]>
Commit | Line | Data |
---|---|---|
9abe5450 | 1 | /* PPC GNU/Linux native support. |
2555fe1a | 2 | |
61baf725 | 3 | Copyright (C) 1988-2017 Free Software Foundation, Inc. |
c877c8e6 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c877c8e6 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c877c8e6 KB |
19 | |
20 | #include "defs.h" | |
6ffbb7ab | 21 | #include "observer.h" |
c877c8e6 KB |
22 | #include "frame.h" |
23 | #include "inferior.h" | |
6ffbb7ab | 24 | #include "gdbthread.h" |
c877c8e6 | 25 | #include "gdbcore.h" |
4e052eda | 26 | #include "regcache.h" |
10d6c8cd DJ |
27 | #include "target.h" |
28 | #include "linux-nat.h" | |
c877c8e6 | 29 | #include <sys/types.h> |
c877c8e6 KB |
30 | #include <signal.h> |
31 | #include <sys/user.h> | |
32 | #include <sys/ioctl.h> | |
2555fe1a | 33 | #include "gdb_wait.h" |
c877c8e6 KB |
34 | #include <fcntl.h> |
35 | #include <sys/procfs.h> | |
5826e159 | 36 | #include "nat/gdb_ptrace.h" |
c877c8e6 | 37 | |
0df8b418 | 38 | /* Prototypes for supply_gregset etc. */ |
c60c0f5f | 39 | #include "gregset.h" |
16333c4f | 40 | #include "ppc-tdep.h" |
7284e1be UW |
41 | #include "ppc-linux-tdep.h" |
42 | ||
b7622095 LM |
43 | /* Required when using the AUXV. */ |
44 | #include "elf/common.h" | |
45 | #include "auxv.h" | |
46 | ||
514c5338 | 47 | #include "nat/ppc-linux.h" |
01904826 | 48 | |
6ffbb7ab | 49 | /* Similarly for the hardware watchpoint support. These requests are used |
926bf92d | 50 | when the PowerPC HWDEBUG ptrace interface is not available. */ |
e0d24f8d WZ |
51 | #ifndef PTRACE_GET_DEBUGREG |
52 | #define PTRACE_GET_DEBUGREG 25 | |
53 | #endif | |
54 | #ifndef PTRACE_SET_DEBUGREG | |
55 | #define PTRACE_SET_DEBUGREG 26 | |
56 | #endif | |
57 | #ifndef PTRACE_GETSIGINFO | |
58 | #define PTRACE_GETSIGINFO 0x4202 | |
59 | #endif | |
01904826 | 60 | |
926bf92d UW |
61 | /* These requests are used when the PowerPC HWDEBUG ptrace interface is |
62 | available. It exposes the debug facilities of PowerPC processors, as well | |
63 | as additional features of BookE processors, such as ranged breakpoints and | |
64 | watchpoints and hardware-accelerated condition evaluation. */ | |
6ffbb7ab TJB |
65 | #ifndef PPC_PTRACE_GETHWDBGINFO |
66 | ||
926bf92d UW |
67 | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG |
68 | ptrace interface is not present in ptrace.h, so we'll have to pretty much | |
69 | include it all here so that the code at least compiles on older systems. */ | |
6ffbb7ab TJB |
70 | #define PPC_PTRACE_GETHWDBGINFO 0x89 |
71 | #define PPC_PTRACE_SETHWDEBUG 0x88 | |
72 | #define PPC_PTRACE_DELHWDEBUG 0x87 | |
73 | ||
74 | struct ppc_debug_info | |
75 | { | |
0df8b418 | 76 | uint32_t version; /* Only version 1 exists to date. */ |
6ffbb7ab TJB |
77 | uint32_t num_instruction_bps; |
78 | uint32_t num_data_bps; | |
79 | uint32_t num_condition_regs; | |
80 | uint32_t data_bp_alignment; | |
0df8b418 | 81 | uint32_t sizeof_condition; /* size of the DVC register. */ |
6ffbb7ab TJB |
82 | uint64_t features; |
83 | }; | |
84 | ||
85 | /* Features will have bits indicating whether there is support for: */ | |
86 | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 | |
87 | #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 | |
88 | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 | |
89 | #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 | |
90 | ||
91 | struct ppc_hw_breakpoint | |
92 | { | |
93 | uint32_t version; /* currently, version must be 1 */ | |
94 | uint32_t trigger_type; /* only some combinations allowed */ | |
95 | uint32_t addr_mode; /* address match mode */ | |
96 | uint32_t condition_mode; /* break/watchpoint condition flags */ | |
97 | uint64_t addr; /* break/watchpoint address */ | |
98 | uint64_t addr2; /* range end or mask */ | |
99 | uint64_t condition_value; /* contents of the DVC register */ | |
100 | }; | |
101 | ||
102 | /* Trigger type. */ | |
103 | #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 | |
104 | #define PPC_BREAKPOINT_TRIGGER_READ 0x2 | |
105 | #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 | |
106 | #define PPC_BREAKPOINT_TRIGGER_RW 0x6 | |
107 | ||
108 | /* Address mode. */ | |
109 | #define PPC_BREAKPOINT_MODE_EXACT 0x0 | |
110 | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 | |
111 | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 | |
112 | #define PPC_BREAKPOINT_MODE_MASK 0x3 | |
113 | ||
114 | /* Condition mode. */ | |
115 | #define PPC_BREAKPOINT_CONDITION_NONE 0x0 | |
116 | #define PPC_BREAKPOINT_CONDITION_AND 0x1 | |
117 | #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 | |
118 | #define PPC_BREAKPOINT_CONDITION_OR 0x2 | |
119 | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | |
120 | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | |
121 | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 | |
122 | #define PPC_BREAKPOINT_CONDITION_BE(n) \ | |
123 | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | |
124 | #endif /* PPC_PTRACE_GETHWDBGINFO */ | |
125 | ||
e23b9d6e UW |
126 | /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider |
127 | watchpoint (up to 512 bytes). */ | |
128 | #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR | |
129 | #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 | |
130 | #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ | |
6ffbb7ab | 131 | |
1dfe79e8 SDJ |
132 | /* Similarly for the general-purpose (gp0 -- gp31) |
133 | and floating-point registers (fp0 -- fp31). */ | |
134 | #ifndef PTRACE_GETREGS | |
135 | #define PTRACE_GETREGS 12 | |
136 | #endif | |
137 | #ifndef PTRACE_SETREGS | |
138 | #define PTRACE_SETREGS 13 | |
139 | #endif | |
140 | #ifndef PTRACE_GETFPREGS | |
141 | #define PTRACE_GETFPREGS 14 | |
142 | #endif | |
143 | #ifndef PTRACE_SETFPREGS | |
144 | #define PTRACE_SETFPREGS 15 | |
145 | #endif | |
146 | ||
9abe5450 EZ |
147 | /* This oddity is because the Linux kernel defines elf_vrregset_t as |
148 | an array of 33 16 bytes long elements. I.e. it leaves out vrsave. | |
149 | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | |
150 | the vrsave as an extra 4 bytes at the end. I opted for creating a | |
151 | flat array of chars, so that it is easier to manipulate for gdb. | |
152 | ||
153 | There are 32 vector registers 16 bytes longs, plus a VSCR register | |
154 | which is only 4 bytes long, but is fetched as a 16 bytes | |
0df8b418 | 155 | quantity. Up to here we have the elf_vrregset_t structure. |
9abe5450 EZ |
156 | Appended to this there is space for the VRSAVE register: 4 bytes. |
157 | Even though this vrsave register is not included in the regset | |
158 | typedef, it is handled by the ptrace requests. | |
159 | ||
160 | Note that GNU/Linux doesn't support little endian PPC hardware, | |
161 | therefore the offset at which the real value of the VSCR register | |
162 | is located will be always 12 bytes. | |
163 | ||
164 | The layout is like this (where x is the actual value of the vscr reg): */ | |
165 | ||
166 | /* *INDENT-OFF* */ | |
167 | /* | |
168 | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| | |
169 | <-------> <-------><-------><-> | |
170 | VR0 VR31 VSCR VRSAVE | |
171 | */ | |
172 | /* *INDENT-ON* */ | |
173 | ||
174 | #define SIZEOF_VRREGS 33*16+4 | |
175 | ||
176 | typedef char gdb_vrregset_t[SIZEOF_VRREGS]; | |
177 | ||
604c2f83 LM |
178 | /* This is the layout of the POWER7 VSX registers and the way they overlap |
179 | with the existing FPR and VMX registers. | |
180 | ||
181 | VSR doubleword 0 VSR doubleword 1 | |
182 | ---------------------------------------------------------------- | |
183 | VSR[0] | FPR[0] | | | |
184 | ---------------------------------------------------------------- | |
185 | VSR[1] | FPR[1] | | | |
186 | ---------------------------------------------------------------- | |
187 | | ... | | | |
188 | | ... | | | |
189 | ---------------------------------------------------------------- | |
190 | VSR[30] | FPR[30] | | | |
191 | ---------------------------------------------------------------- | |
192 | VSR[31] | FPR[31] | | | |
193 | ---------------------------------------------------------------- | |
194 | VSR[32] | VR[0] | | |
195 | ---------------------------------------------------------------- | |
196 | VSR[33] | VR[1] | | |
197 | ---------------------------------------------------------------- | |
198 | | ... | | |
199 | | ... | | |
200 | ---------------------------------------------------------------- | |
201 | VSR[62] | VR[30] | | |
202 | ---------------------------------------------------------------- | |
203 | VSR[63] | VR[31] | | |
204 | ---------------------------------------------------------------- | |
205 | ||
206 | VSX has 64 128bit registers. The first 32 registers overlap with | |
207 | the FP registers (doubleword 0) and hence extend them with additional | |
208 | 64 bits (doubleword 1). The other 32 regs overlap with the VMX | |
209 | registers. */ | |
210 | #define SIZEOF_VSXREGS 32*8 | |
211 | ||
212 | typedef char gdb_vsxregset_t[SIZEOF_VSXREGS]; | |
01904826 | 213 | |
b021a221 | 214 | /* On PPC processors that support the Signal Processing Extension |
01904826 | 215 | (SPE) APU, the general-purpose registers are 64 bits long. |
411cb3f9 PG |
216 | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
217 | ptrace calls only access the lower half of each register, to allow | |
218 | them to behave the same way they do on non-SPE systems. There's a | |
219 | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | |
220 | read and write the top halves of all the general-purpose registers | |
221 | at once, along with some SPE-specific registers. | |
01904826 JB |
222 | |
223 | GDB itself continues to claim the general-purpose registers are 32 | |
6ced10dd | 224 | bits long. It has unnamed raw registers that hold the upper halves |
b021a221 | 225 | of the gprs, and the full 64-bit SIMD views of the registers, |
6ced10dd JB |
226 | 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
227 | bottom halves together. | |
01904826 JB |
228 | |
229 | This is the structure filled in by PTRACE_GETEVRREGS and written to | |
230 | the inferior's registers by PTRACE_SETEVRREGS. */ | |
231 | struct gdb_evrregset_t | |
232 | { | |
233 | unsigned long evr[32]; | |
234 | unsigned long long acc; | |
235 | unsigned long spefscr; | |
236 | }; | |
237 | ||
604c2f83 LM |
238 | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
239 | PTRACE_SETVSXREGS requests, for reading and writing the VSX | |
240 | POWER7 registers 0 through 31. Zero if we've tried one of them and | |
241 | gotten an error. Note that VSX registers 32 through 63 overlap | |
242 | with VR registers 0 through 31. */ | |
243 | int have_ptrace_getsetvsxregs = 1; | |
01904826 JB |
244 | |
245 | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | |
246 | PTRACE_SETVRREGS requests, for reading and writing the Altivec | |
247 | registers. Zero if we've tried one of them and gotten an | |
248 | error. */ | |
9abe5450 EZ |
249 | int have_ptrace_getvrregs = 1; |
250 | ||
01904826 JB |
251 | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
252 | PTRACE_SETEVRREGS requests, for reading and writing the SPE | |
253 | registers. Zero if we've tried one of them and gotten an | |
254 | error. */ | |
255 | int have_ptrace_getsetevrregs = 1; | |
256 | ||
1dfe79e8 SDJ |
257 | /* Non-zero if our kernel may support the PTRACE_GETREGS and |
258 | PTRACE_SETREGS requests, for reading and writing the | |
259 | general-purpose registers. Zero if we've tried one of | |
260 | them and gotten an error. */ | |
261 | int have_ptrace_getsetregs = 1; | |
262 | ||
263 | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | |
264 | PTRACE_SETFPREGS requests, for reading and writing the | |
265 | floating-pointers registers. Zero if we've tried one of | |
266 | them and gotten an error. */ | |
267 | int have_ptrace_getsetfpregs = 1; | |
268 | ||
16333c4f EZ |
269 | /* *INDENT-OFF* */ |
270 | /* registers layout, as presented by the ptrace interface: | |
271 | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | |
272 | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | |
273 | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | |
274 | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | |
0df8b418 MS |
275 | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
276 | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | |
277 | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | |
278 | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | |
279 | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | |
280 | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | |
281 | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | |
282 | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | |
16333c4f EZ |
283 | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
284 | /* *INDENT_ON * */ | |
c877c8e6 | 285 | |
45229ea4 | 286 | static int |
e101270f | 287 | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
c877c8e6 | 288 | { |
16333c4f | 289 | int u_addr = -1; |
