]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
aa820537 AM |
2 | Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
3 | Free Software Foundation, Inc. | |
e0001a05 NC |
4 | |
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or | |
8 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 9 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
10 | License, or (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, but | |
13 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
3e110533 | 19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 20 | 02110-1301, USA. */ |
e0001a05 | 21 | |
e0001a05 | 22 | #include "sysdep.h" |
3db64b00 | 23 | #include "bfd.h" |
e0001a05 | 24 | |
e0001a05 | 25 | #include <stdarg.h> |
e0001a05 NC |
26 | #include <strings.h> |
27 | ||
28 | #include "bfdlink.h" | |
29 | #include "libbfd.h" | |
30 | #include "elf-bfd.h" | |
31 | #include "elf/xtensa.h" | |
32 | #include "xtensa-isa.h" | |
33 | #include "xtensa-config.h" | |
34 | ||
43cd72b9 BW |
35 | #define XTENSA_NO_NOP_REMOVAL 0 |
36 | ||
e0001a05 NC |
37 | /* Local helper functions. */ |
38 | ||
f0e6fdb2 | 39 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 40 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 41 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 42 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 43 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 44 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 45 | static void do_fix_for_final_link |
7fa3d080 | 46 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
47 | |
48 | /* Local functions to handle Xtensa configurability. */ | |
49 | ||
7fa3d080 BW |
50 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
51 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
52 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
53 | static xtensa_opcode get_const16_opcode (void); | |
54 | static xtensa_opcode get_l32r_opcode (void); | |
55 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
56 | static int get_relocation_opnd (xtensa_opcode, int); | |
57 | static int get_relocation_slot (int); | |
e0001a05 | 58 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 59 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 60 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
61 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
62 | static bfd_boolean is_alt_relocation (int); | |
63 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 64 | static bfd_size_type insn_decode_len |
7fa3d080 | 65 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 66 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 67 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 68 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 69 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 70 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
71 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
72 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 73 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 74 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
75 | |
76 | /* Functions for link-time code simplifications. */ | |
77 | ||
43cd72b9 | 78 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 79 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 80 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
81 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
82 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
83 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
84 | |
85 | /* Access to internal relocations, section contents and symbols. */ | |
86 | ||
87 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
88 | (bfd *, asection *, bfd_boolean); |
89 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
91 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
92 | static void pin_contents (asection *, bfd_byte *); | |
93 | static void release_contents (asection *, bfd_byte *); | |
94 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
95 | |
96 | /* Miscellaneous utility functions. */ | |
97 | ||
f0e6fdb2 BW |
98 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
99 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 100 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 101 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
102 | (bfd *, unsigned long); |
103 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
104 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
105 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
106 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 107 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 108 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 109 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
110 | static int internal_reloc_compare (const void *, const void *); |
111 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 BW |
112 | static asection *xtensa_get_property_section (asection *, const char *); |
113 | extern asection *xtensa_make_property_section (asection *, const char *); | |
7fa3d080 | 114 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
115 | |
116 | /* Other functions called directly by the linker. */ | |
117 | ||
118 | typedef void (*deps_callback_t) | |
7fa3d080 | 119 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 120 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 121 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
122 | |
123 | ||
43cd72b9 BW |
124 | /* Globally visible flag for choosing size optimization of NOP removal |
125 | instead of branch-target-aware minimization for NOP removal. | |
126 | When nonzero, narrow all instructions and remove all NOPs possible | |
127 | around longcall expansions. */ | |
7fa3d080 | 128 | |
43cd72b9 BW |
129 | int elf32xtensa_size_opt; |
130 | ||
131 | ||
132 | /* The "new_section_hook" is used to set up a per-section | |
133 | "xtensa_relax_info" data structure with additional information used | |
134 | during relaxation. */ | |
e0001a05 | 135 | |
7fa3d080 | 136 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 137 | |
43cd72b9 | 138 | |
43cd72b9 BW |
139 | /* The GNU tools do not easily allow extending interfaces to pass around |
140 | the pointer to the Xtensa ISA information, so instead we add a global | |
141 | variable here (in BFD) that can be used by any of the tools that need | |
142 | this information. */ | |
143 | ||
144 | xtensa_isa xtensa_default_isa; | |
145 | ||
146 | ||
e0001a05 NC |
147 | /* When this is true, relocations may have been modified to refer to |
148 | symbols from other input files. The per-section list of "fix" | |
149 | records needs to be checked when resolving relocations. */ | |
150 | ||
151 | static bfd_boolean relaxing_section = FALSE; | |
152 | ||
43cd72b9 BW |
153 | /* When this is true, during final links, literals that cannot be |
154 | coalesced and their relocations may be moved to other sections. */ | |
155 | ||
156 | int elf32xtensa_no_literal_movement = 1; | |
157 | ||
e0001a05 NC |
158 | \f |
159 | static reloc_howto_type elf_howto_table[] = | |
160 | { | |
161 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
162 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
e5f131d1 | 163 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
164 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
165 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
166 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 167 | |
e0001a05 NC |
168 | /* Replace a 32-bit value with a value from the runtime linker (only |
169 | used by linker-generated stub functions). The r_addend value is | |
170 | special: 1 means to substitute a pointer to the runtime linker's | |
171 | dynamic resolver function; 2 means to substitute the link map for | |
172 | the shared object. */ | |
173 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
174 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
175 | ||
e0001a05 NC |
176 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
177 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 178 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
179 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
180 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 181 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
182 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
183 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 184 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
185 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
186 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
187 | FALSE, 0, 0xffffffff, FALSE), |
188 | ||
e0001a05 | 189 | EMPTY_HOWTO (7), |
e5f131d1 BW |
190 | |
191 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 192 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 193 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 194 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 195 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 196 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
197 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
198 | ||
e0001a05 NC |
199 | /* Assembly auto-expansion. */ |
200 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 201 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
202 | /* Relax assembly auto-expansion. */ |
203 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
204 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
205 | ||
e0001a05 | 206 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
207 | |
208 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
209 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
210 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 211 | |
e0001a05 NC |
212 | /* GNU extension to record C++ vtable hierarchy. */ |
213 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
214 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
e5f131d1 | 215 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
