]>
Commit | Line | Data |
---|---|---|
9abe5450 | 1 | /* PPC GNU/Linux native support. |
2555fe1a | 2 | |
e2882c85 | 3 | Copyright (C) 1988-2018 Free Software Foundation, Inc. |
c877c8e6 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c877c8e6 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c877c8e6 KB |
19 | |
20 | #include "defs.h" | |
76727919 | 21 | #include "observable.h" |
c877c8e6 KB |
22 | #include "frame.h" |
23 | #include "inferior.h" | |
6ffbb7ab | 24 | #include "gdbthread.h" |
c877c8e6 | 25 | #include "gdbcore.h" |
4e052eda | 26 | #include "regcache.h" |
10d6c8cd DJ |
27 | #include "target.h" |
28 | #include "linux-nat.h" | |
c877c8e6 | 29 | #include <sys/types.h> |
c877c8e6 KB |
30 | #include <signal.h> |
31 | #include <sys/user.h> | |
32 | #include <sys/ioctl.h> | |
2555fe1a | 33 | #include "gdb_wait.h" |
c877c8e6 KB |
34 | #include <fcntl.h> |
35 | #include <sys/procfs.h> | |
5826e159 | 36 | #include "nat/gdb_ptrace.h" |
bcc0c096 | 37 | #include "inf-ptrace.h" |
c877c8e6 | 38 | |
0df8b418 | 39 | /* Prototypes for supply_gregset etc. */ |
c60c0f5f | 40 | #include "gregset.h" |
16333c4f | 41 | #include "ppc-tdep.h" |
7284e1be UW |
42 | #include "ppc-linux-tdep.h" |
43 | ||
b7622095 LM |
44 | /* Required when using the AUXV. */ |
45 | #include "elf/common.h" | |
46 | #include "auxv.h" | |
47 | ||
514c5338 | 48 | #include "nat/ppc-linux.h" |
01904826 | 49 | |
6ffbb7ab | 50 | /* Similarly for the hardware watchpoint support. These requests are used |
926bf92d | 51 | when the PowerPC HWDEBUG ptrace interface is not available. */ |
e0d24f8d WZ |
52 | #ifndef PTRACE_GET_DEBUGREG |
53 | #define PTRACE_GET_DEBUGREG 25 | |
54 | #endif | |
55 | #ifndef PTRACE_SET_DEBUGREG | |
56 | #define PTRACE_SET_DEBUGREG 26 | |
57 | #endif | |
58 | #ifndef PTRACE_GETSIGINFO | |
59 | #define PTRACE_GETSIGINFO 0x4202 | |
60 | #endif | |
01904826 | 61 | |
926bf92d UW |
62 | /* These requests are used when the PowerPC HWDEBUG ptrace interface is |
63 | available. It exposes the debug facilities of PowerPC processors, as well | |
64 | as additional features of BookE processors, such as ranged breakpoints and | |
65 | watchpoints and hardware-accelerated condition evaluation. */ | |
6ffbb7ab TJB |
66 | #ifndef PPC_PTRACE_GETHWDBGINFO |
67 | ||
926bf92d UW |
68 | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG |
69 | ptrace interface is not present in ptrace.h, so we'll have to pretty much | |
70 | include it all here so that the code at least compiles on older systems. */ | |
6ffbb7ab TJB |
71 | #define PPC_PTRACE_GETHWDBGINFO 0x89 |
72 | #define PPC_PTRACE_SETHWDEBUG 0x88 | |
73 | #define PPC_PTRACE_DELHWDEBUG 0x87 | |
74 | ||
75 | struct ppc_debug_info | |
76 | { | |
0df8b418 | 77 | uint32_t version; /* Only version 1 exists to date. */ |
6ffbb7ab TJB |
78 | uint32_t num_instruction_bps; |
79 | uint32_t num_data_bps; | |
80 | uint32_t num_condition_regs; | |
81 | uint32_t data_bp_alignment; | |
0df8b418 | 82 | uint32_t sizeof_condition; /* size of the DVC register. */ |
6ffbb7ab TJB |
83 | uint64_t features; |
84 | }; | |
85 | ||
86 | /* Features will have bits indicating whether there is support for: */ | |
87 | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 | |
88 | #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 | |
89 | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 | |
90 | #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 | |
91 | ||
92 | struct ppc_hw_breakpoint | |
93 | { | |
94 | uint32_t version; /* currently, version must be 1 */ | |
95 | uint32_t trigger_type; /* only some combinations allowed */ | |
96 | uint32_t addr_mode; /* address match mode */ | |
97 | uint32_t condition_mode; /* break/watchpoint condition flags */ | |
98 | uint64_t addr; /* break/watchpoint address */ | |
99 | uint64_t addr2; /* range end or mask */ | |
100 | uint64_t condition_value; /* contents of the DVC register */ | |
101 | }; | |
102 | ||
103 | /* Trigger type. */ | |
104 | #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 | |
105 | #define PPC_BREAKPOINT_TRIGGER_READ 0x2 | |
106 | #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 | |
107 | #define PPC_BREAKPOINT_TRIGGER_RW 0x6 | |
108 | ||
109 | /* Address mode. */ | |
110 | #define PPC_BREAKPOINT_MODE_EXACT 0x0 | |
111 | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 | |
112 | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 | |
113 | #define PPC_BREAKPOINT_MODE_MASK 0x3 | |
114 | ||
115 | /* Condition mode. */ | |
116 | #define PPC_BREAKPOINT_CONDITION_NONE 0x0 | |
117 | #define PPC_BREAKPOINT_CONDITION_AND 0x1 | |
118 | #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 | |
119 | #define PPC_BREAKPOINT_CONDITION_OR 0x2 | |
120 | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | |
121 | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | |
122 | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 | |
123 | #define PPC_BREAKPOINT_CONDITION_BE(n) \ | |
124 | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | |
125 | #endif /* PPC_PTRACE_GETHWDBGINFO */ | |
126 | ||
e23b9d6e UW |
127 | /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider |
128 | watchpoint (up to 512 bytes). */ | |
129 | #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR | |
130 | #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 | |
131 | #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ | |
6ffbb7ab | 132 | |
1dfe79e8 SDJ |
133 | /* Similarly for the general-purpose (gp0 -- gp31) |
134 | and floating-point registers (fp0 -- fp31). */ | |
135 | #ifndef PTRACE_GETREGS | |
136 | #define PTRACE_GETREGS 12 | |
137 | #endif | |
138 | #ifndef PTRACE_SETREGS | |
139 | #define PTRACE_SETREGS 13 | |
140 | #endif | |
141 | #ifndef PTRACE_GETFPREGS | |
142 | #define PTRACE_GETFPREGS 14 | |
143 | #endif | |
144 | #ifndef PTRACE_SETFPREGS | |
145 | #define PTRACE_SETFPREGS 15 | |
146 | #endif | |
147 | ||
9abe5450 EZ |
148 | /* This oddity is because the Linux kernel defines elf_vrregset_t as |
149 | an array of 33 16 bytes long elements. I.e. it leaves out vrsave. | |
150 | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | |
151 | the vrsave as an extra 4 bytes at the end. I opted for creating a | |
152 | flat array of chars, so that it is easier to manipulate for gdb. | |
153 | ||
154 | There are 32 vector registers 16 bytes longs, plus a VSCR register | |
155 | which is only 4 bytes long, but is fetched as a 16 bytes | |
0df8b418 | 156 | quantity. Up to here we have the elf_vrregset_t structure. |
9abe5450 EZ |
157 | Appended to this there is space for the VRSAVE register: 4 bytes. |
158 | Even though this vrsave register is not included in the regset | |
159 | typedef, it is handled by the ptrace requests. | |
160 | ||
161 | Note that GNU/Linux doesn't support little endian PPC hardware, | |
162 | therefore the offset at which the real value of the VSCR register | |
163 | is located will be always 12 bytes. | |
164 | ||
165 | The layout is like this (where x is the actual value of the vscr reg): */ | |
166 | ||
167 | /* *INDENT-OFF* */ | |
168 | /* | |
169 | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| | |
170 | <-------> <-------><-------><-> | |
171 | VR0 VR31 VSCR VRSAVE | |
172 | */ | |
173 | /* *INDENT-ON* */ | |
174 | ||
175 | #define SIZEOF_VRREGS 33*16+4 | |
176 | ||
177 | typedef char gdb_vrregset_t[SIZEOF_VRREGS]; | |
178 | ||
604c2f83 LM |
179 | /* This is the layout of the POWER7 VSX registers and the way they overlap |
180 | with the existing FPR and VMX registers. | |
181 | ||
182 | VSR doubleword 0 VSR doubleword 1 | |
183 | ---------------------------------------------------------------- | |
184 | VSR[0] | FPR[0] | | | |
185 | ---------------------------------------------------------------- | |
186 | VSR[1] | FPR[1] | | | |
187 | ---------------------------------------------------------------- | |
188 | | ... | | | |
189 | | ... | | | |
190 | ---------------------------------------------------------------- | |
191 | VSR[30] | FPR[30] | | | |
192 | ---------------------------------------------------------------- | |
193 | VSR[31] | FPR[31] | | | |
194 | ---------------------------------------------------------------- | |
195 | VSR[32] | VR[0] | | |
196 | ---------------------------------------------------------------- | |
197 | VSR[33] | VR[1] | | |
198 | ---------------------------------------------------------------- | |
199 | | ... | | |
200 | | ... | | |
201 | ---------------------------------------------------------------- | |
202 | VSR[62] | VR[30] | | |
203 | ---------------------------------------------------------------- | |
204 | VSR[63] | VR[31] | | |
205 | ---------------------------------------------------------------- | |
206 | ||
207 | VSX has 64 128bit registers. The first 32 registers overlap with | |
208 | the FP registers (doubleword 0) and hence extend them with additional | |
209 | 64 bits (doubleword 1). The other 32 regs overlap with the VMX | |
210 | registers. */ | |
211 | #define SIZEOF_VSXREGS 32*8 | |
212 | ||
213 | typedef char gdb_vsxregset_t[SIZEOF_VSXREGS]; | |
01904826 | 214 | |
b021a221 | 215 | /* On PPC processors that support the Signal Processing Extension |
01904826 | 216 | (SPE) APU, the general-purpose registers are 64 bits long. |
411cb3f9 PG |
217 | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
218 | ptrace calls only access the lower half of each register, to allow | |
219 | them to behave the same way they do on non-SPE systems. There's a | |
220 | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | |
221 | read and write the top halves of all the general-purpose registers | |
222 | at once, along with some SPE-specific registers. | |
01904826 JB |
223 | |
224 | GDB itself continues to claim the general-purpose registers are 32 | |
6ced10dd | 225 | bits long. It has unnamed raw registers that hold the upper halves |
b021a221 | 226 | of the gprs, and the full 64-bit SIMD views of the registers, |
6ced10dd JB |
227 | 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
228 | bottom halves together. | |
01904826 JB |
229 | |
230 | This is the structure filled in by PTRACE_GETEVRREGS and written to | |
231 | the inferior's registers by PTRACE_SETEVRREGS. */ | |
232 | struct gdb_evrregset_t | |
233 | { | |
234 | unsigned long evr[32]; | |
235 | unsigned long long acc; | |
236 | unsigned long spefscr; | |
237 | }; | |
238 | ||
604c2f83 LM |
239 | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
240 | PTRACE_SETVSXREGS requests, for reading and writing the VSX | |
241 | POWER7 registers 0 through 31. Zero if we've tried one of them and | |
242 | gotten an error. Note that VSX registers 32 through 63 overlap | |
243 | with VR registers 0 through 31. */ | |
244 | int have_ptrace_getsetvsxregs = 1; | |
01904826 JB |
245 | |
246 | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | |
247 | PTRACE_SETVRREGS requests, for reading and writing the Altivec | |
248 | registers. Zero if we've tried one of them and gotten an | |
249 | error. */ | |
9abe5450 EZ |
250 | int have_ptrace_getvrregs = 1; |
251 | ||
01904826 JB |
252 | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
253 | PTRACE_SETEVRREGS requests, for reading and writing the SPE | |
254 | registers. Zero if we've tried one of them and gotten an | |
255 | error. */ | |
256 | int have_ptrace_getsetevrregs = 1; | |
257 | ||
1dfe79e8 SDJ |
258 | /* Non-zero if our kernel may support the PTRACE_GETREGS and |
259 | PTRACE_SETREGS requests, for reading and writing the | |
260 | general-purpose registers. Zero if we've tried one of | |
261 | them and gotten an error. */ | |
262 | int have_ptrace_getsetregs = 1; | |
263 | ||
264 | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | |
265 | PTRACE_SETFPREGS requests, for reading and writing the | |
266 | floating-pointers registers. Zero if we've tried one of | |
267 | them and gotten an error. */ | |
268 | int have_ptrace_getsetfpregs = 1; | |
269 | ||
f6ac5f3d PA |
270 | struct ppc_linux_nat_target final : public linux_nat_target |
271 | { | |
272 | /* Add our register access methods. */ | |
273 | void fetch_registers (struct regcache *, int) override; | |
274 | void store_registers (struct regcache *, int) override; | |
275 | ||
276 | /* Add our breakpoint/watchpoint methods. */ | |
277 | int can_use_hw_breakpoint (enum bptype, int, int) override; | |
278 | ||
279 | int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | |
280 | override; | |
281 | ||
282 | int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | |
283 | override; | |
284 | ||
285 | int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; | |
286 | ||
287 | int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | |
288 | struct expression *) override; | |
289 | ||
290 | int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | |
291 | struct expression *) override; | |
292 | ||
293 | int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | |
294 | override; | |
295 | ||
296 | int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | |
297 | override; | |
298 | ||
299 | int stopped_by_watchpoint () override; | |
300 | ||
301 | int stopped_data_address (CORE_ADDR *) override; | |
302 | ||
303 | int watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; | |
304 | ||
305 | int can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *) | |
306 | override; | |
307 | ||
308 | int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override; | |
309 | ||
310 | int ranged_break_num_registers () override; | |
311 | ||
312 | const struct target_desc *read_description () override; | |
313 | ||
314 | int auxv_parse (gdb_byte **readptr, | |
315 | gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | |
316 | override; | |
317 | }; | |
318 | ||
319 | static ppc_linux_nat_target the_ppc_linux_nat_target; | |
320 | ||
16333c4f EZ |
321 | /* *INDENT-OFF* */ |
322 | /* registers layout, as presented by the ptrace interface: | |
323 | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | |
324 | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | |
325 | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | |
326 | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | |
0df8b418 MS |
327 | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
328 | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | |
329 | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | |
330 | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | |
331 | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | |
332 | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | |
333 | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | |
334 | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | |
16333c4f EZ |
335 | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
336 | /* *INDENT_ON * */ | |
c877c8e6 | 337 | |
45229ea4 | 338 | static int |
e101270f | 339 | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
c877c8e6 | 340 | { |
16333c4f | 341 | int u_addr = -1; |
e101270f | 342 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
56d0d96a AC |
343 | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
344 | interface, and not the wordsize of the program's ABI. */ | |
411cb3f9 | 345 | int wordsize = sizeof (long); |
16333c4f | 346 | |
0df8b418 | 347 | /* General purpose registers occupy 1 slot each in the buffer. */ |
8bf659e8 JB |
348 | if (regno >= tdep->ppc_gp0_regnum |
349 | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
26e75e5c | 350 | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
16333c4f | 351 | |
49ff75ad JB |
352 | /* Floating point regs: eight bytes each in both 32- and 64-bit |
353 | ptrace interfaces. Thus, two slots each in 32-bit interface, one | |
354 | slot each in 64-bit interface. */ | |
383f0f5b JB |
355 | if (tdep->ppc_fp0_regnum >= 0 |
356 | && regno >= tdep->ppc_fp0_regnum | |
366f009f JB |
357 | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
358 | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | |
16333c4f | 359 | |
0df8b418 | 360 | /* UISA special purpose registers: 1 slot each. */ |
e101270f | 361 | if (regno == gdbarch_pc_regnum (gdbarch)) |
49ff75ad | 362 | u_addr = PT_NIP * wordsize; |
dc5cfeb6 | 363 | if (regno == tdep->ppc_lr_regnum) |
49ff75ad | 364 | u_addr = PT_LNK * wordsize; |
dc5cfeb6 | 365 | if (regno == tdep->ppc_cr_regnum) |
49ff75ad | 366 | u_addr = PT_CCR * wordsize; |
dc5cfeb6 | 367 | if (regno == tdep->ppc_xer_regnum) |
49ff75ad | 368 | u_addr = PT_XER * wordsize; |
dc5cfeb6 | 369 | if (regno == tdep->ppc_ctr_regnum) |
49ff75ad | 370 | u_addr = PT_CTR * wordsize; |
f8c59253 | 371 | #ifdef PT_MQ |
dc5cfeb6 | 372 | if (regno == tdep->ppc_mq_regnum) |
49ff75ad | 373 | u_addr = PT_MQ * wordsize; |
f8c59253 | 374 | #endif |
dc5cfeb6 | 375 | if (regno == tdep->ppc_ps_regnum) |
49ff75ad | 376 | u_addr = PT_MSR * wordsize; |
7284e1be UW |
377 | if (regno == PPC_ORIG_R3_REGNUM) |
378 | u_addr = PT_ORIG_R3 * wordsize; | |
379 | if (regno == PPC_TRAP_REGNUM) | |
380 | u_addr = PT_TRAP * wordsize; | |
383f0f5b JB |
381 | if (tdep->ppc_fpscr_regnum >= 0 |
382 | && regno == tdep->ppc_fpscr_regnum) | |
8f135812 AC |
383 | { |
384 | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | |
385 | kernel headers incorrectly contained the 32-bit definition of | |
386 | PT_FPSCR. For the 32-bit definition, floating-point | |
387 | registers occupy two 32-bit "slots", and the FPSCR lives in | |
69abc51c | 388 | the second half of such a slot-pair (hence +1). For 64-bit, |
8f135812 AC |
389 | the FPSCR instead occupies the full 64-bit 2-word-slot and |
390 | hence no adjustment is necessary. Hack around this. */ | |
391 | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | |
392 | u_addr = (48 + 32) * wordsize; | |
69abc51c TJB |
393 | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
394 | slot and not just its second word. The PT_FPSCR supplied when | |
395 | GDB is compiled as a 32-bit app doesn't reflect this. */ | |
396 | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | |
397 | && PT_FPSCR == (48 + 2*32 + 1)) | |
398 | u_addr = (48 + 2*32) * wordsize; | |
8f135812 AC |
399 | else |
400 | u_addr = PT_FPSCR * wordsize; | |
401 | } | |
16333c4f | 402 | return u_addr; |
c877c8e6 KB |
403 | } |
404 | ||
604c2f83 LM |
405 | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
406 | registers set mechanism, as opposed to the interface for all the | |
407 | other registers, that stores/fetches each register individually. */ | |
408 | static void | |
409 | fetch_vsx_register (struct regcache *regcache, int tid, int regno) | |
410 | { | |
411 | int ret; | |
412 | gdb_vsxregset_t regs; | |
ac7936df | 413 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
414 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
415 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
416 | ||
417 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
418 | if (ret < 0) | |
419 | { | |
420 | if (errno == EIO) | |
421 | { | |
422 | have_ptrace_getsetvsxregs = 0; | |
423 | return; | |
424 | } | |
425 | perror_with_name (_("Unable to fetch VSX register")); | |
426 | } | |
427 | ||
428 | regcache_raw_supply (regcache, regno, | |
429 | regs + (regno - tdep->ppc_vsr0_upper_regnum) | |
430 | * vsxregsize); | |
431 | } | |
432 | ||
9abe5450 EZ |
433 | /* The Linux kernel ptrace interface for AltiVec registers uses the |
434 | registers set mechanism, as opposed to the interface for all the | |
435 | other registers, that stores/fetches each register individually. */ | |
436 | static void | |
56be3814 | 437 | fetch_altivec_register (struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
438 | { |
439 | int ret; | |
440 | int offset = 0; | |
441 | gdb_vrregset_t regs; | |
ac7936df | 442 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 MD |
443 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
444 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
445 | |
446 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
447 | if (ret < 0) | |
448 | { | |
449 | if (errno == EIO) | |
450 | { | |
451 | have_ptrace_getvrregs = 0; | |
452 | return; | |
453 | } | |
e2e0b3e5 | 454 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
455 | } |
456 | ||
457 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
458 | long on the hardware. We deal only with the lower 4 bytes of the | |
459 | vector. VRSAVE is at the end of the array in a 4 bytes slot, so | |
460 | there is no need to define an offset for it. */ | |
461 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 462 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 463 | |
56be3814 | 464 | regcache_raw_supply (regcache, regno, |
0df8b418 MS |
465 | regs + (regno |
466 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
467 | } |
468 | ||
01904826 JB |
469 | /* Fetch the top 32 bits of TID's general-purpose registers and the |
470 | SPE-specific registers, and place the results in EVRREGSET. If we | |
471 | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | |
472 | zeros. | |
473 | ||
474 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
475 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
476 | set_spe_registers. */ | |
477 | static void | |
478 | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
479 | { | |
480 | if (have_ptrace_getsetevrregs) | |
481 | { | |
482 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | |
483 | return; | |
484 | else | |
485 | { | |
486 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | |
487 | we just return zeros. */ | |
488 | if (errno == EIO) | |
489 | have_ptrace_getsetevrregs = 0; | |
490 | else | |
491 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 492 | perror_with_name (_("Unable to fetch SPE registers")); |
01904826 JB |
493 | } |
494 | } | |
495 | ||
496 | memset (evrregset, 0, sizeof (*evrregset)); | |
497 | } | |
498 | ||
6ced10dd JB |
499 | /* Supply values from TID for SPE-specific raw registers: the upper |
500 | halves of the GPRs, the accumulator, and the spefscr. REGNO must | |
501 | be the number of an upper half register, acc, spefscr, or -1 to | |
502 | supply the values of all registers. */ | |
01904826 | 503 | static void |
56be3814 | 504 | fetch_spe_register (struct regcache *regcache, int tid, int regno) |
01904826 | 505 | { |
ac7936df | 506 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 507 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
508 | struct gdb_evrregset_t evrregs; |
509 | ||
6ced10dd | 510 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 511 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 512 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 513 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 514 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 515 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
6ced10dd | 516 | |
01904826 JB |
517 | get_spe_registers (tid, &evrregs); |
518 | ||
6ced10dd | 519 | if (regno == -1) |
01904826 | 520 | { |
6ced10dd JB |
521 | int i; |
522 | ||
523 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 524 | regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i, |
6ced10dd | 525 | &evrregs.evr[i]); |
01904826 | 526 | } |
6ced10dd JB |
527 | else if (tdep->ppc_ev0_upper_regnum <= regno |
528 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 529 | regcache_raw_supply (regcache, regno, |
6ced10dd JB |
530 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
531 | ||
532 | if (regno == -1 | |
533 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 534 | regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc); |
6ced10dd JB |
535 | |
536 | if (regno == -1 | |
537 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 538 | regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum, |
6ced10dd | 539 | &evrregs.spefscr); |
01904826 JB |
540 | } |
541 | ||
45229ea4 | 542 | static void |
56be3814 | 543 | fetch_register (struct regcache *regcache, int tid, int regno) |
45229ea4 | 544 | { |
ac7936df | 545 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 546 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 547 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 548 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
4a19ea35 | 549 | int bytes_transferred; |
0df8b418 | 550 | unsigned int offset; /* Offset of registers within the u area. */ |
0f068fb5 | 551 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 552 | |
be8626e0 | 553 | if (altivec_register_p (gdbarch, regno)) |
9abe5450 EZ |
554 | { |
555 | /* If this is the first time through, or if it is not the first | |
556 | time through, and we have comfirmed that there is kernel | |
557 | support for such a ptrace request, then go and fetch the | |
558 | register. */ | |
559 | if (have_ptrace_getvrregs) | |
560 | { | |
56be3814 | 561 | fetch_altivec_register (regcache, tid, regno); |
9abe5450 EZ |
562 | return; |
563 | } | |
564 | /* If we have discovered that there is no ptrace support for | |
565 | AltiVec registers, fall through and return zeroes, because | |
566 | regaddr will be -1 in this case. */ | |
567 | } | |
604c2f83 LM |
568 | if (vsx_register_p (gdbarch, regno)) |
569 | { | |
570 | if (have_ptrace_getsetvsxregs) | |
571 | { | |
572 | fetch_vsx_register (regcache, tid, regno); | |
573 | return; | |
574 | } | |
575 | } | |
be8626e0 | 576 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 577 | { |
56be3814 | 578 | fetch_spe_register (regcache, tid, regno); |
01904826 JB |
579 | return; |
580 | } | |
9abe5450 | 581 | |
45229ea4 EZ |
582 | if (regaddr == -1) |
583 | { | |
40a6adc1 | 584 | memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
56be3814 | 585 | regcache_raw_supply (regcache, regno, buf); |
45229ea4 EZ |
586 | return; |
587 | } | |
588 | ||
411cb3f9 | 589 | /* Read the raw register using sizeof(long) sized chunks. On a |
56d0d96a AC |
590 | 32-bit platform, 64-bit floating-point registers will require two |