e101270f | 290 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
56d0d96a AC |
291 | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
292 | interface, and not the wordsize of the program's ABI. */ | |
411cb3f9 | 293 | int wordsize = sizeof (long); |
16333c4f | 294 | |
0df8b418 | 295 | /* General purpose registers occupy 1 slot each in the buffer. */ |
8bf659e8 JB |
296 | if (regno >= tdep->ppc_gp0_regnum |
297 | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
26e75e5c | 298 | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
16333c4f | 299 | |
49ff75ad JB |
300 | /* Floating point regs: eight bytes each in both 32- and 64-bit |
301 | ptrace interfaces. Thus, two slots each in 32-bit interface, one | |
302 | slot each in 64-bit interface. */ | |
383f0f5b JB |
303 | if (tdep->ppc_fp0_regnum >= 0 |
304 | && regno >= tdep->ppc_fp0_regnum | |
366f009f JB |
305 | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
306 | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | |
16333c4f | 307 | |
0df8b418 | 308 | /* UISA special purpose registers: 1 slot each. */ |
e101270f | 309 | if (regno == gdbarch_pc_regnum (gdbarch)) |
49ff75ad | 310 | u_addr = PT_NIP * wordsize; |
dc5cfeb6 | 311 | if (regno == tdep->ppc_lr_regnum) |
49ff75ad | 312 | u_addr = PT_LNK * wordsize; |
dc5cfeb6 | 313 | if (regno == tdep->ppc_cr_regnum) |
49ff75ad | 314 | u_addr = PT_CCR * wordsize; |
dc5cfeb6 | 315 | if (regno == tdep->ppc_xer_regnum) |
49ff75ad | 316 | u_addr = PT_XER * wordsize; |
dc5cfeb6 | 317 | if (regno == tdep->ppc_ctr_regnum) |
49ff75ad | 318 | u_addr = PT_CTR * wordsize; |
f8c59253 | 319 | #ifdef PT_MQ |
dc5cfeb6 | 320 | if (regno == tdep->ppc_mq_regnum) |
49ff75ad | 321 | u_addr = PT_MQ * wordsize; |
f8c59253 | 322 | #endif |
dc5cfeb6 | 323 | if (regno == tdep->ppc_ps_regnum) |
49ff75ad | 324 | u_addr = PT_MSR * wordsize; |
7284e1be UW |
325 | if (regno == PPC_ORIG_R3_REGNUM) |
326 | u_addr = PT_ORIG_R3 * wordsize; | |
327 | if (regno == PPC_TRAP_REGNUM) | |
328 | u_addr = PT_TRAP * wordsize; | |
383f0f5b JB |
329 | if (tdep->ppc_fpscr_regnum >= 0 |
330 | && regno == tdep->ppc_fpscr_regnum) | |
8f135812 AC |
331 | { |
332 | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | |
333 | kernel headers incorrectly contained the 32-bit definition of | |
334 | PT_FPSCR. For the 32-bit definition, floating-point | |
335 | registers occupy two 32-bit "slots", and the FPSCR lives in | |
69abc51c | 336 | the second half of such a slot-pair (hence +1). For 64-bit, |
8f135812 AC |
337 | the FPSCR instead occupies the full 64-bit 2-word-slot and |
338 | hence no adjustment is necessary. Hack around this. */ | |
339 | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | |
340 | u_addr = (48 + 32) * wordsize; | |
69abc51c TJB |
341 | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
342 | slot and not just its second word. The PT_FPSCR supplied when | |
343 | GDB is compiled as a 32-bit app doesn't reflect this. */ | |
344 | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | |
345 | && PT_FPSCR == (48 + 2*32 + 1)) | |
346 | u_addr = (48 + 2*32) * wordsize; | |
8f135812 AC |
347 | else |
348 | u_addr = PT_FPSCR * wordsize; | |
349 | } | |
16333c4f | 350 | return u_addr; |
c877c8e6 KB |
351 | } |
352 | ||
604c2f83 LM |
353 | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
354 | registers set mechanism, as opposed to the interface for all the | |
355 | other registers, that stores/fetches each register individually. */ | |
356 | static void | |
357 | fetch_vsx_register (struct regcache *regcache, int tid, int regno) | |
358 | { | |
359 | int ret; | |
360 | gdb_vsxregset_t regs; | |
361 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
362 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
363 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
364 | ||
365 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
366 | if (ret < 0) | |
367 | { | |
368 | if (errno == EIO) | |
369 | { | |
370 | have_ptrace_getsetvsxregs = 0; | |
371 | return; | |
372 | } | |
373 | perror_with_name (_("Unable to fetch VSX register")); | |
374 | } | |
375 | ||
376 | regcache_raw_supply (regcache, regno, | |
377 | regs + (regno - tdep->ppc_vsr0_upper_regnum) | |
378 | * vsxregsize); | |
379 | } | |
380 | ||
9abe5450 EZ |
381 | /* The Linux kernel ptrace interface for AltiVec registers uses the |
382 | registers set mechanism, as opposed to the interface for all the | |
383 | other registers, that stores/fetches each register individually. */ | |
384 | static void | |
56be3814 | 385 | fetch_altivec_register (struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
386 | { |
387 | int ret; | |
388 | int offset = 0; | |
389 | gdb_vrregset_t regs; | |
40a6adc1 MD |
390 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
391 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
392 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
393 | |
394 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
395 | if (ret < 0) | |
396 | { | |
397 | if (errno == EIO) | |
398 | { | |
399 | have_ptrace_getvrregs = 0; | |
400 | return; | |
401 | } | |
e2e0b3e5 | 402 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
403 | } |
404 | ||
405 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
406 | long on the hardware. We deal only with the lower 4 bytes of the | |
407 | vector. VRSAVE is at the end of the array in a 4 bytes slot, so | |
408 | there is no need to define an offset for it. */ | |
409 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 410 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 411 | |
56be3814 | 412 | regcache_raw_supply (regcache, regno, |
0df8b418 MS |
413 | regs + (regno |
414 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
415 | } |
416 | ||
01904826 JB |
417 | /* Fetch the top 32 bits of TID's general-purpose registers and the |
418 | SPE-specific registers, and place the results in EVRREGSET. If we | |
419 | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | |
420 | zeros. | |
421 | ||
422 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
423 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
424 | set_spe_registers. */ | |
425 | static void | |
426 | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
427 | { | |
428 | if (have_ptrace_getsetevrregs) | |
429 | { | |
430 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | |
431 | return; | |
432 | else | |
433 | { | |
434 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | |
435 | we just return zeros. */ | |
436 | if (errno == EIO) | |
437 | have_ptrace_getsetevrregs = 0; | |
438 | else | |
439 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 440 | perror_with_name (_("Unable to fetch SPE registers")); |
01904826 JB |
441 | } |
442 | } | |
443 | ||
444 | memset (evrregset, 0, sizeof (*evrregset)); | |
445 | } | |
446 | ||
6ced10dd JB |
447 | /* Supply values from TID for SPE-specific raw registers: the upper |
448 | halves of the GPRs, the accumulator, and the spefscr. REGNO must | |
449 | be the number of an upper half register, acc, spefscr, or -1 to | |
450 | supply the values of all registers. */ | |
01904826 | 451 | static void |
56be3814 | 452 | fetch_spe_register (struct regcache *regcache, int tid, int regno) |
01904826 | 453 | { |
40a6adc1 MD |
454 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
455 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
01904826 JB |
456 | struct gdb_evrregset_t evrregs; |
457 | ||
6ced10dd | 458 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 459 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 460 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 461 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 462 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 463 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
6ced10dd | 464 | |
01904826 JB |
465 | get_spe_registers (tid, &evrregs); |
466 | ||
6ced10dd | 467 | if (regno == -1) |
01904826 | 468 | { |
6ced10dd JB |
469 | int i; |
470 | ||
471 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 472 | regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i, |
6ced10dd | 473 | &evrregs.evr[i]); |
01904826 | 474 | } |
6ced10dd JB |
475 | else if (tdep->ppc_ev0_upper_regnum <= regno |
476 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 477 | regcache_raw_supply (regcache, regno, |
6ced10dd JB |
478 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
479 | ||
480 | if (regno == -1 | |
481 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 482 | regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc); |
6ced10dd JB |
483 | |
484 | if (regno == -1 | |
485 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 486 | regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum, |
6ced10dd | 487 | &evrregs.spefscr); |
01904826 JB |
488 | } |
489 | ||
45229ea4 | 490 | static void |
56be3814 | 491 | fetch_register (struct regcache *regcache, int tid, int regno) |
45229ea4 | 492 | { |
40a6adc1 MD |
493 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
494 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
45229ea4 | 495 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 496 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
4a19ea35 | 497 | int bytes_transferred; |
0df8b418 | 498 | unsigned int offset; /* Offset of registers within the u area. */ |
e362b510 | 499 | gdb_byte buf[MAX_REGISTER_SIZE]; |
45229ea4 | 500 | |
be8626e0 | 501 | if (altivec_register_p (gdbarch, regno)) |
9abe5450 EZ |
502 | { |
503 | /* If this is the first time through, or if it is not the first | |
504 | time through, and we have comfirmed that there is kernel | |
505 | support for such a ptrace request, then go and fetch the | |
506 | register. */ | |
507 | if (have_ptrace_getvrregs) | |
508 | { | |
56be3814 | 509 | fetch_altivec_register (regcache, tid, regno); |
9abe5450 EZ |
510 | return; |
511 | } | |
512 | /* If we have discovered that there is no ptrace support for | |
513 | AltiVec registers, fall through and return zeroes, because | |
514 | regaddr will be -1 in this case. */ | |
515 | } | |
604c2f83 LM |
516 | if (vsx_register_p (gdbarch, regno)) |
517 | { | |
518 | if (have_ptrace_getsetvsxregs) | |
519 | { | |
520 | fetch_vsx_register (regcache, tid, regno); | |
521 | return; | |
522 | } | |
523 | } | |
be8626e0 | 524 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 525 | { |
56be3814 | 526 | fetch_spe_register (regcache, tid, regno); |
01904826 JB |
527 | return; |
528 | } | |
9abe5450 | 529 | |
45229ea4 EZ |
530 | if (regaddr == -1) |
531 | { | |
40a6adc1 | 532 | memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
56be3814 | 533 | regcache_raw_supply (regcache, regno, buf); |
45229ea4 EZ |
534 | return; |
535 | } | |
536 | ||
411cb3f9 | 537 | /* Read the raw register using sizeof(long) sized chunks. On a |
56d0d96a AC |
538 | 32-bit platform, 64-bit floating-point registers will require two |
539 | transfers. */ | |
4a19ea35 | 540 | for (bytes_transferred = 0; |
40a6adc1 | 541 | bytes_transferred < register_size (gdbarch, regno); |
411cb3f9 | 542 | bytes_transferred += sizeof (long)) |
45229ea4 | 543 | { |
11fde611 JK |
544 | long l; |
545 | ||
45229ea4 | 546 | errno = 0; |
11fde611 | 547 | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
411cb3f9 | 548 | regaddr += sizeof (long); |
45229ea4 EZ |
549 | if (errno != 0) |
550 | { | |
bc97b3ba | 551 | char message[128]; |
8c042590 PM |
552 | xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
553 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 554 | perror_with_name (message); |
45229ea4 | 555 | } |
11fde611 | 556 | memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
45229ea4 | 557 | } |
56d0d96a | 558 | |
4a19ea35 JB |
559 | /* Now supply the register. Keep in mind that the regcache's idea |
560 | of the register's size may not be a multiple of sizeof | |
411cb3f9 | 561 | (long). */ |
40a6adc1 | 562 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
4a19ea35 JB |
563 | { |
564 | /* Little-endian values are always found at the left end of the | |
565 | bytes transferred. */ | |
56be3814 | 566 | regcache_raw_supply (regcache, regno, buf); |
4a19ea35 | 567 | } |
40a6adc1 | 568 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
569 | { |
570 | /* Big-endian values are found at the right end of the bytes | |
571 | transferred. */ | |
40a6adc1 | 572 | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
56be3814 | 573 | regcache_raw_supply (regcache, regno, buf + padding); |
4a19ea35 JB |
574 | } |
575 | else | |
a44bddec | 576 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 577 | _("fetch_register: unexpected byte order: %d"), |
40a6adc1 | 578 | gdbarch_byte_order (gdbarch)); |
45229ea4 EZ |
579 | } |
580 | ||
604c2f83 LM |
581 | static void |
582 | supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
583 | { | |
584 | int i; | |
585 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
586 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