216 | /* GNU extension to record C++ vtable member usage. */ |
217 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
218 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
e5f131d1 | 219 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
220 | |
221 | /* Relocations for supporting difference of symbols. */ | |
222 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
e5f131d1 | 223 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
43cd72b9 | 224 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 225 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
43cd72b9 | 226 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 227 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
228 | |
229 | /* General immediate operand relocations. */ | |
230 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 231 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 232 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 233 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 234 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 235 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 236 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 237 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 238 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 239 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 240 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 241 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 242 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 243 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 244 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 245 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 246 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 247 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 248 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 249 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 250 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 251 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 252 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 253 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 254 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 255 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 256 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 257 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 258 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 259 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
260 | |
261 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
262 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 263 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 264 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 265 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 266 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 267 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 268 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 269 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 270 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 271 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 272 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 273 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 274 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 275 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 276 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 277 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 278 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 279 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 280 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 281 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 282 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 283 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 284 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 285 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 286 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 287 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 288 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 289 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 290 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 291 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
292 | |
293 | /* TLS relocations. */ | |
294 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
295 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
296 | FALSE, 0, 0xffffffff, FALSE), | |
297 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
298 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
299 | FALSE, 0, 0xffffffff, FALSE), | |
300 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
301 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
302 | FALSE, 0, 0xffffffff, FALSE), | |
303 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
304 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
305 | FALSE, 0, 0xffffffff, FALSE), | |
306 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
307 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
308 | FALSE, 0, 0, FALSE), | |
309 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
310 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
311 | FALSE, 0, 0, FALSE), | |
312 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
313 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
314 | FALSE, 0, 0, FALSE), | |
e0001a05 NC |
315 | }; |
316 | ||
43cd72b9 | 317 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
318 | #define TRACE(str) \ |
319 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
320 | #else | |
321 | #define TRACE(str) | |
322 | #endif | |
323 | ||
324 | static reloc_howto_type * | |
7fa3d080 BW |
325 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
326 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
327 | { |
328 | switch (code) | |
329 | { | |
330 | case BFD_RELOC_NONE: | |
331 | TRACE ("BFD_RELOC_NONE"); | |
332 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
333 | ||
334 | case BFD_RELOC_32: | |
335 | TRACE ("BFD_RELOC_32"); | |
336 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
337 | ||
1bbb5f21 BW |
338 | case BFD_RELOC_32_PCREL: |
339 | TRACE ("BFD_RELOC_32_PCREL"); | |
340 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
341 | ||
43cd72b9 BW |
342 | case BFD_RELOC_XTENSA_DIFF8: |
343 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
344 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
345 | ||
346 | case BFD_RELOC_XTENSA_DIFF16: | |
347 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
348 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
349 | ||
350 | case BFD_RELOC_XTENSA_DIFF32: | |
351 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
352 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
353 | ||
e0001a05 NC |
354 | case BFD_RELOC_XTENSA_RTLD: |
355 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
356 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
357 | ||
358 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
359 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
360 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
361 | ||
362 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
363 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
364 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
365 | ||
366 | case BFD_RELOC_XTENSA_RELATIVE: | |
367 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
368 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
369 | ||
370 | case BFD_RELOC_XTENSA_PLT: | |
371 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
372 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
373 | ||
374 | case BFD_RELOC_XTENSA_OP0: | |
375 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
376 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
377 | ||
378 | case BFD_RELOC_XTENSA_OP1: | |
379 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
380 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
381 | ||
382 | case BFD_RELOC_XTENSA_OP2: | |
383 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
384 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
385 | ||
386 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
387 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
388 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
389 | ||
390 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
391 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
392 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
393 | ||
394 | case BFD_RELOC_VTABLE_INHERIT: | |
395 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
396 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
397 | ||
398 | case BFD_RELOC_VTABLE_ENTRY: | |
399 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
400 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
401 | ||
28dbbc02 BW |
402 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
403 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
404 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
405 | ||
406 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
407 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
408 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
409 | ||
410 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
411 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
412 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
413 | ||
414 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
415 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
416 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
417 | ||
418 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
419 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
420 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
421 | ||
422 | case BFD_RELOC_XTENSA_TLS_ARG: | |
423 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
424 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
