800) == 0xe000) /* unconditional branch */ | |
551 | return 1; | |
552 | ||
553 | if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */ | |
554 | return 1; | |
555 | ||
ad8b5167 UW |
556 | if ((inst & 0xff87) == 0x4687) /* mov pc, REG */ |
557 | return 1; | |
558 | ||
ec3d575a UW |
559 | if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */ |
560 | return 1; | |
561 | ||
562 | return 0; | |
563 | } | |
564 | ||
565 | /* Return 1 if the 32-bit Thumb instruction in INST1 and INST2 | |
566 | might change control flow, 0 otherwise. */ | |
567 | ||
568 | static int | |
569 | thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2) | |
570 | { | |
571 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
572 | { | |
573 | /* Branches and miscellaneous control instructions. */ | |
574 | ||
575 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
576 | { | |
577 | /* B, BL, BLX. */ | |
578 | return 1; | |
579 | } | |
580 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
581 | { | |
582 | /* SUBS PC, LR, #imm8. */ | |
583 | return 1; | |
584 | } | |
585 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) | |
586 | { | |
587 | /* Conditional branch. */ | |
588 | return 1; | |
589 | } | |
590 | ||
591 | return 0; | |
592 | } | |
593 | ||
594 | if ((inst1 & 0xfe50) == 0xe810) | |
595 | { | |
596 | /* Load multiple or RFE. */ | |
597 | ||
598 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
599 | { | |
600 | /* LDMIA or POP */ | |
601 | if (bit (inst2, 15)) | |
602 | return 1; | |
603 | } | |
604 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
605 | { | |
606 | /* LDMDB */ | |
607 | if (bit (inst2, 15)) | |
608 | return 1; | |
609 | } | |
610 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
611 | { | |
612 | /* RFEIA */ | |
613 | return 1; | |
614 | } | |
615 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
616 | { | |
617 | /* RFEDB */ | |
618 | return 1; | |
619 | } | |
620 | ||
621 | return 0; | |
622 | } | |
623 | ||
624 | if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
625 | { | |
626 | /* MOV PC or MOVS PC. */ | |
627 | return 1; | |
628 | } | |
629 | ||
630 | if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
631 | { | |
632 | /* LDR PC. */ | |
633 | if (bits (inst1, 0, 3) == 15) | |
634 | return 1; | |
635 | if (bit (inst1, 7)) | |
636 | return 1; | |
637 | if (bit (inst2, 11)) | |
638 | return 1; | |
639 | if ((inst2 & 0x0fc0) == 0x0000) | |
640 | return 1; | |
641 | ||
642 | return 0; | |
643 | } | |
644 | ||
645 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
646 | { | |
647 | /* TBB. */ | |
648 | return 1; | |
649 | } | |
650 | ||
651 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) | |
652 | { | |
653 | /* TBH. */ | |
654 | return 1; | |
655 | } | |
656 | ||
657 | return 0; | |
658 | } | |
659 | ||
29d73ae4 DJ |
660 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
661 | and frame pointer. Scan until we encounter a store that could | |
0d39a070 DJ |
662 | clobber the stack frame unexpectedly, or an unknown instruction. |
663 | Return the last address which is definitely safe to skip for an | |
664 | initial breakpoint. */ | |
c906108c SS |
665 | |
666 | static CORE_ADDR | |
29d73ae4 DJ |
667 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
668 | CORE_ADDR start, CORE_ADDR limit, | |
669 | struct arm_prologue_cache *cache) | |
c906108c | 670 | { |
0d39a070 | 671 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e17a4113 | 672 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
673 | int i; |
674 | pv_t regs[16]; | |
675 | struct pv_area *stack; | |
676 | struct cleanup *back_to; | |
677 | CORE_ADDR offset; | |
ec3d575a | 678 | CORE_ADDR unrecognized_pc = 0; |
da3c6d4a | 679 | |
29d73ae4 DJ |
680 | for (i = 0; i < 16; i++) |
681 | regs[i] = pv_register (i, 0); | |
55f960e1 | 682 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 DJ |
683 | back_to = make_cleanup_free_pv_area (stack); |
684 | ||
29d73ae4 | 685 | while (start < limit) |
c906108c | 686 | { |
29d73ae4 DJ |
687 | unsigned short insn; |
688 | ||
e17a4113 | 689 | insn = read_memory_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 690 | |
94c30b78 | 691 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 692 | { |
29d73ae4 DJ |
693 | int regno; |
694 | int mask; | |
4be43953 DJ |
695 | |
696 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) | |
697 | break; | |
29d73ae4 DJ |
698 | |
699 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
700 | whether to save LR (R14). */ | |
701 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
702 | ||
703 | /* Calculate offsets of saved R0-R7 and LR. */ | |
704 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
705 | if (mask & (1 << regno)) | |
706 | { | |
29d73ae4 DJ |
707 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
708 | -4); | |
709 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
710 | } | |
da59e081 | 711 | } |
da3c6d4a MS |
712 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
713 | sub sp, #simm */ | |
da59e081 | 714 | { |
29d73ae4 DJ |
715 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
716 | if (insn & 0x80) /* Check for SUB. */ | |
717 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | |
718 | -offset); | |
da59e081 | 719 | else |
29d73ae4 DJ |
720 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
721 | offset); | |
da59e081 | 722 | } |
0d39a070 DJ |
723 | else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
724 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | |
725 | (insn & 0xff) << 2); | |
726 | else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ | |
727 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
728 | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | |
729 | bits (insn, 6, 8)); | |
730 | else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ | |
731 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
732 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | |
733 | bits (insn, 0, 7)); | |
734 | else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ | |
735 | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | |
736 | && pv_is_constant (regs[bits (insn, 3, 5)])) | |
737 | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | |
738 | regs[bits (insn, 6, 8)]); | |
739 | else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ | |
740 | && pv_is_constant (regs[bits (insn, 3, 6)])) | |
741 | { | |
742 | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | |
743 | int rm = bits (insn, 3, 6); | |
744 | regs[rd] = pv_add (regs[rd], regs[rm]); | |
745 | } | |
29d73ae4 | 746 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
da59e081 | 747 | { |
29d73ae4 DJ |
748 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
749 | int src_reg = (insn & 0x78) >> 3; | |
750 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 751 | } |
29d73ae4 | 752 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 753 | { |
29d73ae4 DJ |
754 | /* Handle stores to the stack. Normally pushes are used, |
755 | but with GCC -mtpcs-frame, there may be other stores | |
756 | in the prologue to create the frame. */ | |
757 | int regno = (insn >> 8) & 0x7; | |
758 | pv_t addr; | |
759 | ||
760 | offset = (insn & 0xff) << 2; | |
761 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
762 | ||
763 | if (pv_area_store_would_trash (stack, addr)) | |
764 | break; | |
765 | ||
766 | pv_area_store (stack, addr, 4, regs[regno]); | |
da59e081 | 767 | } |
0d39a070 DJ |
768 | else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
769 | { | |
770 | int rd = bits (insn, 0, 2); | |
771 | int rn = bits (insn, 3, 5); | |
772 | pv_t addr; | |
773 | ||
774 | offset = bits (insn, 6, 10) << 2; | |
775 | addr = pv_add_constant (regs[rn], offset); | |
776 | ||
777 | if (pv_area_store_would_trash (stack, addr)) | |
778 | break; | |
779 | ||
780 | pv_area_store (stack, addr, 4, regs[rd]); | |
781 | } | |
782 | else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ | |
783 | || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ | |
784 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
785 | /* Ignore stores of argument registers to the stack. */ | |
786 | ; | |
787 | else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ | |
788 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
789 | /* Ignore block loads from the stack, potentially copying | |
790 | parameters from memory. */ | |
791 | ; | |
792 | else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ | |
793 | || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ | |
794 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | |
795 | /* Similarly ignore single loads from the stack. */ | |
796 | ; | |
797 | else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ | |
798 | || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ | |
799 | /* Skip register copies, i.e. saves to another register | |
800 | instead of the stack. */ | |
801 | ; | |
802 | else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ | |
803 | /* Recognize constant loads; even with small stacks these are necessary | |
804 | on Thumb. */ | |
805 | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | |
806 | else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ | |
807 | { | |
808 | /* Constant pool loads, for the same reason. */ | |
809 | unsigned int constant; | |
810 | CORE_ADDR loc; | |
811 | ||
812 | loc = start + 4 + bits (insn, 0, 7) * 4; | |
813 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
814 | regs[bits (insn, 8, 10)] = pv_constant (constant); | |
815 | } | |
ec3d575a | 816 | else if ((insn & 0xe000) == 0xe000) |
0d39a070 | 817 | { |
0d39a070 DJ |
818 | unsigned short inst2; |
819 | ||
820 | inst2 = read_memory_unsigned_integer (start + 2, 2, | |
821 | byte_order_for_code); | |
822 | ||
823 | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | |
824 | { | |
825 | /* BL, BLX. Allow some special function calls when | |
826 | skipping the prologue; GCC generates these before | |
827 | storing arguments to the stack. */ | |
828 | CORE_ADDR nextpc; | |
829 | int j1, j2, imm1, imm2; | |
830 | ||
831 | imm1 = sbits (insn, 0, 10); | |
832 | imm2 = bits (inst2, 0, 10); | |
833 | j1 = bit (inst2, 13); | |
834 | j2 = bit (inst2, 11); | |
835 | ||
836 | offset = ((imm1 << 12) + (imm2 << 1)); | |
837 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
838 | ||
839 | nextpc = start + 4 + offset; | |
840 | /* For BLX make sure to clear the low bits. */ | |
841 | if (bit (inst2, 12) == 0) | |
842 | nextpc = nextpc & 0xfffffffc; | |
843 | ||
844 | if (!skip_prologue_function (nextpc)) | |
845 | break; | |
846 | } | |
ec3d575a | 847 | |
0963b4bd MS |
848 | else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
849 | { registers } */ | |
ec3d575a UW |
850 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
851 | { | |
852 | pv_t addr = regs[bits (insn, 0, 3)]; | |
853 | int regno; | |
854 | ||
855 | if (pv_area_store_would_trash (stack, addr)) | |
856 | break; | |
857 | ||
858 | /* Calculate offsets of saved registers. */ | |
859 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
860 | if (inst2 & (1 << regno)) | |
861 | { | |
862 | addr = pv_add_constant (addr, -4); | |
863 | pv_area_store (stack, addr, 4, regs[regno]); | |
864 | } | |
865 | ||
866 | if (insn & 0x0020) | |
867 | regs[bits (insn, 0, 3)] = addr; | |
868 | } | |
869 | ||
0963b4bd MS |
870 | else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
871 | [Rn, #+/-imm]{!} */ | |
ec3d575a UW |
872 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
873 | { | |
874 | int regno1 = bits (inst2, 12, 15); | |
875 | int regno2 = bits (inst2, 8, 11); | |
876 | pv_t addr = regs[bits (insn, 0, 3)]; | |
877 | ||
878 | offset = inst2 & 0xff; | |
879 | if (insn & 0x0080) | |
880 | addr = pv_add_constant (addr, offset); | |
881 | else | |
882 | addr = pv_add_constant (addr, -offset); | |
883 | ||
884 | if (pv_area_store_would_trash (stack, addr)) | |
885 | break; | |
886 | ||
887 | pv_area_store (stack, addr, 4, regs[regno1]); | |
888 | pv_area_store (stack, pv_add_constant (addr, 4), | |
889 | 4, regs[regno2]); | |
890 | ||
891 | if (insn & 0x0020) | |
892 | regs[bits (insn, 0, 3)] = addr; | |
893 | } | |
894 | ||
895 | else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ | |
896 | && (inst2 & 0x0c00) == 0x0c00 | |
897 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
898 | { | |
899 | int regno = bits (inst2, 12, 15); | |
900 | pv_t addr = regs[bits (insn, 0, 3)]; | |
901 | ||
902 | offset = inst2 & 0xff; | |
903 | if (inst2 & 0x0200) | |
904 | addr = pv_add_constant (addr, offset); | |
905 | else | |
906 | addr = pv_add_constant (addr, -offset); | |
907 | ||
908 | if (pv_area_store_would_trash (stack, addr)) | |
909 | break; | |
910 | ||
911 | pv_area_store (stack, addr, 4, regs[regno]); | |
912 | ||
913 | if (inst2 & 0x0100) | |
914 | regs[bits (insn, 0, 3)] = addr; | |
915 | } | |
916 | ||
917 | else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ | |
918 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
919 | { | |
920 | int regno = bits (inst2, 12, 15); | |
921 | pv_t addr; | |
922 | ||
923 | offset = inst2 & 0xfff; | |
924 | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | |
925 | ||
926 | if (pv_area_store_would_trash (stack, addr)) | |
927 | break; | |
928 | ||
929 | pv_area_store (stack, addr, 4, regs[regno]); | |
930 | } | |
931 | ||
932 | else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ | |
0d39a070 | 933 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 934 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 935 | ; |
ec3d575a UW |
936 | |
937 | else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ | |
938 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 939 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 940 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 941 | ; |
ec3d575a | 942 | |
0963b4bd MS |
943 | else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
944 | { registers } */ | |
ec3d575a UW |
945 | && (inst2 & 0x8000) == 0x0000 |
946 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
947 | /* Ignore block loads from the stack, potentially copying | |
948 | parameters from memory. */ | |
0d39a070 | 949 | ; |
ec3d575a | 950 | |
0963b4bd MS |
951 | else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, |
952 | [Rn, #+/-imm] */ | |
0d39a070 | 953 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 954 | /* Similarly ignore dual loads from the stack. */ |
0d39a070 | 955 | ; |
ec3d575a UW |
956 | |
957 | else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ | |
958 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 959 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 960 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 961 | ; |
ec3d575a UW |
962 | |
963 | else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ | |
0d39a070 | 964 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 965 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 966 | ; |
ec3d575a UW |
967 | |
968 | else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ | |
969 | && (inst2 & 0x8000) == 0x0000) | |
970 | { | |
971 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
972 | | (bits (inst2, 12, 14) << 8) | |
973 | | bits (inst2, 0, 7)); | |
974 | ||
975 | regs[bits (inst2, 8, 11)] | |
976 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
977 | thumb_expand_immediate (imm)); | |
978 | } | |
979 | ||
980 | else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ | |
981 | && (inst2 & 0x8000) == 0x0000) | |
0d39a070 | 982 | { |
ec3d575a UW |
983 | unsigned int imm = ((bits (insn, 10, 10) << 11) |
984 | | (bits (inst2, 12, 14) << 8) | |
985 | | bits (inst2, 0, 7)); | |
986 | ||
987 | regs[bits (inst2, 8, 11)] | |
988 | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | |
989 | } | |
990 | ||
991 | else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ | |
992 | && (inst2 & 0x8000) == 0x0000) | |
993 | { | |
994 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
995 | | (bits (inst2, 12, 14) << 8) | |
996 | | bits (inst2, 0, 7)); | |
997 | ||
998 | regs[bits (inst2, 8, 11)] | |
999 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
1000 | - (CORE_ADDR) thumb_expand_immediate (imm)); | |
1001 | } | |
1002 | ||
1003 | else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ | |
1004 | && (inst2 & 0x8000) == 0x0000) | |
1005 | { | |
1006 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1007 | | (bits (inst2, 12, 14) << 8) | |
1008 | | bits (inst2, 0, 7)); | |
1009 | ||
1010 | regs[bits (inst2, 8, 11)] | |
1011 | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | |
1012 | } | |
1013 | ||
1014 | else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ | |
1015 | { | |
1016 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1017 | | (bits (inst2, 12, 14) << 8) | |
1018 | | bits (inst2, 0, 7)); | |
1019 | ||
1020 | regs[bits (inst2, 8, 11)] | |
1021 | = pv_constant (thumb_expand_immediate (imm)); | |
1022 | } | |
1023 | ||
1024 | else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1025 | { | |
621c6d5b YQ |
1026 | unsigned int imm |
1027 | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | |
ec3d575a UW |
1028 | |
1029 | regs[bits (inst2, 8, 11)] = pv_constant (imm); | |
1030 | } | |
1031 | ||
1032 | else if (insn == 0xea5f /* mov.w Rd,Rm */ | |
1033 | && (inst2 & 0xf0f0) == 0) | |
1034 | { | |
1035 | int dst_reg = (inst2 & 0x0f00) >> 8; | |
1036 | int src_reg = inst2 & 0xf; | |
1037 | regs[dst_reg] = regs[src_reg]; | |
1038 | } | |
1039 | ||
1040 | else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ | |
1041 | { | |
1042 | /* Constant pool loads. */ | |
1043 | unsigned int constant; | |
1044 | CORE_ADDR loc; | |
1045 | ||
1046 | offset = bits (insn, 0, 11); | |
1047 | if (insn & 0x0080) | |
1048 | loc = start + 4 + offset; | |
1049 | else | |
1050 | loc = start + 4 - offset; | |
1051 | ||
1052 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1053 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1054 | } | |
1055 | ||
1056 | else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ | |
1057 | { | |
1058 | /* Constant pool loads. */ | |
1059 | unsigned int constant; | |
1060 | CORE_ADDR loc; | |
1061 | ||
1062 | offset = bits (insn, 0, 7) << 2; | |
1063 | if (insn & 0x0080) | |
1064 | loc = start + 4 + offset; | |
1065 | else | |
1066 | loc = start + 4 - offset; | |
1067 | ||
1068 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1069 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1070 | ||
1071 | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | |
1072 | regs[bits (inst2, 8, 11)] = pv_constant (constant); | |
1073 | } | |
1074 | ||
1075 | else if (thumb2_instruction_changes_pc (insn, inst2)) | |
1076 | { | |
1077 | /* Don't scan past anything that might change control flow. */ | |
0d39a070 DJ |
1078 | break; |
1079 | } | |
ec3d575a UW |
1080 | else |
1081 | { | |
1082 | /* The optimizer might shove anything into the prologue, | |
1083 | so we just skip what we don't recognize. */ | |
1084 | unrecognized_pc = start; | |
1085 | } | |
0d39a070 DJ |
1086 | |
1087 | start += 2; | |
1088 | } | |
ec3d575a | 1089 | else if (thumb_instruction_changes_pc (insn)) |
3d74b771 | 1090 | { |
ec3d575a | 1091 | /* Don't scan past anything that might change control flow. */ |
da3c6d4a | 1092 | break; |
3d74b771 | 1093 | } |
ec3d575a UW |
1094 | else |
1095 | { | |
1096 | /* The optimizer might shove anything into the prologue, | |
1097 | so we just skip what we don't recognize. */ | |
1098 | unrecognized_pc = start; | |
1099 | } | |
29d73ae4 DJ |
1100 | |
1101 | start += 2; | |
c906108c SS |
1102 | } |
1103 | ||
0d39a070 DJ |
1104 | if (arm_debug) |
1105 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1106 | paddress (gdbarch, start)); | |
1107 | ||
ec3d575a UW |
1108 | if (unrecognized_pc == 0) |
1109 | unrecognized_pc = start; | |
1110 | ||
29d73ae4 DJ |
1111 | if (cache == NULL) |
1112 | { | |
1113 | do_cleanups (back_to); | |
ec3d575a | 1114 | return unrecognized_pc; |
29d73ae4 DJ |
1115 | } |
1116 | ||
29d73ae4 DJ |
1117 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
1118 | { | |
1119 | /* Frame pointer is fp. Frame size is constant. */ | |
1120 | cache->framereg = ARM_FP_REGNUM; | |
1121 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1122 | } | |
1123 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
1124 | { | |
1125 | /* Frame pointer is r7. Frame size is constant. */ | |
1126 | cache->framereg = THUMB_FP_REGNUM; | |
1127 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
1128 | } | |
1129 | else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM)) | |
1130 | { | |
1131 | /* Try the stack pointer... this is a bit desperate. */ | |
1132 | cache->framereg = ARM_SP_REGNUM; | |
1133 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1134 | } | |
1135 | else | |
1136 | { | |
1137 | /* We're just out of luck. We don't know where the frame is. */ | |
1138 | cache->framereg = -1; | |
1139 | cache->framesize = 0; | |
1140 | } | |
1141 | ||
1142 | for (i = 0; i < 16; i++) | |
1143 | if (pv_area_find_reg (stack, gdbarch, i, &offset)) | |
1144 | cache->saved_regs[i].addr = offset; | |
1145 | ||
1146 | do_cleanups (back_to); | |
ec3d575a | 1147 | return unrecognized_pc; |
c906108c SS |
1148 | } |
1149 | ||
621c6d5b YQ |
1150 | |
1151 | /* Try to analyze the instructions starting from PC, which load symbol | |
1152 | __stack_chk_guard. Return the address of instruction after loading this | |
1153 | symbol, set the dest register number to *BASEREG, and set the size of | |
1154 | instructions for loading symbol in OFFSET. Return 0 if instructions are | |
1155 | not recognized. */ | |
1156 | ||
1157 | static CORE_ADDR | |
1158 | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | |
1159 | unsigned int *destreg, int *offset) | |
1160 | { | |
1161 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1162 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1163 | unsigned int low, high, address; | |
1164 | ||
1165 | address = 0; | |
1166 | if (is_thumb) | |
1167 | { | |
1168 | unsigned short insn1 | |
1169 | = read_memory_unsigned_integer (pc, 2, byte_order_for_code); | |
1170 | ||
1171 | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | |
1172 | { | |
1173 | *destreg = bits (insn1, 8, 10); | |
1174 | *offset = 2; | |
1175 | address = bits (insn1, 0, 7); | |
1176 | } | |
1177 | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1178 | { | |
1179 | unsigned short insn2 | |
1180 | = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
1181 | ||
1182 | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1183 | ||
1184 | insn1 | |
1185 | = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code); | |
1186 | insn2 | |
1187 | = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code); | |
1188 | ||
1189 | /* movt Rd, #const */ | |
1190 | if ((insn1 & 0xfbc0) == 0xf2c0) | |
1191 | { | |
1192 | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1193 | *destreg = bits (insn2, 8, 11); | |
1194 | *offset = 8; | |
1195 | address = (high << 16 | low); | |
1196 | } | |
1197 | } | |
1198 | } | |
1199 | else | |
1200 | { | |
1201 | unsigned int insn | |
1202 | = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
1203 | ||
1204 | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */ | |
1205 | { | |
1206 | address = bits (insn, 0, 11); | |
1207 | *destreg = bits (insn, 12, 15); | |
1208 | *offset = 4; | |
1209 | } | |
1210 | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | |
1211 | { | |
1212 | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1213 | ||
1214 | insn | |
1215 | = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code); | |
1216 | ||
1217 | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | |
1218 | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1219 | ||
1220 | address = (high << 16 | low); | |
1221 | *destreg = bits (insn, 12, 15); | |
1222 | *offset = 8; | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | return address; | |
1227 | } | |
1228 | ||
1229 | /* Try to skip a sequence of instructions used for stack protector. If PC | |
0963b4bd MS |
1230 | points to the first instruction of this sequence, return the address of |
1231 | first instruction after this sequence, otherwise, return original PC. | |
621c6d5b YQ |
1232 | |
1233 | On arm, this sequence of instructions is composed of mainly three steps, | |
1234 | Step 1: load symbol __stack_chk_guard, | |
1235 | Step 2: load from address of __stack_chk_guard, | |
1236 | Step 3: store it to somewhere else. | |
1237 | ||
1238 | Usually, instructions on step 2 and step 3 are the same on various ARM | |
1239 | architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | |
1240 | on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, | |
1241 | instructions in step 1 vary from different ARM architectures. On ARMv7, | |
1242 | they are, | |
1243 | ||
1244 | movw Rn, #:lower16:__stack_chk_guard | |
1245 | movt Rn, #:upper16:__stack_chk_guard | |
1246 | ||
1247 | On ARMv5t, it is, | |
1248 | ||
1249 | ldr Rn, .Label | |
1250 | .... | |
1251 | .Lable: | |
1252 | .word __stack_chk_guard | |
1253 | ||
1254 | Since ldr/str is a very popular instruction, we can't use them as | |
1255 | 'fingerprint' or 'signature' of stack protector sequence. Here we choose | |
1256 | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | |
1257 | stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ | |
1258 | ||
1259 | static CORE_ADDR | |
1260 | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | |
1261 | { | |
1262 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1263 | unsigned int address, basereg; | |
1264 | struct minimal_symbol *stack_chk_guard; | |
1265 | int offset; | |
1266 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1267 | CORE_ADDR addr; | |
1268 | ||
1269 | /* Try to parse the instructions in Step 1. */ | |
1270 | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | |
1271 | &basereg, &offset); | |
1272 | if (!addr) | |
1273 | return pc; | |
1274 | ||
1275 | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | |
1276 | /* If name of symbol doesn't start with '__stack_chk_guard', this | |
1277 | instruction sequence is not for stack protector. If symbol is | |
1278 | removed, we conservatively think this sequence is for stack protector. */ | |
1279 | if (stack_chk_guard | |
1280 | && strcmp (SYMBOL_LINKAGE_NAME(stack_chk_guard), "__stack_chk_guard")) | |
1281 | return pc; | |
1282 | ||
1283 | if (is_thumb) | |
1284 | { | |
1285 | unsigned int destreg; | |
1286 | unsigned short insn | |
1287 | = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code); | |
1288 | ||
1289 | /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ | |
1290 | if ((insn & 0xf800) != 0x6800) | |
1291 | return pc; | |
1292 | if (bits (insn, 3, 5) != basereg) | |
1293 | return pc; | |
1294 | destreg = bits (insn, 0, 2); | |
1295 | ||
1296 | insn = read_memory_unsigned_integer (pc + offset + 2, 2, | |
1297 | byte_order_for_code); | |
1298 | /* Step 3: str Rd, [Rn, #immed], encoding T1. */ | |
1299 | if ((insn & 0xf800) != 0x6000) | |
1300 | return pc; | |
1301 | if (destreg != bits (insn, 0, 2)) | |
1302 | return pc; | |
1303 | } | |
1304 | else | |
1305 | { | |
1306 | unsigned int destreg; | |
1307 | unsigned int insn | |
1308 | = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code); | |
1309 | ||
1310 | /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ | |
1311 | if ((insn & 0x0e500000) != 0x04100000) | |
1312 | return pc; | |
1313 | if (bits (insn, 16, 19) != basereg) | |
1314 | return pc; | |
1315 | destreg = bits (insn, 12, 15); | |
1316 | /* Step 3: str Rd, [Rn, #immed], encoding A1. */ | |
1317 | insn = read_memory_unsigned_integer (pc + offset + 4, | |
1318 | 4, byte_order_for_code); | |
1319 | if ((insn & 0x0e500000) != 0x04000000) | |
1320 | return pc; | |
1321 | if (bits (insn, 12, 15) != destreg) | |
1322 | return pc; | |
1323 | } | |
1324 | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | |
1325 | on arm. */ | |
1326 | if (is_thumb) | |
1327 | return pc + offset + 4; | |
1328 | else | |
1329 | return pc + offset + 8; | |
1330 | } | |
1331 | ||
da3c6d4a MS |
1332 | /* Advance the PC across any function entry prologue instructions to |
1333 | reach some "real" code. | |
34e8f22d RE |
1334 | |
1335 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 1336 | prologue: |
c906108c | 1337 | |
c5aa993b JM |
1338 | mov ip, sp |
1339 | [stmfd sp!, {a1,a2,a3,a4}] | |
1340 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
1341 | [stfe f7, [sp, #-12]!] |
1342 | [stfe f6, [sp, #-12]!] | |
1343 | [stfe f5, [sp, #-12]!] | |
1344 | [stfe f4, [sp, #-12]!] | |
0963b4bd | 1345 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
c906108c | 1346 | |
34e8f22d | 1347 | static CORE_ADDR |
6093d2eb | 1348 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1349 | { |
e17a4113 | 1350 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
c906108c SS |
1351 | unsigned long inst; |
1352 | CORE_ADDR skip_pc; | |
a89fea3c | 1353 | CORE_ADDR func_addr, limit_pc; |
c906108c SS |
1354 | struct symtab_and_line sal; |
1355 | ||
a89fea3c JL |
1356 | /* See if we can determine the end of the prologue via the symbol table. |
1357 | If so, then return either PC, or the PC after the prologue, whichever | |
1358 | is greater. */ | |
1359 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 1360 | { |
d80b854b UW |
1361 | CORE_ADDR post_prologue_pc |
1362 | = skip_prologue_using_sal (gdbarch, func_addr); | |
0d39a070 DJ |
1363 | struct symtab *s = find_pc_symtab (func_addr); |
1364 | ||
621c6d5b YQ |
1365 | if (post_prologue_pc) |
1366 | post_prologue_pc | |
1367 | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | |
1368 | ||
1369 | ||
0d39a070 DJ |
1370 | /* GCC always emits a line note before the prologue and another |
1371 | one after, even if the two are at the same address or on the | |
1372 | same line. Take advantage of this so that we do not need to | |
1373 | know every instruction that might appear in the prologue. We | |
1374 | will have producer information for most binaries; if it is | |
1375 | missing (e.g. for -gstabs), assuming the GNU tools. */ | |
1376 | if (post_prologue_pc | |
1377 | && (s == NULL | |
1378 | || s->producer == NULL | |
1379 | || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0)) | |
1380 | return post_prologue_pc; | |
1381 | ||
a89fea3c | 1382 | if (post_prologue_pc != 0) |
0d39a070 DJ |
1383 | { |
1384 | CORE_ADDR analyzed_limit; | |
1385 | ||
1386 | /* For non-GCC compilers, make sure the entire line is an | |
1387 | acceptable prologue; GDB will round this function's | |
1388 | return value up to the end of the following line so we | |
1389 | can not skip just part of a line (and we do not want to). | |
1390 | ||
1391 | RealView does not treat the prologue specially, but does | |
1392 | associate prologue code with the opening brace; so this | |
1393 | lets us skip the first line if we think it is the opening | |
1394 | brace. */ | |
9779414d | 1395 | if (arm_pc_is_thumb (gdbarch, func_addr)) |
0d39a070 DJ |
1396 | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
1397 | post_prologue_pc, NULL); | |
1398 | else | |
1399 | analyzed_limit = arm_analyze_prologue (gdbarch, func_addr, | |
1400 | post_prologue_pc, NULL); | |
1401 | ||
1402 | if (analyzed_limit != post_prologue_pc) | |
1403 | return func_addr; | |
1404 | ||
1405 | return post_prologue_pc; | |
1406 | } | |
c906108c SS |
1407 | } |
1408 | ||
a89fea3c JL |
1409 | /* Can't determine prologue from the symbol table, need to examine |
1410 | instructions. */ | |
c906108c | 1411 | |
a89fea3c JL |
1412 | /* Find an upper limit on the function prologue using the debug |
1413 | information. If the debug information could not be used to provide | |
1414 | that bound, then use an arbitrary large number as the upper bound. */ | |
0963b4bd | 1415 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 1416 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
1417 | if (limit_pc == 0) |
1418 | limit_pc = pc + 64; /* Magic. */ | |
1419 | ||
c906108c | 1420 | |
29d73ae4 | 1421 | /* Check if this is Thumb code. */ |
9779414d | 1422 | if (arm_pc_is_thumb (gdbarch, pc)) |
a89fea3c | 1423 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
29d73ae4 | 1424 | |
a89fea3c | 1425 | for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4) |
f43845b3 | 1426 | { |
e17a4113 | 1427 | inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code); |
9d4fde75 | 1428 | |
b8d5e71d MS |
1429 | /* "mov ip, sp" is no longer a required part of the prologue. */ |
1430 | if (inst == 0xe1a0c00d) /* mov ip, sp */ | |
1431 | continue; | |
c906108c | 1432 | |
28cd8767 JG |
1433 | if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ |
1434 | continue; | |
1435 | ||
1436 | if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
1437 | continue; | |
1438 | ||
b8d5e71d MS |
1439 | /* Some prologues begin with "str lr, [sp, #-4]!". */ |
1440 | if (inst == 0xe52de004) /* str lr, [sp, #-4]! */ | |
1441 | continue; | |
c906108c | 1442 | |
b8d5e71d MS |
1443 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
1444 | continue; | |
c906108c | 1445 | |
b8d5e71d MS |
1446 | if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */ |
1447 | continue; | |
11d3b27d | 1448 | |
b8d5e71d MS |
1449 | /* Any insns after this point may float into the code, if it makes |
1450 | for better instruction scheduling, so we skip them only if we | |
1451 | find them, but still consider the function to be frame-ful. */ | |
f43845b3 | 1452 | |
b8d5e71d MS |
1453 | /* We may have either one sfmfd instruction here, or several stfe |
1454 | insns, depending on the version of floating point code we | |
1455 | support. */ | |
1456 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
1457 | continue; | |
1458 | ||
1459 | if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
1460 | continue; | |
1461 | ||
1462 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
1463 | continue; | |
1464 | ||
1465 | if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */ | |
1466 | continue; | |
1467 | ||
f8bf5763 PM |
1468 | if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */ |
1469 | || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */ | |
1470 | || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */ | |
b8d5e71d MS |
1471 | continue; |
1472 | ||
f8bf5763 PM |
1473 | if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */ |
1474 | || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */ | |
1475 | || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */ | |
b8d5e71d MS |
1476 | continue; |
1477 | ||
1478 | /* Un-recognized instruction; stop scanning. */ | |
1479 | break; | |
f43845b3 | 1480 | } |
c906108c | 1481 | |
0963b4bd | 1482 | return skip_pc; /* End of prologue. */ |
c906108c | 1483 | } |
94c30b78 | 1484 | |
c5aa993b | 1485 | /* *INDENT-OFF* */ |
c906108c SS |
1486 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
1487 | This function decodes a Thumb function prologue to determine: | |
1488 | 1) the size of the stack frame | |
1489 | 2) which registers are saved on it | |
1490 | 3) the offsets of saved regs | |
1491 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 1492 | |
da59e081 JM |
1493 | A typical Thumb function prologue would create this stack frame |
1494 | (offsets relative to FP) | |
c906108c SS |
1495 | old SP -> 24 stack parameters |