587 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
588 | ||
589 | for (i = 0; i < ppc_num_vshrs; i++) | |
590 | { | |
591 | regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
592 | *vsxregsetp + i * vsxregsize); | |
593 | } | |
594 | } | |
595 | ||
9abe5450 | 596 | static void |
56be3814 | 597 | supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
598 | { |
599 | int i; | |
40a6adc1 MD |
600 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
601 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 602 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
603 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
604 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
605 | |
606 | for (i = 0; i < num_of_vrregs; i++) | |
607 | { | |
608 | /* The last 2 registers of this set are only 32 bit long, not | |
609 | 128. However an offset is necessary only for VSCR because it | |
610 | occupies a whole vector, while VRSAVE occupies a full 4 bytes | |
611 | slot. */ | |
612 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 613 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 614 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 615 | else |
56be3814 | 616 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 617 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
618 | } |
619 | } | |
620 | ||
604c2f83 LM |
621 | static void |
622 | fetch_vsx_registers (struct regcache *regcache, int tid) | |
623 | { | |
624 | int ret; | |
625 | gdb_vsxregset_t regs; | |
626 | ||
627 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
628 | if (ret < 0) | |
629 | { | |
630 | if (errno == EIO) | |
631 | { | |
632 | have_ptrace_getsetvsxregs = 0; | |
633 | return; | |
634 | } | |
635 | perror_with_name (_("Unable to fetch VSX registers")); | |
636 | } | |
637 | supply_vsxregset (regcache, ®s); | |
638 | } | |
639 | ||
9abe5450 | 640 | static void |
56be3814 | 641 | fetch_altivec_registers (struct regcache *regcache, int tid) |
9abe5450 EZ |
642 | { |
643 | int ret; | |
644 | gdb_vrregset_t regs; | |
645 | ||
646 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
647 | if (ret < 0) | |
648 | { | |
649 | if (errno == EIO) | |
650 | { | |
651 | have_ptrace_getvrregs = 0; | |
652 | return; | |
653 | } | |
e2e0b3e5 | 654 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 | 655 | } |
56be3814 | 656 | supply_vrregset (regcache, ®s); |
9abe5450 EZ |
657 | } |
658 | ||
1dfe79e8 SDJ |
659 | /* This function actually issues the request to ptrace, telling |
660 | it to get all general-purpose registers and put them into the | |
661 | specified regset. | |
662 | ||
663 | If the ptrace request does not exist, this function returns 0 | |
664 | and properly sets the have_ptrace_* flag. If the request fails, | |
665 | this function calls perror_with_name. Otherwise, if the request | |
666 | succeeds, then the regcache gets filled and 1 is returned. */ | |
667 | static int | |
668 | fetch_all_gp_regs (struct regcache *regcache, int tid) | |
669 | { | |
670 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
671 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
672 | gdb_gregset_t gregset; | |
673 | ||
674 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
675 | { | |
676 | if (errno == EIO) | |
677 | { | |
678 | have_ptrace_getsetregs = 0; | |
679 | return 0; | |
680 | } | |
681 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
682 | } | |
683 | ||
684 | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | |
685 | ||
686 | return 1; | |
687 | } | |
688 | ||
689 | /* This is a wrapper for the fetch_all_gp_regs function. It is | |
690 | responsible for verifying if this target has the ptrace request | |
691 | that can be used to fetch all general-purpose registers at one | |
692 | shot. If it doesn't, then we should fetch them using the | |
693 | old-fashioned way, which is to iterate over the registers and | |
694 | request them one by one. */ | |
695 | static void | |
696 | fetch_gp_regs (struct regcache *regcache, int tid) | |
697 | { | |
698 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
699 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
700 | int i; | |
701 | ||
702 | if (have_ptrace_getsetregs) | |
703 | if (fetch_all_gp_regs (regcache, tid)) | |
704 | return; | |
705 | ||
706 | /* If we've hit this point, it doesn't really matter which | |
707 | architecture we are using. We just need to read the | |
708 | registers in the "old-fashioned way". */ | |
709 | for (i = 0; i < ppc_num_gprs; i++) | |
710 | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | |
711 | } | |
712 | ||
713 | /* This function actually issues the request to ptrace, telling | |
714 | it to get all floating-point registers and put them into the | |
715 | specified regset. | |
716 | ||
717 | If the ptrace request does not exist, this function returns 0 | |
718 | and properly sets the have_ptrace_* flag. If the request fails, | |
719 | this function calls perror_with_name. Otherwise, if the request | |
720 | succeeds, then the regcache gets filled and 1 is returned. */ | |
721 | static int | |
722 | fetch_all_fp_regs (struct regcache *regcache, int tid) | |
723 | { | |
724 | gdb_fpregset_t fpregs; | |
725 | ||
726 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
727 | { | |
728 | if (errno == EIO) | |
729 | { | |
730 | have_ptrace_getsetfpregs = 0; | |
731 | return 0; | |
732 | } | |
733 | perror_with_name (_("Couldn't get floating-point registers.")); | |
734 | } | |
735 | ||
736 | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | |
737 | ||
738 | return 1; | |
739 | } | |
740 | ||
741 | /* This is a wrapper for the fetch_all_fp_regs function. It is | |
742 | responsible for verifying if this target has the ptrace request | |
743 | that can be used to fetch all floating-point registers at one | |
744 | shot. If it doesn't, then we should fetch them using the | |
745 | old-fashioned way, which is to iterate over the registers and | |
746 | request them one by one. */ | |
747 | static void | |
748 | fetch_fp_regs (struct regcache *regcache, int tid) | |
749 | { | |
750 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
751 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
752 | int i; | |
753 | ||
754 | if (have_ptrace_getsetfpregs) | |
755 | if (fetch_all_fp_regs (regcache, tid)) | |
756 | return; | |
757 | ||
758 | /* If we've hit this point, it doesn't really matter which | |
759 | architecture we are using. We just need to read the | |
760 | registers in the "old-fashioned way". */ | |
761 | for (i = 0; i < ppc_num_fprs; i++) | |
762 | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
763 | } | |
764 | ||
45229ea4 | 765 | static void |
56be3814 | 766 | fetch_ppc_registers (struct regcache *regcache, int tid) |
45229ea4 EZ |
767 | { |
768 | int i; | |
40a6adc1 MD |
769 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
770 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 771 | |
1dfe79e8 | 772 | fetch_gp_regs (regcache, tid); |
32b99774 | 773 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 774 | fetch_fp_regs (regcache, tid); |
40a6adc1 | 775 | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 776 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 777 | fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 778 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 779 | fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 780 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 781 | fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 782 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 783 | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 784 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 785 | fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 786 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 787 | fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
7284e1be UW |
788 | if (ppc_linux_trap_reg_p (gdbarch)) |
789 | { | |
790 | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
791 | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | |
792 | } | |
32b99774 | 793 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 794 | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
9abe5450 EZ |
795 | if (have_ptrace_getvrregs) |
796 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 797 | fetch_altivec_registers (regcache, tid); |
604c2f83 LM |
798 | if (have_ptrace_getsetvsxregs) |
799 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
800 | fetch_vsx_registers (regcache, tid); | |
6ced10dd | 801 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 802 | fetch_spe_register (regcache, tid, -1); |
45229ea4 EZ |
803 | } |
804 | ||
805 | /* Fetch registers from the child process. Fetch all registers if | |
806 | regno == -1, otherwise fetch all general registers or all floating | |
807 | point registers depending upon the value of regno. */ | |
10d6c8cd | 808 | static void |
28439f5e PA |
809 | ppc_linux_fetch_inferior_registers (struct target_ops *ops, |
810 | struct regcache *regcache, int regno) | |
45229ea4 | 811 | { |
0df8b418 | 812 | /* Overload thread id onto process id. */ |
dfd4cc63 | 813 | int tid = ptid_get_lwp (inferior_ptid); |
05f13b9c | 814 | |
0df8b418 | 815 | /* No thread id, just use process id. */ |
05f13b9c | 816 | if (tid == 0) |
dfd4cc63 | 817 | tid = ptid_get_pid (inferior_ptid); |
05f13b9c | 818 | |
9abe5450 | 819 | if (regno == -1) |
56be3814 | 820 | fetch_ppc_registers (regcache, tid); |
45229ea4 | 821 | else |
56be3814 | 822 | fetch_register (regcache, tid, regno); |
45229ea4 EZ |
823 | } |
824 | ||
0df8b418 | 825 | /* Store one VSX register. */ |
604c2f83 LM |
826 | static void |
827 | store_vsx_register (const struct regcache *regcache, int tid, int regno) | |
828 | { | |
829 | int ret; | |
830 | gdb_vsxregset_t regs; | |
831 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
832 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
833 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
834 | ||
9fe70b4f | 835 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
604c2f83 LM |
836 | if (ret < 0) |
837 | { | |
838 | if (errno == EIO) | |
839 | { | |
840 | have_ptrace_getsetvsxregs = 0; | |
841 | return; | |
842 | } | |
843 | perror_with_name (_("Unable to fetch VSX register")); | |
844 | } | |
845 | ||
846 | regcache_raw_collect (regcache, regno, regs + | |
847 | (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize); | |
848 | ||
849 | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | |
850 | if (ret < 0) | |
851 | perror_with_name (_("Unable to store VSX register")); | |
852 | } | |
853 | ||
0df8b418 | 854 | /* Store one register. */ |
9abe5450 | 855 | static void |
56be3814 | 856 | store_altivec_register (const struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
857 | { |
858 | int ret; | |
859 | int offset = 0; | |
860 | gdb_vrregset_t regs; | |
40a6adc1 MD |
861 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
862 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
863 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
864 | |
865 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
866 | if (ret < 0) | |
867 | { | |
868 | if (errno == EIO) | |
869 | { | |
870 | have_ptrace_getvrregs = 0; | |
871 | return; | |
872 | } | |
e2e0b3e5 | 873 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
874 | } |
875 | ||
876 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
877 | long on the hardware. */ | |
878 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 879 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 880 | |
56be3814 | 881 | regcache_raw_collect (regcache, regno, |
0df8b418 MS |
882 | regs + (regno |
883 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
884 | |
885 | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | |
886 | if (ret < 0) | |
e2e0b3e5 | 887 | perror_with_name (_("Unable to store AltiVec register")); |
9abe5450 EZ |
888 | } |
889 | ||
01904826 JB |
890 | /* Assuming TID referrs to an SPE process, set the top halves of TID's |
891 | general-purpose registers and its SPE-specific registers to the | |
892 | values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do | |
893 | nothing. | |
894 | ||
895 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
896 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
897 | get_spe_registers. */ | |
898 | static void | |
899 | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
900 | { | |
901 | if (have_ptrace_getsetevrregs) | |
902 | { | |
903 | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | |
904 | return; | |
905 | else | |
906 | { | |
907 | /* EIO means that the PTRACE_SETEVRREGS request isn't | |
908 | supported; we fail silently, and don't try the call | |
909 | again. */ | |
910 | if (errno == EIO) | |
911 | have_ptrace_getsetevrregs = 0; | |
912 | else | |
913 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 914 | perror_with_name (_("Unable to set SPE registers")); |
01904826 JB |
915 | } |
916 | } | |
917 | } | |
918 | ||
6ced10dd JB |
