]>
Commit | Line | Data |
---|---|---|
66a1aa07 SG |
1 | /* Machine-dependent code which would otherwise be in inflow.c and core.c, |
2 | for GDB, the GNU debugger. This code is for the HP PA-RISC cpu. | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. | |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/dir.h> | |
38 | #include <signal.h> | |
39 | #include <sys/ioctl.h> | |
40 | ||
41 | #ifdef COFF_ENCAPSULATE | |
42 | #include "a.out.encap.h" | |
43 | #else | |
44 | #include <a.out.h> | |
45 | #endif | |
46 | #ifndef N_SET_MAGIC | |
47 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
48 | #endif | |
49 | ||
50 | /*#include <sys/user.h> After a.out.h */ | |
51 | #include <sys/file.h> | |
52 | #include <sys/stat.h> | |
53 | #include <machine/psl.h> | |
54 | #include "wait.h" | |
55 | ||
56 | #include "gdbcore.h" | |
57 | #include "gdbcmd.h" | |
58 | #include "target.h" | |
59 | #include "symfile.h" | |
60 | #include "objfiles.h" | |
61 | ||
62 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr)); | |
63 | static int hppa_alignof PARAMS ((struct type *arg)); | |
8fa74880 | 64 | CORE_ADDR frame_saved_pc PARAMS ((FRAME frame)); |
c598654a JL |
65 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
66 | static int is_branch PARAMS ((unsigned long)); | |
67 | static int inst_saves_gr PARAMS ((unsigned long)); | |
68 | static int inst_saves_fr PARAMS ((unsigned long)); | |
70e43abe JL |
69 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
70 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); | |
c5152d42 JL |
71 | static int compare_unwind_entries PARAMS ((struct unwind_table_entry *, |
72 | struct unwind_table_entry *)); | |
73 | static void read_unwind_info PARAMS ((struct objfile *)); | |
74 | static void internalize_unwinds PARAMS ((struct objfile *, | |
75 | struct unwind_table_entry *, | |
76 | asection *, unsigned int, | |
77 | unsigned int, unsigned int *)); | |
66a1aa07 SG |
78 | |
79 | \f | |
80 | /* Routines to extract various sized constants out of hppa | |
81 | instructions. */ | |
82 | ||
83 | /* This assumes that no garbage lies outside of the lower bits of | |
84 | value. */ | |
85 | ||
86 | int | |
87 | sign_extend (val, bits) | |
88 | unsigned val, bits; | |
89 | { | |
90 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
91 | } | |
92 | ||
93 | /* For many immediate values the sign bit is the low bit! */ | |
94 | ||
95 | int | |
96 | low_sign_extend (val, bits) | |
97 | unsigned val, bits; | |
98 | { | |
99 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
100 | } | |
101 | /* extract the immediate field from a ld{bhw}s instruction */ | |
102 | ||
103 | unsigned | |
104 | get_field (val, from, to) | |
105 | unsigned val, from, to; | |
106 | { | |
107 | val = val >> 31 - to; | |
108 | return val & ((1 << 32 - from) - 1); | |
109 | } | |
110 | ||
111 | unsigned | |
112 | set_field (val, from, to, new_val) | |
113 | unsigned *val, from, to; | |
114 | { | |
115 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
116 | return *val = *val & mask | (new_val << (31 - from)); | |
117 | } | |
118 | ||
119 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
120 | ||
121 | extract_3 (word) | |
122 | unsigned word; | |
123 | { | |
124 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
125 | } | |
126 | ||
127 | extract_5_load (word) | |
128 | unsigned word; | |
129 | { | |
130 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
131 | } | |
132 | ||
133 | /* extract the immediate field from a st{bhw}s instruction */ | |
134 | ||
135 | int | |
136 | extract_5_store (word) | |
137 | unsigned word; | |
138 | { | |
139 | return low_sign_extend (word & MASK_5, 5); | |
140 | } | |
141 | ||
68c8d698 SG |
142 | /* extract the immediate field from a break instruction */ |
143 | ||
144 | unsigned | |
145 | extract_5r_store (word) | |
146 | unsigned word; | |
147 | { | |
148 | return (word & MASK_5); | |
149 | } | |
150 | ||
151 | /* extract the immediate field from a {sr}sm instruction */ | |
152 | ||
153 | unsigned | |
154 | extract_5R_store (word) | |
155 | unsigned word; | |
156 | { | |
157 | return (word >> 16 & MASK_5); | |
158 | } | |
159 | ||
66a1aa07 SG |
160 | /* extract an 11 bit immediate field */ |
161 | ||
162 | int | |
163 | extract_11 (word) | |
164 | unsigned word; | |
165 | { | |
166 | return low_sign_extend (word & MASK_11, 11); | |
167 | } | |
168 | ||
169 | /* extract a 14 bit immediate field */ | |
170 | ||
171 | int | |
172 | extract_14 (word) | |
173 | unsigned word; | |
174 | { | |
175 | return low_sign_extend (word & MASK_14, 14); | |
176 | } | |
177 | ||
178 | /* deposit a 14 bit constant in a word */ | |
179 | ||
180 | unsigned | |
181 | deposit_14 (opnd, word) | |
182 | int opnd; | |
183 | unsigned word; | |
184 | { | |
185 | unsigned sign = (opnd < 0 ? 1 : 0); | |
186 | ||
187 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
188 | } | |
189 | ||
190 | /* extract a 21 bit constant */ | |
191 | ||
192 | int | |
193 | extract_21 (word) | |
194 | unsigned word; | |
195 | { | |
196 | int val; | |
197 | ||
198 | word &= MASK_21; | |
199 | word <<= 11; | |
200 | val = GET_FIELD (word, 20, 20); | |
201 | val <<= 11; | |
202 | val |= GET_FIELD (word, 9, 19); | |
203 | val <<= 2; | |
204 | val |= GET_FIELD (word, 5, 6); | |
205 | val <<= 5; | |
206 | val |= GET_FIELD (word, 0, 4); | |
207 | val <<= 2; | |
208 | val |= GET_FIELD (word, 7, 8); | |
209 | return sign_extend (val, 21) << 11; | |
210 | } | |
211 | ||
212 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
213 | usually the top 21 bits of a 32 bit constant, we assume that only | |
214 | the low 21 bits of opnd are relevant */ | |
215 | ||
216 | unsigned | |
217 | deposit_21 (opnd, word) | |
218 | unsigned opnd, word; | |
219 | { | |
220 | unsigned val = 0; | |
221 | ||
222 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
223 | val <<= 2; | |
224 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
225 | val <<= 2; | |
226 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
227 | val <<= 11; | |
228 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
229 | val <<= 1; | |
230 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
231 | return word | val; | |
232 | } | |
233 | ||
234 | /* extract a 12 bit constant from branch instructions */ | |
235 | ||
236 | int | |
237 | extract_12 (word) | |
238 | unsigned word; | |
239 | { | |
240 | return sign_extend (GET_FIELD (word, 19, 28) | | |
241 | GET_FIELD (word, 29, 29) << 10 | | |
242 | (word & 0x1) << 11, 12) << 2; | |
243 | } | |
244 | ||
245 | /* extract a 17 bit constant from branch instructions, returning the | |
246 | 19 bit signed value. */ | |
247 | ||
248 | int | |
249 | extract_17 (word) | |
250 | unsigned word; | |
251 | { | |
252 | return sign_extend (GET_FIELD (word, 19, 28) | | |
253 | GET_FIELD (word, 29, 29) << 10 | | |
254 | GET_FIELD (word, 11, 15) << 11 | | |
255 | (word & 0x1) << 16, 17) << 2; | |
256 | } | |
257 | \f | |
c5152d42 JL |
258 | |
259 | /* Compare the start address for two unwind entries returning 1 if | |
260 | the first address is larger than the second, -1 if the second is | |
261 | larger than the first, and zero if they are equal. */ | |
262 | ||
263 | static int | |
264 | compare_unwind_entries (a, b) | |
265 | struct unwind_table_entry *a; | |
266 | struct unwind_table_entry *b; | |
267 | { | |
268 | if (a->region_start > b->region_start) | |
269 | return 1; | |
270 | else if (a->region_start < b->region_start) | |
271 | return -1; | |
272 | else | |
273 | return 0; | |
274 | } | |
275 | ||
276 | static void | |
277 | internalize_unwinds (objfile, table, section, entries, size, indexp) | |
278 | struct objfile *objfile; | |
279 | struct unwind_table_entry *table; | |
280 | asection *section; | |
281 | unsigned int entries, size; | |
282 | unsigned int *indexp; | |
283 | { | |
284 | /* We will read the unwind entries into temporary memory, then | |
285 | fill in the actual unwind table. */ | |
286 | if (size > 0) | |
287 | { | |
288 | unsigned long tmp; | |
289 | unsigned i; | |
290 | char *buf = alloca (size); | |
291 | ||
292 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
293 | ||
294 | /* Now internalize the information being careful to handle host/target | |
295 | endian issues. */ | |
296 | for (i = 0; i < entries; i++) | |
297 | { | |
298 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
299 | (bfd_byte *)buf); | |
300 | buf += 4; | |
301 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
302 | buf += 4; | |
303 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
304 | buf += 4; | |
305 | table[i].Cannot_unwind = (tmp >> 31) & 0x1;; | |
306 | table[i].Millicode = (tmp >> 30) & 0x1; | |
307 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
308 | table[i].Region_description = (tmp >> 27) & 0x3; | |
309 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
310 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
311 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
312 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
313 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
314 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
315 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
316 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
317 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
318 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
319 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