1496 | 20 LR | |
1497 | 16 R7 | |
1498 | R7 -> 0 local variables (16 bytes) | |
1499 | SP -> -12 additional stack space (12 bytes) | |
1500 | The frame size would thus be 36 bytes, and the frame offset would be | |
0963b4bd | 1501 | 12 bytes. The frame register is R7. |
da59e081 | 1502 | |
da3c6d4a MS |
1503 | The comments for thumb_skip_prolog() describe the algorithm we use |
1504 | to detect the end of the prolog. */ | |
c5aa993b JM |
1505 | /* *INDENT-ON* */ |
1506 | ||
c906108c | 1507 | static void |
be8626e0 | 1508 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 1509 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
1510 | { |
1511 | CORE_ADDR prologue_start; | |
1512 | CORE_ADDR prologue_end; | |
1513 | CORE_ADDR current_pc; | |
c906108c | 1514 | |
b39cc962 DJ |
1515 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
1516 | &prologue_end)) | |
c906108c | 1517 | { |
ec3d575a UW |
1518 | /* See comment in arm_scan_prologue for an explanation of |
1519 | this heuristics. */ | |
1520 | if (prologue_end > prologue_start + 64) | |
1521 | { | |
1522 | prologue_end = prologue_start + 64; | |
1523 | } | |
c906108c SS |
1524 | } |
1525 | else | |
f7060f85 DJ |
1526 | /* We're in the boondocks: we have no idea where the start of the |
1527 | function is. */ | |
1528 | return; | |
c906108c | 1529 | |
eb5492fa | 1530 | prologue_end = min (prologue_end, prev_pc); |
c906108c | 1531 | |
be8626e0 | 1532 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
1533 | } |
1534 | ||
0d39a070 | 1535 | /* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */ |
c906108c | 1536 | |
0d39a070 DJ |
1537 | static int |
1538 | arm_instruction_changes_pc (uint32_t this_instr) | |
c906108c | 1539 | { |
0d39a070 DJ |
1540 | if (bits (this_instr, 28, 31) == INST_NV) |
1541 | /* Unconditional instructions. */ | |
1542 | switch (bits (this_instr, 24, 27)) | |
1543 | { | |
1544 | case 0xa: | |
1545 | case 0xb: | |
1546 | /* Branch with Link and change to Thumb. */ | |
1547 | return 1; | |
1548 | case 0xc: | |
1549 | case 0xd: | |
1550 | case 0xe: | |
1551 | /* Coprocessor register transfer. */ | |
1552 | if (bits (this_instr, 12, 15) == 15) | |
1553 | error (_("Invalid update to pc in instruction")); | |
1554 | return 0; | |
1555 | default: | |
1556 | return 0; | |
1557 | } | |
1558 | else | |
1559 | switch (bits (this_instr, 25, 27)) | |
1560 | { | |
1561 | case 0x0: | |
1562 | if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0) | |
1563 | { | |
1564 | /* Multiplies and extra load/stores. */ | |
1565 | if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1) | |
1566 | /* Neither multiplies nor extension load/stores are allowed | |
1567 | to modify PC. */ | |
1568 | return 0; | |
1569 | ||
1570 | /* Otherwise, miscellaneous instructions. */ | |
1571 | ||
1572 | /* BX <reg>, BXJ <reg>, BLX <reg> */ | |
1573 | if (bits (this_instr, 4, 27) == 0x12fff1 | |
1574 | || bits (this_instr, 4, 27) == 0x12fff2 | |
1575 | || bits (this_instr, 4, 27) == 0x12fff3) | |
1576 | return 1; | |
1577 | ||
1578 | /* Other miscellaneous instructions are unpredictable if they | |
1579 | modify PC. */ | |
1580 | return 0; | |
1581 | } | |
1582 | /* Data processing instruction. Fall through. */ | |
c906108c | 1583 | |
0d39a070 DJ |
1584 | case 0x1: |
1585 | if (bits (this_instr, 12, 15) == 15) | |
1586 | return 1; | |
1587 | else | |
1588 | return 0; | |
c906108c | 1589 | |
0d39a070 DJ |
1590 | case 0x2: |
1591 | case 0x3: | |
1592 | /* Media instructions and architecturally undefined instructions. */ | |
1593 | if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1) | |
1594 | return 0; | |
c906108c | 1595 | |
0d39a070 DJ |
1596 | /* Stores. */ |
1597 | if (bit (this_instr, 20) == 0) | |
1598 | return 0; | |
2a451106 | 1599 | |
0d39a070 DJ |
1600 | /* Loads. */ |
1601 | if (bits (this_instr, 12, 15) == ARM_PC_REGNUM) | |
1602 | return 1; | |
1603 | else | |
1604 | return 0; | |
2a451106 | 1605 | |
0d39a070 DJ |
1606 | case 0x4: |
1607 | /* Load/store multiple. */ | |
1608 | if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1) | |
1609 | return 1; | |
1610 | else | |
1611 | return 0; | |
2a451106 | 1612 | |
0d39a070 DJ |
1613 | case 0x5: |
1614 | /* Branch and branch with link. */ | |
1615 | return 1; | |
2a451106 | 1616 | |
0d39a070 DJ |
1617 | case 0x6: |
1618 | case 0x7: | |
1619 | /* Coprocessor transfers or SWIs can not affect PC. */ | |
1620 | return 0; | |
eb5492fa | 1621 | |
0d39a070 | 1622 | default: |
9b20d036 | 1623 | internal_error (__FILE__, __LINE__, _("bad value in switch")); |
0d39a070 DJ |
1624 | } |
1625 | } | |
c906108c | 1626 | |
0d39a070 DJ |
1627 | /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
1628 | continuing no further than PROLOGUE_END. If CACHE is non-NULL, | |
1629 | fill it in. Return the first address not recognized as a prologue | |
1630 | instruction. | |
eb5492fa | 1631 | |
0d39a070 DJ |
1632 | We recognize all the instructions typically found in ARM prologues, |
1633 | plus harmless instructions which can be skipped (either for analysis | |
1634 | purposes, or a more restrictive set that can be skipped when finding | |
1635 | the end of the prologue). */ | |
1636 | ||
1637 | static CORE_ADDR | |
1638 | arm_analyze_prologue (struct gdbarch *gdbarch, | |
1639 | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | |
1640 | struct arm_prologue_cache *cache) | |
1641 | { | |
1642 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1643 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1644 | int regno; | |
1645 | CORE_ADDR offset, current_pc; | |
1646 | pv_t regs[ARM_FPS_REGNUM]; | |
1647 | struct pv_area *stack; | |
1648 | struct cleanup *back_to; | |
1649 | int framereg, framesize; | |
1650 | CORE_ADDR unrecognized_pc = 0; | |
1651 | ||
1652 | /* Search the prologue looking for instructions that set up the | |
96baa820 | 1653 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 1654 | |
96baa820 JM |
1655 | Be careful, however, and if it doesn't look like a prologue, |
1656 | don't try to scan it. If, for instance, a frameless function | |
1657 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 1658 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 | 1659 | and other operations that rely on a knowledge of the stack |
0d39a070 | 1660 | traceback. */ |
d4473757 | 1661 | |
4be43953 DJ |
1662 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
1663 | regs[regno] = pv_register (regno, 0); | |
55f960e1 | 1664 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 DJ |
1665 | back_to = make_cleanup_free_pv_area (stack); |
1666 | ||
94c30b78 MS |
1667 | for (current_pc = prologue_start; |
1668 | current_pc < prologue_end; | |
f43845b3 | 1669 | current_pc += 4) |
96baa820 | 1670 | { |
e17a4113 UW |
1671 | unsigned int insn |
1672 | = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code); | |
9d4fde75 | 1673 | |
94c30b78 | 1674 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 1675 | { |
4be43953 | 1676 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
1677 | continue; |
1678 | } | |
0d39a070 DJ |
1679 | else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
1680 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1681 | { |
1682 | unsigned imm = insn & 0xff; /* immediate value */ | |
1683 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1684 | int rd = bits (insn, 12, 15); |
28cd8767 | 1685 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1686 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
28cd8767 JG |
1687 | continue; |
1688 | } | |
0d39a070 DJ |
1689 | else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
1690 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1691 | { |
1692 | unsigned imm = insn & 0xff; /* immediate value */ | |
1693 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1694 | int rd = bits (insn, 12, 15); |
28cd8767 | 1695 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1696 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
f43845b3 MS |
1697 | continue; |
1698 | } | |
0963b4bd MS |
1699 | else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
1700 | [sp, #-4]! */ | |
f43845b3 | 1701 | { |
4be43953 DJ |
1702 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1703 | break; | |
1704 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
0d39a070 DJ |
1705 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, |
1706 | regs[bits (insn, 12, 15)]); | |
f43845b3 MS |
1707 | continue; |
1708 | } | |
1709 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
1710 | /* stmfd sp!, {..., fp, ip, lr, pc} |
1711 | or | |
1712 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 1713 | { |
d4473757 | 1714 | int mask = insn & 0xffff; |
ed9a39eb | 1715 | |
4be43953 DJ |
1716 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1717 | break; | |
1718 | ||
94c30b78 | 1719 | /* Calculate offsets of saved registers. */ |
34e8f22d | 1720 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
1721 | if (mask & (1 << regno)) |
1722 | { | |
0963b4bd MS |
1723 | regs[ARM_SP_REGNUM] |
1724 | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
4be43953 | 1725 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); |
d4473757 KB |
1726 | } |
1727 | } | |
0d39a070 DJ |
1728 | else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
1729 | || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
f8bf5763 | 1730 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
b8d5e71d MS |
1731 | { |
1732 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1733 | continue; | |
1734 | } | |
0d39a070 DJ |
1735 | else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
1736 | || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
f8bf5763 | 1737 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
f43845b3 MS |
1738 | { |
1739 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1740 | continue; | |
1741 | } | |
0963b4bd MS |
1742 | else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
1743 | { registers } */ | |
0d39a070 DJ |
1744 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
1745 | { | |
1746 | /* No need to add this to saved_regs -- it's just arg regs. */ | |
1747 | continue; | |
1748 | } | |
d4473757 KB |
1749 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
1750 | { | |
94c30b78 MS |
1751 | unsigned imm = insn & 0xff; /* immediate value */ |
1752 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1753 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1754 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
1755 | } |
1756 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
1757 | { | |
94c30b78 MS |
1758 | unsigned imm = insn & 0xff; /* immediate value */ |
1759 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1760 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1761 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 1762 | } |
0963b4bd MS |
1763 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
1764 | [sp, -#c]! */ | |
2af46ca0 | 1765 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 1766 | { |
4be43953 DJ |
1767 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1768 | break; | |
1769 | ||
1770 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 1771 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
4be43953 | 1772 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 1773 | } |
0963b4bd MS |
1774 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
1775 | [sp!] */ | |
2af46ca0 | 1776 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
1777 | { |
1778 | int n_saved_fp_regs; | |
1779 | unsigned int fp_start_reg, fp_bound_reg; | |
1780 | ||
4be43953 DJ |
1781 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1782 | break; | |
1783 | ||
94c30b78 | 1784 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 1785 | { |
d4473757 KB |
1786 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1787 | n_saved_fp_regs = 3; | |
1788 | else | |
1789 | n_saved_fp_regs = 1; | |
96baa820 | 1790 | } |
d4473757 | 1791 | else |
96baa820 | 1792 | { |
d4473757 KB |
1793 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1794 | n_saved_fp_regs = 2; | |
1795 | else | |
1796 | n_saved_fp_regs = 4; | |
96baa820 | 1797 | } |
d4473757 | 1798 | |
34e8f22d | 1799 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
1800 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
1801 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 1802 | { |
4be43953 DJ |
1803 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
1804 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, | |
1805 | regs[fp_start_reg++]); | |
96baa820 | 1806 | } |
c906108c | 1807 | } |
0d39a070 DJ |
1808 | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
1809 | { | |
1810 | /* Allow some special function calls when skipping the | |
1811 | prologue; GCC generates these before storing arguments to | |
1812 | the stack. */ | |
1813 | CORE_ADDR dest = BranchDest (current_pc, insn); | |
1814 | ||
1815 | if (skip_prologue_function (dest)) | |
1816 | continue; | |
1817 | else | |
1818 | break; | |
1819 | } | |
d4473757 | 1820 | else if ((insn & 0xf0000000) != 0xe0000000) |
0963b4bd | 1821 | break; /* Condition not true, exit early. */ |
0d39a070 DJ |
1822 | else if (arm_instruction_changes_pc (insn)) |
1823 | /* Don't scan past anything that might change control flow. */ | |
1824 | break; | |
1825 | else if ((insn & 0xfe500000) == 0xe8100000) /* ldm */ | |
1826 | { | |
1827 | /* Ignore block loads from the stack, potentially copying | |
1828 | parameters from memory. */ | |
1829 | if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1830 | continue; | |
1831 | else | |
1832 | break; | |
1833 | } | |
1834 | else if ((insn & 0xfc500000) == 0xe4100000) | |
1835 | { | |
1836 | /* Similarly ignore single loads from the stack. */ | |
1837 | if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1838 | continue; | |
1839 | else | |
1840 | break; | |
1841 | } | |
1842 | else if ((insn & 0xffff0ff0) == 0xe1a00000) | |
1843 | /* MOV Rd, Rm. Skip register copies, i.e. saves to another | |
1844 | register instead of the stack. */ | |
d4473757 | 1845 | continue; |
0d39a070 DJ |
1846 | else |
1847 | { | |
1848 | /* The optimizer might shove anything into the prologue, | |
1849 | so we just skip what we don't recognize. */ | |
1850 | unrecognized_pc = current_pc; | |
1851 | continue; | |
1852 | } | |
c906108c SS |
1853 | } |
1854 | ||
0d39a070 DJ |
1855 | if (unrecognized_pc == 0) |
1856 | unrecognized_pc = current_pc; | |
1857 | ||
4be43953 DJ |
1858 | /* The frame size is just the distance from the frame register |
1859 | to the original stack pointer. */ | |
1860 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1861 | { | |
1862 | /* Frame pointer is fp. */ | |
0d39a070 DJ |
1863 | framereg = ARM_FP_REGNUM; |
1864 | framesize = -regs[ARM_FP_REGNUM].k; | |
4be43953 DJ |
1865 | } |
1866 | else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM)) | |
1867 | { | |
1868 | /* Try the stack pointer... this is a bit desperate. */ | |
0d39a070 DJ |
1869 | framereg = ARM_SP_REGNUM; |
1870 | framesize = -regs[ARM_SP_REGNUM].k; | |
4be43953 | 1871 | } |
d4473757 | 1872 | else |
4be43953 DJ |
1873 | { |
1874 | /* We're just out of luck. We don't know where the frame is. */ | |
0d39a070 DJ |
1875 | framereg = -1; |
1876 | framesize = 0; | |
4be43953 DJ |
1877 | } |
1878 | ||
0d39a070 DJ |
1879 | if (cache) |
1880 | { | |
1881 | cache->framereg = framereg; | |
1882 | cache->framesize = framesize; | |
1883 | ||
1884 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
1885 | if (pv_area_find_reg (stack, gdbarch, regno, &offset)) | |
1886 | cache->saved_regs[regno].addr = offset; | |
1887 | } | |
1888 | ||
1889 | if (arm_debug) | |
1890 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1891 | paddress (gdbarch, unrecognized_pc)); | |
4be43953 DJ |
1892 | |
1893 | do_cleanups (back_to); | |
0d39a070 DJ |
1894 | return unrecognized_pc; |
1895 | } | |
1896 | ||
1897 | static void | |
1898 | arm_scan_prologue (struct frame_info *this_frame, | |
1899 | struct arm_prologue_cache *cache) | |
1900 | { | |
1901 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1902 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1903 | int regno; | |
1904 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
1905 | CORE_ADDR prev_pc = get_frame_pc (this_frame); | |
1906 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
1907 | pv_t regs[ARM_FPS_REGNUM]; | |
1908 | struct pv_area *stack; | |
1909 | struct cleanup *back_to; | |
1910 | CORE_ADDR offset; | |
1911 | ||
1912 | /* Assume there is no frame until proven otherwise. */ | |
1913 | cache->framereg = ARM_SP_REGNUM; | |
1914 | cache->framesize = 0; | |
1915 | ||
1916 | /* Check for Thumb prologue. */ | |
1917 | if (arm_frame_is_thumb (this_frame)) | |
1918 | { | |
1919 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | |
1920 | return; | |
1921 | } | |
1922 | ||
1923 | /* Find the function prologue. If we can't find the function in | |
1924 | the symbol table, peek in the stack frame to find the PC. */ | |
1925 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
1926 | &prologue_end)) | |
1927 | { | |
1928 | /* One way to find the end of the prologue (which works well | |
1929 | for unoptimized code) is to do the following: | |
1930 | ||
1931 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
1932 | ||
1933 | if (sal.line == 0) | |
1934 | prologue_end = prev_pc; | |
1935 | else if (sal.end < prologue_end) | |
1936 | prologue_end = sal.end; | |
1937 | ||
1938 | This mechanism is very accurate so long as the optimizer | |
1939 | doesn't move any instructions from the function body into the | |
1940 | prologue. If this happens, sal.end will be the last | |
1941 | instruction in the first hunk of prologue code just before | |
1942 | the first instruction that the scheduler has moved from | |
1943 | the body to the prologue. | |
1944 | ||
1945 | In order to make sure that we scan all of the prologue | |
1946 | instructions, we use a slightly less accurate mechanism which | |
1947 | may scan more than necessary. To help compensate for this | |
1948 | lack of accuracy, the prologue scanning loop below contains | |
1949 | several clauses which'll cause the loop to terminate early if | |
1950 | an implausible prologue instruction is encountered. | |
1951 | ||
1952 | The expression | |
1953 | ||
1954 | prologue_start + 64 | |
1955 | ||
1956 | is a suitable endpoint since it accounts for the largest | |
1957 | possible prologue plus up to five instructions inserted by | |
1958 | the scheduler. */ | |
1959 | ||
1960 | if (prologue_end > prologue_start + 64) | |
1961 | { | |
1962 | prologue_end = prologue_start + 64; /* See above. */ | |
1963 | } | |
1964 | } | |
1965 | else | |
1966 | { | |
1967 | /* We have no symbol information. Our only option is to assume this | |
1968 | function has a standard stack frame and the normal frame register. | |
1969 | Then, we can find the value of our frame pointer on entrance to | |
1970 | the callee (or at the present moment if this is the innermost frame). | |
1971 | The value stored there should be the address of the stmfd + 8. */ | |
1972 | CORE_ADDR frame_loc; | |
1973 | LONGEST return_value; | |
1974 | ||
1975 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | |
1976 | if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value)) | |
1977 | return; | |
1978 | else | |
1979 | { | |
1980 | prologue_start = gdbarch_addr_bits_remove | |
1981 | (gdbarch, return_value) - 8; | |
1982 | prologue_end = prologue_start + 64; /* See above. */ | |
1983 | } | |
1984 | } | |
1985 | ||
1986 | if (prev_pc < prologue_end) | |
1987 | prologue_end = prev_pc; | |
1988 | ||
1989 | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | |
c906108c SS |
1990 | } |
1991 | ||
eb5492fa | 1992 | static struct arm_prologue_cache * |
a262aec2 | 1993 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 1994 | { |
eb5492fa DJ |
1995 | int reg; |
1996 | struct arm_prologue_cache *cache; | |
1997 | CORE_ADDR unwound_fp; | |
c5aa993b | 1998 | |
35d5d4ee | 1999 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2000 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 2001 | |
a262aec2 | 2002 | arm_scan_prologue (this_frame, cache); |
848cfffb | 2003 | |
a262aec2 | 2004 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
2005 | if (unwound_fp == 0) |
2006 | return cache; | |
c906108c | 2007 | |
4be43953 | 2008 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 2009 | |
eb5492fa DJ |
2010 | /* Calculate actual addresses of saved registers using offsets |
2011 | determined by arm_scan_prologue. */ | |
a262aec2 | 2012 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 2013 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
2014 | cache->saved_regs[reg].addr += cache->prev_sp; |
2015 | ||
2016 | return cache; | |
c906108c SS |
2017 | } |
2018 | ||
eb5492fa DJ |
2019 | /* Our frame ID for a normal frame is the current function's starting PC |
2020 | and the caller's SP when we were called. */ | |
c906108c | 2021 | |
148754e5 | 2022 | static void |
a262aec2 | 2023 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
2024 | void **this_cache, |
2025 | struct frame_id *this_id) | |
c906108c | 2026 | { |
eb5492fa DJ |
2027 | struct arm_prologue_cache *cache; |
2028 | struct frame_id id; | |
2c404490 | 2029 | CORE_ADDR pc, func; |
f079148d | 2030 | |
eb5492fa | 2031 | if (*this_cache == NULL) |
a262aec2 | 2032 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2033 | cache = *this_cache; |
2a451106 | 2034 | |
2c404490 DJ |
2035 | /* This is meant to halt the backtrace at "_start". */ |
2036 | pc = get_frame_pc (this_frame); | |
2037 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
eb5492fa | 2038 | return; |
5a203e44 | 2039 | |
eb5492fa DJ |
2040 | /* If we've hit a wall, stop. */ |
2041 | if (cache->prev_sp == 0) | |
2042 | return; | |
24de872b | 2043 | |
2c404490 | 2044 | func = get_frame_func (this_frame); |
eb5492fa | 2045 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 2046 | *this_id = id; |
c906108c SS |
2047 | } |
2048 | ||
a262aec2 DJ |
2049 | static struct value * |
2050 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 2051 | void **this_cache, |
a262aec2 | 2052 | int prev_regnum) |
24de872b | 2053 | { |
24568a2c | 2054 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
2055 | struct arm_prologue_cache *cache; |
2056 | ||
eb5492fa | 2057 | if (*this_cache == NULL) |
a262aec2 | 2058 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2059 | cache = *this_cache; |
24de872b | 2060 | |
eb5492fa | 2061 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
2062 | instead. The prologue may save PC, but it will point into this |
2063 | frame's prologue, not the next frame's resume location. Also | |
2064 | strip the saved T bit. A valid LR may have the low bit set, but | |
2065 | a valid PC never does. */ | |
eb5492fa | 2066 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
2067 | { |
2068 | CORE_ADDR lr; | |
2069 | ||
2070 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2071 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 2072 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 2073 | } |
24de872b | 2074 | |
eb5492fa | 2075 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 2076 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
2077 | The value was already reconstructed into PREV_SP. */ |
2078 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 2079 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 2080 | |
b39cc962 DJ |
2081 | /* The CPSR may have been changed by the call instruction and by the |
2082 | called function. The only bit we can reconstruct is the T bit, | |
2083 | by checking the low bit of LR as of the call. This is a reliable | |
2084 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
2085 | Thumb code, which could get away with a clear low bit as long as | |
2086 | the called function did not use bx. Guess that all other | |
2087 | bits are unchanged; the condition flags are presumably lost, | |
2088 | but the processor status is likely valid. */ | |
2089 | if (prev_regnum == ARM_PS_REGNUM) | |
2090 | { | |
2091 | CORE_ADDR lr, cpsr; | |
9779414d | 2092 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
2093 | |
2094 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
2095 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2096 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 2097 | cpsr |= t_bit; |
b39cc962 | 2098 | else |
9779414d | 2099 | cpsr &= ~t_bit; |
b39cc962 DJ |
2100 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
2101 | } | |
2102 | ||
a262aec2 DJ |
2103 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
2104 | prev_regnum); | |
eb5492fa DJ |
2105 | } |
2106 | ||
2107 | struct frame_unwind arm_prologue_unwind = { | |
2108 | NORMAL_FRAME, | |
2109 | arm_prologue_this_id, | |
a262aec2 DJ |
2110 | arm_prologue_prev_register, |
2111 | NULL, | |
2112 | default_frame_sniffer | |
eb5492fa DJ |
2113 | }; |
2114 | ||
909cf6ea | 2115 | static struct arm_prologue_cache * |
a262aec2 | 2116 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea | 2117 | { |
909cf6ea | 2118 | struct arm_prologue_cache *cache; |
909cf6ea | 2119 | |
35d5d4ee | 2120 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2121 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 2122 | |
a262aec2 | 2123 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
2124 | |
2125 | return cache; | |
2126 | } | |
2127 | ||
2128 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2129 | ||
2130 | static void | |
a262aec2 | 2131 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
2132 | void **this_cache, |
2133 | struct frame_id *this_id) | |
2134 | { | |
2135 | struct arm_prologue_cache *cache; | |
2136 | ||
2137 | if (*this_cache == NULL) | |
a262aec2 | 2138 | *this_cache = arm_make_stub_cache (this_frame); |
909cf6ea DJ |
2139 | cache = *this_cache; |
2140 | ||
a262aec2 | 2141 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
2142 | } |
2143 | ||
a262aec2 DJ |
2144 | static int |
2145 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
2146 | struct frame_info *this_frame, | |
2147 | void **this_prologue_cache) | |
909cf6ea | 2148 | { |
93d42b30 | 2149 | CORE_ADDR addr_in_block; |
909cf6ea DJ |
2150 | char dummy[4]; |
2151 | ||
a262aec2 | 2152 | addr_in_block = get_frame_address_in_block (this_frame); |
93d42b30 | 2153 | if (in_plt_section (addr_in_block, NULL) |
fc36e839 DE |
2154 | /* We also use the stub winder if the target memory is unreadable |
2155 | to avoid having the prologue unwinder trying to read it. */ | |
a262aec2 DJ |
2156 | || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
2157 | return 1; | |
909cf6ea | 2158 | |
a262aec2 | 2159 | return 0; |
909cf6ea DJ |
2160 | } |
2161 | ||
a262aec2 DJ |
2162 | struct frame_unwind arm_stub_unwind = { |
2163 | NORMAL_FRAME, | |
2164 | arm_stub_this_id, | |
2165 | arm_prologue_prev_register, | |
2166 | NULL, | |
2167 | arm_stub_unwind_sniffer | |
2168 | }; | |
2169 | ||
24de872b | 2170 | static CORE_ADDR |
a262aec2 | 2171 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
2172 | { |
2173 | struct arm_prologue_cache *cache; | |
2174 | ||
eb5492fa | 2175 | if (*this_cache == NULL) |
a262aec2 | 2176 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa DJ |
2177 | cache = *this_cache; |
2178 | ||
4be43953 | 2179 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
2180 | } |
2181 | ||
eb5492fa DJ |
2182 | struct frame_base arm_normal_base = { |
2183 | &arm_prologue_unwind, | |
2184 | arm_normal_frame_base, | |
2185 | arm_normal_frame_base, | |
2186 | arm_normal_frame_base | |
2187 | }; | |
2188 | ||
a262aec2 | 2189 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
2190 | dummy frame. The frame ID's base needs to match the TOS value |
2191 | saved by save_dummy_frame_tos() and returned from | |
2192 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
2193 | breakpoint. */ | |
c906108c | 2194 | |
eb5492fa | 2195 | static struct frame_id |
a262aec2 | 2196 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 2197 | { |
0963b4bd MS |
2198 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2199 | ARM_SP_REGNUM), | |
a262aec2 | 2200 | get_frame_pc (this_frame)); |
eb5492fa | 2201 | } |
c3b4394c | 2202 | |
eb5492fa DJ |
2203 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
2204 | be used to construct the previous frame's ID, after looking up the | |
2205 | containing function). */ | |
c3b4394c | 2206 | |
eb5492fa DJ |
2207 | static CORE_ADDR |
2208 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
2209 | { | |
2210 | CORE_ADDR pc; | |
2211 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 2212 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
2213 | } |
2214 | ||
2215 | static CORE_ADDR | |
2216 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
2217 | { | |
2218 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
2219 | } |
2220 | ||
b39cc962 DJ |
2221 | static struct value * |
2222 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
2223 | int regnum) | |
2224 | { | |
24568a2c | 2225 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 | 2226 | CORE_ADDR lr, cpsr; |
9779414d | 2227 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
2228 | |
2229 | switch (regnum) | |
2230 | { | |
2231 | case ARM_PC_REGNUM: | |
2232 | /* The PC is normally copied from the return column, which | |
2233 | describes saves of LR. However, that version may have an | |
2234 | extra bit set to indicate Thumb state. The bit is not | |
2235 | part of the PC. */ | |
2236 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2237 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 2238 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
2239 | |
2240 | case ARM_PS_REGNUM: | |
2241 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 2242 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
2243 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
2244 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 2245 | cpsr |= t_bit; |
b39cc962 | 2246 | else |
9779414d | 2247 | cpsr &= ~t_bit; |
ca38c58e | 2248 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
2249 | |
2250 | default: | |
2251 | internal_error (__FILE__, __LINE__, | |
2252 | _("Unexpected register %d"), regnum); | |
2253 | } | |
2254 | } | |
2255 | ||
2256 | static void | |
2257 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
2258 | struct dwarf2_frame_state_reg *reg, | |
2259 | struct frame_info *this_frame) | |
2260 | { | |
2261 | switch (regnum) | |
2262 | { | |
2263 | case ARM_PC_REGNUM: | |
2264 | case ARM_PS_REGNUM: | |
2265 | reg->how = DWARF2_FRAME_REG_FN; | |
2266 | reg->loc.fn = arm_dwarf2_prev_register; | |
2267 | break; | |
2268 | case ARM_SP_REGNUM: | |
2269 | reg->how = DWARF2_FRAME_REG_CFA; | |
2270 | break; | |
2271 | } | |
2272 | } | |
2273 | ||
4024ca99 UW |
2274 | /* Return true if we are in the function's epilogue, i.e. after the |
2275 | instruction that destroyed the function's stack frame. */ | |
2276 | ||
2277 | static int | |
2278 | thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2279 | { | |
2280 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2281 | unsigned int insn, insn2; | |
2282 | int found_return = 0, found_stack_adjust = 0; | |
2283 | CORE_ADDR func_start, func_end; | |
2284 | CORE_ADDR scan_pc; | |
2285 | gdb_byte buf[4]; | |
2286 | ||
2287 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
2288 | return 0; | |
2289 | ||
2290 | /* The epilogue is a sequence of instructions along the following lines: | |
2291 | ||
2292 | - add stack frame size to SP or FP | |
2293 | - [if frame pointer used] restore SP from FP | |
2294 | - restore registers from SP [may include PC] | |
2295 | - a return-type instruction [if PC wasn't already restored] | |
2296 | ||
2297 | In a first pass, we scan forward from the current PC and verify the | |
2298 | instructions we find as compatible with this sequence, ending in a | |
2299 | return instruction. | |
2300 | ||
2301 | However, this is not sufficient to distinguish indirect function calls | |
2302 | within a function from indirect tail calls in the epilogue in some cases. | |
2303 | Therefore, if we didn't already find any SP-changing instruction during | |
2304 | forward scan, we add a backward scanning heuristic to ensure we actually | |
2305 | are in the epilogue. */ | |
2306 | ||
2307 | scan_pc = pc; | |
2308 | while (scan_pc < func_end && !found_return) | |
2309 | { | |
2310 | if (target_read_memory (scan_pc, buf, 2)) | |
2311 | break; | |
2312 | ||
2313 | scan_pc += 2; | |
2314 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
2315 | ||
2316 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
2317 | found_return = 1; | |
2318 | else if (insn == 0x46f7) /* mov pc, lr */ | |
2319 | found_return = 1; | |
2320 | else if (insn == 0x46bd) /* mov sp, r7 */ | |
2321 | found_stack_adjust = 1; | |
2322 | else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
2323 | found_stack_adjust = 1; | |
2324 | else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */ | |
2325 | { | |
2326 | found_stack_adjust = 1; | |
2327 | if (insn & 0x0100) /* <registers> include PC. */ | |
2328 | found_return = 1; | |
2329 | } | |
2330 | else if ((insn & 0xe000) == 0xe000) /* 32-bit Thumb-2 instruction */ | |
2331 | { | |
2332 | if (target_read_memory (scan_pc, buf, 2)) | |
2333 | break; | |
2334 | ||
2335 | scan_pc += 2; | |
2336 | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
2337 | ||
2338 | if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
2339 | { | |
2340 | found_stack_adjust = 1; | |
2341 | if (insn2 & 0x8000) /* <registers> include PC. */ | |
2342 | found_return = 1; | |
2343 | } | |
2344 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
2345 | && (insn2 & 0x0fff) == 0x0b04) | |
2346 | { | |
2347 | found_stack_adjust = 1; | |
2348 | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ | |
2349 | found_return = 1; | |
2350 | } | |
2351 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
2352 | && (insn2 & 0x0e00) == 0x0a00) | |
2353 | found_stack_adjust = 1; | |
2354 | else | |
2355 | break; | |
2356 | } | |
2357 | else | |
2358 | break; | |
2359 | } | |
2360 | ||
2361 | if (!found_return) | |
2362 | return 0; | |
2363 | ||
2364 | /* Since any instruction in the epilogue sequence, with the possible | |
2365 | exception of return itself, updates the stack pointer, we need to | |
2366 | scan backwards for at most one instruction. Try either a 16-bit or | |
2367 | a 32-bit instruction. This is just a heuristic, so we do not worry | |
0963b4bd | 2368 | too much about false positives. */ |
4024ca99 UW |
2369 | |
2370 | if (!found_stack_adjust) | |
2371 | { | |
2372 | if (pc - 4 < func_start) | |
2373 | return 0; | |
2374 | if (target_read_memory (pc - 4, buf, 4)) | |
2375 | return 0; | |
2376 | ||
2377 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
2378 | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | |
2379 | ||
2380 | if (insn2 == 0x46bd) /* mov sp, r7 */ | |
2381 | found_stack_adjust = 1; | |
2382 | else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
2383 | found_stack_adjust = 1; | |
2384 | else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */ | |
2385 | found_stack_adjust = 1; | |
2386 | else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
2387 | found_stack_adjust = 1; | |