591 | transfers. */ | |
4a19ea35 | 592 | for (bytes_transferred = 0; |
40a6adc1 | 593 | bytes_transferred < register_size (gdbarch, regno); |
411cb3f9 | 594 | bytes_transferred += sizeof (long)) |
45229ea4 | 595 | { |
11fde611 JK |
596 | long l; |
597 | ||
45229ea4 | 598 | errno = 0; |
11fde611 | 599 | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
411cb3f9 | 600 | regaddr += sizeof (long); |
45229ea4 EZ |
601 | if (errno != 0) |
602 | { | |
bc97b3ba | 603 | char message[128]; |
8c042590 PM |
604 | xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
605 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 606 | perror_with_name (message); |
45229ea4 | 607 | } |
11fde611 | 608 | memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
45229ea4 | 609 | } |
56d0d96a | 610 | |
4a19ea35 JB |
611 | /* Now supply the register. Keep in mind that the regcache's idea |
612 | of the register's size may not be a multiple of sizeof | |
411cb3f9 | 613 | (long). */ |
40a6adc1 | 614 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
4a19ea35 JB |
615 | { |
616 | /* Little-endian values are always found at the left end of the | |
617 | bytes transferred. */ | |
56be3814 | 618 | regcache_raw_supply (regcache, regno, buf); |
4a19ea35 | 619 | } |
40a6adc1 | 620 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
621 | { |
622 | /* Big-endian values are found at the right end of the bytes | |
623 | transferred. */ | |
40a6adc1 | 624 | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
56be3814 | 625 | regcache_raw_supply (regcache, regno, buf + padding); |
4a19ea35 JB |
626 | } |
627 | else | |
a44bddec | 628 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 629 | _("fetch_register: unexpected byte order: %d"), |
40a6adc1 | 630 | gdbarch_byte_order (gdbarch)); |
45229ea4 EZ |
631 | } |
632 | ||
604c2f83 LM |
633 | static void |
634 | supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
635 | { | |
636 | int i; | |
ac7936df | 637 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
638 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
639 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
640 | ||
641 | for (i = 0; i < ppc_num_vshrs; i++) | |
642 | { | |
643 | regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
644 | *vsxregsetp + i * vsxregsize); | |
645 | } | |
646 | } | |
647 | ||
9abe5450 | 648 | static void |
56be3814 | 649 | supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
650 | { |
651 | int i; | |
ac7936df | 652 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 653 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 654 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
655 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
656 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
657 | |
658 | for (i = 0; i < num_of_vrregs; i++) | |
659 | { | |
660 | /* The last 2 registers of this set are only 32 bit long, not | |
661 | 128. However an offset is necessary only for VSCR because it | |
662 | occupies a whole vector, while VRSAVE occupies a full 4 bytes | |
663 | slot. */ | |
664 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 665 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 666 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 667 | else |
56be3814 | 668 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 669 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
670 | } |
671 | } | |
672 | ||
604c2f83 LM |
673 | static void |
674 | fetch_vsx_registers (struct regcache *regcache, int tid) | |
675 | { | |
676 | int ret; | |
677 | gdb_vsxregset_t regs; | |
678 | ||
679 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
680 | if (ret < 0) | |
681 | { | |
682 | if (errno == EIO) | |
683 | { | |
684 | have_ptrace_getsetvsxregs = 0; | |
685 | return; | |
686 | } | |
687 | perror_with_name (_("Unable to fetch VSX registers")); | |
688 | } | |
689 | supply_vsxregset (regcache, ®s); | |
690 | } | |
691 | ||
9abe5450 | 692 | static void |
56be3814 | 693 | fetch_altivec_registers (struct regcache *regcache, int tid) |
9abe5450 EZ |
694 | { |
695 | int ret; | |
696 | gdb_vrregset_t regs; | |
697 | ||
698 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
699 | if (ret < 0) | |
700 | { | |
701 | if (errno == EIO) | |
702 | { | |
703 | have_ptrace_getvrregs = 0; | |
704 | return; | |
705 | } | |
e2e0b3e5 | 706 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 | 707 | } |
56be3814 | 708 | supply_vrregset (regcache, ®s); |
9abe5450 EZ |
709 | } |
710 | ||
1dfe79e8 SDJ |
711 | /* This function actually issues the request to ptrace, telling |
712 | it to get all general-purpose registers and put them into the | |
713 | specified regset. | |
714 | ||
715 | If the ptrace request does not exist, this function returns 0 | |
716 | and properly sets the have_ptrace_* flag. If the request fails, | |
717 | this function calls perror_with_name. Otherwise, if the request | |
718 | succeeds, then the regcache gets filled and 1 is returned. */ | |
719 | static int | |
720 | fetch_all_gp_regs (struct regcache *regcache, int tid) | |
721 | { | |
ac7936df | 722 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
723 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
724 | gdb_gregset_t gregset; | |
725 | ||
726 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
727 | { | |
728 | if (errno == EIO) | |
729 | { | |
730 | have_ptrace_getsetregs = 0; | |
731 | return 0; | |
732 | } | |
733 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
734 | } | |
735 | ||
736 | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | |
737 | ||
738 | return 1; | |
739 | } | |
740 | ||
741 | /* This is a wrapper for the fetch_all_gp_regs function. It is | |
742 | responsible for verifying if this target has the ptrace request | |
743 | that can be used to fetch all general-purpose registers at one | |
744 | shot. If it doesn't, then we should fetch them using the | |
745 | old-fashioned way, which is to iterate over the registers and | |
746 | request them one by one. */ | |
747 | static void | |
748 | fetch_gp_regs (struct regcache *regcache, int tid) | |
749 | { | |
ac7936df | 750 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
751 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
752 | int i; | |
753 | ||
754 | if (have_ptrace_getsetregs) | |
755 | if (fetch_all_gp_regs (regcache, tid)) | |
756 | return; | |
757 | ||
758 | /* If we've hit this point, it doesn't really matter which | |
759 | architecture we are using. We just need to read the | |
760 | registers in the "old-fashioned way". */ | |
761 | for (i = 0; i < ppc_num_gprs; i++) | |
762 | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | |
763 | } | |
764 | ||
765 | /* This function actually issues the request to ptrace, telling | |
766 | it to get all floating-point registers and put them into the | |
767 | specified regset. | |
768 | ||
769 | If the ptrace request does not exist, this function returns 0 | |
770 | and properly sets the have_ptrace_* flag. If the request fails, | |
771 | this function calls perror_with_name. Otherwise, if the request | |
772 | succeeds, then the regcache gets filled and 1 is returned. */ | |
773 | static int | |
774 | fetch_all_fp_regs (struct regcache *regcache, int tid) | |
775 | { | |
776 | gdb_fpregset_t fpregs; | |
777 | ||
778 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
779 | { | |
780 | if (errno == EIO) | |
781 | { | |
782 | have_ptrace_getsetfpregs = 0; | |
783 | return 0; | |
784 | } | |
785 | perror_with_name (_("Couldn't get floating-point registers.")); | |
786 | } | |
787 | ||
788 | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | |
789 | ||
790 | return 1; | |
791 | } | |
792 | ||
793 | /* This is a wrapper for the fetch_all_fp_regs function. It is | |
794 | responsible for verifying if this target has the ptrace request | |
795 | that can be used to fetch all floating-point registers at one | |
796 | shot. If it doesn't, then we should fetch them using the | |
797 | old-fashioned way, which is to iterate over the registers and | |
798 | request them one by one. */ | |
799 | static void | |
800 | fetch_fp_regs (struct regcache *regcache, int tid) | |
801 | { | |
ac7936df | 802 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
803 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
804 | int i; | |
805 | ||
806 | if (have_ptrace_getsetfpregs) | |
807 | if (fetch_all_fp_regs (regcache, tid)) | |
808 | return; | |
809 | ||
810 | /* If we've hit this point, it doesn't really matter which | |
811 | architecture we are using. We just need to read the | |
812 | registers in the "old-fashioned way". */ | |
813 | for (i = 0; i < ppc_num_fprs; i++) | |
814 | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
815 | } | |
816 | ||
45229ea4 | 817 | static void |
56be3814 | 818 | fetch_ppc_registers (struct regcache *regcache, int tid) |
45229ea4 EZ |
819 | { |
820 | int i; | |
ac7936df | 821 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 822 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 823 | |
1dfe79e8 | 824 | fetch_gp_regs (regcache, tid); |
32b99774 | 825 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 826 | fetch_fp_regs (regcache, tid); |
40a6adc1 | 827 | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 828 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 829 | fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 830 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 831 | fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 832 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 833 | fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 834 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 835 | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 836 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 837 | fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 838 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 839 | fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
7284e1be UW |
840 | if (ppc_linux_trap_reg_p (gdbarch)) |
841 | { | |
842 | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
843 | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | |
844 | } | |
32b99774 | 845 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 846 | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
9abe5450 EZ |
847 | if (have_ptrace_getvrregs) |
848 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 849 | fetch_altivec_registers (regcache, tid); |
604c2f83 LM |
850 | if (have_ptrace_getsetvsxregs) |
851 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
852 | fetch_vsx_registers (regcache, tid); | |
6ced10dd | 853 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 854 | fetch_spe_register (regcache, tid, -1); |
45229ea4 EZ |
855 | } |
856 | ||
857 | /* Fetch registers from the child process. Fetch all registers if | |
858 | regno == -1, otherwise fetch all general registers or all floating | |
859 | point registers depending upon the value of regno. */ | |
f6ac5f3d PA |
860 | void |
861 | ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) | |
45229ea4 | 862 | { |
bcc0c096 | 863 | pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache)); |
05f13b9c | 864 | |
9abe5450 | 865 | if (regno == -1) |
56be3814 | 866 | fetch_ppc_registers (regcache, tid); |
45229ea4 | 867 | else |
56be3814 | 868 | fetch_register (regcache, tid, regno); |
45229ea4 EZ |
869 | } |
870 | ||
0df8b418 | 871 | /* Store one VSX register. */ |
604c2f83 LM |
872 | static void |
873 | store_vsx_register (const struct regcache *regcache, int tid, int regno) | |
874 | { | |
875 | int ret; | |
876 | gdb_vsxregset_t regs; | |
ac7936df | 877 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
878 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
879 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
880 | ||
9fe70b4f | 881 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
604c2f83 LM |
882 | if (ret < 0) |
883 | { | |
884 | if (errno == EIO) | |
885 | { | |
886 | have_ptrace_getsetvsxregs = 0; | |
887 | return; | |
888 | } | |
889 | perror_with_name (_("Unable to fetch VSX register")); | |
890 | } | |
891 | ||
892 | regcache_raw_collect (regcache, regno, regs + | |
893 | (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize); | |
894 | ||
895 | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | |
896 | if (ret < 0) | |
897 | perror_with_name (_("Unable to store VSX register")); | |
898 | } | |
899 | ||
0df8b418 | 900 | /* Store one register. */ |
9abe5450 | 901 | static void |
56be3814 | 902 | store_altivec_register (const struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
903 | { |
904 | int ret; | |
905 | int offset = 0; | |
906 | gdb_vrregset_t regs; | |
ac7936df | 907 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 MD |
908 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
909 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