320 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
321 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
322 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
323 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
324 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
325 | table[i].Cleanup_defined = tmp & 0x1; | |
326 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
327 | buf += 4; | |
328 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
329 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
330 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
331 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
332 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
333 | } | |
334 | } | |
335 | } | |
336 | ||
337 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
338 | the object file. This info is used mainly by find_unwind_entry() to find | |
339 | out the stack frame size and frame pointer used by procedures. We put | |
340 | everything on the psymbol obstack in the objfile so that it automatically | |
341 | gets freed when the objfile is destroyed. */ | |
342 | ||
9c842e0c | 343 | static void |
c5152d42 JL |
344 | read_unwind_info (objfile) |
345 | struct objfile *objfile; | |
346 | { | |
347 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
348 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
349 | unsigned index, unwind_entries, elf_unwind_entries; | |
350 | unsigned stub_entries, total_entries; | |
351 | struct obj_unwind_info *ui; | |
352 | ||
353 | ui = obstack_alloc (&objfile->psymbol_obstack, | |
354 | sizeof (struct obj_unwind_info)); | |
355 | ||
356 | ui->table = NULL; | |
357 | ui->cache = NULL; | |
358 | ui->last = -1; | |
359 | ||
360 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
361 | section in ELF at the moment. */ | |
362 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
363 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".hppa_unwind"); | |
364 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
365 | ||
366 | /* Get sizes and unwind counts for all sections. */ | |
367 | if (unwind_sec) | |
368 | { | |
369 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
370 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
371 | } | |
372 | else | |
373 | { | |
374 | unwind_size = 0; | |
375 | unwind_entries = 0; | |
376 | } | |
377 | ||
378 | if (elf_unwind_sec) | |
379 | { | |
380 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
381 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
382 | } | |
383 | ||
384 | if (stub_unwind_sec) | |
385 | { | |
386 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
387 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
388 | } | |
389 | else | |
390 | { | |
391 | stub_unwind_size = 0; | |
392 | stub_entries = 0; | |
393 | } | |
394 | ||
395 | /* Compute total number of unwind entries and their total size. */ | |
396 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
397 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
398 | ||
399 | /* Allocate memory for the unwind table. */ | |
400 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
401 | ui->last = total_entries - 1; | |
402 | ||
403 | /* Internalize the standard unwind entries. */ | |
404 | index = 0; | |
405 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
406 | unwind_entries, unwind_size); | |
407 | index += unwind_entries; | |
408 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
409 | elf_unwind_entries, elf_unwind_size); | |
410 | index += elf_unwind_entries; | |
411 | ||
412 | /* Now internalize the stub unwind entries. */ | |
413 | if (stub_unwind_size > 0) | |
414 | { | |
415 | unsigned int i; | |
416 | char *buf = alloca (stub_unwind_size); | |
417 | ||
418 | /* Read in the stub unwind entries. */ | |
419 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
420 | 0, stub_unwind_size); | |
421 | ||
422 | /* Now convert them into regular unwind entries. */ | |
423 | for (i = 0; i < stub_entries; i++, index++) | |
424 | { | |
425 | /* Clear out the next unwind entry. */ | |
426 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
427 | ||
428 | /* Convert offset & size into region_start and region_end. | |
429 | Stuff away the stub type into "reserved" fields. */ | |
430 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
431 | (bfd_byte *) buf); | |
432 | buf += 4; | |
433 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
434 | (bfd_byte *) buf); | |
435 | buf += 2; | |
436 | ui->table[index].region_end | |
437 | = ui->table[index].region_start + 4 * | |
438 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
439 | buf += 2; | |
440 | } | |
441 | ||
442 | } | |
443 | ||
444 | /* Unwind table needs to be kept sorted. */ | |
445 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
446 | compare_unwind_entries); | |
447 | ||
448 | /* Keep a pointer to the unwind information. */ | |
449 | objfile->obj_private = (PTR) ui; | |
450 | } | |
451 | ||
66a1aa07 SG |
452 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
453 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
454 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
455 | search of the unwind tables, we depend upon them to be sorted. */ | |
456 | ||
457 | static struct unwind_table_entry * | |
458 | find_unwind_entry(pc) | |
459 | CORE_ADDR pc; | |
460 | { | |
461 | int first, middle, last; | |
462 | struct objfile *objfile; | |
463 | ||
464 | ALL_OBJFILES (objfile) | |
465 | { | |
466 | struct obj_unwind_info *ui; | |
467 | ||
468 | ui = OBJ_UNWIND_INFO (objfile); | |
469 | ||
470 | if (!ui) | |
c5152d42 JL |
471 | { |
472 | read_unwind_info (objfile); | |
473 | ui = OBJ_UNWIND_INFO (objfile); | |
474 | } | |
66a1aa07 SG |
475 | |
476 | /* First, check the cache */ | |
477 | ||
478 | if (ui->cache | |
479 | && pc >= ui->cache->region_start | |
480 | && pc <= ui->cache->region_end) | |
481 | return ui->cache; | |
482 | ||
483 | /* Not in the cache, do a binary search */ | |
484 | ||
485 | first = 0; | |
486 | last = ui->last; | |
487 | ||
488 | while (first <= last) | |
489 | { | |
490 | middle = (first + last) / 2; | |
491 | if (pc >= ui->table[middle].region_start | |
492 | && pc <= ui->table[middle].region_end) | |
493 | { | |
494 | ui->cache = &ui->table[middle]; | |
495 | return &ui->table[middle]; | |
496 | } | |
497 | ||
498 | if (pc < ui->table[middle].region_start) | |
499 | last = middle - 1; | |
500 | else | |
501 | first = middle + 1; | |
502 | } | |
503 | } /* ALL_OBJFILES() */ | |
504 | return NULL; | |
505 | } | |
506 | ||
70e43abe JL |
507 | /* Called to determine if PC is in an interrupt handler of some |
508 | kind. */ | |
509 | ||
510 | static int | |
511 | pc_in_interrupt_handler (pc) | |
512 | CORE_ADDR pc; | |
513 | { | |
514 | struct unwind_table_entry *u; | |
515 | struct minimal_symbol *msym_us; | |
516 | ||
517 | u = find_unwind_entry (pc); | |
518 | if (!u) | |
519 | return 0; | |
520 | ||
521 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
522 | its frame isn't a pure interrupt frame. Deal with this. */ | |
523 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
524 | ||
525 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
526 | } | |
527 | ||
5ac7f56e JK |
528 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
529 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
530 | |
531 | static int | |
532 | pc_in_linker_stub (pc) | |
533 | CORE_ADDR pc; | |
534 | { | |
5ac7f56e JK |
535 | int found_magic_instruction = 0; |
536 | int i; | |
08ecd8f3 JK |
537 | char buf[4]; |
538 | ||
539 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
540 | if (target_read_memory (pc, buf, 4) != 0) | |
541 | return 0; | |
5ac7f56e | 542 | |
d08c6f4c JK |
543 | /* We are looking for something like |
544 | ||
545 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
546 | ; before calling the "call stub" | |
547 | ldw -18(sp),rp | |
548 | ||
549 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
550 | mtsp r1,sp ; Move it into space register 0 | |
551 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
552 | */ | |
553 | ||
5ac7f56e JK |
554 | /* Maximum known linker stub size is 4 instructions. Search forward |
555 | from the given PC, then backward. */ | |
556 | for (i = 0; i < 4; i++) | |
557 | { | |
6e35b037 | 558 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
559 | |
560 | if (find_unwind_entry (pc + i * 4) != 0) | |
561 | break; | |
562 | ||
563 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
564 | return from a cross-space function call. */ | |
565 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
566 | { | |
567 | found_magic_instruction = 1; | |
568 | break; | |
569 | } | |
570 | /* Add code to handle long call/branch and argument relocation stubs | |
571 | here. */ | |
572 | } | |
573 | ||
574 | if (found_magic_instruction != 0) | |
575 | return 1; | |
576 | ||
577 | /* Now look backward. */ | |
578 | for (i = 0; i < 4; i++) | |
579 | { | |
6e35b037 | 580 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
581 | |
582 | if (find_unwind_entry (pc - i * 4) != 0) | |
583 | break; | |
584 | ||
585 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
586 | return from a cross-space function call. */ | |
587 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
588 | { | |
589 | found_magic_instruction = 1; | |
590 | break; | |
591 | } | |
592 | /* Add code to handle long call/branch and argument relocation stubs | |
593 | here. */ | |
594 | } | |
