]>
Commit | Line | Data |
---|---|---|
9abe5450 | 1 | /* PPC GNU/Linux native support. |
2555fe1a | 2 | |
28e7fd62 | 3 | Copyright (C) 1988-2013 Free Software Foundation, Inc. |
c877c8e6 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c877c8e6 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c877c8e6 KB |
19 | |
20 | #include "defs.h" | |
e162d11b | 21 | #include "gdb_string.h" |
6ffbb7ab | 22 | #include "observer.h" |
c877c8e6 KB |
23 | #include "frame.h" |
24 | #include "inferior.h" | |
6ffbb7ab | 25 | #include "gdbthread.h" |
c877c8e6 | 26 | #include "gdbcore.h" |
4e052eda | 27 | #include "regcache.h" |
383f0f5b | 28 | #include "gdb_assert.h" |
10d6c8cd DJ |
29 | #include "target.h" |
30 | #include "linux-nat.h" | |
c877c8e6 | 31 | |
411cb3f9 | 32 | #include <stdint.h> |
c877c8e6 KB |
33 | #include <sys/types.h> |
34 | #include <sys/param.h> | |
35 | #include <signal.h> | |
36 | #include <sys/user.h> | |
37 | #include <sys/ioctl.h> | |
2555fe1a | 38 | #include "gdb_wait.h" |
c877c8e6 KB |
39 | #include <fcntl.h> |
40 | #include <sys/procfs.h> | |
45229ea4 | 41 | #include <sys/ptrace.h> |
c877c8e6 | 42 | |
0df8b418 | 43 | /* Prototypes for supply_gregset etc. */ |
c60c0f5f | 44 | #include "gregset.h" |
16333c4f | 45 | #include "ppc-tdep.h" |
7284e1be UW |
46 | #include "ppc-linux-tdep.h" |
47 | ||
b7622095 LM |
48 | /* Required when using the AUXV. */ |
49 | #include "elf/common.h" | |
50 | #include "auxv.h" | |
51 | ||
7284e1be UW |
52 | /* This sometimes isn't defined. */ |
53 | #ifndef PT_ORIG_R3 | |
54 | #define PT_ORIG_R3 34 | |
55 | #endif | |
56 | #ifndef PT_TRAP | |
57 | #define PT_TRAP 40 | |
58 | #endif | |
c60c0f5f | 59 | |
69abc51c TJB |
60 | /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>. |
61 | If they aren't, we can provide them ourselves (their values are fixed | |
62 | because they are part of the kernel ABI). They are used in the AT_HWCAP | |
63 | entry of the AUXV. */ | |
f4d9bade UW |
64 | #ifndef PPC_FEATURE_CELL |
65 | #define PPC_FEATURE_CELL 0x00010000 | |
66 | #endif | |
b7622095 LM |
67 | #ifndef PPC_FEATURE_BOOKE |
68 | #define PPC_FEATURE_BOOKE 0x00008000 | |
69 | #endif | |
f04c6d38 TJB |
70 | #ifndef PPC_FEATURE_HAS_DFP |
71 | #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */ | |
69abc51c | 72 | #endif |
b7622095 | 73 | |
9abe5450 EZ |
74 | /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a |
75 | configure time check. Some older glibc's (for instance 2.2.1) | |
76 | don't have a specific powerpc version of ptrace.h, and fall back on | |
77 | a generic one. In such cases, sys/ptrace.h defines | |
78 | PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that | |
79 | ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and | |
80 | PTRACE_SETVRREGS to be. This also makes a configury check pretty | |
81 | much useless. */ | |
82 | ||
83 | /* These definitions should really come from the glibc header files, | |
84 | but Glibc doesn't know about the vrregs yet. */ | |
85 | #ifndef PTRACE_GETVRREGS | |
86 | #define PTRACE_GETVRREGS 18 | |
87 | #define PTRACE_SETVRREGS 19 | |
88 | #endif | |
89 | ||
604c2f83 LM |
90 | /* PTRACE requests for POWER7 VSX registers. */ |
91 | #ifndef PTRACE_GETVSXREGS | |
92 | #define PTRACE_GETVSXREGS 27 | |
93 | #define PTRACE_SETVSXREGS 28 | |
94 | #endif | |
01904826 JB |
95 | |
96 | /* Similarly for the ptrace requests for getting / setting the SPE | |
97 | registers (ev0 -- ev31, acc, and spefscr). See the description of | |
98 | gdb_evrregset_t for details. */ | |
99 | #ifndef PTRACE_GETEVRREGS | |
100 | #define PTRACE_GETEVRREGS 20 | |
101 | #define PTRACE_SETEVRREGS 21 | |
102 | #endif | |
103 | ||
6ffbb7ab TJB |
104 | /* Similarly for the hardware watchpoint support. These requests are used |
105 | when the BookE kernel interface is not available. */ | |
e0d24f8d WZ |
106 | #ifndef PTRACE_GET_DEBUGREG |
107 | #define PTRACE_GET_DEBUGREG 25 | |
108 | #endif | |
109 | #ifndef PTRACE_SET_DEBUGREG | |
110 | #define PTRACE_SET_DEBUGREG 26 | |
111 | #endif | |
112 | #ifndef PTRACE_GETSIGINFO | |
113 | #define PTRACE_GETSIGINFO 0x4202 | |
114 | #endif | |
01904826 | 115 | |
6ffbb7ab TJB |
116 | /* These requests are used when the BookE kernel interface is available. |
117 | It exposes the additional debug features of BookE processors, such as | |
118 | ranged breakpoints and watchpoints and hardware-accelerated condition | |
119 | evaluation. */ | |
120 | #ifndef PPC_PTRACE_GETHWDBGINFO | |
121 | ||
122 | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE | |
123 | interface is not present in ptrace.h, so we'll have to pretty much include | |
124 | it all here so that the code at least compiles on older systems. */ | |
125 | #define PPC_PTRACE_GETHWDBGINFO 0x89 | |
126 | #define PPC_PTRACE_SETHWDEBUG 0x88 | |
127 | #define PPC_PTRACE_DELHWDEBUG 0x87 | |
128 | ||
129 | struct ppc_debug_info | |
130 | { | |
0df8b418 | 131 | uint32_t version; /* Only version 1 exists to date. */ |
6ffbb7ab TJB |
132 | uint32_t num_instruction_bps; |
133 | uint32_t num_data_bps; | |
134 | uint32_t num_condition_regs; | |
135 | uint32_t data_bp_alignment; | |
0df8b418 | 136 | uint32_t sizeof_condition; /* size of the DVC register. */ |
6ffbb7ab TJB |
137 | uint64_t features; |
138 | }; | |
139 | ||
140 | /* Features will have bits indicating whether there is support for: */ | |
141 | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 | |
142 | #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 | |
143 | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 | |
144 | #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 | |
145 | ||
146 | struct ppc_hw_breakpoint | |
147 | { | |
148 | uint32_t version; /* currently, version must be 1 */ | |
149 | uint32_t trigger_type; /* only some combinations allowed */ | |
150 | uint32_t addr_mode; /* address match mode */ | |
151 | uint32_t condition_mode; /* break/watchpoint condition flags */ | |
152 | uint64_t addr; /* break/watchpoint address */ | |
153 | uint64_t addr2; /* range end or mask */ | |
154 | uint64_t condition_value; /* contents of the DVC register */ | |
155 | }; | |
156 | ||
157 | /* Trigger type. */ | |
158 | #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 | |
159 | #define PPC_BREAKPOINT_TRIGGER_READ 0x2 | |
160 | #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 | |
161 | #define PPC_BREAKPOINT_TRIGGER_RW 0x6 | |
162 | ||
163 | /* Address mode. */ | |
164 | #define PPC_BREAKPOINT_MODE_EXACT 0x0 | |
165 | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 | |
166 | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 | |
167 | #define PPC_BREAKPOINT_MODE_MASK 0x3 | |
168 | ||
169 | /* Condition mode. */ | |
170 | #define PPC_BREAKPOINT_CONDITION_NONE 0x0 | |
171 | #define PPC_BREAKPOINT_CONDITION_AND 0x1 | |
172 | #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 | |
173 | #define PPC_BREAKPOINT_CONDITION_OR 0x2 | |
174 | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | |
175 | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | |
176 | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 | |
177 | #define PPC_BREAKPOINT_CONDITION_BE(n) \ | |
178 | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | |
179 | #endif /* PPC_PTRACE_GETHWDBGINFO */ | |
180 | ||
181 | ||
182 | ||
1dfe79e8 SDJ |
183 | /* Similarly for the general-purpose (gp0 -- gp31) |
184 | and floating-point registers (fp0 -- fp31). */ | |
185 | #ifndef PTRACE_GETREGS | |
186 | #define PTRACE_GETREGS 12 | |
187 | #endif | |
188 | #ifndef PTRACE_SETREGS | |
189 | #define PTRACE_SETREGS 13 | |
190 | #endif | |
191 | #ifndef PTRACE_GETFPREGS | |
192 | #define PTRACE_GETFPREGS 14 | |
193 | #endif | |
194 | #ifndef PTRACE_SETFPREGS | |
195 | #define PTRACE_SETFPREGS 15 | |
196 | #endif | |
197 | ||
9abe5450 EZ |
198 | /* This oddity is because the Linux kernel defines elf_vrregset_t as |
199 | an array of 33 16 bytes long elements. I.e. it leaves out vrsave. | |
200 | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | |
201 | the vrsave as an extra 4 bytes at the end. I opted for creating a | |
202 | flat array of chars, so that it is easier to manipulate for gdb. | |
203 | ||
204 | There are 32 vector registers 16 bytes longs, plus a VSCR register | |
205 | which is only 4 bytes long, but is fetched as a 16 bytes | |
0df8b418 | 206 | quantity. Up to here we have the elf_vrregset_t structure. |
9abe5450 EZ |
207 | Appended to this there is space for the VRSAVE register: 4 bytes. |
208 | Even though this vrsave register is not included in the regset | |
209 | typedef, it is handled by the ptrace requests. | |
210 | ||
211 | Note that GNU/Linux doesn't support little endian PPC hardware, | |
212 | therefore the offset at which the real value of the VSCR register | |
213 | is located will be always 12 bytes. | |
214 | ||
215 | The layout is like this (where x is the actual value of the vscr reg): */ | |
216 | ||
217 | /* *INDENT-OFF* */ | |
218 | /* | |
219 | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| | |
220 | <-------> <-------><-------><-> | |
221 | VR0 VR31 VSCR VRSAVE | |
222 | */ | |
223 | /* *INDENT-ON* */ | |
224 | ||
225 | #define SIZEOF_VRREGS 33*16+4 | |
226 | ||
227 | typedef char gdb_vrregset_t[SIZEOF_VRREGS]; | |
228 | ||
604c2f83 LM |
229 | /* This is the layout of the POWER7 VSX registers and the way they overlap |
230 | with the existing FPR and VMX registers. | |
231 | ||
232 | VSR doubleword 0 VSR doubleword 1 | |
233 | ---------------------------------------------------------------- | |
234 | VSR[0] | FPR[0] | | | |
235 | ---------------------------------------------------------------- | |
236 | VSR[1] | FPR[1] | | | |
237 | ---------------------------------------------------------------- | |
238 | | ... | | | |
239 | | ... | | | |
240 | ---------------------------------------------------------------- | |
241 | VSR[30] | FPR[30] | | | |
242 | ---------------------------------------------------------------- | |
243 | VSR[31] | FPR[31] | | | |
244 | ---------------------------------------------------------------- | |
245 | VSR[32] | VR[0] | | |
246 | ---------------------------------------------------------------- | |
247 | VSR[33] | VR[1] | | |
248 | ---------------------------------------------------------------- | |
249 | | ... | | |
250 | | ... | | |
251 | ---------------------------------------------------------------- | |
252 | VSR[62] | VR[30] | | |
253 | ---------------------------------------------------------------- | |
254 | VSR[63] | VR[31] | | |
255 | ---------------------------------------------------------------- | |
256 | ||
257 | VSX has 64 128bit registers. The first 32 registers overlap with | |
258 | the FP registers (doubleword 0) and hence extend them with additional | |
259 | 64 bits (doubleword 1). The other 32 regs overlap with the VMX | |
260 | registers. */ | |
261 | #define SIZEOF_VSXREGS 32*8 | |
262 | ||
263 | typedef char gdb_vsxregset_t[SIZEOF_VSXREGS]; | |
01904826 | 264 | |
b021a221 | 265 | /* On PPC processors that support the Signal Processing Extension |
01904826 | 266 | (SPE) APU, the general-purpose registers are 64 bits long. |
411cb3f9 PG |
267 | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
268 | ptrace calls only access the lower half of each register, to allow | |
269 | them to behave the same way they do on non-SPE systems. There's a | |
270 | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | |
271 | read and write the top halves of all the general-purpose registers | |
272 | at once, along with some SPE-specific registers. | |
01904826 JB |
273 | |
274 | GDB itself continues to claim the general-purpose registers are 32 | |
6ced10dd | 275 | bits long. It has unnamed raw registers that hold the upper halves |
b021a221 | 276 | of the gprs, and the full 64-bit SIMD views of the registers, |
6ced10dd JB |
277 | 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
278 | bottom halves together. | |
01904826 JB |
279 | |
280 | This is the structure filled in by PTRACE_GETEVRREGS and written to | |
281 | the inferior's registers by PTRACE_SETEVRREGS. */ | |
282 | struct gdb_evrregset_t | |
283 | { | |
284 | unsigned long evr[32]; | |
285 | unsigned long long acc; | |
286 | unsigned long spefscr; | |
287 | }; | |
288 | ||
604c2f83 LM |
289 | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
290 | PTRACE_SETVSXREGS requests, for reading and writing the VSX | |
291 | POWER7 registers 0 through 31. Zero if we've tried one of them and | |
292 | gotten an error. Note that VSX registers 32 through 63 overlap | |
293 | with VR registers 0 through 31. */ | |
294 | int have_ptrace_getsetvsxregs = 1; | |
01904826 JB |
295 | |
296 | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | |
297 | PTRACE_SETVRREGS requests, for reading and writing the Altivec | |
298 | registers. Zero if we've tried one of them and gotten an | |
299 | error. */ | |
9abe5450 EZ |