2388 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
2389 | && (insn2 & 0x0fff) == 0x0b04) | |
2390 | found_stack_adjust = 1; | |
2391 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
2392 | && (insn2 & 0x0e00) == 0x0a00) | |
2393 | found_stack_adjust = 1; | |
2394 | } | |
2395 | ||
2396 | return found_stack_adjust; | |
2397 | } | |
2398 | ||
2399 | /* Return true if we are in the function's epilogue, i.e. after the | |
2400 | instruction that destroyed the function's stack frame. */ | |
2401 | ||
2402 | static int | |
2403 | arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2404 | { | |
2405 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2406 | unsigned int insn; | |
2407 | int found_return, found_stack_adjust; | |
2408 | CORE_ADDR func_start, func_end; | |
2409 | ||
2410 | if (arm_pc_is_thumb (gdbarch, pc)) | |
2411 | return thumb_in_function_epilogue_p (gdbarch, pc); | |
2412 | ||
2413 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
2414 | return 0; | |
2415 | ||
2416 | /* We are in the epilogue if the previous instruction was a stack | |
2417 | adjustment and the next instruction is a possible return (bx, mov | |
2418 | pc, or pop). We could have to scan backwards to find the stack | |
2419 | adjustment, or forwards to find the return, but this is a decent | |
2420 | approximation. First scan forwards. */ | |
2421 | ||
2422 | found_return = 0; | |
2423 | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
2424 | if (bits (insn, 28, 31) != INST_NV) | |
2425 | { | |
2426 | if ((insn & 0x0ffffff0) == 0x012fff10) | |
2427 | /* BX. */ | |
2428 | found_return = 1; | |
2429 | else if ((insn & 0x0ffffff0) == 0x01a0f000) | |
2430 | /* MOV PC. */ | |
2431 | found_return = 1; | |
2432 | else if ((insn & 0x0fff0000) == 0x08bd0000 | |
2433 | && (insn & 0x0000c000) != 0) | |
2434 | /* POP (LDMIA), including PC or LR. */ | |
2435 | found_return = 1; | |
2436 | } | |
2437 | ||
2438 | if (!found_return) | |
2439 | return 0; | |
2440 | ||
2441 | /* Scan backwards. This is just a heuristic, so do not worry about | |
2442 | false positives from mode changes. */ | |
2443 | ||
2444 | if (pc < func_start + 4) | |
2445 | return 0; | |
2446 | ||
73c964d6 | 2447 | found_stack_adjust = 0; |
4024ca99 UW |
2448 | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); |
2449 | if (bits (insn, 28, 31) != INST_NV) | |
2450 | { | |
2451 | if ((insn & 0x0df0f000) == 0x0080d000) | |
2452 | /* ADD SP (register or immediate). */ | |
2453 | found_stack_adjust = 1; | |
2454 | else if ((insn & 0x0df0f000) == 0x0040d000) | |
2455 | /* SUB SP (register or immediate). */ | |
2456 | found_stack_adjust = 1; | |
2457 | else if ((insn & 0x0ffffff0) == 0x01a0d000) | |
2458 | /* MOV SP. */ | |
77bc0675 | 2459 | found_stack_adjust = 1; |
4024ca99 UW |
2460 | else if ((insn & 0x0fff0000) == 0x08bd0000) |
2461 | /* POP (LDMIA). */ | |
2462 | found_stack_adjust = 1; | |
2463 | } | |
2464 | ||
2465 | if (found_stack_adjust) | |
2466 | return 1; | |
2467 | ||
2468 | return 0; | |
2469 | } | |
2470 | ||
2471 | ||
2dd604e7 RE |
2472 | /* When arguments must be pushed onto the stack, they go on in reverse |
2473 | order. The code below implements a FILO (stack) to do this. */ | |
2474 | ||
2475 | struct stack_item | |
2476 | { | |
2477 | int len; | |
2478 | struct stack_item *prev; | |
2479 | void *data; | |
2480 | }; | |
2481 | ||
2482 | static struct stack_item * | |
8c6363cf | 2483 | push_stack_item (struct stack_item *prev, const void *contents, int len) |
2dd604e7 RE |
2484 | { |
2485 | struct stack_item *si; | |
2486 | si = xmalloc (sizeof (struct stack_item)); | |
226c7fbc | 2487 | si->data = xmalloc (len); |
2dd604e7 RE |
2488 | si->len = len; |
2489 | si->prev = prev; | |
2490 | memcpy (si->data, contents, len); | |
2491 | return si; | |
2492 | } | |
2493 | ||
2494 | static struct stack_item * | |
2495 | pop_stack_item (struct stack_item *si) | |
2496 | { | |
2497 | struct stack_item *dead = si; | |
2498 | si = si->prev; | |
2499 | xfree (dead->data); | |
2500 | xfree (dead); | |
2501 | return si; | |
2502 | } | |
2503 | ||
2af48f68 PB |
2504 | |
2505 | /* Return the alignment (in bytes) of the given type. */ | |
2506 | ||
2507 | static int | |
2508 | arm_type_align (struct type *t) | |
2509 | { | |
2510 | int n; | |
2511 | int align; | |
2512 | int falign; | |
2513 | ||
2514 | t = check_typedef (t); | |
2515 | switch (TYPE_CODE (t)) | |
2516 | { | |
2517 | default: | |
2518 | /* Should never happen. */ | |
2519 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
2520 | return 4; | |
2521 | ||
2522 | case TYPE_CODE_PTR: | |
2523 | case TYPE_CODE_ENUM: | |
2524 | case TYPE_CODE_INT: | |
2525 | case TYPE_CODE_FLT: | |
2526 | case TYPE_CODE_SET: | |
2527 | case TYPE_CODE_RANGE: | |
2528 | case TYPE_CODE_BITSTRING: | |
2529 | case TYPE_CODE_REF: | |
2530 | case TYPE_CODE_CHAR: | |
2531 | case TYPE_CODE_BOOL: | |
2532 | return TYPE_LENGTH (t); | |
2533 | ||
2534 | case TYPE_CODE_ARRAY: | |
2535 | case TYPE_CODE_COMPLEX: | |
2536 | /* TODO: What about vector types? */ | |
2537 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
2538 | ||
2539 | case TYPE_CODE_STRUCT: | |
2540 | case TYPE_CODE_UNION: | |
2541 | align = 1; | |
2542 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
2543 | { | |
2544 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
2545 | if (falign > align) | |
2546 | align = falign; | |
2547 | } | |
2548 | return align; | |
2549 | } | |
2550 | } | |
2551 | ||
90445bd3 DJ |
2552 | /* Possible base types for a candidate for passing and returning in |
2553 | VFP registers. */ | |
2554 | ||
2555 | enum arm_vfp_cprc_base_type | |
2556 | { | |
2557 | VFP_CPRC_UNKNOWN, | |
2558 | VFP_CPRC_SINGLE, | |
2559 | VFP_CPRC_DOUBLE, | |
2560 | VFP_CPRC_VEC64, | |
2561 | VFP_CPRC_VEC128 | |
2562 | }; | |
2563 | ||
2564 | /* The length of one element of base type B. */ | |
2565 | ||
2566 | static unsigned | |
2567 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
2568 | { | |
2569 | switch (b) | |
2570 | { | |
2571 | case VFP_CPRC_SINGLE: | |
2572 | return 4; | |
2573 | case VFP_CPRC_DOUBLE: | |
2574 | return 8; | |
2575 | case VFP_CPRC_VEC64: | |
2576 | return 8; | |
2577 | case VFP_CPRC_VEC128: | |
2578 | return 16; | |
2579 | default: | |
2580 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
2581 | (int) b); | |
2582 | } | |
2583 | } | |
2584 | ||
2585 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
2586 | for passing base type B. */ | |
2587 | ||
2588 | static int | |
2589 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
2590 | { | |
2591 | switch (b) | |
2592 | { | |
2593 | case VFP_CPRC_SINGLE: | |
2594 | return 's'; | |
2595 | case VFP_CPRC_DOUBLE: | |
2596 | return 'd'; | |
2597 | case VFP_CPRC_VEC64: | |
2598 | return 'd'; | |
2599 | case VFP_CPRC_VEC128: | |
2600 | return 'q'; | |
2601 | default: | |
2602 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
2603 | (int) b); | |
2604 | } | |
2605 | } | |
2606 | ||
2607 | /* Determine whether T may be part of a candidate for passing and | |
2608 | returning in VFP registers, ignoring the limit on the total number | |
2609 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
2610 | classification of the first valid component found; if it is not | |
2611 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
2612 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
2613 | for passing and returning in VFP registers, a type differently | |
2614 | classified from *BASE_TYPE, or two types differently classified | |
2615 | from each other, return -1, otherwise return the total number of | |
2616 | base-type elements found (possibly 0 in an empty structure or | |
2617 | array). Vectors and complex types are not currently supported, | |
2618 | matching the generic AAPCS support. */ | |
2619 | ||
2620 | static int | |
2621 | arm_vfp_cprc_sub_candidate (struct type *t, | |
2622 | enum arm_vfp_cprc_base_type *base_type) | |
2623 | { | |
2624 | t = check_typedef (t); | |
2625 | switch (TYPE_CODE (t)) | |
2626 | { | |
2627 | case TYPE_CODE_FLT: | |
2628 | switch (TYPE_LENGTH (t)) | |
2629 | { | |
2630 | case 4: | |
2631 | if (*base_type == VFP_CPRC_UNKNOWN) | |
2632 | *base_type = VFP_CPRC_SINGLE; | |
2633 | else if (*base_type != VFP_CPRC_SINGLE) | |
2634 | return -1; | |
2635 | return 1; | |
2636 | ||
2637 | case 8: | |
2638 | if (*base_type == VFP_CPRC_UNKNOWN) | |
2639 | *base_type = VFP_CPRC_DOUBLE; | |
2640 | else if (*base_type != VFP_CPRC_DOUBLE) | |
2641 | return -1; | |
2642 | return 1; | |
2643 | ||
2644 | default: | |
2645 | return -1; | |
2646 | } | |
2647 | break; | |
2648 | ||
2649 | case TYPE_CODE_ARRAY: | |
2650 | { | |
2651 | int count; | |
2652 | unsigned unitlen; | |
2653 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type); | |
2654 | if (count == -1) | |
2655 | return -1; | |
2656 | if (TYPE_LENGTH (t) == 0) | |
2657 | { | |
2658 | gdb_assert (count == 0); | |
2659 | return 0; | |
2660 | } | |
2661 | else if (count == 0) | |
2662 | return -1; | |
2663 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
2664 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
2665 | return TYPE_LENGTH (t) / unitlen; | |
2666 | } | |
2667 | break; | |
2668 | ||
2669 | case TYPE_CODE_STRUCT: | |
2670 | { | |
2671 | int count = 0; | |
2672 | unsigned unitlen; | |
2673 | int i; | |
2674 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
2675 | { | |
2676 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
2677 | base_type); | |
2678 | if (sub_count == -1) | |
2679 | return -1; | |
2680 | count += sub_count; | |
2681 | } | |
2682 | if (TYPE_LENGTH (t) == 0) | |
2683 | { | |
2684 | gdb_assert (count == 0); | |
2685 | return 0; | |
2686 | } | |
2687 | else if (count == 0) | |
2688 | return -1; | |
2689 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
2690 | if (TYPE_LENGTH (t) != unitlen * count) | |
2691 | return -1; | |
2692 | return count; | |
2693 | } | |
2694 | ||
2695 | case TYPE_CODE_UNION: | |
2696 | { | |
2697 | int count = 0; | |
2698 | unsigned unitlen; | |
2699 | int i; | |
2700 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
2701 | { | |
2702 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
2703 | base_type); | |
2704 | if (sub_count == -1) | |
2705 | return -1; | |
2706 | count = (count > sub_count ? count : sub_count); | |
2707 | } | |
2708 | if (TYPE_LENGTH (t) == 0) | |
2709 | { | |
2710 | gdb_assert (count == 0); | |
2711 | return 0; | |
2712 | } | |
2713 | else if (count == 0) | |
2714 | return -1; | |
2715 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
2716 | if (TYPE_LENGTH (t) != unitlen * count) | |
2717 | return -1; | |
2718 | return count; | |
2719 | } | |
2720 | ||
2721 | default: | |
2722 | break; | |
2723 | } | |
2724 | ||
2725 | return -1; | |
2726 | } | |
2727 | ||
2728 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
2729 | if passed to or returned from a non-variadic function with the VFP | |
2730 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
2731 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
2732 | elements of that base type before returning. */ | |
2733 | ||
2734 | static int | |
2735 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
2736 | int *count) | |
2737 | { | |
2738 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
2739 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
2740 | if (c <= 0 || c > 4) | |
2741 | return 0; | |
2742 | *base_type = b; | |
2743 | *count = c; | |
2744 | return 1; | |
2745 | } | |
2746 | ||
2747 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
2748 | returning values from a function of type FUNC_TYPE, 0 | |
2749 | otherwise. */ | |
2750 | ||
2751 | static int | |
2752 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
2753 | { | |
2754 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2755 | /* Variadic functions always use the base ABI. Assume that functions | |
2756 | without debug info are not variadic. */ | |
2757 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
2758 | return 0; | |
2759 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
2760 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
2761 | return 0; | |
2762 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
2763 | } | |
2764 | ||
2765 | /* We currently only support passing parameters in integer registers, which | |
2766 | conforms with GCC's default model, and VFP argument passing following | |
2767 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
2768 | we should probably support some of them based on the selected ABI. */ |
2769 | ||
2770 | static CORE_ADDR | |
7d9b040b | 2771 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
2772 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
2773 | struct value **args, CORE_ADDR sp, int struct_return, | |
2774 | CORE_ADDR struct_addr) | |
2dd604e7 | 2775 | { |
e17a4113 | 2776 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
2777 | int argnum; |
2778 | int argreg; | |
2779 | int nstack; | |
2780 | struct stack_item *si = NULL; | |
90445bd3 DJ |
2781 | int use_vfp_abi; |
2782 | struct type *ftype; | |
2783 | unsigned vfp_regs_free = (1 << 16) - 1; | |
2784 | ||
2785 | /* Determine the type of this function and whether the VFP ABI | |
2786 | applies. */ | |
2787 | ftype = check_typedef (value_type (function)); | |
2788 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
2789 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
2790 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 2791 | |
6a65450a AC |
2792 | /* Set the return address. For the ARM, the return breakpoint is |
2793 | always at BP_ADDR. */ | |
9779414d | 2794 | if (arm_pc_is_thumb (gdbarch, bp_addr)) |
9dca5578 | 2795 | bp_addr |= 1; |
6a65450a | 2796 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
2797 | |
2798 | /* Walk through the list of args and determine how large a temporary | |
2799 | stack is required. Need to take care here as structs may be | |
2800 | passed on the stack, and we have to to push them. */ | |
2801 | nstack = 0; | |
2802 | ||
2803 | argreg = ARM_A1_REGNUM; | |
2804 | nstack = 0; | |
2805 | ||
2dd604e7 RE |
2806 | /* The struct_return pointer occupies the first parameter |
2807 | passing register. */ | |
2808 | if (struct_return) | |
2809 | { | |
2810 | if (arm_debug) | |
5af949e3 | 2811 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 2812 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 2813 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
2814 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
2815 | argreg++; | |
2816 | } | |
2817 | ||
2818 | for (argnum = 0; argnum < nargs; argnum++) | |
2819 | { | |
2820 | int len; | |
2821 | struct type *arg_type; | |
2822 | struct type *target_type; | |
2823 | enum type_code typecode; | |
8c6363cf | 2824 | const bfd_byte *val; |
2af48f68 | 2825 | int align; |
90445bd3 DJ |
2826 | enum arm_vfp_cprc_base_type vfp_base_type; |
2827 | int vfp_base_count; | |
2828 | int may_use_core_reg = 1; | |
2dd604e7 | 2829 | |
df407dfe | 2830 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
2831 | len = TYPE_LENGTH (arg_type); |
2832 | target_type = TYPE_TARGET_TYPE (arg_type); | |
2833 | typecode = TYPE_CODE (arg_type); | |
8c6363cf | 2834 | val = value_contents (args[argnum]); |
2dd604e7 | 2835 | |
2af48f68 PB |
2836 | align = arm_type_align (arg_type); |
2837 | /* Round alignment up to a whole number of words. */ | |
2838 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
2839 | /* Different ABIs have different maximum alignments. */ | |
2840 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
2841 | { | |
2842 | /* The APCS ABI only requires word alignment. */ | |
2843 | align = INT_REGISTER_SIZE; | |
2844 | } | |
2845 | else | |
2846 | { | |
2847 | /* The AAPCS requires at most doubleword alignment. */ | |
2848 | if (align > INT_REGISTER_SIZE * 2) | |
2849 | align = INT_REGISTER_SIZE * 2; | |
2850 | } | |
2851 | ||
90445bd3 DJ |
2852 | if (use_vfp_abi |
2853 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
2854 | &vfp_base_count)) | |
2855 | { | |
2856 | int regno; | |
2857 | int unit_length; | |
2858 | int shift; | |
2859 | unsigned mask; | |
2860 | ||
2861 | /* Because this is a CPRC it cannot go in a core register or | |
2862 | cause a core register to be skipped for alignment. | |
2863 | Either it goes in VFP registers and the rest of this loop | |
2864 | iteration is skipped for this argument, or it goes on the | |
2865 | stack (and the stack alignment code is correct for this | |
2866 | case). */ | |
2867 | may_use_core_reg = 0; | |
2868 | ||
2869 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
2870 | shift = unit_length / 4; | |
2871 | mask = (1 << (shift * vfp_base_count)) - 1; | |
2872 | for (regno = 0; regno < 16; regno += shift) | |
2873 | if (((vfp_regs_free >> regno) & mask) == mask) | |
2874 | break; | |
2875 | ||
2876 | if (regno < 16) | |
2877 | { | |
2878 | int reg_char; | |
2879 | int reg_scaled; | |
2880 | int i; | |
2881 | ||
2882 | vfp_regs_free &= ~(mask << regno); | |
2883 | reg_scaled = regno / shift; | |
2884 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
2885 | for (i = 0; i < vfp_base_count; i++) | |
2886 | { | |
2887 | char name_buf[4]; | |
2888 | int regnum; | |
58d6951d DJ |
2889 | if (reg_char == 'q') |
2890 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 2891 | val + i * unit_length); |
58d6951d DJ |
2892 | else |
2893 | { | |
2894 | sprintf (name_buf, "%c%d", reg_char, reg_scaled + i); | |
2895 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
2896 | strlen (name_buf)); | |
2897 | regcache_cooked_write (regcache, regnum, | |
2898 | val + i * unit_length); | |
2899 | } | |
90445bd3 DJ |
2900 | } |
2901 | continue; | |
2902 | } | |
2903 | else | |
2904 | { | |
2905 | /* This CPRC could not go in VFP registers, so all VFP | |
2906 | registers are now marked as used. */ | |
2907 | vfp_regs_free = 0; | |
2908 | } | |
2909 | } | |
2910 | ||
2af48f68 PB |
2911 | /* Push stack padding for dowubleword alignment. */ |
2912 | if (nstack & (align - 1)) | |
2913 | { | |
2914 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
2915 | nstack += INT_REGISTER_SIZE; | |
2916 | } | |
2917 | ||
2918 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
2919 | if (may_use_core_reg |
2920 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
2921 | && align > INT_REGISTER_SIZE |
2922 | && argreg & 1) | |
2923 | argreg++; | |
2924 | ||
2dd604e7 RE |
2925 | /* If the argument is a pointer to a function, and it is a |
2926 | Thumb function, create a LOCAL copy of the value and set | |
2927 | the THUMB bit in it. */ | |
2928 | if (TYPE_CODE_PTR == typecode | |
2929 | && target_type != NULL | |
f96b8fa0 | 2930 | && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type))) |
2dd604e7 | 2931 | { |
e17a4113 | 2932 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
9779414d | 2933 | if (arm_pc_is_thumb (gdbarch, regval)) |
2dd604e7 | 2934 | { |
8c6363cf TT |
2935 | bfd_byte *copy = alloca (len); |
2936 | store_unsigned_integer (copy, len, byte_order, | |
e17a4113 | 2937 | MAKE_THUMB_ADDR (regval)); |
8c6363cf | 2938 | val = copy; |
2dd604e7 RE |
2939 | } |
2940 | } | |
2941 | ||
2942 | /* Copy the argument to general registers or the stack in | |
2943 | register-sized pieces. Large arguments are split between | |
2944 | registers and stack. */ | |
2945 | while (len > 0) | |
2946 | { | |
f0c9063c | 2947 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
2dd604e7 | 2948 | |
90445bd3 | 2949 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
2950 | { |
2951 | /* The argument is being passed in a general purpose | |
2952 | register. */ | |
e17a4113 UW |
2953 | CORE_ADDR regval |
2954 | = extract_unsigned_integer (val, partial_len, byte_order); | |
2955 | if (byte_order == BFD_ENDIAN_BIG) | |
8bf8793c | 2956 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
2957 | if (arm_debug) |
2958 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
2959 | argnum, |
2960 | gdbarch_register_name | |
2af46ca0 | 2961 | (gdbarch, argreg), |
f0c9063c | 2962 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
2963 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
2964 | argreg++; | |
2965 | } | |
2966 | else | |
2967 | { | |
2968 | /* Push the arguments onto the stack. */ | |
2969 | if (arm_debug) | |
2970 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
2971 | argnum, nstack); | |
f0c9063c UW |
2972 | si = push_stack_item (si, val, INT_REGISTER_SIZE); |
2973 | nstack += INT_REGISTER_SIZE; | |
2dd604e7 RE |
2974 | } |
2975 | ||
2976 | len -= partial_len; | |
2977 | val += partial_len; | |
2978 | } | |
2979 | } | |
2980 | /* If we have an odd number of words to push, then decrement the stack | |
2981 | by one word now, so first stack argument will be dword aligned. */ | |
2982 | if (nstack & 4) | |
2983 | sp -= 4; | |
2984 | ||
2985 | while (si) | |
2986 | { | |
2987 | sp -= si->len; | |
2988 | write_memory (sp, si->data, si->len); | |
2989 | si = pop_stack_item (si); | |
2990 | } | |
2991 | ||
2992 | /* Finally, update teh SP register. */ | |
2993 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
2994 | ||
2995 | return sp; | |
2996 | } | |
2997 | ||
f53f0d0b PB |
2998 | |
2999 | /* Always align the frame to an 8-byte boundary. This is required on | |
3000 | some platforms and harmless on the rest. */ | |
3001 | ||
3002 | static CORE_ADDR | |
3003 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
3004 | { | |
3005 | /* Align the stack to eight bytes. */ | |
3006 | return sp & ~ (CORE_ADDR) 7; | |
3007 | } | |
3008 | ||
c906108c | 3009 | static void |
ed9a39eb | 3010 | print_fpu_flags (int flags) |
c906108c | 3011 | { |
c5aa993b JM |
3012 | if (flags & (1 << 0)) |
3013 | fputs ("IVO ", stdout); | |
3014 | if (flags & (1 << 1)) | |
3015 | fputs ("DVZ ", stdout); | |
3016 | if (flags & (1 << 2)) | |
3017 | fputs ("OFL ", stdout); | |
3018 | if (flags & (1 << 3)) | |
3019 | fputs ("UFL ", stdout); | |
3020 | if (flags & (1 << 4)) | |
3021 | fputs ("INX ", stdout); | |
3022 | putchar ('\n'); | |
c906108c SS |
3023 | } |
3024 | ||
5e74b15c RE |
3025 | /* Print interesting information about the floating point processor |
3026 | (if present) or emulator. */ | |
34e8f22d | 3027 | static void |
d855c300 | 3028 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 3029 | struct frame_info *frame, const char *args) |
c906108c | 3030 | { |
9c9acae0 | 3031 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
3032 | int type; |
3033 | ||
3034 | type = (status >> 24) & 127; | |
edefbb7c AC |
3035 | if (status & (1 << 31)) |
3036 | printf (_("Hardware FPU type %d\n"), type); | |
3037 | else | |
3038 | printf (_("Software FPU type %d\n"), type); | |
3039 | /* i18n: [floating point unit] mask */ | |
3040 | fputs (_("mask: "), stdout); | |
c5aa993b | 3041 | print_fpu_flags (status >> 16); |
edefbb7c AC |
3042 | /* i18n: [floating point unit] flags */ |
3043 | fputs (_("flags: "), stdout); | |
c5aa993b | 3044 | print_fpu_flags (status); |
c906108c SS |
3045 | } |
3046 | ||
27067745 UW |
3047 | /* Construct the ARM extended floating point type. */ |
3048 | static struct type * | |
3049 | arm_ext_type (struct gdbarch *gdbarch) | |
3050 | { | |
3051 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3052 | ||
3053 | if (!tdep->arm_ext_type) | |
3054 | tdep->arm_ext_type | |
e9bb382b | 3055 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
3056 | floatformats_arm_ext); |
3057 | ||
3058 | return tdep->arm_ext_type; | |
3059 | } | |
3060 | ||
58d6951d DJ |
3061 | static struct type * |
3062 | arm_neon_double_type (struct gdbarch *gdbarch) | |
3063 | { | |
3064 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3065 | ||
3066 | if (tdep->neon_double_type == NULL) | |
3067 | { | |
3068 | struct type *t, *elem; | |
3069 | ||
3070 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
3071 | TYPE_CODE_UNION); | |
3072 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3073 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
3074 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3075 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
3076 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3077 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
3078 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3079 | append_composite_type_field (t, "u64", elem); | |
3080 | elem = builtin_type (gdbarch)->builtin_float; | |
3081 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
3082 | elem = builtin_type (gdbarch)->builtin_double; | |
3083 | append_composite_type_field (t, "f64", elem); | |
3084 | ||
3085 | TYPE_VECTOR (t) = 1; | |
3086 | TYPE_NAME (t) = "neon_d"; | |
3087 | tdep->neon_double_type = t; | |
3088 | } | |
3089 | ||
3090 | return tdep->neon_double_type; | |
3091 | } | |
3092 | ||
3093 | /* FIXME: The vector types are not correctly ordered on big-endian | |
3094 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
3095 | bits of d0 - regardless of what unit size is being held in d0. So | |
3096 | the offset of the first uint8 in d0 is 7, but the offset of the | |
3097 | first float is 4. This code works as-is for little-endian | |
3098 | targets. */ | |
3099 | ||
3100 | static struct type * | |
3101 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
3102 | { | |
3103 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3104 | ||
3105 | if (tdep->neon_quad_type == NULL) | |
3106 | { | |
3107 | struct type *t, *elem; | |
3108 | ||
3109 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
3110 | TYPE_CODE_UNION); | |
3111 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3112 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
3113 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3114 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
3115 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3116 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
3117 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3118 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
3119 | elem = builtin_type (gdbarch)->builtin_float; | |
3120 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
3121 | elem = builtin_type (gdbarch)->builtin_double; | |
3122 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
3123 | ||
3124 | TYPE_VECTOR (t) = 1; | |
3125 | TYPE_NAME (t) = "neon_q"; | |
3126 | tdep->neon_quad_type = t; | |
3127 | } | |
3128 | ||
3129 | return tdep->neon_quad_type; | |
3130 | } | |
3131 | ||
34e8f22d RE |
3132 | /* Return the GDB type object for the "standard" data type of data in |
3133 | register N. */ | |
3134 | ||
3135 | static struct type * | |
7a5ea0d4 | 3136 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 3137 | { |
58d6951d DJ |
3138 | int num_regs = gdbarch_num_regs (gdbarch); |
3139 | ||
3140 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
3141 | && regnum >= num_regs && regnum < num_regs + 32) | |
3142 | return builtin_type (gdbarch)->builtin_float; | |
3143 | ||
3144 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
3145 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
3146 | return arm_neon_quad_type (gdbarch); | |
3147 | ||
3148 | /* If the target description has register information, we are only | |
3149 | in this function so that we can override the types of | |
3150 | double-precision registers for NEON. */ | |
3151 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
3152 | { | |
3153 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
3154 | ||
3155 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
3156 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
3157 | && gdbarch_tdep (gdbarch)->have_neon) | |
3158 | return arm_neon_double_type (gdbarch); | |
3159 | else | |
3160 | return t; | |
3161 | } | |
3162 | ||
34e8f22d | 3163 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
3164 | { |
3165 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
3166 | return builtin_type (gdbarch)->builtin_void; | |
3167 | ||
3168 | return arm_ext_type (gdbarch); | |
3169 | } | |
e4c16157 | 3170 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 3171 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 3172 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 3173 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
3174 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
3175 | /* These registers are only supported on targets which supply | |
3176 | an XML description. */ | |
df4df182 | 3177 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 3178 | else |
df4df182 | 3179 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
3180 | } |
3181 | ||
ff6f572f DJ |
3182 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
3183 | number. */ | |
3184 | ||
3185 | static int | |
d3f73121 | 3186 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
3187 | { |
3188 | /* Core integer regs. */ | |
3189 | if (reg >= 0 && reg <= 15) | |
3190 | return reg; | |
3191 | ||
3192 | /* Legacy FPA encoding. These were once used in a way which | |
3193 | overlapped with VFP register numbering, so their use is | |
3194 | discouraged, but GDB doesn't support the ARM toolchain | |
3195 | which used them for VFP. */ | |
3196 | if (reg >= 16 && reg <= 23) | |
3197 | return ARM_F0_REGNUM + reg - 16; | |
3198 | ||
3199 | /* New assignments for the FPA registers. */ | |
3200 | if (reg >= 96 && reg <= 103) | |
3201 | return ARM_F0_REGNUM + reg - 96; | |
3202 | ||
3203 | /* WMMX register assignments. */ | |
3204 | if (reg >= 104 && reg <= 111) | |
3205 | return ARM_WCGR0_REGNUM + reg - 104; | |
3206 | ||
3207 | if (reg >= 112 && reg <= 127) | |
3208 | return ARM_WR0_REGNUM + reg - 112; | |
3209 | ||
3210 | if (reg >= 192 && reg <= 199) | |
3211 | return ARM_WC0_REGNUM + reg - 192; | |
3212 | ||
58d6951d DJ |
3213 | /* VFP v2 registers. A double precision value is actually |
3214 | in d1 rather than s2, but the ABI only defines numbering | |
3215 | for the single precision registers. This will "just work" | |
3216 | in GDB for little endian targets (we'll read eight bytes, | |
3217 | starting in s0 and then progressing to s1), but will be | |
3218 | reversed on big endian targets with VFP. This won't | |
3219 | be a problem for the new Neon quad registers; you're supposed | |
3220 | to use DW_OP_piece for those. */ | |
3221 | if (reg >= 64 && reg <= 95) | |
3222 | { | |
3223 | char name_buf[4]; | |
3224 | ||
3225 | sprintf (name_buf, "s%d", reg - 64); | |
3226 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3227 | strlen (name_buf)); | |
3228 | } | |
3229 | ||
3230 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
3231 | registers, except that it now describes d0 instead of s0. */ | |
3232 | if (reg >= 256 && reg <= 287) | |
3233 | { | |
3234 | char name_buf[4]; | |
3235 | ||
3236 | sprintf (name_buf, "d%d", reg - 256); | |
3237 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3238 | strlen (name_buf)); | |
3239 | } | |
3240 | ||
ff6f572f DJ |
3241 | return -1; |
3242 | } | |
3243 | ||
26216b98 AC |
3244 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
3245 | static int | |
e7faf938 | 3246 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
3247 | { |
3248 | int reg = regnum; | |
e7faf938 | 3249 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 3250 | |
ff6f572f DJ |
3251 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
3252 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
3253 | ||
3254 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
3255 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
3256 | ||
3257 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
3258 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
3259 | ||
26216b98 AC |
3260 | if (reg < NUM_GREGS) |
3261 | return SIM_ARM_R0_REGNUM + reg; | |
3262 | reg -= NUM_GREGS; | |
3263 | ||
3264 | if (reg < NUM_FREGS) | |
3265 | return SIM_ARM_FP0_REGNUM + reg; | |
3266 | reg -= NUM_FREGS; | |
3267 | ||
3268 | if (reg < NUM_SREGS) | |
3269 | return SIM_ARM_FPS_REGNUM + reg; | |
3270 | reg -= NUM_SREGS; | |
3271 | ||
edefbb7c | 3272 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 3273 | } |
34e8f22d | 3274 | |
a37b3cc0 AC |
3275 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
3276 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
3277 | It is thought that this is is the floating-point register format on | |
3278 | little-endian systems. */ | |
c906108c | 3279 | |
ed9a39eb | 3280 | static void |
b508a996 | 3281 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
be8626e0 | 3282 | void *dbl, int endianess) |
c906108c | 3283 | { |
a37b3cc0 | 3284 | DOUBLEST d; |
be8626e0 MD |
3285 | |
3286 | if (endianess == BFD_ENDIAN_BIG) | |
a37b3cc0 AC |
3287 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
3288 | else | |
3289 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
3290 | ptr, &d); | |
b508a996 | 3291 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
3292 | } |
3293 | ||
34e8f22d | 3294 | static void |
be8626e0 MD |
3295 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr, |
3296 | int endianess) | |
c906108c | 3297 | { |
a37b3cc0 | 3298 | DOUBLEST d; |
be8626e0 | 3299 | |
b508a996 | 3300 | floatformat_to_doublest (fmt, ptr, &d); |
be8626e0 | 3301 | if (endianess == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
3302 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
3303 | else | |
3304 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
3305 | &d, dbl); | |
c906108c | 3306 | } |
ed9a39eb | 3307 | |
c906108c | 3308 | static int |
ed9a39eb | 3309 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
3310 | { |
3311 | if (cond == INST_AL || cond == INST_NV) | |
3312 | return 1; | |
3313 | ||
3314 | switch (cond) | |
3315 | { | |
3316 | case INST_EQ: | |
3317 | return ((status_reg & FLAG_Z) != 0); | |
3318 | case INST_NE: | |
3319 | return ((status_reg & FLAG_Z) == 0); | |
3320 | case INST_CS: | |
3321 | return ((status_reg & FLAG_C) != 0); | |
3322 | case INST_CC: | |
3323 | return ((status_reg & FLAG_C) == 0); | |
3324 | case INST_MI: | |
3325 | return ((status_reg & FLAG_N) != 0); | |
3326 | case INST_PL: | |
3327 | return ((status_reg & FLAG_N) == 0); | |
3328 | case INST_VS: | |
3329 | return ((status_reg & FLAG_V) != 0); | |
3330 | case INST_VC: | |
3331 | return ((status_reg & FLAG_V) == 0); | |
3332 | case INST_HI: | |
3333 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
3334 | case INST_LS: | |
3335 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
3336 | case INST_GE: | |
3337 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
3338 | case INST_LT: | |
3339 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
3340 | case INST_GT: | |
f8bf5763 PM |
3341 | return (((status_reg & FLAG_Z) == 0) |
3342 | && (((status_reg & FLAG_N) == 0) | |
3343 | == ((status_reg & FLAG_V) == 0))); | |
c906108c | 3344 | case INST_LE: |
f8bf5763 PM |
3345 | return (((status_reg & FLAG_Z) != 0) |
3346 | || (((status_reg & FLAG_N) == 0) | |
3347 | != ((status_reg & FLAG_V) == 0))); | |
c906108c SS |
3348 | } |
3349 | return 1; | |
3350 | } | |
3351 | ||
c906108c | 3352 | static unsigned long |
0b1b3e42 UW |
3353 | shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry, |
3354 | unsigned long pc_val, unsigned long status_reg) | |
c906108c SS |
3355 | { |
3356 | unsigned long res, shift; | |
3357 | int rm = bits (inst, 0, 3); | |
3358 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
3359 | |
3360 | if (bit (inst, 4)) | |
c906108c SS |