595 | return found_magic_instruction; | |
596 | } | |
597 | ||
66a1aa07 SG |
598 | static int |
599 | find_return_regnum(pc) | |
600 | CORE_ADDR pc; | |
601 | { | |
602 | struct unwind_table_entry *u; | |
603 | ||
604 | u = find_unwind_entry (pc); | |
605 | ||
606 | if (!u) | |
607 | return RP_REGNUM; | |
608 | ||
609 | if (u->Millicode) | |
610 | return 31; | |
611 | ||
612 | return RP_REGNUM; | |
613 | } | |
614 | ||
5ac7f56e | 615 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 | 616 | int |
70e43abe | 617 | find_proc_framesize (pc) |
66a1aa07 SG |
618 | CORE_ADDR pc; |
619 | { | |
620 | struct unwind_table_entry *u; | |
70e43abe | 621 | struct minimal_symbol *msym_us; |
66a1aa07 | 622 | |
66a1aa07 SG |
623 | u = find_unwind_entry (pc); |
624 | ||
625 | if (!u) | |
5ac7f56e JK |
626 | { |
627 | if (pc_in_linker_stub (pc)) | |
628 | /* Linker stubs have a zero size frame. */ | |
629 | return 0; | |
630 | else | |
631 | return -1; | |
632 | } | |
66a1aa07 | 633 | |
70e43abe JL |
634 | msym_us = lookup_minimal_symbol_by_pc (pc); |
635 | ||
636 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
637 | then we have a frame pointer. Use it. */ | |
638 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
639 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
640 | return -1; |
641 | ||
66a1aa07 SG |
642 | return u->Total_frame_size << 3; |
643 | } | |
644 | ||
5ac7f56e JK |
645 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
646 | static int rp_saved PARAMS ((CORE_ADDR)); | |
647 | ||
648 | static int | |
649 | rp_saved (pc) | |
650 | CORE_ADDR pc; | |
66a1aa07 SG |
651 | { |
652 | struct unwind_table_entry *u; | |
653 | ||
654 | u = find_unwind_entry (pc); | |
655 | ||
656 | if (!u) | |
5ac7f56e JK |
657 | { |
658 | if (pc_in_linker_stub (pc)) | |
659 | /* This is the so-called RP'. */ | |
660 | return -24; | |
661 | else | |
662 | return 0; | |
663 | } | |
66a1aa07 SG |
664 | |
665 | if (u->Save_RP) | |
5ac7f56e | 666 | return -20; |
c7f3b703 JL |
667 | else if (u->stub_type != 0) |
668 | { | |
669 | switch (u->stub_type) | |
670 | { | |
671 | case EXPORT: | |
672 | return -24; | |
673 | case PARAMETER_RELOCATION: | |
674 | return -8; | |
675 | default: | |
676 | return 0; | |
677 | } | |
678 | } | |
66a1aa07 SG |
679 | else |
680 | return 0; | |
681 | } | |
682 | \f | |
8fa74880 SG |
683 | int |
684 | frameless_function_invocation (frame) | |
685 | FRAME frame; | |
686 | { | |
b8ec9a79 | 687 | struct unwind_table_entry *u; |
8fa74880 | 688 | |
b8ec9a79 | 689 | u = find_unwind_entry (frame->pc); |
8fa74880 | 690 | |
b8ec9a79 | 691 | if (u == 0) |
7f43b9b7 | 692 | return 0; |
b8ec9a79 | 693 | |
c7f3b703 | 694 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
695 | } |
696 | ||
66a1aa07 SG |
697 | CORE_ADDR |
698 | saved_pc_after_call (frame) | |
699 | FRAME frame; | |
700 | { | |
701 | int ret_regnum; | |
702 | ||
703 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
704 | ||
705 | return read_register (ret_regnum) & ~0x3; | |
706 | } | |
707 | \f | |
708 | CORE_ADDR | |
709 | frame_saved_pc (frame) | |
710 | FRAME frame; | |
711 | { | |
712 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 713 | struct unwind_table_entry *u; |
66a1aa07 | 714 | |
70e43abe JL |
715 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
716 | at the base of the frame in an interrupt handler. Registers within | |
717 | are saved in the exact same order as GDB numbers registers. How | |
718 | convienent. */ | |
719 | if (pc_in_interrupt_handler (pc)) | |
720 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
721 | ||
722 | /* Deal with signal handler caller frames too. */ | |
723 | if (frame->signal_handler_caller) | |
724 | { | |
725 | CORE_ADDR rp; | |
726 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
727 | return rp; | |
728 | } | |
729 | ||
7f43b9b7 | 730 | restart: |
8fa74880 | 731 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
732 | { |
733 | int ret_regnum; | |
734 | ||
735 | ret_regnum = find_return_regnum (pc); | |
736 | ||
70e43abe JL |
737 | /* If the next frame is an interrupt frame or a signal |
738 | handler caller, then we need to look in the saved | |
739 | register area to get the return pointer (the values | |
740 | in the registers may not correspond to anything useful). */ | |
741 | if (frame->next | |
742 | && (frame->next->signal_handler_caller | |
743 | || pc_in_interrupt_handler (frame->next->pc))) | |
744 | { | |
745 | struct frame_info *fi; | |
746 | struct frame_saved_regs saved_regs; | |
747 | ||
748 | fi = get_frame_info (frame->next); | |
749 | get_frame_saved_regs (fi, &saved_regs); | |
750 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4)) | |
7f43b9b7 | 751 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; |
70e43abe | 752 | else |
7f43b9b7 | 753 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
754 | } |
755 | else | |
7f43b9b7 | 756 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 757 | } |
66a1aa07 | 758 | else |
5ac7f56e JK |
759 | { |
760 | int rp_offset = rp_saved (pc); | |
761 | ||
70e43abe JL |
762 | /* Similar to code in frameless function case. If the next |
763 | frame is a signal or interrupt handler, then dig the right | |
764 | information out of the saved register info. */ | |
765 | if (rp_offset == 0 | |
766 | && frame->next | |
767 | && (frame->next->signal_handler_caller | |
768 | || pc_in_interrupt_handler (frame->next->pc))) | |
769 | { | |
770 | struct frame_info *fi; | |
771 | struct frame_saved_regs saved_regs; | |
772 | ||
773 | fi = get_frame_info (frame->next); | |
774 | get_frame_saved_regs (fi, &saved_regs); | |
775 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4)) | |
7f43b9b7 | 776 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; |
70e43abe | 777 | else |
7f43b9b7 | 778 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
779 | } |
780 | else if (rp_offset == 0) | |
7f43b9b7 | 781 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 782 | else |
7f43b9b7 | 783 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 784 | } |
7f43b9b7 JL |
785 | |
786 | /* If PC is inside a linker stub, then dig out the address the stub | |
787 | will return to. */ | |
788 | u = find_unwind_entry (pc); | |
789 | if (u && u->stub_type != 0) | |
790 | goto restart; | |
791 | ||
792 | return pc; | |
66a1aa07 SG |
793 | } |
794 | \f | |
795 | /* We need to correct the PC and the FP for the outermost frame when we are | |
796 | in a system call. */ | |
797 | ||
798 | void | |
799 | init_extra_frame_info (fromleaf, frame) | |
800 | int fromleaf; | |
801 | struct frame_info *frame; | |
802 | { | |
803 | int flags; | |
804 | int framesize; | |
805 | ||
192c3eeb | 806 | if (frame->next && !fromleaf) |
66a1aa07 SG |
807 | return; |
808 | ||
192c3eeb JL |
809 | /* If the next frame represents a frameless function invocation |
810 | then we have to do some adjustments that are normally done by | |
811 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
812 | if (fromleaf) | |
813 | { | |
814 | /* Find the framesize of *this* frame without peeking at the PC | |
815 | in the current frame structure (it isn't set yet). */ | |
816 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
817 | ||
818 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
819 | use it, else subtract the size of this frame from the current | |
820 | frame. (we always want frame->frame to point at the lowest address | |
821 | in the frame). */ | |
822 | if (framesize == -1) | |
823 | frame->frame = read_register (FP_REGNUM); | |
824 | else | |
825 | frame->frame -= framesize; | |
826 | return; | |
827 | } | |
828 | ||
66a1aa07 SG |
829 | flags = read_register (FLAGS_REGNUM); |
830 | if (flags & 2) /* In system call? */ | |
831 | frame->pc = read_register (31) & ~0x3; | |
832 | ||
192c3eeb JL |
833 | /* The outermost frame is always derived from PC-framesize |
834 | ||
835 | One might think frameless innermost frames should have | |
836 | a frame->frame that is the same as the parent's frame->frame. | |
837 | That is wrong; frame->frame in that case should be the *high* | |
838 | address of the parent's frame. It's complicated as hell to | |
839 | explain, but the parent *always* creates some stack space for | |
840 | the child. So the child actually does have a frame of some | |
841 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
842 | framesize = find_proc_framesize(frame->pc); |
843 | if (framesize == -1) | |
844 | frame->frame = read_register (FP_REGNUM); | |
845 | else | |
846 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
847 | } |
848 | \f | |
8966221d JK |
849 | /* Given a GDB frame, determine the address of the calling function's frame. |
850 | This will be used to create a new GDB frame struct, and then | |
851 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
852 | ||
853 | This may involve searching through prologues for several functions | |
854 | at boundaries where GCC calls HP C code, or where code which has | |
855 | a frame pointer calls code without a frame pointer. */ | |
856 | ||
857 | ||
66a1aa07 SG |
858 | FRAME_ADDR |
859 | frame_chain (frame) | |
860 | struct frame_info *frame; | |
861 | { | |
8966221d JK |
862 | int my_framesize, caller_framesize; |
863 | struct unwind_table_entry *u; | |
70e43abe JL |
864 | CORE_ADDR frame_base; |
865 | ||
866 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
867 | are easy; at *sp we have a full save state strucutre which we can | |