919 | /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
920 | If REGNO is -1, write the values of all the SPE-specific | |
921 | registers. */ | |
01904826 | 922 | static void |
56be3814 | 923 | store_spe_register (const struct regcache *regcache, int tid, int regno) |
01904826 | 924 | { |
40a6adc1 MD |
925 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
926 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
01904826 JB |
927 | struct gdb_evrregset_t evrregs; |
928 | ||
6ced10dd | 929 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 930 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 931 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 932 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 933 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 934 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
01904826 | 935 | |
6ced10dd JB |
936 | if (regno == -1) |
937 | /* Since we're going to write out every register, the code below | |
938 | should store to every field of evrregs; if that doesn't happen, | |
939 | make it obvious by initializing it with suspicious values. */ | |
940 | memset (&evrregs, 42, sizeof (evrregs)); | |
941 | else | |
942 | /* We can only read and write the entire EVR register set at a | |
943 | time, so to write just a single register, we do a | |
944 | read-modify-write maneuver. */ | |
945 | get_spe_registers (tid, &evrregs); | |
946 | ||
947 | if (regno == -1) | |
01904826 | 948 | { |
6ced10dd JB |
949 | int i; |
950 | ||
951 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 952 | regcache_raw_collect (regcache, |
6ced10dd JB |
953 | tdep->ppc_ev0_upper_regnum + i, |
954 | &evrregs.evr[i]); | |
01904826 | 955 | } |
6ced10dd JB |
956 | else if (tdep->ppc_ev0_upper_regnum <= regno |
957 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 958 | regcache_raw_collect (regcache, regno, |
6ced10dd JB |
959 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
960 | ||
961 | if (regno == -1 | |
962 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 963 | regcache_raw_collect (regcache, |
6ced10dd JB |
964 | tdep->ppc_acc_regnum, |
965 | &evrregs.acc); | |
966 | ||
967 | if (regno == -1 | |
968 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 969 | regcache_raw_collect (regcache, |
6ced10dd JB |
970 | tdep->ppc_spefscr_regnum, |
971 | &evrregs.spefscr); | |
01904826 JB |
972 | |
973 | /* Write back the modified register set. */ | |
974 | set_spe_registers (tid, &evrregs); | |
975 | } | |
976 | ||
45229ea4 | 977 | static void |
56be3814 | 978 | store_register (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 979 | { |
40a6adc1 MD |
980 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
981 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
45229ea4 | 982 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 983 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
52f0bd74 | 984 | int i; |
4a19ea35 | 985 | size_t bytes_to_transfer; |
e362b510 | 986 | gdb_byte buf[MAX_REGISTER_SIZE]; |
45229ea4 | 987 | |
be8626e0 | 988 | if (altivec_register_p (gdbarch, regno)) |
45229ea4 | 989 | { |
56be3814 | 990 | store_altivec_register (regcache, tid, regno); |
45229ea4 EZ |
991 | return; |
992 | } | |
604c2f83 LM |
993 | if (vsx_register_p (gdbarch, regno)) |
994 | { | |
995 | store_vsx_register (regcache, tid, regno); | |
996 | return; | |
997 | } | |
be8626e0 | 998 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 999 | { |
56be3814 | 1000 | store_spe_register (regcache, tid, regno); |
01904826 JB |
1001 | return; |
1002 | } | |
45229ea4 | 1003 | |
9abe5450 EZ |
1004 | if (regaddr == -1) |
1005 | return; | |
1006 | ||
4a19ea35 JB |
1007 | /* First collect the register. Keep in mind that the regcache's |
1008 | idea of the register's size may not be a multiple of sizeof | |
411cb3f9 | 1009 | (long). */ |
56d0d96a | 1010 | memset (buf, 0, sizeof buf); |
40a6adc1 MD |
1011 | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
1012 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | |
4a19ea35 JB |
1013 | { |
1014 | /* Little-endian values always sit at the left end of the buffer. */ | |
56be3814 | 1015 | regcache_raw_collect (regcache, regno, buf); |
4a19ea35 | 1016 | } |
40a6adc1 | 1017 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
1018 | { |
1019 | /* Big-endian values sit at the right end of the buffer. */ | |
40a6adc1 | 1020 | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
56be3814 | 1021 | regcache_raw_collect (regcache, regno, buf + padding); |
4a19ea35 JB |
1022 | } |
1023 | ||
411cb3f9 | 1024 | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
45229ea4 | 1025 | { |
11fde611 JK |
1026 | long l; |
1027 | ||
1028 | memcpy (&l, &buf[i], sizeof (l)); | |
45229ea4 | 1029 | errno = 0; |
11fde611 | 1030 | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
411cb3f9 | 1031 | regaddr += sizeof (long); |
e3f36dbd KB |
1032 | |
1033 | if (errno == EIO | |
7284e1be UW |
1034 | && (regno == tdep->ppc_fpscr_regnum |
1035 | || regno == PPC_ORIG_R3_REGNUM | |
1036 | || regno == PPC_TRAP_REGNUM)) | |
e3f36dbd | 1037 | { |
7284e1be UW |
1038 | /* Some older kernel versions don't allow fpscr, orig_r3 |
1039 | or trap to be written. */ | |
e3f36dbd KB |
1040 | continue; |
1041 | } | |
1042 | ||
45229ea4 EZ |
1043 | if (errno != 0) |
1044 | { | |
bc97b3ba | 1045 | char message[128]; |
8c042590 PM |
1046 | xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
1047 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 1048 | perror_with_name (message); |
45229ea4 EZ |
1049 | } |
1050 | } | |
1051 | } | |
1052 | ||
604c2f83 LM |
1053 | static void |
1054 | fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
1055 | { | |
1056 | int i; | |
1057 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1058 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1059 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
1060 | ||
1061 | for (i = 0; i < ppc_num_vshrs; i++) | |
1062 | regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
1063 | *vsxregsetp + i * vsxregsize); | |
1064 | } | |
1065 | ||
9abe5450 | 1066 | static void |
56be3814 | 1067 | fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
1068 | { |
1069 | int i; | |
40a6adc1 MD |
1070 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1071 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9abe5450 | 1072 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
1073 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
1074 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
1075 | |
1076 | for (i = 0; i < num_of_vrregs; i++) | |
1077 | { | |
1078 | /* The last 2 registers of this set are only 32 bit long, not | |
1079 | 128, but only VSCR is fetched as a 16 bytes quantity. */ | |
1080 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 1081 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1082 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 1083 | else |
56be3814 | 1084 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1085 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
1086 | } |
1087 | } | |
1088 | ||
604c2f83 LM |
1089 | static void |
1090 | store_vsx_registers (const struct regcache *regcache, int tid) | |
1091 | { | |
1092 | int ret; | |
1093 | gdb_vsxregset_t regs; | |
1094 | ||
1095 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
1096 | if (ret < 0) | |
1097 | { | |
1098 | if (errno == EIO) | |
1099 | { | |
1100 | have_ptrace_getsetvsxregs = 0; | |
1101 | return; | |
1102 | } | |
1103 | perror_with_name (_("Couldn't get VSX registers")); | |
1104 | } | |
1105 | ||
1106 | fill_vsxregset (regcache, ®s); | |
1107 | ||
1108 | if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0) | |
1109 | perror_with_name (_("Couldn't write VSX registers")); | |
1110 | } | |
1111 | ||
9abe5450 | 1112 | static void |
56be3814 | 1113 | store_altivec_registers (const struct regcache *regcache, int tid) |
9abe5450 EZ |
1114 | { |
1115 | int ret; | |
1116 | gdb_vrregset_t regs; | |
1117 | ||
0897f59b | 1118 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
9abe5450 EZ |
1119 | if (ret < 0) |
1120 | { | |
1121 | if (errno == EIO) | |
1122 | { | |
1123 | have_ptrace_getvrregs = 0; | |
1124 | return; | |
1125 | } | |
e2e0b3e5 | 1126 | perror_with_name (_("Couldn't get AltiVec registers")); |
9abe5450 EZ |
1127 | } |
1128 | ||
56be3814 | 1129 | fill_vrregset (regcache, ®s); |
9abe5450 | 1130 | |
0897f59b | 1131 | if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0) |
e2e0b3e5 | 1132 | perror_with_name (_("Couldn't write AltiVec registers")); |
9abe5450 EZ |
1133 | } |
1134 | ||
1dfe79e8 SDJ |
1135 | /* This function actually issues the request to ptrace, telling |
1136 | it to store all general-purpose registers present in the specified | |
1137 | regset. | |
1138 | ||
1139 | If the ptrace request does not exist, this function returns 0 | |
1140 | and properly sets the have_ptrace_* flag. If the request fails, | |
1141 | this function calls perror_with_name. Otherwise, if the request | |
1142 | succeeds, then the regcache is stored and 1 is returned. */ | |
1143 | static int | |
1144 | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | |
1145 | { | |
1146 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1147 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1148 | gdb_gregset_t gregset; | |
1149 | ||
1150 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
1151 | { | |
1152 | if (errno == EIO) | |
1153 | { | |
1154 | have_ptrace_getsetregs = 0; | |
1155 | return 0; | |
1156 | } | |
1157 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
1158 | } | |
1159 | ||
1160 | fill_gregset (regcache, &gregset, regno); | |
1161 | ||
1162 | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | |
1163 | { | |
1164 | if (errno == EIO) | |
1165 | { | |
1166 | have_ptrace_getsetregs = 0; | |
1167 | return 0; | |
1168 | } | |
1169 | perror_with_name (_("Couldn't set general-purpose registers.")); | |
1170 | } | |
1171 | ||
1172 | return 1; | |
1173 | } | |
1174 | ||
1175 | /* This is a wrapper for the store_all_gp_regs function. It is | |
1176 | responsible for verifying if this target has the ptrace request | |
1177 | that can be used to store all general-purpose registers at one | |
1178 | shot. If it doesn't, then we should store them using the | |
1179 | old-fashioned way, which is to iterate over the registers and | |
1180 | store them one by one. */ | |
45229ea4 | 1181 | static void |
1dfe79e8 | 1182 | store_gp_regs (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1183 | { |
40a6adc1 MD |
1184 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1185 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1dfe79e8 SDJ |
1186 | int i; |
1187 | ||
1188 | if (have_ptrace_getsetregs) | |
1189 | if (store_all_gp_regs (regcache, tid, regno)) | |
1190 | return; | |
1191 | ||
1192 | /* If we hit this point, it doesn't really matter which | |
1193 | architecture we are using. We just need to store the | |
1194 | registers in the "old-fashioned way". */ | |
6ced10dd | 1195 | for (i = 0; i < ppc_num_gprs; i++) |
56be3814 | 1196 | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
1dfe79e8 SDJ |
1197 | } |
1198 | ||
1199 | /* This function actually issues the request to ptrace, telling | |
1200 | it to store all floating-point registers present in the specified | |
1201 | regset. | |
1202 | ||
1203 | If the ptrace request does not exist, this function returns 0 | |
1204 | and properly sets the have_ptrace_* flag. If the request fails, | |
1205 | this function calls perror_with_name. Otherwise, if the request | |
1206 | succeeds, then the regcache is stored and 1 is returned. */ | |
1207 | static int | |
1208 | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1209 | { | |
1210 | gdb_fpregset_t fpregs; | |
1211 | ||
1212 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1213 | { | |
1214 | if (errno == EIO) | |
1215 | { | |
1216 | have_ptrace_getsetfpregs = 0; | |
1217 | return 0; | |
1218 | } | |
1219 | perror_with_name (_("Couldn't get floating-point registers.")); | |
1220 | } | |
1221 | ||
1222 | fill_fpregset (regcache, &fpregs, regno); | |
1223 | ||
1224 | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1225 | { | |
1226 | if (errno == EIO) | |
1227 | { | |
1228 | have_ptrace_getsetfpregs = 0; | |
1229 | return 0; | |
1230 | } | |
1231 | perror_with_name (_("Couldn't set floating-point registers.")); | |
1232 | } | |
1233 | ||
1234 | return 1; | |
1235 | } | |
1236 | ||
1237 | /* This is a wrapper for the store_all_fp_regs function. It is | |
1238 | responsible for verifying if this target has the ptrace request | |
1239 | that can be used to store all floating-point registers at one | |
1240 | shot. If it doesn't, then we should store them using the | |
1241 | old-fashioned way, which is to iterate over the registers and | |
1242 | store them one by one. */ | |
1243 | static void | |
1244 | store_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1245 | { | |