3361 | { |
3362 | int rs = bits (inst, 8, 11); | |
0b1b3e42 UW |
3363 | shift = (rs == 15 ? pc_val + 8 |
3364 | : get_frame_register_unsigned (frame, rs)) & 0xFF; | |
c906108c SS |
3365 | } |
3366 | else | |
3367 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
3368 | |
3369 | res = (rm == 15 | |
0d39a070 | 3370 | ? (pc_val + (bit (inst, 4) ? 12 : 8)) |
0b1b3e42 | 3371 | : get_frame_register_unsigned (frame, rm)); |
c906108c SS |
3372 | |
3373 | switch (shifttype) | |
3374 | { | |
c5aa993b | 3375 | case 0: /* LSL */ |
c906108c SS |
3376 | res = shift >= 32 ? 0 : res << shift; |
3377 | break; | |
c5aa993b JM |
3378 | |
3379 | case 1: /* LSR */ | |
c906108c SS |
3380 | res = shift >= 32 ? 0 : res >> shift; |
3381 | break; | |
3382 | ||
c5aa993b JM |
3383 | case 2: /* ASR */ |
3384 | if (shift >= 32) | |
3385 | shift = 31; | |
c906108c SS |
3386 | res = ((res & 0x80000000L) |
3387 | ? ~((~res) >> shift) : res >> shift); | |
3388 | break; | |
3389 | ||
c5aa993b | 3390 | case 3: /* ROR/RRX */ |
c906108c SS |
3391 | shift &= 31; |
3392 | if (shift == 0) | |
3393 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
3394 | else | |
c5aa993b | 3395 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
3396 | break; |
3397 | } | |
3398 | ||
3399 | return res & 0xffffffff; | |
3400 | } | |
3401 | ||
c906108c SS |
3402 | /* Return number of 1-bits in VAL. */ |
3403 | ||
3404 | static int | |
ed9a39eb | 3405 | bitcount (unsigned long val) |
c906108c SS |
3406 | { |
3407 | int nbits; | |
3408 | for (nbits = 0; val != 0; nbits++) | |
0963b4bd | 3409 | val &= val - 1; /* Delete rightmost 1-bit in val. */ |
c906108c SS |
3410 | return nbits; |
3411 | } | |
3412 | ||
177321bd DJ |
3413 | /* Return the size in bytes of the complete Thumb instruction whose |
3414 | first halfword is INST1. */ | |
3415 | ||
3416 | static int | |
3417 | thumb_insn_size (unsigned short inst1) | |
3418 | { | |
3419 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
3420 | return 4; | |
3421 | else | |
3422 | return 2; | |
3423 | } | |
3424 | ||
3425 | static int | |
3426 | thumb_advance_itstate (unsigned int itstate) | |
3427 | { | |
3428 | /* Preserve IT[7:5], the first three bits of the condition. Shift | |
3429 | the upcoming condition flags left by one bit. */ | |
3430 | itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f); | |
3431 | ||
3432 | /* If we have finished the IT block, clear the state. */ | |
3433 | if ((itstate & 0x0f) == 0) | |
3434 | itstate = 0; | |
3435 | ||
3436 | return itstate; | |
3437 | } | |
3438 | ||
3439 | /* Find the next PC after the current instruction executes. In some | |
3440 | cases we can not statically determine the answer (see the IT state | |
3441 | handling in this function); in that case, a breakpoint may be | |
3442 | inserted in addition to the returned PC, which will be used to set | |
3443 | another breakpoint by our caller. */ | |
3444 | ||
ad527d2e | 3445 | static CORE_ADDR |
50e98be4 | 3446 | thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt) |
c906108c | 3447 | { |
2af46ca0 | 3448 | struct gdbarch *gdbarch = get_frame_arch (frame); |
177321bd | 3449 | struct address_space *aspace = get_frame_address_space (frame); |
e17a4113 UW |
3450 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
3451 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c5aa993b | 3452 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
e17a4113 | 3453 | unsigned short inst1; |
0963b4bd | 3454 | CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */ |
c906108c | 3455 | unsigned long offset; |
177321bd | 3456 | ULONGEST status, itstate; |
c906108c | 3457 | |
50e98be4 DJ |
3458 | nextpc = MAKE_THUMB_ADDR (nextpc); |
3459 | pc_val = MAKE_THUMB_ADDR (pc_val); | |
3460 | ||
e17a4113 | 3461 | inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code); |
9d4fde75 | 3462 | |
9dca5578 DJ |
3463 | /* Thumb-2 conditional execution support. There are eight bits in |
3464 | the CPSR which describe conditional execution state. Once | |
3465 | reconstructed (they're in a funny order), the low five bits | |
3466 | describe the low bit of the condition for each instruction and | |
3467 | how many instructions remain. The high three bits describe the | |
3468 | base condition. One of the low four bits will be set if an IT | |
3469 | block is active. These bits read as zero on earlier | |
3470 | processors. */ | |
3471 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
177321bd | 3472 | itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); |
9dca5578 | 3473 | |
177321bd DJ |
3474 | /* If-Then handling. On GNU/Linux, where this routine is used, we |
3475 | use an undefined instruction as a breakpoint. Unlike BKPT, IT | |
3476 | can disable execution of the undefined instruction. So we might | |
3477 | miss the breakpoint if we set it on a skipped conditional | |
3478 | instruction. Because conditional instructions can change the | |
3479 | flags, affecting the execution of further instructions, we may | |
3480 | need to set two breakpoints. */ | |
9dca5578 | 3481 | |
177321bd DJ |
3482 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL) |
3483 | { | |
3484 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
3485 | { | |
3486 | /* An IT instruction. Because this instruction does not | |
3487 | modify the flags, we can accurately predict the next | |
3488 | executed instruction. */ | |
3489 | itstate = inst1 & 0x00ff; | |
3490 | pc += thumb_insn_size (inst1); | |
3491 | ||
3492 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
3493 | { | |
0963b4bd MS |
3494 | inst1 = read_memory_unsigned_integer (pc, 2, |
3495 | byte_order_for_code); | |
177321bd DJ |
3496 | pc += thumb_insn_size (inst1); |
3497 | itstate = thumb_advance_itstate (itstate); | |
3498 | } | |
3499 | ||
50e98be4 | 3500 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
3501 | } |
3502 | else if (itstate != 0) | |
3503 | { | |
3504 | /* We are in a conditional block. Check the condition. */ | |
3505 | if (! condition_true (itstate >> 4, status)) | |
3506 | { | |
3507 | /* Advance to the next executed instruction. */ | |
3508 | pc += thumb_insn_size (inst1); | |
3509 | itstate = thumb_advance_itstate (itstate); | |
3510 | ||
3511 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
3512 | { | |
0963b4bd MS |
3513 | inst1 = read_memory_unsigned_integer (pc, 2, |
3514 | byte_order_for_code); | |
177321bd DJ |
3515 | pc += thumb_insn_size (inst1); |
3516 | itstate = thumb_advance_itstate (itstate); | |
3517 | } | |
3518 | ||
50e98be4 | 3519 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
3520 | } |
3521 | else if ((itstate & 0x0f) == 0x08) | |
3522 | { | |
3523 | /* This is the last instruction of the conditional | |
3524 | block, and it is executed. We can handle it normally | |
3525 | because the following instruction is not conditional, | |
3526 | and we must handle it normally because it is | |
3527 | permitted to branch. Fall through. */ | |
3528 | } | |
3529 | else | |
3530 | { | |
3531 | int cond_negated; | |
3532 | ||
3533 | /* There are conditional instructions after this one. | |
3534 | If this instruction modifies the flags, then we can | |
3535 | not predict what the next executed instruction will | |
3536 | be. Fortunately, this instruction is architecturally | |
3537 | forbidden to branch; we know it will fall through. | |
3538 | Start by skipping past it. */ | |
3539 | pc += thumb_insn_size (inst1); | |
3540 | itstate = thumb_advance_itstate (itstate); | |
3541 | ||
3542 | /* Set a breakpoint on the following instruction. */ | |
3543 | gdb_assert ((itstate & 0x0f) != 0); | |
50e98be4 DJ |
3544 | if (insert_bkpt) |
3545 | insert_single_step_breakpoint (gdbarch, aspace, pc); | |
177321bd DJ |
3546 | cond_negated = (itstate >> 4) & 1; |
3547 | ||
3548 | /* Skip all following instructions with the same | |
3549 | condition. If there is a later instruction in the IT | |
3550 | block with the opposite condition, set the other | |
3551 | breakpoint there. If not, then set a breakpoint on | |
3552 | the instruction after the IT block. */ | |
3553 | do | |
3554 | { | |
0963b4bd MS |
3555 | inst1 = read_memory_unsigned_integer (pc, 2, |
3556 | byte_order_for_code); | |
177321bd DJ |
3557 | pc += thumb_insn_size (inst1); |
3558 | itstate = thumb_advance_itstate (itstate); | |
3559 | } | |
3560 | while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated); | |
3561 | ||
50e98be4 | 3562 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
3563 | } |
3564 | } | |
3565 | } | |
3566 | else if (itstate & 0x0f) | |
9dca5578 DJ |
3567 | { |
3568 | /* We are in a conditional block. Check the condition. */ | |
177321bd | 3569 | int cond = itstate >> 4; |
9dca5578 DJ |
3570 | |
3571 | if (! condition_true (cond, status)) | |
3572 | { | |
3573 | /* Advance to the next instruction. All the 32-bit | |
3574 | instructions share a common prefix. */ | |
3575 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
50e98be4 | 3576 | return MAKE_THUMB_ADDR (pc + 4); |
9dca5578 | 3577 | else |
50e98be4 | 3578 | return MAKE_THUMB_ADDR (pc + 2); |
9dca5578 | 3579 | } |
177321bd DJ |
3580 | |
3581 | /* Otherwise, handle the instruction normally. */ | |
9dca5578 DJ |
3582 | } |
3583 | ||
c906108c SS |
3584 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ |
3585 | { | |
3586 | CORE_ADDR sp; | |
3587 | ||
3588 | /* Fetch the saved PC from the stack. It's stored above | |
3589 | all of the other registers. */ | |
f0c9063c | 3590 | offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE; |
0b1b3e42 | 3591 | sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM); |
e17a4113 | 3592 | nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order); |
c906108c SS |
3593 | } |
3594 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
3595 | { | |
c5aa993b | 3596 | unsigned long cond = bits (inst1, 8, 11); |
25b41d01 YQ |
3597 | if (cond == 0x0f) /* 0x0f = SWI */ |
3598 | { | |
3599 | struct gdbarch_tdep *tdep; | |
3600 | tdep = gdbarch_tdep (gdbarch); | |
3601 | ||
3602 | if (tdep->syscall_next_pc != NULL) | |
3603 | nextpc = tdep->syscall_next_pc (frame); | |
3604 | ||
3605 | } | |
3606 | else if (cond != 0x0f && condition_true (cond, status)) | |
c906108c SS |
3607 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); |
3608 | } | |
3609 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
3610 | { | |
3611 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
3612 | } | |
9dca5578 | 3613 | else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */ |
c906108c | 3614 | { |
e17a4113 UW |
3615 | unsigned short inst2; |
3616 | inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
9dca5578 DJ |
3617 | |
3618 | /* Default to the next instruction. */ | |
3619 | nextpc = pc + 4; | |
50e98be4 | 3620 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
3621 | |
3622 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
3623 | { | |
3624 | /* Branches and miscellaneous control instructions. */ | |
3625 | ||
3626 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
3627 | { | |
3628 | /* B, BL, BLX. */ | |
3629 | int j1, j2, imm1, imm2; | |
3630 | ||
3631 | imm1 = sbits (inst1, 0, 10); | |
3632 | imm2 = bits (inst2, 0, 10); | |
3633 | j1 = bit (inst2, 13); | |
3634 | j2 = bit (inst2, 11); | |
3635 | ||
3636 | offset = ((imm1 << 12) + (imm2 << 1)); | |
3637 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
3638 | ||
3639 | nextpc = pc_val + offset; | |
3640 | /* For BLX make sure to clear the low bits. */ | |
3641 | if (bit (inst2, 12) == 0) | |
3642 | nextpc = nextpc & 0xfffffffc; | |
3643 | } | |
3644 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
3645 | { | |
3646 | /* SUBS PC, LR, #imm8. */ | |
3647 | nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM); | |
3648 | nextpc -= inst2 & 0x00ff; | |
3649 | } | |
4069ebbe | 3650 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) |
9dca5578 DJ |
3651 | { |
3652 | /* Conditional branch. */ | |
3653 | if (condition_true (bits (inst1, 6, 9), status)) | |
3654 | { | |
3655 | int sign, j1, j2, imm1, imm2; | |
3656 | ||
3657 | sign = sbits (inst1, 10, 10); | |
3658 | imm1 = bits (inst1, 0, 5); | |
3659 | imm2 = bits (inst2, 0, 10); | |
3660 | j1 = bit (inst2, 13); | |
3661 | j2 = bit (inst2, 11); | |
3662 | ||
3663 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
3664 | offset += (imm1 << 12) + (imm2 << 1); | |
3665 | ||
3666 | nextpc = pc_val + offset; | |
3667 | } | |
3668 | } | |
3669 | } | |
3670 | else if ((inst1 & 0xfe50) == 0xe810) | |
3671 | { | |
3672 | /* Load multiple or RFE. */ | |
3673 | int rn, offset, load_pc = 1; | |
3674 | ||
3675 | rn = bits (inst1, 0, 3); | |
3676 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
3677 | { | |
3678 | /* LDMIA or POP */ | |
3679 | if (!bit (inst2, 15)) | |
3680 | load_pc = 0; | |
3681 | offset = bitcount (inst2) * 4 - 4; | |
3682 | } | |
3683 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
3684 | { | |
3685 | /* LDMDB */ | |
3686 | if (!bit (inst2, 15)) | |
3687 | load_pc = 0; | |
3688 | offset = -4; | |
3689 | } | |
3690 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
3691 | { | |
3692 | /* RFEIA */ | |
3693 | offset = 0; | |
3694 | } | |
3695 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
3696 | { | |
3697 | /* RFEDB */ | |
3698 | offset = -8; | |
3699 | } | |
3700 | else | |
3701 | load_pc = 0; | |
3702 | ||
3703 | if (load_pc) | |
3704 | { | |
3705 | CORE_ADDR addr = get_frame_register_unsigned (frame, rn); | |
3706 | nextpc = get_frame_memory_unsigned (frame, addr + offset, 4); | |
3707 | } | |
3708 | } | |
3709 | else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
3710 | { | |
3711 | /* MOV PC or MOVS PC. */ | |
3712 | nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
50e98be4 | 3713 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
3714 | } |
3715 | else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
3716 | { | |
3717 | /* LDR PC. */ | |
3718 | CORE_ADDR base; | |
3719 | int rn, load_pc = 1; | |
3720 | ||
3721 | rn = bits (inst1, 0, 3); | |
3722 | base = get_frame_register_unsigned (frame, rn); | |
3723 | if (rn == 15) | |
3724 | { | |
3725 | base = (base + 4) & ~(CORE_ADDR) 0x3; | |
3726 | if (bit (inst1, 7)) | |
3727 | base += bits (inst2, 0, 11); | |
3728 | else | |
3729 | base -= bits (inst2, 0, 11); | |
3730 | } | |
3731 | else if (bit (inst1, 7)) | |
3732 | base += bits (inst2, 0, 11); | |
3733 | else if (bit (inst2, 11)) | |
3734 | { | |
3735 | if (bit (inst2, 10)) | |
3736 | { | |
3737 | if (bit (inst2, 9)) | |
3738 | base += bits (inst2, 0, 7); | |
3739 | else | |
3740 | base -= bits (inst2, 0, 7); | |
3741 | } | |
3742 | } | |
3743 | else if ((inst2 & 0x0fc0) == 0x0000) | |
3744 | { | |
3745 | int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3); | |
3746 | base += get_frame_register_unsigned (frame, rm) << shift; | |
3747 | } | |
3748 | else | |
3749 | /* Reserved. */ | |
3750 | load_pc = 0; | |
3751 | ||
3752 | if (load_pc) | |
3753 | nextpc = get_frame_memory_unsigned (frame, base, 4); | |
3754 | } | |
3755 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
3756 | { | |
3757 | /* TBB. */ | |
d476da0e RE |
3758 | CORE_ADDR tbl_reg, table, offset, length; |
3759 | ||
3760 | tbl_reg = bits (inst1, 0, 3); | |
3761 | if (tbl_reg == 0x0f) | |
3762 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
3763 | else | |
3764 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 3765 | |
9dca5578 DJ |
3766 | offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
3767 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 1); | |
3768 | nextpc = pc_val + length; | |
3769 | } | |
d476da0e | 3770 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) |
9dca5578 DJ |
3771 | { |
3772 | /* TBH. */ | |
d476da0e RE |
3773 | CORE_ADDR tbl_reg, table, offset, length; |
3774 | ||
3775 | tbl_reg = bits (inst1, 0, 3); | |
3776 | if (tbl_reg == 0x0f) | |
3777 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
3778 | else | |
3779 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 3780 | |
9dca5578 DJ |
3781 | offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
3782 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 2); | |
3783 | nextpc = pc_val + length; | |
3784 | } | |
c906108c | 3785 | } |
aa17d93e | 3786 | else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */ |
9498281f DJ |
3787 | { |
3788 | if (bits (inst1, 3, 6) == 0x0f) | |
3789 | nextpc = pc_val; | |
3790 | else | |
0b1b3e42 | 3791 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); |
9498281f | 3792 | } |
ad8b5167 UW |
3793 | else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */ |
3794 | { | |
3795 | if (bits (inst1, 3, 6) == 0x0f) | |
3796 | nextpc = pc_val; | |
3797 | else | |
3798 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); | |
3799 | ||
3800 | nextpc = MAKE_THUMB_ADDR (nextpc); | |
3801 | } | |
9dca5578 DJ |
3802 | else if ((inst1 & 0xf500) == 0xb100) |
3803 | { | |
3804 | /* CBNZ or CBZ. */ | |
3805 | int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1); | |
3806 | ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2)); | |
3807 | ||
3808 | if (bit (inst1, 11) && reg != 0) | |
3809 | nextpc = pc_val + imm; | |
3810 | else if (!bit (inst1, 11) && reg == 0) | |
3811 | nextpc = pc_val + imm; | |
3812 | } | |
c906108c SS |
3813 | return nextpc; |
3814 | } | |
3815 | ||
50e98be4 DJ |
3816 | /* Get the raw next address. PC is the current program counter, in |
3817 | FRAME. INSERT_BKPT should be TRUE if we want a breakpoint set on | |
3818 | the alternative next instruction if there are two options. | |
3819 | ||
3820 | The value returned has the execution state of the next instruction | |
3821 | encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is | |
3822 | in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory | |
0963b4bd MS |
3823 | address. */ |
3824 | ||
50e98be4 DJ |
3825 | static CORE_ADDR |
3826 | arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt) | |
c906108c | 3827 | { |
2af46ca0 | 3828 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 UW |
3829 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
3830 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c906108c SS |
3831 | unsigned long pc_val; |
3832 | unsigned long this_instr; | |
3833 | unsigned long status; | |
3834 | CORE_ADDR nextpc; | |
3835 | ||
b39cc962 | 3836 | if (arm_frame_is_thumb (frame)) |
50e98be4 | 3837 | return thumb_get_next_pc_raw (frame, pc, insert_bkpt); |
c906108c SS |
3838 | |
3839 | pc_val = (unsigned long) pc; | |
e17a4113 | 3840 | this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code); |
9d4fde75 | 3841 | |
0b1b3e42 | 3842 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); |
c5aa993b | 3843 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c | 3844 | |
daddc3c1 DJ |
3845 | if (bits (this_instr, 28, 31) == INST_NV) |
3846 | switch (bits (this_instr, 24, 27)) | |
3847 | { | |
3848 | case 0xa: | |
3849 | case 0xb: | |
3850 | { | |
3851 | /* Branch with Link and change to Thumb. */ | |
3852 | nextpc = BranchDest (pc, this_instr); | |
3853 | nextpc |= bit (this_instr, 24) << 1; | |
50e98be4 | 3854 | nextpc = MAKE_THUMB_ADDR (nextpc); |
daddc3c1 DJ |
3855 | break; |
3856 | } | |
3857 | case 0xc: | |
3858 | case 0xd: | |
3859 | case 0xe: | |
3860 | /* Coprocessor register transfer. */ | |
3861 | if (bits (this_instr, 12, 15) == 15) | |
3862 | error (_("Invalid update to pc in instruction")); | |
3863 | break; | |
3864 | } | |
3865 | else if (condition_true (bits (this_instr, 28, 31), status)) | |
c906108c SS |
3866 | { |
3867 | switch (bits (this_instr, 24, 27)) | |
3868 | { | |
c5aa993b | 3869 | case 0x0: |
94c30b78 | 3870 | case 0x1: /* data processing */ |
c5aa993b JM |
3871 | case 0x2: |
3872 | case 0x3: | |
c906108c SS |
3873 | { |
3874 | unsigned long operand1, operand2, result = 0; | |
3875 | unsigned long rn; | |
3876 | int c; | |
c5aa993b | 3877 | |
c906108c SS |
3878 | if (bits (this_instr, 12, 15) != 15) |
3879 | break; | |
3880 | ||
3881 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 3882 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
edefbb7c | 3883 | error (_("Invalid update to pc in instruction")); |
c906108c | 3884 | |
9498281f | 3885 | /* BX <reg>, BLX <reg> */ |
e150acc7 PB |
3886 | if (bits (this_instr, 4, 27) == 0x12fff1 |
3887 | || bits (this_instr, 4, 27) == 0x12fff3) | |
9498281f DJ |
3888 | { |
3889 | rn = bits (this_instr, 0, 3); | |
50e98be4 | 3890 | nextpc = (rn == 15) ? pc_val + 8 |
0b1b3e42 | 3891 | : get_frame_register_unsigned (frame, rn); |
9498281f DJ |
3892 | return nextpc; |
3893 | } | |
3894 | ||
0963b4bd | 3895 | /* Multiply into PC. */ |
c906108c SS |
3896 | c = (status & FLAG_C) ? 1 : 0; |
3897 | rn = bits (this_instr, 16, 19); | |
0b1b3e42 UW |
3898 | operand1 = (rn == 15) ? pc_val + 8 |
3899 | : get_frame_register_unsigned (frame, rn); | |
c5aa993b | 3900 | |
c906108c SS |
3901 | if (bit (this_instr, 25)) |
3902 | { | |
3903 | unsigned long immval = bits (this_instr, 0, 7); | |
3904 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
3905 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
3906 | & 0xffffffff; | |
c906108c | 3907 | } |
0963b4bd MS |
3908 | else /* operand 2 is a shifted register. */ |
3909 | operand2 = shifted_reg_val (frame, this_instr, c, | |
3910 | pc_val, status); | |
c5aa993b | 3911 | |
c906108c SS |
3912 | switch (bits (this_instr, 21, 24)) |
3913 | { | |
c5aa993b | 3914 | case 0x0: /*and */ |
c906108c SS |
3915 | result = operand1 & operand2; |
3916 | break; | |
3917 | ||
c5aa993b | 3918 | case 0x1: /*eor */ |
c906108c SS |
3919 | result = operand1 ^ operand2; |
3920 | break; | |
3921 | ||
c5aa993b | 3922 | case 0x2: /*sub */ |
c906108c SS |
3923 | result = operand1 - operand2; |
3924 | break; | |
3925 | ||
c5aa993b | 3926 | case 0x3: /*rsb */ |
c906108c SS |
3927 | result = operand2 - operand1; |
3928 | break; | |
3929 | ||
c5aa993b | 3930 | case 0x4: /*add */ |
c906108c SS |
3931 | result = operand1 + operand2; |
3932 | break; | |
3933 | ||
c5aa993b | 3934 | case 0x5: /*adc */ |
c906108c SS |
3935 | result = operand1 + operand2 + c; |
3936 | break; | |
3937 | ||
c5aa993b | 3938 | case 0x6: /*sbc */ |
c906108c SS |
3939 | result = operand1 - operand2 + c; |
3940 | break; | |
3941 | ||
c5aa993b | 3942 | case 0x7: /*rsc */ |
c906108c SS |
3943 | result = operand2 - operand1 + c; |
3944 | break; | |
3945 | ||
c5aa993b JM |
3946 | case 0x8: |
3947 | case 0x9: | |
3948 | case 0xa: | |
3949 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
3950 | result = (unsigned long) nextpc; |
3951 | break; | |
3952 | ||
c5aa993b | 3953 | case 0xc: /*orr */ |
c906108c SS |
3954 | result = operand1 | operand2; |
3955 | break; | |
3956 | ||
c5aa993b | 3957 | case 0xd: /*mov */ |
c906108c SS |
3958 | /* Always step into a function. */ |
3959 | result = operand2; | |
c5aa993b | 3960 | break; |
c906108c | 3961 | |
c5aa993b | 3962 | case 0xe: /*bic */ |
c906108c SS |
3963 | result = operand1 & ~operand2; |
3964 | break; | |
3965 | ||
c5aa993b | 3966 | case 0xf: /*mvn */ |
c906108c SS |
3967 | result = ~operand2; |
3968 | break; | |
3969 | } | |
c906108c | 3970 | |
50e98be4 DJ |
3971 | /* In 26-bit APCS the bottom two bits of the result are |
3972 | ignored, and we always end up in ARM state. */ | |
3973 | if (!arm_apcs_32) | |
3974 | nextpc = arm_addr_bits_remove (gdbarch, result); | |
3975 | else | |
3976 | nextpc = result; | |
3977 | ||
c906108c SS |
3978 | break; |
3979 | } | |
c5aa993b JM |
3980 | |
3981 | case 0x4: | |
3982 | case 0x5: /* data transfer */ | |
3983 | case 0x6: | |
3984 | case 0x7: | |
c906108c SS |
3985 | if (bit (this_instr, 20)) |
3986 | { | |
3987 | /* load */ | |
3988 | if (bits (this_instr, 12, 15) == 15) | |
3989 | { | |
3990 | /* rd == pc */ | |
c5aa993b | 3991 | unsigned long rn; |
c906108c | 3992 | unsigned long base; |
c5aa993b | 3993 | |
c906108c | 3994 | if (bit (this_instr, 22)) |
edefbb7c | 3995 | error (_("Invalid update to pc in instruction")); |
c906108c SS |
3996 | |
3997 | /* byte write to PC */ | |
3998 | rn = bits (this_instr, 16, 19); | |
0b1b3e42 UW |
3999 | base = (rn == 15) ? pc_val + 8 |
4000 | : get_frame_register_unsigned (frame, rn); | |
c906108c SS |
4001 | if (bit (this_instr, 24)) |
4002 | { | |
4003 | /* pre-indexed */ | |
4004 | int c = (status & FLAG_C) ? 1 : 0; | |
4005 | unsigned long offset = | |
c5aa993b | 4006 | (bit (this_instr, 25) |
0b1b3e42 | 4007 | ? shifted_reg_val (frame, this_instr, c, pc_val, status) |
c5aa993b | 4008 | : bits (this_instr, 0, 11)); |
c906108c SS |
4009 | |
4010 | if (bit (this_instr, 23)) | |
4011 | base += offset; | |
4012 | else | |
4013 | base -= offset; | |
4014 | } | |
c5aa993b | 4015 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
e17a4113 | 4016 | 4, byte_order); |
c906108c SS |
4017 | } |
4018 | } | |
4019 | break; | |
c5aa993b JM |
4020 | |
4021 | case 0x8: | |
4022 | case 0x9: /* block transfer */ | |
c906108c SS |
4023 | if (bit (this_instr, 20)) |
4024 | { | |
4025 | /* LDM */ | |
4026 | if (bit (this_instr, 15)) | |
4027 | { | |
4028 | /* loading pc */ | |
4029 | int offset = 0; | |
4030 | ||
4031 | if (bit (this_instr, 23)) | |
4032 | { | |
4033 | /* up */ | |
4034 | unsigned long reglist = bits (this_instr, 0, 14); | |
4035 | offset = bitcount (reglist) * 4; | |
c5aa993b | 4036 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
4037 | offset += 4; |
4038 | } | |
4039 | else if (bit (this_instr, 24)) | |
4040 | offset = -4; | |
c5aa993b | 4041 | |
c906108c | 4042 | { |
c5aa993b | 4043 | unsigned long rn_val = |
0b1b3e42 UW |
4044 | get_frame_register_unsigned (frame, |
4045 | bits (this_instr, 16, 19)); | |
c906108c SS |
4046 | nextpc = |
4047 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 4048 | + offset), |
e17a4113 | 4049 | 4, byte_order); |
c906108c | 4050 | } |
c906108c SS |
4051 | } |
4052 | } | |
4053 | break; | |
c5aa993b JM |
4054 | |
4055 | case 0xb: /* branch & link */ | |
4056 | case 0xa: /* branch */ | |
c906108c SS |
4057 | { |
4058 | nextpc = BranchDest (pc, this_instr); | |
c906108c SS |
4059 | break; |
4060 | } | |
c5aa993b JM |
4061 | |
4062 | case 0xc: | |
4063 | case 0xd: | |
4064 | case 0xe: /* coproc ops */ | |
25b41d01 | 4065 | break; |
c5aa993b | 4066 | case 0xf: /* SWI */ |
25b41d01 YQ |
4067 | { |
4068 | struct gdbarch_tdep *tdep; | |
4069 | tdep = gdbarch_tdep (gdbarch); | |
4070 | ||
4071 | if (tdep->syscall_next_pc != NULL) | |
4072 | nextpc = tdep->syscall_next_pc (frame); | |
4073 | ||
4074 | } | |
c906108c SS |
4075 | break; |
4076 | ||
4077 | default: | |
edefbb7c | 4078 | fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n")); |
c906108c SS |
4079 | return (pc); |
4080 | } | |
4081 | } | |
4082 | ||
4083 | return nextpc; | |
4084 | } | |
4085 | ||
50e98be4 DJ |
4086 | CORE_ADDR |
4087 | arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc) | |
4088 | { | |
4089 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
4090 | CORE_ADDR nextpc = | |
4091 | gdbarch_addr_bits_remove (gdbarch, | |
4092 | arm_get_next_pc_raw (frame, pc, TRUE)); | |
4093 | if (nextpc == pc) | |
4094 | error (_("Infinite loop detected")); | |
4095 | return nextpc; | |
4096 | } | |
4097 | ||
9512d7fd FN |
4098 | /* single_step() is called just before we want to resume the inferior, |
4099 | if we want to single-step it but there is no hardware or kernel | |
4100 | single-step support. We find the target of the coming instruction | |
e0cd558a | 4101 | and breakpoint it. */ |
9512d7fd | 4102 | |
190dce09 | 4103 | int |
0b1b3e42 | 4104 | arm_software_single_step (struct frame_info *frame) |
9512d7fd | 4105 | { |
a6d9a66e | 4106 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 4107 | struct address_space *aspace = get_frame_address_space (frame); |
a6d9a66e | 4108 | |
8181d85f DJ |
4109 | /* NOTE: This may insert the wrong breakpoint instruction when |
4110 | single-stepping over a mode-changing instruction, if the | |
4111 | CPSR heuristics are used. */ | |
9512d7fd | 4112 | |
0b1b3e42 | 4113 | CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame)); |
6c95b8df | 4114 | insert_single_step_breakpoint (gdbarch, aspace, next_pc); |
e6590a1b UW |
4115 | |
4116 | return 1; | |
9512d7fd | 4117 | } |
9512d7fd | 4118 | |
f9d67f43 DJ |
4119 | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
4120 | the buffer to be NEW_LEN bytes ending at ENDADDR. Return | |
4121 | NULL if an error occurs. BUF is freed. */ | |
4122 | ||
4123 | static gdb_byte * | |
4124 | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | |
4125 | int old_len, int new_len) | |
4126 | { | |
4127 | gdb_byte *new_buf, *middle; | |
4128 | int bytes_to_read = new_len - old_len; | |
4129 | ||
4130 | new_buf = xmalloc (new_len); | |
4131 | memcpy (new_buf + bytes_to_read, buf, old_len); | |
4132 | xfree (buf); | |
4133 | if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0) | |
4134 | { | |
4135 | xfree (new_buf); | |
4136 | return NULL; | |
4137 | } | |
4138 | return new_buf; | |
4139 | } | |
4140 | ||
4141 | /* An IT block is at most the 2-byte IT instruction followed by | |
4142 | four 4-byte instructions. The furthest back we must search to | |
4143 | find an IT block that affects the current instruction is thus | |
4144 | 2 + 3 * 4 == 14 bytes. */ | |
4145 | #define MAX_IT_BLOCK_PREFIX 14 | |
4146 | ||
4147 | /* Use a quick scan if there are more than this many bytes of | |
4148 | code. */ | |
4149 | #define IT_SCAN_THRESHOLD 32 | |
4150 | ||
4151 | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. | |
4152 | A breakpoint in an IT block may not be hit, depending on the | |
4153 | condition flags. */ | |
4154 | static CORE_ADDR | |
4155 | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | |
4156 | { | |
4157 | gdb_byte *buf; | |
4158 | char map_type; | |
4159 | CORE_ADDR boundary, func_start; | |
4160 | int buf_len, buf2_len; | |
4161 | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); | |
4162 | int i, any, last_it, last_it_count; | |
4163 | ||
4164 | /* If we are using BKPT breakpoints, none of this is necessary. */ | |
4165 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL) | |
4166 | return bpaddr; | |
4167 | ||
4168 | /* ARM mode does not have this problem. */ | |
9779414d | 4169 | if (!arm_pc_is_thumb (gdbarch, bpaddr)) |
f9d67f43 DJ |
4170 | return bpaddr; |
4171 | ||
4172 | /* We are setting a breakpoint in Thumb code that could potentially | |
4173 | contain an IT block. The first step is to find how much Thumb | |
4174 | code there is; we do not need to read outside of known Thumb | |
4175 | sequences. */ | |
4176 | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | |
4177 | if (map_type == 0) | |
4178 | /* Thumb-2 code must have mapping symbols to have a chance. */ | |
4179 | return bpaddr; | |
4180 | ||
4181 | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); | |
4182 | ||
4183 | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) | |
4184 | && func_start > boundary) | |
4185 | boundary = func_start; | |
4186 | ||
4187 | /* Search for a candidate IT instruction. We have to do some fancy | |
4188 | footwork to distinguish a real IT instruction from the second | |
4189 | half of a 32-bit instruction, but there is no need for that if | |
4190 | there's no candidate. */ | |
4191 | buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX); | |
4192 | if (buf_len == 0) | |
4193 | /* No room for an IT instruction. */ | |
4194 | return bpaddr; | |
4195 | ||
4196 | buf = xmalloc (buf_len); | |
4197 | if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0) | |
4198 | return bpaddr; | |
4199 | any = 0; | |
4200 | for (i = 0; i < buf_len; i += 2) | |
4201 | { | |
4202 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4203 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4204 | { | |
4205 | any = 1; | |
4206 | break; | |
4207 | } | |
4208 | } | |
4209 | if (any == 0) | |
4210 | { | |
4211 | xfree (buf); | |
4212 | return bpaddr; | |
4213 | } | |
4214 | ||
4215 | /* OK, the code bytes before this instruction contain at least one | |
4216 | halfword which resembles an IT instruction. We know that it's | |
4217 | Thumb code, but there are still two possibilities. Either the | |
4218 | halfword really is an IT instruction, or it is the second half of | |
4219 | a 32-bit Thumb instruction. The only way we can tell is to | |
4220 | scan forwards from a known instruction boundary. */ | |
4221 | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | |
4222 | { | |
4223 | int definite; | |
4224 | ||
4225 | /* There's a lot of code before this instruction. Start with an | |
4226 | optimistic search; it's easy to recognize halfwords that can | |
4227 | not be the start of a 32-bit instruction, and use that to | |
4228 | lock on to the instruction boundaries. */ | |
4229 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | |
4230 | if (buf == NULL) | |
4231 | return bpaddr; | |
4232 | buf_len = IT_SCAN_THRESHOLD; | |
4233 | ||
4234 | definite = 0; | |
4235 | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | |
4236 | { | |
4237 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4238 | if (thumb_insn_size (inst1) == 2) | |
4239 | { | |
4240 | definite = 1; | |
4241 | break; | |
4242 | } | |
4243 | } | |
4244 | ||
4245 | /* At this point, if DEFINITE, BUF[I] is the first place we | |
4246 | are sure that we know the instruction boundaries, and it is far | |
4247 | enough from BPADDR that we could not miss an IT instruction | |
4248 | affecting BPADDR. If ! DEFINITE, give up - start from a | |
4249 | known boundary. */ | |
4250 | if (! definite) | |
4251 | { | |
0963b4bd MS |
4252 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
4253 | bpaddr - boundary); | |
f9d67f43 DJ |
4254 | if (buf == NULL) |
4255 | return bpaddr; | |
4256 | buf_len = bpaddr - boundary; | |
4257 | i = 0; | |
4258 | } | |
4259 | } | |
4260 | else | |
4261 | { | |
4262 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | |
4263 | if (buf == NULL) | |
4264 | return bpaddr; | |
4265 | buf_len = bpaddr - boundary; | |
4266 | i = 0; | |
4267 | } | |
4268 | ||
4269 | /* Scan forwards. Find the last IT instruction before BPADDR. */ | |
4270 | last_it = -1; | |
4271 | last_it_count = 0; | |
4272 | while (i < buf_len) | |
4273 | { | |
4274 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4275 | last_it_count--; | |
4276 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4277 | { | |
4278 | last_it = i; | |
4279 | if (inst1 & 0x0001) | |
4280 | last_it_count = 4; | |
4281 | else if (inst1 & 0x0002) | |
4282 | last_it_count = 3; | |
4283 | else if (inst1 & 0x0004) | |
4284 | last_it_count = 2; | |
4285 | else | |
4286 | last_it_count = 1; | |
4287 | } | |
4288 | i += thumb_insn_size (inst1); | |
4289 | } | |
4290 | ||
4291 | xfree (buf); | |
4292 | ||
4293 | if (last_it == -1) | |
4294 | /* There wasn't really an IT instruction after all. */ | |
4295 | return bpaddr; | |
4296 | ||
4297 | if (last_it_count < 1) | |
4298 | /* It was too far away. */ | |
4299 | return bpaddr; | |
4300 | ||
4301 | /* This really is a trouble spot. Move the breakpoint to the IT | |
4302 | instruction. */ | |
4303 | return bpaddr - buf_len + last_it; | |
4304 | } | |
4305 | ||
cca44b1b | 4306 | /* ARM displaced stepping support. |
c906108c | 4307 | |
cca44b1b | 4308 | Generally ARM displaced stepping works as follows: |
c906108c | 4309 | |
cca44b1b JB |
4310 | 1. When an instruction is to be single-stepped, it is first decoded by |