868 | pull the old stack pointer from. Also see frame_saved_pc for | |
869 | code to dig a saved PC out of the save state structure. */ | |
870 | if (pc_in_interrupt_handler (frame->pc)) | |
871 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
872 | else if (frame->signal_handler_caller) | |
873 | { | |
874 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
875 | } | |
876 | else | |
877 | frame_base = frame->frame; | |
66a1aa07 | 878 | |
8966221d JK |
879 | /* Get frame sizes for the current frame and the frame of the |
880 | caller. */ | |
881 | my_framesize = find_proc_framesize (frame->pc); | |
882 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 883 | |
8966221d JK |
884 | /* If caller does not have a frame pointer, then its frame |
885 | can be found at current_frame - caller_framesize. */ | |
886 | if (caller_framesize != -1) | |
70e43abe | 887 | return frame_base - caller_framesize; |
8966221d JK |
888 | |
889 | /* Both caller and callee have frame pointers and are GCC compiled | |
890 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
891 | The previous frame pointer is found at the top of the current frame. */ | |
892 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 893 | return read_memory_integer (frame_base, 4); |
8966221d JK |
894 | |
895 | /* Caller has a frame pointer, but callee does not. This is a little | |
896 | more difficult as GCC and HP C lay out locals and callee register save | |
897 | areas very differently. | |
898 | ||
899 | The previous frame pointer could be in a register, or in one of | |
900 | several areas on the stack. | |
901 | ||
902 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 903 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 904 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 905 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
906 | valid, so use it. |
907 | ||
2f8c3639 | 908 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
909 | is saved into the stack (Entry_GR field has this information). */ |
910 | ||
911 | while (frame) | |
912 | { | |
913 | u = find_unwind_entry (frame->pc); | |
914 | ||
915 | if (!u) | |
916 | { | |
01a03545 JK |
917 | /* We could find this information by examining prologues. I don't |
918 | think anyone has actually written any tools (not even "strip") | |
919 | which leave them out of an executable, so maybe this is a moot | |
920 | point. */ | |
8966221d JK |
921 | warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); |
922 | return 0; | |
923 | } | |
924 | ||
925 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 926 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe JL |
927 | if (u->Entry_GR >= 1 || u->Save_SP |
928 | || frame->signal_handler_caller | |
929 | || pc_in_interrupt_handler (frame->pc)) | |
8966221d JK |
930 | break; |
931 | else | |
932 | frame = frame->next; | |
933 | } | |
934 | ||
935 | if (frame) | |
936 | { | |
937 | /* We may have walked down the chain into a function with a frame | |
938 | pointer. */ | |
70e43abe JL |
939 | if (u->Save_SP |
940 | && !frame->signal_handler_caller | |
941 | && !pc_in_interrupt_handler (frame->pc)) | |
8966221d | 942 | return read_memory_integer (frame->frame, 4); |
2f8c3639 | 943 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 944 | else |
c598654a JL |
945 | { |
946 | struct frame_info *fi; | |
947 | struct frame_saved_regs saved_regs; | |
948 | ||
949 | fi = get_frame_info (frame); | |
950 | get_frame_saved_regs (fi, &saved_regs); | |
951 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); | |
952 | } | |
8966221d JK |
953 | } |
954 | else | |
955 | { | |
2f8c3639 | 956 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 957 | holds the value of the previous frame pointer). */ |
2f8c3639 | 958 | return read_register (FP_REGNUM); |
8966221d JK |
959 | } |
960 | } | |
66a1aa07 | 961 | |
66a1aa07 SG |
962 | \f |
963 | /* To see if a frame chain is valid, see if the caller looks like it | |
964 | was compiled with gcc. */ | |
965 | ||
966 | int | |
967 | frame_chain_valid (chain, thisframe) | |
968 | FRAME_ADDR chain; | |
969 | FRAME thisframe; | |
970 | { | |
247145e6 JK |
971 | struct minimal_symbol *msym_us; |
972 | struct minimal_symbol *msym_start; | |
70e43abe JL |
973 | struct unwind_table_entry *u, *next_u = NULL; |
974 | FRAME next; | |
66a1aa07 SG |
975 | |
976 | if (!chain) | |
977 | return 0; | |
978 | ||
b8ec9a79 | 979 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 980 | |
70e43abe JL |
981 | if (u == NULL) |
982 | return 1; | |
983 | ||
247145e6 JK |
984 | /* We can't just check that the same of msym_us is "_start", because |
985 | someone idiotically decided that they were going to make a Ltext_end | |
986 | symbol with the same address. This Ltext_end symbol is totally | |
987 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
988 | which is (legitimately, since it is in the user's namespace) | |
989 | named Ltext_end, so we can't just ignore it. */ | |
990 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
991 | msym_start = lookup_minimal_symbol ("_start", NULL); | |
992 | if (msym_us | |
993 | && msym_start | |
994 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 995 | return 0; |
5ac7f56e | 996 | |
70e43abe JL |
997 | next = get_next_frame (thisframe); |
998 | if (next) | |
999 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1000 | |
70e43abe JL |
1001 | /* If this frame does not save SP, has no stack, isn't a stub, |
1002 | and doesn't "call" an interrupt routine or signal handler caller, | |
1003 | then its not valid. */ | |
1004 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1005 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1006 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1007 | return 1; |
5ac7f56e | 1008 | |
b8ec9a79 JK |
1009 | if (pc_in_linker_stub (thisframe->pc)) |
1010 | return 1; | |
4b01383b | 1011 | |
b8ec9a79 | 1012 | return 0; |
66a1aa07 SG |
1013 | } |
1014 | ||
66a1aa07 SG |
1015 | /* |
1016 | * These functions deal with saving and restoring register state | |
1017 | * around a function call in the inferior. They keep the stack | |
1018 | * double-word aligned; eventually, on an hp700, the stack will have | |
1019 | * to be aligned to a 64-byte boundary. | |
1020 | */ | |
1021 | ||
1022 | int | |
1023 | push_dummy_frame () | |
1024 | { | |
1025 | register CORE_ADDR sp; | |
1026 | register int regnum; | |
1027 | int int_buffer; | |
1028 | double freg_buffer; | |
1029 | ||
1030 | /* Space for "arguments"; the RP goes in here. */ | |
1031 | sp = read_register (SP_REGNUM) + 48; | |
1032 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1033 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1034 | ||
1035 | int_buffer = read_register (FP_REGNUM); | |
1036 | write_memory (sp, (char *)&int_buffer, 4); | |
1037 | ||
1038 | write_register (FP_REGNUM, sp); | |
1039 | ||
1040 | sp += 8; | |
1041 | ||
1042 | for (regnum = 1; regnum < 32; regnum++) | |
1043 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1044 | sp = push_word (sp, read_register (regnum)); | |
1045 | ||
1046 | sp += 4; | |
1047 | ||
1048 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1049 | { | |
1050 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1051 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1052 | } | |
1053 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1054 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1055 | sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); | |
1056 | sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); | |
1057 | sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); | |
1058 | sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); | |
1059 | write_register (SP_REGNUM, sp); | |
1060 | } | |
1061 | ||
1062 | find_dummy_frame_regs (frame, frame_saved_regs) | |
1063 | struct frame_info *frame; | |
1064 | struct frame_saved_regs *frame_saved_regs; | |
1065 | { | |
1066 | CORE_ADDR fp = frame->frame; | |
1067 | int i; | |
1068 | ||
1069 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
1070 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1071 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1072 | |
b227992a SG |
1073 | for (fp += 12, i = 3; i < 32; i++) |
1074 | { | |
1075 | if (i != FP_REGNUM) | |
1076 | { | |
1077 | frame_saved_regs->regs[i] = fp; | |
1078 | fp += 4; | |
1079 | } | |
1080 | } | |
66a1aa07 SG |
1081 | |
1082 | fp += 4; | |
1083 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1084 | frame_saved_regs->regs[i] = fp; | |
1085 | ||
1086 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1087 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1088 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1089 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1090 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1091 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1092 | } |
1093 | ||
1094 | int | |
1095 | hppa_pop_frame () | |
1096 | { | |
1097 | register FRAME frame = get_current_frame (); | |
1098 | register CORE_ADDR fp; | |
1099 | register int regnum; | |
1100 | struct frame_saved_regs fsr; | |
1101 | struct frame_info *fi; | |
1102 | double freg_buffer; | |
1103 | ||
1104 | fi = get_frame_info (frame); | |
1105 | fp = fi->frame; | |
1106 | get_frame_saved_regs (fi, &fsr); | |
1107 | ||
0a64709e | 1108 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1109 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1110 | restore_pc_queue (&fsr); | |