425 | ||
426 | case BFD_RELOC_XTENSA_TLS_CALL: | |
427 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
428 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
429 | ||
e0001a05 | 430 | default: |
43cd72b9 BW |
431 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
432 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
433 | { | |
434 | unsigned n = (R_XTENSA_SLOT0_OP + | |
435 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
436 | return &elf_howto_table[n]; | |
437 | } | |
438 | ||
439 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
440 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
441 | { | |
442 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
443 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
444 | return &elf_howto_table[n]; | |
445 | } | |
446 | ||
e0001a05 NC |
447 | break; |
448 | } | |
449 | ||
450 | TRACE ("Unknown"); | |
451 | return NULL; | |
452 | } | |
453 | ||
157090f7 AM |
454 | static reloc_howto_type * |
455 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
456 | const char *r_name) | |
457 | { | |
458 | unsigned int i; | |
459 | ||
460 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
461 | if (elf_howto_table[i].name != NULL | |
462 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
463 | return &elf_howto_table[i]; | |
464 | ||
465 | return NULL; | |
466 | } | |
467 | ||
e0001a05 NC |
468 | |
469 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
470 | it in the BFD internal arelent representation of the relocation. */ | |
471 | ||
472 | static void | |
7fa3d080 BW |
473 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
474 | arelent *cache_ptr, | |
475 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
476 | { |
477 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
478 | ||
479 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
480 | cache_ptr->howto = &elf_howto_table[r_type]; | |
481 | } | |
482 | ||
483 | \f | |
484 | /* Functions for the Xtensa ELF linker. */ | |
485 | ||
486 | /* The name of the dynamic interpreter. This is put in the .interp | |
487 | section. */ | |
488 | ||
489 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
490 | ||
491 | /* The size in bytes of an entry in the procedure linkage table. | |
492 | (This does _not_ include the space for the literals associated with | |
493 | the PLT entry.) */ | |
494 | ||
495 | #define PLT_ENTRY_SIZE 16 | |
496 | ||
497 | /* For _really_ large PLTs, we may need to alternate between literals | |
498 | and code to keep the literals within the 256K range of the L32R | |
499 | instructions in the code. It's unlikely that anyone would ever need | |
500 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
501 | Thus, we split the PLT into chunks. Since there's very little | |
502 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
503 | small so that the code for handling multiple chunks get used and | |
504 | tested regularly. With 254 entries, there are 1K of literals for | |
505 | each chunk, and that seems like a nice round number. */ | |
506 | ||
507 | #define PLT_ENTRIES_PER_CHUNK 254 | |
508 | ||
509 | /* PLT entries are actually used as stub functions for lazy symbol | |
510 | resolution. Once the symbol is resolved, the stub function is never | |
511 | invoked. Note: the 32-byte frame size used here cannot be changed | |
512 | without a corresponding change in the runtime linker. */ | |
513 | ||
514 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
515 | { | |
516 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
517 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
518 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
519 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
520 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
521 | 0 /* unused */ | |
522 | }; | |
523 | ||
524 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
525 | { | |
526 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
527 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
528 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
529 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
530 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
531 | 0 /* unused */ | |
532 | }; | |
533 | ||
28dbbc02 BW |
534 | /* The size of the thread control block. */ |
535 | #define TCB_SIZE 8 | |
536 | ||
537 | struct elf_xtensa_link_hash_entry | |
538 | { | |
539 | struct elf_link_hash_entry elf; | |
540 | ||
541 | bfd_signed_vma tlsfunc_refcount; | |
542 | ||
543 | #define GOT_UNKNOWN 0 | |
544 | #define GOT_NORMAL 1 | |
545 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
546 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
547 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
548 | unsigned char tls_type; | |
549 | }; | |
550 | ||
551 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
552 | ||
553 | struct elf_xtensa_obj_tdata | |
554 | { | |
555 | struct elf_obj_tdata root; | |
556 | ||
557 | /* tls_type for each local got entry. */ | |
558 | char *local_got_tls_type; | |
559 | ||
560 | bfd_signed_vma *local_tlsfunc_refcounts; | |
561 | }; | |
562 | ||
563 | #define elf_xtensa_tdata(abfd) \ | |
564 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
565 | ||
566 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
567 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
568 | ||
569 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
570 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
571 | ||
572 | #define is_xtensa_elf(bfd) \ | |
573 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
574 | && elf_tdata (bfd) != NULL \ | |
575 | && elf_object_id (bfd) == XTENSA_ELF_TDATA) | |
576 | ||
577 | static bfd_boolean | |
578 | elf_xtensa_mkobject (bfd *abfd) | |
579 | { | |
580 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
581 | XTENSA_ELF_TDATA); | |
582 | } | |
583 | ||
f0e6fdb2 BW |
584 | /* Xtensa ELF linker hash table. */ |
585 | ||
586 | struct elf_xtensa_link_hash_table | |
587 | { | |
588 | struct elf_link_hash_table elf; | |
589 | ||
590 | /* Short-cuts to get to dynamic linker sections. */ | |
591 | asection *sgot; | |
592 | asection *sgotplt; | |
593 | asection *srelgot; | |
594 | asection *splt; | |
595 | asection *srelplt; | |
596 | asection *sgotloc; | |
597 | asection *spltlittbl; | |
598 | ||
599 | /* Total count of PLT relocations seen during check_relocs. | |
600 | The actual PLT code must be split into multiple sections and all | |
601 | the sections have to be created before size_dynamic_sections, | |
602 | where we figure out the exact number of PLT entries that will be | |
603 | needed. It is OK if this count is an overestimate, e.g., some | |
604 | relocations may be removed by GC. */ | |
605 | int plt_reloc_count; | |
28dbbc02 BW |
606 | |
607 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
608 | }; |
609 | ||
610 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
611 | ||
612 | #define elf_xtensa_hash_table(p) \ | |
613 | ((struct elf_xtensa_link_hash_table *) ((p)->hash)) | |
614 | ||
28dbbc02 BW |
615 | /* Create an entry in an Xtensa ELF linker hash table. */ |
616 | ||
617 | static struct bfd_hash_entry * | |
618 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
619 | struct bfd_hash_table *table, | |
620 | const char *string) | |
621 | { | |
622 | /* Allocate the structure if it has not already been allocated by a | |
623 | subclass. */ | |
624 | if (entry == NULL) | |
625 | { | |
626 | entry = bfd_hash_allocate (table, | |
627 | sizeof (struct elf_xtensa_link_hash_entry)); | |
628 | if (entry == NULL) | |
629 | return entry; | |
630 | } | |
631 | ||
632 | /* Call the allocation method of the superclass. */ | |
633 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
634 | if (entry != NULL) | |
635 | { | |
636 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
637 | eh->tlsfunc_refcount = 0; | |
638 | eh->tls_type = GOT_UNKNOWN; | |
639 | } | |
640 | ||
641 | return entry; | |
642 | } | |
643 | ||
f0e6fdb2 BW |
644 | /* Create an Xtensa ELF linker hash table. */ |
645 | ||
646 | static struct bfd_link_hash_table * | |
647 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
648 | { | |
28dbbc02 | 649 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 BW |
650 | struct elf_xtensa_link_hash_table *ret; |
651 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
652 | ||
653 | ret = bfd_malloc (amt); | |
654 | if (ret == NULL) | |
655 | return NULL; | |
656 | ||
657 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 BW |
658 | elf_xtensa_link_hash_newfunc, |
659 | sizeof (struct elf_xtensa_link_hash_entry))) | |
f0e6fdb2 BW |
660 | { |
661 | free (ret); | |
662 | return NULL; | |
663 | } | |
664 | ||
665 | ret->sgot = NULL; | |
666 | ret->sgotplt = NULL; | |
667 | ret->srelgot = NULL; | |
668 | ret->splt = NULL; | |
669 | ret->srelplt = NULL; | |
670 | ret->sgotloc = NULL; | |
671 | ret->spltlittbl = NULL; | |
672 | ||
673 | ret->plt_reloc_count = 0; | |
674 | ||
28dbbc02 BW |
675 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
676 | for it later. */ | |
677 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
678 | TRUE, FALSE, FALSE); | |
679 | tlsbase->root.type = bfd_link_hash_new; | |
680 | tlsbase->root.u.undef.abfd = NULL; | |
681 | tlsbase->non_elf = 0; | |
682 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); | |
683 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
684 | ||
f0e6fdb2 BW |
685 | return &ret->elf.root; |
686 | } | |
571b5725 | 687 | |
28dbbc02 BW |
688 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
689 | ||
690 | static void | |
691 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
692 | struct elf_link_hash_entry *dir, | |
693 | struct elf_link_hash_entry *ind) | |
694 | { | |
695 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
696 | ||
697 | edir = elf_xtensa_hash_entry (dir); | |
698 | eind = elf_xtensa_hash_entry (ind); | |
699 | ||