300 | int have_ptrace_getvrregs = 1; |
301 | ||
01904826 JB |
302 | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
303 | PTRACE_SETEVRREGS requests, for reading and writing the SPE | |
304 | registers. Zero if we've tried one of them and gotten an | |
305 | error. */ | |
306 | int have_ptrace_getsetevrregs = 1; | |
307 | ||
1dfe79e8 SDJ |
308 | /* Non-zero if our kernel may support the PTRACE_GETREGS and |
309 | PTRACE_SETREGS requests, for reading and writing the | |
310 | general-purpose registers. Zero if we've tried one of | |
311 | them and gotten an error. */ | |
312 | int have_ptrace_getsetregs = 1; | |
313 | ||
314 | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | |
315 | PTRACE_SETFPREGS requests, for reading and writing the | |
316 | floating-pointers registers. Zero if we've tried one of | |
317 | them and gotten an error. */ | |
318 | int have_ptrace_getsetfpregs = 1; | |
319 | ||
16333c4f EZ |
320 | /* *INDENT-OFF* */ |
321 | /* registers layout, as presented by the ptrace interface: | |
322 | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | |
323 | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | |
324 | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | |
325 | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | |
0df8b418 MS |
326 | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
327 | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | |
328 | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | |
329 | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | |
330 | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | |
331 | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | |
332 | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | |
333 | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | |
16333c4f EZ |
334 | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
335 | /* *INDENT_ON * */ | |
c877c8e6 | 336 | |
45229ea4 | 337 | static int |
e101270f | 338 | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
c877c8e6 | 339 | { |
16333c4f | 340 | int u_addr = -1; |
e101270f | 341 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
56d0d96a AC |
342 | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
343 | interface, and not the wordsize of the program's ABI. */ | |
411cb3f9 | 344 | int wordsize = sizeof (long); |
16333c4f | 345 | |
0df8b418 | 346 | /* General purpose registers occupy 1 slot each in the buffer. */ |
8bf659e8 JB |
347 | if (regno >= tdep->ppc_gp0_regnum |
348 | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
26e75e5c | 349 | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
16333c4f | 350 | |
49ff75ad JB |
351 | /* Floating point regs: eight bytes each in both 32- and 64-bit |
352 | ptrace interfaces. Thus, two slots each in 32-bit interface, one | |
353 | slot each in 64-bit interface. */ | |
383f0f5b JB |
354 | if (tdep->ppc_fp0_regnum >= 0 |
355 | && regno >= tdep->ppc_fp0_regnum | |
366f009f JB |
356 | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
357 | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | |
16333c4f | 358 | |
0df8b418 | 359 | /* UISA special purpose registers: 1 slot each. */ |
e101270f | 360 | if (regno == gdbarch_pc_regnum (gdbarch)) |
49ff75ad | 361 | u_addr = PT_NIP * wordsize; |
dc5cfeb6 | 362 | if (regno == tdep->ppc_lr_regnum) |
49ff75ad | 363 | u_addr = PT_LNK * wordsize; |
dc5cfeb6 | 364 | if (regno == tdep->ppc_cr_regnum) |
49ff75ad | 365 | u_addr = PT_CCR * wordsize; |
dc5cfeb6 | 366 | if (regno == tdep->ppc_xer_regnum) |
49ff75ad | 367 | u_addr = PT_XER * wordsize; |
dc5cfeb6 | 368 | if (regno == tdep->ppc_ctr_regnum) |
49ff75ad | 369 | u_addr = PT_CTR * wordsize; |
f8c59253 | 370 | #ifdef PT_MQ |
dc5cfeb6 | 371 | if (regno == tdep->ppc_mq_regnum) |
49ff75ad | 372 | u_addr = PT_MQ * wordsize; |
f8c59253 | 373 | #endif |
dc5cfeb6 | 374 | if (regno == tdep->ppc_ps_regnum) |
49ff75ad | 375 | u_addr = PT_MSR * wordsize; |
7284e1be UW |
376 | if (regno == PPC_ORIG_R3_REGNUM) |
377 | u_addr = PT_ORIG_R3 * wordsize; | |
378 | if (regno == PPC_TRAP_REGNUM) | |
379 | u_addr = PT_TRAP * wordsize; | |
383f0f5b JB |
380 | if (tdep->ppc_fpscr_regnum >= 0 |
381 | && regno == tdep->ppc_fpscr_regnum) | |
8f135812 AC |
382 | { |
383 | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | |
384 | kernel headers incorrectly contained the 32-bit definition of | |
385 | PT_FPSCR. For the 32-bit definition, floating-point | |
386 | registers occupy two 32-bit "slots", and the FPSCR lives in | |
69abc51c | 387 | the second half of such a slot-pair (hence +1). For 64-bit, |
8f135812 AC |
388 | the FPSCR instead occupies the full 64-bit 2-word-slot and |
389 | hence no adjustment is necessary. Hack around this. */ | |
390 | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | |
391 | u_addr = (48 + 32) * wordsize; | |
69abc51c TJB |
392 | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
393 | slot and not just its second word. The PT_FPSCR supplied when | |
394 | GDB is compiled as a 32-bit app doesn't reflect this. */ | |
395 | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | |
396 | && PT_FPSCR == (48 + 2*32 + 1)) | |
397 | u_addr = (48 + 2*32) * wordsize; | |
8f135812 AC |
398 | else |
399 | u_addr = PT_FPSCR * wordsize; | |
400 | } | |
16333c4f | 401 | return u_addr; |
c877c8e6 KB |
402 | } |
403 | ||
604c2f83 LM |
404 | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
405 | registers set mechanism, as opposed to the interface for all the | |
406 | other registers, that stores/fetches each register individually. */ | |
407 | static void | |
408 | fetch_vsx_register (struct regcache *regcache, int tid, int regno) | |
409 | { | |
410 | int ret; | |
411 | gdb_vsxregset_t regs; | |
412 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
413 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
414 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
415 | ||
416 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
417 | if (ret < 0) | |
418 | { | |
419 | if (errno == EIO) | |
420 | { | |
421 | have_ptrace_getsetvsxregs = 0; | |
422 | return; | |
423 | } | |
424 | perror_with_name (_("Unable to fetch VSX register")); | |
425 | } | |
426 | ||
427 | regcache_raw_supply (regcache, regno, | |
428 | regs + (regno - tdep->ppc_vsr0_upper_regnum) | |
429 | * vsxregsize); | |
430 | } | |
431 | ||
9abe5450 EZ |
432 | /* The Linux kernel ptrace interface for AltiVec registers uses the |
433 | registers set mechanism, as opposed to the interface for all the | |
434 | other registers, that stores/fetches each register individually. */ | |
435 | static void | |
56be3814 | 436 | fetch_altivec_register (struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
437 | { |
438 | int ret; | |
439 | int offset = 0; | |
440 | gdb_vrregset_t regs; | |
40a6adc1 MD |
441 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
442 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
443 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
444 | |
445 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
446 | if (ret < 0) | |
447 | { | |
448 | if (errno == EIO) | |
449 | { | |
450 | have_ptrace_getvrregs = 0; | |
451 | return; | |
452 | } | |
e2e0b3e5 | 453 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
454 | } |
455 | ||
456 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
457 | long on the hardware. We deal only with the lower 4 bytes of the | |
458 | vector. VRSAVE is at the end of the array in a 4 bytes slot, so | |
459 | there is no need to define an offset for it. */ | |
460 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 461 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 462 | |
56be3814 | 463 | regcache_raw_supply (regcache, regno, |
0df8b418 MS |
464 | regs + (regno |
465 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
466 | } |
467 | ||
01904826 JB |
468 | /* Fetch the top 32 bits of TID's general-purpose registers and the |
469 | SPE-specific registers, and place the results in EVRREGSET. If we | |
470 | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | |
471 | zeros. | |
472 | ||
473 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
474 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
475 | set_spe_registers. */ | |
476 | static void | |
477 | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
478 | { | |
479 | if (have_ptrace_getsetevrregs) | |
480 | { | |
481 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | |
482 | return; | |
483 | else | |
484 | { | |
485 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | |
486 | we just return zeros. */ | |
487 | if (errno == EIO) | |
488 | have_ptrace_getsetevrregs = 0; | |
489 | else | |
490 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 491 | perror_with_name (_("Unable to fetch SPE registers")); |
01904826 JB |
492 | } |
493 | } | |
494 | ||
495 | memset (evrregset, 0, sizeof (*evrregset)); | |
496 | } | |
497 | ||
6ced10dd JB |
498 | /* Supply values from TID for SPE-specific raw registers: the upper |
499 | halves of the GPRs, the accumulator, and the spefscr. REGNO must | |
500 | be the number of an upper half register, acc, spefscr, or -1 to | |
501 | supply the values of all registers. */ | |
01904826 | 502 | static void |
56be3814 | 503 | fetch_spe_register (struct regcache *regcache, int tid, int regno) |
01904826 | 504 | { |
40a6adc1 MD |
505 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
506 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
01904826 JB |
507 | struct gdb_evrregset_t evrregs; |
508 | ||
6ced10dd | 509 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 510 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 511 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 512 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 513 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 514 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
6ced10dd | 515 | |
01904826 JB |
516 | get_spe_registers (tid, &evrregs); |
517 | ||
6ced10dd | 518 | if (regno == -1) |
01904826 | 519 | { |
6ced10dd JB |
520 | int i; |
521 | ||
522 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 523 | regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i, |
6ced10dd | 524 | &evrregs.evr[i]); |
01904826 | 525 | } |
6ced10dd JB |
526 | else if (tdep->ppc_ev0_upper_regnum <= regno |
527 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 528 | regcache_raw_supply (regcache, regno, |
6ced10dd JB |
529 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
530 | ||
531 | if (regno == -1 | |
532 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 533 | regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc); |
6ced10dd JB |
534 | |
535 | if (regno == -1 | |
536 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 537 | regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum, |
6ced10dd | 538 | &evrregs.spefscr); |
01904826 JB |
539 | } |
540 | ||
45229ea4 | 541 | static void |
56be3814 | 542 | fetch_register (struct regcache *regcache, int tid, int regno) |
45229ea4 | 543 | { |
40a6adc1 MD |
544 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
545 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
45229ea4 | 546 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 547 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
4a19ea35 | 548 | int bytes_transferred; |
0df8b418 | 549 | unsigned int offset; /* Offset of registers within the u area. */ |
e362b510 | 550 | gdb_byte buf[MAX_REGISTER_SIZE]; |
45229ea4 | 551 | |
be8626e0 | 552 | if (altivec_register_p (gdbarch, regno)) |
9abe5450 EZ |
553 | { |
554 | /* If this is the first time through, or if it is not the first | |
555 | time through, and we have comfirmed that there is kernel | |
556 | support for such a ptrace request, then go and fetch the | |
557 | register. */ | |
558 | if (have_ptrace_getvrregs) | |
559 | { | |
56be3814 | 560 | fetch_altivec_register (regcache, tid, regno); |
9abe5450 EZ |
561 | return; |
562 | } | |
563 | /* If we have discovered that there is no ptrace support for | |
564 | AltiVec registers, fall through and return zeroes, because | |
565 | regaddr will be -1 in this case. */ | |
566 | } | |
604c2f83 LM |
567 | if (vsx_register_p (gdbarch, regno)) |
568 | { | |
569 | if (have_ptrace_getsetvsxregs) | |
570 | { | |
571 | fetch_vsx_register (regcache, tid, regno); | |
572 | return; | |
573 | } | |
574 | } | |
be8626e0 | 575 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 576 | { |
56be3814 | 577 | fetch_spe_register (regcache, tid, regno); |
01904826 JB |
578 | return; |
579 | } | |
9abe5450 | 580 | |
45229ea4 EZ |
581 | if (regaddr == -1) |
582 | { | |
40a6adc1 | 583 | memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
56be3814 | 584 | regcache_raw_supply (regcache, regno, buf); |
45229ea4 EZ |
585 | return; |
586 | } | |
587 | ||
411cb3f9 | 588 | /* Read the raw register using sizeof(long) sized chunks. On a |
56d0d96a AC |