1246 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1247 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1248 | int i; | |
1249 | ||
1250 | if (have_ptrace_getsetfpregs) | |
1251 | if (store_all_fp_regs (regcache, tid, regno)) | |
1252 | return; | |
1253 | ||
1254 | /* If we hit this point, it doesn't really matter which | |
1255 | architecture we are using. We just need to store the | |
1256 | registers in the "old-fashioned way". */ | |
1257 | for (i = 0; i < ppc_num_fprs; i++) | |
1258 | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
1259 | } | |
1260 | ||
1261 | static void | |
1262 | store_ppc_registers (const struct regcache *regcache, int tid) | |
1263 | { | |
1264 | int i; | |
1265 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1266 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1267 | ||
1268 | store_gp_regs (regcache, tid, -1); | |
32b99774 | 1269 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 1270 | store_fp_regs (regcache, tid, -1); |
40a6adc1 | 1271 | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 1272 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 1273 | store_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 1274 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 1275 | store_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 1276 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 1277 | store_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 1278 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 1279 | store_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 1280 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 1281 | store_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 1282 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 1283 | store_register (regcache, tid, tdep->ppc_mq_regnum); |
32b99774 | 1284 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 1285 | store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
7284e1be UW |
1286 | if (ppc_linux_trap_reg_p (gdbarch)) |
1287 | { | |
1288 | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
1289 | store_register (regcache, tid, PPC_TRAP_REGNUM); | |
1290 | } | |
9abe5450 EZ |
1291 | if (have_ptrace_getvrregs) |
1292 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 1293 | store_altivec_registers (regcache, tid); |
604c2f83 LM |
1294 | if (have_ptrace_getsetvsxregs) |
1295 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
1296 | store_vsx_registers (regcache, tid); | |
6ced10dd | 1297 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 1298 | store_spe_register (regcache, tid, -1); |
45229ea4 EZ |
1299 | } |
1300 | ||
6ffbb7ab | 1301 | /* Fetch the AT_HWCAP entry from the aux vector. */ |
b261e0c5 UW |
1302 | static unsigned long |
1303 | ppc_linux_get_hwcap (void) | |
6ffbb7ab TJB |
1304 | { |
1305 | CORE_ADDR field; | |
1306 | ||
1307 | if (target_auxv_search (¤t_target, AT_HWCAP, &field)) | |
1308 | return (unsigned long) field; | |
1309 | ||
1310 | return 0; | |
1311 | } | |
1312 | ||
1313 | /* The cached DABR value, to install in new threads. | |
926bf92d UW |
1314 | This variable is used when the PowerPC HWDEBUG ptrace |
1315 | interface is not available. */ | |
6ffbb7ab TJB |
1316 | static long saved_dabr_value; |
1317 | ||
1318 | /* Global structure that will store information about the available | |
926bf92d UW |
1319 | features provided by the PowerPC HWDEBUG ptrace interface. */ |
1320 | static struct ppc_debug_info hwdebug_info; | |
6ffbb7ab TJB |
1321 | |
1322 | /* Global variable that holds the maximum number of slots that the | |
926bf92d UW |
1323 | kernel will use. This is only used when PowerPC HWDEBUG ptrace interface |
1324 | is available. */ | |
6ffbb7ab TJB |
1325 | static size_t max_slots_number = 0; |
1326 | ||
1327 | struct hw_break_tuple | |
1328 | { | |
1329 | long slot; | |
1330 | struct ppc_hw_breakpoint *hw_break; | |
1331 | }; | |
1332 | ||
1333 | /* This is an internal VEC created to store information about *points inserted | |
926bf92d UW |
1334 | for each thread. This is used when PowerPC HWDEBUG ptrace interface is |
1335 | available. */ | |
6ffbb7ab TJB |
1336 | typedef struct thread_points |
1337 | { | |
1338 | /* The TID to which this *point relates. */ | |
1339 | int tid; | |
1340 | /* Information about the *point, such as its address, type, etc. | |
1341 | ||
1342 | Each element inside this vector corresponds to a hardware | |
1343 | breakpoint or watchpoint in the thread represented by TID. The maximum | |
1344 | size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of | |
1345 | the tuple is NULL, then the position in the vector is free. */ | |
1346 | struct hw_break_tuple *hw_breaks; | |
1347 | } *thread_points_p; | |
1348 | DEF_VEC_P (thread_points_p); | |
1349 | ||
1350 | VEC(thread_points_p) *ppc_threads = NULL; | |
1351 | ||
926bf92d UW |
1352 | /* The version of the PowerPC HWDEBUG kernel interface that we will use, if |
1353 | available. */ | |
6ffbb7ab TJB |
1354 | #define PPC_DEBUG_CURRENT_VERSION 1 |
1355 | ||
926bf92d | 1356 | /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */ |
e0d24f8d | 1357 | static int |
926bf92d | 1358 | have_ptrace_hwdebug_interface (void) |
e0d24f8d | 1359 | { |
926bf92d | 1360 | static int have_ptrace_hwdebug_interface = -1; |
e0d24f8d | 1361 | |
926bf92d | 1362 | if (have_ptrace_hwdebug_interface == -1) |
6ffbb7ab TJB |
1363 | { |
1364 | int tid; | |
e0d24f8d | 1365 | |
dfd4cc63 | 1366 | tid = ptid_get_lwp (inferior_ptid); |
6ffbb7ab | 1367 | if (tid == 0) |
dfd4cc63 | 1368 | tid = ptid_get_pid (inferior_ptid); |
e0d24f8d | 1369 | |
926bf92d UW |
1370 | /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */ |
1371 | if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0) | |
6ffbb7ab | 1372 | { |
926bf92d | 1373 | /* Check whether PowerPC HWDEBUG ptrace interface is functional and |
0c56f59b | 1374 | provides any supported feature. */ |
926bf92d | 1375 | if (hwdebug_info.features != 0) |
0c56f59b | 1376 | { |
926bf92d UW |
1377 | have_ptrace_hwdebug_interface = 1; |
1378 | max_slots_number = hwdebug_info.num_instruction_bps | |
1379 | + hwdebug_info.num_data_bps | |
1380 | + hwdebug_info.num_condition_regs; | |
1381 | return have_ptrace_hwdebug_interface; | |
0c56f59b | 1382 | } |
6ffbb7ab | 1383 | } |
926bf92d UW |
1384 | /* Old school interface and no PowerPC HWDEBUG ptrace support. */ |
1385 | have_ptrace_hwdebug_interface = 0; | |
1386 | memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info)); | |
6ffbb7ab TJB |
1387 | } |
1388 | ||
926bf92d | 1389 | return have_ptrace_hwdebug_interface; |
e0d24f8d WZ |
1390 | } |
1391 | ||
6ffbb7ab | 1392 | static int |
5461485a | 1393 | ppc_linux_can_use_hw_breakpoint (struct target_ops *self, |
f486487f | 1394 | enum bptype type, int cnt, int ot) |
b7622095 | 1395 | { |
6ffbb7ab | 1396 | int total_hw_wp, total_hw_bp; |
b7622095 | 1397 | |
926bf92d | 1398 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab | 1399 | { |
926bf92d UW |
1400 | /* When PowerPC HWDEBUG ptrace interface is available, the number of |
1401 | available hardware watchpoints and breakpoints is stored at the | |
1402 | hwdebug_info struct. */ | |
1403 | total_hw_bp = hwdebug_info.num_instruction_bps; | |
1404 | total_hw_wp = hwdebug_info.num_data_bps; | |
6ffbb7ab TJB |
1405 | } |
1406 | else | |
1407 | { | |
926bf92d UW |
1408 | /* When we do not have PowerPC HWDEBUG ptrace interface, we should |
1409 | consider having 1 hardware watchpoint and no hardware breakpoints. */ | |
6ffbb7ab TJB |
1410 | total_hw_bp = 0; |
1411 | total_hw_wp = 1; | |
1412 | } | |
b7622095 | 1413 | |
6ffbb7ab TJB |
1414 | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
1415 | || type == bp_access_watchpoint || type == bp_watchpoint) | |
1416 | { | |
bb08bdbd | 1417 | if (cnt + ot > total_hw_wp) |
6ffbb7ab TJB |
1418 | return -1; |
1419 | } | |
1420 | else if (type == bp_hardware_breakpoint) | |
1421 | { | |
572f6555 EBM |
1422 | if (total_hw_bp == 0) |
1423 | { | |
1424 | /* No hardware breakpoint support. */ | |
1425 | return 0; | |
1426 | } | |
6ffbb7ab TJB |
1427 | if (cnt > total_hw_bp) |
1428 | return -1; | |
1429 | } | |
1430 | ||
926bf92d | 1431 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1432 | { |
1433 | int tid; | |
1434 | ptid_t ptid = inferior_ptid; | |
1435 | ||
0df8b418 MS |
1436 | /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG |
1437 | and whether the target has DABR. If either answer is no, the | |
1438 | ptrace call will return -1. Fail in that case. */ | |
dfd4cc63 | 1439 | tid = ptid_get_lwp (ptid); |
6ffbb7ab | 1440 | if (tid == 0) |
dfd4cc63 | 1441 | tid = ptid_get_pid (ptid); |
6ffbb7ab TJB |
1442 | |
1443 | if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) | |
1444 | return 0; | |
1445 | } | |
1446 | ||
1447 | return 1; | |
b7622095 LM |
1448 | } |
1449 | ||
e0d24f8d | 1450 | static int |
31568a15 TT |
1451 | ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self, |
1452 | CORE_ADDR addr, int len) | |
e0d24f8d WZ |
1453 | { |
1454 | /* Handle sub-8-byte quantities. */ | |
1455 | if (len <= 0) | |
1456 | return 0; | |
1457 | ||
926bf92d UW |
1458 | /* The PowerPC HWDEBUG ptrace interface tells if there are alignment |
1459 | restrictions for watchpoints in the processors. In that case, we use that | |
1460 | information to determine the hardcoded watchable region for | |
1461 | watchpoints. */ | |
1462 | if (have_ptrace_hwdebug_interface ()) | |
6ffbb7ab | 1463 | { |
e23b9d6e | 1464 | int region_size; |
4feebbdd EBM |
1465 | /* Embedded DAC-based processors, like the PowerPC 440 have ranged |
1466 | watchpoints and can watch any access within an arbitrary memory | |
1467 | region. This is useful to watch arrays and structs, for instance. It | |
1468 | takes two hardware watchpoints though. */ | |
e09342b5 | 1469 | if (len > 1 |
926bf92d | 1470 | && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE |
4feebbdd | 1471 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
e09342b5 | 1472 | return 2; |
e23b9d6e UW |
1473 | /* Check if the processor provides DAWR interface. */ |
1474 | if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) | |
1475 | /* DAWR interface allows to watch up to 512 byte wide ranges which | |
1476 | can't cross a 512 byte boundary. */ | |
1477 | region_size = 512; | |
1478 | else | |
1479 | region_size = hwdebug_info.data_bp_alignment; | |
4feebbdd EBM |
1480 | /* Server processors provide one hardware watchpoint and addr+len should |
1481 | fall in the watchable region provided by the ptrace interface. */ | |
e23b9d6e UW |
1482 | if (region_size |
1483 | && (addr + len > (addr & ~(region_size - 1)) + region_size)) | |
0cf6dd15 | 1484 | return 0; |
6ffbb7ab | 1485 | } |
b7622095 | 1486 | /* addr+len must fall in the 8 byte watchable region for DABR-based |
926bf92d UW |
1487 | processors (i.e., server processors). Without the new PowerPC HWDEBUG |
1488 | ptrace interface, DAC-based processors (i.e., embedded processors) will | |
1489 | use addresses aligned to 4-bytes due to the way the read/write flags are | |
6ffbb7ab TJB |
1490 | passed in the old ptrace interface. */ |
1491 | else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
1492 | && (addr + len) > (addr & ~3) + 4) | |
1493 | || (addr + len) > (addr & ~7) + 8) | |
e0d24f8d WZ |
1494 | return 0; |
1495 | ||
1496 | return 1; | |
1497 | } | |
1498 | ||
6ffbb7ab | 1499 | /* This function compares two ppc_hw_breakpoint structs field-by-field. */ |
e4166a49 | 1500 | static int |
926bf92d | 1501 | hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) |
6ffbb7ab | 1502 | { |
ad422571 TJB |
1503 | return (a->trigger_type == b->trigger_type |
1504 | && a->addr_mode == b->addr_mode | |
1505 | && a->condition_mode == b->condition_mode | |
1506 | && a->addr == b->addr | |
1507 | && a->addr2 == b->addr2 | |
6ffbb7ab TJB |
1508 | && a->condition_value == b->condition_value); |
1509 | } | |
1510 | ||
1511 | /* This function can be used to retrieve a thread_points by the TID of the | |
1512 | related process/thread. If nothing has been found, and ALLOC_NEW is 0, | |
1513 | it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the | |
1514 | provided TID will be created and returned. */ | |
1515 | static struct thread_points * | |
926bf92d | 1516 | hwdebug_find_thread_points_by_tid (int tid, int alloc_new) |
6ffbb7ab TJB |
1517 | { |
1518 | int i; | |
1519 | struct thread_points *t; | |
1520 | ||
1521 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++) | |
1522 | if (t->tid == tid) | |
1523 | return t; | |
1524 | ||
1525 | t = NULL; | |
1526 | ||
1527 | /* Do we need to allocate a new point_item | |
1528 | if the wanted one does not exist? */ | |
1529 | if (alloc_new) | |
1530 | { | |
8d749320 SM |
1531 | t = XNEW (struct thread_points); |
1532 | t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number); | |
6ffbb7ab TJB |
1533 | t->tid = tid; |
1534 | VEC_safe_push (thread_points_p, ppc_threads, t); | |
1535 | } | |
1536 | ||
1537 | return t; | |
1538 | } | |
1539 | ||
1540 | /* This function is a generic wrapper that is responsible for inserting a | |