700 | if (ind->root.type == bfd_link_hash_indirect) | |
701 | { | |
702 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
703 | eind->tlsfunc_refcount = 0; | |
704 | ||
705 | if (dir->got.refcount <= 0) | |
706 | { | |
707 | edir->tls_type = eind->tls_type; | |
708 | eind->tls_type = GOT_UNKNOWN; | |
709 | } | |
710 | } | |
711 | ||
712 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
713 | } | |
714 | ||
571b5725 | 715 | static inline bfd_boolean |
4608f3d9 | 716 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 717 | struct bfd_link_info *info) |
571b5725 BW |
718 | { |
719 | /* Check if we should do dynamic things to this symbol. The | |
720 | "ignore_protected" argument need not be set, because Xtensa code | |
721 | does not require special handling of STV_PROTECTED to make function | |
722 | pointer comparisons work properly. The PLT addresses are never | |
723 | used for function pointers. */ | |
724 | ||
725 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
726 | } | |
727 | ||
e0001a05 NC |
728 | \f |
729 | static int | |
7fa3d080 | 730 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
731 | { |
732 | const property_table_entry *a = (const property_table_entry *) ap; | |
733 | const property_table_entry *b = (const property_table_entry *) bp; | |
734 | ||
43cd72b9 BW |
735 | if (a->address == b->address) |
736 | { | |
43cd72b9 BW |
737 | if (a->size != b->size) |
738 | return (a->size - b->size); | |
739 | ||
740 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
741 | return ((b->flags & XTENSA_PROP_ALIGN) | |
742 | - (a->flags & XTENSA_PROP_ALIGN)); | |
743 | ||
744 | if ((a->flags & XTENSA_PROP_ALIGN) | |
745 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
746 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
747 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
748 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
749 | ||
750 | if ((a->flags & XTENSA_PROP_UNREACHABLE) | |
751 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
752 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
753 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
754 | ||
755 | return (a->flags - b->flags); | |
756 | } | |
757 | ||
758 | return (a->address - b->address); | |
759 | } | |
760 | ||
761 | ||
762 | static int | |
7fa3d080 | 763 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
764 | { |
765 | const property_table_entry *a = (const property_table_entry *) ap; | |
766 | const property_table_entry *b = (const property_table_entry *) bp; | |
767 | ||
768 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
769 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
770 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
771 | return 0; | |
772 | ||
773 | return (a->address - b->address); | |
774 | } | |
775 | ||
776 | ||
43cd72b9 BW |
777 | /* Get the literal table or property table entries for the given |
778 | section. Sets TABLE_P and returns the number of entries. On | |
779 | error, returns a negative value. */ | |
e0001a05 | 780 | |
7fa3d080 BW |
781 | static int |
782 | xtensa_read_table_entries (bfd *abfd, | |
783 | asection *section, | |
784 | property_table_entry **table_p, | |
785 | const char *sec_name, | |
786 | bfd_boolean output_addr) | |
e0001a05 NC |
787 | { |
788 | asection *table_section; | |
e0001a05 NC |
789 | bfd_size_type table_size = 0; |
790 | bfd_byte *table_data; | |
791 | property_table_entry *blocks; | |
e4115460 | 792 | int blk, block_count; |
e0001a05 | 793 | bfd_size_type num_records; |
bcc2cc8e BW |
794 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
795 | bfd_vma section_addr, off; | |
43cd72b9 | 796 | flagword predef_flags; |
bcc2cc8e | 797 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
798 | |
799 | if (!section | |
800 | || !(section->flags & SEC_ALLOC) | |
801 | || (section->flags & SEC_DEBUGGING)) | |
802 | { | |
803 | *table_p = NULL; | |
804 | return 0; | |
805 | } | |
e0001a05 | 806 | |
74869ac7 | 807 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 808 | if (table_section) |
eea6121a | 809 | table_size = table_section->size; |
43cd72b9 | 810 | |
e0001a05 NC |
811 | if (table_size == 0) |
812 | { | |
813 | *table_p = NULL; | |
814 | return 0; | |
815 | } | |
816 | ||
43cd72b9 BW |
817 | predef_flags = xtensa_get_property_predef_flags (table_section); |
818 | table_entry_size = 12; | |
819 | if (predef_flags) | |
820 | table_entry_size -= 4; | |
821 | ||
822 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
823 | table_data = retrieve_contents (abfd, table_section, TRUE); |
824 | blocks = (property_table_entry *) | |
825 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
826 | block_count = 0; | |
43cd72b9 BW |
827 | |
828 | if (output_addr) | |
829 | section_addr = section->output_section->vma + section->output_offset; | |
830 | else | |
831 | section_addr = section->vma; | |
3ba3bc8c | 832 | |
e0001a05 | 833 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 834 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 835 | { |
bcc2cc8e BW |
836 | qsort (internal_relocs, table_section->reloc_count, |
837 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
838 | irel = internal_relocs; | |
839 | } | |
840 | else | |
841 | irel = NULL; | |
842 | ||
843 | section_limit = bfd_get_section_limit (abfd, section); | |
844 | rel_end = internal_relocs + table_section->reloc_count; | |
845 | ||
846 | for (off = 0; off < table_size; off += table_entry_size) | |
847 | { | |
848 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
849 | ||
850 | /* Skip any relocations before the current offset. This should help | |
851 | avoid confusion caused by unexpected relocations for the preceding | |
852 | table entry. */ | |
853 | while (irel && | |
854 | (irel->r_offset < off | |
855 | || (irel->r_offset == off | |
856 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
857 | { | |
858 | irel += 1; | |
859 | if (irel >= rel_end) | |
860 | irel = 0; | |
861 | } | |
e0001a05 | 862 | |
bcc2cc8e | 863 | if (irel && irel->r_offset == off) |
e0001a05 | 864 | { |
bcc2cc8e BW |
865 | bfd_vma sym_off; |
866 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
867 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 868 | |
bcc2cc8e | 869 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
870 | continue; |
871 | ||
bcc2cc8e BW |
872 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
873 | BFD_ASSERT (sym_off == 0); | |
874 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 875 | } |
bcc2cc8e | 876 | else |
e0001a05 | 877 | { |
bcc2cc8e BW |
878 | if (address < section_addr |
879 | || address >= section_addr + section_limit) | |
880 | continue; | |
e0001a05 | 881 | } |
bcc2cc8e BW |
882 | |
883 | blocks[block_count].address = address; | |
884 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
885 | if (predef_flags) | |
886 | blocks[block_count].flags = predef_flags; | |
887 | else | |
888 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
889 | block_count++; | |
e0001a05 NC |
890 | } |
891 | ||
892 | release_contents (table_section, table_data); | |
893 | release_internal_relocs (table_section, internal_relocs); | |
894 | ||
43cd72b9 | 895 | if (block_count > 0) |
e0001a05 NC |
896 | { |
897 | /* Now sort them into address order for easy reference. */ | |
898 | qsort (blocks, block_count, sizeof (property_table_entry), | |
899 | property_table_compare); | |
e4115460 BW |
900 | |
901 | /* Check that the table contents are valid. Problems may occur, | |
902 | for example, if an unrelocated object file is stripped. */ | |
903 | for (blk = 1; blk < block_count; blk++) | |
904 | { | |
905 | /* The only circumstance where two entries may legitimately | |
906 | have the same address is when one of them is a zero-size | |
907 | placeholder to mark a place where fill can be inserted. | |
908 | The zero-size entry should come first. */ | |
909 | if (blocks[blk - 1].address == blocks[blk].address && | |
910 | blocks[blk - 1].size != 0) | |
911 | { | |
912 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
913 | abfd, section); | |
914 | bfd_set_error (bfd_error_bad_value); | |
915 | free (blocks); | |
916 | return -1; | |
917 | } | |
918 | } | |
e0001a05 | 919 | } |
43cd72b9 | 920 | |
e0001a05 NC |
921 | *table_p = blocks; |
922 | return block_count; | |
923 | } | |
924 | ||
925 | ||
7fa3d080 BW |
926 | static property_table_entry * |
927 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
928 | int property_table_size, | |
929 | bfd_vma addr) | |
e0001a05 NC |
930 | { |
931 | property_table_entry entry; | |
43cd72b9 | 932 | property_table_entry *rv; |
e0001a05 | 933 | |
43cd72b9 BW |
934 | if (property_table_size == 0) |
935 | return NULL; | |
e0001a05 NC |
936 | |
937 | entry.address = addr; | |
938 | entry.size = 1; | |
43cd72b9 | 939 | entry.flags = 0; |
e0001a05 | 940 | |
43cd72b9 BW |
941 | rv = bsearch (&entry, property_table, property_table_size, |
942 | sizeof (property_table_entry), property_table_matches); | |
943 | return rv; | |
944 | } | |
945 | ||
946 | ||
947 | static bfd_boolean | |
7fa3d080 BW |
948 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
949 | int lit_table_size, | |
950 | bfd_vma addr) | |
43cd72b9 BW |
951 | { |
952 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
953 | return TRUE; |
954 | ||
955 | return FALSE; | |
956 | } | |
957 | ||
958 | \f | |
959 | /* Look through the relocs for a section during the first phase, and | |
960 | calculate needed space in the dynamic reloc sections. */ | |
961 | ||
962 | static bfd_boolean | |
7fa3d080 BW |
963 | elf_xtensa_check_relocs (bfd *abfd, |
964 | struct bfd_link_info *info, | |
965 | asection *sec, | |
966 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 967 | { |
f0e6fdb2 | 968 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
969 | Elf_Internal_Shdr *symtab_hdr; |
970 | struct elf_link_hash_entry **sym_hashes; | |
971 | const Elf_Internal_Rela *rel; | |