4311 | arm_process_displaced_insn (called from arm_displaced_step_copy_insn). | |
4312 | Depending on the type of instruction, it is then copied to a scratch | |
4313 | location, possibly in a modified form. The copy_* set of functions | |
0963b4bd | 4314 | performs such modification, as necessary. A breakpoint is placed after |
cca44b1b JB |
4315 | the modified instruction in the scratch space to return control to GDB. |
4316 | Note in particular that instructions which modify the PC will no longer | |
4317 | do so after modification. | |
c5aa993b | 4318 | |
cca44b1b JB |
4319 | 2. The instruction is single-stepped, by setting the PC to the scratch |
4320 | location address, and resuming. Control returns to GDB when the | |
4321 | breakpoint is hit. | |
c5aa993b | 4322 | |
cca44b1b JB |
4323 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
4324 | function used for the current instruction. This function's job is to | |
4325 | put the CPU/memory state back to what it would have been if the | |
4326 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 4327 | |
cca44b1b JB |
4328 | /* NOP instruction (mov r0, r0). */ |
4329 | #define ARM_NOP 0xe1a00000 | |
4330 | ||
4331 | /* Helper for register reads for displaced stepping. In particular, this | |
4332 | returns the PC as it would be seen by the instruction at its original | |
4333 | location. */ | |
4334 | ||
4335 | ULONGEST | |
4336 | displaced_read_reg (struct regcache *regs, CORE_ADDR from, int regno) | |
4337 | { | |
4338 | ULONGEST ret; | |
4339 | ||
4340 | if (regno == 15) | |
4341 | { | |
4342 | if (debug_displaced) | |
4343 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
4344 | (unsigned long) from + 8); | |
4345 | return (ULONGEST) from + 8; /* Pipeline offset. */ | |
4346 | } | |
c906108c | 4347 | else |
cca44b1b JB |
4348 | { |
4349 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
4350 | if (debug_displaced) | |
4351 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
4352 | regno, (unsigned long) ret); | |
4353 | return ret; | |
4354 | } | |
c906108c SS |
4355 | } |
4356 | ||
cca44b1b JB |
4357 | static int |
4358 | displaced_in_arm_mode (struct regcache *regs) | |
4359 | { | |
4360 | ULONGEST ps; | |
9779414d | 4361 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
66e810cd | 4362 | |
cca44b1b | 4363 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 4364 | |
9779414d | 4365 | return (ps & t_bit) == 0; |
cca44b1b | 4366 | } |
66e810cd | 4367 | |
cca44b1b | 4368 | /* Write to the PC as from a branch instruction. */ |
c906108c | 4369 | |
cca44b1b JB |
4370 | static void |
4371 | branch_write_pc (struct regcache *regs, ULONGEST val) | |
c906108c | 4372 | { |
cca44b1b JB |
4373 | if (displaced_in_arm_mode (regs)) |
4374 | /* Note: If bits 0/1 are set, this branch would be unpredictable for | |
4375 | architecture versions < 6. */ | |
0963b4bd MS |
4376 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4377 | val & ~(ULONGEST) 0x3); | |
cca44b1b | 4378 | else |
0963b4bd MS |
4379 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4380 | val & ~(ULONGEST) 0x1); | |
cca44b1b | 4381 | } |
66e810cd | 4382 | |
cca44b1b JB |
4383 | /* Write to the PC as from a branch-exchange instruction. */ |
4384 | ||
4385 | static void | |
4386 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
4387 | { | |
4388 | ULONGEST ps; | |
9779414d | 4389 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
cca44b1b JB |
4390 | |
4391 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
4392 | ||
4393 | if ((val & 1) == 1) | |
c906108c | 4394 | { |
9779414d | 4395 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
cca44b1b JB |
4396 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
4397 | } | |
4398 | else if ((val & 2) == 0) | |
4399 | { | |
9779414d | 4400 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4401 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
c906108c SS |
4402 | } |
4403 | else | |
4404 | { | |
cca44b1b JB |
4405 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
4406 | mode, align dest to 4 bytes). */ | |
4407 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
9779414d | 4408 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4409 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
c906108c SS |
4410 | } |
4411 | } | |
ed9a39eb | 4412 | |
cca44b1b | 4413 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 4414 | |
34e8f22d | 4415 | static void |
cca44b1b | 4416 | load_write_pc (struct regcache *regs, ULONGEST val) |
ed9a39eb | 4417 | { |
cca44b1b JB |
4418 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
4419 | bx_write_pc (regs, val); | |
4420 | else | |
4421 | branch_write_pc (regs, val); | |
4422 | } | |
be8626e0 | 4423 | |
cca44b1b JB |
4424 | /* Write to the PC as if from an ALU instruction. */ |
4425 | ||
4426 | static void | |
4427 | alu_write_pc (struct regcache *regs, ULONGEST val) | |
4428 | { | |
4429 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && displaced_in_arm_mode (regs)) | |
4430 | bx_write_pc (regs, val); | |
4431 | else | |
4432 | branch_write_pc (regs, val); | |
4433 | } | |
4434 | ||
4435 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
4436 | has a varying effects depending on the instruction which does the write: | |
4437 | this is controlled by the WRITE_PC argument. */ | |
4438 | ||
4439 | void | |
4440 | displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc, | |
4441 | int regno, ULONGEST val, enum pc_write_style write_pc) | |
4442 | { | |
4443 | if (regno == 15) | |
08216dd7 | 4444 | { |
cca44b1b JB |
4445 | if (debug_displaced) |
4446 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
4447 | (unsigned long) val); | |
4448 | switch (write_pc) | |
08216dd7 | 4449 | { |
cca44b1b JB |
4450 | case BRANCH_WRITE_PC: |
4451 | branch_write_pc (regs, val); | |
08216dd7 RE |
4452 | break; |
4453 | ||
cca44b1b JB |
4454 | case BX_WRITE_PC: |
4455 | bx_write_pc (regs, val); | |
4456 | break; | |
4457 | ||
4458 | case LOAD_WRITE_PC: | |
4459 | load_write_pc (regs, val); | |
4460 | break; | |
4461 | ||
4462 | case ALU_WRITE_PC: | |
4463 | alu_write_pc (regs, val); | |
4464 | break; | |
4465 | ||
4466 | case CANNOT_WRITE_PC: | |
4467 | warning (_("Instruction wrote to PC in an unexpected way when " | |
4468 | "single-stepping")); | |
08216dd7 RE |
4469 | break; |
4470 | ||
4471 | default: | |
97b9747c JB |
4472 | internal_error (__FILE__, __LINE__, |
4473 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 4474 | } |
b508a996 | 4475 | |
cca44b1b | 4476 | dsc->wrote_to_pc = 1; |
b508a996 | 4477 | } |
ed9a39eb | 4478 | else |
b508a996 | 4479 | { |
cca44b1b JB |
4480 | if (debug_displaced) |
4481 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
4482 | regno, (unsigned long) val); | |
4483 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 4484 | } |
34e8f22d RE |
4485 | } |
4486 | ||
cca44b1b JB |
4487 | /* This function is used to concisely determine if an instruction INSN |
4488 | references PC. Register fields of interest in INSN should have the | |
0963b4bd MS |
4489 | corresponding fields of BITMASK set to 0b1111. The function |
4490 | returns return 1 if any of these fields in INSN reference the PC | |
4491 | (also 0b1111, r15), else it returns 0. */ | |
67255d04 RE |
4492 | |
4493 | static int | |
cca44b1b | 4494 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 4495 | { |
cca44b1b | 4496 | uint32_t lowbit = 1; |
67255d04 | 4497 | |
cca44b1b JB |
4498 | while (bitmask != 0) |
4499 | { | |
4500 | uint32_t mask; | |
44e1a9eb | 4501 | |
cca44b1b JB |
4502 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
4503 | ; | |
67255d04 | 4504 | |
cca44b1b JB |
4505 | if (!lowbit) |
4506 | break; | |
67255d04 | 4507 | |
cca44b1b | 4508 | mask = lowbit * 0xf; |
67255d04 | 4509 | |
cca44b1b JB |
4510 | if ((insn & mask) == mask) |
4511 | return 1; | |
4512 | ||
4513 | bitmask &= ~mask; | |
67255d04 RE |
4514 | } |
4515 | ||
cca44b1b JB |
4516 | return 0; |
4517 | } | |
2af48f68 | 4518 | |
cca44b1b JB |
4519 | /* The simplest copy function. Many instructions have the same effect no |
4520 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 4521 | |
cca44b1b | 4522 | static int |
6e39997a | 4523 | copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, |
cca44b1b JB |
4524 | const char *iname, struct displaced_step_closure *dsc) |
4525 | { | |
4526 | if (debug_displaced) | |
4527 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
4528 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
4529 | iname); | |
67255d04 | 4530 | |
cca44b1b | 4531 | dsc->modinsn[0] = insn; |
67255d04 | 4532 | |
cca44b1b JB |
4533 | return 0; |
4534 | } | |
4535 | ||
4536 | /* Preload instructions with immediate offset. */ | |
4537 | ||
4538 | static void | |
6e39997a | 4539 | cleanup_preload (struct gdbarch *gdbarch, |
cca44b1b JB |
4540 | struct regcache *regs, struct displaced_step_closure *dsc) |
4541 | { | |
4542 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4543 | if (!dsc->u.preload.immed) | |
4544 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
4545 | } | |
4546 | ||
4547 | static int | |
4548 | copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
4549 | struct displaced_step_closure *dsc) | |
4550 | { | |
4551 | unsigned int rn = bits (insn, 16, 19); | |
4552 | ULONGEST rn_val; | |
4553 | CORE_ADDR from = dsc->insn_addr; | |
4554 | ||
4555 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
4556 | return copy_unmodified (gdbarch, insn, "preload", dsc); | |
4557 | ||
4558 | if (debug_displaced) | |
4559 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4560 | (unsigned long) insn); | |
4561 | ||
4562 | /* Preload instructions: | |
4563 | ||
4564 | {pli/pld} [rn, #+/-imm] | |
4565 | -> | |
4566 | {pli/pld} [r0, #+/-imm]. */ | |
4567 | ||
4568 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
4569 | rn_val = displaced_read_reg (regs, from, rn); | |
4570 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
4571 | ||
4572 | dsc->u.preload.immed = 1; | |
4573 | ||
4574 | dsc->modinsn[0] = insn & 0xfff0ffff; | |
4575 | ||
4576 | dsc->cleanup = &cleanup_preload; | |
4577 | ||
4578 | return 0; | |
4579 | } | |
4580 | ||
4581 | /* Preload instructions with register offset. */ | |
4582 | ||
4583 | static int | |
0963b4bd MS |
4584 | copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, |
4585 | struct regcache *regs, | |
cca44b1b JB |
4586 | struct displaced_step_closure *dsc) |
4587 | { | |
4588 | unsigned int rn = bits (insn, 16, 19); | |
4589 | unsigned int rm = bits (insn, 0, 3); | |
4590 | ULONGEST rn_val, rm_val; | |
4591 | CORE_ADDR from = dsc->insn_addr; | |
4592 | ||
4593 | if (!insn_references_pc (insn, 0x000f000ful)) | |
4594 | return copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
4595 | ||
4596 | if (debug_displaced) | |
4597 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4598 | (unsigned long) insn); | |
4599 | ||
4600 | /* Preload register-offset instructions: | |
4601 | ||
4602 | {pli/pld} [rn, rm {, shift}] | |
4603 | -> | |
4604 | {pli/pld} [r0, r1 {, shift}]. */ | |
4605 | ||
4606 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
4607 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
4608 | rn_val = displaced_read_reg (regs, from, rn); | |
4609 | rm_val = displaced_read_reg (regs, from, rm); | |
4610 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
4611 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
4612 | ||
4613 | dsc->u.preload.immed = 0; | |
4614 | ||
4615 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
4616 | ||
4617 | dsc->cleanup = &cleanup_preload; | |
4618 | ||
4619 | return 0; | |
4620 | } | |
4621 | ||
4622 | /* Copy/cleanup coprocessor load and store instructions. */ | |
4623 | ||
4624 | static void | |
6e39997a | 4625 | cleanup_copro_load_store (struct gdbarch *gdbarch, |
cca44b1b JB |
4626 | struct regcache *regs, |
4627 | struct displaced_step_closure *dsc) | |
4628 | { | |
4629 | ULONGEST rn_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
4630 | ||
4631 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4632 | ||
4633 | if (dsc->u.ldst.writeback) | |
4634 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
4635 | } | |
4636 | ||
4637 | static int | |
4638 | copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
4639 | struct regcache *regs, | |
4640 | struct displaced_step_closure *dsc) | |
4641 | { | |
4642 | unsigned int rn = bits (insn, 16, 19); | |
4643 | ULONGEST rn_val; | |
4644 | CORE_ADDR from = dsc->insn_addr; | |
4645 | ||
4646 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
4647 | return copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
4648 | ||
4649 | if (debug_displaced) | |
4650 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
4651 | "load/store insn %.8lx\n", (unsigned long) insn); | |
4652 | ||
4653 | /* Coprocessor load/store instructions: | |
4654 | ||
4655 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
4656 | -> | |
4657 | {stc/stc2} [r0, #+/-imm]. | |
4658 | ||
4659 | ldc/ldc2 are handled identically. */ | |
4660 | ||
4661 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
4662 | rn_val = displaced_read_reg (regs, from, rn); | |
4663 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | |
4664 | ||
4665 | dsc->u.ldst.writeback = bit (insn, 25); | |
4666 | dsc->u.ldst.rn = rn; | |
4667 | ||
4668 | dsc->modinsn[0] = insn & 0xfff0ffff; | |
4669 | ||
4670 | dsc->cleanup = &cleanup_copro_load_store; | |
4671 | ||
4672 | return 0; | |
4673 | } | |
4674 | ||
4675 | /* Clean up branch instructions (actually perform the branch, by setting | |
4676 | PC). */ | |
4677 | ||
4678 | static void | |
6e39997a | 4679 | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
4680 | struct displaced_step_closure *dsc) |
4681 | { | |
4682 | ULONGEST from = dsc->insn_addr; | |
4683 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
4684 | int branch_taken = condition_true (dsc->u.branch.cond, status); | |
4685 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
4686 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
4687 | ||
4688 | if (!branch_taken) | |
4689 | return; | |
4690 | ||
4691 | if (dsc->u.branch.link) | |
4692 | { | |
4693 | ULONGEST pc = displaced_read_reg (regs, from, 15); | |
4694 | displaced_write_reg (regs, dsc, 14, pc - 4, CANNOT_WRITE_PC); | |
4695 | } | |
4696 | ||
4697 | displaced_write_reg (regs, dsc, 15, dsc->u.branch.dest, write_pc); | |
4698 | } | |
4699 | ||
4700 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
4701 | ||
4702 | static int | |
6e39997a | 4703 | copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
cca44b1b JB |
4704 | struct regcache *regs, struct displaced_step_closure *dsc) |
4705 | { | |
4706 | unsigned int cond = bits (insn, 28, 31); | |
4707 | int exchange = (cond == 0xf); | |
4708 | int link = exchange || bit (insn, 24); | |
4709 | CORE_ADDR from = dsc->insn_addr; | |
4710 | long offset; | |
4711 | ||
4712 | if (debug_displaced) | |
4713 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
4714 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
4715 | (unsigned long) insn); | |
4716 | ||
4717 | /* Implement "BL<cond> <label>" as: | |
4718 | ||
4719 | Preparation: cond <- instruction condition | |
4720 | Insn: mov r0, r0 (nop) | |
4721 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
4722 | ||
4723 | B<cond> similar, but don't set r14 in cleanup. */ | |
4724 | ||
4725 | if (exchange) | |
4726 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
4727 | then arrange the switch into Thumb mode. */ | |
4728 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
4729 | else | |
4730 | offset = bits (insn, 0, 23) << 2; | |
4731 | ||
4732 | if (bit (offset, 25)) | |
4733 | offset = offset | ~0x3ffffff; | |
4734 | ||
4735 | dsc->u.branch.cond = cond; | |
4736 | dsc->u.branch.link = link; | |
4737 | dsc->u.branch.exchange = exchange; | |
4738 | dsc->u.branch.dest = from + 8 + offset; | |
4739 | ||
4740 | dsc->modinsn[0] = ARM_NOP; | |
4741 | ||
4742 | dsc->cleanup = &cleanup_branch; | |
4743 | ||
4744 | return 0; | |
4745 | } | |
4746 | ||
4747 | /* Copy BX/BLX with register-specified destinations. */ | |
4748 | ||
4749 | static int | |
6e39997a | 4750 | copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, |
cca44b1b JB |
4751 | struct regcache *regs, struct displaced_step_closure *dsc) |
4752 | { | |
4753 | unsigned int cond = bits (insn, 28, 31); | |
4754 | /* BX: x12xxx1x | |
4755 | BLX: x12xxx3x. */ | |
4756 | int link = bit (insn, 5); | |
4757 | unsigned int rm = bits (insn, 0, 3); | |
4758 | CORE_ADDR from = dsc->insn_addr; | |
4759 | ||
4760 | if (debug_displaced) | |
4761 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s register insn " | |
0963b4bd MS |
4762 | "%.8lx\n", (link) ? "blx" : "bx", |
4763 | (unsigned long) insn); | |
cca44b1b JB |
4764 | |
4765 | /* Implement {BX,BLX}<cond> <reg>" as: | |
4766 | ||
4767 | Preparation: cond <- instruction condition | |
4768 | Insn: mov r0, r0 (nop) | |
4769 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
4770 | ||
4771 | Don't set r14 in cleanup for BX. */ | |
4772 | ||
4773 | dsc->u.branch.dest = displaced_read_reg (regs, from, rm); | |
4774 | ||
4775 | dsc->u.branch.cond = cond; | |
4776 | dsc->u.branch.link = link; | |
4777 | dsc->u.branch.exchange = 1; | |
4778 | ||
4779 | dsc->modinsn[0] = ARM_NOP; | |
4780 | ||
4781 | dsc->cleanup = &cleanup_branch; | |
4782 | ||
4783 | return 0; | |
4784 | } | |
4785 | ||
0963b4bd | 4786 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
cca44b1b JB |
4787 | |
4788 | static void | |
6e39997a | 4789 | cleanup_alu_imm (struct gdbarch *gdbarch, |
cca44b1b JB |
4790 | struct regcache *regs, struct displaced_step_closure *dsc) |
4791 | { | |
4792 | ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
4793 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4794 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
4795 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
4796 | } | |
4797 | ||
4798 | static int | |
4799 | copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
4800 | struct displaced_step_closure *dsc) | |
4801 | { | |
4802 | unsigned int rn = bits (insn, 16, 19); | |
4803 | unsigned int rd = bits (insn, 12, 15); | |
4804 | unsigned int op = bits (insn, 21, 24); | |
4805 | int is_mov = (op == 0xd); | |
4806 | ULONGEST rd_val, rn_val; | |
4807 | CORE_ADDR from = dsc->insn_addr; | |
4808 | ||
4809 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
4810 | return copy_unmodified (gdbarch, insn, "ALU immediate", dsc); | |
4811 | ||
4812 | if (debug_displaced) | |
4813 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
4814 | "%.8lx\n", is_mov ? "move" : "ALU", | |
4815 | (unsigned long) insn); | |
4816 | ||
4817 | /* Instruction is of form: | |
4818 | ||
4819 | <op><cond> rd, [rn,] #imm | |
4820 | ||
4821 | Rewrite as: | |
4822 | ||
4823 | Preparation: tmp1, tmp2 <- r0, r1; | |
4824 | r0, r1 <- rd, rn | |
4825 | Insn: <op><cond> r0, r1, #imm | |
4826 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
4827 | */ | |
4828 | ||
4829 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
4830 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
4831 | rn_val = displaced_read_reg (regs, from, rn); | |
4832 | rd_val = displaced_read_reg (regs, from, rd); | |
4833 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
4834 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
4835 | dsc->rd = rd; | |
4836 | ||
4837 | if (is_mov) | |
4838 | dsc->modinsn[0] = insn & 0xfff00fff; | |
4839 | else | |
4840 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
4841 | ||
4842 | dsc->cleanup = &cleanup_alu_imm; | |
4843 | ||
4844 | return 0; | |
4845 | } | |
4846 | ||
4847 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ | |
4848 | ||
4849 | static void | |
6e39997a | 4850 | cleanup_alu_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
4851 | struct regcache *regs, struct displaced_step_closure *dsc) |
4852 | { | |
4853 | ULONGEST rd_val; | |
4854 | int i; | |
4855 | ||
4856 | rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
4857 | ||
4858 | for (i = 0; i < 3; i++) | |
4859 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
4860 | ||
4861 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
4862 | } | |
4863 | ||
4864 | static int | |
4865 | copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
4866 | struct displaced_step_closure *dsc) | |
4867 | { | |
4868 | unsigned int rn = bits (insn, 16, 19); | |
4869 | unsigned int rm = bits (insn, 0, 3); | |
4870 | unsigned int rd = bits (insn, 12, 15); | |
4871 | unsigned int op = bits (insn, 21, 24); | |
4872 | int is_mov = (op == 0xd); | |
4873 | ULONGEST rd_val, rn_val, rm_val; | |
4874 | CORE_ADDR from = dsc->insn_addr; | |
4875 | ||
4876 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
4877 | return copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
4878 | ||
4879 | if (debug_displaced) | |
4880 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
4881 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
4882 | ||
4883 | /* Instruction is of form: | |
4884 | ||
4885 | <op><cond> rd, [rn,] rm [, <shift>] | |
4886 | ||
4887 | Rewrite as: | |
4888 | ||
4889 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
4890 | r0, r1, r2 <- rd, rn, rm | |
4891 | Insn: <op><cond> r0, r1, r2 [, <shift>] | |
4892 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 | |
4893 | */ | |
4894 | ||
4895 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
4896 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
4897 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
4898 | rd_val = displaced_read_reg (regs, from, rd); | |
4899 | rn_val = displaced_read_reg (regs, from, rn); | |
4900 | rm_val = displaced_read_reg (regs, from, rm); | |
4901 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
4902 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
4903 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
4904 | dsc->rd = rd; | |
4905 | ||
4906 | if (is_mov) | |
4907 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
4908 | else | |
4909 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
4910 | ||
4911 | dsc->cleanup = &cleanup_alu_reg; | |
4912 | ||
4913 | return 0; | |
4914 | } | |
4915 | ||
4916 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ | |
4917 | ||
4918 | static void | |
6e39997a | 4919 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
4920 | struct regcache *regs, |
4921 | struct displaced_step_closure *dsc) | |
4922 | { | |
4923 | ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0); | |
4924 | int i; | |
4925 | ||
4926 | for (i = 0; i < 4; i++) | |
4927 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
4928 | ||
4929 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
4930 | } | |
4931 | ||
4932 | static int | |
4933 | copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
0963b4bd MS |
4934 | struct regcache *regs, |
4935 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
4936 | { |
4937 | unsigned int rn = bits (insn, 16, 19); | |
4938 | unsigned int rm = bits (insn, 0, 3); | |
4939 | unsigned int rd = bits (insn, 12, 15); | |
4940 | unsigned int rs = bits (insn, 8, 11); | |
4941 | unsigned int op = bits (insn, 21, 24); | |
4942 | int is_mov = (op == 0xd), i; | |
4943 | ULONGEST rd_val, rn_val, rm_val, rs_val; | |
4944 | CORE_ADDR from = dsc->insn_addr; | |
4945 | ||
4946 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
4947 | return copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
4948 | ||
4949 | if (debug_displaced) | |
4950 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
4951 | "%.8lx\n", is_mov ? "move" : "ALU", | |
4952 | (unsigned long) insn); | |
4953 | ||
4954 | /* Instruction is of form: | |
4955 | ||
4956 | <op><cond> rd, [rn,] rm, <shift> rs | |
4957 | ||
4958 | Rewrite as: | |
4959 | ||
4960 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
4961 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
4962 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
4963 | Cleanup: tmp5 <- r0 | |
4964 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
4965 | rd <- tmp5 | |
4966 | */ | |
4967 | ||
4968 | for (i = 0; i < 4; i++) | |
4969 | dsc->tmp[i] = displaced_read_reg (regs, from, i); | |
4970 | ||
4971 | rd_val = displaced_read_reg (regs, from, rd); | |
4972 | rn_val = displaced_read_reg (regs, from, rn); | |
4973 | rm_val = displaced_read_reg (regs, from, rm); | |
4974 | rs_val = displaced_read_reg (regs, from, rs); | |
4975 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
4976 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
4977 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
4978 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
4979 | dsc->rd = rd; | |
4980 | ||
4981 | if (is_mov) | |
4982 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
4983 | else | |
4984 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
4985 | ||
4986 | dsc->cleanup = &cleanup_alu_shifted_reg; | |
4987 | ||
4988 | return 0; | |
4989 | } | |
4990 | ||
4991 | /* Clean up load instructions. */ | |
4992 | ||
4993 | static void | |
6e39997a | 4994 | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
4995 | struct displaced_step_closure *dsc) |
4996 | { | |
4997 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
4998 | CORE_ADDR from = dsc->insn_addr; | |
4999 | ||
5000 | rt_val = displaced_read_reg (regs, from, 0); | |
5001 | if (dsc->u.ldst.xfersize == 8) | |
5002 | rt_val2 = displaced_read_reg (regs, from, 1); | |
5003 | rn_val = displaced_read_reg (regs, from, 2); | |
5004 | ||
5005 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5006 | if (dsc->u.ldst.xfersize > 4) | |
5007 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5008 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5009 | if (!dsc->u.ldst.immed) | |
5010 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5011 | ||
5012 | /* Handle register writeback. */ | |
5013 | if (dsc->u.ldst.writeback) | |
5014 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5015 | /* Put result in right place. */ | |
5016 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
5017 | if (dsc->u.ldst.xfersize == 8) | |
5018 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
5019 | } | |
5020 | ||
5021 | /* Clean up store instructions. */ | |
5022 | ||
5023 | static void | |
6e39997a | 5024 | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5025 | struct displaced_step_closure *dsc) |
5026 | { | |
5027 | CORE_ADDR from = dsc->insn_addr; | |
5028 | ULONGEST rn_val = displaced_read_reg (regs, from, 2); | |
5029 | ||
5030 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5031 | if (dsc->u.ldst.xfersize > 4) | |
5032 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5033 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5034 | if (!dsc->u.ldst.immed) | |
5035 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5036 | if (!dsc->u.ldst.restore_r4) | |
5037 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
5038 | ||
5039 | /* Writeback. */ | |
5040 | if (dsc->u.ldst.writeback) | |
5041 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5042 | } | |
5043 | ||
5044 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
5045 | transfers, which have a different encoding to byte/word transfers. */ | |
5046 | ||
5047 | static int | |
5048 | copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged, | |
5049 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5050 | { | |
5051 | unsigned int op1 = bits (insn, 20, 24); | |
5052 | unsigned int op2 = bits (insn, 5, 6); | |
5053 | unsigned int rt = bits (insn, 12, 15); | |
5054 | unsigned int rn = bits (insn, 16, 19); | |
5055 | unsigned int rm = bits (insn, 0, 3); | |
5056 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
5057 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
5058 | int immed = (op1 & 0x4) != 0; | |
5059 | int opcode; | |
5060 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
5061 | CORE_ADDR from = dsc->insn_addr; | |
5062 | ||
5063 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5064 | return copy_unmodified (gdbarch, insn, "extra load/store", dsc); | |
5065 | ||
5066 | if (debug_displaced) | |
5067 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
5068 | "insn %.8lx\n", unpriveleged ? "unpriveleged " : "", | |
5069 | (unsigned long) insn); | |
5070 | ||
5071 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
5072 | ||
5073 | if (opcode < 0) | |
5074 | internal_error (__FILE__, __LINE__, | |
5075 | _("copy_extra_ld_st: instruction decode error")); | |
5076 | ||
5077 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
5078 | dsc->tmp[1] = displaced_read_reg (regs, from, 1); | |
5079 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
5080 | if (!immed) | |
5081 | dsc->tmp[3] = displaced_read_reg (regs, from, 3); | |
5082 | ||
5083 | rt_val = displaced_read_reg (regs, from, rt); | |
5084 | if (bytesize[opcode] == 8) | |
5085 | rt_val2 = displaced_read_reg (regs, from, rt + 1); | |
5086 | rn_val = displaced_read_reg (regs, from, rn); | |
5087 | if (!immed) | |
5088 | rm_val = displaced_read_reg (regs, from, rm); | |
5089 | ||
5090 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5091 | if (bytesize[opcode] == 8) | |
5092 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
5093 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5094 | if (!immed) | |
5095 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
5096 | ||
5097 | dsc->rd = rt; | |
5098 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
5099 | dsc->u.ldst.rn = rn; | |
5100 | dsc->u.ldst.immed = immed; | |
5101 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
5102 | dsc->u.ldst.restore_r4 = 0; | |
5103 | ||
5104 | if (immed) | |
5105 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
5106 | -> | |
5107 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
5108 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5109 | else | |
5110 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
5111 | -> | |
5112 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
5113 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5114 | ||
5115 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
5116 | ||
5117 | return 0; | |
5118 | } | |
5119 | ||
5120 | /* Copy byte/word loads and stores. */ | |
5121 | ||
5122 | static int | |
5123 | copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
5124 | struct regcache *regs, | |
5125 | struct displaced_step_closure *dsc, int load, int byte, | |
5126 | int usermode) | |
5127 | { | |
5128 | int immed = !bit (insn, 25); | |
5129 | unsigned int rt = bits (insn, 12, 15); | |
5130 | unsigned int rn = bits (insn, 16, 19); | |
5131 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
5132 | ULONGEST rt_val, rn_val, rm_val = 0; | |
5133 | CORE_ADDR from = dsc->insn_addr; | |
5134 | ||
5135 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5136 | return copy_unmodified (gdbarch, insn, "load/store", dsc); | |
5137 | ||
5138 | if (debug_displaced) | |
5139 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s%s insn %.8lx\n", | |
5140 | load ? (byte ? "ldrb" : "ldr") | |
5141 | : (byte ? "strb" : "str"), usermode ? "t" : "", | |
5142 | (unsigned long) insn); | |
5143 | ||
5144 | dsc->tmp[0] = displaced_read_reg (regs, from, 0); | |
5145 | dsc->tmp[2] = displaced_read_reg (regs, from, 2); | |
5146 | if (!immed) | |
5147 | dsc->tmp[3] = displaced_read_reg (regs, from, 3); | |
5148 | if (!load) | |
5149 | dsc->tmp[4] = displaced_read_reg (regs, from, 4); | |
5150 | ||
5151 | rt_val = displaced_read_reg (regs, from, rt); | |
5152 | rn_val = displaced_read_reg (regs, from, rn); | |
5153 | if (!immed) | |
5154 | rm_val = displaced_read_reg (regs, from, rm); | |
5155 | ||
5156 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5157 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5158 | if (!immed) | |
5159 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
5160 | ||
5161 | dsc->rd = rt; | |
5162 | dsc->u.ldst.xfersize = byte ? 1 : 4; | |
5163 | dsc->u.ldst.rn = rn; | |
5164 | dsc->u.ldst.immed = immed; | |
5165 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
5166 | ||
5167 | /* To write PC we can do: | |
5168 | ||
5169 | scratch+0: str pc, temp (*temp = scratch + 8 + offset) | |
5170 | scratch+4: ldr r4, temp | |
5171 | scratch+8: sub r4, r4, pc (r4 = scratch + 8 + offset - scratch - 8 - 8) | |
5172 | scratch+12: add r4, r4, #8 (r4 = offset) | |
5173 | scratch+16: add r0, r0, r4 | |
5174 | scratch+20: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
5175 | scratch+24: <temp> | |
5176 | ||
5177 | Otherwise we don't know what value to write for PC, since the offset is | |
5178 | architecture-dependent (sometimes PC+8, sometimes PC+12). */ | |
5179 | ||
5180 | if (load || rt != 15) | |
5181 | { | |
5182 | dsc->u.ldst.restore_r4 = 0; | |
5183 | ||
5184 | if (immed) | |
5185 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
5186 | -> | |
5187 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
5188 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5189 | else | |
5190 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
5191 | -> | |
5192 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
5193 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5194 | } | |
5195 | else | |
5196 | { | |
5197 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
5198 | dsc->u.ldst.restore_r4 = 1; | |
5199 | ||
5200 | dsc->modinsn[0] = 0xe58ff014; /* str pc, [pc, #20]. */ | |
5201 | dsc->modinsn[1] = 0xe59f4010; /* ldr r4, [pc, #16]. */ | |
5202 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ | |
5203 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
5204 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
5205 | ||
5206 | /* As above. */ | |
5207 | if (immed) | |
5208 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
5209 | else | |
5210 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
5211 | ||
5212 | dsc->modinsn[6] = 0x0; /* breakpoint location. */ | |
5213 | dsc->modinsn[7] = 0x0; /* scratch space. */ | |
5214 | ||
5215 | dsc->numinsns = 6; | |
5216 | } | |
5217 | ||
5218 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
5219 | ||
5220 | return 0; | |
5221 | } | |
5222 | ||
5223 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
5224 | unfortunate corner case: it's impossible to implement correctly by modifying | |
5225 | the instruction. The issue is as follows: we have an instruction, | |
5226 | ||
5227 | ldm rN, {r0-r15} | |
5228 | ||
5229 | which we must rewrite to avoid loading PC. A possible solution would be to | |
5230 | do the load in two halves, something like (with suitable cleanup | |
5231 | afterwards): | |
5232 | ||
5233 | mov r8, rN | |
5234 | ldm[id][ab] r8!, {r0-r7} | |
5235 | str r7, <temp> | |
5236 | ldm[id][ab] r8, {r7-r14} | |
5237 | <bkpt> | |
5238 | ||
5239 | but at present there's no suitable place for <temp>, since the scratch space | |
5240 | is overwritten before the cleanup routine is called. For now, we simply | |
5241 | emulate the instruction. */ | |
5242 | ||
5243 | static void | |
5244 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
5245 | struct displaced_step_closure *dsc) | |
5246 | { | |
5247 | ULONGEST from = dsc->insn_addr; | |
5248 | int inc = dsc->u.block.increment; | |
5249 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
5250 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