589 | 32-bit platform, 64-bit floating-point registers will require two |
590 | transfers. */ | |
4a19ea35 | 591 | for (bytes_transferred = 0; |
40a6adc1 | 592 | bytes_transferred < register_size (gdbarch, regno); |
411cb3f9 | 593 | bytes_transferred += sizeof (long)) |
45229ea4 | 594 | { |
11fde611 JK |
595 | long l; |
596 | ||
45229ea4 | 597 | errno = 0; |
11fde611 | 598 | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
411cb3f9 | 599 | regaddr += sizeof (long); |
45229ea4 EZ |
600 | if (errno != 0) |
601 | { | |
bc97b3ba | 602 | char message[128]; |
8c042590 PM |
603 | xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
604 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 605 | perror_with_name (message); |
45229ea4 | 606 | } |
11fde611 | 607 | memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
45229ea4 | 608 | } |
56d0d96a | 609 | |
4a19ea35 JB |
610 | /* Now supply the register. Keep in mind that the regcache's idea |
611 | of the register's size may not be a multiple of sizeof | |
411cb3f9 | 612 | (long). */ |
40a6adc1 | 613 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
4a19ea35 JB |
614 | { |
615 | /* Little-endian values are always found at the left end of the | |
616 | bytes transferred. */ | |
56be3814 | 617 | regcache_raw_supply (regcache, regno, buf); |
4a19ea35 | 618 | } |
40a6adc1 | 619 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
620 | { |
621 | /* Big-endian values are found at the right end of the bytes | |
622 | transferred. */ | |
40a6adc1 | 623 | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
56be3814 | 624 | regcache_raw_supply (regcache, regno, buf + padding); |
4a19ea35 JB |
625 | } |
626 | else | |
a44bddec | 627 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 628 | _("fetch_register: unexpected byte order: %d"), |
40a6adc1 | 629 | gdbarch_byte_order (gdbarch)); |
45229ea4 EZ |
630 | } |
631 | ||
604c2f83 LM |
632 | static void |
633 | supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
634 | { | |
635 | int i; | |
636 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
637 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
638 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
639 | ||
640 | for (i = 0; i < ppc_num_vshrs; i++) | |
641 | { | |
642 | regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
643 | *vsxregsetp + i * vsxregsize); | |
644 | } | |
645 | } | |
646 | ||
9abe5450 | 647 | static void |
56be3814 | 648 | supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
649 | { |
650 | int i; | |
40a6adc1 MD |
651 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
652 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 653 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
654 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
655 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
656 | |
657 | for (i = 0; i < num_of_vrregs; i++) | |
658 | { | |
659 | /* The last 2 registers of this set are only 32 bit long, not | |
660 | 128. However an offset is necessary only for VSCR because it | |
661 | occupies a whole vector, while VRSAVE occupies a full 4 bytes | |
662 | slot. */ | |
663 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 664 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 665 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 666 | else |
56be3814 | 667 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 668 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
669 | } |
670 | } | |
671 | ||
604c2f83 LM |
672 | static void |
673 | fetch_vsx_registers (struct regcache *regcache, int tid) | |
674 | { | |
675 | int ret; | |
676 | gdb_vsxregset_t regs; | |
677 | ||
678 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
679 | if (ret < 0) | |
680 | { | |
681 | if (errno == EIO) | |
682 | { | |
683 | have_ptrace_getsetvsxregs = 0; | |
684 | return; | |
685 | } | |
686 | perror_with_name (_("Unable to fetch VSX registers")); | |
687 | } | |
688 | supply_vsxregset (regcache, ®s); | |
689 | } | |
690 | ||
9abe5450 | 691 | static void |
56be3814 | 692 | fetch_altivec_registers (struct regcache *regcache, int tid) |
9abe5450 EZ |
693 | { |
694 | int ret; | |
695 | gdb_vrregset_t regs; | |
696 | ||
697 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
698 | if (ret < 0) | |
699 | { | |
700 | if (errno == EIO) | |
701 | { | |
702 | have_ptrace_getvrregs = 0; | |
703 | return; | |
704 | } | |
e2e0b3e5 | 705 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 | 706 | } |
56be3814 | 707 | supply_vrregset (regcache, ®s); |
9abe5450 EZ |
708 | } |
709 | ||
1dfe79e8 SDJ |
710 | /* This function actually issues the request to ptrace, telling |
711 | it to get all general-purpose registers and put them into the | |
712 | specified regset. | |
713 | ||
714 | If the ptrace request does not exist, this function returns 0 | |
715 | and properly sets the have_ptrace_* flag. If the request fails, | |
716 | this function calls perror_with_name. Otherwise, if the request | |
717 | succeeds, then the regcache gets filled and 1 is returned. */ | |
718 | static int | |
719 | fetch_all_gp_regs (struct regcache *regcache, int tid) | |
720 | { | |
721 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
722 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
723 | gdb_gregset_t gregset; | |
724 | ||
725 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
726 | { | |
727 | if (errno == EIO) | |
728 | { | |
729 | have_ptrace_getsetregs = 0; | |
730 | return 0; | |
731 | } | |
732 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
733 | } | |
734 | ||
735 | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | |
736 | ||
737 | return 1; | |
738 | } | |
739 | ||
740 | /* This is a wrapper for the fetch_all_gp_regs function. It is | |
741 | responsible for verifying if this target has the ptrace request | |
742 | that can be used to fetch all general-purpose registers at one | |
743 | shot. If it doesn't, then we should fetch them using the | |
744 | old-fashioned way, which is to iterate over the registers and | |
745 | request them one by one. */ | |
746 | static void | |
747 | fetch_gp_regs (struct regcache *regcache, int tid) | |
748 | { | |
749 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
750 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
751 | int i; | |
752 | ||
753 | if (have_ptrace_getsetregs) | |
754 | if (fetch_all_gp_regs (regcache, tid)) | |
755 | return; | |
756 | ||
757 | /* If we've hit this point, it doesn't really matter which | |
758 | architecture we are using. We just need to read the | |
759 | registers in the "old-fashioned way". */ | |
760 | for (i = 0; i < ppc_num_gprs; i++) | |
761 | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | |
762 | } | |
763 | ||
764 | /* This function actually issues the request to ptrace, telling | |
765 | it to get all floating-point registers and put them into the | |
766 | specified regset. | |
767 | ||
768 | If the ptrace request does not exist, this function returns 0 | |
769 | and properly sets the have_ptrace_* flag. If the request fails, | |
770 | this function calls perror_with_name. Otherwise, if the request | |
771 | succeeds, then the regcache gets filled and 1 is returned. */ | |
772 | static int | |
773 | fetch_all_fp_regs (struct regcache *regcache, int tid) | |
774 | { | |
775 | gdb_fpregset_t fpregs; | |
776 | ||
777 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
778 | { | |
779 | if (errno == EIO) | |
780 | { | |
781 | have_ptrace_getsetfpregs = 0; | |
782 | return 0; | |
783 | } | |
784 | perror_with_name (_("Couldn't get floating-point registers.")); | |
785 | } | |
786 | ||
787 | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | |
788 | ||
789 | return 1; | |
790 | } | |
791 | ||
792 | /* This is a wrapper for the fetch_all_fp_regs function. It is | |
793 | responsible for verifying if this target has the ptrace request | |
794 | that can be used to fetch all floating-point registers at one | |
795 | shot. If it doesn't, then we should fetch them using the | |
796 | old-fashioned way, which is to iterate over the registers and | |
797 | request them one by one. */ | |
798 | static void | |
799 | fetch_fp_regs (struct regcache *regcache, int tid) | |
800 | { | |
801 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
802 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
803 | int i; | |
804 | ||
805 | if (have_ptrace_getsetfpregs) | |
806 | if (fetch_all_fp_regs (regcache, tid)) | |
807 | return; | |
808 | ||
809 | /* If we've hit this point, it doesn't really matter which | |
810 | architecture we are using. We just need to read the | |
811 | registers in the "old-fashioned way". */ | |
812 | for (i = 0; i < ppc_num_fprs; i++) | |
813 | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
814 | } | |
815 | ||
45229ea4 | 816 | static void |
56be3814 | 817 | fetch_ppc_registers (struct regcache *regcache, int tid) |
45229ea4 EZ |
818 | { |
819 | int i; | |
40a6adc1 MD |
820 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
821 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 822 | |
1dfe79e8 | 823 | fetch_gp_regs (regcache, tid); |
32b99774 | 824 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 825 | fetch_fp_regs (regcache, tid); |
40a6adc1 | 826 | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 827 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 828 | fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 829 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 830 | fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 831 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 832 | fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 833 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 834 | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 835 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 836 | fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 837 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 838 | fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
7284e1be UW |
839 | if (ppc_linux_trap_reg_p (gdbarch)) |
840 | { | |
841 | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
842 | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | |
843 | } | |
32b99774 | 844 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 845 | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
9abe5450 EZ |
846 | if (have_ptrace_getvrregs) |
847 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 848 | fetch_altivec_registers (regcache, tid); |
604c2f83 LM |
849 | if (have_ptrace_getsetvsxregs) |
850 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
851 | fetch_vsx_registers (regcache, tid); | |
6ced10dd | 852 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 853 | fetch_spe_register (regcache, tid, -1); |
45229ea4 EZ |
854 | } |
855 | ||
856 | /* Fetch registers from the child process. Fetch all registers if | |
857 | regno == -1, otherwise fetch all general registers or all floating | |
858 | point registers depending upon the value of regno. */ | |
10d6c8cd | 859 | static void |
28439f5e PA |
860 | ppc_linux_fetch_inferior_registers (struct target_ops *ops, |
861 | struct regcache *regcache, int regno) | |
45229ea4 | 862 | { |
0df8b418 | 863 | /* Overload thread id onto process id. */ |
05f13b9c EZ |
864 | int tid = TIDGET (inferior_ptid); |
865 | ||
0df8b418 | 866 | /* No thread id, just use process id. */ |
05f13b9c EZ |
867 | if (tid == 0) |
868 | tid = PIDGET (inferior_ptid); | |
869 | ||
9abe5450 | 870 | if (regno == -1) |
56be3814 | 871 | fetch_ppc_registers (regcache, tid); |
45229ea4 | 872 | else |
56be3814 | 873 | fetch_register (regcache, tid, regno); |
45229ea4 EZ |
874 | } |
875 | ||
0df8b418 | 876 | /* Store one VSX register. */ |
604c2f83 LM |
877 | static void |
878 | store_vsx_register (const struct regcache *regcache, int tid, int regno) | |
879 | { | |
880 | int ret; | |
881 | gdb_vsxregset_t regs; | |
882 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
883 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
884 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
885 | ||
9fe70b4f | 886 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
604c2f83 LM |
887 | if (ret < 0) |
888 | { | |
889 | if (errno == EIO) | |
890 | { | |
891 | have_ptrace_getsetvsxregs = 0; | |
892 | return; | |
893 | } | |
894 | perror_with_name (_("Unable to fetch VSX register")); | |
895 | } | |
896 | ||
897 | regcache_raw_collect (regcache, regno, regs + | |
898 | (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize); | |
899 | ||
900 | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | |
901 | if (ret < 0) | |
902 | perror_with_name (_("Unable to store VSX register")); | |
903 | } | |
904 | ||
0df8b418 | 905 | /* Store one register. */ |
9abe5450 | 906 | static void |
56be3814 | 907 | store_altivec_register (const struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
908 | { |
909 | int ret; | |
910 | int offset = 0; | |