972 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 973 | |
28dbbc02 | 974 | if (info->relocatable || (sec->flags & SEC_ALLOC) == 0) |
e0001a05 NC |
975 | return TRUE; |
976 | ||
28dbbc02 BW |
977 | BFD_ASSERT (is_xtensa_elf (abfd)); |
978 | ||
f0e6fdb2 | 979 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
980 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
981 | sym_hashes = elf_sym_hashes (abfd); | |
982 | ||
e0001a05 NC |
983 | rel_end = relocs + sec->reloc_count; |
984 | for (rel = relocs; rel < rel_end; rel++) | |
985 | { | |
986 | unsigned int r_type; | |
987 | unsigned long r_symndx; | |
28dbbc02 BW |
988 | struct elf_link_hash_entry *h = NULL; |
989 | struct elf_xtensa_link_hash_entry *eh; | |
990 | int tls_type, old_tls_type; | |
991 | bfd_boolean is_got = FALSE; | |
992 | bfd_boolean is_plt = FALSE; | |
993 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
994 | |
995 | r_symndx = ELF32_R_SYM (rel->r_info); | |
996 | r_type = ELF32_R_TYPE (rel->r_info); | |
997 | ||
998 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
999 | { | |
d003868e AM |
1000 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
1001 | abfd, r_symndx); | |
e0001a05 NC |
1002 | return FALSE; |
1003 | } | |
1004 | ||
28dbbc02 | 1005 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1006 | { |
1007 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1008 | while (h->root.type == bfd_link_hash_indirect | |
1009 | || h->root.type == bfd_link_hash_warning) | |
1010 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1011 | } | |
28dbbc02 | 1012 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1013 | |
1014 | switch (r_type) | |
1015 | { | |
28dbbc02 BW |
1016 | case R_XTENSA_TLSDESC_FN: |
1017 | if (info->shared) | |
1018 | { | |
1019 | tls_type = GOT_TLS_GD; | |
1020 | is_got = TRUE; | |
1021 | is_tlsfunc = TRUE; | |
1022 | } | |
1023 | else | |
1024 | tls_type = GOT_TLS_IE; | |
1025 | break; | |
e0001a05 | 1026 | |
28dbbc02 BW |
1027 | case R_XTENSA_TLSDESC_ARG: |
1028 | if (info->shared) | |
e0001a05 | 1029 | { |
28dbbc02 BW |
1030 | tls_type = GOT_TLS_GD; |
1031 | is_got = TRUE; | |
1032 | } | |
1033 | else | |
1034 | { | |
1035 | tls_type = GOT_TLS_IE; | |
1036 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1037 | is_got = TRUE; | |
e0001a05 NC |
1038 | } |
1039 | break; | |
1040 | ||
28dbbc02 BW |
1041 | case R_XTENSA_TLS_DTPOFF: |
1042 | if (info->shared) | |
1043 | tls_type = GOT_TLS_GD; | |
1044 | else | |
1045 | tls_type = GOT_TLS_IE; | |
1046 | break; | |
1047 | ||
1048 | case R_XTENSA_TLS_TPOFF: | |
1049 | tls_type = GOT_TLS_IE; | |
1050 | if (info->shared) | |
1051 | info->flags |= DF_STATIC_TLS; | |
1052 | if (info->shared || h) | |
1053 | is_got = TRUE; | |
1054 | break; | |
1055 | ||
1056 | case R_XTENSA_32: | |
1057 | tls_type = GOT_NORMAL; | |
1058 | is_got = TRUE; | |
1059 | break; | |
1060 | ||
e0001a05 | 1061 | case R_XTENSA_PLT: |
28dbbc02 BW |
1062 | tls_type = GOT_NORMAL; |
1063 | is_plt = TRUE; | |
1064 | break; | |
e0001a05 | 1065 | |
28dbbc02 BW |
1066 | case R_XTENSA_GNU_VTINHERIT: |
1067 | /* This relocation describes the C++ object vtable hierarchy. | |
1068 | Reconstruct it for later use during GC. */ | |
1069 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1070 | return FALSE; | |
1071 | continue; | |
1072 | ||
1073 | case R_XTENSA_GNU_VTENTRY: | |
1074 | /* This relocation describes which C++ vtable entries are actually | |
1075 | used. Record for later use during GC. */ | |
1076 | BFD_ASSERT (h != NULL); | |
1077 | if (h != NULL | |
1078 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
1079 | return FALSE; | |
1080 | continue; | |
1081 | ||
1082 | default: | |
1083 | /* Nothing to do for any other relocations. */ | |
1084 | continue; | |
1085 | } | |
1086 | ||
1087 | if (h) | |
1088 | { | |
1089 | if (is_plt) | |
e0001a05 | 1090 | { |
b45329f9 BW |
1091 | if (h->plt.refcount <= 0) |
1092 | { | |
1093 | h->needs_plt = 1; | |
1094 | h->plt.refcount = 1; | |
1095 | } | |
1096 | else | |
1097 | h->plt.refcount += 1; | |
e0001a05 NC |
1098 | |
1099 | /* Keep track of the total PLT relocation count even if we | |
1100 | don't yet know whether the dynamic sections will be | |
1101 | created. */ | |
f0e6fdb2 | 1102 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1103 | |
1104 | if (elf_hash_table (info)->dynamic_sections_created) | |
1105 | { | |
f0e6fdb2 | 1106 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1107 | return FALSE; |
1108 | } | |
1109 | } | |
28dbbc02 | 1110 | else if (is_got) |
b45329f9 BW |
1111 | { |
1112 | if (h->got.refcount <= 0) | |
1113 | h->got.refcount = 1; | |
1114 | else | |
1115 | h->got.refcount += 1; | |
1116 | } | |
28dbbc02 BW |
1117 | |
1118 | if (is_tlsfunc) | |
1119 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1120 | |
28dbbc02 BW |
1121 | old_tls_type = eh->tls_type; |
1122 | } | |
1123 | else | |
1124 | { | |
1125 | /* Allocate storage the first time. */ | |
1126 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1127 | { |
28dbbc02 BW |
1128 | bfd_size_type size = symtab_hdr->sh_info; |
1129 | void *mem; | |
e0001a05 | 1130 | |
28dbbc02 BW |
1131 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1132 | if (mem == NULL) | |
1133 | return FALSE; | |
1134 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1135 | |
28dbbc02 BW |
1136 | mem = bfd_zalloc (abfd, size); |
1137 | if (mem == NULL) | |
1138 | return FALSE; | |
1139 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1140 | ||
1141 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1142 | if (mem == NULL) | |
1143 | return FALSE; | |
1144 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1145 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1146 | } |
e0001a05 | 1147 | |
28dbbc02 BW |
1148 | /* This is a global offset table entry for a local symbol. */ |
1149 | if (is_got || is_plt) | |
1150 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1151 | |
28dbbc02 BW |
1152 | if (is_tlsfunc) |
1153 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1154 | |
28dbbc02 BW |
1155 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1156 | } | |
1157 | ||
1158 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1159 | tls_type |= old_tls_type; | |
1160 | /* If a TLS symbol is accessed using IE at least once, | |
1161 | there is no point to use a dynamic model for it. */ | |
1162 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1163 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1164 | || (tls_type & GOT_TLS_IE) == 0)) | |
1165 | { | |
1166 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1167 | tls_type = old_tls_type; | |
1168 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1169 | tls_type |= old_tls_type; | |
1170 | else | |
1171 | { | |
1172 | (*_bfd_error_handler) | |
1173 | (_("%B: `%s' accessed both as normal and thread local symbol"), | |
1174 | abfd, | |
1175 | h ? h->root.root.string : "<local>"); | |
1176 | return FALSE; | |
1177 | } | |
1178 | } | |
1179 | ||
1180 | if (old_tls_type != tls_type) | |
1181 | { | |
1182 | if (eh) | |
1183 | eh->tls_type = tls_type; | |
1184 | else | |
1185 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1186 | } |
1187 | } | |
1188 | ||
e0001a05 NC |
1189 | return TRUE; |
1190 | } | |
1191 | ||
1192 | ||
95147441 BW |
1193 | static void |
1194 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
1195 | struct elf_link_hash_entry *h) | |
1196 | { | |
1197 | if (info->shared) | |
1198 | { | |
1199 | if (h->plt.refcount > 0) | |
1200 | { | |
1201 | /* For shared objects, there's no need for PLT entries for local | |
1202 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
1203 | if (h->got.refcount < 0) | |
1204 | h->got.refcount = 0; | |
1205 | h->got.refcount += h->plt.refcount; | |
1206 | h->plt.refcount = 0; | |
1207 | } | |
1208 | } | |
1209 | else | |
1210 | { | |
1211 | /* Don't need any dynamic relocations at all. */ | |
1212 | h->plt.refcount = 0; | |
1213 | h->got.refcount = 0; | |
1214 | } | |
1215 | } | |
1216 | ||
1217 | ||
1218 | static void | |
1219 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
1220 | struct elf_link_hash_entry *h, | |
1221 | bfd_boolean force_local) | |
1222 | { | |
1223 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1224 | space for RELATIVE relocs. */ | |
1225 | elf_xtensa_make_sym_local (info, h); | |
1226 | ||
1227 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1228 | } | |
1229 | ||
1230 | ||
e0001a05 NC |
1231 | /* Return the section that should be marked against GC for a given |
1232 | relocation. */ | |
1233 | ||
1234 | static asection * | |
7fa3d080 | 1235 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1236 | struct bfd_link_info *info, |
7fa3d080 BW |
1237 | Elf_Internal_Rela *rel, |
1238 | struct elf_link_hash_entry *h, | |
1239 | Elf_Internal_Sym *sym) | |
e0001a05 | 1240 | { |
e1e5c0b5 BW |
1241 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1242 | should not cause other sections to be marked. (This approach relies | |
1243 | on elf_xtensa_discard_info to remove property table entries that | |
1244 | describe discarded sections. Alternatively, it might be more | |
1245 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1246 | the gc_mark_extra_sections hook to mark only the property sections | |
1247 | that describe marked sections. That alternative does not work well | |
1248 | with the current property table sections, which do not correspond | |
1249 | one-to-one with the sections they describe, but that should be fixed | |
1250 | someday.) */ | |
1251 | if (xtensa_is_property_section (sec)) | |
1252 | return NULL; | |
1253 | ||
07adf181 AM |
1254 | if (h != NULL) |
1255 | switch (ELF32_R_TYPE (rel->r_info)) | |
1256 | { | |
1257 | case R_XTENSA_GNU_VTINHERIT: | |
1258 | case R_XTENSA_GNU_VTENTRY: | |
1259 | return NULL; | |
1260 | } | |
1261 | ||
1262 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1263 | } |
1264 | ||
7fa3d080 | 1265 | |
e0001a05 NC |