0a64709e | 1111 | #endif |
66a1aa07 SG |
1112 | |
1113 | for (regnum = 31; regnum > 0; regnum--) | |
1114 | if (fsr.regs[regnum]) | |
1115 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1116 | ||
1117 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1118 | if (fsr.regs[regnum]) | |
1119 | { | |
1120 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1121 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1122 | } | |
1123 | ||
1124 | if (fsr.regs[IPSW_REGNUM]) | |
1125 | write_register (IPSW_REGNUM, | |
1126 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1127 | ||
1128 | if (fsr.regs[SAR_REGNUM]) | |
1129 | write_register (SAR_REGNUM, | |
1130 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1131 | ||
ed1a07ad | 1132 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 SG |
1133 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
1134 | write_register (PCOQ_TAIL_REGNUM, | |
1135 | read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); | |
1136 | ||
ed1a07ad JK |
1137 | /* Else use the value in %rp to set the new PC. */ |
1138 | else | |
1139 | target_write_pc (read_register (RP_REGNUM)); | |
1140 | ||
66a1aa07 SG |
1141 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1142 | ||
1143 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1144 | write_register (SP_REGNUM, fp - 48); | |
1145 | else | |
1146 | write_register (SP_REGNUM, fp); | |
1147 | ||
1148 | flush_cached_frames (); | |
1149 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
1150 | read_pc ())); | |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * After returning to a dummy on the stack, restore the instruction | |
1155 | * queue space registers. */ | |
1156 | ||
1157 | static int | |
1158 | restore_pc_queue (fsr) | |
1159 | struct frame_saved_regs *fsr; | |
1160 | { | |
1161 | CORE_ADDR pc = read_pc (); | |
1162 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
1163 | int pid; | |
67ac9759 | 1164 | struct target_waitstatus w; |
66a1aa07 SG |
1165 | int insn_count; |
1166 | ||
1167 | /* Advance past break instruction in the call dummy. */ | |
1168 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1169 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1170 | ||
1171 | /* | |
1172 | * HPUX doesn't let us set the space registers or the space | |
1173 | * registers of the PC queue through ptrace. Boo, hiss. | |
1174 | * Conveniently, the call dummy has this sequence of instructions | |
1175 | * after the break: | |
1176 | * mtsp r21, sr0 | |
1177 | * ble,n 0(sr0, r22) | |
1178 | * | |
1179 | * So, load up the registers and single step until we are in the | |
1180 | * right place. | |
1181 | */ | |
1182 | ||
1183 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1184 | write_register (22, new_pc); | |
1185 | ||
1186 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1187 | { | |
8c5e0021 JK |
1188 | /* FIXME: What if the inferior gets a signal right now? Want to |
1189 | merge this into wait_for_inferior (as a special kind of | |
1190 | watchpoint? By setting a breakpoint at the end? Is there | |
1191 | any other choice? Is there *any* way to do this stuff with | |
1192 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1193 | resume (1, 0); |
67ac9759 | 1194 | target_wait (inferior_pid, &w); |
66a1aa07 | 1195 | |
67ac9759 | 1196 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1197 | { |
67ac9759 | 1198 | stop_signal = w.value.sig; |
66a1aa07 | 1199 | terminal_ours_for_output (); |
67ac9759 JK |
1200 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1201 | target_signal_to_name (stop_signal), | |
1202 | target_signal_to_string (stop_signal)); | |
199b2450 | 1203 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1204 | return 0; |
1205 | } | |
1206 | } | |
8c5e0021 | 1207 | target_terminal_ours (); |
9c842e0c | 1208 | (current_target->to_fetch_registers) (-1); |
66a1aa07 SG |
1209 | return 1; |
1210 | } | |
1211 | ||
1212 | CORE_ADDR | |
1213 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1214 | int nargs; | |
4fd5eed4 | 1215 | value_ptr *args; |
66a1aa07 SG |
1216 | CORE_ADDR sp; |
1217 | int struct_return; | |
1218 | CORE_ADDR struct_addr; | |
1219 | { | |
1220 | /* array of arguments' offsets */ | |
1edc5cd2 | 1221 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1222 | int cum = 0; |
1223 | int i, alignment; | |
1224 | ||
1225 | for (i = 0; i < nargs; i++) | |
1226 | { | |
1227 | /* Coerce chars to int & float to double if necessary */ | |
1228 | args[i] = value_arg_coerce (args[i]); | |
1229 | ||
1230 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1231 | ||
1232 | /* value must go at proper alignment. Assume alignment is a | |
1233 | power of two.*/ | |
1234 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1235 | if (cum % alignment) | |
1236 | cum = (cum + alignment) & -alignment; | |
1237 | offset[i] = -cum; | |
1238 | } | |
558f4183 | 1239 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1240 | |
1241 | for (i = 0; i < nargs; i++) | |
1242 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1243 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1244 | ||
1245 | if (struct_return) | |
1246 | write_register (28, struct_addr); | |
1247 | return sp + 32; | |
1248 | } | |
1249 | ||
1250 | /* | |
1251 | * Insert the specified number of args and function address | |
1252 | * into a call sequence of the above form stored at DUMMYNAME. | |
1253 | * | |
1254 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1255 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1256 | * real_pc, which is the location where gdb should start up the | |
1257 | * inferior to do the function call. | |
1258 | */ | |
1259 | ||
1260 | CORE_ADDR | |
1261 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1262 | char *dummy; |
66a1aa07 SG |
1263 | CORE_ADDR pc; |
1264 | CORE_ADDR fun; | |
1265 | int nargs; | |
4fd5eed4 | 1266 | value_ptr *args; |
66a1aa07 SG |
1267 | struct type *type; |
1268 | int gcc_p; | |
1269 | { | |
1270 | CORE_ADDR dyncall_addr, sr4export_addr; | |
1271 | struct minimal_symbol *msymbol; | |
6cfec929 | 1272 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1273 | struct unwind_table_entry *u; |
66a1aa07 SG |
1274 | |
1275 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
1276 | if (msymbol == NULL) | |
1277 | error ("Can't find an address for $$dyncall trampoline"); | |
1278 | ||
1279 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1280 | ||
4f915914 JL |
1281 | /* FUN could be a procedure label, in which case we have to get |
1282 | its real address and the value of its GOT/DP. */ | |
1283 | if (fun & 0x2) | |
1284 | { | |
1285 | /* Get the GOT/DP value for the target function. It's | |
1286 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1287 | trash %r19 before calling the target function. */ | |
1288 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1289 | ||
1290 | /* Now get the real address for the function we are calling, it's | |
1291 | at *fun. */ | |
1292 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1293 | } | |
1294 | ||
19cd0c1f JL |
1295 | /* If we are calling an import stub (eg calling into a dynamic library) |
1296 | then have sr4export call the magic __d_plt_call routine which is linked | |
1297 | in from end.o. (You can't use _sr4export to call the import stub as | |
1298 | the value in sp-24 will get fried and you end up returning to the | |
1299 | wrong location. You can't call the import stub directly as the code | |
1300 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1301 | u = find_unwind_entry (fun); | |
1302 | if (u && u->stub_type == IMPORT) | |
1303 | { | |
1304 | CORE_ADDR new_fun; | |
1305 | msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL); | |
1306 | if (msymbol == NULL) | |
1307 | error ("Can't find an address for __d_plt_call trampoline"); | |
1308 | ||
1309 | /* This is where sr4export will jump to. */ | |
1310 | new_fun = SYMBOL_VALUE_ADDRESS (msymbol); | |
1311 | ||
1312 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
1313 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", | |
1314 | (struct objfile *)NULL); | |
1315 | if (msymbol == NULL) | |
1316 | error ("Can't find an address for __shlib_funcptr"); | |
1317 | ||
1318 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); | |
1319 | fun = new_fun; | |
1320 | ||
1321 | } | |
1322 | ||
1323 | /* We still need sr4export's address too. */ | |
66a1aa07 SG |
1324 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); |
1325 | if (msymbol == NULL) | |
1326 | error ("Can't find an address for _sr4export trampoline"); | |
1327 | ||
1328 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1329 | ||
f4f0d174 JK |
1330 | store_unsigned_integer |
1331 | (&dummy[9*REGISTER_SIZE], | |
1332 | REGISTER_SIZE, | |
1333 | deposit_21 (fun >> 11, | |
1334 | extract_unsigned_integer (&dummy[9*REGISTER_SIZE], | |
1335 | REGISTER_SIZE))); | |
1336 | store_unsigned_integer | |
1337 | (&dummy[10*REGISTER_SIZE], | |
1338 | REGISTER_SIZE, | |
1339 | deposit_14 (fun & MASK_11, | |
1340 | extract_unsigned_integer (&dummy[10*REGISTER_SIZE], | |
1341 | REGISTER_SIZE))); | |
1342 | store_unsigned_integer | |
1343 | (&dummy[12*REGISTER_SIZE], | |
1344 | REGISTER_SIZE, | |
1345 | deposit_21 (sr4export_addr >> 11, | |
1346 | extract_unsigned_integer (&dummy[12*REGISTER_SIZE], | |
1347 | REGISTER_SIZE))); | |
1348 | store_unsigned_integer | |
1349 | (&dummy[13*REGISTER_SIZE], | |