911 | gdb_vrregset_t regs; | |
40a6adc1 MD |
912 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
913 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
914 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
915 | |
916 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
917 | if (ret < 0) | |
918 | { | |
919 | if (errno == EIO) | |
920 | { | |
921 | have_ptrace_getvrregs = 0; | |
922 | return; | |
923 | } | |
e2e0b3e5 | 924 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
925 | } |
926 | ||
927 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
928 | long on the hardware. */ | |
929 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 930 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 931 | |
56be3814 | 932 | regcache_raw_collect (regcache, regno, |
0df8b418 MS |
933 | regs + (regno |
934 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
935 | |
936 | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | |
937 | if (ret < 0) | |
e2e0b3e5 | 938 | perror_with_name (_("Unable to store AltiVec register")); |
9abe5450 EZ |
939 | } |
940 | ||
01904826 JB |
941 | /* Assuming TID referrs to an SPE process, set the top halves of TID's |
942 | general-purpose registers and its SPE-specific registers to the | |
943 | values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do | |
944 | nothing. | |
945 | ||
946 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
947 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
948 | get_spe_registers. */ | |
949 | static void | |
950 | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
951 | { | |
952 | if (have_ptrace_getsetevrregs) | |
953 | { | |
954 | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | |
955 | return; | |
956 | else | |
957 | { | |
958 | /* EIO means that the PTRACE_SETEVRREGS request isn't | |
959 | supported; we fail silently, and don't try the call | |
960 | again. */ | |
961 | if (errno == EIO) | |
962 | have_ptrace_getsetevrregs = 0; | |
963 | else | |
964 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 965 | perror_with_name (_("Unable to set SPE registers")); |
01904826 JB |
966 | } |
967 | } | |
968 | } | |
969 | ||
6ced10dd JB |
970 | /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
971 | If REGNO is -1, write the values of all the SPE-specific | |
972 | registers. */ | |
01904826 | 973 | static void |
56be3814 | 974 | store_spe_register (const struct regcache *regcache, int tid, int regno) |
01904826 | 975 | { |
40a6adc1 MD |
976 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
977 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
01904826 JB |
978 | struct gdb_evrregset_t evrregs; |
979 | ||
6ced10dd | 980 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 981 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 982 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 983 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 984 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 985 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
01904826 | 986 | |
6ced10dd JB |
987 | if (regno == -1) |
988 | /* Since we're going to write out every register, the code below | |
989 | should store to every field of evrregs; if that doesn't happen, | |
990 | make it obvious by initializing it with suspicious values. */ | |
991 | memset (&evrregs, 42, sizeof (evrregs)); | |
992 | else | |
993 | /* We can only read and write the entire EVR register set at a | |
994 | time, so to write just a single register, we do a | |
995 | read-modify-write maneuver. */ | |
996 | get_spe_registers (tid, &evrregs); | |
997 | ||
998 | if (regno == -1) | |
01904826 | 999 | { |
6ced10dd JB |
1000 | int i; |
1001 | ||
1002 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 1003 | regcache_raw_collect (regcache, |
6ced10dd JB |
1004 | tdep->ppc_ev0_upper_regnum + i, |
1005 | &evrregs.evr[i]); | |
01904826 | 1006 | } |
6ced10dd JB |
1007 | else if (tdep->ppc_ev0_upper_regnum <= regno |
1008 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 1009 | regcache_raw_collect (regcache, regno, |
6ced10dd JB |
1010 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
1011 | ||
1012 | if (regno == -1 | |
1013 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 1014 | regcache_raw_collect (regcache, |
6ced10dd JB |
1015 | tdep->ppc_acc_regnum, |
1016 | &evrregs.acc); | |
1017 | ||
1018 | if (regno == -1 | |
1019 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 1020 | regcache_raw_collect (regcache, |
6ced10dd JB |
1021 | tdep->ppc_spefscr_regnum, |
1022 | &evrregs.spefscr); | |
01904826 JB |
1023 | |
1024 | /* Write back the modified register set. */ | |
1025 | set_spe_registers (tid, &evrregs); | |
1026 | } | |
1027 | ||
45229ea4 | 1028 | static void |
56be3814 | 1029 | store_register (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1030 | { |
40a6adc1 MD |
1031 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1032 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
45229ea4 | 1033 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 1034 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
52f0bd74 | 1035 | int i; |
4a19ea35 | 1036 | size_t bytes_to_transfer; |
e362b510 | 1037 | gdb_byte buf[MAX_REGISTER_SIZE]; |
45229ea4 | 1038 | |
be8626e0 | 1039 | if (altivec_register_p (gdbarch, regno)) |
45229ea4 | 1040 | { |
56be3814 | 1041 | store_altivec_register (regcache, tid, regno); |
45229ea4 EZ |
1042 | return; |
1043 | } | |
604c2f83 LM |
1044 | if (vsx_register_p (gdbarch, regno)) |
1045 | { | |
1046 | store_vsx_register (regcache, tid, regno); | |
1047 | return; | |
1048 | } | |
be8626e0 | 1049 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 1050 | { |
56be3814 | 1051 | store_spe_register (regcache, tid, regno); |
01904826 JB |
1052 | return; |
1053 | } | |
45229ea4 | 1054 | |
9abe5450 EZ |
1055 | if (regaddr == -1) |
1056 | return; | |
1057 | ||
4a19ea35 JB |
1058 | /* First collect the register. Keep in mind that the regcache's |
1059 | idea of the register's size may not be a multiple of sizeof | |
411cb3f9 | 1060 | (long). */ |
56d0d96a | 1061 | memset (buf, 0, sizeof buf); |
40a6adc1 MD |
1062 | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
1063 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | |
4a19ea35 JB |
1064 | { |
1065 | /* Little-endian values always sit at the left end of the buffer. */ | |
56be3814 | 1066 | regcache_raw_collect (regcache, regno, buf); |
4a19ea35 | 1067 | } |
40a6adc1 | 1068 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
1069 | { |
1070 | /* Big-endian values sit at the right end of the buffer. */ | |
40a6adc1 | 1071 | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
56be3814 | 1072 | regcache_raw_collect (regcache, regno, buf + padding); |
4a19ea35 JB |
1073 | } |
1074 | ||
411cb3f9 | 1075 | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
45229ea4 | 1076 | { |
11fde611 JK |
1077 | long l; |
1078 | ||
1079 | memcpy (&l, &buf[i], sizeof (l)); | |
45229ea4 | 1080 | errno = 0; |
11fde611 | 1081 | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
411cb3f9 | 1082 | regaddr += sizeof (long); |
e3f36dbd KB |
1083 | |
1084 | if (errno == EIO | |
7284e1be UW |
1085 | && (regno == tdep->ppc_fpscr_regnum |
1086 | || regno == PPC_ORIG_R3_REGNUM | |
1087 | || regno == PPC_TRAP_REGNUM)) | |
e3f36dbd | 1088 | { |
7284e1be UW |
1089 | /* Some older kernel versions don't allow fpscr, orig_r3 |
1090 | or trap to be written. */ | |
e3f36dbd KB |
1091 | continue; |
1092 | } | |
1093 | ||
45229ea4 EZ |
1094 | if (errno != 0) |
1095 | { | |
bc97b3ba | 1096 | char message[128]; |
8c042590 PM |
1097 | xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
1098 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 1099 | perror_with_name (message); |
45229ea4 EZ |
1100 | } |
1101 | } | |
1102 | } | |
1103 | ||
604c2f83 LM |
1104 | static void |
1105 | fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
1106 | { | |
1107 | int i; | |
1108 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1109 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1110 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
1111 | ||
1112 | for (i = 0; i < ppc_num_vshrs; i++) | |
1113 | regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
1114 | *vsxregsetp + i * vsxregsize); | |
1115 | } | |
1116 | ||
9abe5450 | 1117 | static void |
56be3814 | 1118 | fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
1119 | { |
1120 | int i; | |
40a6adc1 MD |
1121 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1122 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 1123 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
1124 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
1125 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
1126 | |
1127 | for (i = 0; i < num_of_vrregs; i++) | |
1128 | { | |
1129 | /* The last 2 registers of this set are only 32 bit long, not | |
1130 | 128, but only VSCR is fetched as a 16 bytes quantity. */ | |
1131 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 1132 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1133 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 1134 | else |
56be3814 | 1135 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1136 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
1137 | } |
1138 | } | |
1139 | ||
604c2f83 LM |
1140 | static void |
1141 | store_vsx_registers (const struct regcache *regcache, int tid) | |
1142 | { | |
1143 | int ret; | |
1144 | gdb_vsxregset_t regs; | |
1145 | ||
1146 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
1147 | if (ret < 0) | |
1148 | { | |
1149 | if (errno == EIO) | |
1150 | { | |
1151 | have_ptrace_getsetvsxregs = 0; | |
1152 | return; | |
1153 | } | |
1154 | perror_with_name (_("Couldn't get VSX registers")); | |
1155 | } | |
1156 | ||
1157 | fill_vsxregset (regcache, ®s); | |
1158 | ||
1159 | if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0) | |
1160 | perror_with_name (_("Couldn't write VSX registers")); | |
1161 | } | |
1162 | ||
9abe5450 | 1163 | static void |
56be3814 | 1164 | store_altivec_registers (const struct regcache *regcache, int tid) |
9abe5450 EZ |
1165 | { |
1166 | int ret; | |
1167 | gdb_vrregset_t regs; | |
1168 | ||
0897f59b | 1169 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
9abe5450 EZ |
1170 | if (ret < 0) |
1171 | { | |
1172 | if (errno == EIO) | |
1173 | { | |
1174 | have_ptrace_getvrregs = 0; | |
1175 | return; | |
1176 | } | |
e2e0b3e5 | 1177 | perror_with_name (_("Couldn't get AltiVec registers")); |
9abe5450 EZ |
1178 | } |
1179 | ||
56be3814 | 1180 | fill_vrregset (regcache, ®s); |
9abe5450 | 1181 | |
0897f59b | 1182 | if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0) |
e2e0b3e5 | 1183 | perror_with_name (_("Couldn't write AltiVec registers")); |
9abe5450 EZ |
1184 | } |
1185 | ||
1dfe79e8 SDJ |
1186 | /* This function actually issues the request to ptrace, telling |
1187 | it to store all general-purpose registers present in the specified | |
1188 | regset. | |
1189 | ||
1190 | If the ptrace request does not exist, this function returns 0 | |
1191 | and properly sets the have_ptrace_* flag. If the request fails, | |
1192 | this function calls perror_with_name. Otherwise, if the request | |
1193 | succeeds, then the regcache is stored and 1 is returned. */ | |
1194 | static int | |
1195 | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | |
1196 | { | |
1197 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1198 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1199 | gdb_gregset_t gregset; | |
1200 | ||
1201 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
1202 | { | |
1203 | if (errno == EIO) | |
1204 | { | |
1205 | have_ptrace_getsetregs = 0; | |
1206 | return 0; | |
1207 | } | |
1208 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
1209 | } | |
1210 | ||
1211 | fill_gregset (regcache, &gregset, regno); | |
1212 | ||
1213 | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | |
1214 | { | |
1215 | if (errno == EIO) | |
1216 | { | |
1217 | have_ptrace_getsetregs = 0; | |
1218 | return 0; | |
1219 | } | |
1220 | perror_with_name (_("Couldn't set general-purpose registers.")); | |
1221 | } | |
1222 | ||
1223 | return 1; | |
1224 | } | |
1225 | ||
1226 | /* This is a wrapper for the store_all_gp_regs function. It is | |
1227 | responsible for verifying if this target has the ptrace request | |
1228 | that can be used to store all general-purpose registers at one | |
1229 | shot. If it doesn't, then we should store them using the | |
1230 | old-fashioned way, which is to iterate over the registers and | |
1231 | store them one by one. */ | |
45229ea4 | 1232 | static void |
1dfe79e8 | 1233 | store_gp_regs (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1234 | { |
40a6adc1 MD |
1235 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1236 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1dfe79e8 SDJ |