1541 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1542 | kernel) and registering it internally in GDB. */ | |
1543 | static void | |
926bf92d | 1544 | hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1545 | { |
1546 | int i; | |
1547 | long slot; | |
8d749320 | 1548 | struct ppc_hw_breakpoint *p = XNEW (struct ppc_hw_breakpoint); |
6ffbb7ab TJB |
1549 | struct hw_break_tuple *hw_breaks; |
1550 | struct cleanup *c = make_cleanup (xfree, p); | |
1551 | struct thread_points *t; | |
1552 | struct hw_break_tuple *tuple; | |
1553 | ||
1554 | memcpy (p, b, sizeof (struct ppc_hw_breakpoint)); | |
1555 | ||
1556 | errno = 0; | |
1557 | slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p); | |
1558 | if (slot < 0) | |
1559 | perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); | |
1560 | ||
1561 | /* Everything went fine, so we have to register this *point. */ | |
926bf92d | 1562 | t = hwdebug_find_thread_points_by_tid (tid, 1); |
6ffbb7ab TJB |
1563 | gdb_assert (t != NULL); |
1564 | hw_breaks = t->hw_breaks; | |
1565 | ||
1566 | /* Find a free element in the hw_breaks vector. */ | |
1567 | for (i = 0; i < max_slots_number; i++) | |
1568 | if (hw_breaks[i].hw_break == NULL) | |
1569 | { | |
1570 | hw_breaks[i].slot = slot; | |
1571 | hw_breaks[i].hw_break = p; | |
1572 | break; | |
1573 | } | |
1574 | ||
1575 | gdb_assert (i != max_slots_number); | |
1576 | ||
1577 | discard_cleanups (c); | |
1578 | } | |
1579 | ||
1580 | /* This function is a generic wrapper that is responsible for removing a | |
1581 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1582 | kernel), and unregistering it internally at GDB. */ | |
1583 | static void | |
926bf92d | 1584 | hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1585 | { |
1586 | int i; | |
1587 | struct hw_break_tuple *hw_breaks; | |
1588 | struct thread_points *t; | |
1589 | ||
926bf92d | 1590 | t = hwdebug_find_thread_points_by_tid (tid, 0); |
6ffbb7ab TJB |
1591 | gdb_assert (t != NULL); |
1592 | hw_breaks = t->hw_breaks; | |
1593 | ||
1594 | for (i = 0; i < max_slots_number; i++) | |
926bf92d | 1595 | if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b)) |
6ffbb7ab TJB |
1596 | break; |
1597 | ||
1598 | gdb_assert (i != max_slots_number); | |
1599 | ||
1600 | /* We have to ignore ENOENT errors because the kernel implements hardware | |
1601 | breakpoints/watchpoints as "one-shot", that is, they are automatically | |
1602 | deleted when hit. */ | |
1603 | errno = 0; | |
1604 | if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) | |
1605 | if (errno != ENOENT) | |
0df8b418 MS |
1606 | perror_with_name (_("Unexpected error deleting " |
1607 | "breakpoint or watchpoint")); | |
6ffbb7ab TJB |
1608 | |
1609 | xfree (hw_breaks[i].hw_break); | |
1610 | hw_breaks[i].hw_break = NULL; | |
1611 | } | |
9f0bdab8 | 1612 | |
f1310107 TJB |
1613 | /* Return the number of registers needed for a ranged breakpoint. */ |
1614 | ||
1615 | static int | |
1616 | ppc_linux_ranged_break_num_registers (struct target_ops *target) | |
1617 | { | |
926bf92d UW |
1618 | return ((have_ptrace_hwdebug_interface () |
1619 | && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)? | |
f1310107 TJB |
1620 | 2 : -1); |
1621 | } | |
1622 | ||
1623 | /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for | |
1624 | success, 1 if hardware breakpoints are not supported or -1 for failure. */ | |
1625 | ||
2c387241 | 1626 | static int |
23a26771 TT |
1627 | ppc_linux_insert_hw_breakpoint (struct target_ops *self, |
1628 | struct gdbarch *gdbarch, | |
6ffbb7ab | 1629 | struct bp_target_info *bp_tgt) |
e0d24f8d | 1630 | { |
9f0bdab8 | 1631 | struct lwp_info *lp; |
6ffbb7ab TJB |
1632 | struct ppc_hw_breakpoint p; |
1633 | ||
926bf92d | 1634 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1635 | return -1; |
1636 | ||
ad422571 TJB |
1637 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1638 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 | 1639 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
0d5ed153 | 1640 | p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); |
6ffbb7ab TJB |
1641 | p.condition_value = 0; |
1642 | ||
f1310107 TJB |
1643 | if (bp_tgt->length) |
1644 | { | |
1645 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1646 | ||
1647 | /* The breakpoint will trigger if the address of the instruction is | |
1648 | within the defined range, as follows: p.addr <= address < p.addr2. */ | |
1649 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1650 | } | |
1651 | else | |
1652 | { | |
1653 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1654 | p.addr2 = 0; | |
1655 | } | |
1656 | ||
4c38200f | 1657 | ALL_LWPS (lp) |
dfd4cc63 | 1658 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1659 | |
1660 | return 0; | |
1661 | } | |
1662 | ||
1663 | static int | |
a64dc96c TT |
1664 | ppc_linux_remove_hw_breakpoint (struct target_ops *self, |
1665 | struct gdbarch *gdbarch, | |
6ffbb7ab TJB |
1666 | struct bp_target_info *bp_tgt) |
1667 | { | |
6ffbb7ab TJB |
1668 | struct lwp_info *lp; |
1669 | struct ppc_hw_breakpoint p; | |
b7622095 | 1670 | |
926bf92d | 1671 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1672 | return -1; |
1673 | ||
ad422571 TJB |
1674 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1675 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1676 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1677 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1678 | p.condition_value = 0; |
1679 | ||
f1310107 TJB |
1680 | if (bp_tgt->length) |
1681 | { | |
1682 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1683 | ||
1684 | /* The breakpoint will trigger if the address of the instruction is within | |
1685 | the defined range, as follows: p.addr <= address < p.addr2. */ | |
1686 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1687 | } | |
1688 | else | |
1689 | { | |
1690 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1691 | p.addr2 = 0; | |
1692 | } | |
1693 | ||
4c38200f | 1694 | ALL_LWPS (lp) |
dfd4cc63 | 1695 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1696 | |
1697 | return 0; | |
1698 | } | |
1699 | ||
1700 | static int | |
e76460db | 1701 | get_trigger_type (enum target_hw_bp_type type) |
6ffbb7ab TJB |
1702 | { |
1703 | int t; | |
1704 | ||
e76460db | 1705 | if (type == hw_read) |
6ffbb7ab | 1706 | t = PPC_BREAKPOINT_TRIGGER_READ; |
e76460db | 1707 | else if (type == hw_write) |
6ffbb7ab | 1708 | t = PPC_BREAKPOINT_TRIGGER_WRITE; |
b7622095 | 1709 | else |
6ffbb7ab TJB |
1710 | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
1711 | ||
1712 | return t; | |
1713 | } | |
1714 | ||
9c06b0b4 TJB |
1715 | /* Insert a new masked watchpoint at ADDR using the mask MASK. |
1716 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1717 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1718 | an error on failure. */ | |
1719 | ||
1720 | static int | |
1721 | ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
f4b0a671 | 1722 | CORE_ADDR mask, enum target_hw_bp_type rw) |
9c06b0b4 | 1723 | { |
9c06b0b4 TJB |
1724 | struct lwp_info *lp; |
1725 | struct ppc_hw_breakpoint p; | |
1726 | ||
926bf92d | 1727 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1728 | |
1729 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1730 | p.trigger_type = get_trigger_type (rw); | |
1731 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1732 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1733 | p.addr = addr; | |
1734 | p.addr2 = mask; | |
1735 | p.condition_value = 0; | |
1736 | ||
4c38200f | 1737 | ALL_LWPS (lp) |
dfd4cc63 | 1738 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1739 | |
1740 | return 0; | |
1741 | } | |
1742 | ||
1743 | /* Remove a masked watchpoint at ADDR with the mask MASK. | |
1744 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1745 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1746 | an error on failure. */ | |
1747 | ||
1748 | static int | |
1749 | ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
f4b0a671 | 1750 | CORE_ADDR mask, enum target_hw_bp_type rw) |
9c06b0b4 | 1751 | { |
9c06b0b4 TJB |
1752 | struct lwp_info *lp; |
1753 | struct ppc_hw_breakpoint p; | |
1754 | ||
926bf92d | 1755 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1756 | |
1757 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1758 | p.trigger_type = get_trigger_type (rw); | |
1759 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1760 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1761 | p.addr = addr; | |
1762 | p.addr2 = mask; | |
1763 | p.condition_value = 0; | |
1764 | ||
4c38200f | 1765 | ALL_LWPS (lp) |
dfd4cc63 | 1766 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1767 | |
1768 | return 0; | |
1769 | } | |
1770 | ||
0cf6dd15 TJB |
1771 | /* Check whether we have at least one free DVC register. */ |
1772 | static int | |
1773 | can_use_watchpoint_cond_accel (void) | |
1774 | { | |
1775 | struct thread_points *p; | |
dfd4cc63 | 1776 | int tid = ptid_get_lwp (inferior_ptid); |
926bf92d | 1777 | int cnt = hwdebug_info.num_condition_regs, i; |
0cf6dd15 TJB |
1778 | CORE_ADDR tmp_value; |
1779 | ||
926bf92d | 1780 | if (!have_ptrace_hwdebug_interface () || cnt == 0) |
0cf6dd15 TJB |
1781 | return 0; |
1782 | ||
926bf92d | 1783 | p = hwdebug_find_thread_points_by_tid (tid, 0); |
0cf6dd15 TJB |
1784 | |
1785 | if (p) | |
1786 | { | |
1787 | for (i = 0; i < max_slots_number; i++) | |
1788 | if (p->hw_breaks[i].hw_break != NULL | |
1789 | && (p->hw_breaks[i].hw_break->condition_mode | |
1790 | != PPC_BREAKPOINT_CONDITION_NONE)) | |
1791 | cnt--; | |
1792 | ||
1793 | /* There are no available slots now. */ | |
1794 | if (cnt <= 0) | |
1795 | return 0; | |
1796 | } | |
1797 | ||
1798 | return 1; | |
1799 | } | |
1800 | ||
1801 | /* Calculate the enable bits and the contents of the Data Value Compare | |
1802 | debug register present in BookE processors. | |
1803 | ||
1804 | ADDR is the address to be watched, LEN is the length of watched data | |
1805 | and DATA_VALUE is the value which will trigger the watchpoint. | |
1806 | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | |
1807 | CONDITION_VALUE will hold the value which should be put in the | |
1808 | DVC register. */ | |
1809 | static void | |
1810 | calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, | |
1811 | uint32_t *condition_mode, uint64_t *condition_value) | |
1812 | { | |
1813 | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | |
1814 | rightmost_enabled_byte; | |
1815 | CORE_ADDR addr_end_data, addr_end_dvc; | |
1816 | ||
1817 | /* The DVC register compares bytes within fixed-length windows which | |
1818 | are word-aligned, with length equal to that of the DVC register. | |
1819 | We need to calculate where our watch region is relative to that | |
1820 | window and enable comparison of the bytes which fall within it. */ | |
1821 | ||
926bf92d | 1822 | align_offset = addr % hwdebug_info.sizeof_condition; |
0cf6dd15 TJB |
1823 | addr_end_data = addr + len; |
1824 | addr_end_dvc = (addr - align_offset | |
926bf92d | 1825 | + hwdebug_info.sizeof_condition); |
0cf6dd15 TJB |
1826 | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? |
1827 | addr_end_data - addr_end_dvc : 0; | |
1828 | num_byte_enable = len - num_bytes_off_dvc; | |
1829 | /* Here, bytes are numbered from right to left. */ | |
1830 | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | |
1831 | addr_end_dvc - addr_end_data : 0; | |
1832 | ||
1833 | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | |
1834 | for (i = 0; i < num_byte_enable; i++) | |
0df8b418 MS |
1835 | *condition_mode |
1836 | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | |
0cf6dd15 TJB |
1837 | |
1838 | /* Now we need to match the position within the DVC of the comparison | |
1839 | value with where the watch region is relative to the window | |
1840 | (i.e., the ALIGN_OFFSET). */ | |
1841 | ||
1842 | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | |
1843 | << rightmost_enabled_byte * 8); | |
1844 | } | |
1845 | ||
1846 | /* Return the number of memory locations that need to be accessed to | |
1847 | evaluate the expression which generated the given value chain. | |
1848 | Returns -1 if there's any register access involved, or if there are | |
1849 | other kinds of values which are not acceptable in a condition | |
1850 | expression (e.g., lval_computed or lval_internalvar). */ | |
1851 | static int | |
1852 | num_memory_accesses (struct value *v) | |
1853 | { | |
1854 | int found_memory_cnt = 0; | |
1855 | struct value *head = v; | |
1856 | ||
1857 | /* The idea here is that evaluating an expression generates a series | |
1858 | of values, one holding the value of every subexpression. (The | |
1859 | expression a*b+c has five subexpressions: a, b, a*b, c, and | |
1860 | a*b+c.) GDB's values hold almost enough information to establish | |
1861 | the criteria given above --- they identify memory lvalues, | |
1862 | register lvalues, computed values, etcetera. So we can evaluate | |