1266 | /* Update the GOT & PLT entry reference counts |
1267 | for the section being removed. */ | |
1268 | ||
1269 | static bfd_boolean | |
7fa3d080 | 1270 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
28dbbc02 | 1271 | struct bfd_link_info *info, |
7fa3d080 BW |
1272 | asection *sec, |
1273 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1274 | { |
1275 | Elf_Internal_Shdr *symtab_hdr; | |
1276 | struct elf_link_hash_entry **sym_hashes; | |
e0001a05 | 1277 | const Elf_Internal_Rela *rel, *relend; |
28dbbc02 BW |
1278 | struct elf_xtensa_link_hash_table *htab; |
1279 | ||
1280 | htab = elf_xtensa_hash_table (info); | |
e0001a05 | 1281 | |
7dda2462 TG |
1282 | if (info->relocatable) |
1283 | return TRUE; | |
1284 | ||
e0001a05 NC |
1285 | if ((sec->flags & SEC_ALLOC) == 0) |
1286 | return TRUE; | |
1287 | ||
1288 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1289 | sym_hashes = elf_sym_hashes (abfd); | |
e0001a05 NC |
1290 | |
1291 | relend = relocs + sec->reloc_count; | |
1292 | for (rel = relocs; rel < relend; rel++) | |
1293 | { | |
1294 | unsigned long r_symndx; | |
1295 | unsigned int r_type; | |
1296 | struct elf_link_hash_entry *h = NULL; | |
28dbbc02 BW |
1297 | struct elf_xtensa_link_hash_entry *eh; |
1298 | bfd_boolean is_got = FALSE; | |
1299 | bfd_boolean is_plt = FALSE; | |
1300 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1301 | |
1302 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1303 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1304 | { |
1305 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1306 | while (h->root.type == bfd_link_hash_indirect | |
1307 | || h->root.type == bfd_link_hash_warning) | |
1308 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1309 | } | |
28dbbc02 | 1310 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1311 | |
1312 | r_type = ELF32_R_TYPE (rel->r_info); | |
1313 | switch (r_type) | |
1314 | { | |
28dbbc02 BW |
1315 | case R_XTENSA_TLSDESC_FN: |
1316 | if (info->shared) | |
1317 | { | |
1318 | is_got = TRUE; | |
1319 | is_tlsfunc = TRUE; | |
1320 | } | |
e0001a05 NC |
1321 | break; |
1322 | ||
28dbbc02 BW |
1323 | case R_XTENSA_TLSDESC_ARG: |
1324 | if (info->shared) | |
1325 | is_got = TRUE; | |
1326 | else | |
1327 | { | |
1328 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1329 | is_got = TRUE; | |
1330 | } | |
e0001a05 NC |
1331 | break; |
1332 | ||
28dbbc02 BW |
1333 | case R_XTENSA_TLS_TPOFF: |
1334 | if (info->shared || h) | |
1335 | is_got = TRUE; | |
e0001a05 NC |
1336 | break; |
1337 | ||
28dbbc02 BW |
1338 | case R_XTENSA_32: |
1339 | is_got = TRUE; | |
e0001a05 | 1340 | break; |
28dbbc02 BW |
1341 | |
1342 | case R_XTENSA_PLT: | |
1343 | is_plt = TRUE; | |
1344 | break; | |
1345 | ||
1346 | default: | |
1347 | continue; | |
1348 | } | |
1349 | ||
1350 | if (h) | |
1351 | { | |
1352 | if (is_plt) | |
1353 | { | |
1354 | if (h->plt.refcount > 0) | |
1355 | h->plt.refcount--; | |
1356 | } | |
1357 | else if (is_got) | |
1358 | { | |
1359 | if (h->got.refcount > 0) | |
1360 | h->got.refcount--; | |
1361 | } | |
1362 | if (is_tlsfunc) | |
1363 | { | |
1364 | if (eh->tlsfunc_refcount > 0) | |
1365 | eh->tlsfunc_refcount--; | |
1366 | } | |
1367 | } | |
1368 | else | |
1369 | { | |
1370 | if (is_got || is_plt) | |
1371 | { | |
1372 | bfd_signed_vma *got_refcount | |
1373 | = &elf_local_got_refcounts (abfd) [r_symndx]; | |
1374 | if (*got_refcount > 0) | |
1375 | *got_refcount -= 1; | |
1376 | } | |
1377 | if (is_tlsfunc) | |
1378 | { | |
1379 | bfd_signed_vma *tlsfunc_refcount | |
1380 | = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx]; | |
1381 | if (*tlsfunc_refcount > 0) | |
1382 | *tlsfunc_refcount -= 1; | |
1383 | } | |
e0001a05 NC |
1384 | } |
1385 | } | |
1386 | ||
1387 | return TRUE; | |
1388 | } | |
1389 | ||
1390 | ||
1391 | /* Create all the dynamic sections. */ | |
1392 | ||
1393 | static bfd_boolean | |
7fa3d080 | 1394 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1395 | { |
f0e6fdb2 | 1396 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1397 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1398 | |
1399 | htab = elf_xtensa_hash_table (info); | |
e0001a05 NC |
1400 | |
1401 | /* First do all the standard stuff. */ | |
1402 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1403 | return FALSE; | |
f0e6fdb2 BW |
1404 | htab->splt = bfd_get_section_by_name (dynobj, ".plt"); |
1405 | htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1406 | htab->sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1407 | htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); | |
64e77c6d | 1408 | htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); |
e0001a05 NC |
1409 | |
1410 | /* Create any extra PLT sections in case check_relocs has already | |
1411 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1412 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1413 | return FALSE; |
1414 | ||
e901de89 BW |
1415 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1416 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1417 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1418 | |
1419 | /* Mark the ".got.plt" section READONLY. */ | |
f0e6fdb2 BW |
1420 | if (htab->sgotplt == NULL |
1421 | || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) | |
e0001a05 NC |
1422 | return FALSE; |
1423 | ||
e901de89 | 1424 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
f0e6fdb2 BW |
1425 | htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags); |
1426 | if (htab->sgotloc == NULL | |
1427 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1428 | return FALSE; |
1429 | ||
e0001a05 | 1430 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
f0e6fdb2 BW |
1431 | htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt", |
1432 | noalloc_flags); | |
1433 | if (htab->spltlittbl == NULL | |
1434 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1435 | return FALSE; |
1436 | ||
1437 | return TRUE; | |
1438 | } | |
1439 | ||
1440 | ||
1441 | static bfd_boolean | |
f0e6fdb2 | 1442 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1443 | { |
f0e6fdb2 | 1444 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1445 | int chunk; |
1446 | ||
1447 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1448 | ".got.plt" sections. */ | |
1449 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1450 | { | |
1451 | char *sname; | |
1452 | flagword flags; | |
1453 | asection *s; | |
1454 | ||
1455 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1456 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1457 | break; |
1458 | ||
1459 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1460 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1461 | ||
1462 | sname = (char *) bfd_malloc (10); | |
1463 | sprintf (sname, ".plt.%u", chunk); | |
ba05963f | 1464 | s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1465 | if (s == NULL |
e0001a05 NC |
1466 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1467 | return FALSE; | |
1468 | ||
1469 | sname = (char *) bfd_malloc (14); | |
1470 | sprintf (sname, ".got.plt.%u", chunk); | |
3496cb2a | 1471 | s = bfd_make_section_with_flags (dynobj, sname, flags); |
e0001a05 | 1472 | if (s == NULL |
e0001a05 NC |
1473 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1474 | return FALSE; | |
1475 | } | |
1476 | ||
1477 | return TRUE; | |
1478 | } | |
1479 | ||
1480 | ||
1481 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1482 | regular object. The current definition is in some section of the | |
1483 | dynamic object, but we're not including those sections. We have to | |
1484 | change the definition to something the rest of the link can | |
1485 | understand. */ | |
1486 | ||
1487 | static bfd_boolean | |
7fa3d080 BW |
1488 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1489 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1490 | { |
1491 | /* If this is a weak symbol, and there is a real definition, the | |
1492 | processor independent code will have arranged for us to see the | |
1493 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1494 | if (h->u.weakdef) |
e0001a05 | 1495 | { |
f6e332e6 AM |
1496 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1497 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1498 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1499 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1500 | return TRUE; |
1501 | } | |
1502 | ||
1503 | /* This is a reference to a symbol defined by a dynamic object. The | |
1504 | reference must go through the GOT, so there's no need for COPY relocs, | |
1505 | .dynbss, etc. */ | |
1506 | ||
1507 | return TRUE; | |
1508 | } | |
1509 | ||
1510 | ||
e0001a05 | 1511 | static bfd_boolean |
f1ab2340 | 1512 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1513 | { |
f1ab2340 BW |
1514 | struct bfd_link_info *info; |
1515 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1516 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1517 | |
f1ab2340 BW |
1518 | if (h->root.type == bfd_link_hash_indirect) |
1519 | return TRUE; | |
e0001a05 NC |
1520 | |
1521 | if (h->root.type == bfd_link_hash_warning) | |
1522 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1523 | ||
f1ab2340 BW |
1524 | info = (struct bfd_link_info *) arg; |
1525 | htab = elf_xtensa_hash_table (info); | |
e0001a05 | 1526 | |
28dbbc02 BW |
1527 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1528 | away GOT entries for any TLSDESC_FN relocs. */ | |
1529 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1530 | { | |
1531 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1532 | h->got.refcount -= eh->tlsfunc_refcount; | |
1533 | } | |
e0001a05 | 1534 | |
28dbbc02 | 1535 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1536 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1537 | |
f1ab2340 BW |
1538 | if (h->plt.refcount > 0) |
1539 | htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1540 | |