1237 | int i; |
1238 | ||
1239 | if (have_ptrace_getsetregs) | |
1240 | if (store_all_gp_regs (regcache, tid, regno)) | |
1241 | return; | |
1242 | ||
1243 | /* If we hit this point, it doesn't really matter which | |
1244 | architecture we are using. We just need to store the | |
1245 | registers in the "old-fashioned way". */ | |
6ced10dd | 1246 | for (i = 0; i < ppc_num_gprs; i++) |
56be3814 | 1247 | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
1dfe79e8 SDJ |
1248 | } |
1249 | ||
1250 | /* This function actually issues the request to ptrace, telling | |
1251 | it to store all floating-point registers present in the specified | |
1252 | regset. | |
1253 | ||
1254 | If the ptrace request does not exist, this function returns 0 | |
1255 | and properly sets the have_ptrace_* flag. If the request fails, | |
1256 | this function calls perror_with_name. Otherwise, if the request | |
1257 | succeeds, then the regcache is stored and 1 is returned. */ | |
1258 | static int | |
1259 | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1260 | { | |
1261 | gdb_fpregset_t fpregs; | |
1262 | ||
1263 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1264 | { | |
1265 | if (errno == EIO) | |
1266 | { | |
1267 | have_ptrace_getsetfpregs = 0; | |
1268 | return 0; | |
1269 | } | |
1270 | perror_with_name (_("Couldn't get floating-point registers.")); | |
1271 | } | |
1272 | ||
1273 | fill_fpregset (regcache, &fpregs, regno); | |
1274 | ||
1275 | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1276 | { | |
1277 | if (errno == EIO) | |
1278 | { | |
1279 | have_ptrace_getsetfpregs = 0; | |
1280 | return 0; | |
1281 | } | |
1282 | perror_with_name (_("Couldn't set floating-point registers.")); | |
1283 | } | |
1284 | ||
1285 | return 1; | |
1286 | } | |
1287 | ||
1288 | /* This is a wrapper for the store_all_fp_regs function. It is | |
1289 | responsible for verifying if this target has the ptrace request | |
1290 | that can be used to store all floating-point registers at one | |
1291 | shot. If it doesn't, then we should store them using the | |
1292 | old-fashioned way, which is to iterate over the registers and | |
1293 | store them one by one. */ | |
1294 | static void | |
1295 | store_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1296 | { | |
1297 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1298 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1299 | int i; | |
1300 | ||
1301 | if (have_ptrace_getsetfpregs) | |
1302 | if (store_all_fp_regs (regcache, tid, regno)) | |
1303 | return; | |
1304 | ||
1305 | /* If we hit this point, it doesn't really matter which | |
1306 | architecture we are using. We just need to store the | |
1307 | registers in the "old-fashioned way". */ | |
1308 | for (i = 0; i < ppc_num_fprs; i++) | |
1309 | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
1310 | } | |
1311 | ||
1312 | static void | |
1313 | store_ppc_registers (const struct regcache *regcache, int tid) | |
1314 | { | |
1315 | int i; | |
1316 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1317 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1318 | ||
1319 | store_gp_regs (regcache, tid, -1); | |
32b99774 | 1320 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 1321 | store_fp_regs (regcache, tid, -1); |
40a6adc1 | 1322 | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 1323 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 1324 | store_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 1325 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 1326 | store_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 1327 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 1328 | store_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 1329 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 1330 | store_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 1331 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 1332 | store_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 1333 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 1334 | store_register (regcache, tid, tdep->ppc_mq_regnum); |
32b99774 | 1335 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 1336 | store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
7284e1be UW |
1337 | if (ppc_linux_trap_reg_p (gdbarch)) |
1338 | { | |
1339 | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
1340 | store_register (regcache, tid, PPC_TRAP_REGNUM); | |
1341 | } | |
9abe5450 EZ |
1342 | if (have_ptrace_getvrregs) |
1343 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 1344 | store_altivec_registers (regcache, tid); |
604c2f83 LM |
1345 | if (have_ptrace_getsetvsxregs) |
1346 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
1347 | store_vsx_registers (regcache, tid); | |
6ced10dd | 1348 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 1349 | store_spe_register (regcache, tid, -1); |
45229ea4 EZ |
1350 | } |
1351 | ||
6ffbb7ab | 1352 | /* Fetch the AT_HWCAP entry from the aux vector. */ |
b261e0c5 UW |
1353 | static unsigned long |
1354 | ppc_linux_get_hwcap (void) | |
6ffbb7ab TJB |
1355 | { |
1356 | CORE_ADDR field; | |
1357 | ||
1358 | if (target_auxv_search (¤t_target, AT_HWCAP, &field)) | |
1359 | return (unsigned long) field; | |
1360 | ||
1361 | return 0; | |
1362 | } | |
1363 | ||
1364 | /* The cached DABR value, to install in new threads. | |
1365 | This variable is used when we are dealing with non-BookE | |
1366 | processors. */ | |
1367 | static long saved_dabr_value; | |
1368 | ||
1369 | /* Global structure that will store information about the available | |
1370 | features on this BookE processor. */ | |
1371 | static struct ppc_debug_info booke_debug_info; | |
1372 | ||
1373 | /* Global variable that holds the maximum number of slots that the | |
1374 | kernel will use. This is only used when the processor is BookE. */ | |
1375 | static size_t max_slots_number = 0; | |
1376 | ||
1377 | struct hw_break_tuple | |
1378 | { | |
1379 | long slot; | |
1380 | struct ppc_hw_breakpoint *hw_break; | |
1381 | }; | |
1382 | ||
1383 | /* This is an internal VEC created to store information about *points inserted | |
1384 | for each thread. This is used for BookE processors. */ | |
1385 | typedef struct thread_points | |
1386 | { | |
1387 | /* The TID to which this *point relates. */ | |
1388 | int tid; | |
1389 | /* Information about the *point, such as its address, type, etc. | |
1390 | ||
1391 | Each element inside this vector corresponds to a hardware | |
1392 | breakpoint or watchpoint in the thread represented by TID. The maximum | |
1393 | size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of | |
1394 | the tuple is NULL, then the position in the vector is free. */ | |
1395 | struct hw_break_tuple *hw_breaks; | |
1396 | } *thread_points_p; | |
1397 | DEF_VEC_P (thread_points_p); | |
1398 | ||
1399 | VEC(thread_points_p) *ppc_threads = NULL; | |
1400 | ||
1401 | /* The version of the kernel interface that we will use if the processor is | |
1402 | BookE. */ | |
1403 | #define PPC_DEBUG_CURRENT_VERSION 1 | |
1404 | ||
1405 | /* Returns non-zero if we support the ptrace interface which enables | |
1406 | booke debugging resources. */ | |
e0d24f8d | 1407 | static int |
6ffbb7ab | 1408 | have_ptrace_booke_interface (void) |
e0d24f8d | 1409 | { |
6ffbb7ab | 1410 | static int have_ptrace_booke_interface = -1; |
e0d24f8d | 1411 | |
6ffbb7ab TJB |
1412 | if (have_ptrace_booke_interface == -1) |
1413 | { | |
1414 | int tid; | |
e0d24f8d | 1415 | |
6ffbb7ab TJB |
1416 | tid = TIDGET (inferior_ptid); |
1417 | if (tid == 0) | |
1418 | tid = PIDGET (inferior_ptid); | |
e0d24f8d | 1419 | |
6ffbb7ab TJB |
1420 | /* Check for kernel support for BOOKE debug registers. */ |
1421 | if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0) | |
1422 | { | |
0c56f59b EBM |
1423 | /* Check whether ptrace BOOKE interface is functional and |
1424 | provides any supported feature. */ | |
1425 | if (booke_debug_info.features != 0) | |
1426 | { | |
1427 | have_ptrace_booke_interface = 1; | |
1428 | max_slots_number = booke_debug_info.num_instruction_bps | |
1429 | + booke_debug_info.num_data_bps | |
1430 | + booke_debug_info.num_condition_regs; | |
1431 | return have_ptrace_booke_interface; | |
1432 | } | |
6ffbb7ab | 1433 | } |
0c56f59b EBM |
1434 | /* Old school interface and no BOOKE debug registers support. */ |
1435 | have_ptrace_booke_interface = 0; | |
1436 | memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info)); | |
6ffbb7ab TJB |
1437 | } |
1438 | ||
1439 | return have_ptrace_booke_interface; | |
e0d24f8d WZ |
1440 | } |
1441 | ||
6ffbb7ab TJB |
1442 | static int |
1443 | ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot) | |
b7622095 | 1444 | { |
6ffbb7ab | 1445 | int total_hw_wp, total_hw_bp; |
b7622095 | 1446 | |
6ffbb7ab TJB |
1447 | if (have_ptrace_booke_interface ()) |
1448 | { | |
1449 | /* For PPC BookE processors, the number of available hardware | |
1450 | watchpoints and breakpoints is stored at the booke_debug_info | |
1451 | struct. */ | |
1452 | total_hw_bp = booke_debug_info.num_instruction_bps; | |
1453 | total_hw_wp = booke_debug_info.num_data_bps; | |
1454 | } | |
1455 | else | |
1456 | { | |
1457 | /* For PPC server processors, we accept 1 hardware watchpoint and 0 | |
1458 | hardware breakpoints. */ | |
1459 | total_hw_bp = 0; | |
1460 | total_hw_wp = 1; | |
1461 | } | |
b7622095 | 1462 | |
6ffbb7ab TJB |
1463 | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
1464 | || type == bp_access_watchpoint || type == bp_watchpoint) | |
1465 | { | |
bb08bdbd | 1466 | if (cnt + ot > total_hw_wp) |
6ffbb7ab TJB |
1467 | return -1; |
1468 | } | |
1469 | else if (type == bp_hardware_breakpoint) | |
1470 | { | |
1471 | if (cnt > total_hw_bp) | |
1472 | return -1; | |
1473 | } | |
1474 | ||
1475 | if (!have_ptrace_booke_interface ()) | |
1476 | { | |
1477 | int tid; | |
1478 | ptid_t ptid = inferior_ptid; | |
1479 | ||
0df8b418 MS |
1480 | /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG |
1481 | and whether the target has DABR. If either answer is no, the | |
1482 | ptrace call will return -1. Fail in that case. */ | |
6ffbb7ab TJB |
1483 | tid = TIDGET (ptid); |
1484 | if (tid == 0) | |
1485 | tid = PIDGET (ptid); | |
1486 | ||
1487 | if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) | |
1488 | return 0; | |
1489 | } | |
1490 | ||
1491 | return 1; | |
b7622095 LM |
1492 | } |
1493 | ||
e0d24f8d WZ |
1494 | static int |
1495 | ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) | |
1496 | { | |
1497 | /* Handle sub-8-byte quantities. */ | |
1498 | if (len <= 0) | |
1499 | return 0; | |
1500 | ||
6ffbb7ab TJB |
1501 | /* The new BookE ptrace interface tells if there are alignment restrictions |
1502 | for watchpoints in the processors. In that case, we use that information | |
1503 | to determine the hardcoded watchable region for watchpoints. */ | |
1504 | if (have_ptrace_booke_interface ()) | |
1505 | { | |
e09342b5 TJB |
1506 | /* DAC-based processors (i.e., embedded processors), like the PowerPC 440 |
1507 | have ranged watchpoints and can watch any access within an arbitrary | |
1508 | memory region. This is useful to watch arrays and structs, for | |
1509 | instance. It takes two hardware watchpoints though. */ | |
1510 | if (len > 1 | |
1511 | && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE) | |
1512 | return 2; | |
1513 | else if (booke_debug_info.data_bp_alignment | |
1514 | && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1)) | |
1515 | + booke_debug_info.data_bp_alignment)) | |
0cf6dd15 | 1516 | return 0; |
6ffbb7ab | 1517 | } |
b7622095 | 1518 | /* addr+len must fall in the 8 byte watchable region for DABR-based |
6ffbb7ab TJB |
1519 | processors (i.e., server processors). Without the new BookE ptrace |
1520 | interface, DAC-based processors (i.e., embedded processors) will use | |
b7622095 | 1521 | addresses aligned to 4-bytes due to the way the read/write flags are |
6ffbb7ab TJB |
1522 | passed in the old ptrace interface. */ |
1523 | else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
1524 | && (addr + len) > (addr & ~3) + 4) | |
1525 | || (addr + len) > (addr & ~7) + 8) | |
e0d24f8d WZ |
1526 | return 0; |
1527 | ||
1528 | return 1; | |
1529 | } | |
1530 | ||
6ffbb7ab | 1531 | /* This function compares two ppc_hw_breakpoint structs field-by-field. */ |
e4166a49 | 1532 | static int |
6ffbb7ab TJB |
1533 | booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) |
1534 | { | |
ad422571 TJB |
1535 | return (a->trigger_type == b->trigger_type |
1536 | && a->addr_mode == b->addr_mode | |
1537 | && a->condition_mode == b->condition_mode | |
1538 | && a->addr == b->addr | |
1539 | && a->addr2 == b->addr2 | |
6ffbb7ab TJB |
1540 | && a->condition_value == b->condition_value); |
1541 | } | |
1542 | ||
1543 | /* This function can be used to retrieve a thread_points by the TID of the | |