1863 | the expression, and then scan the chain of values that leaves | |
1864 | behind to determine the memory locations involved in the evaluation | |
1865 | of an expression. | |
1866 | ||
1867 | However, I don't think that the values returned by inferior | |
1868 | function calls are special in any way. So this function may not | |
1869 | notice that an expression contains an inferior function call. | |
1870 | FIXME. */ | |
1871 | ||
1872 | for (; v; v = value_next (v)) | |
1873 | { | |
1874 | /* Constants and values from the history are fine. */ | |
1875 | if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) | |
1876 | continue; | |
1877 | else if (VALUE_LVAL (v) == lval_memory) | |
1878 | { | |
1879 | /* A lazy memory lvalue is one that GDB never needed to fetch; | |
1880 | we either just used its address (e.g., `a' in `a.b') or | |
1881 | we never needed it at all (e.g., `a' in `a,b'). */ | |
1882 | if (!value_lazy (v)) | |
1883 | found_memory_cnt++; | |
1884 | } | |
0df8b418 | 1885 | /* Other kinds of values are not fine. */ |
0cf6dd15 TJB |
1886 | else |
1887 | return -1; | |
1888 | } | |
1889 | ||
1890 | return found_memory_cnt; | |
1891 | } | |
1892 | ||
1893 | /* Verifies whether the expression COND can be implemented using the | |
1894 | DVC (Data Value Compare) register in BookE processors. The expression | |
1895 | must test the watch value for equality with a constant expression. | |
1896 | If the function returns 1, DATA_VALUE will contain the constant against | |
e7db58ea TJB |
1897 | which the watch value should be compared and LEN will contain the size |
1898 | of the constant. */ | |
0cf6dd15 TJB |
1899 | static int |
1900 | check_condition (CORE_ADDR watch_addr, struct expression *cond, | |
e7db58ea | 1901 | CORE_ADDR *data_value, int *len) |
0cf6dd15 TJB |
1902 | { |
1903 | int pc = 1, num_accesses_left, num_accesses_right; | |
1904 | struct value *left_val, *right_val, *left_chain, *right_chain; | |
1905 | ||
1906 | if (cond->elts[0].opcode != BINOP_EQUAL) | |
1907 | return 0; | |
1908 | ||
3a1115a0 | 1909 | fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0); |
0cf6dd15 TJB |
1910 | num_accesses_left = num_memory_accesses (left_chain); |
1911 | ||
1912 | if (left_val == NULL || num_accesses_left < 0) | |
1913 | { | |
1914 | free_value_chain (left_chain); | |
1915 | ||
1916 | return 0; | |
1917 | } | |
1918 | ||
3a1115a0 | 1919 | fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0); |
0cf6dd15 TJB |
1920 | num_accesses_right = num_memory_accesses (right_chain); |
1921 | ||
1922 | if (right_val == NULL || num_accesses_right < 0) | |
1923 | { | |
1924 | free_value_chain (left_chain); | |
1925 | free_value_chain (right_chain); | |
1926 | ||
1927 | return 0; | |
1928 | } | |
1929 | ||
1930 | if (num_accesses_left == 1 && num_accesses_right == 0 | |
1931 | && VALUE_LVAL (left_val) == lval_memory | |
1932 | && value_address (left_val) == watch_addr) | |
e7db58ea TJB |
1933 | { |
1934 | *data_value = value_as_long (right_val); | |
1935 | ||
1936 | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | |
1937 | the same type as the memory region referenced by LEFT_VAL. */ | |
1938 | *len = TYPE_LENGTH (check_typedef (value_type (left_val))); | |
1939 | } | |
0cf6dd15 TJB |
1940 | else if (num_accesses_left == 0 && num_accesses_right == 1 |
1941 | && VALUE_LVAL (right_val) == lval_memory | |
1942 | && value_address (right_val) == watch_addr) | |
e7db58ea TJB |
1943 | { |
1944 | *data_value = value_as_long (left_val); | |
1945 | ||
1946 | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | |
1947 | the same type as the memory region referenced by RIGHT_VAL. */ | |
1948 | *len = TYPE_LENGTH (check_typedef (value_type (right_val))); | |
1949 | } | |
0cf6dd15 TJB |
1950 | else |
1951 | { | |
1952 | free_value_chain (left_chain); | |
1953 | free_value_chain (right_chain); | |
1954 | ||
1955 | return 0; | |
1956 | } | |
1957 | ||
1958 | free_value_chain (left_chain); | |
1959 | free_value_chain (right_chain); | |
1960 | ||
1961 | return 1; | |
1962 | } | |
1963 | ||
1964 | /* Return non-zero if the target is capable of using hardware to evaluate | |
1965 | the condition expression, thus only triggering the watchpoint when it is | |
1966 | true. */ | |
1967 | static int | |
c3a5ff89 TT |
1968 | ppc_linux_can_accel_watchpoint_condition (struct target_ops *self, |
1969 | CORE_ADDR addr, int len, int rw, | |
0cf6dd15 TJB |
1970 | struct expression *cond) |
1971 | { | |
1972 | CORE_ADDR data_value; | |
1973 | ||
926bf92d UW |
1974 | return (have_ptrace_hwdebug_interface () |
1975 | && hwdebug_info.num_condition_regs > 0 | |
e7db58ea | 1976 | && check_condition (addr, cond, &data_value, &len)); |
0cf6dd15 TJB |
1977 | } |
1978 | ||
e09342b5 TJB |
1979 | /* Set up P with the parameters necessary to request a watchpoint covering |
1980 | LEN bytes starting at ADDR and if possible with condition expression COND | |
1981 | evaluated by hardware. INSERT tells if we are creating a request for | |
1982 | inserting or removing the watchpoint. */ | |
1983 | ||
1984 | static void | |
1985 | create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr, | |
e76460db PA |
1986 | int len, enum target_hw_bp_type type, |
1987 | struct expression *cond, int insert) | |
e09342b5 | 1988 | { |
f16c4e8b | 1989 | if (len == 1 |
926bf92d | 1990 | || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) |
e09342b5 TJB |
1991 | { |
1992 | int use_condition; | |
1993 | CORE_ADDR data_value; | |
1994 | ||
1995 | use_condition = (insert? can_use_watchpoint_cond_accel () | |
926bf92d | 1996 | : hwdebug_info.num_condition_regs > 0); |
e7db58ea TJB |
1997 | if (cond && use_condition && check_condition (addr, cond, |
1998 | &data_value, &len)) | |
e09342b5 TJB |
1999 | calculate_dvc (addr, len, data_value, &p->condition_mode, |
2000 | &p->condition_value); | |
2001 | else | |
2002 | { | |
2003 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2004 | p->condition_value = 0; | |
2005 | } | |
2006 | ||
2007 | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
2008 | p->addr2 = 0; | |
2009 | } | |
2010 | else | |
2011 | { | |
2012 | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
2013 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
2014 | p->condition_value = 0; | |
2015 | ||
2016 | /* The watchpoint will trigger if the address of the memory access is | |
2017 | within the defined range, as follows: p->addr <= address < p->addr2. | |
2018 | ||
2019 | Note that the above sentence just documents how ptrace interprets | |
2020 | its arguments; the watchpoint is set to watch the range defined by | |
2021 | the user _inclusively_, as specified by the user interface. */ | |
2022 | p->addr2 = (uint64_t) addr + len; | |
2023 | } | |
2024 | ||
2025 | p->version = PPC_DEBUG_CURRENT_VERSION; | |
e76460db | 2026 | p->trigger_type = get_trigger_type (type); |
e09342b5 TJB |
2027 | p->addr = (uint64_t) addr; |
2028 | } | |
2029 | ||
6ffbb7ab | 2030 | static int |
e76460db PA |
2031 | ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, |
2032 | enum target_hw_bp_type type, | |
0cf6dd15 | 2033 | struct expression *cond) |
6ffbb7ab TJB |
2034 | { |
2035 | struct lwp_info *lp; | |
6ffbb7ab TJB |
2036 | int ret = -1; |
2037 | ||
926bf92d | 2038 | if (have_ptrace_hwdebug_interface ()) |
e0d24f8d | 2039 | { |
6ffbb7ab TJB |
2040 | struct ppc_hw_breakpoint p; |
2041 | ||
e76460db | 2042 | create_watchpoint_request (&p, addr, len, type, cond, 1); |
6ffbb7ab | 2043 | |
4c38200f | 2044 | ALL_LWPS (lp) |
dfd4cc63 | 2045 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2046 | |
2047 | ret = 0; | |
e0d24f8d | 2048 | } |
6ffbb7ab TJB |
2049 | else |
2050 | { | |
2051 | long dabr_value; | |
2052 | long read_mode, write_mode; | |
e0d24f8d | 2053 | |
6ffbb7ab TJB |
2054 | if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2055 | { | |
2056 | /* PowerPC 440 requires only the read/write flags to be passed | |
2057 | to the kernel. */ | |
ad422571 | 2058 | read_mode = 1; |
6ffbb7ab TJB |
2059 | write_mode = 2; |
2060 | } | |
2061 | else | |
2062 | { | |
2063 | /* PowerPC 970 and other DABR-based processors are required to pass | |
2064 | the Breakpoint Translation bit together with the flags. */ | |
ad422571 | 2065 | read_mode = 5; |
6ffbb7ab TJB |
2066 | write_mode = 6; |
2067 | } | |
1c86e440 | 2068 | |
6ffbb7ab | 2069 | dabr_value = addr & ~(read_mode | write_mode); |
e76460db | 2070 | switch (type) |
6ffbb7ab TJB |
2071 | { |
2072 | case hw_read: | |
2073 | /* Set read and translate bits. */ | |
2074 | dabr_value |= read_mode; | |
2075 | break; | |
2076 | case hw_write: | |
2077 | /* Set write and translate bits. */ | |
2078 | dabr_value |= write_mode; | |
2079 | break; | |
2080 | case hw_access: | |
2081 | /* Set read, write and translate bits. */ | |
2082 | dabr_value |= read_mode | write_mode; | |
2083 | break; | |
2084 | } | |
1c86e440 | 2085 | |
6ffbb7ab TJB |
2086 | saved_dabr_value = dabr_value; |
2087 | ||
4c38200f | 2088 | ALL_LWPS (lp) |
dfd4cc63 | 2089 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2090 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2091 | return -1; |
2092 | ||
2093 | ret = 0; | |
2094 | } | |
2095 | ||
2096 | return ret; | |
e0d24f8d WZ |
2097 | } |
2098 | ||
2c387241 | 2099 | static int |
e76460db PA |
2100 | ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, |
2101 | enum target_hw_bp_type type, | |
0cf6dd15 | 2102 | struct expression *cond) |
e0d24f8d | 2103 | { |
9f0bdab8 | 2104 | struct lwp_info *lp; |
6ffbb7ab | 2105 | int ret = -1; |
9f0bdab8 | 2106 | |
926bf92d | 2107 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2108 | { |
2109 | struct ppc_hw_breakpoint p; | |
2110 | ||
e76460db | 2111 | create_watchpoint_request (&p, addr, len, type, cond, 0); |
6ffbb7ab | 2112 | |
4c38200f | 2113 | ALL_LWPS (lp) |
dfd4cc63 | 2114 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2115 | |
2116 | ret = 0; | |
2117 | } | |
2118 | else | |
2119 | { | |
2120 | saved_dabr_value = 0; | |
4c38200f | 2121 | ALL_LWPS (lp) |
dfd4cc63 | 2122 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2123 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2124 | return -1; |
2125 | ||
2126 | ret = 0; | |
2127 | } | |
2128 | ||
2129 | return ret; | |
e0d24f8d WZ |
2130 | } |
2131 | ||
9f0bdab8 | 2132 | static void |
7b50312a | 2133 | ppc_linux_new_thread (struct lwp_info *lp) |
e0d24f8d | 2134 | { |
dfd4cc63 | 2135 | int tid = ptid_get_lwp (lp->ptid); |
6ffbb7ab | 2136 | |
926bf92d | 2137 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2138 | { |
2139 | int i; | |
2140 | struct thread_points *p; | |
2141 | struct hw_break_tuple *hw_breaks; | |
2142 | ||
2143 | if (VEC_empty (thread_points_p, ppc_threads)) | |
2144 | return; | |
2145 | ||
0df8b418 | 2146 | /* Get a list of breakpoints from any thread. */ |
6ffbb7ab TJB |
2147 | p = VEC_last (thread_points_p, ppc_threads); |
2148 | hw_breaks = p->hw_breaks; | |
2149 | ||
0df8b418 | 2150 | /* Copy that thread's breakpoints and watchpoints to the new thread. */ |
6ffbb7ab TJB |
2151 | for (i = 0; i < max_slots_number; i++) |
2152 | if (hw_breaks[i].hw_break) | |
aacbb8a5 LM |
2153 | { |
2154 | /* Older kernels did not make new threads inherit their parent | |
2155 | thread's debug state, so we always clear the slot and replicate | |
2156 | the debug state ourselves, ensuring compatibility with all | |
2157 | kernels. */ | |
2158 | ||
2159 | /* The ppc debug resource accounting is done through "slots". | |
2160 | Ask the kernel the deallocate this specific *point's slot. */ | |
2161 | ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot); | |
2162 | ||
926bf92d | 2163 | hwdebug_insert_point (hw_breaks[i].hw_break, tid); |
aacbb8a5 | 2164 | } |
6ffbb7ab TJB |
2165 | } |
2166 | else | |
2167 | ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); | |
2168 | } | |
2169 | ||
2170 | static void | |
2171 | ppc_linux_thread_exit (struct thread_info *tp, int silent) | |
2172 | { | |
2173 | int i; | |
dfd4cc63 | 2174 | int tid = ptid_get_lwp (tp->ptid); |
6ffbb7ab TJB |
2175 | struct hw_break_tuple *hw_breaks; |
2176 | struct thread_points *t = NULL, *p; | |
2177 | ||
926bf92d | 2178 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2179 | return; |
2180 | ||
2181 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++) | |
2182 | if (p->tid == tid) | |
2183 | { | |
2184 | t = p; | |
2185 | break; | |
2186 | } | |
2187 | ||
2188 | if (t == NULL) | |
2189 | return; | |
2190 | ||
2191 | VEC_unordered_remove (thread_points_p, ppc_threads, i); | |
2192 | ||
2193 | hw_breaks = t->hw_breaks; | |
2194 | ||
2195 | for (i = 0; i < max_slots_number; i++) | |
2196 | if (hw_breaks[i].hw_break) | |
2197 | xfree (hw_breaks[i].hw_break); | |
2198 | ||
2199 | xfree (t->hw_breaks); | |
2200 | xfree (t); | |
e0d24f8d WZ |
2201 | } |
2202 | ||
2203 | static int | |
9f0bdab8 | 2204 | ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) |
e0d24f8d | 2205 | { |
f865ee35 | 2206 | siginfo_t siginfo; |
e0d24f8d | 2207 | |