1541 | if (h->got.refcount > 0) | |
f1ab2340 | 1542 | htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1543 | |
1544 | return TRUE; | |
1545 | } | |
1546 | ||
1547 | ||
1548 | static void | |
f0e6fdb2 | 1549 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1550 | { |
f0e6fdb2 | 1551 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1552 | bfd *i; |
1553 | ||
f0e6fdb2 BW |
1554 | htab = elf_xtensa_hash_table (info); |
1555 | ||
e0001a05 NC |
1556 | for (i = info->input_bfds; i; i = i->link_next) |
1557 | { | |
1558 | bfd_signed_vma *local_got_refcounts; | |
1559 | bfd_size_type j, cnt; | |
1560 | Elf_Internal_Shdr *symtab_hdr; | |
1561 | ||
1562 | local_got_refcounts = elf_local_got_refcounts (i); | |
1563 | if (!local_got_refcounts) | |
1564 | continue; | |
1565 | ||
1566 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1567 | cnt = symtab_hdr->sh_info; | |
1568 | ||
1569 | for (j = 0; j < cnt; ++j) | |
1570 | { | |
28dbbc02 BW |
1571 | /* If we saw any use of an IE model for this symbol, we can |
1572 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1573 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1574 | { | |
1575 | bfd_signed_vma *tlsfunc_refcount | |
1576 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1577 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1578 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1579 | } | |
1580 | ||
e0001a05 | 1581 | if (local_got_refcounts[j] > 0) |
f0e6fdb2 BW |
1582 | htab->srelgot->size += (local_got_refcounts[j] |
1583 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1584 | } |
1585 | } | |
1586 | } | |
1587 | ||
1588 | ||
1589 | /* Set the sizes of the dynamic sections. */ | |
1590 | ||
1591 | static bfd_boolean | |
7fa3d080 BW |
1592 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1593 | struct bfd_link_info *info) | |
e0001a05 | 1594 | { |
f0e6fdb2 | 1595 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1596 | bfd *dynobj, *abfd; |
1597 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1598 | bfd_boolean relplt, relgot; |
1599 | int plt_entries, plt_chunks, chunk; | |
1600 | ||
1601 | plt_entries = 0; | |
1602 | plt_chunks = 0; | |
e0001a05 | 1603 | |
f0e6fdb2 | 1604 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
1605 | dynobj = elf_hash_table (info)->dynobj; |
1606 | if (dynobj == NULL) | |
1607 | abort (); | |
f0e6fdb2 BW |
1608 | srelgot = htab->srelgot; |
1609 | srelplt = htab->srelplt; | |
e0001a05 NC |
1610 | |
1611 | if (elf_hash_table (info)->dynamic_sections_created) | |
1612 | { | |
f0e6fdb2 BW |
1613 | BFD_ASSERT (htab->srelgot != NULL |
1614 | && htab->srelplt != NULL | |
1615 | && htab->sgot != NULL | |
1616 | && htab->spltlittbl != NULL | |
1617 | && htab->sgotloc != NULL); | |
1618 | ||
e0001a05 | 1619 | /* Set the contents of the .interp section to the interpreter. */ |
893c4fe2 | 1620 | if (info->executable) |
e0001a05 NC |
1621 | { |
1622 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1623 | if (s == NULL) | |
1624 | abort (); | |
eea6121a | 1625 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1626 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1627 | } | |
1628 | ||
1629 | /* Allocate room for one word in ".got". */ | |
f0e6fdb2 | 1630 | htab->sgot->size = 4; |
e0001a05 | 1631 | |
f1ab2340 BW |
1632 | /* Allocate space in ".rela.got" for literals that reference global |
1633 | symbols and space in ".rela.plt" for literals that have PLT | |
1634 | entries. */ | |
e0001a05 | 1635 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1636 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1637 | (void *) info); |
e0001a05 | 1638 | |
e0001a05 NC |
1639 | /* If we are generating a shared object, we also need space in |
1640 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1641 | reference local symbols. */ | |
1642 | if (info->shared) | |
f0e6fdb2 | 1643 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1644 | |
e0001a05 NC |
1645 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1646 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1647 | For each chunk of ".plt", we also need two more 4-byte | |
1648 | literals, two corresponding entries in ".rela.got", and an | |
1649 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1650 | spltlittbl = htab->spltlittbl; |
eea6121a | 1651 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1652 | plt_chunks = |
1653 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1654 | ||
1655 | /* Iterate over all the PLT chunks, including any extra sections | |
1656 | created earlier because the initial count of PLT relocations | |
1657 | was an overestimate. */ | |
1658 | for (chunk = 0; | |
f0e6fdb2 | 1659 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1660 | chunk++) |
1661 | { | |
1662 | int chunk_entries; | |
1663 | ||
f0e6fdb2 BW |
1664 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1665 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1666 | |
1667 | if (chunk < plt_chunks - 1) | |
1668 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1669 | else if (chunk == plt_chunks - 1) | |
1670 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1671 | else | |
1672 | chunk_entries = 0; | |
1673 | ||
1674 | if (chunk_entries != 0) | |
1675 | { | |
eea6121a AM |
1676 | sgotplt->size = 4 * (chunk_entries + 2); |
1677 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1678 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1679 | spltlittbl->size += 8; | |
e0001a05 NC |
1680 | } |
1681 | else | |
1682 | { | |
eea6121a AM |
1683 | sgotplt->size = 0; |
1684 | splt->size = 0; | |
e0001a05 NC |
1685 | } |
1686 | } | |
e901de89 BW |
1687 | |
1688 | /* Allocate space in ".got.loc" to match the total size of all the | |
1689 | literal tables. */ | |
f0e6fdb2 | 1690 | sgotloc = htab->sgotloc; |
eea6121a | 1691 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1692 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1693 | { | |
1694 | if (abfd->flags & DYNAMIC) | |
1695 | continue; | |
1696 | for (s = abfd->sections; s != NULL; s = s->next) | |
1697 | { | |
b536dc1e BW |
1698 | if (! elf_discarded_section (s) |
1699 | && xtensa_is_littable_section (s) | |
1700 | && s != spltlittbl) | |
eea6121a | 1701 | sgotloc->size += s->size; |
e901de89 BW |
1702 | } |
1703 | } | |
e0001a05 NC |
1704 | } |
1705 | ||
1706 | /* Allocate memory for dynamic sections. */ | |
1707 | relplt = FALSE; | |
1708 | relgot = FALSE; | |
1709 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1710 | { | |
1711 | const char *name; | |
e0001a05 NC |
1712 | |
1713 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1714 | continue; | |
1715 | ||
1716 | /* It's OK to base decisions on the section name, because none | |
1717 | of the dynobj section names depend upon the input files. */ | |
1718 | name = bfd_get_section_name (dynobj, s); | |
1719 | ||
0112cd26 | 1720 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1721 | { |
c456f082 | 1722 | if (s->size != 0) |
e0001a05 | 1723 | { |
c456f082 AM |
1724 | if (strcmp (name, ".rela.plt") == 0) |
1725 | relplt = TRUE; | |
1726 | else if (strcmp (name, ".rela.got") == 0) | |
1727 | relgot = TRUE; | |
1728 | ||
1729 | /* We use the reloc_count field as a counter if we need | |
1730 | to copy relocs into the output file. */ | |
1731 | s->reloc_count = 0; | |
e0001a05 NC |
1732 | } |
1733 | } | |
0112cd26 NC |
1734 | else if (! CONST_STRNEQ (name, ".plt.") |
1735 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1736 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1737 | && strcmp (name, ".plt") != 0 |
1738 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1739 | && strcmp (name, ".xt.lit.plt") != 0 |
1740 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1741 | { |
1742 | /* It's not one of our sections, so don't allocate space. */ | |
1743 | continue; | |
1744 | } | |
1745 | ||
c456f082 AM |
1746 | if (s->size == 0) |
1747 | { | |
1748 | /* If we don't need this section, strip it from the output | |
1749 | file. We must create the ".plt*" and ".got.plt*" | |
1750 | sections in create_dynamic_sections and/or check_relocs | |
1751 | based on a conservative estimate of the PLT relocation | |
1752 | count, because the sections must be created before the | |
1753 | linker maps input sections to output sections. The | |
1754 | linker does that before size_dynamic_sections, where we | |
1755 | compute the exact size of the PLT, so there may be more | |
1756 | of these sections than are actually needed. */ | |
1757 | s->flags |= SEC_EXCLUDE; | |
1758 | } | |
1759 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1760 | { |
1761 | /* Allocate memory for the section contents. */ | |
eea6121a | 1762 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1763 | if (s->contents == NULL) |
e0001a05 NC |
1764 | return FALSE; |
1765 | } | |
1766 | } | |
1767 | ||
1768 | if (elf_hash_table (info)->dynamic_sections_created) | |
1769 | { | |
1770 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1771 | known until finish_dynamic_sections, but we need to get the relocs | |
1772 | in place before they are sorted. */ | |
e0001a05 NC |
1773 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1774 | { | |
1775 | Elf_Internal_Rela irela; | |
1776 | bfd_byte *loc; | |
1777 | ||
1778 | irela.r_offset = 0; | |
1779 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1780 | irela.r_addend = 0; | |
1781 | ||
1782 | loc = (srelgot->contents | |
1783 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1784 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1785 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1786 | loc + sizeof (Elf32_External_Rela)); | |
1787 | srelgot->reloc_count += 2; | |
1788 | } | |
1789 | ||
1790 | /* Add some entries to the .dynamic section. We fill in the | |
1791 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1792 | must add the entries now so that we get the correct size for | |