1544 | related process/thread. If nothing has been found, and ALLOC_NEW is 0, | |
1545 | it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the | |
1546 | provided TID will be created and returned. */ | |
1547 | static struct thread_points * | |
1548 | booke_find_thread_points_by_tid (int tid, int alloc_new) | |
1549 | { | |
1550 | int i; | |
1551 | struct thread_points *t; | |
1552 | ||
1553 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++) | |
1554 | if (t->tid == tid) | |
1555 | return t; | |
1556 | ||
1557 | t = NULL; | |
1558 | ||
1559 | /* Do we need to allocate a new point_item | |
1560 | if the wanted one does not exist? */ | |
1561 | if (alloc_new) | |
1562 | { | |
1563 | t = xmalloc (sizeof (struct thread_points)); | |
0df8b418 MS |
1564 | t->hw_breaks |
1565 | = xzalloc (max_slots_number * sizeof (struct hw_break_tuple)); | |
6ffbb7ab TJB |
1566 | t->tid = tid; |
1567 | VEC_safe_push (thread_points_p, ppc_threads, t); | |
1568 | } | |
1569 | ||
1570 | return t; | |
1571 | } | |
1572 | ||
1573 | /* This function is a generic wrapper that is responsible for inserting a | |
1574 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1575 | kernel) and registering it internally in GDB. */ | |
1576 | static void | |
1577 | booke_insert_point (struct ppc_hw_breakpoint *b, int tid) | |
1578 | { | |
1579 | int i; | |
1580 | long slot; | |
1581 | struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint)); | |
1582 | struct hw_break_tuple *hw_breaks; | |
1583 | struct cleanup *c = make_cleanup (xfree, p); | |
1584 | struct thread_points *t; | |
1585 | struct hw_break_tuple *tuple; | |
1586 | ||
1587 | memcpy (p, b, sizeof (struct ppc_hw_breakpoint)); | |
1588 | ||
1589 | errno = 0; | |
1590 | slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p); | |
1591 | if (slot < 0) | |
1592 | perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); | |
1593 | ||
1594 | /* Everything went fine, so we have to register this *point. */ | |
1595 | t = booke_find_thread_points_by_tid (tid, 1); | |
1596 | gdb_assert (t != NULL); | |
1597 | hw_breaks = t->hw_breaks; | |
1598 | ||
1599 | /* Find a free element in the hw_breaks vector. */ | |
1600 | for (i = 0; i < max_slots_number; i++) | |
1601 | if (hw_breaks[i].hw_break == NULL) | |
1602 | { | |
1603 | hw_breaks[i].slot = slot; | |
1604 | hw_breaks[i].hw_break = p; | |
1605 | break; | |
1606 | } | |
1607 | ||
1608 | gdb_assert (i != max_slots_number); | |
1609 | ||
1610 | discard_cleanups (c); | |
1611 | } | |
1612 | ||
1613 | /* This function is a generic wrapper that is responsible for removing a | |
1614 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1615 | kernel), and unregistering it internally at GDB. */ | |
1616 | static void | |
1617 | booke_remove_point (struct ppc_hw_breakpoint *b, int tid) | |
1618 | { | |
1619 | int i; | |
1620 | struct hw_break_tuple *hw_breaks; | |
1621 | struct thread_points *t; | |
1622 | ||
1623 | t = booke_find_thread_points_by_tid (tid, 0); | |
1624 | gdb_assert (t != NULL); | |
1625 | hw_breaks = t->hw_breaks; | |
1626 | ||
1627 | for (i = 0; i < max_slots_number; i++) | |
1628 | if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b)) | |
1629 | break; | |
1630 | ||
1631 | gdb_assert (i != max_slots_number); | |
1632 | ||
1633 | /* We have to ignore ENOENT errors because the kernel implements hardware | |
1634 | breakpoints/watchpoints as "one-shot", that is, they are automatically | |
1635 | deleted when hit. */ | |
1636 | errno = 0; | |
1637 | if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) | |
1638 | if (errno != ENOENT) | |
0df8b418 MS |
1639 | perror_with_name (_("Unexpected error deleting " |
1640 | "breakpoint or watchpoint")); | |
6ffbb7ab TJB |
1641 | |
1642 | xfree (hw_breaks[i].hw_break); | |
1643 | hw_breaks[i].hw_break = NULL; | |
1644 | } | |
9f0bdab8 | 1645 | |
f1310107 TJB |
1646 | /* Return the number of registers needed for a ranged breakpoint. */ |
1647 | ||
1648 | static int | |
1649 | ppc_linux_ranged_break_num_registers (struct target_ops *target) | |
1650 | { | |
1651 | return ((have_ptrace_booke_interface () | |
1652 | && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)? | |
1653 | 2 : -1); | |
1654 | } | |
1655 | ||
1656 | /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for | |
1657 | success, 1 if hardware breakpoints are not supported or -1 for failure. */ | |
1658 | ||
2c387241 | 1659 | static int |
6ffbb7ab TJB |
1660 | ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch, |
1661 | struct bp_target_info *bp_tgt) | |
e0d24f8d | 1662 | { |
9f0bdab8 | 1663 | struct lwp_info *lp; |
6ffbb7ab TJB |
1664 | struct ppc_hw_breakpoint p; |
1665 | ||
1666 | if (!have_ptrace_booke_interface ()) | |
1667 | return -1; | |
1668 | ||
ad422571 TJB |
1669 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1670 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1671 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1672 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1673 | p.condition_value = 0; |
1674 | ||
f1310107 TJB |
1675 | if (bp_tgt->length) |
1676 | { | |
1677 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1678 | ||
1679 | /* The breakpoint will trigger if the address of the instruction is | |
1680 | within the defined range, as follows: p.addr <= address < p.addr2. */ | |
1681 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1682 | } | |
1683 | else | |
1684 | { | |
1685 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1686 | p.addr2 = 0; | |
1687 | } | |
1688 | ||
4c38200f PA |
1689 | ALL_LWPS (lp) |
1690 | booke_insert_point (&p, TIDGET (lp->ptid)); | |
6ffbb7ab TJB |
1691 | |
1692 | return 0; | |
1693 | } | |
1694 | ||
1695 | static int | |
1696 | ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch, | |
1697 | struct bp_target_info *bp_tgt) | |
1698 | { | |
6ffbb7ab TJB |
1699 | struct lwp_info *lp; |
1700 | struct ppc_hw_breakpoint p; | |
b7622095 | 1701 | |
6ffbb7ab TJB |
1702 | if (!have_ptrace_booke_interface ()) |
1703 | return -1; | |
1704 | ||
ad422571 TJB |
1705 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1706 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1707 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1708 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1709 | p.condition_value = 0; |
1710 | ||
f1310107 TJB |
1711 | if (bp_tgt->length) |
1712 | { | |
1713 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1714 | ||
1715 | /* The breakpoint will trigger if the address of the instruction is within | |
1716 | the defined range, as follows: p.addr <= address < p.addr2. */ | |
1717 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1718 | } | |
1719 | else | |
1720 | { | |
1721 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1722 | p.addr2 = 0; | |
1723 | } | |
1724 | ||
4c38200f PA |
1725 | ALL_LWPS (lp) |
1726 | booke_remove_point (&p, TIDGET (lp->ptid)); | |
6ffbb7ab TJB |
1727 | |
1728 | return 0; | |
1729 | } | |
1730 | ||
1731 | static int | |
1732 | get_trigger_type (int rw) | |
1733 | { | |
1734 | int t; | |
1735 | ||
1736 | if (rw == hw_read) | |
1737 | t = PPC_BREAKPOINT_TRIGGER_READ; | |
1738 | else if (rw == hw_write) | |
1739 | t = PPC_BREAKPOINT_TRIGGER_WRITE; | |
b7622095 | 1740 | else |
6ffbb7ab TJB |
1741 | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
1742 | ||
1743 | return t; | |
1744 | } | |
1745 | ||
9c06b0b4 TJB |
1746 | /* Insert a new masked watchpoint at ADDR using the mask MASK. |
1747 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1748 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1749 | an error on failure. */ | |
1750 | ||
1751 | static int | |
1752 | ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
1753 | CORE_ADDR mask, int rw) | |
1754 | { | |
9c06b0b4 TJB |
1755 | struct lwp_info *lp; |
1756 | struct ppc_hw_breakpoint p; | |
1757 | ||
1758 | gdb_assert (have_ptrace_booke_interface ()); | |
1759 | ||
1760 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1761 | p.trigger_type = get_trigger_type (rw); | |
1762 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1763 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1764 | p.addr = addr; | |
1765 | p.addr2 = mask; | |
1766 | p.condition_value = 0; | |
1767 | ||
4c38200f PA |
1768 | ALL_LWPS (lp) |
1769 | booke_insert_point (&p, TIDGET (lp->ptid)); | |
9c06b0b4 TJB |
1770 | |
1771 | return 0; | |
1772 | } | |
1773 | ||
1774 | /* Remove a masked watchpoint at ADDR with the mask MASK. | |
1775 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1776 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1777 | an error on failure. */ | |
1778 | ||
1779 | static int | |
1780 | ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
1781 | CORE_ADDR mask, int rw) | |
1782 | { | |
9c06b0b4 TJB |
1783 | struct lwp_info *lp; |
1784 | struct ppc_hw_breakpoint p; | |
1785 | ||
1786 | gdb_assert (have_ptrace_booke_interface ()); | |
1787 | ||
1788 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1789 | p.trigger_type = get_trigger_type (rw); | |
1790 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1791 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1792 | p.addr = addr; | |
1793 | p.addr2 = mask; | |
1794 | p.condition_value = 0; | |
1795 | ||
4c38200f PA |
1796 | ALL_LWPS (lp) |
1797 | booke_remove_point (&p, TIDGET (lp->ptid)); | |
9c06b0b4 TJB |
1798 | |
1799 | return 0; | |
1800 | } | |
1801 | ||
0cf6dd15 TJB |
1802 | /* Check whether we have at least one free DVC register. */ |
1803 | static int | |
1804 | can_use_watchpoint_cond_accel (void) | |
1805 | { | |
1806 | struct thread_points *p; | |
1807 | int tid = TIDGET (inferior_ptid); | |
1808 | int cnt = booke_debug_info.num_condition_regs, i; | |
1809 | CORE_ADDR tmp_value; | |
1810 | ||
1811 | if (!have_ptrace_booke_interface () || cnt == 0) | |
1812 | return 0; | |
1813 | ||
1814 | p = booke_find_thread_points_by_tid (tid, 0); | |
1815 | ||
1816 | if (p) | |
1817 | { | |
1818 | for (i = 0; i < max_slots_number; i++) | |
1819 | if (p->hw_breaks[i].hw_break != NULL | |
1820 | && (p->hw_breaks[i].hw_break->condition_mode | |
1821 | != PPC_BREAKPOINT_CONDITION_NONE)) | |
1822 | cnt--; | |
1823 | ||
1824 | /* There are no available slots now. */ | |
1825 | if (cnt <= 0) | |
1826 | return 0; | |
1827 | } | |
1828 | ||
1829 | return 1; | |
1830 | } | |
1831 | ||
1832 | /* Calculate the enable bits and the contents of the Data Value Compare | |
1833 | debug register present in BookE processors. | |
1834 | ||
1835 | ADDR is the address to be watched, LEN is the length of watched data | |
1836 | and DATA_VALUE is the value which will trigger the watchpoint. | |
1837 | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | |
1838 | CONDITION_VALUE will hold the value which should be put in the | |
1839 | DVC register. */ | |
1840 | static void | |
1841 | calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, | |
1842 | uint32_t *condition_mode, uint64_t *condition_value) | |
1843 | { | |
1844 | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | |
1845 | rightmost_enabled_byte; | |
1846 | CORE_ADDR addr_end_data, addr_end_dvc; | |
1847 | ||
1848 | /* The DVC register compares bytes within fixed-length windows which | |
1849 | are word-aligned, with length equal to that of the DVC register. | |
1850 | We need to calculate where our watch region is relative to that | |
1851 | window and enable comparison of the bytes which fall within it. */ | |
1852 | ||
1853 | align_offset = addr % booke_debug_info.sizeof_condition; | |
1854 | addr_end_data = addr + len; | |
1855 | addr_end_dvc = (addr - align_offset | |
1856 | + booke_debug_info.sizeof_condition); | |
1857 | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? | |
1858 | addr_end_data - addr_end_dvc : 0; | |
1859 | num_byte_enable = len - num_bytes_off_dvc; | |
1860 | /* Here, bytes are numbered from right to left. */ | |
1861 | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | |
1862 | addr_end_dvc - addr_end_data : 0; | |
1863 | ||
1864 | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | |
1865 | for (i = 0; i < num_byte_enable; i++) | |
0df8b418 MS |
1866 | *condition_mode |
1867 | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | |
0cf6dd15 TJB |
1868 | |
1869 | /* Now we need to match the position within the DVC of the comparison | |
1870 | value with where the watch region is relative to the window | |
1871 | (i.e., the ALIGN_OFFSET). */ | |
1872 | ||
1873 | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | |
1874 | << rightmost_enabled_byte * 8); | |
1875 | } | |
1876 | ||
1877 | /* Return the number of memory locations that need to be accessed to | |
1878 | evaluate the expression which generated the given value chain. | |
1879 | Returns -1 if there's any register access involved, or if there are | |
1880 | other kinds of values which are not acceptable in a condition | |
1881 | expression (e.g., lval_computed or lval_internalvar). */ | |