5251 | uint32_t regmask = dsc->u.block.regmask; | |
5252 | int regno = inc ? 0 : 15; | |
5253 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
5254 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
5255 | && (regmask & 0x8000) != 0; | |
5256 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
5257 | int do_transfer = condition_true (dsc->u.block.cond, status); | |
5258 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5259 | ||
5260 | if (!do_transfer) | |
5261 | return; | |
5262 | ||
5263 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
5264 | sensible we can do here. Complain loudly. */ | |
5265 | if (exception_return) | |
5266 | error (_("Cannot single-step exception return")); | |
5267 | ||
5268 | /* We don't handle any stores here for now. */ | |
5269 | gdb_assert (dsc->u.block.load != 0); | |
5270 | ||
5271 | if (debug_displaced) | |
5272 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
5273 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
5274 | dsc->u.block.increment ? "inc" : "dec", | |
5275 | dsc->u.block.before ? "before" : "after"); | |
5276 | ||
5277 | while (regmask) | |
5278 | { | |
5279 | uint32_t memword; | |
5280 | ||
5281 | if (inc) | |
5282 | while (regno <= 15 && (regmask & (1 << regno)) == 0) | |
5283 | regno++; | |
5284 | else | |
5285 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
5286 | regno--; | |
5287 | ||
5288 | xfer_addr += bump_before; | |
5289 | ||
5290 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
5291 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
5292 | ||
5293 | xfer_addr += bump_after; | |
5294 | ||
5295 | regmask &= ~(1 << regno); | |
5296 | } | |
5297 | ||
5298 | if (dsc->u.block.writeback) | |
5299 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
5300 | CANNOT_WRITE_PC); | |
5301 | } | |
5302 | ||
5303 | /* Clean up an STM which included the PC in the register list. */ | |
5304 | ||
5305 | static void | |
5306 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
5307 | struct displaced_step_closure *dsc) | |
5308 | { | |
5309 | ULONGEST from = dsc->insn_addr; | |
5310 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
5311 | int store_executed = condition_true (dsc->u.block.cond, status); | |
5312 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
5313 | CORE_ADDR stm_insn_addr; | |
5314 | uint32_t pc_val; | |
5315 | long offset; | |
5316 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5317 | ||
5318 | /* If condition code fails, there's nothing else to do. */ | |
5319 | if (!store_executed) | |
5320 | return; | |
5321 | ||
5322 | if (dsc->u.block.increment) | |
5323 | { | |
5324 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
5325 | ||
5326 | if (dsc->u.block.before) | |
5327 | pc_stored_at += 4; | |
5328 | } | |
5329 | else | |
5330 | { | |
5331 | pc_stored_at = dsc->u.block.xfer_addr; | |
5332 | ||
5333 | if (dsc->u.block.before) | |
5334 | pc_stored_at -= 4; | |
5335 | } | |
5336 | ||
5337 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
5338 | stm_insn_addr = dsc->scratch_base; | |
5339 | offset = pc_val - stm_insn_addr; | |
5340 | ||
5341 | if (debug_displaced) | |
5342 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
5343 | "STM instruction\n", offset); | |
5344 | ||
5345 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
5346 | instruction. */ | |
5347 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
5348 | dsc->insn_addr + offset); | |
5349 | } | |
5350 | ||
5351 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
5352 | the registers in the transferred list into a contiguous range r0...rX (to | |
5353 | avoid loading PC directly and losing control of the debugged program), so we | |
5354 | must undo that here. */ | |
5355 | ||
5356 | static void | |
6e39997a | 5357 | cleanup_block_load_pc (struct gdbarch *gdbarch, |
cca44b1b JB |
5358 | struct regcache *regs, |
5359 | struct displaced_step_closure *dsc) | |
5360 | { | |
5361 | ULONGEST from = dsc->insn_addr; | |
5362 | uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM); | |
5363 | int load_executed = condition_true (dsc->u.block.cond, status), i; | |
5364 | unsigned int mask = dsc->u.block.regmask, write_reg = 15; | |
5365 | unsigned int regs_loaded = bitcount (mask); | |
5366 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
5367 | ||
5368 | /* The method employed here will fail if the register list is fully populated | |
5369 | (we need to avoid loading PC directly). */ | |
5370 | gdb_assert (num_to_shuffle < 16); | |
5371 | ||
5372 | if (!load_executed) | |
5373 | return; | |
5374 | ||
5375 | clobbered = (1 << num_to_shuffle) - 1; | |
5376 | ||
5377 | while (num_to_shuffle > 0) | |
5378 | { | |
5379 | if ((mask & (1 << write_reg)) != 0) | |
5380 | { | |
5381 | unsigned int read_reg = num_to_shuffle - 1; | |
5382 | ||
5383 | if (read_reg != write_reg) | |
5384 | { | |
5385 | ULONGEST rval = displaced_read_reg (regs, from, read_reg); | |
5386 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); | |
5387 | if (debug_displaced) | |
5388 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
5389 | "loaded register r%d to r%d\n"), read_reg, | |
5390 | write_reg); | |
5391 | } | |
5392 | else if (debug_displaced) | |
5393 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
5394 | "r%d already in the right place\n"), | |
5395 | write_reg); | |
5396 | ||
5397 | clobbered &= ~(1 << write_reg); | |
5398 | ||
5399 | num_to_shuffle--; | |
5400 | } | |
5401 | ||
5402 | write_reg--; | |
5403 | } | |
5404 | ||
5405 | /* Restore any registers we scribbled over. */ | |
5406 | for (write_reg = 0; clobbered != 0; write_reg++) | |
5407 | { | |
5408 | if ((clobbered & (1 << write_reg)) != 0) | |
5409 | { | |
5410 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
5411 | CANNOT_WRITE_PC); | |
5412 | if (debug_displaced) | |
5413 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
5414 | "clobbered register r%d\n"), write_reg); | |
5415 | clobbered &= ~(1 << write_reg); | |
5416 | } | |
5417 | } | |
5418 | ||
5419 | /* Perform register writeback manually. */ | |
5420 | if (dsc->u.block.writeback) | |
5421 | { | |
5422 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
5423 | ||
5424 | if (dsc->u.block.increment) | |
5425 | new_rn_val += regs_loaded * 4; | |
5426 | else | |
5427 | new_rn_val -= regs_loaded * 4; | |
5428 | ||
5429 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
5430 | CANNOT_WRITE_PC); | |
5431 | } | |
5432 | } | |
5433 | ||
5434 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
5435 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
5436 | ||
5437 | static int | |
5438 | copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
5439 | struct displaced_step_closure *dsc) | |
5440 | { | |
5441 | int load = bit (insn, 20); | |
5442 | int user = bit (insn, 22); | |
5443 | int increment = bit (insn, 23); | |
5444 | int before = bit (insn, 24); | |
5445 | int writeback = bit (insn, 21); | |
5446 | int rn = bits (insn, 16, 19); | |
5447 | CORE_ADDR from = dsc->insn_addr; | |
5448 | ||
0963b4bd MS |
5449 | /* Block transfers which don't mention PC can be run directly |
5450 | out-of-line. */ | |
cca44b1b JB |
5451 | if (rn != 15 && (insn & 0x8000) == 0) |
5452 | return copy_unmodified (gdbarch, insn, "ldm/stm", dsc); | |
5453 | ||
5454 | if (rn == 15) | |
5455 | { | |
0963b4bd MS |
5456 | warning (_("displaced: Unpredictable LDM or STM with " |
5457 | "base register r15")); | |
cca44b1b JB |
5458 | return copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
5459 | } | |
5460 | ||
5461 | if (debug_displaced) | |
5462 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
5463 | "%.8lx\n", (unsigned long) insn); | |
5464 | ||
5465 | dsc->u.block.xfer_addr = displaced_read_reg (regs, from, rn); | |
5466 | dsc->u.block.rn = rn; | |
5467 | ||
5468 | dsc->u.block.load = load; | |
5469 | dsc->u.block.user = user; | |
5470 | dsc->u.block.increment = increment; | |
5471 | dsc->u.block.before = before; | |
5472 | dsc->u.block.writeback = writeback; | |
5473 | dsc->u.block.cond = bits (insn, 28, 31); | |
5474 | ||
5475 | dsc->u.block.regmask = insn & 0xffff; | |
5476 | ||
5477 | if (load) | |
5478 | { | |
5479 | if ((insn & 0xffff) == 0xffff) | |
5480 | { | |
5481 | /* LDM with a fully-populated register list. This case is | |
5482 | particularly tricky. Implement for now by fully emulating the | |
5483 | instruction (which might not behave perfectly in all cases, but | |
5484 | these instructions should be rare enough for that not to matter | |
5485 | too much). */ | |
5486 | dsc->modinsn[0] = ARM_NOP; | |
5487 | ||
5488 | dsc->cleanup = &cleanup_block_load_all; | |
5489 | } | |
5490 | else | |
5491 | { | |
5492 | /* LDM of a list of registers which includes PC. Implement by | |
5493 | rewriting the list of registers to be transferred into a | |
5494 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
5495 | registers into the correct places in the cleanup routine. */ | |
5496 | unsigned int regmask = insn & 0xffff; | |
5497 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
5498 | unsigned int to = 0, from = 0, i, new_rn; | |
5499 | ||
5500 | for (i = 0; i < num_in_list; i++) | |
5501 | dsc->tmp[i] = displaced_read_reg (regs, from, i); | |
5502 | ||
5503 | /* Writeback makes things complicated. We need to avoid clobbering | |
5504 | the base register with one of the registers in our modified | |
5505 | register list, but just using a different register can't work in | |
5506 | all cases, e.g.: | |
5507 | ||
5508 | ldm r14!, {r0-r13,pc} | |
5509 | ||
5510 | which would need to be rewritten as: | |
5511 | ||
5512 | ldm rN!, {r0-r14} | |
5513 | ||
5514 | but that can't work, because there's no free register for N. | |
5515 | ||
5516 | Solve this by turning off the writeback bit, and emulating | |
5517 | writeback manually in the cleanup routine. */ | |
5518 | ||
5519 | if (writeback) | |
5520 | insn &= ~(1 << 21); | |
5521 | ||
5522 | new_regmask = (1 << num_in_list) - 1; | |
5523 | ||
5524 | if (debug_displaced) | |
5525 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
5526 | "{..., pc}: original reg list %.4x, modified " | |
5527 | "list %.4x\n"), rn, writeback ? "!" : "", | |
5528 | (int) insn & 0xffff, new_regmask); | |
5529 | ||
5530 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
5531 | ||
5532 | dsc->cleanup = &cleanup_block_load_pc; | |
5533 | } | |
5534 | } | |
5535 | else | |
5536 | { | |
5537 | /* STM of a list of registers which includes PC. Run the instruction | |
5538 | as-is, but out of line: this will store the wrong value for the PC, | |
5539 | so we must manually fix up the memory in the cleanup routine. | |
5540 | Doing things this way has the advantage that we can auto-detect | |
5541 | the offset of the PC write (which is architecture-dependent) in | |
5542 | the cleanup routine. */ | |
5543 | dsc->modinsn[0] = insn; | |
5544 | ||
5545 | dsc->cleanup = &cleanup_block_store_pc; | |
5546 | } | |
5547 | ||
5548 | return 0; | |
5549 | } | |
5550 | ||
5551 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden | |
5552 | for Linux, where some SVC instructions must be treated specially. */ | |
5553 | ||
5554 | static void | |
6e39997a | 5555 | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5556 | struct displaced_step_closure *dsc) |
5557 | { | |
5558 | CORE_ADDR from = dsc->insn_addr; | |
5559 | CORE_ADDR resume_addr = from + 4; | |
5560 | ||
5561 | if (debug_displaced) | |
5562 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
5563 | "%.8lx\n", (unsigned long) resume_addr); | |
5564 | ||
5565 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
5566 | } | |
5567 | ||
5568 | static int | |
5569 | copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, | |
5570 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5571 | { | |
5572 | CORE_ADDR from = dsc->insn_addr; | |
5573 | ||
5574 | /* Allow OS-specific code to override SVC handling. */ | |
5575 | if (dsc->u.svc.copy_svc_os) | |
5576 | return dsc->u.svc.copy_svc_os (gdbarch, insn, to, regs, dsc); | |
5577 | ||
5578 | if (debug_displaced) | |
5579 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
5580 | (unsigned long) insn); | |
5581 | ||
5582 | /* Preparation: none. | |
5583 | Insn: unmodified svc. | |
5584 | Cleanup: pc <- insn_addr + 4. */ | |
5585 | ||
5586 | dsc->modinsn[0] = insn; | |
5587 | ||
5588 | dsc->cleanup = &cleanup_svc; | |
5589 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
5590 | instruction. */ | |
5591 | dsc->wrote_to_pc = 1; | |
5592 | ||
5593 | return 0; | |
5594 | } | |
5595 | ||
5596 | /* Copy undefined instructions. */ | |
5597 | ||
5598 | static int | |
6e39997a | 5599 | copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
cca44b1b JB |
5600 | struct displaced_step_closure *dsc) |
5601 | { | |
5602 | if (debug_displaced) | |
0963b4bd MS |
5603 | fprintf_unfiltered (gdb_stdlog, |
5604 | "displaced: copying undefined insn %.8lx\n", | |
cca44b1b JB |
5605 | (unsigned long) insn); |
5606 | ||
5607 | dsc->modinsn[0] = insn; | |
5608 | ||
5609 | return 0; | |
5610 | } | |
5611 | ||
5612 | /* Copy unpredictable instructions. */ | |
5613 | ||
5614 | static int | |
6e39997a | 5615 | copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
cca44b1b JB |
5616 | struct displaced_step_closure *dsc) |
5617 | { | |
5618 | if (debug_displaced) | |
5619 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
5620 | "%.8lx\n", (unsigned long) insn); | |
5621 | ||
5622 | dsc->modinsn[0] = insn; | |
5623 | ||
5624 | return 0; | |
5625 | } | |
5626 | ||
5627 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
5628 | the presentation in the ARM ARM. */ | |
5629 | ||
5630 | static int | |
5631 | decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, | |
5632 | struct regcache *regs, | |
5633 | struct displaced_step_closure *dsc) | |
5634 | { | |
5635 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
5636 | unsigned int rn = bits (insn, 16, 19); | |
5637 | ||
5638 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0) | |
5639 | return copy_unmodified (gdbarch, insn, "cps", dsc); | |
5640 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1) | |
5641 | return copy_unmodified (gdbarch, insn, "setend", dsc); | |
5642 | else if ((op1 & 0x60) == 0x20) | |
5643 | return copy_unmodified (gdbarch, insn, "neon dataproc", dsc); | |
5644 | else if ((op1 & 0x71) == 0x40) | |
5645 | return copy_unmodified (gdbarch, insn, "neon elt/struct load/store", dsc); | |
5646 | else if ((op1 & 0x77) == 0x41) | |
5647 | return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | |
5648 | else if ((op1 & 0x77) == 0x45) | |
5649 | return copy_preload (gdbarch, insn, regs, dsc); /* pli. */ | |
5650 | else if ((op1 & 0x77) == 0x51) | |
5651 | { | |
5652 | if (rn != 0xf) | |
5653 | return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ | |
5654 | else | |
5655 | return copy_unpred (gdbarch, insn, dsc); | |
5656 | } | |
5657 | else if ((op1 & 0x77) == 0x55) | |
5658 | return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ | |
5659 | else if (op1 == 0x57) | |
5660 | switch (op2) | |
5661 | { | |
5662 | case 0x1: return copy_unmodified (gdbarch, insn, "clrex", dsc); | |
5663 | case 0x4: return copy_unmodified (gdbarch, insn, "dsb", dsc); | |
5664 | case 0x5: return copy_unmodified (gdbarch, insn, "dmb", dsc); | |
5665 | case 0x6: return copy_unmodified (gdbarch, insn, "isb", dsc); | |
5666 | default: return copy_unpred (gdbarch, insn, dsc); | |
5667 | } | |
5668 | else if ((op1 & 0x63) == 0x43) | |
5669 | return copy_unpred (gdbarch, insn, dsc); | |
5670 | else if ((op2 & 0x1) == 0x0) | |
5671 | switch (op1 & ~0x80) | |
5672 | { | |
5673 | case 0x61: | |
5674 | return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | |
5675 | case 0x65: | |
5676 | return copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ | |
5677 | case 0x71: case 0x75: | |
5678 | /* pld/pldw reg. */ | |
5679 | return copy_preload_reg (gdbarch, insn, regs, dsc); | |
5680 | case 0x63: case 0x67: case 0x73: case 0x77: | |
5681 | return copy_unpred (gdbarch, insn, dsc); | |
5682 | default: | |
5683 | return copy_undef (gdbarch, insn, dsc); | |
5684 | } | |
5685 | else | |
5686 | return copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ | |
5687 | } | |
5688 | ||
5689 | static int | |
5690 | decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, | |
0963b4bd MS |
5691 | struct regcache *regs, |
5692 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
5693 | { |
5694 | if (bit (insn, 27) == 0) | |
5695 | return decode_misc_memhint_neon (gdbarch, insn, regs, dsc); | |
5696 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ | |
5697 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
5698 | { | |
5699 | case 0x0: case 0x2: | |
5700 | return copy_unmodified (gdbarch, insn, "srs", dsc); | |
5701 | ||
5702 | case 0x1: case 0x3: | |
5703 | return copy_unmodified (gdbarch, insn, "rfe", dsc); | |
5704 | ||
5705 | case 0x4: case 0x5: case 0x6: case 0x7: | |
5706 | return copy_b_bl_blx (gdbarch, insn, regs, dsc); | |
5707 | ||
5708 | case 0x8: | |
5709 | switch ((insn & 0xe00000) >> 21) | |
5710 | { | |
5711 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
5712 | /* stc/stc2. */ | |
5713 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
5714 | ||
5715 | case 0x2: | |
5716 | return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | |
5717 | ||
5718 | default: | |
5719 | return copy_undef (gdbarch, insn, dsc); | |
5720 | } | |
5721 | ||
5722 | case 0x9: | |
5723 | { | |
5724 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
5725 | switch ((insn & 0xe00000) >> 21) | |
5726 | { | |
5727 | case 0x1: case 0x3: | |
5728 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
5729 | return rn_f ? copy_undef (gdbarch, insn, dsc) | |
5730 | : copy_copro_load_store (gdbarch, insn, regs, dsc); | |
5731 | ||
5732 | case 0x2: | |
5733 | return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | |
5734 | ||
5735 | case 0x4: case 0x5: case 0x6: case 0x7: | |
5736 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
5737 | return rn_f ? copy_copro_load_store (gdbarch, insn, regs, dsc) | |
5738 | : copy_undef (gdbarch, insn, dsc); | |
5739 | ||
5740 | default: | |
5741 | return copy_undef (gdbarch, insn, dsc); | |
5742 | } | |
5743 | } | |
5744 | ||
5745 | case 0xa: | |
5746 | return copy_unmodified (gdbarch, insn, "stc/stc2", dsc); | |
5747 | ||
5748 | case 0xb: | |
5749 | if (bits (insn, 16, 19) == 0xf) | |
5750 | /* ldc/ldc2 lit. */ | |
5751 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
5752 | else | |
5753 | return copy_undef (gdbarch, insn, dsc); | |
5754 | ||
5755 | case 0xc: | |
5756 | if (bit (insn, 4)) | |
5757 | return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | |
5758 | else | |
5759 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
5760 | ||
5761 | case 0xd: | |
5762 | if (bit (insn, 4)) | |
5763 | return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | |
5764 | else | |
5765 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
5766 | ||
5767 | default: | |
5768 | return copy_undef (gdbarch, insn, dsc); | |
5769 | } | |
5770 | } | |
5771 | ||
5772 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
5773 | ||
5774 | static int | |
5775 | decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, | |
0963b4bd MS |
5776 | struct regcache *regs, |
5777 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
5778 | { |
5779 | unsigned int op2 = bits (insn, 4, 6); | |
5780 | unsigned int op = bits (insn, 21, 22); | |
5781 | unsigned int op1 = bits (insn, 16, 19); | |
5782 | ||
5783 | switch (op2) | |
5784 | { | |
5785 | case 0x0: | |
5786 | return copy_unmodified (gdbarch, insn, "mrs/msr", dsc); | |
5787 | ||
5788 | case 0x1: | |
5789 | if (op == 0x1) /* bx. */ | |
5790 | return copy_bx_blx_reg (gdbarch, insn, regs, dsc); | |
5791 | else if (op == 0x3) | |
5792 | return copy_unmodified (gdbarch, insn, "clz", dsc); | |
5793 | else | |
5794 | return copy_undef (gdbarch, insn, dsc); | |
5795 | ||
5796 | case 0x2: | |
5797 | if (op == 0x1) | |
5798 | /* Not really supported. */ | |
5799 | return copy_unmodified (gdbarch, insn, "bxj", dsc); | |
5800 | else | |
5801 | return copy_undef (gdbarch, insn, dsc); | |
5802 | ||
5803 | case 0x3: | |
5804 | if (op == 0x1) | |
0963b4bd MS |
5805 | return copy_bx_blx_reg (gdbarch, insn, |
5806 | regs, dsc); /* blx register. */ | |
cca44b1b JB |
5807 | else |
5808 | return copy_undef (gdbarch, insn, dsc); | |
5809 | ||
5810 | case 0x5: | |
5811 | return copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); | |
5812 | ||
5813 | case 0x7: | |
5814 | if (op == 0x1) | |
5815 | return copy_unmodified (gdbarch, insn, "bkpt", dsc); | |
5816 | else if (op == 0x3) | |
5817 | /* Not really supported. */ | |
5818 | return copy_unmodified (gdbarch, insn, "smc", dsc); | |
5819 | ||
5820 | default: | |
5821 | return copy_undef (gdbarch, insn, dsc); | |
5822 | } | |
5823 | } | |
5824 | ||
5825 | static int | |
5826 | decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
5827 | struct displaced_step_closure *dsc) | |
5828 | { | |
5829 | if (bit (insn, 25)) | |
5830 | switch (bits (insn, 20, 24)) | |
5831 | { | |
5832 | case 0x10: | |
5833 | return copy_unmodified (gdbarch, insn, "movw", dsc); | |
5834 | ||
5835 | case 0x14: | |
5836 | return copy_unmodified (gdbarch, insn, "movt", dsc); | |
5837 | ||
5838 | case 0x12: case 0x16: | |
5839 | return copy_unmodified (gdbarch, insn, "msr imm", dsc); | |
5840 | ||
5841 | default: | |
5842 | return copy_alu_imm (gdbarch, insn, regs, dsc); | |
5843 | } | |
5844 | else | |
5845 | { | |
5846 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
5847 | ||
5848 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
5849 | return copy_alu_reg (gdbarch, insn, regs, dsc); | |
5850 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) | |
5851 | return copy_alu_shifted_reg (gdbarch, insn, regs, dsc); | |
5852 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) | |
5853 | return decode_miscellaneous (gdbarch, insn, regs, dsc); | |
5854 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) | |
5855 | return copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); | |
5856 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) | |
5857 | return copy_unmodified (gdbarch, insn, "mul/mla", dsc); | |
5858 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) | |
5859 | return copy_unmodified (gdbarch, insn, "synch", dsc); | |
5860 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) | |
5861 | /* 2nd arg means "unpriveleged". */ | |
5862 | return copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, | |
5863 | dsc); | |
5864 | } | |
5865 | ||
5866 | /* Should be unreachable. */ | |
5867 | return 1; | |
5868 | } | |
5869 | ||
5870 | static int | |
5871 | decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, | |
5872 | struct regcache *regs, | |
5873 | struct displaced_step_closure *dsc) | |
5874 | { | |
5875 | int a = bit (insn, 25), b = bit (insn, 4); | |
5876 | uint32_t op1 = bits (insn, 20, 24); | |
5877 | int rn_f = bits (insn, 16, 19) == 0xf; | |
5878 | ||
5879 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
5880 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
5881 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0); | |
5882 | else if ((!a && (op1 & 0x17) == 0x02) | |
5883 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
5884 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1); | |
5885 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) | |
5886 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
5887 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0); | |
5888 | else if ((!a && (op1 & 0x17) == 0x03) | |
5889 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
5890 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1); | |
5891 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) | |
5892 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
5893 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); | |
5894 | else if ((!a && (op1 & 0x17) == 0x06) | |
5895 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
5896 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); | |
5897 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) | |
5898 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
5899 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); | |
5900 | else if ((!a && (op1 & 0x17) == 0x07) | |
5901 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
5902 | return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); | |
5903 | ||
5904 | /* Should be unreachable. */ | |
5905 | return 1; | |
5906 | } | |
5907 | ||
5908 | static int | |
5909 | decode_media (struct gdbarch *gdbarch, uint32_t insn, | |
5910 | struct displaced_step_closure *dsc) | |
5911 | { | |
5912 | switch (bits (insn, 20, 24)) | |
5913 | { | |
5914 | case 0x00: case 0x01: case 0x02: case 0x03: | |
5915 | return copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); | |
5916 | ||
5917 | case 0x04: case 0x05: case 0x06: case 0x07: | |
5918 | return copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); | |
5919 | ||
5920 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
5921 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
5922 | return copy_unmodified (gdbarch, insn, | |
5923 | "decode/pack/unpack/saturate/reverse", dsc); | |
5924 | ||
5925 | case 0x18: | |
5926 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
5927 | { | |
5928 | if (bits (insn, 12, 15) == 0xf) | |
5929 | return copy_unmodified (gdbarch, insn, "usad8", dsc); | |
5930 | else | |
5931 | return copy_unmodified (gdbarch, insn, "usada8", dsc); | |
5932 | } | |
5933 | else | |
5934 | return copy_undef (gdbarch, insn, dsc); | |
5935 | ||
5936 | case 0x1a: case 0x1b: | |
5937 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
5938 | return copy_unmodified (gdbarch, insn, "sbfx", dsc); | |
5939 | else | |
5940 | return copy_undef (gdbarch, insn, dsc); | |
5941 | ||
5942 | case 0x1c: case 0x1d: | |
5943 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
5944 | { | |
5945 | if (bits (insn, 0, 3) == 0xf) | |
5946 | return copy_unmodified (gdbarch, insn, "bfc", dsc); | |
5947 | else | |
5948 | return copy_unmodified (gdbarch, insn, "bfi", dsc); | |
5949 | } | |
5950 | else | |
5951 | return copy_undef (gdbarch, insn, dsc); | |
5952 | ||
5953 | case 0x1e: case 0x1f: | |
5954 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
5955 | return copy_unmodified (gdbarch, insn, "ubfx", dsc); | |
5956 | else | |
5957 | return copy_undef (gdbarch, insn, dsc); | |
5958 | } | |
5959 | ||
5960 | /* Should be unreachable. */ | |
5961 | return 1; | |
5962 | } | |
5963 | ||
5964 | static int | |
5965 | decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn, | |
5966 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5967 | { | |
5968 | if (bit (insn, 25)) | |
5969 | return copy_b_bl_blx (gdbarch, insn, regs, dsc); | |
5970 | else | |
5971 | return copy_block_xfer (gdbarch, insn, regs, dsc); | |
5972 | } | |
5973 | ||
5974 | static int | |
5975 | decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, | |
0963b4bd MS |
5976 | struct regcache *regs, |
5977 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
5978 | { |
5979 | unsigned int opcode = bits (insn, 20, 24); | |
5980 | ||
5981 | switch (opcode) | |
5982 | { | |
5983 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
5984 | return copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); | |
5985 | ||
5986 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
5987 | case 0x12: case 0x16: | |
5988 | return copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); | |
5989 | ||
5990 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
5991 | case 0x13: case 0x17: | |
5992 | return copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); | |
5993 | ||
5994 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
5995 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
5996 | /* Note: no writeback for these instructions. Bit 25 will always be | |
5997 | zero though (via caller), so the following works OK. */ | |
5998 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
5999 | } | |
6000 | ||
6001 | /* Should be unreachable. */ | |
6002 | return 1; | |
6003 | } | |
6004 | ||
6005 | static int | |
6006 | decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, | |
6007 | struct regcache *regs, struct displaced_step_closure *dsc) | |
6008 | { | |
6009 | unsigned int op1 = bits (insn, 20, 25); | |
6010 | int op = bit (insn, 4); | |
6011 | unsigned int coproc = bits (insn, 8, 11); | |
6012 | unsigned int rn = bits (insn, 16, 19); | |
6013 | ||
6014 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
6015 | return decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); | |
6016 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 | |
6017 | && (coproc & 0xe) != 0xa) | |
6018 | /* stc/stc2. */ | |
6019 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
6020 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 | |
6021 | && (coproc & 0xe) != 0xa) | |
6022 | /* ldc/ldc2 imm/lit. */ | |
6023 | return copy_copro_load_store (gdbarch, insn, regs, dsc); | |
6024 | else if ((op1 & 0x3e) == 0x00) | |
6025 | return copy_undef (gdbarch, insn, dsc); | |
6026 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) | |
6027 | return copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); | |
6028 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) | |
6029 | return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | |
6030 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) | |
6031 | return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | |
6032 | else if ((op1 & 0x30) == 0x20 && !op) | |
6033 | { | |
6034 | if ((coproc & 0xe) == 0xa) | |
6035 | return copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); | |
6036 | else | |
6037 | return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | |
6038 | } | |
6039 | else if ((op1 & 0x30) == 0x20 && op) | |
6040 | return copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); | |
6041 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) | |
6042 | return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | |
6043 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) | |
6044 | return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | |
6045 | else if ((op1 & 0x30) == 0x30) | |
6046 | return copy_svc (gdbarch, insn, to, regs, dsc); | |
6047 | else | |
6048 | return copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ | |
6049 | } | |
6050 | ||
6051 | void | |
6052 | arm_process_displaced_insn (struct gdbarch *gdbarch, uint32_t insn, | |
0963b4bd MS |
6053 | CORE_ADDR from, CORE_ADDR to, |
6054 | struct regcache *regs, | |
cca44b1b JB |
6055 | struct displaced_step_closure *dsc) |
6056 | { | |
6057 | int err = 0; | |
6058 | ||
6059 | if (!displaced_in_arm_mode (regs)) | |
6060 | error (_("Displaced stepping is only supported in ARM mode")); | |
6061 | ||
6062 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
6063 | here and override below if/when necessary. */ | |
6064 | dsc->numinsns = 1; | |
6065 | dsc->insn_addr = from; | |
6066 | dsc->scratch_base = to; | |
6067 | dsc->cleanup = NULL; | |
6068 | dsc->wrote_to_pc = 0; | |
6069 | ||
6070 | if ((insn & 0xf0000000) == 0xf0000000) | |
6071 | err = decode_unconditional (gdbarch, insn, regs, dsc); | |
6072 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) | |
6073 | { | |
6074 | case 0x0: case 0x1: case 0x2: case 0x3: | |
6075 | err = decode_dp_misc (gdbarch, insn, regs, dsc); | |
6076 | break; | |
6077 | ||
6078 | case 0x4: case 0x5: case 0x6: | |
6079 | err = decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); | |
6080 | break; | |
6081 | ||
6082 | case 0x7: | |
6083 | err = decode_media (gdbarch, insn, dsc); | |
6084 | break; | |
6085 | ||
6086 | case 0x8: case 0x9: case 0xa: case 0xb: | |
6087 | err = decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); | |
6088 | break; | |
6089 | ||
6090 | case 0xc: case 0xd: case 0xe: case 0xf: | |
6091 | err = decode_svc_copro (gdbarch, insn, to, regs, dsc); | |
6092 | break; | |
6093 | } | |
6094 | ||
6095 | if (err) | |
6096 | internal_error (__FILE__, __LINE__, | |
6097 | _("arm_process_displaced_insn: Instruction decode error")); | |
6098 | } | |
6099 | ||
6100 | /* Actually set up the scratch space for a displaced instruction. */ | |
6101 | ||
6102 | void | |
6103 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
6104 | CORE_ADDR to, struct displaced_step_closure *dsc) | |
6105 | { | |
6106 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
6107 | unsigned int i; | |
6108 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
6109 | ||
6110 | /* Poke modified instruction(s). */ | |
6111 | for (i = 0; i < dsc->numinsns; i++) | |
6112 | { | |
6113 | if (debug_displaced) | |
6114 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn %.8lx at " | |
6115 | "%.8lx\n", (unsigned long) dsc->modinsn[i], | |
6116 | (unsigned long) to + i * 4); | |
6117 | write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code, | |
6118 | dsc->modinsn[i]); | |
6119 | } | |
6120 | ||
6121 | /* Put breakpoint afterwards. */ | |
6122 | write_memory (to + dsc->numinsns * 4, tdep->arm_breakpoint, | |
6123 | tdep->arm_breakpoint_size); | |
6124 | ||
6125 | if (debug_displaced) | |
6126 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
6127 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
6128 | } | |
6129 | ||
6130 | /* Entry point for copying an instruction into scratch space for displaced | |
6131 | stepping. */ | |
6132 | ||
6133 | struct displaced_step_closure * | |
6134 | arm_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
6135 | CORE_ADDR from, CORE_ADDR to, | |
6136 | struct regcache *regs) | |
6137 | { | |
6138 | struct displaced_step_closure *dsc | |
6139 | = xmalloc (sizeof (struct displaced_step_closure)); | |
6140 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
6141 | uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); | |
6142 | ||
6143 | if (debug_displaced) | |
6144 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
6145 | "at %.8lx\n", (unsigned long) insn, | |
6146 | (unsigned long) from); | |
6147 | ||
6148 | arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc); | |
6149 | arm_displaced_init_closure (gdbarch, from, to, dsc); | |
6150 | ||
6151 | return dsc; | |
6152 | } | |
6153 | ||
6154 | /* Entry point for cleaning things up after a displaced instruction has been | |
6155 | single-stepped. */ | |
6156 | ||
6157 | void | |
6158 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
6159 | struct displaced_step_closure *dsc, | |
6160 | CORE_ADDR from, CORE_ADDR to, | |
6161 | struct regcache *regs) | |
6162 | { | |
6163 | if (dsc->cleanup) | |
6164 | dsc->cleanup (gdbarch, regs, dsc); | |
6165 | ||
6166 | if (!dsc->wrote_to_pc) | |
6167 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, dsc->insn_addr + 4); | |
6168 | } | |
6169 | ||
6170 | #include "bfd-in2.h" | |
6171 | #include "libcoff.h" | |
6172 | ||
6173 | static int | |
6174 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
6175 | { | |
9779414d DJ |
6176 | struct gdbarch *gdbarch = info->application_data; |
6177 | ||
6178 | if (arm_pc_is_thumb (gdbarch, memaddr)) | |
cca44b1b JB |
6179 | { |
6180 | static asymbol *asym; | |
6181 | static combined_entry_type ce; | |