1350 | REGISTER_SIZE, | |
1351 | deposit_14 (sr4export_addr & MASK_11, | |
1352 | extract_unsigned_integer (&dummy[13*REGISTER_SIZE], | |
1353 | REGISTER_SIZE))); | |
66a1aa07 SG |
1354 | |
1355 | write_register (22, pc); | |
1356 | ||
6cfec929 JK |
1357 | /* If we are in a syscall, then we should call the stack dummy |
1358 | directly. $$dyncall is not needed as the kernel sets up the | |
1359 | space id registers properly based on the value in %r31. In | |
1360 | fact calling $$dyncall will not work because the value in %r22 | |
1361 | will be clobbered on the syscall exit path. */ | |
1362 | if (flags & 2) | |
1363 | return pc; | |
1364 | else | |
1365 | return dyncall_addr; | |
1366 | ||
66a1aa07 SG |
1367 | } |
1368 | ||
d3862cae JK |
1369 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1370 | bits. */ | |
1371 | CORE_ADDR | |
1372 | target_read_pc () | |
1373 | { | |
1374 | int flags = read_register (FLAGS_REGNUM); | |
1375 | ||
1376 | if (flags & 2) | |
1377 | return read_register (31) & ~0x3; | |
1378 | return read_register (PC_REGNUM) & ~0x3; | |
1379 | } | |
1380 | ||
6cfec929 JK |
1381 | /* Write out the PC. If currently in a syscall, then also write the new |
1382 | PC value into %r31. */ | |
1383 | void | |
1384 | target_write_pc (v) | |
1385 | CORE_ADDR v; | |
1386 | { | |
1387 | int flags = read_register (FLAGS_REGNUM); | |
1388 | ||
1389 | /* If in a syscall, then set %r31. Also make sure to get the | |
1390 | privilege bits set correctly. */ | |
1391 | if (flags & 2) | |
1392 | write_register (31, (long) (v | 0x3)); | |
1393 | ||
1394 | write_register (PC_REGNUM, (long) v); | |
1395 | write_register (NPC_REGNUM, (long) v + 4); | |
1396 | } | |
1397 | ||
66a1aa07 SG |
1398 | /* return the alignment of a type in bytes. Structures have the maximum |
1399 | alignment required by their fields. */ | |
1400 | ||
1401 | static int | |
1402 | hppa_alignof (arg) | |
1403 | struct type *arg; | |
1404 | { | |
1405 | int max_align, align, i; | |
1406 | switch (TYPE_CODE (arg)) | |
1407 | { | |
1408 | case TYPE_CODE_PTR: | |
1409 | case TYPE_CODE_INT: | |
1410 | case TYPE_CODE_FLT: | |
1411 | return TYPE_LENGTH (arg); | |
1412 | case TYPE_CODE_ARRAY: | |
1413 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
1414 | case TYPE_CODE_STRUCT: | |
1415 | case TYPE_CODE_UNION: | |
1416 | max_align = 2; | |
1417 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
1418 | { | |
1419 | /* Bit fields have no real alignment. */ | |
1420 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
1421 | { | |
1422 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
1423 | max_align = max (max_align, align); | |
1424 | } | |
1425 | } | |
1426 | return max_align; | |
1427 | default: | |
1428 | return 4; | |
1429 | } | |
1430 | } | |
1431 | ||
1432 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1433 | ||
1434 | pa_do_registers_info (regnum, fpregs) | |
1435 | int regnum; | |
1436 | int fpregs; | |
1437 | { | |
1438 | char raw_regs [REGISTER_BYTES]; | |
1439 | int i; | |
1440 | ||
1441 | for (i = 0; i < NUM_REGS; i++) | |
1442 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1443 | if (regnum == -1) | |
1444 | pa_print_registers (raw_regs, regnum, fpregs); | |
1445 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1446 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1447 | REGISTER_BYTE (regnum))); |
1448 | else | |
1449 | pa_print_fp_reg (regnum); | |
1450 | } | |
1451 | ||
1452 | pa_print_registers (raw_regs, regnum, fpregs) | |
1453 | char *raw_regs; | |
1454 | int regnum; | |
1455 | int fpregs; | |
1456 | { | |
1457 | int i; | |
1458 | ||
1459 | for (i = 0; i < 18; i++) | |
199b2450 | 1460 | printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", |
66a1aa07 SG |
1461 | reg_names[i], |
1462 | *(int *)(raw_regs + REGISTER_BYTE (i)), | |
1463 | reg_names[i + 18], | |
1464 | *(int *)(raw_regs + REGISTER_BYTE (i + 18)), | |
1465 | reg_names[i + 36], | |
1466 | *(int *)(raw_regs + REGISTER_BYTE (i + 36)), | |
1467 | reg_names[i + 54], | |
1468 | *(int *)(raw_regs + REGISTER_BYTE (i + 54))); | |
1469 | ||
1470 | if (fpregs) | |
1471 | for (i = 72; i < NUM_REGS; i++) | |
1472 | pa_print_fp_reg (i); | |
1473 | } | |
1474 | ||
1475 | pa_print_fp_reg (i) | |
1476 | int i; | |
1477 | { | |
1478 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1479 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1480 | |
eb1167c6 | 1481 | /* Get 32bits of data. */ |
66a1aa07 | 1482 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1483 | |
eb1167c6 JL |
1484 | /* Put it in the buffer. No conversions are ever necessary. */ |
1485 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1486 | |
199b2450 | 1487 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1488 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1489 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1490 | |
199b2450 | 1491 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1492 | 1, 0, Val_pretty_default); |
1493 | printf_filtered ("\n"); | |
eb1167c6 JL |
1494 | |
1495 | /* If "i" is even, then this register can also be a double-precision | |
1496 | FP register. Dump it out as such. */ | |
1497 | if ((i % 2) == 0) | |
1498 | { | |
1499 | /* Get the data in raw format for the 2nd half. */ | |
1500 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1501 | ||
1502 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1503 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1504 | REGISTER_RAW_SIZE (i)); | |
1505 | ||
1506 | /* Dump it as a double. */ | |
1507 | fputs_filtered (reg_names[i], gdb_stdout); | |
1508 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1509 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1510 | ||
1511 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1512 | 1, 0, Val_pretty_default); | |
1513 | printf_filtered ("\n"); | |
1514 | } | |
66a1aa07 SG |
1515 | } |
1516 | ||
de482138 JL |
1517 | /* Figure out if PC is in a trampoline, and if so find out where |
1518 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 1519 | |
de482138 JL |
1520 | Simple code examination probably is not a good idea since the code |
1521 | sequences in trampolines can also appear in user code. | |
1522 | ||
1523 | We use unwinds and information from the minimal symbol table to | |
1524 | determine when we're in a trampoline. This won't work for ELF | |
1525 | (yet) since it doesn't create stub unwind entries. Whether or | |
1526 | not ELF will create stub unwinds or normal unwinds for linker | |
1527 | stubs is still being debated. | |
1528 | ||
1529 | This should handle simple calls through dyncall or sr4export, | |
1530 | long calls, argument relocation stubs, and dyncall/sr4export | |
1531 | calling an argument relocation stub. It even handles some stubs | |
1532 | used in dynamic executables. */ | |
66a1aa07 SG |
1533 | |
1534 | CORE_ADDR | |
1535 | skip_trampoline_code (pc, name) | |
1536 | CORE_ADDR pc; | |
1537 | char *name; | |
1538 | { | |
de482138 JL |
1539 | long orig_pc = pc; |
1540 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 1541 | static CORE_ADDR dyncall = 0; |
de482138 | 1542 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 1543 | struct minimal_symbol *msym; |
de482138 | 1544 | struct unwind_table_entry *u; |
66a1aa07 | 1545 | |
de482138 JL |
1546 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
1547 | new exec file */ | |
66a1aa07 SG |
1548 | |
1549 | if (!dyncall) | |
1550 | { | |
1551 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1552 | if (msym) | |
1553 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1554 | else | |
1555 | dyncall = -1; | |
1556 | } | |
1557 | ||
de482138 JL |
1558 | if (!sr4export) |
1559 | { | |
1560 | msym = lookup_minimal_symbol ("_sr4export", NULL); | |
1561 | if (msym) | |
1562 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
1563 | else | |
1564 | sr4export = -1; | |
1565 | } | |
1566 | ||
1567 | /* Addresses passed to dyncall may *NOT* be the actual address | |
1568 | of the funtion. So we may have to do something special. */ | |
66a1aa07 | 1569 | if (pc == dyncall) |
de482138 JL |
1570 | { |
1571 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 1572 | |
de482138 JL |
1573 | /* If bit 30 (counting from the left) is on, then pc is the address of |
1574 | the PLT entry for this function, not the address of the function | |
1575 | itself. Bit 31 has meaning too, but only for MPE. */ | |
1576 | if (pc & 0x2) | |
1577 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
1578 | } | |
1579 | else if (pc == sr4export) | |
1580 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 1581 | |
de482138 JL |
1582 | /* Get the unwind descriptor corresponding to PC, return zero |
1583 | if no unwind was found. */ | |
1584 | u = find_unwind_entry (pc); | |
1585 | if (!u) | |
1586 | return 0; | |
1587 | ||
1588 | /* If this isn't a linker stub, then return now. */ | |
1589 | if (u->stub_type == 0) | |
1590 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1591 | ||
1592 | /* It's a stub. Search for a branch and figure out where it goes. | |
1593 | Note we have to handle multi insn branch sequences like ldil;ble. | |
1594 | Most (all?) other branches can be determined by examining the contents | |
1595 | of certain registers and the stack. */ | |
1596 | loc = pc; | |
1597 | curr_inst = 0; | |
1598 | prev_inst = 0; | |
1599 | while (1) | |
1600 | { | |