1882 | static int | |
1883 | num_memory_accesses (struct value *v) | |
1884 | { | |
1885 | int found_memory_cnt = 0; | |
1886 | struct value *head = v; | |
1887 | ||
1888 | /* The idea here is that evaluating an expression generates a series | |
1889 | of values, one holding the value of every subexpression. (The | |
1890 | expression a*b+c has five subexpressions: a, b, a*b, c, and | |
1891 | a*b+c.) GDB's values hold almost enough information to establish | |
1892 | the criteria given above --- they identify memory lvalues, | |
1893 | register lvalues, computed values, etcetera. So we can evaluate | |
1894 | the expression, and then scan the chain of values that leaves | |
1895 | behind to determine the memory locations involved in the evaluation | |
1896 | of an expression. | |
1897 | ||
1898 | However, I don't think that the values returned by inferior | |
1899 | function calls are special in any way. So this function may not | |
1900 | notice that an expression contains an inferior function call. | |
1901 | FIXME. */ | |
1902 | ||
1903 | for (; v; v = value_next (v)) | |
1904 | { | |
1905 | /* Constants and values from the history are fine. */ | |
1906 | if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) | |
1907 | continue; | |
1908 | else if (VALUE_LVAL (v) == lval_memory) | |
1909 | { | |
1910 | /* A lazy memory lvalue is one that GDB never needed to fetch; | |
1911 | we either just used its address (e.g., `a' in `a.b') or | |
1912 | we never needed it at all (e.g., `a' in `a,b'). */ | |
1913 | if (!value_lazy (v)) | |
1914 | found_memory_cnt++; | |
1915 | } | |
0df8b418 | 1916 | /* Other kinds of values are not fine. */ |
0cf6dd15 TJB |
1917 | else |
1918 | return -1; | |
1919 | } | |
1920 | ||
1921 | return found_memory_cnt; | |
1922 | } | |
1923 | ||
1924 | /* Verifies whether the expression COND can be implemented using the | |
1925 | DVC (Data Value Compare) register in BookE processors. The expression | |
1926 | must test the watch value for equality with a constant expression. | |
1927 | If the function returns 1, DATA_VALUE will contain the constant against | |
e7db58ea TJB |
1928 | which the watch value should be compared and LEN will contain the size |
1929 | of the constant. */ | |
0cf6dd15 TJB |
1930 | static int |
1931 | check_condition (CORE_ADDR watch_addr, struct expression *cond, | |
e7db58ea | 1932 | CORE_ADDR *data_value, int *len) |
0cf6dd15 TJB |
1933 | { |
1934 | int pc = 1, num_accesses_left, num_accesses_right; | |
1935 | struct value *left_val, *right_val, *left_chain, *right_chain; | |
1936 | ||
1937 | if (cond->elts[0].opcode != BINOP_EQUAL) | |
1938 | return 0; | |
1939 | ||
1940 | fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain); | |
1941 | num_accesses_left = num_memory_accesses (left_chain); | |
1942 | ||
1943 | if (left_val == NULL || num_accesses_left < 0) | |
1944 | { | |
1945 | free_value_chain (left_chain); | |
1946 | ||
1947 | return 0; | |
1948 | } | |
1949 | ||
1950 | fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain); | |
1951 | num_accesses_right = num_memory_accesses (right_chain); | |
1952 | ||
1953 | if (right_val == NULL || num_accesses_right < 0) | |
1954 | { | |
1955 | free_value_chain (left_chain); | |
1956 | free_value_chain (right_chain); | |
1957 | ||
1958 | return 0; | |
1959 | } | |
1960 | ||
1961 | if (num_accesses_left == 1 && num_accesses_right == 0 | |
1962 | && VALUE_LVAL (left_val) == lval_memory | |
1963 | && value_address (left_val) == watch_addr) | |
e7db58ea TJB |
1964 | { |
1965 | *data_value = value_as_long (right_val); | |
1966 | ||
1967 | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | |
1968 | the same type as the memory region referenced by LEFT_VAL. */ | |
1969 | *len = TYPE_LENGTH (check_typedef (value_type (left_val))); | |
1970 | } | |
0cf6dd15 TJB |
1971 | else if (num_accesses_left == 0 && num_accesses_right == 1 |
1972 | && VALUE_LVAL (right_val) == lval_memory | |
1973 | && value_address (right_val) == watch_addr) | |
e7db58ea TJB |
1974 | { |
1975 | *data_value = value_as_long (left_val); | |
1976 | ||
1977 | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | |
1978 | the same type as the memory region referenced by RIGHT_VAL. */ | |
1979 | *len = TYPE_LENGTH (check_typedef (value_type (right_val))); | |
1980 | } | |
0cf6dd15 TJB |
1981 | else |
1982 | { | |
1983 | free_value_chain (left_chain); | |
1984 | free_value_chain (right_chain); | |
1985 | ||
1986 | return 0; | |
1987 | } | |
1988 | ||
1989 | free_value_chain (left_chain); | |
1990 | free_value_chain (right_chain); | |
1991 | ||
1992 | return 1; | |
1993 | } | |
1994 | ||
1995 | /* Return non-zero if the target is capable of using hardware to evaluate | |
1996 | the condition expression, thus only triggering the watchpoint when it is | |
1997 | true. */ | |
1998 | static int | |
1999 | ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw, | |
2000 | struct expression *cond) | |
2001 | { | |
2002 | CORE_ADDR data_value; | |
2003 | ||
2004 | return (have_ptrace_booke_interface () | |
2005 | && booke_debug_info.num_condition_regs > 0 | |
e7db58ea | 2006 | && check_condition (addr, cond, &data_value, &len)); |
0cf6dd15 TJB |
2007 | } |
2008 | ||
e09342b5 TJB |
2009 | /* Set up P with the parameters necessary to request a watchpoint covering |
2010 | LEN bytes starting at ADDR and if possible with condition expression COND | |
2011 | evaluated by hardware. INSERT tells if we are creating a request for | |
2012 | inserting or removing the watchpoint. */ | |
2013 | ||
2014 | static void | |
2015 | create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr, | |
2016 | int len, int rw, struct expression *cond, | |
2017 | int insert) | |
2018 | { | |
f16c4e8b AS |
2019 | if (len == 1 |
2020 | || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) | |
e09342b5 TJB |
2021 | { |
2022 | int use_condition; | |
2023 | CORE_ADDR data_value; | |
2024 | ||
2025 | use_condition = (insert? can_use_watchpoint_cond_accel () | |
2026 | : booke_debug_info.num_condition_regs > 0); | |
e7db58ea TJB |
2027 | if (cond && use_condition && check_condition (addr, cond, |
2028 | &data_value, &len)) | |
e09342b5 TJB |
2029 | calculate_dvc (addr, len, data_value, &p->condition_mode, |
2030 | &p->condition_value); | |
2031 | else | |
2032 | { | |
2033 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2034 | p->condition_value = 0; | |
2035 | } | |
2036 | ||
2037 | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
2038 | p->addr2 = 0; | |
2039 | } | |
2040 | else | |
2041 | { | |
2042 | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
2043 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2044 | p->condition_value = 0; | |
2045 | ||
2046 | /* The watchpoint will trigger if the address of the memory access is | |
2047 | within the defined range, as follows: p->addr <= address < p->addr2. | |
2048 | ||
2049 | Note that the above sentence just documents how ptrace interprets | |
2050 | its arguments; the watchpoint is set to watch the range defined by | |
2051 | the user _inclusively_, as specified by the user interface. */ | |
2052 | p->addr2 = (uint64_t) addr + len; | |
2053 | } | |
2054 | ||
2055 | p->version = PPC_DEBUG_CURRENT_VERSION; | |
2056 | p->trigger_type = get_trigger_type (rw); | |
2057 | p->addr = (uint64_t) addr; | |
2058 | } | |
2059 | ||
6ffbb7ab | 2060 | static int |
0cf6dd15 TJB |
2061 | ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw, |
2062 | struct expression *cond) | |
6ffbb7ab TJB |
2063 | { |
2064 | struct lwp_info *lp; | |
6ffbb7ab TJB |
2065 | int ret = -1; |
2066 | ||
2067 | if (have_ptrace_booke_interface ()) | |
e0d24f8d | 2068 | { |
6ffbb7ab TJB |
2069 | struct ppc_hw_breakpoint p; |
2070 | ||
e09342b5 | 2071 | create_watchpoint_request (&p, addr, len, rw, cond, 1); |
6ffbb7ab | 2072 | |
4c38200f PA |
2073 | ALL_LWPS (lp) |
2074 | booke_insert_point (&p, TIDGET (lp->ptid)); | |
6ffbb7ab TJB |
2075 | |
2076 | ret = 0; | |
e0d24f8d | 2077 | } |
6ffbb7ab TJB |
2078 | else |
2079 | { | |
2080 | long dabr_value; | |
2081 | long read_mode, write_mode; | |
e0d24f8d | 2082 | |
6ffbb7ab TJB |
2083 | if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2084 | { | |
2085 | /* PowerPC 440 requires only the read/write flags to be passed | |
2086 | to the kernel. */ | |
ad422571 | 2087 | read_mode = 1; |
6ffbb7ab TJB |
2088 | write_mode = 2; |
2089 | } | |
2090 | else | |
2091 | { | |
2092 | /* PowerPC 970 and other DABR-based processors are required to pass | |
2093 | the Breakpoint Translation bit together with the flags. */ | |
ad422571 | 2094 | read_mode = 5; |
6ffbb7ab TJB |
2095 | write_mode = 6; |
2096 | } | |
1c86e440 | 2097 | |
6ffbb7ab TJB |
2098 | dabr_value = addr & ~(read_mode | write_mode); |
2099 | switch (rw) | |
2100 | { | |
2101 | case hw_read: | |
2102 | /* Set read and translate bits. */ | |
2103 | dabr_value |= read_mode; | |
2104 | break; | |
2105 | case hw_write: | |
2106 | /* Set write and translate bits. */ | |
2107 | dabr_value |= write_mode; | |
2108 | break; | |
2109 | case hw_access: | |
2110 | /* Set read, write and translate bits. */ | |
2111 | dabr_value |= read_mode | write_mode; | |
2112 | break; | |
2113 | } | |
1c86e440 | 2114 | |
6ffbb7ab TJB |
2115 | saved_dabr_value = dabr_value; |
2116 | ||
4c38200f PA |
2117 | ALL_LWPS (lp) |
2118 | if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0, | |
0cf6dd15 | 2119 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2120 | return -1; |
2121 | ||
2122 | ret = 0; | |
2123 | } | |
2124 | ||
2125 | return ret; | |
e0d24f8d WZ |
2126 | } |
2127 | ||
2c387241 | 2128 | static int |
0cf6dd15 TJB |
2129 | ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw, |
2130 | struct expression *cond) | |
e0d24f8d | 2131 | { |
9f0bdab8 | 2132 | struct lwp_info *lp; |
6ffbb7ab | 2133 | int ret = -1; |
9f0bdab8 | 2134 | |
6ffbb7ab TJB |
2135 | if (have_ptrace_booke_interface ()) |
2136 | { | |
2137 | struct ppc_hw_breakpoint p; | |
2138 | ||
e09342b5 | 2139 | create_watchpoint_request (&p, addr, len, rw, cond, 0); |
6ffbb7ab | 2140 | |
4c38200f PA |
2141 | ALL_LWPS (lp) |
2142 | booke_remove_point (&p, TIDGET (lp->ptid)); | |
6ffbb7ab TJB |
2143 | |
2144 | ret = 0; | |
2145 | } | |
2146 | else | |
2147 | { | |
2148 | saved_dabr_value = 0; | |
4c38200f PA |
2149 | ALL_LWPS (lp) |
2150 | if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0, | |
0cf6dd15 | 2151 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2152 | return -1; |
2153 | ||
2154 | ret = 0; | |
2155 | } | |
2156 | ||
2157 | return ret; | |
e0d24f8d WZ |
2158 | } |
2159 | ||
9f0bdab8 | 2160 | static void |
7b50312a | 2161 | ppc_linux_new_thread (struct lwp_info *lp) |
e0d24f8d | 2162 | { |
7b50312a | 2163 | int tid = TIDGET (lp->ptid); |
6ffbb7ab TJB |
2164 | |
2165 | if (have_ptrace_booke_interface ()) | |
2166 | { | |
2167 | int i; | |
2168 | struct thread_points *p; | |
2169 | struct hw_break_tuple *hw_breaks; | |
2170 | ||
2171 | if (VEC_empty (thread_points_p, ppc_threads)) | |
2172 | return; | |
2173 | ||
0df8b418 | 2174 | /* Get a list of breakpoints from any thread. */ |
6ffbb7ab TJB |
2175 | p = VEC_last (thread_points_p, ppc_threads); |
2176 | hw_breaks = p->hw_breaks; | |
2177 | ||
0df8b418 | 2178 | /* Copy that thread's breakpoints and watchpoints to the new thread. */ |
6ffbb7ab TJB |
2179 | for (i = 0; i < max_slots_number; i++) |
2180 | if (hw_breaks[i].hw_break) | |
aacbb8a5 LM |
2181 | { |
2182 | /* Older kernels did not make new threads inherit their parent | |
2183 | thread's debug state, so we always clear the slot and replicate | |
2184 | the debug state ourselves, ensuring compatibility with all | |
2185 | kernels. */ | |
2186 | ||
2187 | /* The ppc debug resource accounting is done through "slots". | |
2188 | Ask the kernel the deallocate this specific *point's slot. */ | |
2189 | ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot); | |
2190 | ||
2191 | booke_insert_point (hw_breaks[i].hw_break, tid); | |
2192 | } | |
6ffbb7ab TJB |
2193 | } |
2194 | else | |
2195 | ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); | |
2196 | } | |
2197 | ||
2198 | static void | |
2199 | ppc_linux_thread_exit (struct thread_info *tp, int silent) | |
2200 | { | |
2201 | int i; | |
2202 | int tid = TIDGET (tp->ptid); | |
2203 | struct hw_break_tuple *hw_breaks; | |
2204 | struct thread_points *t = NULL, *p; | |
2205 | ||
2206 | if (!have_ptrace_booke_interface ()) | |
2207 | return; | |
2208 | ||
2209 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++) | |
2210 | if (p->tid == tid) | |
2211 | { | |
2212 | t = p; | |
2213 | break; | |
2214 | } | |
2215 | ||
2216 | if (t == NULL) | |
2217 | return; | |
2218 | ||
2219 | VEC_unordered_remove (thread_points_p, ppc_threads, i); | |
2220 | ||
2221 | hw_breaks = t->hw_breaks; | |
2222 | ||
2223 | for (i = 0; i < max_slots_number; i++) | |
2224 | if (hw_breaks[i].hw_break) | |