910 | |
911 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
912 | if (ret < 0) | |
913 | { | |
914 | if (errno == EIO) | |
915 | { | |
916 | have_ptrace_getvrregs = 0; | |
917 | return; | |
918 | } | |
e2e0b3e5 | 919 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
920 | } |
921 | ||
922 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
923 | long on the hardware. */ | |
924 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 925 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 926 | |
56be3814 | 927 | regcache_raw_collect (regcache, regno, |
0df8b418 MS |
928 | regs + (regno |
929 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
930 | |
931 | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | |
932 | if (ret < 0) | |
e2e0b3e5 | 933 | perror_with_name (_("Unable to store AltiVec register")); |
9abe5450 EZ |
934 | } |
935 | ||
01904826 JB |
936 | /* Assuming TID referrs to an SPE process, set the top halves of TID's |
937 | general-purpose registers and its SPE-specific registers to the | |
938 | values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do | |
939 | nothing. | |
940 | ||
941 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
942 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
943 | get_spe_registers. */ | |
944 | static void | |
945 | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
946 | { | |
947 | if (have_ptrace_getsetevrregs) | |
948 | { | |
949 | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | |
950 | return; | |
951 | else | |
952 | { | |
953 | /* EIO means that the PTRACE_SETEVRREGS request isn't | |
954 | supported; we fail silently, and don't try the call | |
955 | again. */ | |
956 | if (errno == EIO) | |
957 | have_ptrace_getsetevrregs = 0; | |
958 | else | |
959 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 960 | perror_with_name (_("Unable to set SPE registers")); |
01904826 JB |
961 | } |
962 | } | |
963 | } | |
964 | ||
6ced10dd JB |
965 | /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
966 | If REGNO is -1, write the values of all the SPE-specific | |
967 | registers. */ | |
01904826 | 968 | static void |
56be3814 | 969 | store_spe_register (const struct regcache *regcache, int tid, int regno) |
01904826 | 970 | { |
ac7936df | 971 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 972 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
973 | struct gdb_evrregset_t evrregs; |
974 | ||
6ced10dd | 975 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 976 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 977 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 978 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 979 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 980 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
01904826 | 981 | |
6ced10dd JB |
982 | if (regno == -1) |
983 | /* Since we're going to write out every register, the code below | |
984 | should store to every field of evrregs; if that doesn't happen, | |
985 | make it obvious by initializing it with suspicious values. */ | |
986 | memset (&evrregs, 42, sizeof (evrregs)); | |
987 | else | |
988 | /* We can only read and write the entire EVR register set at a | |
989 | time, so to write just a single register, we do a | |
990 | read-modify-write maneuver. */ | |
991 | get_spe_registers (tid, &evrregs); | |
992 | ||
993 | if (regno == -1) | |
01904826 | 994 | { |
6ced10dd JB |
995 | int i; |
996 | ||
997 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 998 | regcache_raw_collect (regcache, |
6ced10dd JB |
999 | tdep->ppc_ev0_upper_regnum + i, |
1000 | &evrregs.evr[i]); | |
01904826 | 1001 | } |
6ced10dd JB |
1002 | else if (tdep->ppc_ev0_upper_regnum <= regno |
1003 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 1004 | regcache_raw_collect (regcache, regno, |
6ced10dd JB |
1005 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
1006 | ||
1007 | if (regno == -1 | |
1008 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 1009 | regcache_raw_collect (regcache, |
6ced10dd JB |
1010 | tdep->ppc_acc_regnum, |
1011 | &evrregs.acc); | |
1012 | ||
1013 | if (regno == -1 | |
1014 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 1015 | regcache_raw_collect (regcache, |
6ced10dd JB |
1016 | tdep->ppc_spefscr_regnum, |
1017 | &evrregs.spefscr); | |
01904826 JB |
1018 | |
1019 | /* Write back the modified register set. */ | |
1020 | set_spe_registers (tid, &evrregs); | |
1021 | } | |
1022 | ||
45229ea4 | 1023 | static void |
56be3814 | 1024 | store_register (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1025 | { |
ac7936df | 1026 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1027 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 1028 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 1029 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
52f0bd74 | 1030 | int i; |
4a19ea35 | 1031 | size_t bytes_to_transfer; |
0f068fb5 | 1032 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 1033 | |
be8626e0 | 1034 | if (altivec_register_p (gdbarch, regno)) |
45229ea4 | 1035 | { |
56be3814 | 1036 | store_altivec_register (regcache, tid, regno); |
45229ea4 EZ |
1037 | return; |
1038 | } | |
604c2f83 LM |
1039 | if (vsx_register_p (gdbarch, regno)) |
1040 | { | |
1041 | store_vsx_register (regcache, tid, regno); | |
1042 | return; | |
1043 | } | |
be8626e0 | 1044 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 1045 | { |
56be3814 | 1046 | store_spe_register (regcache, tid, regno); |
01904826 JB |
1047 | return; |
1048 | } | |
45229ea4 | 1049 | |
9abe5450 EZ |
1050 | if (regaddr == -1) |
1051 | return; | |
1052 | ||
4a19ea35 JB |
1053 | /* First collect the register. Keep in mind that the regcache's |
1054 | idea of the register's size may not be a multiple of sizeof | |
411cb3f9 | 1055 | (long). */ |
56d0d96a | 1056 | memset (buf, 0, sizeof buf); |
40a6adc1 MD |
1057 | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
1058 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | |
4a19ea35 JB |
1059 | { |
1060 | /* Little-endian values always sit at the left end of the buffer. */ | |
56be3814 | 1061 | regcache_raw_collect (regcache, regno, buf); |
4a19ea35 | 1062 | } |
40a6adc1 | 1063 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
1064 | { |
1065 | /* Big-endian values sit at the right end of the buffer. */ | |
40a6adc1 | 1066 | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
56be3814 | 1067 | regcache_raw_collect (regcache, regno, buf + padding); |
4a19ea35 JB |
1068 | } |
1069 | ||
411cb3f9 | 1070 | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
45229ea4 | 1071 | { |
11fde611 JK |
1072 | long l; |
1073 | ||
1074 | memcpy (&l, &buf[i], sizeof (l)); | |
45229ea4 | 1075 | errno = 0; |
11fde611 | 1076 | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
411cb3f9 | 1077 | regaddr += sizeof (long); |
e3f36dbd KB |
1078 | |
1079 | if (errno == EIO | |
7284e1be UW |
1080 | && (regno == tdep->ppc_fpscr_regnum |
1081 | || regno == PPC_ORIG_R3_REGNUM | |
1082 | || regno == PPC_TRAP_REGNUM)) | |
e3f36dbd | 1083 | { |
7284e1be UW |
1084 | /* Some older kernel versions don't allow fpscr, orig_r3 |
1085 | or trap to be written. */ | |
e3f36dbd KB |
1086 | continue; |
1087 | } | |
1088 | ||
45229ea4 EZ |
1089 | if (errno != 0) |
1090 | { | |
bc97b3ba | 1091 | char message[128]; |
8c042590 PM |
1092 | xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
1093 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 1094 | perror_with_name (message); |
45229ea4 EZ |
1095 | } |
1096 | } | |
1097 | } | |
1098 | ||
604c2f83 LM |
1099 | static void |
1100 | fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
1101 | { | |
1102 | int i; | |
ac7936df | 1103 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
1104 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1105 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
1106 | ||
1107 | for (i = 0; i < ppc_num_vshrs; i++) | |
1108 | regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
1109 | *vsxregsetp + i * vsxregsize); | |
1110 | } | |
1111 | ||
9abe5450 | 1112 | static void |
56be3814 | 1113 | fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
1114 | { |
1115 | int i; | |
ac7936df | 1116 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1117 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 1118 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
1119 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
1120 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
1121 | |
1122 | for (i = 0; i < num_of_vrregs; i++) | |
1123 | { | |
1124 | /* The last 2 registers of this set are only 32 bit long, not | |
1125 | 128, but only VSCR is fetched as a 16 bytes quantity. */ | |
1126 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 1127 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1128 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 1129 | else |
56be3814 | 1130 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1131 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
1132 | } |
1133 | } | |
1134 | ||
604c2f83 LM |
1135 | static void |
1136 | store_vsx_registers (const struct regcache *regcache, int tid) | |
1137 | { | |
1138 | int ret; | |
1139 | gdb_vsxregset_t regs; | |
1140 | ||
1141 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
1142 | if (ret < 0) | |
1143 | { | |
1144 | if (errno == EIO) | |
1145 | { | |
1146 | have_ptrace_getsetvsxregs = 0; | |
1147 | return; | |
1148 | } | |
1149 | perror_with_name (_("Couldn't get VSX registers")); | |
1150 | } | |
1151 | ||
1152 | fill_vsxregset (regcache, ®s); | |
1153 | ||
1154 | if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0) | |
1155 | perror_with_name (_("Couldn't write VSX registers")); | |
1156 | } | |
1157 | ||
9abe5450 | 1158 | static void |
56be3814 | 1159 | store_altivec_registers (const struct regcache *regcache, int tid) |
9abe5450 EZ |
1160 | { |
1161 | int ret; | |
1162 | gdb_vrregset_t regs; | |
1163 | ||
0897f59b | 1164 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
9abe5450 EZ |
1165 | if (ret < 0) |
1166 | { | |
1167 | if (errno == EIO) | |
1168 | { | |
1169 | have_ptrace_getvrregs = 0; | |
1170 | return; | |
1171 | } | |
e2e0b3e5 | 1172 | perror_with_name (_("Couldn't get AltiVec registers")); |
9abe5450 EZ |
1173 | } |
1174 | ||
56be3814 | 1175 | fill_vrregset (regcache, ®s); |
9abe5450 | 1176 | |
0897f59b | 1177 | if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0) |
e2e0b3e5 | 1178 | perror_with_name (_("Couldn't write AltiVec registers")); |
9abe5450 EZ |
1179 | } |
1180 | ||
1dfe79e8 SDJ |
1181 | /* This function actually issues the request to ptrace, telling |
1182 | it to store all general-purpose registers present in the specified | |
1183 | regset. | |
1184 | ||
1185 | If the ptrace request does not exist, this function returns 0 | |
1186 | and properly sets the have_ptrace_* flag. If the request fails, | |
1187 | this function calls perror_with_name. Otherwise, if the request | |
1188 | succeeds, then the regcache is stored and 1 is returned. */ | |
1189 | static int | |
1190 | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | |
1191 | { | |
ac7936df | 1192 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1193 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1194 | gdb_gregset_t gregset; | |
1195 | ||
1196 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
1197 | { | |
1198 | if (errno == EIO) | |
1199 | { | |
1200 | have_ptrace_getsetregs = 0; | |
1201 | return 0; | |
1202 | } | |
1203 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
1204 | } | |
1205 | ||
1206 | fill_gregset (regcache, &gregset, regno); | |
1207 | ||
1208 | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | |
1209 | { | |
1210 | if (errno == EIO) | |
1211 | { | |
1212 | have_ptrace_getsetregs = 0; | |
1213 | return 0; | |
1214 | } | |
1215 | perror_with_name (_("Couldn't set general-purpose registers.")); | |
1216 | } | |
1217 | ||
1218 | return 1; | |
1219 | } | |
1220 | ||
1221 | /* This is a wrapper for the store_all_gp_regs function. It is | |
1222 | responsible for verifying if this target has the ptrace request | |
1223 | that can be used to store all general-purpose registers at one | |
1224 | shot. If it doesn't, then we should store them using the | |
1225 | old-fashioned way, which is to iterate over the registers and | |
1226 | store them one by one. */ | |
45229ea4 | 1227 | static void |
1dfe79e8 | 1228 | store_gp_regs (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1229 | { |
ac7936df | 1230 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1231 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1dfe79e8 SDJ |
1232 | int i; |
1233 | ||
1234 | if (have_ptrace_getsetregs) | |
1235 | if (store_all_gp_regs (regcache, tid, regno)) | |
1236 | return; | |
1237 | ||
1238 | /* If we hit this point, it doesn't really matter which | |