1601 | /* Make sure we haven't walked outside the range of this stub. */ | |
1602 | if (u != find_unwind_entry (loc)) | |
1603 | { | |
1604 | warning ("Unable to find branch in linker stub"); | |
1605 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1606 | } | |
1607 | ||
1608 | prev_inst = curr_inst; | |
1609 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 1610 | |
de482138 JL |
1611 | /* Does it look like a branch external using %r1? Then it's the |
1612 | branch from the stub to the actual function. */ | |
1613 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
1614 | { | |
1615 | /* Yup. See if the previous instruction loaded | |
1616 | a value into %r1. If so compute and return the jump address. */ | |
1617 | if ((prev_inst & 0xffe00000) == 0x20202000) | |
1618 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
1619 | else | |
1620 | { | |
1621 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
1622 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1623 | } | |
1624 | } | |
1625 | ||
1626 | /* Does it look like bl X,rp? Another way to do a branch from the | |
1627 | stub to the actual function. */ | |
1628 | else if ((curr_inst & 0xffe0e000) == 0xe8400000) | |
1629 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; | |
1630 | ||
1631 | /* Does it look like bv (rp)? Note this depends on the | |
1632 | current stack pointer being the same as the stack | |
1633 | pointer in the stub itself! This is a branch on from the | |
1634 | stub back to the original caller. */ | |
1635 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
1636 | { | |
1637 | /* Yup. See if the previous instruction loaded | |
1638 | rp from sp - 8. */ | |
1639 | if (prev_inst == 0x4bc23ff1) | |
1640 | return (read_memory_integer | |
1641 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
1642 | else | |
1643 | { | |
1644 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
1645 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1646 | } | |
1647 | } | |
1648 | ||
1649 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
1650 | the original caller from the stub. Used in dynamic executables. */ | |
1651 | else if (curr_inst == 0xe0400002) | |
1652 | { | |
1653 | /* The value we jump to is sitting in sp - 24. But that's | |
1654 | loaded several instructions before the be instruction. | |
1655 | I guess we could check for the previous instruction being | |
1656 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
1657 | return (read_memory_integer | |
1658 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
1659 | } | |
1660 | ||
1661 | /* Haven't found the branch yet, but we're still in the stub. | |
1662 | Keep looking. */ | |
1663 | loc += 4; | |
1664 | } | |
66a1aa07 SG |
1665 | } |
1666 | ||
c598654a JL |
1667 | /* For the given instruction (INST), return any adjustment it makes |
1668 | to the stack pointer or zero for no adjustment. | |
1669 | ||
1670 | This only handles instructions commonly found in prologues. */ | |
1671 | ||
1672 | static int | |
1673 | prologue_inst_adjust_sp (inst) | |
1674 | unsigned long inst; | |
1675 | { | |
1676 | /* This must persist across calls. */ | |
1677 | static int save_high21; | |
1678 | ||
1679 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1680 | if ((inst & 0xffffc000) == 0x37de0000) | |
1681 | return extract_14 (inst); | |
1682 | ||
1683 | /* stwm X,D(sp) */ | |
1684 | if ((inst & 0xffe00000) == 0x6fc00000) | |
1685 | return extract_14 (inst); | |
1686 | ||
1687 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
1688 | save high bits in save_high21 for later use. */ | |
1689 | if ((inst & 0xffe00000) == 0x28200000) | |
1690 | { | |
1691 | save_high21 = extract_21 (inst); | |
1692 | return 0; | |
1693 | } | |
1694 | ||
1695 | if ((inst & 0xffff0000) == 0x343e0000) | |
1696 | return save_high21 + extract_14 (inst); | |
1697 | ||
1698 | /* fstws as used by the HP compilers. */ | |
1699 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
1700 | return extract_5_load (inst); | |
1701 | ||
1702 | /* No adjustment. */ | |
1703 | return 0; | |
1704 | } | |
1705 | ||
1706 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1707 | ||
1708 | static int | |
1709 | is_branch (inst) | |
1710 | unsigned long inst; | |
1711 | { | |
1712 | switch (inst >> 26) | |
1713 | { | |
1714 | case 0x20: | |
1715 | case 0x21: | |
1716 | case 0x22: | |
1717 | case 0x23: | |
1718 | case 0x28: | |
1719 | case 0x29: | |
1720 | case 0x2a: | |
1721 | case 0x2b: | |
1722 | case 0x30: | |
1723 | case 0x31: | |
1724 | case 0x32: | |
1725 | case 0x33: | |
1726 | case 0x38: | |
1727 | case 0x39: | |
1728 | case 0x3a: | |
1729 | return 1; | |
1730 | ||
1731 | default: | |
1732 | return 0; | |
1733 | } | |
1734 | } | |
1735 | ||
1736 | /* Return the register number for a GR which is saved by INST or | |
1737 | zero it INST does not save a GR. | |
1738 | ||
1739 | Note we only care about full 32bit register stores (that's the only | |
1740 | kind of stores the prologue will use). */ | |
1741 | ||
1742 | static int | |
1743 | inst_saves_gr (inst) | |
1744 | unsigned long inst; | |
1745 | { | |
1746 | /* Does it look like a stw? */ | |
1747 | if ((inst >> 26) == 0x1a) | |
1748 | return extract_5R_store (inst); | |
1749 | ||
1750 | /* Does it look like a stwm? */ | |
1751 | if ((inst >> 26) == 0x1b) | |
1752 | return extract_5R_store (inst); | |
1753 | ||
1754 | return 0; | |
1755 | } | |
1756 | ||
1757 | /* Return the register number for a FR which is saved by INST or | |
1758 | zero it INST does not save a FR. | |
1759 | ||
1760 | Note we only care about full 64bit register stores (that's the only | |
1761 | kind of stores the prologue will use). */ | |
1762 | ||
1763 | static int | |
1764 | inst_saves_fr (inst) | |
1765 | unsigned long inst; | |
1766 | { | |
1767 | if ((inst & 0xfc1fffe0) == 0x2c101220) | |
1768 | return extract_5r_store (inst); | |
1769 | return 0; | |
1770 | } | |
1771 | ||
66a1aa07 | 1772 | /* Advance PC across any function entry prologue instructions |
c598654a | 1773 | to reach some "real" code. |
66a1aa07 | 1774 | |
c598654a JL |
1775 | Use information in the unwind table to determine what exactly should |
1776 | be in the prologue. */ | |
66a1aa07 SG |
1777 | |
1778 | CORE_ADDR | |
de482138 | 1779 | skip_prologue (pc) |
66a1aa07 SG |
1780 | CORE_ADDR pc; |
1781 | { | |
34df79fc | 1782 | char buf[4]; |
c598654a JL |
1783 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
1784 | int status, i; | |
1785 | struct unwind_table_entry *u; | |
66a1aa07 | 1786 | |
c598654a JL |
1787 | u = find_unwind_entry (pc); |
1788 | if (!u) | |
fdafbfad | 1789 | return pc; |
c598654a | 1790 | |
de482138 JL |
1791 | /* If we are not at the beginning of a function, then return now. */ |
1792 | if ((pc & ~0x3) != u->region_start) | |
1793 | return pc; | |
1794 | ||
c598654a JL |
1795 | /* This is how much of a frame adjustment we need to account for. */ |
1796 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 1797 | |
c598654a JL |
1798 | /* Magic register saves we want to know about. */ |
1799 | save_rp = u->Save_RP; | |
1800 | save_sp = u->Save_SP; | |
1801 | ||
1802 | /* Turn the Entry_GR field into a bitmask. */ | |
1803 | save_gr = 0; | |
1804 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 1805 | { |
c598654a JL |
1806 | /* Frame pointer gets saved into a special location. */ |
1807 | if (u->Save_SP && i == FP_REGNUM) | |
1808 | continue; | |
1809 | ||
1810 | save_gr |= (1 << i); | |
1811 | } | |
1812 | ||
1813 | /* Turn the Entry_FR field into a bitmask too. */ | |
1814 | save_fr = 0; | |
1815 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1816 | save_fr |= (1 << i); | |
1817 | ||
1818 | /* Loop until we find everything of interest or hit a branch. | |
1819 | ||
1820 | For unoptimized GCC code and for any HP CC code this will never ever | |
1821 | examine any user instructions. | |
1822 | ||
1823 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1824 | its prologue and make prologue instructions available for delay slot | |
1825 | filling. The end result is user code gets mixed in with the prologue | |
1826 | and a prologue instruction may be in the delay slot of the first branch | |
1827 | or call. | |
1828 | ||
1829 | Some unexpected things are expected with debugging optimized code, so | |
1830 | we allow this routine to walk past user instructions in optimized | |
1831 | GCC code. */ | |
1832 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
1833 | { | |
1834 | status = target_read_memory (pc, buf, 4); | |
1835 | inst = extract_unsigned_integer (buf, 4); | |
1836 | ||
1837 | /* Yow! */ | |
1838 | if (status != 0) | |
1839 | return pc; | |
1840 | ||
1841 | /* Note the interesting effects of this instruction. */ | |
1842 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1843 | ||
1844 | /* There is only one instruction used for saving RP into the stack. */ | |
1845 | if (inst == 0x6bc23fd9) | |
1846 | save_rp = 0; | |
1847 | ||
1848 | /* This is the only way we save SP into the stack. At this time | |
1849 | the HP compilers never bother to save SP into the stack. */ | |
1850 | if ((inst & 0xffffc000) == 0x6fc10000) | |
1851 | save_sp = 0; | |
1852 | ||
1853 | /* Account for general and floating-point register saves. */ | |
1854 | save_gr &= ~(1 << inst_saves_gr (inst)); | |
1855 | save_fr &= ~(1 << inst_saves_fr (inst)); | |
1856 | ||
1857 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
1858 | instruction is in the delay slot of the first call/branch. */ | |