2225 | xfree (hw_breaks[i].hw_break); | |
2226 | ||
2227 | xfree (t->hw_breaks); | |
2228 | xfree (t); | |
e0d24f8d WZ |
2229 | } |
2230 | ||
2231 | static int | |
9f0bdab8 | 2232 | ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) |
e0d24f8d | 2233 | { |
f865ee35 | 2234 | siginfo_t siginfo; |
e0d24f8d | 2235 | |
f865ee35 JK |
2236 | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
2237 | return 0; | |
e0d24f8d | 2238 | |
f865ee35 JK |
2239 | if (siginfo.si_signo != SIGTRAP |
2240 | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | |
e0d24f8d WZ |
2241 | return 0; |
2242 | ||
6ffbb7ab TJB |
2243 | if (have_ptrace_booke_interface ()) |
2244 | { | |
2245 | int i; | |
2246 | struct thread_points *t; | |
2247 | struct hw_break_tuple *hw_breaks; | |
2248 | /* The index (or slot) of the *point is passed in the si_errno field. */ | |
f865ee35 | 2249 | int slot = siginfo.si_errno; |
6ffbb7ab TJB |
2250 | |
2251 | t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0); | |
2252 | ||
2253 | /* Find out if this *point is a hardware breakpoint. | |
2254 | If so, we should return 0. */ | |
2255 | if (t) | |
2256 | { | |
2257 | hw_breaks = t->hw_breaks; | |
2258 | for (i = 0; i < max_slots_number; i++) | |
2259 | if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot | |
2260 | && hw_breaks[i].hw_break->trigger_type | |
2261 | == PPC_BREAKPOINT_TRIGGER_EXECUTE) | |
2262 | return 0; | |
2263 | } | |
2264 | } | |
2265 | ||
f865ee35 | 2266 | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
e0d24f8d WZ |
2267 | return 1; |
2268 | } | |
2269 | ||
9f0bdab8 DJ |
2270 | static int |
2271 | ppc_linux_stopped_by_watchpoint (void) | |
2272 | { | |
2273 | CORE_ADDR addr; | |
2274 | return ppc_linux_stopped_data_address (¤t_target, &addr); | |
2275 | } | |
2276 | ||
5009afc5 AS |
2277 | static int |
2278 | ppc_linux_watchpoint_addr_within_range (struct target_ops *target, | |
2279 | CORE_ADDR addr, | |
2280 | CORE_ADDR start, int length) | |
2281 | { | |
b7622095 LM |
2282 | int mask; |
2283 | ||
6ffbb7ab TJB |
2284 | if (have_ptrace_booke_interface () |
2285 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
2286 | return start <= addr && start + length >= addr; | |
2287 | else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
b7622095 LM |
2288 | mask = 3; |
2289 | else | |
2290 | mask = 7; | |
2291 | ||
2292 | addr &= ~mask; | |
2293 | ||
0df8b418 | 2294 | /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
b7622095 | 2295 | return start <= addr + mask && start + length - 1 >= addr; |
5009afc5 AS |
2296 | } |
2297 | ||
9c06b0b4 TJB |
2298 | /* Return the number of registers needed for a masked hardware watchpoint. */ |
2299 | ||
2300 | static int | |
2301 | ppc_linux_masked_watch_num_registers (struct target_ops *target, | |
2302 | CORE_ADDR addr, CORE_ADDR mask) | |
2303 | { | |
2304 | if (!have_ptrace_booke_interface () | |
2305 | || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | |
2306 | return -1; | |
2307 | else if ((mask & 0xC0000000) != 0xC0000000) | |
2308 | { | |
2309 | warning (_("The given mask covers kernel address space " | |
2310 | "and cannot be used.\n")); | |
2311 | ||
2312 | return -2; | |
2313 | } | |
2314 | else | |
2315 | return 2; | |
2316 | } | |
2317 | ||
10d6c8cd | 2318 | static void |
28439f5e PA |
2319 | ppc_linux_store_inferior_registers (struct target_ops *ops, |
2320 | struct regcache *regcache, int regno) | |
45229ea4 | 2321 | { |
0df8b418 | 2322 | /* Overload thread id onto process id. */ |
05f13b9c EZ |
2323 | int tid = TIDGET (inferior_ptid); |
2324 | ||
0df8b418 | 2325 | /* No thread id, just use process id. */ |
05f13b9c EZ |
2326 | if (tid == 0) |
2327 | tid = PIDGET (inferior_ptid); | |
2328 | ||
45229ea4 | 2329 | if (regno >= 0) |
56be3814 | 2330 | store_register (regcache, tid, regno); |
45229ea4 | 2331 | else |
56be3814 | 2332 | store_ppc_registers (regcache, tid); |
45229ea4 EZ |
2333 | } |
2334 | ||
f2db237a AM |
2335 | /* Functions for transferring registers between a gregset_t or fpregset_t |
2336 | (see sys/ucontext.h) and gdb's regcache. The word size is that used | |
0df8b418 | 2337 | by the ptrace interface, not the current program's ABI. Eg. if a |
f2db237a AM |
2338 | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
2339 | read or write 64-bit gregsets. This is to suit the host libthread_db. */ | |
2340 | ||
50c9bd31 | 2341 | void |
7f7fe91e | 2342 | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
c877c8e6 | 2343 | { |
f2db237a | 2344 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2345 | |
f2db237a | 2346 | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
c877c8e6 KB |
2347 | } |
2348 | ||
fdb28ac4 | 2349 | void |
7f7fe91e UW |
2350 | fill_gregset (const struct regcache *regcache, |
2351 | gdb_gregset_t *gregsetp, int regno) | |
fdb28ac4 | 2352 | { |
f2db237a | 2353 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2354 | |
f2db237a AM |
2355 | if (regno == -1) |
2356 | memset (gregsetp, 0, sizeof (*gregsetp)); | |
2357 | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | |
fdb28ac4 KB |
2358 | } |
2359 | ||
50c9bd31 | 2360 | void |
7f7fe91e | 2361 | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
c877c8e6 | 2362 | { |
f2db237a AM |
2363 | const struct regset *regset = ppc_linux_fpregset (); |
2364 | ||
2365 | ppc_supply_fpregset (regset, regcache, -1, | |
2366 | fpregsetp, sizeof (*fpregsetp)); | |
c877c8e6 | 2367 | } |
fdb28ac4 | 2368 | |
fdb28ac4 | 2369 | void |
7f7fe91e UW |
2370 | fill_fpregset (const struct regcache *regcache, |
2371 | gdb_fpregset_t *fpregsetp, int regno) | |
fdb28ac4 | 2372 | { |
f2db237a AM |
2373 | const struct regset *regset = ppc_linux_fpregset (); |
2374 | ||
2375 | ppc_collect_fpregset (regset, regcache, regno, | |
2376 | fpregsetp, sizeof (*fpregsetp)); | |
fdb28ac4 | 2377 | } |
10d6c8cd | 2378 | |
409c383c UW |
2379 | static int |
2380 | ppc_linux_target_wordsize (void) | |
2381 | { | |
2382 | int wordsize = 4; | |
2383 | ||
2384 | /* Check for 64-bit inferior process. This is the case when the host is | |
2385 | 64-bit, and in addition the top bit of the MSR register is set. */ | |
2386 | #ifdef __powerpc64__ | |
2387 | long msr; | |
2388 | ||
2389 | int tid = TIDGET (inferior_ptid); | |
2390 | if (tid == 0) | |
2391 | tid = PIDGET (inferior_ptid); | |
2392 | ||
2393 | errno = 0; | |
2394 | msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0); | |
2395 | if (errno == 0 && msr < 0) | |
2396 | wordsize = 8; | |
2397 | #endif | |
2398 | ||
2399 | return wordsize; | |
2400 | } | |
2401 | ||
2402 | static int | |
2403 | ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr, | |
2404 | gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | |
2405 | { | |
2406 | int sizeof_auxv_field = ppc_linux_target_wordsize (); | |
f5656ead | 2407 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
409c383c UW |
2408 | gdb_byte *ptr = *readptr; |
2409 | ||
2410 | if (endptr == ptr) | |
2411 | return 0; | |
2412 | ||
2413 | if (endptr - ptr < sizeof_auxv_field * 2) | |
2414 | return -1; | |
2415 | ||
e17a4113 | 2416 | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c | 2417 | ptr += sizeof_auxv_field; |
e17a4113 | 2418 | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c UW |
2419 | ptr += sizeof_auxv_field; |
2420 | ||
2421 | *readptr = ptr; | |
2422 | return 1; | |
2423 | } | |
2424 | ||
310a98e1 DJ |
2425 | static const struct target_desc * |
2426 | ppc_linux_read_description (struct target_ops *ops) | |
2427 | { | |
7284e1be | 2428 | int altivec = 0; |
604c2f83 | 2429 | int vsx = 0; |
69abc51c | 2430 | int isa205 = 0; |
f4d9bade | 2431 | int cell = 0; |
7284e1be UW |
2432 | |
2433 | int tid = TIDGET (inferior_ptid); | |
2434 | if (tid == 0) | |
2435 | tid = PIDGET (inferior_ptid); | |
2436 | ||
310a98e1 DJ |
2437 | if (have_ptrace_getsetevrregs) |
2438 | { | |
2439 | struct gdb_evrregset_t evrregset; | |
310a98e1 DJ |
2440 | |
2441 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | |
7284e1be UW |
2442 | return tdesc_powerpc_e500l; |
2443 | ||
2444 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | |
2445 | Anything else needs to be reported. */ | |
2446 | else if (errno != EIO) | |
2447 | perror_with_name (_("Unable to fetch SPE registers")); | |
2448 | } | |
2449 | ||
604c2f83 LM |
2450 | if (have_ptrace_getsetvsxregs) |
2451 | { | |
2452 | gdb_vsxregset_t vsxregset; | |
2453 | ||
2454 | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | |
2455 | vsx = 1; | |
2456 | ||
2457 | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | |
2458 | Anything else needs to be reported. */ | |
2459 | else if (errno != EIO) | |
2460 | perror_with_name (_("Unable to fetch VSX registers")); | |
2461 | } | |
2462 | ||
7284e1be UW |
2463 | if (have_ptrace_getvrregs) |
2464 | { | |
2465 | gdb_vrregset_t vrregset; | |
2466 | ||
2467 | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | |
2468 | altivec = 1; | |
2469 | ||
2470 | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | |
2471 | Anything else needs to be reported. */ | |
2472 | else if (errno != EIO) | |
2473 | perror_with_name (_("Unable to fetch AltiVec registers")); | |
310a98e1 DJ |
2474 | } |
2475 | ||
f04c6d38 | 2476 | /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases |
0df8b418 | 2477 | the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this |
f04c6d38 TJB |
2478 | ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only |
2479 | PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher | |
2480 | half of the register are for Decimal Floating Point, we check if that | |
2481 | feature is available to decide the size of the FPSCR. */ | |
2482 | if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP) | |
69abc51c TJB |
2483 | isa205 = 1; |
2484 | ||
f4d9bade UW |
2485 | if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL) |
2486 | cell = 1; | |
2487 | ||
409c383c UW |
2488 | if (ppc_linux_target_wordsize () == 8) |
2489 | { | |
f4d9bade UW |
2490 | if (cell) |
2491 | return tdesc_powerpc_cell64l; | |
2492 | else if (vsx) | |
409c383c UW |
2493 | return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l; |
2494 | else if (altivec) | |
0df8b418 MS |
2495 | return isa205 |
2496 | ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l; | |
409c383c UW |
2497 | |
2498 | return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l; | |
2499 | } | |
7284e1be | 2500 | |
f4d9bade UW |
2501 | if (cell) |
2502 | return tdesc_powerpc_cell32l; | |
2503 | else if (vsx) | |
69abc51c | 2504 | return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l; |
604c2f83 | 2505 | else if (altivec) |
69abc51c | 2506 | return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l; |
604c2f83 | 2507 | |
69abc51c | 2508 | return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l; |
310a98e1 DJ |
2509 | } |
2510 | ||
10d6c8cd DJ |
2511 | void _initialize_ppc_linux_nat (void); |
2512 | ||
2513 | void | |
2514 | _initialize_ppc_linux_nat (void) | |
2515 | { | |
2516 | struct target_ops *t; | |
2517 | ||
2518 | /* Fill in the generic GNU/Linux methods. */ | |
2519 | t = linux_target (); | |
2520 | ||
2521 | /* Add our register access methods. */ | |
2522 | t->to_fetch_registers = ppc_linux_fetch_inferior_registers; | |
2523 | t->to_store_registers = ppc_linux_store_inferior_registers; | |
2524 | ||
6ffbb7ab TJB |
2525 | /* Add our breakpoint/watchpoint methods. */ |
2526 | t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint; | |
2527 | t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint; | |
2528 | t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint; | |
e0d24f8d WZ |
2529 | t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint; |
2530 | t->to_insert_watchpoint = ppc_linux_insert_watchpoint; | |
2531 | t->to_remove_watchpoint = ppc_linux_remove_watchpoint; | |
9c06b0b4 TJB |
2532 | t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint; |
2533 | t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint; | |
e0d24f8d WZ |
2534 | t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint; |
2535 | t->to_stopped_data_address = ppc_linux_stopped_data_address; | |
5009afc5 | 2536 | t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range; |
0df8b418 MS |
2537 | t->to_can_accel_watchpoint_condition |
2538 | = ppc_linux_can_accel_watchpoint_condition; | |
9c06b0b4 | 2539 | t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers; |
f1310107 | 2540 | t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers; |
e0d24f8d | 2541 | |
310a98e1 | 2542 | t->to_read_description = ppc_linux_read_description; |
409c383c | 2543 | t->to_auxv_parse = ppc_linux_auxv_parse; |
310a98e1 | 2544 | |
6ffbb7ab TJB |
2545 | observer_attach_thread_exit (ppc_linux_thread_exit); |
2546 | ||
10d6c8cd | 2547 | /* Register the target. */ |
f973ed9c | 2548 | linux_nat_add_target (t); |
9f0bdab8 | 2549 | linux_nat_set_new_thread (t, ppc_linux_new_thread); |
10d6c8cd | 2550 | } |