1239 | architecture we are using. We just need to store the | |
1240 | registers in the "old-fashioned way". */ | |
6ced10dd | 1241 | for (i = 0; i < ppc_num_gprs; i++) |
56be3814 | 1242 | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
1dfe79e8 SDJ |
1243 | } |
1244 | ||
1245 | /* This function actually issues the request to ptrace, telling | |
1246 | it to store all floating-point registers present in the specified | |
1247 | regset. | |
1248 | ||
1249 | If the ptrace request does not exist, this function returns 0 | |
1250 | and properly sets the have_ptrace_* flag. If the request fails, | |
1251 | this function calls perror_with_name. Otherwise, if the request | |
1252 | succeeds, then the regcache is stored and 1 is returned. */ | |
1253 | static int | |
1254 | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1255 | { | |
1256 | gdb_fpregset_t fpregs; | |
1257 | ||
1258 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1259 | { | |
1260 | if (errno == EIO) | |
1261 | { | |
1262 | have_ptrace_getsetfpregs = 0; | |
1263 | return 0; | |
1264 | } | |
1265 | perror_with_name (_("Couldn't get floating-point registers.")); | |
1266 | } | |
1267 | ||
1268 | fill_fpregset (regcache, &fpregs, regno); | |
1269 | ||
1270 | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1271 | { | |
1272 | if (errno == EIO) | |
1273 | { | |
1274 | have_ptrace_getsetfpregs = 0; | |
1275 | return 0; | |
1276 | } | |
1277 | perror_with_name (_("Couldn't set floating-point registers.")); | |
1278 | } | |
1279 | ||
1280 | return 1; | |
1281 | } | |
1282 | ||
1283 | /* This is a wrapper for the store_all_fp_regs function. It is | |
1284 | responsible for verifying if this target has the ptrace request | |
1285 | that can be used to store all floating-point registers at one | |
1286 | shot. If it doesn't, then we should store them using the | |
1287 | old-fashioned way, which is to iterate over the registers and | |
1288 | store them one by one. */ | |
1289 | static void | |
1290 | store_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1291 | { | |
ac7936df | 1292 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1293 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1294 | int i; | |
1295 | ||
1296 | if (have_ptrace_getsetfpregs) | |
1297 | if (store_all_fp_regs (regcache, tid, regno)) | |
1298 | return; | |
1299 | ||
1300 | /* If we hit this point, it doesn't really matter which | |
1301 | architecture we are using. We just need to store the | |
1302 | registers in the "old-fashioned way". */ | |
1303 | for (i = 0; i < ppc_num_fprs; i++) | |
1304 | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
1305 | } | |
1306 | ||
1307 | static void | |
1308 | store_ppc_registers (const struct regcache *regcache, int tid) | |
1309 | { | |
1310 | int i; | |
ac7936df | 1311 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1312 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1313 | ||
1314 | store_gp_regs (regcache, tid, -1); | |
32b99774 | 1315 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 1316 | store_fp_regs (regcache, tid, -1); |
40a6adc1 | 1317 | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 1318 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 1319 | store_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 1320 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 1321 | store_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 1322 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 1323 | store_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 1324 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 1325 | store_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 1326 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 1327 | store_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 1328 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 1329 | store_register (regcache, tid, tdep->ppc_mq_regnum); |
32b99774 | 1330 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 1331 | store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
7284e1be UW |
1332 | if (ppc_linux_trap_reg_p (gdbarch)) |
1333 | { | |
1334 | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
1335 | store_register (regcache, tid, PPC_TRAP_REGNUM); | |
1336 | } | |
9abe5450 EZ |
1337 | if (have_ptrace_getvrregs) |
1338 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 1339 | store_altivec_registers (regcache, tid); |
604c2f83 LM |
1340 | if (have_ptrace_getsetvsxregs) |
1341 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
1342 | store_vsx_registers (regcache, tid); | |
6ced10dd | 1343 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 1344 | store_spe_register (regcache, tid, -1); |
45229ea4 EZ |
1345 | } |
1346 | ||
6ffbb7ab | 1347 | /* Fetch the AT_HWCAP entry from the aux vector. */ |
b261e0c5 UW |
1348 | static unsigned long |
1349 | ppc_linux_get_hwcap (void) | |
6ffbb7ab TJB |
1350 | { |
1351 | CORE_ADDR field; | |
1352 | ||
f6ac5f3d | 1353 | if (target_auxv_search (target_stack, AT_HWCAP, &field)) |
6ffbb7ab TJB |
1354 | return (unsigned long) field; |
1355 | ||
1356 | return 0; | |
1357 | } | |
1358 | ||
1359 | /* The cached DABR value, to install in new threads. | |
926bf92d UW |
1360 | This variable is used when the PowerPC HWDEBUG ptrace |
1361 | interface is not available. */ | |
6ffbb7ab TJB |
1362 | static long saved_dabr_value; |
1363 | ||
1364 | /* Global structure that will store information about the available | |
926bf92d UW |
1365 | features provided by the PowerPC HWDEBUG ptrace interface. */ |
1366 | static struct ppc_debug_info hwdebug_info; | |
6ffbb7ab TJB |
1367 | |
1368 | /* Global variable that holds the maximum number of slots that the | |
926bf92d UW |
1369 | kernel will use. This is only used when PowerPC HWDEBUG ptrace interface |
1370 | is available. */ | |
6ffbb7ab TJB |
1371 | static size_t max_slots_number = 0; |
1372 | ||
1373 | struct hw_break_tuple | |
1374 | { | |
1375 | long slot; | |
1376 | struct ppc_hw_breakpoint *hw_break; | |
1377 | }; | |
1378 | ||
1379 | /* This is an internal VEC created to store information about *points inserted | |
926bf92d UW |
1380 | for each thread. This is used when PowerPC HWDEBUG ptrace interface is |
1381 | available. */ | |
6ffbb7ab TJB |
1382 | typedef struct thread_points |
1383 | { | |
1384 | /* The TID to which this *point relates. */ | |
1385 | int tid; | |
1386 | /* Information about the *point, such as its address, type, etc. | |
1387 | ||
1388 | Each element inside this vector corresponds to a hardware | |
1389 | breakpoint or watchpoint in the thread represented by TID. The maximum | |
1390 | size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of | |
1391 | the tuple is NULL, then the position in the vector is free. */ | |
1392 | struct hw_break_tuple *hw_breaks; | |
1393 | } *thread_points_p; | |
1394 | DEF_VEC_P (thread_points_p); | |
1395 | ||
1396 | VEC(thread_points_p) *ppc_threads = NULL; | |
1397 | ||
926bf92d UW |
1398 | /* The version of the PowerPC HWDEBUG kernel interface that we will use, if |
1399 | available. */ | |
6ffbb7ab TJB |
1400 | #define PPC_DEBUG_CURRENT_VERSION 1 |
1401 | ||
926bf92d | 1402 | /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */ |
e0d24f8d | 1403 | static int |
926bf92d | 1404 | have_ptrace_hwdebug_interface (void) |
e0d24f8d | 1405 | { |
926bf92d | 1406 | static int have_ptrace_hwdebug_interface = -1; |
e0d24f8d | 1407 | |
926bf92d | 1408 | if (have_ptrace_hwdebug_interface == -1) |
6ffbb7ab TJB |
1409 | { |
1410 | int tid; | |
e0d24f8d | 1411 | |
dfd4cc63 | 1412 | tid = ptid_get_lwp (inferior_ptid); |
6ffbb7ab | 1413 | if (tid == 0) |
dfd4cc63 | 1414 | tid = ptid_get_pid (inferior_ptid); |
e0d24f8d | 1415 | |
926bf92d UW |
1416 | /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */ |
1417 | if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0) | |
6ffbb7ab | 1418 | { |
926bf92d | 1419 | /* Check whether PowerPC HWDEBUG ptrace interface is functional and |
0c56f59b | 1420 | provides any supported feature. */ |
926bf92d | 1421 | if (hwdebug_info.features != 0) |
0c56f59b | 1422 | { |
926bf92d UW |
1423 | have_ptrace_hwdebug_interface = 1; |
1424 | max_slots_number = hwdebug_info.num_instruction_bps | |
1425 | + hwdebug_info.num_data_bps | |
1426 | + hwdebug_info.num_condition_regs; | |
1427 | return have_ptrace_hwdebug_interface; | |
0c56f59b | 1428 | } |
6ffbb7ab | 1429 | } |
926bf92d UW |
1430 | /* Old school interface and no PowerPC HWDEBUG ptrace support. */ |
1431 | have_ptrace_hwdebug_interface = 0; | |
1432 | memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info)); | |
6ffbb7ab TJB |
1433 | } |
1434 | ||
926bf92d | 1435 | return have_ptrace_hwdebug_interface; |
e0d24f8d WZ |
1436 | } |
1437 | ||
f6ac5f3d PA |
1438 | int |
1439 | ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot) | |
b7622095 | 1440 | { |
6ffbb7ab | 1441 | int total_hw_wp, total_hw_bp; |
b7622095 | 1442 | |
926bf92d | 1443 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab | 1444 | { |
926bf92d UW |
1445 | /* When PowerPC HWDEBUG ptrace interface is available, the number of |
1446 | available hardware watchpoints and breakpoints is stored at the | |
1447 | hwdebug_info struct. */ | |
1448 | total_hw_bp = hwdebug_info.num_instruction_bps; | |
1449 | total_hw_wp = hwdebug_info.num_data_bps; | |
6ffbb7ab TJB |
1450 | } |
1451 | else | |
1452 | { | |
926bf92d UW |
1453 | /* When we do not have PowerPC HWDEBUG ptrace interface, we should |
1454 | consider having 1 hardware watchpoint and no hardware breakpoints. */ | |
6ffbb7ab TJB |
1455 | total_hw_bp = 0; |
1456 | total_hw_wp = 1; | |
1457 | } | |
b7622095 | 1458 | |
6ffbb7ab TJB |
1459 | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
1460 | || type == bp_access_watchpoint || type == bp_watchpoint) | |
1461 | { | |
bb08bdbd | 1462 | if (cnt + ot > total_hw_wp) |
6ffbb7ab TJB |
1463 | return -1; |
1464 | } | |
1465 | else if (type == bp_hardware_breakpoint) | |
1466 | { | |
572f6555 EBM |
1467 | if (total_hw_bp == 0) |
1468 | { | |
1469 | /* No hardware breakpoint support. */ | |
1470 | return 0; | |
1471 | } | |
6ffbb7ab TJB |
1472 | if (cnt > total_hw_bp) |
1473 | return -1; | |
1474 | } | |
1475 | ||
926bf92d | 1476 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1477 | { |
1478 | int tid; | |
1479 | ptid_t ptid = inferior_ptid; | |
1480 | ||
0df8b418 MS |
1481 | /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG |
1482 | and whether the target has DABR. If either answer is no, the | |
1483 | ptrace call will return -1. Fail in that case. */ | |
dfd4cc63 | 1484 | tid = ptid_get_lwp (ptid); |
6ffbb7ab | 1485 | if (tid == 0) |
dfd4cc63 | 1486 | tid = ptid_get_pid (ptid); |
6ffbb7ab TJB |
1487 | |
1488 | if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) | |
1489 | return 0; | |
1490 | } | |
1491 | ||
1492 | return 1; | |
b7622095 LM |
1493 | } |
1494 | ||
f6ac5f3d PA |
1495 | int |
1496 | ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) | |
e0d24f8d WZ |
1497 | { |
1498 | /* Handle sub-8-byte quantities. */ | |
1499 | if (len <= 0) | |
1500 | return 0; | |
1501 | ||
926bf92d UW |
1502 | /* The PowerPC HWDEBUG ptrace interface tells if there are alignment |
1503 | restrictions for watchpoints in the processors. In that case, we use that | |
1504 | information to determine the hardcoded watchable region for | |
1505 | watchpoints. */ | |
1506 | if (have_ptrace_hwdebug_interface ()) | |
6ffbb7ab | 1507 | { |
e23b9d6e | 1508 | int region_size; |
4feebbdd EBM |
1509 | /* Embedded DAC-based processors, like the PowerPC 440 have ranged |
1510 | watchpoints and can watch any access within an arbitrary memory | |
1511 | region. This is useful to watch arrays and structs, for instance. It | |
1512 | takes two hardware watchpoints though. */ | |
e09342b5 | 1513 | if (len > 1 |
926bf92d | 1514 | && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE |
4feebbdd | 1515 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
e09342b5 | 1516 | return 2; |
e23b9d6e UW |
1517 | /* Check if the processor provides DAWR interface. */ |
1518 | if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) | |
1519 | /* DAWR interface allows to watch up to 512 byte wide ranges which | |
1520 | can't cross a 512 byte boundary. */ | |
1521 | region_size = 512; | |
1522 | else | |
1523 | region_size = hwdebug_info.data_bp_alignment; | |
4feebbdd EBM |
1524 | /* Server processors provide one hardware watchpoint and addr+len should |
1525 | fall in the watchable region provided by the ptrace interface. */ | |
e23b9d6e UW |
1526 | if (region_size |
1527 | && (addr + len > (addr & ~(region_size - 1)) + region_size)) | |
0cf6dd15 | 1528 | return 0; |
6ffbb7ab | 1529 | } |
b7622095 | 1530 | /* addr+len must fall in the 8 byte watchable region for DABR-based |
926bf92d UW |
1531 | processors (i.e., server processors). Without the new PowerPC HWDEBUG |