f865ee35 JK |
2208 | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
2209 | return 0; | |
e0d24f8d | 2210 | |
f865ee35 JK |
2211 | if (siginfo.si_signo != SIGTRAP |
2212 | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | |
e0d24f8d WZ |
2213 | return 0; |
2214 | ||
926bf92d | 2215 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2216 | { |
2217 | int i; | |
2218 | struct thread_points *t; | |
2219 | struct hw_break_tuple *hw_breaks; | |
2220 | /* The index (or slot) of the *point is passed in the si_errno field. */ | |
f865ee35 | 2221 | int slot = siginfo.si_errno; |
6ffbb7ab | 2222 | |
dfd4cc63 | 2223 | t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0); |
6ffbb7ab TJB |
2224 | |
2225 | /* Find out if this *point is a hardware breakpoint. | |
2226 | If so, we should return 0. */ | |
2227 | if (t) | |
2228 | { | |
2229 | hw_breaks = t->hw_breaks; | |
2230 | for (i = 0; i < max_slots_number; i++) | |
2231 | if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot | |
2232 | && hw_breaks[i].hw_break->trigger_type | |
2233 | == PPC_BREAKPOINT_TRIGGER_EXECUTE) | |
2234 | return 0; | |
2235 | } | |
2236 | } | |
2237 | ||
f865ee35 | 2238 | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
e0d24f8d WZ |
2239 | return 1; |
2240 | } | |
2241 | ||
9f0bdab8 | 2242 | static int |
6a109b6b | 2243 | ppc_linux_stopped_by_watchpoint (struct target_ops *ops) |
9f0bdab8 DJ |
2244 | { |
2245 | CORE_ADDR addr; | |
6a109b6b | 2246 | return ppc_linux_stopped_data_address (ops, &addr); |
9f0bdab8 DJ |
2247 | } |
2248 | ||
5009afc5 AS |
2249 | static int |
2250 | ppc_linux_watchpoint_addr_within_range (struct target_ops *target, | |
2251 | CORE_ADDR addr, | |
2252 | CORE_ADDR start, int length) | |
2253 | { | |
b7622095 LM |
2254 | int mask; |
2255 | ||
926bf92d | 2256 | if (have_ptrace_hwdebug_interface () |
6ffbb7ab TJB |
2257 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2258 | return start <= addr && start + length >= addr; | |
2259 | else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
b7622095 LM |
2260 | mask = 3; |
2261 | else | |
2262 | mask = 7; | |
2263 | ||
2264 | addr &= ~mask; | |
2265 | ||
0df8b418 | 2266 | /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
b7622095 | 2267 | return start <= addr + mask && start + length - 1 >= addr; |
5009afc5 AS |
2268 | } |
2269 | ||
9c06b0b4 TJB |
2270 | /* Return the number of registers needed for a masked hardware watchpoint. */ |
2271 | ||
2272 | static int | |
2273 | ppc_linux_masked_watch_num_registers (struct target_ops *target, | |
2274 | CORE_ADDR addr, CORE_ADDR mask) | |
2275 | { | |
926bf92d UW |
2276 | if (!have_ptrace_hwdebug_interface () |
2277 | || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | |
9c06b0b4 TJB |
2278 | return -1; |
2279 | else if ((mask & 0xC0000000) != 0xC0000000) | |
2280 | { | |
2281 | warning (_("The given mask covers kernel address space " | |
2282 | "and cannot be used.\n")); | |
2283 | ||
2284 | return -2; | |
2285 | } | |
2286 | else | |
2287 | return 2; | |
2288 | } | |
2289 | ||
10d6c8cd | 2290 | static void |
28439f5e PA |
2291 | ppc_linux_store_inferior_registers (struct target_ops *ops, |
2292 | struct regcache *regcache, int regno) | |
45229ea4 | 2293 | { |
0df8b418 | 2294 | /* Overload thread id onto process id. */ |
dfd4cc63 | 2295 | int tid = ptid_get_lwp (inferior_ptid); |
05f13b9c | 2296 | |
0df8b418 | 2297 | /* No thread id, just use process id. */ |
05f13b9c | 2298 | if (tid == 0) |
dfd4cc63 | 2299 | tid = ptid_get_pid (inferior_ptid); |
05f13b9c | 2300 | |
45229ea4 | 2301 | if (regno >= 0) |
56be3814 | 2302 | store_register (regcache, tid, regno); |
45229ea4 | 2303 | else |
56be3814 | 2304 | store_ppc_registers (regcache, tid); |
45229ea4 EZ |
2305 | } |
2306 | ||
f2db237a AM |
2307 | /* Functions for transferring registers between a gregset_t or fpregset_t |
2308 | (see sys/ucontext.h) and gdb's regcache. The word size is that used | |
0df8b418 | 2309 | by the ptrace interface, not the current program's ABI. Eg. if a |
f2db237a AM |
2310 | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
2311 | read or write 64-bit gregsets. This is to suit the host libthread_db. */ | |
2312 | ||
50c9bd31 | 2313 | void |
7f7fe91e | 2314 | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
c877c8e6 | 2315 | { |
f2db237a | 2316 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2317 | |
f2db237a | 2318 | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
c877c8e6 KB |
2319 | } |
2320 | ||
fdb28ac4 | 2321 | void |
7f7fe91e UW |
2322 | fill_gregset (const struct regcache *regcache, |
2323 | gdb_gregset_t *gregsetp, int regno) | |
fdb28ac4 | 2324 | { |
f2db237a | 2325 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2326 | |
f2db237a AM |
2327 | if (regno == -1) |
2328 | memset (gregsetp, 0, sizeof (*gregsetp)); | |
2329 | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | |
fdb28ac4 KB |
2330 | } |
2331 | ||
50c9bd31 | 2332 | void |
7f7fe91e | 2333 | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
c877c8e6 | 2334 | { |
f2db237a AM |
2335 | const struct regset *regset = ppc_linux_fpregset (); |
2336 | ||
2337 | ppc_supply_fpregset (regset, regcache, -1, | |
2338 | fpregsetp, sizeof (*fpregsetp)); | |
c877c8e6 | 2339 | } |
fdb28ac4 | 2340 | |
fdb28ac4 | 2341 | void |
7f7fe91e UW |
2342 | fill_fpregset (const struct regcache *regcache, |
2343 | gdb_fpregset_t *fpregsetp, int regno) | |
fdb28ac4 | 2344 | { |
f2db237a AM |
2345 | const struct regset *regset = ppc_linux_fpregset (); |
2346 | ||
2347 | ppc_collect_fpregset (regset, regcache, regno, | |
2348 | fpregsetp, sizeof (*fpregsetp)); | |
fdb28ac4 | 2349 | } |
10d6c8cd | 2350 | |
409c383c UW |
2351 | static int |
2352 | ppc_linux_target_wordsize (void) | |
2353 | { | |
2354 | int wordsize = 4; | |
2355 | ||
2356 | /* Check for 64-bit inferior process. This is the case when the host is | |
2357 | 64-bit, and in addition the top bit of the MSR register is set. */ | |
2358 | #ifdef __powerpc64__ | |
2359 | long msr; | |
2360 | ||
dfd4cc63 | 2361 | int tid = ptid_get_lwp (inferior_ptid); |
409c383c | 2362 | if (tid == 0) |
dfd4cc63 | 2363 | tid = ptid_get_pid (inferior_ptid); |
409c383c UW |
2364 | |
2365 | errno = 0; | |
2366 | msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0); | |
cdf43629 | 2367 | if (errno == 0 && ppc64_64bit_inferior_p (msr)) |
409c383c UW |
2368 | wordsize = 8; |
2369 | #endif | |
2370 | ||
2371 | return wordsize; | |
2372 | } | |
2373 | ||
2374 | static int | |
2375 | ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr, | |
2376 | gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | |
2377 | { | |
2378 | int sizeof_auxv_field = ppc_linux_target_wordsize (); | |
f5656ead | 2379 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
409c383c UW |
2380 | gdb_byte *ptr = *readptr; |
2381 | ||
2382 | if (endptr == ptr) | |
2383 | return 0; | |
2384 | ||
2385 | if (endptr - ptr < sizeof_auxv_field * 2) | |
2386 | return -1; | |
2387 | ||
e17a4113 | 2388 | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c | 2389 | ptr += sizeof_auxv_field; |
e17a4113 | 2390 | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c UW |
2391 | ptr += sizeof_auxv_field; |
2392 | ||
2393 | *readptr = ptr; | |
2394 | return 1; | |
2395 | } | |
2396 | ||
310a98e1 DJ |
2397 | static const struct target_desc * |
2398 | ppc_linux_read_description (struct target_ops *ops) | |
2399 | { | |
7284e1be | 2400 | int altivec = 0; |
604c2f83 | 2401 | int vsx = 0; |
69abc51c | 2402 | int isa205 = 0; |
f4d9bade | 2403 | int cell = 0; |
7284e1be | 2404 | |
dfd4cc63 | 2405 | int tid = ptid_get_lwp (inferior_ptid); |
7284e1be | 2406 | if (tid == 0) |
dfd4cc63 | 2407 | tid = ptid_get_pid (inferior_ptid); |
7284e1be | 2408 | |
310a98e1 DJ |
2409 | if (have_ptrace_getsetevrregs) |
2410 | { | |
2411 | struct gdb_evrregset_t evrregset; | |
310a98e1 DJ |
2412 | |
2413 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | |
7284e1be UW |
2414 | return tdesc_powerpc_e500l; |
2415 | ||
2416 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | |
2417 | Anything else needs to be reported. */ | |
2418 | else if (errno != EIO) | |
2419 | perror_with_name (_("Unable to fetch SPE registers")); | |
2420 | } | |
2421 | ||
0154d990 EBM |
2422 | if (have_ptrace_getsetvsxregs |
2423 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX)) | |
604c2f83 LM |
2424 | { |
2425 | gdb_vsxregset_t vsxregset; | |
2426 | ||
2427 | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | |
2428 | vsx = 1; | |
2429 | ||
2430 | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | |
2431 | Anything else needs to be reported. */ | |
2432 | else if (errno != EIO) | |
2433 | perror_with_name (_("Unable to fetch VSX registers")); | |
2434 | } | |
2435 | ||
0154d990 EBM |
2436 | if (have_ptrace_getvrregs |
2437 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC)) | |
7284e1be UW |
2438 | { |
2439 | gdb_vrregset_t vrregset; | |
2440 | ||
2441 | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | |
2442 | altivec = 1; | |
2443 | ||
2444 | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | |
2445 | Anything else needs to be reported. */ | |
2446 | else if (errno != EIO) | |
2447 | perror_with_name (_("Unable to fetch AltiVec registers")); | |
310a98e1 DJ |
2448 | } |
2449 | ||
f04c6d38 | 2450 | /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases |
0df8b418 | 2451 | the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this |
f04c6d38 TJB |
2452 | ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only |
2453 | PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher | |
2454 | half of the register are for Decimal Floating Point, we check if that | |
2455 | feature is available to decide the size of the FPSCR. */ | |
2456 | if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP) | |
69abc51c TJB |
2457 | isa205 = 1; |
2458 | ||
f4d9bade UW |
2459 | if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL) |
2460 | cell = 1; | |
2461 | ||
409c383c UW |
2462 | if (ppc_linux_target_wordsize () == 8) |
2463 | { | |
f4d9bade UW |
2464 | if (cell) |
2465 | return tdesc_powerpc_cell64l; | |
2466 | else if (vsx) | |
409c383c UW |
2467 | return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l; |
2468 | else if (altivec) | |
0df8b418 MS |
2469 | return isa205 |
2470 | ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l; | |
409c383c UW |
2471 | |
2472 | return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l; | |
2473 | } | |
7284e1be | 2474 | |
f4d9bade UW |
2475 | if (cell) |
2476 | return tdesc_powerpc_cell32l; | |
2477 | else if (vsx) | |
69abc51c | 2478 | return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l; |
604c2f83 | 2479 | else if (altivec) |
69abc51c | 2480 | return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l; |
604c2f83 | 2481 | |
69abc51c | 2482 | return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l; |
310a98e1 DJ |
2483 | } |
2484 | ||
10d6c8cd DJ |
2485 | void _initialize_ppc_linux_nat (void); |
2486 | ||
2487 | void | |
2488 | _initialize_ppc_linux_nat (void) | |
2489 | { | |
2490 | struct target_ops *t; | |
2491 | ||
2492 | /* Fill in the generic GNU/Linux methods. */ | |
2493 | t = linux_target (); | |
2494 | ||
2495 | /* Add our register access methods. */ | |
2496 | t->to_fetch_registers = ppc_linux_fetch_inferior_registers; | |
2497 | t->to_store_registers = ppc_linux_store_inferior_registers; | |
2498 | ||
6ffbb7ab TJB |
2499 | /* Add our breakpoint/watchpoint methods. */ |
2500 | t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint; | |
2501 | t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint; | |
2502 | t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint; | |
e0d24f8d WZ |
2503 | t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint; |
2504 | t->to_insert_watchpoint = ppc_linux_insert_watchpoint; | |
2505 | t->to_remove_watchpoint = ppc_linux_remove_watchpoint; | |
9c06b0b4 TJB |
2506 | t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint; |
2507 | t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint; | |
e0d24f8d WZ |
2508 | t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint; |
2509 | t->to_stopped_data_address = ppc_linux_stopped_data_address; | |
5009afc5 | 2510 | t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range; |
0df8b418 MS |
2511 | t->to_can_accel_watchpoint_condition |
2512 | = ppc_linux_can_accel_watchpoint_condition; | |
9c06b0b4 | 2513 | t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers; |
f1310107 | 2514 | t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers; |
e0d24f8d | 2515 | |
310a98e1 | 2516 | t->to_read_description = ppc_linux_read_description; |
409c383c | 2517 | t->to_auxv_parse = ppc_linux_auxv_parse; |
310a98e1 | 2518 | |
6ffbb7ab TJB |
2519 | observer_attach_thread_exit (ppc_linux_thread_exit); |
2520 | ||
10d6c8cd | 2521 | /* Register the target. */ |
f973ed9c | 2522 | linux_nat_add_target (t); |
9f0bdab8 | 2523 | linux_nat_set_new_thread (t, ppc_linux_new_thread); |
10d6c8cd | 2524 | } |