6182 | static struct coff_symbol_struct csym; | |
6183 | static struct bfd fake_bfd; | |
6184 | static bfd_target fake_target; | |
6185 | ||
6186 | if (csym.native == NULL) | |
6187 | { | |
6188 | /* Create a fake symbol vector containing a Thumb symbol. | |
6189 | This is solely so that the code in print_insn_little_arm() | |
6190 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
6191 | the presence of a Thumb symbol and switch to decoding | |
6192 | Thumb instructions. */ | |
6193 | ||
6194 | fake_target.flavour = bfd_target_coff_flavour; | |
6195 | fake_bfd.xvec = &fake_target; | |
6196 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
6197 | csym.native = &ce; | |
6198 | csym.symbol.the_bfd = &fake_bfd; | |
6199 | csym.symbol.name = "fake"; | |
6200 | asym = (asymbol *) & csym; | |
6201 | } | |
6202 | ||
6203 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
6204 | info->symbols = &asym; | |
6205 | } | |
6206 | else | |
6207 | info->symbols = NULL; | |
6208 | ||
6209 | if (info->endian == BFD_ENDIAN_BIG) | |
6210 | return print_insn_big_arm (memaddr, info); | |
6211 | else | |
6212 | return print_insn_little_arm (memaddr, info); | |
6213 | } | |
6214 | ||
6215 | /* The following define instruction sequences that will cause ARM | |
6216 | cpu's to take an undefined instruction trap. These are used to | |
6217 | signal a breakpoint to GDB. | |
6218 | ||
6219 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
6220 | modes. A different instruction is required for each mode. The ARM | |
6221 | cpu's can also be big or little endian. Thus four different | |
6222 | instructions are needed to support all cases. | |
6223 | ||
6224 | Note: ARMv4 defines several new instructions that will take the | |
6225 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
6226 | not in fact add the new instructions. The new undefined | |
6227 | instructions in ARMv4 are all instructions that had no defined | |
6228 | behaviour in earlier chips. There is no guarantee that they will | |
6229 | raise an exception, but may be treated as NOP's. In practice, it | |
6230 | may only safe to rely on instructions matching: | |
6231 | ||
6232 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
6233 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
6234 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
6235 | ||
0963b4bd | 6236 | Even this may only true if the condition predicate is true. The |
cca44b1b JB |
6237 | following use a condition predicate of ALWAYS so it is always TRUE. |
6238 | ||
6239 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
6240 | and NetBSD all use a software interrupt rather than an undefined | |
6241 | instruction to force a trap. This can be handled by by the | |
6242 | abi-specific code during establishment of the gdbarch vector. */ | |
6243 | ||
6244 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
6245 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
6246 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
6247 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
6248 | ||
6249 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
6250 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
6251 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
6252 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
6253 | ||
6254 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses | |
6255 | the program counter value to determine whether a 16-bit or 32-bit | |
6256 | breakpoint should be used. It returns a pointer to a string of | |
6257 | bytes that encode a breakpoint instruction, stores the length of | |
6258 | the string to *lenptr, and adjusts the program counter (if | |
6259 | necessary) to point to the actual memory location where the | |
6260 | breakpoint should be inserted. */ | |
6261 | ||
6262 | static const unsigned char * | |
6263 | arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
6264 | { | |
6265 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
177321bd | 6266 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
cca44b1b | 6267 | |
9779414d | 6268 | if (arm_pc_is_thumb (gdbarch, *pcptr)) |
cca44b1b JB |
6269 | { |
6270 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
177321bd DJ |
6271 | |
6272 | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | |
6273 | check whether we are replacing a 32-bit instruction. */ | |
6274 | if (tdep->thumb2_breakpoint != NULL) | |
6275 | { | |
6276 | gdb_byte buf[2]; | |
6277 | if (target_read_memory (*pcptr, buf, 2) == 0) | |
6278 | { | |
6279 | unsigned short inst1; | |
6280 | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
6281 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
6282 | { | |
6283 | *lenptr = tdep->thumb2_breakpoint_size; | |
6284 | return tdep->thumb2_breakpoint; | |
6285 | } | |
6286 | } | |
6287 | } | |
6288 | ||
cca44b1b JB |
6289 | *lenptr = tdep->thumb_breakpoint_size; |
6290 | return tdep->thumb_breakpoint; | |
6291 | } | |
6292 | else | |
6293 | { | |
6294 | *lenptr = tdep->arm_breakpoint_size; | |
6295 | return tdep->arm_breakpoint; | |
6296 | } | |
6297 | } | |
6298 | ||
177321bd DJ |
6299 | static void |
6300 | arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, | |
6301 | int *kindptr) | |
6302 | { | |
6303 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
6304 | ||
6305 | arm_breakpoint_from_pc (gdbarch, pcptr, kindptr); | |
6306 | ||
9779414d | 6307 | if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4) |
177321bd DJ |
6308 | /* The documented magic value for a 32-bit Thumb-2 breakpoint, so |
6309 | that this is not confused with a 32-bit ARM breakpoint. */ | |
6310 | *kindptr = 3; | |
6311 | } | |
6312 | ||
cca44b1b JB |
6313 | /* Extract from an array REGBUF containing the (raw) register state a |
6314 | function return value of type TYPE, and copy that, in virtual | |
6315 | format, into VALBUF. */ | |
6316 | ||
6317 | static void | |
6318 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
6319 | gdb_byte *valbuf) | |
6320 | { | |
6321 | struct gdbarch *gdbarch = get_regcache_arch (regs); | |
6322 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
6323 | ||
6324 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
6325 | { | |
6326 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
6327 | { | |
6328 | case ARM_FLOAT_FPA: | |
6329 | { | |
6330 | /* The value is in register F0 in internal format. We need to | |
6331 | extract the raw value and then convert it to the desired | |
6332 | internal type. */ | |
6333 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
6334 | ||
6335 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
6336 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
6337 | valbuf, gdbarch_byte_order (gdbarch)); | |
6338 | } | |
6339 | break; | |
6340 | ||
6341 | case ARM_FLOAT_SOFT_FPA: | |
6342 | case ARM_FLOAT_SOFT_VFP: | |
6343 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
6344 | not using the VFP ABI code. */ | |
6345 | case ARM_FLOAT_VFP: | |
6346 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
6347 | if (TYPE_LENGTH (type) > 4) | |
6348 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
6349 | valbuf + INT_REGISTER_SIZE); | |
6350 | break; | |
6351 | ||
6352 | default: | |
0963b4bd MS |
6353 | internal_error (__FILE__, __LINE__, |
6354 | _("arm_extract_return_value: " | |
6355 | "Floating point model not supported")); | |
cca44b1b JB |
6356 | break; |
6357 | } | |
6358 | } | |
6359 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
6360 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
6361 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
6362 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
6363 | || TYPE_CODE (type) == TYPE_CODE_REF | |
6364 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
6365 | { | |
6366 | /* If the the type is a plain integer, then the access is | |
6367 | straight-forward. Otherwise we have to play around a bit more. */ | |
6368 | int len = TYPE_LENGTH (type); | |
6369 | int regno = ARM_A1_REGNUM; | |
6370 | ULONGEST tmp; | |
6371 | ||
6372 | while (len > 0) | |
6373 | { | |
6374 | /* By using store_unsigned_integer we avoid having to do | |
6375 | anything special for small big-endian values. */ | |
6376 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
6377 | store_unsigned_integer (valbuf, | |
6378 | (len > INT_REGISTER_SIZE | |
6379 | ? INT_REGISTER_SIZE : len), | |
6380 | byte_order, tmp); | |
6381 | len -= INT_REGISTER_SIZE; | |
6382 | valbuf += INT_REGISTER_SIZE; | |
6383 | } | |
6384 | } | |
6385 | else | |
6386 | { | |
6387 | /* For a structure or union the behaviour is as if the value had | |
6388 | been stored to word-aligned memory and then loaded into | |
6389 | registers with 32-bit load instruction(s). */ | |
6390 | int len = TYPE_LENGTH (type); | |
6391 | int regno = ARM_A1_REGNUM; | |
6392 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
6393 | ||
6394 | while (len > 0) | |
6395 | { | |
6396 | regcache_cooked_read (regs, regno++, tmpbuf); | |
6397 | memcpy (valbuf, tmpbuf, | |
6398 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
6399 | len -= INT_REGISTER_SIZE; | |
6400 | valbuf += INT_REGISTER_SIZE; | |
6401 | } | |
6402 | } | |
6403 | } | |
6404 | ||
6405 | ||
6406 | /* Will a function return an aggregate type in memory or in a | |
6407 | register? Return 0 if an aggregate type can be returned in a | |
6408 | register, 1 if it must be returned in memory. */ | |
6409 | ||
6410 | static int | |
6411 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
6412 | { | |
6413 | int nRc; | |
6414 | enum type_code code; | |
6415 | ||
6416 | CHECK_TYPEDEF (type); | |
6417 | ||
6418 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
6419 | registers. For an aggregate type to be integer like, its size | |
6420 | must be less than or equal to INT_REGISTER_SIZE and the | |
6421 | offset of each addressable subfield must be zero. Note that bit | |
6422 | fields are not addressable, and all addressable subfields of | |
6423 | unions always start at offset zero. | |
6424 | ||
6425 | This function is based on the behaviour of GCC 2.95.1. | |
6426 | See: gcc/arm.c: arm_return_in_memory() for details. | |
6427 | ||
6428 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
6429 | parameters correctly for a function returning the following | |
6430 | structure: struct { float f;}; This should be returned in memory, | |
6431 | not a register. Richard Earnshaw sent me a patch, but I do not | |
6432 | know of any way to detect if a function like the above has been | |
6433 | compiled with the correct calling convention. */ | |
6434 | ||
6435 | /* All aggregate types that won't fit in a register must be returned | |
6436 | in memory. */ | |
6437 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
6438 | { | |
6439 | return 1; | |
6440 | } | |
6441 | ||
6442 | /* The AAPCS says all aggregates not larger than a word are returned | |
6443 | in a register. */ | |
6444 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) | |
6445 | return 0; | |
6446 | ||
6447 | /* The only aggregate types that can be returned in a register are | |
6448 | structs and unions. Arrays must be returned in memory. */ | |
6449 | code = TYPE_CODE (type); | |
6450 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
6451 | { | |
6452 | return 1; | |
6453 | } | |
6454 | ||
6455 | /* Assume all other aggregate types can be returned in a register. | |
6456 | Run a check for structures, unions and arrays. */ | |
6457 | nRc = 0; | |
6458 | ||
6459 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
6460 | { | |
6461 | int i; | |
6462 | /* Need to check if this struct/union is "integer" like. For | |
6463 | this to be true, its size must be less than or equal to | |
6464 | INT_REGISTER_SIZE and the offset of each addressable | |
6465 | subfield must be zero. Note that bit fields are not | |
6466 | addressable, and unions always start at offset zero. If any | |
6467 | of the subfields is a floating point type, the struct/union | |
6468 | cannot be an integer type. */ | |
6469 | ||
6470 | /* For each field in the object, check: | |
6471 | 1) Is it FP? --> yes, nRc = 1; | |
67255d04 RE |
6472 | 2) Is it addressable (bitpos != 0) and |
6473 | not packed (bitsize == 0)? | |
6474 | --> yes, nRc = 1 | |
6475 | */ | |
6476 | ||
6477 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
6478 | { | |
6479 | enum type_code field_type_code; | |
0963b4bd MS |
6480 | field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, |
6481 | i))); | |
67255d04 RE |
6482 | |
6483 | /* Is it a floating point type field? */ | |
6484 | if (field_type_code == TYPE_CODE_FLT) | |
6485 | { | |
6486 | nRc = 1; | |
6487 | break; | |
6488 | } | |
6489 | ||
6490 | /* If bitpos != 0, then we have to care about it. */ | |
6491 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
6492 | { | |
6493 | /* Bitfields are not addressable. If the field bitsize is | |
6494 | zero, then the field is not packed. Hence it cannot be | |
6495 | a bitfield or any other packed type. */ | |
6496 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
6497 | { | |
6498 | nRc = 1; | |
6499 | break; | |
6500 | } | |
6501 | } | |
6502 | } | |
6503 | } | |
6504 | ||
6505 | return nRc; | |
6506 | } | |
6507 | ||
34e8f22d RE |
6508 | /* Write into appropriate registers a function return value of type |
6509 | TYPE, given in virtual format. */ | |
6510 | ||
6511 | static void | |
b508a996 | 6512 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 6513 | const gdb_byte *valbuf) |
34e8f22d | 6514 | { |
be8626e0 | 6515 | struct gdbarch *gdbarch = get_regcache_arch (regs); |
e17a4113 | 6516 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 6517 | |
34e8f22d RE |
6518 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
6519 | { | |
7a5ea0d4 | 6520 | char buf[MAX_REGISTER_SIZE]; |
34e8f22d | 6521 | |
be8626e0 | 6522 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
6523 | { |
6524 | case ARM_FLOAT_FPA: | |
6525 | ||
be8626e0 MD |
6526 | convert_to_extended (floatformat_from_type (type), buf, valbuf, |
6527 | gdbarch_byte_order (gdbarch)); | |
b508a996 | 6528 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
6529 | break; |
6530 | ||
fd50bc42 | 6531 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 6532 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
6533 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
6534 | not using the VFP ABI code. */ | |
6535 | case ARM_FLOAT_VFP: | |
b508a996 RE |
6536 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
6537 | if (TYPE_LENGTH (type) > 4) | |
6538 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 6539 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
6540 | break; |
6541 | ||
6542 | default: | |
9b20d036 MS |
6543 | internal_error (__FILE__, __LINE__, |
6544 | _("arm_store_return_value: Floating " | |
6545 | "point model not supported")); | |
08216dd7 RE |
6546 | break; |
6547 | } | |
34e8f22d | 6548 | } |
b508a996 RE |
6549 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
6550 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
6551 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
6552 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
6553 | || TYPE_CODE (type) == TYPE_CODE_REF | |
6554 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
6555 | { | |
6556 | if (TYPE_LENGTH (type) <= 4) | |
6557 | { | |
6558 | /* Values of one word or less are zero/sign-extended and | |
6559 | returned in r0. */ | |
7a5ea0d4 | 6560 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
6561 | LONGEST val = unpack_long (type, valbuf); |
6562 | ||
e17a4113 | 6563 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
6564 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
6565 | } | |
6566 | else | |
6567 | { | |
6568 | /* Integral values greater than one word are stored in consecutive | |
6569 | registers starting with r0. This will always be a multiple of | |
6570 | the regiser size. */ | |
6571 | int len = TYPE_LENGTH (type); | |
6572 | int regno = ARM_A1_REGNUM; | |
6573 | ||
6574 | while (len > 0) | |
6575 | { | |
6576 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
6577 | len -= INT_REGISTER_SIZE; |
6578 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
6579 | } |
6580 | } | |
6581 | } | |
34e8f22d | 6582 | else |
b508a996 RE |
6583 | { |
6584 | /* For a structure or union the behaviour is as if the value had | |
6585 | been stored to word-aligned memory and then loaded into | |
6586 | registers with 32-bit load instruction(s). */ | |
6587 | int len = TYPE_LENGTH (type); | |
6588 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 6589 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
6590 | |
6591 | while (len > 0) | |
6592 | { | |
6593 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 6594 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 6595 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
6596 | len -= INT_REGISTER_SIZE; |
6597 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
6598 | } |
6599 | } | |
34e8f22d RE |
6600 | } |
6601 | ||
2af48f68 PB |
6602 | |
6603 | /* Handle function return values. */ | |
6604 | ||
6605 | static enum return_value_convention | |
c055b101 CV |
6606 | arm_return_value (struct gdbarch *gdbarch, struct type *func_type, |
6607 | struct type *valtype, struct regcache *regcache, | |
6608 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 6609 | { |
7c00367c | 6610 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
90445bd3 DJ |
6611 | enum arm_vfp_cprc_base_type vfp_base_type; |
6612 | int vfp_base_count; | |
6613 | ||
6614 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
6615 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
6616 | { | |
6617 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
6618 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
6619 | int i; | |
6620 | for (i = 0; i < vfp_base_count; i++) | |
6621 | { | |
58d6951d DJ |
6622 | if (reg_char == 'q') |
6623 | { | |
6624 | if (writebuf) | |
6625 | arm_neon_quad_write (gdbarch, regcache, i, | |
6626 | writebuf + i * unit_length); | |
6627 | ||
6628 | if (readbuf) | |
6629 | arm_neon_quad_read (gdbarch, regcache, i, | |
6630 | readbuf + i * unit_length); | |
6631 | } | |
6632 | else | |
6633 | { | |
6634 | char name_buf[4]; | |
6635 | int regnum; | |
6636 | ||
6637 | sprintf (name_buf, "%c%d", reg_char, i); | |
6638 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
6639 | strlen (name_buf)); | |
6640 | if (writebuf) | |
6641 | regcache_cooked_write (regcache, regnum, | |
6642 | writebuf + i * unit_length); | |
6643 | if (readbuf) | |
6644 | regcache_cooked_read (regcache, regnum, | |
6645 | readbuf + i * unit_length); | |
6646 | } | |
90445bd3 DJ |
6647 | } |
6648 | return RETURN_VALUE_REGISTER_CONVENTION; | |
6649 | } | |
7c00367c | 6650 | |
2af48f68 PB |
6651 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
6652 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
6653 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
6654 | { | |
7c00367c MK |
6655 | if (tdep->struct_return == pcc_struct_return |
6656 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
6657 | return RETURN_VALUE_STRUCT_CONVENTION; |
6658 | } | |
6659 | ||
6660 | if (writebuf) | |
6661 | arm_store_return_value (valtype, regcache, writebuf); | |
6662 | ||
6663 | if (readbuf) | |
6664 | arm_extract_return_value (valtype, regcache, readbuf); | |
6665 | ||
6666 | return RETURN_VALUE_REGISTER_CONVENTION; | |
6667 | } | |
6668 | ||
6669 | ||
9df628e0 | 6670 | static int |
60ade65d | 6671 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 6672 | { |
e17a4113 UW |
6673 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6674 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
6675 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 6676 | CORE_ADDR jb_addr; |
7a5ea0d4 | 6677 | char buf[INT_REGISTER_SIZE]; |
9df628e0 | 6678 | |
60ade65d | 6679 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
6680 | |
6681 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 6682 | INT_REGISTER_SIZE)) |
9df628e0 RE |
6683 | return 0; |
6684 | ||
e17a4113 | 6685 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
6686 | return 1; |
6687 | } | |
6688 | ||
faa95490 DJ |
6689 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
6690 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
6691 | |
6692 | CORE_ADDR | |
52f729a7 | 6693 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 6694 | { |
c5aa993b | 6695 | char *name; |
faa95490 | 6696 | int namelen; |
c906108c SS |
6697 | CORE_ADDR start_addr; |
6698 | ||
6699 | /* Find the starting address and name of the function containing the PC. */ | |
6700 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
6701 | return 0; | |
6702 | ||
faa95490 DJ |
6703 | /* If PC is in a Thumb call or return stub, return the address of the |
6704 | target PC, which is in a register. The thunk functions are called | |
6705 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
6706 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
6707 | functions, named __ARM_call_via_r[0-7]. */ | |
6708 | if (strncmp (name, "_call_via_", 10) == 0 | |
6709 | || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0) | |
c906108c | 6710 | { |
ed9a39eb JM |
6711 | /* Use the name suffix to determine which register contains the |
6712 | target PC. */ | |
c5aa993b JM |
6713 | static char *table[15] = |
6714 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
6715 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
6716 | }; | |
c906108c | 6717 | int regno; |
faa95490 | 6718 | int offset = strlen (name) - 2; |
c906108c SS |
6719 | |
6720 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 6721 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 6722 | return get_frame_register_unsigned (frame, regno); |
c906108c | 6723 | } |
ed9a39eb | 6724 | |
faa95490 DJ |
6725 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
6726 | non-interworking calls to foo. We could decode the stubs | |
6727 | to find the target but it's easier to use the symbol table. */ | |
6728 | namelen = strlen (name); | |
6729 | if (name[0] == '_' && name[1] == '_' | |
6730 | && ((namelen > 2 + strlen ("_from_thumb") | |
6731 | && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb", | |
6732 | strlen ("_from_thumb")) == 0) | |
6733 | || (namelen > 2 + strlen ("_from_arm") | |
6734 | && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm", | |
6735 | strlen ("_from_arm")) == 0))) | |
6736 | { | |
6737 | char *target_name; | |
6738 | int target_len = namelen - 2; | |
6739 | struct minimal_symbol *minsym; | |
6740 | struct objfile *objfile; | |
6741 | struct obj_section *sec; | |
6742 | ||
6743 | if (name[namelen - 1] == 'b') | |
6744 | target_len -= strlen ("_from_thumb"); | |
6745 | else | |
6746 | target_len -= strlen ("_from_arm"); | |
6747 | ||
6748 | target_name = alloca (target_len + 1); | |
6749 | memcpy (target_name, name + 2, target_len); | |
6750 | target_name[target_len] = '\0'; | |
6751 | ||
6752 | sec = find_pc_section (pc); | |
6753 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
6754 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
6755 | if (minsym != NULL) | |
6756 | return SYMBOL_VALUE_ADDRESS (minsym); | |
6757 | else | |
6758 | return 0; | |
6759 | } | |
6760 | ||
c5aa993b | 6761 | return 0; /* not a stub */ |
c906108c SS |
6762 | } |
6763 | ||
afd7eef0 RE |
6764 | static void |
6765 | set_arm_command (char *args, int from_tty) | |
6766 | { | |
edefbb7c AC |
6767 | printf_unfiltered (_("\ |
6768 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
6769 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
6770 | } | |
6771 | ||
6772 | static void | |
6773 | show_arm_command (char *args, int from_tty) | |
6774 | { | |
26304000 | 6775 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
6776 | } |
6777 | ||
28e97307 DJ |
6778 | static void |
6779 | arm_update_current_architecture (void) | |
fd50bc42 | 6780 | { |
28e97307 | 6781 | struct gdbarch_info info; |
fd50bc42 | 6782 | |
28e97307 | 6783 | /* If the current architecture is not ARM, we have nothing to do. */ |
1cf3db46 | 6784 | if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm) |
28e97307 | 6785 | return; |
fd50bc42 | 6786 | |
28e97307 DJ |
6787 | /* Update the architecture. */ |
6788 | gdbarch_info_init (&info); | |
fd50bc42 | 6789 | |
28e97307 | 6790 | if (!gdbarch_update_p (info)) |
9b20d036 | 6791 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
fd50bc42 RE |
6792 | } |
6793 | ||
6794 | static void | |
6795 | set_fp_model_sfunc (char *args, int from_tty, | |
6796 | struct cmd_list_element *c) | |
6797 | { | |
6798 | enum arm_float_model fp_model; | |
6799 | ||
6800 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
6801 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
6802 | { | |
6803 | arm_fp_model = fp_model; | |
6804 | break; | |
6805 | } | |
6806 | ||
6807 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 6808 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
6809 | current_fp_model); |
6810 | ||
28e97307 | 6811 | arm_update_current_architecture (); |
fd50bc42 RE |
6812 | } |
6813 | ||
6814 | static void | |
08546159 AC |
6815 | show_fp_model (struct ui_file *file, int from_tty, |
6816 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 6817 | { |
1cf3db46 | 6818 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
fd50bc42 | 6819 | |
28e97307 | 6820 | if (arm_fp_model == ARM_FLOAT_AUTO |
1cf3db46 | 6821 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
6822 | fprintf_filtered (file, _("\ |
6823 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
6824 | fp_model_strings[tdep->fp_model]); | |
6825 | else | |
6826 | fprintf_filtered (file, _("\ | |
6827 | The current ARM floating point model is \"%s\".\n"), | |
6828 | fp_model_strings[arm_fp_model]); | |
6829 | } | |
6830 | ||
6831 | static void | |
6832 | arm_set_abi (char *args, int from_tty, | |
6833 | struct cmd_list_element *c) | |
6834 | { | |
6835 | enum arm_abi_kind arm_abi; | |
6836 | ||
6837 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
6838 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
6839 | { | |
6840 | arm_abi_global = arm_abi; | |
6841 | break; | |
6842 | } | |
6843 | ||
6844 | if (arm_abi == ARM_ABI_LAST) | |
6845 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
6846 | arm_abi_string); | |
6847 | ||
6848 | arm_update_current_architecture (); | |
6849 | } | |
6850 | ||
6851 | static void | |
6852 | arm_show_abi (struct ui_file *file, int from_tty, | |
6853 | struct cmd_list_element *c, const char *value) | |
6854 | { | |
1cf3db46 | 6855 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
28e97307 DJ |
6856 | |
6857 | if (arm_abi_global == ARM_ABI_AUTO | |
1cf3db46 | 6858 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
6859 | fprintf_filtered (file, _("\ |
6860 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
6861 | arm_abi_strings[tdep->arm_abi]); | |
6862 | else | |
6863 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
6864 | arm_abi_string); | |
fd50bc42 RE |
6865 | } |
6866 | ||
0428b8f5 DJ |
6867 | static void |
6868 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
6869 | struct cmd_list_element *c, const char *value) | |
6870 | { | |
1cf3db46 | 6871 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 | 6872 | |
0963b4bd MS |
6873 | fprintf_filtered (file, |
6874 | _("The current execution mode assumed " | |
6875 | "(when symbols are unavailable) is \"%s\".\n"), | |
0428b8f5 DJ |
6876 | arm_fallback_mode_string); |
6877 | } | |
6878 | ||
6879 | static void | |
6880 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
6881 | struct cmd_list_element *c, const char *value) | |
6882 | { | |
1cf3db46 | 6883 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 | 6884 | |
0963b4bd MS |
6885 | fprintf_filtered (file, |
6886 | _("The current execution mode assumed " | |
6887 | "(even when symbols are available) is \"%s\".\n"), | |
0428b8f5 DJ |
6888 | arm_force_mode_string); |
6889 | } | |
6890 | ||
afd7eef0 RE |
6891 | /* If the user changes the register disassembly style used for info |
6892 | register and other commands, we have to also switch the style used | |
6893 | in opcodes for disassembly output. This function is run in the "set | |
6894 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
6895 | |
6896 | static void | |
afd7eef0 | 6897 | set_disassembly_style_sfunc (char *args, int from_tty, |
bc90b915 FN |
6898 | struct cmd_list_element *c) |
6899 | { | |
afd7eef0 | 6900 | set_disassembly_style (); |
bc90b915 FN |
6901 | } |
6902 | \f | |
966fbf70 | 6903 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 6904 | static const char * |
d93859e2 | 6905 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 6906 | { |
58d6951d DJ |
6907 | const int num_regs = gdbarch_num_regs (gdbarch); |
6908 | ||
6909 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
6910 | && i >= num_regs && i < num_regs + 32) | |
6911 | { | |
6912 | static const char *const vfp_pseudo_names[] = { | |
6913 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
6914 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
6915 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
6916 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
6917 | }; | |
6918 | ||
6919 | return vfp_pseudo_names[i - num_regs]; | |
6920 | } | |
6921 | ||
6922 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
6923 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
6924 | { | |
6925 | static const char *const neon_pseudo_names[] = { | |
6926 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
6927 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
6928 | }; | |
6929 | ||
6930 | return neon_pseudo_names[i - num_regs - 32]; | |
6931 | } | |
6932 | ||
ff6f572f DJ |
6933 | if (i >= ARRAY_SIZE (arm_register_names)) |
6934 | /* These registers are only supported on targets which supply | |
6935 | an XML description. */ | |
6936 | return ""; | |
6937 | ||
966fbf70 RE |
6938 | return arm_register_names[i]; |
6939 | } | |
6940 | ||
bc90b915 | 6941 | static void |
afd7eef0 | 6942 | set_disassembly_style (void) |
bc90b915 | 6943 | { |
123dc839 | 6944 | int current; |
bc90b915 | 6945 | |
123dc839 DJ |
6946 | /* Find the style that the user wants. */ |
6947 | for (current = 0; current < num_disassembly_options; current++) | |
6948 | if (disassembly_style == valid_disassembly_styles[current]) | |
6949 | break; | |
6950 | gdb_assert (current < num_disassembly_options); | |
bc90b915 | 6951 | |
94c30b78 | 6952 | /* Synchronize the disassembler. */ |
bc90b915 FN |
6953 | set_arm_regname_option (current); |
6954 | } | |
6955 | ||
082fc60d RE |
6956 | /* Test whether the coff symbol specific value corresponds to a Thumb |
6957 | function. */ | |
6958 | ||
6959 | static int | |
6960 | coff_sym_is_thumb (int val) | |
6961 | { | |
f8bf5763 PM |
6962 | return (val == C_THUMBEXT |
6963 | || val == C_THUMBSTAT | |
6964 | || val == C_THUMBEXTFUNC | |
6965 | || val == C_THUMBSTATFUNC | |
6966 | || val == C_THUMBLABEL); | |
082fc60d RE |
6967 | } |
6968 | ||
6969 | /* arm_coff_make_msymbol_special() | |
6970 | arm_elf_make_msymbol_special() | |
6971 | ||
6972 | These functions test whether the COFF or ELF symbol corresponds to | |
6973 | an address in thumb code, and set a "special" bit in a minimal | |
6974 | symbol to indicate that it does. */ | |
6975 | ||
34e8f22d | 6976 | static void |
082fc60d RE |
6977 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
6978 | { | |
6979 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
6980 | STT_ARM_TFUNC). */ | |
6981 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
6982 | == STT_LOPROC) | |
6983 | MSYMBOL_SET_SPECIAL (msym); | |
6984 | } | |
6985 | ||
34e8f22d | 6986 | static void |
082fc60d RE |
6987 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
6988 | { | |
6989 | if (coff_sym_is_thumb (val)) | |
6990 | MSYMBOL_SET_SPECIAL (msym); | |
6991 | } | |
6992 | ||
60c5725c | 6993 | static void |
c1bd65d0 | 6994 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c DJ |
6995 | { |
6996 | struct arm_per_objfile *data = arg; | |
6997 | unsigned int i; | |
6998 | ||
6999 | for (i = 0; i < objfile->obfd->section_count; i++) | |
7000 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
7001 | } | |
7002 | ||
7003 | static void | |
7004 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
7005 | asymbol *sym) | |
7006 | { | |
7007 | const char *name = bfd_asymbol_name (sym); | |
7008 | struct arm_per_objfile *data; | |
7009 | VEC(arm_mapping_symbol_s) **map_p; | |
7010 | struct arm_mapping_symbol new_map_sym; | |
7011 | ||
7012 | gdb_assert (name[0] == '$'); | |
7013 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
7014 | return; | |
7015 | ||
7016 | data = objfile_data (objfile, arm_objfile_data_key); | |
7017 | if (data == NULL) | |
7018 | { | |
7019 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
7020 | struct arm_per_objfile); | |
7021 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
7022 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
7023 | objfile->obfd->section_count, | |
7024 | VEC(arm_mapping_symbol_s) *); | |
7025 | } | |
7026 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
7027 | ||
7028 | new_map_sym.value = sym->value; | |
7029 | new_map_sym.type = name[1]; | |
7030 | ||
7031 | /* Assume that most mapping symbols appear in order of increasing | |
7032 | value. If they were randomly distributed, it would be faster to | |
7033 | always push here and then sort at first use. */ | |
7034 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
7035 | { | |
7036 | struct arm_mapping_symbol *prev_map_sym; | |
7037 | ||
7038 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
7039 | if (prev_map_sym->value >= sym->value) | |
7040 | { | |
7041 | unsigned int idx; | |
7042 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
7043 | arm_compare_mapping_symbols); | |
7044 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
7045 | return; | |
7046 | } | |
7047 | } | |
7048 | ||
7049 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
7050 | } | |
7051 | ||
756fe439 | 7052 | static void |
61a1198a | 7053 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 7054 | { |
9779414d | 7055 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
61a1198a | 7056 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
7057 | |
7058 | /* If necessary, set the T bit. */ | |
7059 | if (arm_apcs_32) | |
7060 | { | |
9779414d | 7061 | ULONGEST val, t_bit; |
61a1198a | 7062 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
9779414d DJ |
7063 | t_bit = arm_psr_thumb_bit (gdbarch); |
7064 | if (arm_pc_is_thumb (gdbarch, pc)) | |
7065 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | |
7066 | val | t_bit); | |
756fe439 | 7067 | else |
61a1198a | 7068 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
9779414d | 7069 | val & ~t_bit); |
756fe439 DJ |
7070 | } |
7071 | } | |
123dc839 | 7072 | |
58d6951d DJ |
7073 | /* Read the contents of a NEON quad register, by reading from two |
7074 | double registers. This is used to implement the quad pseudo | |
7075 | registers, and for argument passing in case the quad registers are | |
7076 | missing; vectors are passed in quad registers when using the VFP | |
7077 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
7078 | the quad register, in [0, 15]. */ | |