1532 | ptrace interface, DAC-based processors (i.e., embedded processors) will | |
1533 | use addresses aligned to 4-bytes due to the way the read/write flags are | |
6ffbb7ab TJB |
1534 | passed in the old ptrace interface. */ |
1535 | else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
1536 | && (addr + len) > (addr & ~3) + 4) | |
1537 | || (addr + len) > (addr & ~7) + 8) | |
e0d24f8d WZ |
1538 | return 0; |
1539 | ||
1540 | return 1; | |
1541 | } | |
1542 | ||
6ffbb7ab | 1543 | /* This function compares two ppc_hw_breakpoint structs field-by-field. */ |
e4166a49 | 1544 | static int |
926bf92d | 1545 | hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) |
6ffbb7ab | 1546 | { |
ad422571 TJB |
1547 | return (a->trigger_type == b->trigger_type |
1548 | && a->addr_mode == b->addr_mode | |
1549 | && a->condition_mode == b->condition_mode | |
1550 | && a->addr == b->addr | |
1551 | && a->addr2 == b->addr2 | |
6ffbb7ab TJB |
1552 | && a->condition_value == b->condition_value); |
1553 | } | |
1554 | ||
1555 | /* This function can be used to retrieve a thread_points by the TID of the | |
1556 | related process/thread. If nothing has been found, and ALLOC_NEW is 0, | |
1557 | it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the | |
1558 | provided TID will be created and returned. */ | |
1559 | static struct thread_points * | |
926bf92d | 1560 | hwdebug_find_thread_points_by_tid (int tid, int alloc_new) |
6ffbb7ab TJB |
1561 | { |
1562 | int i; | |
1563 | struct thread_points *t; | |
1564 | ||
1565 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++) | |
1566 | if (t->tid == tid) | |
1567 | return t; | |
1568 | ||
1569 | t = NULL; | |
1570 | ||
1571 | /* Do we need to allocate a new point_item | |
1572 | if the wanted one does not exist? */ | |
1573 | if (alloc_new) | |
1574 | { | |
8d749320 SM |
1575 | t = XNEW (struct thread_points); |
1576 | t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number); | |
6ffbb7ab TJB |
1577 | t->tid = tid; |
1578 | VEC_safe_push (thread_points_p, ppc_threads, t); | |
1579 | } | |
1580 | ||
1581 | return t; | |
1582 | } | |
1583 | ||
1584 | /* This function is a generic wrapper that is responsible for inserting a | |
1585 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1586 | kernel) and registering it internally in GDB. */ | |
1587 | static void | |
926bf92d | 1588 | hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1589 | { |
1590 | int i; | |
1591 | long slot; | |
a90ecff8 | 1592 | gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b)); |
6ffbb7ab | 1593 | struct hw_break_tuple *hw_breaks; |
6ffbb7ab TJB |
1594 | struct thread_points *t; |
1595 | struct hw_break_tuple *tuple; | |
1596 | ||
6ffbb7ab | 1597 | errno = 0; |
a90ecff8 | 1598 | slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ()); |
6ffbb7ab TJB |
1599 | if (slot < 0) |
1600 | perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); | |
1601 | ||
1602 | /* Everything went fine, so we have to register this *point. */ | |
926bf92d | 1603 | t = hwdebug_find_thread_points_by_tid (tid, 1); |
6ffbb7ab TJB |
1604 | gdb_assert (t != NULL); |
1605 | hw_breaks = t->hw_breaks; | |
1606 | ||
1607 | /* Find a free element in the hw_breaks vector. */ | |
1608 | for (i = 0; i < max_slots_number; i++) | |
1609 | if (hw_breaks[i].hw_break == NULL) | |
1610 | { | |
1611 | hw_breaks[i].slot = slot; | |
a90ecff8 | 1612 | hw_breaks[i].hw_break = p.release (); |
6ffbb7ab TJB |
1613 | break; |
1614 | } | |
1615 | ||
1616 | gdb_assert (i != max_slots_number); | |
6ffbb7ab TJB |
1617 | } |
1618 | ||
1619 | /* This function is a generic wrapper that is responsible for removing a | |
1620 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1621 | kernel), and unregistering it internally at GDB. */ | |
1622 | static void | |
926bf92d | 1623 | hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1624 | { |
1625 | int i; | |
1626 | struct hw_break_tuple *hw_breaks; | |
1627 | struct thread_points *t; | |
1628 | ||
926bf92d | 1629 | t = hwdebug_find_thread_points_by_tid (tid, 0); |
6ffbb7ab TJB |
1630 | gdb_assert (t != NULL); |
1631 | hw_breaks = t->hw_breaks; | |
1632 | ||
1633 | for (i = 0; i < max_slots_number; i++) | |
926bf92d | 1634 | if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b)) |
6ffbb7ab TJB |
1635 | break; |
1636 | ||
1637 | gdb_assert (i != max_slots_number); | |
1638 | ||
1639 | /* We have to ignore ENOENT errors because the kernel implements hardware | |
1640 | breakpoints/watchpoints as "one-shot", that is, they are automatically | |
1641 | deleted when hit. */ | |
1642 | errno = 0; | |
1643 | if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) | |
1644 | if (errno != ENOENT) | |
0df8b418 MS |
1645 | perror_with_name (_("Unexpected error deleting " |
1646 | "breakpoint or watchpoint")); | |
6ffbb7ab TJB |
1647 | |
1648 | xfree (hw_breaks[i].hw_break); | |
1649 | hw_breaks[i].hw_break = NULL; | |
1650 | } | |
9f0bdab8 | 1651 | |
f1310107 TJB |
1652 | /* Return the number of registers needed for a ranged breakpoint. */ |
1653 | ||
f6ac5f3d PA |
1654 | int |
1655 | ppc_linux_nat_target::ranged_break_num_registers () | |
f1310107 | 1656 | { |
926bf92d UW |
1657 | return ((have_ptrace_hwdebug_interface () |
1658 | && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)? | |
f1310107 TJB |
1659 | 2 : -1); |
1660 | } | |
1661 | ||
1662 | /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for | |
1663 | success, 1 if hardware breakpoints are not supported or -1 for failure. */ | |
1664 | ||
f6ac5f3d PA |
1665 | int |
1666 | ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, | |
1667 | struct bp_target_info *bp_tgt) | |
e0d24f8d | 1668 | { |
9f0bdab8 | 1669 | struct lwp_info *lp; |
6ffbb7ab TJB |
1670 | struct ppc_hw_breakpoint p; |
1671 | ||
926bf92d | 1672 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1673 | return -1; |
1674 | ||
ad422571 TJB |
1675 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1676 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 | 1677 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
0d5ed153 | 1678 | p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); |
6ffbb7ab TJB |
1679 | p.condition_value = 0; |
1680 | ||
f1310107 TJB |
1681 | if (bp_tgt->length) |
1682 | { | |
1683 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1684 | ||
1685 | /* The breakpoint will trigger if the address of the instruction is | |
1686 | within the defined range, as follows: p.addr <= address < p.addr2. */ | |
1687 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1688 | } | |
1689 | else | |
1690 | { | |
1691 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1692 | p.addr2 = 0; | |
1693 | } | |
1694 | ||
4c38200f | 1695 | ALL_LWPS (lp) |
dfd4cc63 | 1696 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1697 | |
1698 | return 0; | |
1699 | } | |
1700 | ||
f6ac5f3d PA |
1701 | int |
1702 | ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, | |
1703 | struct bp_target_info *bp_tgt) | |
6ffbb7ab | 1704 | { |
6ffbb7ab TJB |
1705 | struct lwp_info *lp; |
1706 | struct ppc_hw_breakpoint p; | |
b7622095 | 1707 | |
926bf92d | 1708 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1709 | return -1; |
1710 | ||
ad422571 TJB |
1711 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1712 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1713 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1714 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1715 | p.condition_value = 0; |
1716 | ||
f1310107 TJB |
1717 | if (bp_tgt->length) |
1718 | { | |
1719 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1720 | ||
1721 | /* The breakpoint will trigger if the address of the instruction is within | |
1722 | the defined range, as follows: p.addr <= address < p.addr2. */ | |
1723 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1724 | } | |
1725 | else | |
1726 | { | |
1727 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1728 | p.addr2 = 0; | |
1729 | } | |
1730 | ||
4c38200f | 1731 | ALL_LWPS (lp) |
dfd4cc63 | 1732 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1733 | |
1734 | return 0; | |
1735 | } | |
1736 | ||
1737 | static int | |
e76460db | 1738 | get_trigger_type (enum target_hw_bp_type type) |
6ffbb7ab TJB |
1739 | { |
1740 | int t; | |
1741 | ||
e76460db | 1742 | if (type == hw_read) |
6ffbb7ab | 1743 | t = PPC_BREAKPOINT_TRIGGER_READ; |
e76460db | 1744 | else if (type == hw_write) |
6ffbb7ab | 1745 | t = PPC_BREAKPOINT_TRIGGER_WRITE; |
b7622095 | 1746 | else |
6ffbb7ab TJB |
1747 | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
1748 | ||
1749 | return t; | |
1750 | } | |
1751 | ||
9c06b0b4 TJB |
1752 | /* Insert a new masked watchpoint at ADDR using the mask MASK. |
1753 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1754 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1755 | an error on failure. */ | |
1756 | ||
f6ac5f3d PA |
1757 | int |
1758 | ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, | |
1759 | target_hw_bp_type rw) | |
9c06b0b4 | 1760 | { |
9c06b0b4 TJB |
1761 | struct lwp_info *lp; |
1762 | struct ppc_hw_breakpoint p; | |
1763 | ||
926bf92d | 1764 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1765 | |
1766 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1767 | p.trigger_type = get_trigger_type (rw); | |
1768 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1769 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1770 | p.addr = addr; | |
1771 | p.addr2 = mask; | |
1772 | p.condition_value = 0; | |
1773 | ||
4c38200f | 1774 | ALL_LWPS (lp) |
dfd4cc63 | 1775 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1776 | |
1777 | return 0; | |
1778 | } | |
1779 | ||
1780 | /* Remove a masked watchpoint at ADDR with the mask MASK. | |
1781 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1782 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1783 | an error on failure. */ | |
1784 | ||
f6ac5f3d PA |
1785 | int |
1786 | ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, | |
1787 | target_hw_bp_type rw) | |
9c06b0b4 | 1788 | { |
9c06b0b4 TJB |
1789 | struct lwp_info *lp; |
1790 | struct ppc_hw_breakpoint p; | |
1791 | ||
926bf92d | 1792 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1793 | |
1794 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1795 | p.trigger_type = get_trigger_type (rw); | |
1796 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1797 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1798 | p.addr = addr; | |
1799 | p.addr2 = mask; | |
1800 | p.condition_value = 0; | |
1801 | ||
4c38200f | 1802 | ALL_LWPS (lp) |
dfd4cc63 | 1803 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1804 | |
1805 | return 0; | |
1806 | } | |
1807 | ||
0cf6dd15 TJB |
1808 | /* Check whether we have at least one free DVC register. */ |
1809 | static int | |
1810 | can_use_watchpoint_cond_accel (void) | |
1811 | { | |
1812 | struct thread_points *p; | |
dfd4cc63 | 1813 | int tid = ptid_get_lwp (inferior_ptid); |
926bf92d | 1814 | int cnt = hwdebug_info.num_condition_regs, i; |
0cf6dd15 TJB |
1815 | CORE_ADDR tmp_value; |
1816 | ||
926bf92d | 1817 | if (!have_ptrace_hwdebug_interface () || cnt == 0) |
0cf6dd15 TJB |
1818 | return 0; |
1819 | ||
926bf92d | 1820 | p = hwdebug_find_thread_points_by_tid (tid, 0); |
0cf6dd15 TJB |
1821 | |
1822 | if (p) | |
1823 | { | |
1824 | for (i = 0; i < max_slots_number; i++) | |
1825 | if (p->hw_breaks[i].hw_break != NULL | |
1826 | && (p->hw_breaks[i].hw_break->condition_mode | |
1827 | != PPC_BREAKPOINT_CONDITION_NONE)) | |
1828 | cnt--; | |
1829 | ||
1830 | /* There are no available slots now. */ | |
1831 | if (cnt <= 0) | |
1832 | return 0; | |
1833 | } | |
1834 | ||
1835 | return 1; | |
1836 | } | |
1837 | ||
1838 | /* Calculate the enable bits and the contents of the Data Value Compare | |
1839 | debug register present in BookE processors. | |
1840 | ||
1841 | ADDR is the address to be watched, LEN is the length of watched data | |
1842 | and DATA_VALUE is the value which will trigger the watchpoint. | |
1843 | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | |
1844 | CONDITION_VALUE will hold the value which should be put in the | |
1845 | DVC register. */ | |
1846 | static void | |
1847 | calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, | |
1848 | uint32_t *condition_mode, uint64_t *condition_value) | |
1849 | { | |
1850 | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | |
1851 | rightmost_enabled_byte; | |
1852 | CORE_ADDR addr_end_data, addr_end_dvc; | |
1853 | ||
1854 | /* The DVC register compares bytes within fixed-length windows which | |
1855 | are word-aligned, with length equal to that of the DVC register. | |
1856 | We need to calculate where our watch region is relative to that | |
1857 | window and enable comparison of the bytes which fall within it. */ | |
1858 | ||
926bf92d | 1859 | align_offset = addr % hwdebug_info.sizeof_condition; |
0cf6dd15 TJB |