1859 | if (is_branch (inst)) | |
1860 | break; | |
1861 | ||
1862 | /* Bump the PC. */ | |
1863 | pc += 4; | |
66a1aa07 | 1864 | } |
66a1aa07 SG |
1865 | |
1866 | return pc; | |
1867 | } | |
1868 | ||
c598654a JL |
1869 | /* Put here the code to store, into a struct frame_saved_regs, |
1870 | the addresses of the saved registers of frame described by FRAME_INFO. | |
1871 | This includes special registers such as pc and fp saved in special | |
1872 | ways in the stack frame. sp is even more special: | |
1873 | the address we return for it IS the sp for the next frame. */ | |
1874 | ||
1875 | void | |
1876 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
1877 | struct frame_info *frame_info; | |
1878 | struct frame_saved_regs *frame_saved_regs; | |
1879 | { | |
1880 | CORE_ADDR pc; | |
1881 | struct unwind_table_entry *u; | |
1882 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1883 | int status, i, reg; | |
1884 | char buf[4]; | |
1885 | int fp_loc = -1; | |
1886 | ||
1887 | /* Zero out everything. */ | |
1888 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
1889 | ||
1890 | /* Call dummy frames always look the same, so there's no need to | |
1891 | examine the dummy code to determine locations of saved registers; | |
1892 | instead, let find_dummy_frame_regs fill in the correct offsets | |
1893 | for the saved registers. */ | |
1894 | if ((frame_info->pc >= frame_info->frame | |
1895 | && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH | |
1896 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 | |
1897 | + 6 * 4))) | |
1898 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
1899 | ||
70e43abe JL |
1900 | /* Interrupt handlers are special too. They lay out the register |
1901 | state in the exact same order as the register numbers in GDB. */ | |
1902 | if (pc_in_interrupt_handler (frame_info->pc)) | |
1903 | { | |
1904 | for (i = 0; i < NUM_REGS; i++) | |
1905 | { | |
1906 | /* SP is a little special. */ | |
1907 | if (i == SP_REGNUM) | |
1908 | frame_saved_regs->regs[SP_REGNUM] | |
1909 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); | |
1910 | else | |
1911 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; | |
1912 | } | |
1913 | return; | |
1914 | } | |
1915 | ||
1916 | /* Handle signal handler callers. */ | |
1917 | if (frame_info->signal_handler_caller) | |
1918 | { | |
1919 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
1920 | return; | |
1921 | } | |
1922 | ||
c598654a JL |
1923 | /* Get the starting address of the function referred to by the PC |
1924 | saved in frame_info. */ | |
1925 | pc = get_pc_function_start (frame_info->pc); | |
1926 | ||
1927 | /* Yow! */ | |
1928 | u = find_unwind_entry (pc); | |
1929 | if (!u) | |
1930 | return; | |
1931 | ||
1932 | /* This is how much of a frame adjustment we need to account for. */ | |
1933 | stack_remaining = u->Total_frame_size << 3; | |
1934 | ||
1935 | /* Magic register saves we want to know about. */ | |
1936 | save_rp = u->Save_RP; | |
1937 | save_sp = u->Save_SP; | |
1938 | ||
1939 | /* Turn the Entry_GR field into a bitmask. */ | |
1940 | save_gr = 0; | |
1941 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1942 | { | |
1943 | /* Frame pointer gets saved into a special location. */ | |
1944 | if (u->Save_SP && i == FP_REGNUM) | |
1945 | continue; | |
1946 | ||
1947 | save_gr |= (1 << i); | |
1948 | } | |
1949 | ||
1950 | /* Turn the Entry_FR field into a bitmask too. */ | |
1951 | save_fr = 0; | |
1952 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1953 | save_fr |= (1 << i); | |
1954 | ||
70e43abe JL |
1955 | /* The frame always represents the value of %sp at entry to the |
1956 | current function (and is thus equivalent to the "saved" stack | |
1957 | pointer. */ | |
1958 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; | |
1959 | ||
c598654a JL |
1960 | /* Loop until we find everything of interest or hit a branch. |
1961 | ||
1962 | For unoptimized GCC code and for any HP CC code this will never ever | |
1963 | examine any user instructions. | |
1964 | ||
1965 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1966 | its prologue and make prologue instructions available for delay slot | |
1967 | filling. The end result is user code gets mixed in with the prologue | |
1968 | and a prologue instruction may be in the delay slot of the first branch | |
1969 | or call. | |
1970 | ||
1971 | Some unexpected things are expected with debugging optimized code, so | |
1972 | we allow this routine to walk past user instructions in optimized | |
1973 | GCC code. */ | |
1974 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
1975 | { | |
1976 | status = target_read_memory (pc, buf, 4); | |
1977 | inst = extract_unsigned_integer (buf, 4); | |
1978 | ||
1979 | /* Yow! */ | |
1980 | if (status != 0) | |
1981 | return; | |
1982 | ||
1983 | /* Note the interesting effects of this instruction. */ | |
1984 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1985 | ||
1986 | /* There is only one instruction used for saving RP into the stack. */ | |
1987 | if (inst == 0x6bc23fd9) | |
1988 | { | |
1989 | save_rp = 0; | |
1990 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; | |
1991 | } | |
1992 | ||
70e43abe JL |
1993 | /* Just note that we found the save of SP into the stack. The |
1994 | value for frame_saved_regs was computed above. */ | |
c598654a | 1995 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 1996 | save_sp = 0; |
c598654a JL |
1997 | |
1998 | /* Account for general and floating-point register saves. */ | |
1999 | reg = inst_saves_gr (inst); | |
2000 | if (reg >= 3 && reg <= 18 | |
2001 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2002 | { | |
2003 | save_gr &= ~(1 << reg); | |
2004 | ||
2005 | /* stwm with a positive displacement is a *post modify*. */ | |
2006 | if ((inst >> 26) == 0x1b | |
2007 | && extract_14 (inst) >= 0) | |
2008 | frame_saved_regs->regs[reg] = frame_info->frame; | |
2009 | else | |
2010 | { | |
2011 | /* Handle code with and without frame pointers. */ | |
2012 | if (u->Save_SP) | |
2013 | frame_saved_regs->regs[reg] | |
2014 | = frame_info->frame + extract_14 (inst); | |
2015 | else | |
2016 | frame_saved_regs->regs[reg] | |
2017 | = frame_info->frame + (u->Total_frame_size << 3) | |
2018 | + extract_14 (inst); | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | ||
2023 | /* GCC handles callee saved FP regs a little differently. | |
2024 | ||
2025 | It emits an instruction to put the value of the start of | |
2026 | the FP store area into %r1. It then uses fstds,ma with | |
2027 | a basereg of %r1 for the stores. | |
2028 | ||
2029 | HP CC emits them at the current stack pointer modifying | |
2030 | the stack pointer as it stores each register. */ | |
2031 | ||
2032 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2033 | if ((inst & 0xffffc000) == 0x34610000 | |
2034 | || (inst & 0xffffc000) == 0x37c10000) | |
2035 | fp_loc = extract_14 (inst); | |
2036 | ||
2037 | reg = inst_saves_fr (inst); | |
2038 | if (reg >= 12 && reg <= 21) | |
2039 | { | |
2040 | /* Note +4 braindamage below is necessary because the FP status | |
2041 | registers are internally 8 registers rather than the expected | |
2042 | 4 registers. */ | |
2043 | save_fr &= ~(1 << reg); | |
2044 | if (fp_loc == -1) | |
2045 | { | |
2046 | /* 1st HP CC FP register store. After this instruction | |
2047 | we've set enough state that the GCC and HPCC code are | |
2048 | both handled in the same manner. */ | |
2049 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; | |
2050 | fp_loc = 8; | |
2051 | } | |
2052 | else | |
2053 | { | |
2054 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
2055 | = frame_info->frame + fp_loc; | |
2056 | fp_loc += 8; | |
2057 | } | |
2058 | } | |
2059 | ||
2060 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2061 | instruction is in the delay slot of the first call/branch. */ | |
2062 | if (is_branch (inst)) | |
2063 | break; | |
2064 | ||
2065 | /* Bump the PC. */ | |
2066 | pc += 4; | |
2067 | } | |
2068 | } | |
2069 | ||
63757ecd JK |
2070 | #ifdef MAINTENANCE_CMDS |
2071 | ||
66a1aa07 SG |
2072 | static void |
2073 | unwind_command (exp, from_tty) | |
2074 | char *exp; | |
2075 | int from_tty; | |
2076 | { | |
2077 | CORE_ADDR address; | |
2078 | union | |
2079 | { | |
2080 | int *foo; | |
2081 | struct unwind_table_entry *u; | |
2082 | } xxx; | |
2083 | ||
2084 | /* If we have an expression, evaluate it and use it as the address. */ | |
2085 | ||
2086 | if (exp != 0 && *exp != 0) | |
2087 | address = parse_and_eval_address (exp); | |
2088 | else | |
2089 | return; | |
2090 | ||
2091 | xxx.u = find_unwind_entry (address); | |
2092 | ||
2093 | if (!xxx.u) | |
2094 | { | |
199b2450 | 2095 | printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); |
66a1aa07 SG |
2096 | return; |
2097 | } | |
2098 | ||
199b2450 | 2099 | printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], |
66a1aa07 SG |
2100 | xxx.foo[3]); |
2101 | } | |
976bb0be | 2102 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2103 | |
2104 | void | |
2105 | _initialize_hppa_tdep () | |
2106 | { | |
976bb0be | 2107 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2108 | add_cmd ("unwind", class_maintenance, unwind_command, |
2109 | "Print unwind table entry at given address.", | |
2110 | &maintenanceprintlist); | |
63757ecd | 2111 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2112 | } |