7079 | ||
7080 | static void | |
7081 | arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
7082 | int regnum, gdb_byte *buf) | |
7083 | { | |
7084 | char name_buf[4]; | |
7085 | gdb_byte reg_buf[8]; | |
7086 | int offset, double_regnum; | |
7087 | ||
7088 | sprintf (name_buf, "d%d", regnum << 1); | |
7089 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
7090 | strlen (name_buf)); | |
7091 | ||
7092 | /* d0 is always the least significant half of q0. */ | |
7093 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
7094 | offset = 8; | |
7095 | else | |
7096 | offset = 0; | |
7097 | ||
7098 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
7099 | memcpy (buf + offset, reg_buf, 8); | |
7100 | ||
7101 | offset = 8 - offset; | |
7102 | regcache_raw_read (regcache, double_regnum + 1, reg_buf); | |
7103 | memcpy (buf + offset, reg_buf, 8); | |
7104 | } | |
7105 | ||
7106 | static void | |
7107 | arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
7108 | int regnum, gdb_byte *buf) | |
7109 | { | |
7110 | const int num_regs = gdbarch_num_regs (gdbarch); | |
7111 | char name_buf[4]; | |
7112 | gdb_byte reg_buf[8]; | |
7113 | int offset, double_regnum; | |
7114 | ||
7115 | gdb_assert (regnum >= num_regs); | |
7116 | regnum -= num_regs; | |
7117 | ||
7118 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
7119 | /* Quad-precision register. */ | |
7120 | arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); | |
7121 | else | |
7122 | { | |
7123 | /* Single-precision register. */ | |
7124 | gdb_assert (regnum < 32); | |
7125 | ||
7126 | /* s0 is always the least significant half of d0. */ | |
7127 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
7128 | offset = (regnum & 1) ? 0 : 4; | |
7129 | else | |
7130 | offset = (regnum & 1) ? 4 : 0; | |
7131 | ||
7132 | sprintf (name_buf, "d%d", regnum >> 1); | |
7133 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
7134 | strlen (name_buf)); | |
7135 | ||
7136 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
7137 | memcpy (buf, reg_buf + offset, 4); | |
7138 | } | |
7139 | } | |
7140 | ||
7141 | /* Store the contents of BUF to a NEON quad register, by writing to | |
7142 | two double registers. This is used to implement the quad pseudo | |
7143 | registers, and for argument passing in case the quad registers are | |
7144 | missing; vectors are passed in quad registers when using the VFP | |
7145 | ABI, even if a NEON unit is not present. REGNUM is the index | |
7146 | of the quad register, in [0, 15]. */ | |
7147 | ||
7148 | static void | |
7149 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
7150 | int regnum, const gdb_byte *buf) | |
7151 | { | |
7152 | char name_buf[4]; | |
7153 | gdb_byte reg_buf[8]; | |
7154 | int offset, double_regnum; | |
7155 | ||
7156 | sprintf (name_buf, "d%d", regnum << 1); | |
7157 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
7158 | strlen (name_buf)); | |
7159 | ||
7160 | /* d0 is always the least significant half of q0. */ | |
7161 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
7162 | offset = 8; | |
7163 | else | |
7164 | offset = 0; | |
7165 | ||
7166 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
7167 | offset = 8 - offset; | |
7168 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
7169 | } | |
7170 | ||
7171 | static void | |
7172 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
7173 | int regnum, const gdb_byte *buf) | |
7174 | { | |
7175 | const int num_regs = gdbarch_num_regs (gdbarch); | |
7176 | char name_buf[4]; | |
7177 | gdb_byte reg_buf[8]; | |
7178 | int offset, double_regnum; | |
7179 | ||
7180 | gdb_assert (regnum >= num_regs); | |
7181 | regnum -= num_regs; | |
7182 | ||
7183 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
7184 | /* Quad-precision register. */ | |
7185 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
7186 | else | |
7187 | { | |
7188 | /* Single-precision register. */ | |
7189 | gdb_assert (regnum < 32); | |
7190 | ||
7191 | /* s0 is always the least significant half of d0. */ | |
7192 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
7193 | offset = (regnum & 1) ? 0 : 4; | |
7194 | else | |
7195 | offset = (regnum & 1) ? 4 : 0; | |
7196 | ||
7197 | sprintf (name_buf, "d%d", regnum >> 1); | |
7198 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
7199 | strlen (name_buf)); | |
7200 | ||
7201 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
7202 | memcpy (reg_buf + offset, buf, 4); | |
7203 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
7204 | } | |
7205 | } | |
7206 | ||
123dc839 DJ |
7207 | static struct value * |
7208 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
7209 | { | |
7210 | const int *reg_p = baton; | |
7211 | return value_of_register (*reg_p, frame); | |
7212 | } | |
97e03143 | 7213 | \f |
70f80edf JT |
7214 | static enum gdb_osabi |
7215 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 7216 | { |
2af48f68 | 7217 | unsigned int elfosabi; |
70f80edf | 7218 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 7219 | |
70f80edf | 7220 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 7221 | |
28e97307 DJ |
7222 | if (elfosabi == ELFOSABI_ARM) |
7223 | /* GNU tools use this value. Check note sections in this case, | |
7224 | as well. */ | |
7225 | bfd_map_over_sections (abfd, | |
7226 | generic_elf_osabi_sniff_abi_tag_sections, | |
7227 | &osabi); | |
97e03143 | 7228 | |
28e97307 | 7229 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 7230 | return osabi; |
97e03143 RE |
7231 | } |
7232 | ||
54483882 YQ |
7233 | static int |
7234 | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
7235 | struct reggroup *group) | |
7236 | { | |
2c291032 YQ |
7237 | /* FPS register's type is INT, but belongs to float_reggroup. Beside |
7238 | this, FPS register belongs to save_regroup, restore_reggroup, and | |
7239 | all_reggroup, of course. */ | |
54483882 | 7240 | if (regnum == ARM_FPS_REGNUM) |
2c291032 YQ |
7241 | return (group == float_reggroup |
7242 | || group == save_reggroup | |
7243 | || group == restore_reggroup | |
7244 | || group == all_reggroup); | |
54483882 YQ |
7245 | else |
7246 | return default_register_reggroup_p (gdbarch, regnum, group); | |
7247 | } | |
7248 | ||
70f80edf | 7249 | \f |
da3c6d4a MS |
7250 | /* Initialize the current architecture based on INFO. If possible, |
7251 | re-use an architecture from ARCHES, which is a list of | |
7252 | architectures already created during this debugging session. | |
97e03143 | 7253 | |
da3c6d4a MS |
7254 | Called e.g. at program startup, when reading a core file, and when |
7255 | reading a binary file. */ | |
97e03143 | 7256 | |
39bbf761 RE |
7257 | static struct gdbarch * |
7258 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
7259 | { | |
97e03143 | 7260 | struct gdbarch_tdep *tdep; |
39bbf761 | 7261 | struct gdbarch *gdbarch; |
28e97307 DJ |
7262 | struct gdbarch_list *best_arch; |
7263 | enum arm_abi_kind arm_abi = arm_abi_global; | |
7264 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 | 7265 | struct tdesc_arch_data *tdesc_data = NULL; |
9779414d | 7266 | int i, is_m = 0; |
58d6951d DJ |
7267 | int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
7268 | int have_neon = 0; | |
ff6f572f | 7269 | int have_fpa_registers = 1; |
9779414d DJ |
7270 | const struct target_desc *tdesc = info.target_desc; |
7271 | ||
7272 | /* If we have an object to base this architecture on, try to determine | |
7273 | its ABI. */ | |
7274 | ||
7275 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | |
7276 | { | |
7277 | int ei_osabi, e_flags; | |
7278 | ||
7279 | switch (bfd_get_flavour (info.abfd)) | |
7280 | { | |
7281 | case bfd_target_aout_flavour: | |
7282 | /* Assume it's an old APCS-style ABI. */ | |
7283 | arm_abi = ARM_ABI_APCS; | |
7284 | break; | |
7285 | ||
7286 | case bfd_target_coff_flavour: | |
7287 | /* Assume it's an old APCS-style ABI. */ | |
7288 | /* XXX WinCE? */ | |
7289 | arm_abi = ARM_ABI_APCS; | |
7290 | break; | |
7291 | ||
7292 | case bfd_target_elf_flavour: | |
7293 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
7294 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
7295 | ||
7296 | if (ei_osabi == ELFOSABI_ARM) | |
7297 | { | |
7298 | /* GNU tools used to use this value, but do not for EABI | |
7299 | objects. There's nowhere to tag an EABI version | |
7300 | anyway, so assume APCS. */ | |
7301 | arm_abi = ARM_ABI_APCS; | |
7302 | } | |
7303 | else if (ei_osabi == ELFOSABI_NONE) | |
7304 | { | |
7305 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | |
7306 | int attr_arch, attr_profile; | |
7307 | ||
7308 | switch (eabi_ver) | |
7309 | { | |
7310 | case EF_ARM_EABI_UNKNOWN: | |
7311 | /* Assume GNU tools. */ | |
7312 | arm_abi = ARM_ABI_APCS; | |
7313 | break; | |
7314 | ||
7315 | case EF_ARM_EABI_VER4: | |
7316 | case EF_ARM_EABI_VER5: | |
7317 | arm_abi = ARM_ABI_AAPCS; | |
7318 | /* EABI binaries default to VFP float ordering. | |
7319 | They may also contain build attributes that can | |
7320 | be used to identify if the VFP argument-passing | |
7321 | ABI is in use. */ | |
7322 | if (fp_model == ARM_FLOAT_AUTO) | |
7323 | { | |
7324 | #ifdef HAVE_ELF | |
7325 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
7326 | OBJ_ATTR_PROC, | |
7327 | Tag_ABI_VFP_args)) | |
7328 | { | |
7329 | case 0: | |
7330 | /* "The user intended FP parameter/result | |
7331 | passing to conform to AAPCS, base | |
7332 | variant". */ | |
7333 | fp_model = ARM_FLOAT_SOFT_VFP; | |
7334 | break; | |
7335 | case 1: | |
7336 | /* "The user intended FP parameter/result | |
7337 | passing to conform to AAPCS, VFP | |
7338 | variant". */ | |
7339 | fp_model = ARM_FLOAT_VFP; | |
7340 | break; | |
7341 | case 2: | |
7342 | /* "The user intended FP parameter/result | |
7343 | passing to conform to tool chain-specific | |
7344 | conventions" - we don't know any such | |
7345 | conventions, so leave it as "auto". */ | |
7346 | break; | |
7347 | default: | |
7348 | /* Attribute value not mentioned in the | |
7349 | October 2008 ABI, so leave it as | |
7350 | "auto". */ | |
7351 | break; | |
7352 | } | |
7353 | #else | |
7354 | fp_model = ARM_FLOAT_SOFT_VFP; | |
7355 | #endif | |
7356 | } | |
7357 | break; | |
7358 | ||
7359 | default: | |
7360 | /* Leave it as "auto". */ | |
7361 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | |
7362 | break; | |
7363 | } | |
7364 | ||
7365 | #ifdef HAVE_ELF | |
7366 | /* Detect M-profile programs. This only works if the | |
7367 | executable file includes build attributes; GCC does | |
7368 | copy them to the executable, but e.g. RealView does | |
7369 | not. */ | |
7370 | attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | |
7371 | Tag_CPU_arch); | |
0963b4bd MS |
7372 | attr_profile = bfd_elf_get_obj_attr_int (info.abfd, |
7373 | OBJ_ATTR_PROC, | |
9779414d DJ |
7374 | Tag_CPU_arch_profile); |
7375 | /* GCC specifies the profile for v6-M; RealView only | |
7376 | specifies the profile for architectures starting with | |
7377 | V7 (as opposed to architectures with a tag | |
7378 | numerically greater than TAG_CPU_ARCH_V7). */ | |
7379 | if (!tdesc_has_registers (tdesc) | |
7380 | && (attr_arch == TAG_CPU_ARCH_V6_M | |
7381 | || attr_arch == TAG_CPU_ARCH_V6S_M | |
7382 | || attr_profile == 'M')) | |
7383 | tdesc = tdesc_arm_with_m; | |
7384 | #endif | |
7385 | } | |
7386 | ||
7387 | if (fp_model == ARM_FLOAT_AUTO) | |
7388 | { | |
7389 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
7390 | ||
7391 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
7392 | { | |
7393 | case 0: | |
7394 | /* Leave it as "auto". Strictly speaking this case | |
7395 | means FPA, but almost nobody uses that now, and | |
7396 | many toolchains fail to set the appropriate bits | |
7397 | for the floating-point model they use. */ | |
7398 | break; | |
7399 | case EF_ARM_SOFT_FLOAT: | |
7400 | fp_model = ARM_FLOAT_SOFT_FPA; | |
7401 | break; | |
7402 | case EF_ARM_VFP_FLOAT: | |
7403 | fp_model = ARM_FLOAT_VFP; | |
7404 | break; | |
7405 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
7406 | fp_model = ARM_FLOAT_SOFT_VFP; | |
7407 | break; | |
7408 | } | |
7409 | } | |
7410 | ||
7411 | if (e_flags & EF_ARM_BE8) | |
7412 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
7413 | ||
7414 | break; | |
7415 | ||
7416 | default: | |
7417 | /* Leave it as "auto". */ | |
7418 | break; | |
7419 | } | |
7420 | } | |
123dc839 DJ |
7421 | |
7422 | /* Check any target description for validity. */ | |
9779414d | 7423 | if (tdesc_has_registers (tdesc)) |
123dc839 DJ |
7424 | { |
7425 | /* For most registers we require GDB's default names; but also allow | |
7426 | the numeric names for sp / lr / pc, as a convenience. */ | |
7427 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
7428 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
7429 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
7430 | ||
7431 | const struct tdesc_feature *feature; | |
58d6951d | 7432 | int valid_p; |
123dc839 | 7433 | |
9779414d | 7434 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
7435 | "org.gnu.gdb.arm.core"); |
7436 | if (feature == NULL) | |
9779414d DJ |
7437 | { |
7438 | feature = tdesc_find_feature (tdesc, | |
7439 | "org.gnu.gdb.arm.m-profile"); | |
7440 | if (feature == NULL) | |
7441 | return NULL; | |
7442 | else | |
7443 | is_m = 1; | |
7444 | } | |
123dc839 DJ |
7445 | |
7446 | tdesc_data = tdesc_data_alloc (); | |
7447 | ||
7448 | valid_p = 1; | |
7449 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
7450 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
7451 | arm_register_names[i]); | |
7452 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
7453 | ARM_SP_REGNUM, | |
7454 | arm_sp_names); | |
7455 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
7456 | ARM_LR_REGNUM, | |
7457 | arm_lr_names); | |
7458 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
7459 | ARM_PC_REGNUM, | |
7460 | arm_pc_names); | |
9779414d DJ |
7461 | if (is_m) |
7462 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
7463 | ARM_PS_REGNUM, "xpsr"); | |
7464 | else | |
7465 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
7466 | ARM_PS_REGNUM, "cpsr"); | |
123dc839 DJ |
7467 | |
7468 | if (!valid_p) | |
7469 | { | |
7470 | tdesc_data_cleanup (tdesc_data); | |
7471 | return NULL; | |
7472 | } | |
7473 | ||
9779414d | 7474 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
7475 | "org.gnu.gdb.arm.fpa"); |
7476 | if (feature != NULL) | |
7477 | { | |
7478 | valid_p = 1; | |
7479 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
7480 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
7481 | arm_register_names[i]); | |
7482 | if (!valid_p) | |
7483 | { | |
7484 | tdesc_data_cleanup (tdesc_data); | |
7485 | return NULL; | |
7486 | } | |
7487 | } | |
ff6f572f DJ |
7488 | else |
7489 | have_fpa_registers = 0; | |
7490 | ||
9779414d | 7491 | feature = tdesc_find_feature (tdesc, |
ff6f572f DJ |
7492 | "org.gnu.gdb.xscale.iwmmxt"); |
7493 | if (feature != NULL) | |
7494 | { | |
7495 | static const char *const iwmmxt_names[] = { | |
7496 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
7497 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
7498 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
7499 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
7500 | }; | |
7501 | ||
7502 | valid_p = 1; | |
7503 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
7504 | valid_p | |
7505 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
7506 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
7507 | ||
7508 | /* Check for the control registers, but do not fail if they | |
7509 | are missing. */ | |
7510 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
7511 | tdesc_numbered_register (feature, tdesc_data, i, | |
7512 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
7513 | ||
7514 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
7515 | valid_p | |
7516 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
7517 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
7518 | ||
7519 | if (!valid_p) | |
7520 | { | |
7521 | tdesc_data_cleanup (tdesc_data); | |
7522 | return NULL; | |
7523 | } | |
7524 | } | |
58d6951d DJ |
7525 | |
7526 | /* If we have a VFP unit, check whether the single precision registers | |
7527 | are present. If not, then we will synthesize them as pseudo | |
7528 | registers. */ | |
9779414d | 7529 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
7530 | "org.gnu.gdb.arm.vfp"); |
7531 | if (feature != NULL) | |
7532 | { | |
7533 | static const char *const vfp_double_names[] = { | |
7534 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
7535 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
7536 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
7537 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
7538 | }; | |
7539 | ||
7540 | /* Require the double precision registers. There must be either | |
7541 | 16 or 32. */ | |
7542 | valid_p = 1; | |
7543 | for (i = 0; i < 32; i++) | |
7544 | { | |
7545 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
7546 | ARM_D0_REGNUM + i, | |
7547 | vfp_double_names[i]); | |
7548 | if (!valid_p) | |
7549 | break; | |
7550 | } | |
7551 | ||
7552 | if (!valid_p && i != 16) | |
7553 | { | |
7554 | tdesc_data_cleanup (tdesc_data); | |
7555 | return NULL; | |
7556 | } | |
7557 | ||
7558 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
7559 | have_vfp_pseudos = 1; | |
7560 | ||
7561 | have_vfp_registers = 1; | |
7562 | ||
7563 | /* If we have VFP, also check for NEON. The architecture allows | |
7564 | NEON without VFP (integer vector operations only), but GDB | |
7565 | does not support that. */ | |
9779414d | 7566 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
7567 | "org.gnu.gdb.arm.neon"); |
7568 | if (feature != NULL) | |
7569 | { | |
7570 | /* NEON requires 32 double-precision registers. */ | |
7571 | if (i != 32) | |
7572 | { | |
7573 | tdesc_data_cleanup (tdesc_data); | |
7574 | return NULL; | |
7575 | } | |
7576 | ||
7577 | /* If there are quad registers defined by the stub, use | |
7578 | their type; otherwise (normally) provide them with | |
7579 | the default type. */ | |
7580 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
7581 | have_neon_pseudos = 1; | |
7582 | ||
7583 | have_neon = 1; | |
7584 | } | |
7585 | } | |
123dc839 | 7586 | } |
39bbf761 | 7587 | |
28e97307 DJ |
7588 | /* If there is already a candidate, use it. */ |
7589 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
7590 | best_arch != NULL; | |
7591 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
7592 | { | |
b8926edc DJ |
7593 | if (arm_abi != ARM_ABI_AUTO |
7594 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
7595 | continue; |
7596 | ||
b8926edc DJ |
7597 | if (fp_model != ARM_FLOAT_AUTO |
7598 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
7599 | continue; |
7600 | ||
58d6951d DJ |
7601 | /* There are various other properties in tdep that we do not |
7602 | need to check here: those derived from a target description, | |
7603 | since gdbarches with a different target description are | |
7604 | automatically disqualified. */ | |
7605 | ||
9779414d DJ |
7606 | /* Do check is_m, though, since it might come from the binary. */ |
7607 | if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m) | |
7608 | continue; | |
7609 | ||
28e97307 DJ |
7610 | /* Found a match. */ |
7611 | break; | |
7612 | } | |
97e03143 | 7613 | |
28e97307 | 7614 | if (best_arch != NULL) |
123dc839 DJ |
7615 | { |
7616 | if (tdesc_data != NULL) | |
7617 | tdesc_data_cleanup (tdesc_data); | |
7618 | return best_arch->gdbarch; | |
7619 | } | |
28e97307 DJ |
7620 | |
7621 | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | |
97e03143 RE |
7622 | gdbarch = gdbarch_alloc (&info, tdep); |
7623 | ||
28e97307 DJ |
7624 | /* Record additional information about the architecture we are defining. |
7625 | These are gdbarch discriminators, like the OSABI. */ | |
7626 | tdep->arm_abi = arm_abi; | |
7627 | tdep->fp_model = fp_model; | |
9779414d | 7628 | tdep->is_m = is_m; |
ff6f572f | 7629 | tdep->have_fpa_registers = have_fpa_registers; |
58d6951d DJ |
7630 | tdep->have_vfp_registers = have_vfp_registers; |
7631 | tdep->have_vfp_pseudos = have_vfp_pseudos; | |
7632 | tdep->have_neon_pseudos = have_neon_pseudos; | |
7633 | tdep->have_neon = have_neon; | |
08216dd7 RE |
7634 | |
7635 | /* Breakpoints. */ | |
9d4fde75 | 7636 | switch (info.byte_order_for_code) |
67255d04 RE |
7637 | { |
7638 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
7639 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
7640 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
7641 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
7642 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
7643 | ||
67255d04 RE |
7644 | break; |
7645 | ||
7646 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
7647 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
7648 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
7649 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
7650 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
7651 | ||
67255d04 RE |
7652 | break; |
7653 | ||
7654 | default: | |
7655 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 7656 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
7657 | } |
7658 | ||
d7b486e7 RE |
7659 | /* On ARM targets char defaults to unsigned. */ |
7660 | set_gdbarch_char_signed (gdbarch, 0); | |
7661 | ||
cca44b1b JB |
7662 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
7663 | of additional scratch space. This setting isn't used for anything beside | |
7664 | displaced stepping at present. */ | |
7665 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
7666 | ||
9df628e0 | 7667 | /* This should be low enough for everything. */ |
97e03143 | 7668 | tdep->lowest_pc = 0x20; |
94c30b78 | 7669 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 7670 | |
7c00367c MK |
7671 | /* The default, for both APCS and AAPCS, is to return small |
7672 | structures in registers. */ | |
7673 | tdep->struct_return = reg_struct_return; | |
7674 | ||
2dd604e7 | 7675 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 7676 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 7677 | |
756fe439 DJ |
7678 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
7679 | ||
148754e5 | 7680 | /* Frame handling. */ |
a262aec2 | 7681 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
7682 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
7683 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
7684 | ||
eb5492fa | 7685 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 7686 | |
34e8f22d RE |
7687 | /* Address manipulation. */ |
7688 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
7689 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
7690 | ||
34e8f22d RE |
7691 | /* Advance PC across function entry code. */ |
7692 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
7693 | ||
4024ca99 UW |
7694 | /* Detect whether PC is in function epilogue. */ |
7695 | set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p); | |
7696 | ||
190dce09 UW |
7697 | /* Skip trampolines. */ |
7698 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
7699 | ||
34e8f22d RE |
7700 | /* The stack grows downward. */ |
7701 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
7702 | ||
7703 | /* Breakpoint manipulation. */ | |
7704 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
177321bd DJ |
7705 | set_gdbarch_remote_breakpoint_from_pc (gdbarch, |
7706 | arm_remote_breakpoint_from_pc); | |
34e8f22d RE |
7707 | |
7708 | /* Information about registers, etc. */ | |
34e8f22d RE |
7709 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
7710 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 7711 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 7712 | set_gdbarch_register_type (gdbarch, arm_register_type); |
54483882 | 7713 | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
34e8f22d | 7714 | |
ff6f572f DJ |
7715 | /* This "info float" is FPA-specific. Use the generic version if we |
7716 | do not have FPA. */ | |
7717 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
7718 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
7719 | ||
26216b98 | 7720 | /* Internal <-> external register number maps. */ |
ff6f572f | 7721 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
7722 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
7723 | ||
34e8f22d RE |
7724 | set_gdbarch_register_name (gdbarch, arm_register_name); |
7725 | ||
7726 | /* Returning results. */ | |
2af48f68 | 7727 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 7728 | |
03d48a7d RE |
7729 | /* Disassembly. */ |
7730 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
7731 | ||
34e8f22d RE |
7732 | /* Minsymbol frobbing. */ |
7733 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
7734 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
7735 | arm_coff_make_msymbol_special); | |
60c5725c | 7736 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 7737 | |
f9d67f43 DJ |
7738 | /* Thumb-2 IT block support. */ |
7739 | set_gdbarch_adjust_breakpoint_address (gdbarch, | |
7740 | arm_adjust_breakpoint_address); | |
7741 | ||
0d5de010 DJ |
7742 | /* Virtual tables. */ |
7743 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
7744 | ||
97e03143 | 7745 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 7746 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 7747 | |
b39cc962 DJ |
7748 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
7749 | ||
eb5492fa | 7750 | /* Add some default predicates. */ |
a262aec2 DJ |
7751 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
7752 | dwarf2_append_unwinders (gdbarch); | |
7753 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); | |
eb5492fa | 7754 | |
97e03143 RE |
7755 | /* Now we have tuned the configuration, set a few final things, |
7756 | based on what the OS ABI has told us. */ | |
7757 | ||
b8926edc DJ |
7758 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
7759 | binaries are always marked. */ | |
7760 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
7761 | tdep->arm_abi = ARM_ABI_APCS; | |
7762 | ||
7763 | /* We used to default to FPA for generic ARM, but almost nobody | |
7764 | uses that now, and we now provide a way for the user to force | |
7765 | the model. So default to the most useful variant. */ | |
7766 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
7767 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
7768 | ||
9df628e0 RE |
7769 | if (tdep->jb_pc >= 0) |
7770 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
7771 | ||
08216dd7 | 7772 | /* Floating point sizes and format. */ |
8da61cc4 | 7773 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 7774 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 7775 | { |
8da61cc4 DJ |
7776 | set_gdbarch_double_format |
7777 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
7778 | set_gdbarch_long_double_format | |
7779 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
7780 | } | |
7781 | else | |
7782 | { | |
7783 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
7784 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
7785 | } |
7786 | ||
58d6951d DJ |
7787 | if (have_vfp_pseudos) |
7788 | { | |
7789 | /* NOTE: These are the only pseudo registers used by | |
7790 | the ARM target at the moment. If more are added, a | |
7791 | little more care in numbering will be needed. */ | |
7792 | ||
7793 | int num_pseudos = 32; | |
7794 | if (have_neon_pseudos) | |
7795 | num_pseudos += 16; | |
7796 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
7797 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
7798 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
7799 | } | |
7800 | ||
123dc839 | 7801 | if (tdesc_data) |
58d6951d DJ |
7802 | { |
7803 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
7804 | ||
9779414d | 7805 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
58d6951d DJ |
7806 | |
7807 | /* Override tdesc_register_type to adjust the types of VFP | |
7808 | registers for NEON. */ | |
7809 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
7810 | } | |
123dc839 DJ |
7811 | |
7812 | /* Add standard register aliases. We add aliases even for those | |
7813 | nanes which are used by the current architecture - it's simpler, | |
7814 | and does no harm, since nothing ever lists user registers. */ | |
7815 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
7816 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
7817 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
7818 | ||
39bbf761 RE |
7819 | return gdbarch; |
7820 | } | |
7821 | ||
97e03143 | 7822 | static void |
2af46ca0 | 7823 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 7824 | { |
2af46ca0 | 7825 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
7826 | |
7827 | if (tdep == NULL) | |
7828 | return; | |
7829 | ||
edefbb7c | 7830 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
7831 | (unsigned long) tdep->lowest_pc); |
7832 | } | |
7833 | ||
a78f21af AC |
7834 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
7835 | ||
c906108c | 7836 | void |
ed9a39eb | 7837 | _initialize_arm_tdep (void) |
c906108c | 7838 | { |
bc90b915 FN |
7839 | struct ui_file *stb; |
7840 | long length; | |
26304000 | 7841 | struct cmd_list_element *new_set, *new_show; |
53904c9e AC |
7842 | const char *setname; |
7843 | const char *setdesc; | |
4bd7b427 | 7844 | const char *const *regnames; |
bc90b915 FN |
7845 | int numregs, i, j; |
7846 | static char *helptext; | |
edefbb7c AC |
7847 | char regdesc[1024], *rdptr = regdesc; |
7848 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 7849 | |
42cf1509 | 7850 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 7851 | |
60c5725c | 7852 | arm_objfile_data_key |
c1bd65d0 | 7853 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 7854 | |
70f80edf JT |
7855 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
7856 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
7857 | bfd_target_elf_flavour, | |
7858 | arm_elf_osabi_sniffer); | |
7859 | ||
9779414d DJ |
7860 | /* Initialize the standard target descriptions. */ |
7861 | initialize_tdesc_arm_with_m (); | |
7862 | ||
94c30b78 | 7863 | /* Get the number of possible sets of register names defined in opcodes. */ |
afd7eef0 RE |
7864 | num_disassembly_options = get_arm_regname_num_options (); |
7865 | ||
7866 | /* Add root prefix command for all "set arm"/"show arm" commands. */ | |
7867 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 7868 | _("Various ARM-specific commands."), |
afd7eef0 RE |
7869 | &setarmcmdlist, "set arm ", 0, &setlist); |
7870 | ||
7871 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 7872 | _("Various ARM-specific commands."), |
afd7eef0 | 7873 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 7874 | |
94c30b78 | 7875 | /* Sync the opcode insn printer with our register viewer. */ |
bc90b915 | 7876 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 7877 | |
eefe576e AC |
7878 | /* Initialize the array that will be passed to |
7879 | add_setshow_enum_cmd(). */ | |
afd7eef0 RE |
7880 | valid_disassembly_styles |
7881 | = xmalloc ((num_disassembly_options + 1) * sizeof (char *)); | |
7882 | for (i = 0; i < num_disassembly_options; i++) | |
bc90b915 FN |
7883 | { |
7884 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
afd7eef0 | 7885 | valid_disassembly_styles[i] = setname; |
edefbb7c AC |
7886 | length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc); |
7887 | rdptr += length; | |
7888 | rest -= length; | |
123dc839 DJ |
7889 | /* When we find the default names, tell the disassembler to use |
7890 | them. */ | |
bc90b915 FN |
7891 | if (!strcmp (setname, "std")) |
7892 | { | |
afd7eef0 | 7893 | disassembly_style = setname; |
bc90b915 FN |
7894 | set_arm_regname_option (i); |
7895 | } | |
7896 | } | |
94c30b78 | 7897 | /* Mark the end of valid options. */ |
afd7eef0 | 7898 | valid_disassembly_styles[num_disassembly_options] = NULL; |
c906108c | 7899 | |
edefbb7c AC |
7900 | /* Create the help text. */ |
7901 | stb = mem_fileopen (); | |
7902 | fprintf_unfiltered (stb, "%s%s%s", | |
7903 | _("The valid values are:\n"), | |
7904 | regdesc, | |
7905 | _("The default is \"std\".")); | |
759ef836 | 7906 | helptext = ui_file_xstrdup (stb, NULL); |
bc90b915 | 7907 | ui_file_delete (stb); |
ed9a39eb | 7908 | |
edefbb7c AC |
7909 | add_setshow_enum_cmd("disassembler", no_class, |
7910 | valid_disassembly_styles, &disassembly_style, | |
7911 | _("Set the disassembly style."), | |
7912 | _("Show the disassembly style."), | |
7913 | helptext, | |
2c5b56ce | 7914 | set_disassembly_style_sfunc, |
0963b4bd MS |
7915 | NULL, /* FIXME: i18n: The disassembly style is |
7916 | \"%s\". */ | |
7376b4c2 | 7917 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
7918 | |
7919 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
7920 | _("Set usage of ARM 32-bit mode."), | |
7921 | _("Show usage of ARM 32-bit mode."), | |
7922 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 7923 | NULL, |
0963b4bd MS |
7924 | NULL, /* FIXME: i18n: Usage of ARM 32-bit |
7925 | mode is %s. */ | |
26304000 | 7926 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 7927 | |
fd50bc42 | 7928 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
7929 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
7930 | _("Set the floating point type."), | |
7931 | _("Show the floating point type."), | |
7932 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
7933 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
7934 | fpa - FPA co-processor (GCC compiled).\n\ | |
7935 | softvfp - Software FP with pure-endian doubles.\n\ | |
7936 | vfp - VFP co-processor."), | |
edefbb7c | 7937 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 7938 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 7939 | |
28e97307 DJ |
7940 | /* Add a command to allow the user to force the ABI. */ |
7941 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
7942 | _("Set the ABI."), | |
7943 | _("Show the ABI."), | |
7944 | NULL, arm_set_abi, arm_show_abi, | |
7945 | &setarmcmdlist, &showarmcmdlist); | |
7946 | ||
0428b8f5 DJ |
7947 | /* Add two commands to allow the user to force the assumed |
7948 | execution mode. */ | |
7949 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
7950 | arm_mode_strings, &arm_fallback_mode_string, | |
7951 | _("Set the mode assumed when symbols are unavailable."), | |
7952 | _("Show the mode assumed when symbols are unavailable."), | |
7953 | NULL, NULL, arm_show_fallback_mode, | |
7954 | &setarmcmdlist, &showarmcmdlist); | |
7955 | add_setshow_enum_cmd ("force-mode", class_support, | |
7956 | arm_mode_strings, &arm_force_mode_string, | |
7957 | _("Set the mode assumed even when symbols are available."), | |
7958 | _("Show the mode assumed even when symbols are available."), | |
7959 | NULL, NULL, arm_show_force_mode, | |
7960 | &setarmcmdlist, &showarmcmdlist); | |
7961 | ||
6529d2dd | 7962 | /* Debugging flag. */ |
edefbb7c AC |
7963 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
7964 | _("Set ARM debugging."), | |
7965 | _("Show ARM debugging."), | |
7966 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 7967 | NULL, |
7915a72c | 7968 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 7969 | &setdebuglist, &showdebuglist); |
c906108c | 7970 | } |