1860 | addr_end_data = addr + len; |
1861 | addr_end_dvc = (addr - align_offset | |
926bf92d | 1862 | + hwdebug_info.sizeof_condition); |
0cf6dd15 TJB |
1863 | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? |
1864 | addr_end_data - addr_end_dvc : 0; | |
1865 | num_byte_enable = len - num_bytes_off_dvc; | |
1866 | /* Here, bytes are numbered from right to left. */ | |
1867 | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | |
1868 | addr_end_dvc - addr_end_data : 0; | |
1869 | ||
1870 | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | |
1871 | for (i = 0; i < num_byte_enable; i++) | |
0df8b418 MS |
1872 | *condition_mode |
1873 | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | |
0cf6dd15 TJB |
1874 | |
1875 | /* Now we need to match the position within the DVC of the comparison | |
1876 | value with where the watch region is relative to the window | |
1877 | (i.e., the ALIGN_OFFSET). */ | |
1878 | ||
1879 | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | |
1880 | << rightmost_enabled_byte * 8); | |
1881 | } | |
1882 | ||
1883 | /* Return the number of memory locations that need to be accessed to | |
1884 | evaluate the expression which generated the given value chain. | |
1885 | Returns -1 if there's any register access involved, or if there are | |
1886 | other kinds of values which are not acceptable in a condition | |
1887 | expression (e.g., lval_computed or lval_internalvar). */ | |
1888 | static int | |
a6535de1 | 1889 | num_memory_accesses (const std::vector<value_ref_ptr> &chain) |
0cf6dd15 TJB |
1890 | { |
1891 | int found_memory_cnt = 0; | |
0cf6dd15 TJB |
1892 | |
1893 | /* The idea here is that evaluating an expression generates a series | |
1894 | of values, one holding the value of every subexpression. (The | |
1895 | expression a*b+c has five subexpressions: a, b, a*b, c, and | |
1896 | a*b+c.) GDB's values hold almost enough information to establish | |
1897 | the criteria given above --- they identify memory lvalues, | |
1898 | register lvalues, computed values, etcetera. So we can evaluate | |
1899 | the expression, and then scan the chain of values that leaves | |
1900 | behind to determine the memory locations involved in the evaluation | |
1901 | of an expression. | |
1902 | ||
1903 | However, I don't think that the values returned by inferior | |
1904 | function calls are special in any way. So this function may not | |
1905 | notice that an expression contains an inferior function call. | |
1906 | FIXME. */ | |
1907 | ||
a6535de1 | 1908 | for (const value_ref_ptr &iter : chain) |
0cf6dd15 | 1909 | { |
a6535de1 TT |
1910 | struct value *v = iter.get (); |
1911 | ||
0cf6dd15 TJB |
1912 | /* Constants and values from the history are fine. */ |
1913 | if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) | |
1914 | continue; | |
1915 | else if (VALUE_LVAL (v) == lval_memory) | |
1916 | { | |
1917 | /* A lazy memory lvalue is one that GDB never needed to fetch; | |
1918 | we either just used its address (e.g., `a' in `a.b') or | |
1919 | we never needed it at all (e.g., `a' in `a,b'). */ | |
1920 | if (!value_lazy (v)) | |
1921 | found_memory_cnt++; | |
1922 | } | |
0df8b418 | 1923 | /* Other kinds of values are not fine. */ |
0cf6dd15 TJB |
1924 | else |
1925 | return -1; | |
1926 | } | |
1927 | ||
1928 | return found_memory_cnt; | |
1929 | } | |
1930 | ||
1931 | /* Verifies whether the expression COND can be implemented using the | |
1932 | DVC (Data Value Compare) register in BookE processors. The expression | |
1933 | must test the watch value for equality with a constant expression. | |
1934 | If the function returns 1, DATA_VALUE will contain the constant against | |
e7db58ea TJB |
1935 | which the watch value should be compared and LEN will contain the size |
1936 | of the constant. */ | |
0cf6dd15 TJB |
1937 | static int |
1938 | check_condition (CORE_ADDR watch_addr, struct expression *cond, | |
e7db58ea | 1939 | CORE_ADDR *data_value, int *len) |
0cf6dd15 TJB |
1940 | { |
1941 | int pc = 1, num_accesses_left, num_accesses_right; | |
a6535de1 TT |
1942 | struct value *left_val, *right_val; |
1943 | std::vector<value_ref_ptr> left_chain, right_chain; | |
0cf6dd15 TJB |
1944 | |
1945 | if (cond->elts[0].opcode != BINOP_EQUAL) | |
1946 | return 0; | |
1947 | ||
3a1115a0 | 1948 | fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0); |
0cf6dd15 TJB |
1949 | num_accesses_left = num_memory_accesses (left_chain); |
1950 | ||
1951 | if (left_val == NULL || num_accesses_left < 0) | |
a6535de1 | 1952 | return 0; |
0cf6dd15 | 1953 | |
3a1115a0 | 1954 | fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0); |
0cf6dd15 TJB |
1955 | num_accesses_right = num_memory_accesses (right_chain); |
1956 | ||
1957 | if (right_val == NULL || num_accesses_right < 0) | |
a6535de1 | 1958 | return 0; |
0cf6dd15 TJB |
1959 | |
1960 | if (num_accesses_left == 1 && num_accesses_right == 0 | |
1961 | && VALUE_LVAL (left_val) == lval_memory | |
1962 | && value_address (left_val) == watch_addr) | |
e7db58ea TJB |
1963 | { |
1964 | *data_value = value_as_long (right_val); | |
1965 | ||
1966 | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | |
1967 | the same type as the memory region referenced by LEFT_VAL. */ | |
1968 | *len = TYPE_LENGTH (check_typedef (value_type (left_val))); | |
1969 | } | |
0cf6dd15 TJB |
1970 | else if (num_accesses_left == 0 && num_accesses_right == 1 |
1971 | && VALUE_LVAL (right_val) == lval_memory | |
1972 | && value_address (right_val) == watch_addr) | |
e7db58ea TJB |
1973 | { |
1974 | *data_value = value_as_long (left_val); | |
1975 | ||
1976 | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | |
1977 | the same type as the memory region referenced by RIGHT_VAL. */ | |
1978 | *len = TYPE_LENGTH (check_typedef (value_type (right_val))); | |
1979 | } | |
0cf6dd15 | 1980 | else |
a6535de1 | 1981 | return 0; |
0cf6dd15 TJB |
1982 | |
1983 | return 1; | |
1984 | } | |
1985 | ||
1986 | /* Return non-zero if the target is capable of using hardware to evaluate | |
1987 | the condition expression, thus only triggering the watchpoint when it is | |
1988 | true. */ | |
f6ac5f3d PA |
1989 | int |
1990 | ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len, | |
1991 | int rw, | |
1992 | struct expression *cond) | |
0cf6dd15 TJB |
1993 | { |
1994 | CORE_ADDR data_value; | |
1995 | ||
926bf92d UW |
1996 | return (have_ptrace_hwdebug_interface () |
1997 | && hwdebug_info.num_condition_regs > 0 | |
e7db58ea | 1998 | && check_condition (addr, cond, &data_value, &len)); |
0cf6dd15 TJB |
1999 | } |
2000 | ||
e09342b5 TJB |
2001 | /* Set up P with the parameters necessary to request a watchpoint covering |
2002 | LEN bytes starting at ADDR and if possible with condition expression COND | |
2003 | evaluated by hardware. INSERT tells if we are creating a request for | |
2004 | inserting or removing the watchpoint. */ | |
2005 | ||
2006 | static void | |
2007 | create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr, | |
e76460db PA |
2008 | int len, enum target_hw_bp_type type, |
2009 | struct expression *cond, int insert) | |
e09342b5 | 2010 | { |
f16c4e8b | 2011 | if (len == 1 |
926bf92d | 2012 | || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) |
e09342b5 TJB |
2013 | { |
2014 | int use_condition; | |
2015 | CORE_ADDR data_value; | |
2016 | ||
2017 | use_condition = (insert? can_use_watchpoint_cond_accel () | |
926bf92d | 2018 | : hwdebug_info.num_condition_regs > 0); |
e7db58ea TJB |
2019 | if (cond && use_condition && check_condition (addr, cond, |
2020 | &data_value, &len)) | |
e09342b5 TJB |
2021 | calculate_dvc (addr, len, data_value, &p->condition_mode, |
2022 | &p->condition_value); | |
2023 | else | |
2024 | { | |
2025 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2026 | p->condition_value = 0; | |
2027 | } | |
2028 | ||
2029 | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
2030 | p->addr2 = 0; | |
2031 | } | |
2032 | else | |
2033 | { | |
2034 | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
2035 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2036 | p->condition_value = 0; | |
2037 | ||
2038 | /* The watchpoint will trigger if the address of the memory access is | |
2039 | within the defined range, as follows: p->addr <= address < p->addr2. | |
2040 | ||
2041 | Note that the above sentence just documents how ptrace interprets | |
2042 | its arguments; the watchpoint is set to watch the range defined by | |
2043 | the user _inclusively_, as specified by the user interface. */ | |
2044 | p->addr2 = (uint64_t) addr + len; | |
2045 | } | |
2046 | ||
2047 | p->version = PPC_DEBUG_CURRENT_VERSION; | |
e76460db | 2048 | p->trigger_type = get_trigger_type (type); |
e09342b5 TJB |
2049 | p->addr = (uint64_t) addr; |
2050 | } | |
2051 | ||
f6ac5f3d PA |
2052 | int |
2053 | ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, | |
2054 | enum target_hw_bp_type type, | |
2055 | struct expression *cond) | |
6ffbb7ab TJB |
2056 | { |
2057 | struct lwp_info *lp; | |
6ffbb7ab TJB |
2058 | int ret = -1; |
2059 | ||
926bf92d | 2060 | if (have_ptrace_hwdebug_interface ()) |
e0d24f8d | 2061 | { |
6ffbb7ab TJB |
2062 | struct ppc_hw_breakpoint p; |
2063 | ||
e76460db | 2064 | create_watchpoint_request (&p, addr, len, type, cond, 1); |
6ffbb7ab | 2065 | |
4c38200f | 2066 | ALL_LWPS (lp) |
dfd4cc63 | 2067 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2068 | |
2069 | ret = 0; | |
e0d24f8d | 2070 | } |
6ffbb7ab TJB |
2071 | else |
2072 | { | |
2073 | long dabr_value; | |
2074 | long read_mode, write_mode; | |
e0d24f8d | 2075 | |
6ffbb7ab TJB |
2076 | if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2077 | { | |
2078 | /* PowerPC 440 requires only the read/write flags to be passed | |
2079 | to the kernel. */ | |
ad422571 | 2080 | read_mode = 1; |
6ffbb7ab TJB |
2081 | write_mode = 2; |
2082 | } | |
2083 | else | |
2084 | { | |
2085 | /* PowerPC 970 and other DABR-based processors are required to pass | |
2086 | the Breakpoint Translation bit together with the flags. */ | |
ad422571 | 2087 | read_mode = 5; |
6ffbb7ab TJB |
2088 | write_mode = 6; |
2089 | } | |
1c86e440 | 2090 | |
6ffbb7ab | 2091 | dabr_value = addr & ~(read_mode | write_mode); |
e76460db | 2092 | switch (type) |
6ffbb7ab TJB |
2093 | { |
2094 | case hw_read: | |
2095 | /* Set read and translate bits. */ | |
2096 | dabr_value |= read_mode; | |
2097 | break; | |
2098 | case hw_write: | |
2099 | /* Set write and translate bits. */ | |
2100 | dabr_value |= write_mode; | |
2101 | break; | |
2102 | case hw_access: | |
2103 | /* Set read, write and translate bits. */ | |
2104 | dabr_value |= read_mode | write_mode; | |
2105 | break; | |
2106 | } | |
1c86e440 | 2107 | |
6ffbb7ab TJB |
2108 | saved_dabr_value = dabr_value; |
2109 | ||
4c38200f | 2110 | ALL_LWPS (lp) |
dfd4cc63 | 2111 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2112 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2113 | return -1; |
2114 | ||
2115 | ret = 0; | |
2116 | } | |
2117 | ||
2118 | return ret; | |
e0d24f8d WZ |
2119 | } |
2120 | ||
f6ac5f3d PA |
2121 | int |
2122 | ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len, | |
2123 | enum target_hw_bp_type type, | |
2124 | struct expression *cond) | |
e0d24f8d | 2125 | { |
9f0bdab8 | 2126 | struct lwp_info *lp; |
6ffbb7ab | 2127 | int ret = -1; |
9f0bdab8 | 2128 | |
926bf92d | 2129 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2130 | { |
2131 | struct ppc_hw_breakpoint p; | |
2132 | ||
e76460db | 2133 | create_watchpoint_request (&p, addr, len, type, cond, 0); |
6ffbb7ab | 2134 | |
4c38200f | 2135 | ALL_LWPS (lp) |
dfd4cc63 | 2136 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2137 | |
2138 | ret = 0; | |
2139 | } | |
2140 | else | |
2141 | { | |
2142 | saved_dabr_value = 0; | |
4c38200f | 2143 | ALL_LWPS (lp) |
dfd4cc63 | 2144 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2145 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2146 | return -1; |
2147 | ||
2148 | ret = 0; | |
2149 | } | |
2150 | ||
2151 | return ret; | |
e0d24f8d WZ |
2152 | } |
2153 | ||
9f0bdab8 | 2154 | static void |
7b50312a | 2155 | ppc_linux_new_thread (struct lwp_info *lp) |
e0d24f8d | 2156 | { |
dfd4cc63 | 2157 | int tid = ptid_get_lwp (lp->ptid); |
6ffbb7ab | 2158 | |
926bf92d | 2159 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2160 | { |
2161 | int i; | |
2162 | struct thread_points *p; | |
2163 | struct hw_break_tuple *hw_breaks; | |
2164 | ||
2165 | if (VEC_empty (thread_points_p, ppc_threads)) | |
2166 | return; | |
2167 | ||
0df8b418 | 2168 | /* Get a list of breakpoints from any thread. */ |
6ffbb7ab TJB |
2169 | p = VEC_last (thread_points_p, ppc_threads); |
2170 | hw_breaks = p->hw_breaks; | |
2171 | ||
0df8b418 | 2172 | /* Copy that thread's breakpoints and watchpoints to the new thread. */ |
6ffbb7ab TJB |
2173 | for (i = 0; i < max_slots_number; i++) |
2174 | if (hw_breaks[i].hw_break) | |
aacbb8a5 LM |
2175 | { |
2176 | /* Older kernels did not make new threads inherit their parent | |
2177 | thread's debug state, so we always clear the slot and replicate | |
2178 | the debug state ourselves, ensuring compatibility with all | |
2179 | kernels. */ | |
2180 | ||
2181 | /* The ppc debug resource accounting is done through "slots". | |
2182 | Ask the kernel the deallocate this specific *point's slot. */ | |
2183 | ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot); | |
2184 | ||
926bf92d | 2185 | hwdebug_insert_point (hw_breaks[i].hw_break, tid); |
aacbb8a5 | 2186 | } |
6ffbb7ab TJB |
2187 | } |
2188 | else | |
2189 | ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); | |
2190 | } | |
2191 | ||
2192 | static void | |
2193 | ppc_linux_thread_exit (struct thread_info *tp, int silent) | |
2194 | { | |
2195 | int i; | |
dfd4cc63 | 2196 | int tid = ptid_get_lwp (tp->ptid); |
6ffbb7ab TJB |
2197 | struct hw_break_tuple *hw_breaks; |
2198 | struct thread_points *t = NULL, *p; | |
2199 | ||
926bf92d | 2200 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2201 | return; |
2202 | ||
2203 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++) | |
2204 | if (p->tid == tid) | |
2205 | { | |
2206 | t = p; | |
2207 | break; | |
2208 | } | |
2209 | ||
2210 | if (t == NULL) | |
2211 | return; | |
2212 | ||
2213 | VEC_unordered_remove (thread_points_p, ppc_threads, i); | |
2214 | ||
2215 | hw_breaks = t->hw_breaks; | |
2216 | ||
2217 | for (i = 0; i < max_slots_number; i++) | |
2218 | if (hw_breaks[i].hw_break) | |
2219 | xfree (hw_breaks[i].hw_break); | |
2220 | ||
2221 | xfree (t->hw_breaks); | |
2222 | xfree (t); | |
e0d24f8d WZ |
2223 | } |
2224 | ||
f6ac5f3d PA |
2225 | int |
2226 | ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) | |
e0d24f8d | 2227 | { |
f865ee35 | 2228 | siginfo_t siginfo; |
e0d24f8d | 2229 | |
f865ee35 JK |
2230 | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
2231 | return 0; | |
e0d24f8d | 2232 | |
f865ee35 JK |
2233 | if (siginfo.si_signo != SIGTRAP |
2234 | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | |
e0d24f8d WZ |
2235 | return 0; |
2236 | ||
926bf92d | 2237 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2238 | { |
2239 | int i; | |
2240 | struct thread_points *t; | |
2241 | struct hw_break_tuple *hw_breaks; | |
2242 | /* The index (or slot) of the *point is passed in the si_errno field. */ | |
f865ee35 | 2243 | int slot = siginfo.si_errno; |
6ffbb7ab | 2244 | |
dfd4cc63 | 2245 | t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0); |
6ffbb7ab TJB |
2246 | |
2247 | /* Find out if this *point is a hardware breakpoint. | |
2248 | If so, we should return 0. */ | |
2249 | if (t) | |
2250 | { | |
2251 | hw_breaks = t->hw_breaks; | |
2252 | for (i = 0; i < max_slots_number; i++) | |
2253 | if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot | |
2254 | && hw_breaks[i].hw_break->trigger_type | |
2255 | == PPC_BREAKPOINT_TRIGGER_EXECUTE) | |
2256 | return 0; | |
2257 | } | |
2258 | } | |
2259 | ||
f865ee35 | 2260 | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
e0d24f8d WZ |
2261 | return 1; |
2262 | } | |
2263 | ||
f6ac5f3d PA |
2264 | int |
2265 | ppc_linux_nat_target::stopped_by_watchpoint () | |
9f0bdab8 DJ |
2266 | { |
2267 | CORE_ADDR addr; | |
f6ac5f3d | 2268 | return stopped_data_address (&addr); |
9f0bdab8 DJ |
2269 | } |
2270 | ||
f6ac5f3d PA |
2271 | int |
2272 | ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, | |
2273 | CORE_ADDR start, | |
2274 | int length) | |
5009afc5 | 2275 | { |
b7622095 LM |
2276 | int mask; |
2277 | ||
926bf92d | 2278 | if (have_ptrace_hwdebug_interface () |
6ffbb7ab TJB |
2279 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2280 | return start <= addr && start + length >= addr; | |
2281 | else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
b7622095 LM |
2282 | mask = 3; |
2283 | else | |
2284 | mask = 7; | |
2285 | ||
2286 | addr &= ~mask; | |
2287 | ||
0df8b418 | 2288 | /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
b7622095 | 2289 | return start <= addr + mask && start + length - 1 >= addr; |
5009afc5 AS |
2290 | } |
2291 | ||
9c06b0b4 TJB |
2292 | /* Return the number of registers needed for a masked hardware watchpoint. */ |
2293 | ||
f6ac5f3d PA |
2294 | int |
2295 | ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask) | |
9c06b0b4 | 2296 | { |
926bf92d UW |
2297 | if (!have_ptrace_hwdebug_interface () |
2298 | || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | |
9c06b0b4 TJB |
2299 | return -1; |
2300 | else if ((mask & 0xC0000000) != 0xC0000000) | |
2301 | { | |
2302 | warning (_("The given mask covers kernel address space " | |
2303 | "and cannot be used.\n")); | |
2304 | ||
2305 | return -2; | |
2306 | } | |
2307 | else | |
2308 | return 2; | |
2309 | } | |
2310 | ||
f6ac5f3d PA |
2311 | void |
2312 | ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno) | |
45229ea4 | 2313 | { |
bcc0c096 | 2314 | pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache)); |
05f13b9c | 2315 | |
45229ea4 | 2316 | if (regno >= 0) |
56be3814 | 2317 | store_register (regcache, tid, regno); |
45229ea4 | 2318 | else |
56be3814 | 2319 | store_ppc_registers (regcache, tid); |
45229ea4 EZ |
2320 | } |
2321 | ||
f2db237a AM |
2322 | /* Functions for transferring registers between a gregset_t or fpregset_t |
2323 | (see sys/ucontext.h) and gdb's regcache. The word size is that used | |
0df8b418 | 2324 | by the ptrace interface, not the current program's ABI. Eg. if a |
f2db237a AM |
2325 | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
2326 | read or write 64-bit gregsets. This is to suit the host libthread_db. */ | |
2327 | ||
50c9bd31 | 2328 | void |
7f7fe91e | 2329 | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
c877c8e6 | 2330 | { |
f2db237a | 2331 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2332 | |
f2db237a | 2333 | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
c877c8e6 KB |
2334 | } |
2335 | ||
fdb28ac4 | 2336 | void |
7f7fe91e UW |
2337 | fill_gregset (const struct regcache *regcache, |
2338 | gdb_gregset_t *gregsetp, int regno) | |
fdb28ac4 | 2339 | { |
f2db237a | 2340 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2341 | |
f2db237a AM |
2342 | if (regno == -1) |
2343 | memset (gregsetp, 0, sizeof (*gregsetp)); | |
2344 | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | |
fdb28ac4 KB |
2345 | } |
2346 | ||
50c9bd31 | 2347 | void |
7f7fe91e | 2348 | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
c877c8e6 | 2349 | { |
f2db237a AM |
2350 | const struct regset *regset = ppc_linux_fpregset (); |
2351 | ||
2352 | ppc_supply_fpregset (regset, regcache, -1, | |
2353 | fpregsetp, sizeof (*fpregsetp)); | |
c877c8e6 | 2354 | } |
fdb28ac4 | 2355 | |
fdb28ac4 | 2356 | void |
7f7fe91e UW |
2357 | fill_fpregset (const struct regcache *regcache, |
2358 | gdb_fpregset_t *fpregsetp, int regno) | |
fdb28ac4 | 2359 | { |
f2db237a AM |
2360 | const struct regset *regset = ppc_linux_fpregset (); |
2361 | ||
2362 | ppc_collect_fpregset (regset, regcache, regno, | |
2363 | fpregsetp, sizeof (*fpregsetp)); | |
fdb28ac4 | 2364 | } |
10d6c8cd | 2365 | |
409c383c UW |
2366 | static int |
2367 | ppc_linux_target_wordsize (void) | |
2368 | { | |
2369 | int wordsize = 4; | |
2370 | ||
2371 | /* Check for 64-bit inferior process. This is the case when the host is | |
2372 | 64-bit, and in addition the top bit of the MSR register is set. */ | |
2373 | #ifdef __powerpc64__ | |
2374 | long msr; | |
2375 | ||
dfd4cc63 | 2376 | int tid = ptid_get_lwp (inferior_ptid); |
409c383c | 2377 | if (tid == 0) |
dfd4cc63 | 2378 | tid = ptid_get_pid (inferior_ptid); |
409c383c UW |
2379 | |
2380 | errno = 0; | |
2381 | msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0); | |
cdf43629 | 2382 | if (errno == 0 && ppc64_64bit_inferior_p (msr)) |
409c383c UW |
2383 | wordsize = 8; |
2384 | #endif | |
2385 | ||
2386 | return wordsize; | |
2387 | } | |
2388 | ||
f6ac5f3d PA |
2389 | int |
2390 | ppc_linux_nat_target::auxv_parse (gdb_byte **readptr, | |
2391 | gdb_byte *endptr, CORE_ADDR *typep, | |
2392 | CORE_ADDR *valp) | |
409c383c UW |
2393 | { |
2394 | int sizeof_auxv_field = ppc_linux_target_wordsize (); | |
f5656ead | 2395 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
409c383c UW |
2396 | gdb_byte *ptr = *readptr; |
2397 | ||
2398 | if (endptr == ptr) | |
2399 | return 0; | |
2400 | ||
2401 | if (endptr - ptr < sizeof_auxv_field * 2) | |
2402 | return -1; | |
2403 | ||
e17a4113 | 2404 | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c | 2405 | ptr += sizeof_auxv_field; |
e17a4113 | 2406 | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c UW |
2407 | ptr += sizeof_auxv_field; |
2408 | ||
2409 | *readptr = ptr; | |
2410 | return 1; | |
2411 | } | |
2412 | ||
f6ac5f3d PA |
2413 | const struct target_desc * |
2414 | ppc_linux_nat_target::read_description () | |
310a98e1 | 2415 | { |
7284e1be | 2416 | int altivec = 0; |
604c2f83 | 2417 | int vsx = 0; |
69abc51c | 2418 | int isa205 = 0; |
f4d9bade | 2419 | int cell = 0; |
7284e1be | 2420 | |
dfd4cc63 | 2421 | int tid = ptid_get_lwp (inferior_ptid); |
7284e1be | 2422 | if (tid == 0) |
dfd4cc63 | 2423 | tid = ptid_get_pid (inferior_ptid); |
7284e1be | 2424 | |
310a98e1 DJ |
2425 | if (have_ptrace_getsetevrregs) |
2426 | { | |
2427 | struct gdb_evrregset_t evrregset; | |
310a98e1 DJ |
2428 | |
2429 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | |
7284e1be UW |
2430 | return tdesc_powerpc_e500l; |
2431 | ||
2432 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | |
2433 | Anything else needs to be reported. */ | |
2434 | else if (errno != EIO) | |
2435 | perror_with_name (_("Unable to fetch SPE registers")); | |
2436 | } | |
2437 | ||
0154d990 EBM |
2438 | if (have_ptrace_getsetvsxregs |
2439 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX)) | |
604c2f83 LM |
2440 | { |
2441 | gdb_vsxregset_t vsxregset; | |
2442 | ||
2443 | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | |
2444 | vsx = 1; | |
2445 | ||
2446 | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | |
2447 | Anything else needs to be reported. */ | |
2448 | else if (errno != EIO) | |
2449 | perror_with_name (_("Unable to fetch VSX registers")); | |
2450 | } | |
2451 | ||
0154d990 EBM |
2452 | if (have_ptrace_getvrregs |
2453 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC)) | |
7284e1be UW |
2454 | { |
2455 | gdb_vrregset_t vrregset; | |
2456 | ||
2457 | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | |
2458 | altivec = 1; | |
2459 | ||
2460 | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | |
2461 | Anything else needs to be reported. */ | |
2462 | else if (errno != EIO) | |
2463 | perror_with_name (_("Unable to fetch AltiVec registers")); | |
310a98e1 DJ |
2464 | } |
2465 | ||
f04c6d38 | 2466 | /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases |
0df8b418 | 2467 | the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this |
f04c6d38 TJB |
2468 | ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only |
2469 | PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher | |
2470 | half of the register are for Decimal Floating Point, we check if that | |
2471 | feature is available to decide the size of the FPSCR. */ | |
2472 | if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP) | |
69abc51c TJB |
2473 | isa205 = 1; |
2474 | ||
f4d9bade UW |
2475 | if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL) |
2476 | cell = 1; | |
2477 | ||
409c383c UW |
2478 | if (ppc_linux_target_wordsize () == 8) |
2479 | { | |
f4d9bade UW |
2480 | if (cell) |
2481 | return tdesc_powerpc_cell64l; | |
2482 | else if (vsx) | |
409c383c UW |
2483 | return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l; |
2484 | else if (altivec) | |
0df8b418 MS |
2485 | return isa205 |
2486 | ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l; | |
409c383c UW |
2487 | |
2488 | return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l; | |
2489 | } | |
7284e1be | 2490 | |
f4d9bade UW |
2491 | if (cell) |
2492 | return tdesc_powerpc_cell32l; | |
2493 | else if (vsx) | |
69abc51c | 2494 | return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l; |
604c2f83 | 2495 | else if (altivec) |
69abc51c | 2496 | return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l; |
604c2f83 | 2497 | |
69abc51c | 2498 | return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l; |
310a98e1 DJ |
2499 | } |
2500 | ||
10d6c8cd DJ |
2501 | void |
2502 | _initialize_ppc_linux_nat (void) | |
2503 | { | |
f6ac5f3d | 2504 | linux_target = &the_ppc_linux_nat_target; |
310a98e1 | 2505 | |
76727919 | 2506 | gdb::observers::thread_exit.attach (ppc_linux_thread_exit); |
6ffbb7ab | 2507 | |
10d6c8cd | 2508 | /* Register the target. */ |
f6ac5f3d PA |
2509 | add_target (linux_target); |
2510 | ||
2511 | linux_nat_set_new_thread (linux_target, ppc_linux_new_thread); | |
10d6c8cd | 2512 | } |