1793 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1794 | dynamic linker and used by the debugger. */ | |
1795 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1796 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1797 | |
ba05963f | 1798 | if (info->executable) |
e0001a05 NC |
1799 | { |
1800 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1801 | return FALSE; | |
1802 | } | |
1803 | ||
1804 | if (relplt) | |
1805 | { | |
c243ad3b | 1806 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1807 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1808 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1809 | return FALSE; | |
1810 | } | |
1811 | ||
1812 | if (relgot) | |
1813 | { | |
1814 | if (!add_dynamic_entry (DT_RELA, 0) | |
1815 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1816 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1817 | return FALSE; | |
1818 | } | |
1819 | ||
c243ad3b BW |
1820 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1821 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1822 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1823 | return FALSE; | |
1824 | } | |
1825 | #undef add_dynamic_entry | |
1826 | ||
1827 | return TRUE; | |
1828 | } | |
1829 | ||
28dbbc02 BW |
1830 | static bfd_boolean |
1831 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1832 | struct bfd_link_info *info) | |
1833 | { | |
1834 | struct elf_xtensa_link_hash_table *htab; | |
1835 | asection *tls_sec; | |
1836 | ||
1837 | htab = elf_xtensa_hash_table (info); | |
1838 | tls_sec = htab->elf.tls_sec; | |
1839 | ||
1840 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1841 | { | |
1842 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1843 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1844 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1845 | ||
1846 | tlsbase->type = STT_TLS; | |
1847 | if (!(_bfd_generic_link_add_one_symbol | |
1848 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1849 | tls_sec, 0, NULL, FALSE, | |
1850 | bed->collect, &bh))) | |
1851 | return FALSE; | |
1852 | tlsbase->def_regular = 1; | |
1853 | tlsbase->other = STV_HIDDEN; | |
1854 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1855 | } | |
1856 | ||
1857 | return TRUE; | |
1858 | } | |
1859 | ||
e0001a05 | 1860 | \f |
28dbbc02 BW |
1861 | /* Return the base VMA address which should be subtracted from real addresses |
1862 | when resolving @dtpoff relocation. | |
1863 | This is PT_TLS segment p_vaddr. */ | |
1864 | ||
1865 | static bfd_vma | |
1866 | dtpoff_base (struct bfd_link_info *info) | |
1867 | { | |
1868 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1869 | if (elf_hash_table (info)->tls_sec == NULL) | |
1870 | return 0; | |
1871 | return elf_hash_table (info)->tls_sec->vma; | |
1872 | } | |
1873 | ||
1874 | /* Return the relocation value for @tpoff relocation | |
1875 | if STT_TLS virtual address is ADDRESS. */ | |
1876 | ||
1877 | static bfd_vma | |
1878 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1879 | { | |
1880 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1881 | bfd_vma base; | |
1882 | ||
1883 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1884 | if (htab->tls_sec == NULL) | |
1885 | return 0; | |
1886 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1887 | return address - htab->tls_sec->vma + base; | |
1888 | } | |
1889 | ||
e0001a05 NC |
1890 | /* Perform the specified relocation. The instruction at (contents + address) |
1891 | is modified to set one operand to represent the value in "relocation". The | |
1892 | operand position is determined by the relocation type recorded in the | |
1893 | howto. */ | |
1894 | ||
1895 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1896 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1897 | |
1898 | static bfd_reloc_status_type | |
7fa3d080 BW |
1899 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1900 | bfd *abfd, | |
1901 | asection *input_section, | |
1902 | bfd_vma relocation, | |
1903 | bfd_byte *contents, | |
1904 | bfd_vma address, | |
1905 | bfd_boolean is_weak_undef, | |
1906 | char **error_message) | |
e0001a05 | 1907 | { |
43cd72b9 | 1908 | xtensa_format fmt; |
e0001a05 | 1909 | xtensa_opcode opcode; |
e0001a05 | 1910 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1911 | static xtensa_insnbuf ibuff = NULL; |
1912 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1913 | bfd_vma self_address; |
43cd72b9 BW |
1914 | bfd_size_type input_size; |
1915 | int opnd, slot; | |
e0001a05 NC |
1916 | uint32 newval; |
1917 | ||
43cd72b9 BW |
1918 | if (!ibuff) |
1919 | { | |
1920 | ibuff = xtensa_insnbuf_alloc (isa); | |
1921 | sbuff = xtensa_insnbuf_alloc (isa); | |
1922 | } | |
1923 | ||
1924 | input_size = bfd_get_section_limit (abfd, input_section); | |
1925 | ||
1bbb5f21 BW |
1926 | /* Calculate the PC address for this instruction. */ |
1927 | self_address = (input_section->output_section->vma | |
1928 | + input_section->output_offset | |
1929 | + address); | |
1930 | ||
e0001a05 NC |
1931 | switch (howto->type) |
1932 | { | |
1933 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1934 | case R_XTENSA_DIFF8: |
1935 | case R_XTENSA_DIFF16: | |
1936 | case R_XTENSA_DIFF32: | |
28dbbc02 BW |
1937 | case R_XTENSA_TLS_FUNC: |
1938 | case R_XTENSA_TLS_ARG: | |
1939 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1940 | return bfd_reloc_ok; |
1941 | ||
1942 | case R_XTENSA_ASM_EXPAND: | |
1943 | if (!is_weak_undef) | |
1944 | { | |
1945 | /* Check for windowed CALL across a 1GB boundary. */ | |
1946 | xtensa_opcode opcode = | |
1947 | get_expanded_call_opcode (contents + address, | |
43cd72b9 | 1948 | input_size - address, 0); |
e0001a05 NC |
1949 | if (is_windowed_call_opcode (opcode)) |
1950 | { | |
43cd72b9 BW |
1951 | if ((self_address >> CALL_SEGMENT_BITS) |
1952 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 NC |
1953 | { |
1954 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1955 | "return may fail"; | |
1956 | return bfd_reloc_dangerous; | |
1957 | } | |
1958 | } | |
1959 | } | |
1960 | return bfd_reloc_ok; | |
1961 | ||
1962 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1963 | { |
e0001a05 | 1964 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1965 | bfd_reloc_status_type retval = |
1966 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1967 | error_message); | |
e0001a05 | 1968 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1969 | return bfd_reloc_dangerous; |
e0001a05 NC |
1970 | |
1971 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1972 | address += 3; | |
c46082c8 | 1973 | self_address += 3; |
43cd72b9 | 1974 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1975 | } |
1976 | break; | |
1977 | ||
1978 | case R_XTENSA_32: | |
e0001a05 NC |
1979 | { |
1980 | bfd_vma x; | |
1981 | x = bfd_get_32 (abfd, contents + address); | |
1982 | x = x + relocation; | |
1983 | bfd_put_32 (abfd, x, contents + address); | |
1984 | } | |
1985 | return bfd_reloc_ok; | |
1bbb5f21 BW |
1986 | |
1987 | case R_XTENSA_32_PCREL: | |
1988 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
1989 | return bfd_reloc_ok; | |
28dbbc02 BW |
1990 | |
1991 | case R_XTENSA_PLT: | |
1992 | case R_XTENSA_TLSDESC_FN: | |
1993 | case R_XTENSA_TLSDESC_ARG: | |
1994 | case R_XTENSA_TLS_DTPOFF: | |
1995 | case R_XTENSA_TLS_TPOFF: | |
1996 | bfd_put_32 (abfd, relocation, contents + address); | |
1997 | return bfd_reloc_ok; | |
e0001a05 NC |
1998 | } |
1999 | ||
43cd72b9 BW |
2000 | /* Only instruction slot-specific relocations handled below.... */ |
2001 | slot = get_relocation_slot (howto->type); | |
2002 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 2003 | { |
43cd72b9 | 2004 | *error_message = "unexpected relocation"; |
e0001a05 NC |
2005 | return bfd_reloc_dangerous; |
2006 | } | |
2007 | ||
43cd72b9 BW |
2008 | /* Read the instruction into a buffer and decode the opcode. */ |
2009 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
2010 | input_size - address); | |
2011 | fmt = xtensa_format_decode (isa, ibuff); | |
2012 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 2013 | { |
43cd72b9 | 2014 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
2015 | return bfd_reloc_dangerous; |
2016 | } | |
2017 | ||
43cd72b9 | 2018 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 2019 | |
43cd72b9 BW |
2020 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
2021 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 2022 | { |
43cd72b9 | 2023 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
2024 | return bfd_reloc_dangerous; |
2025 | } | |
2026 | ||
43cd72b9 BW |
2027 | /* Check for opcode-specific "alternate" relocations. */ |
2028 | if (is_alt_relocation (howto->type)) | |
2029 | { | |
2030 | if (opcode == get_l32r_opcode ()) | |
2031 | { | |
2032 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
2033 | bfd *output_bfd = input_section->output_section->owner; | |
2034 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
2035 | if (!lit4_sec) | |
2036 | { | |
2037 | *error_message = "relocation references missing .lit4 section"; | |
2038 | return bfd_reloc_dangerous; | |
2039 | } | |
2040 | self_address = ((lit4_sec->vma & ~0xfff) | |
2041 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
2042 | newval = relocation; | |
2043 | opnd = 1; | |
2044 | } | |
2045 | else if (opcode == get_const16_opcode ()) | |
2046 | { | |
2047 | /* ALT used for high 16 bits. */ | |
2048 | newval = relocation >> 16; | |
2049 | opnd = 1; | |
2050 | } | |
2051 | else | |
2052 | { | |
2053 | /* No other "alternate" relocations currently defined. */ | |
2054 | *error_message = "unexpected relocation"; | |
2055 | return bfd_reloc_dangerous; | |
2056 | } | |
2057 | } | |
2058 | else /* Not an "alternate" relocation.... */ | |
2059 | { | |
2060 | if (opcode == get_const16_opcode ()) | |
2061 | { | |
2062 | newval = relocation & 0xffff; | |
2063 | opnd = 1; | |
2064 | } | |
2065 | else | |
2066 | { | |
2067 | /* ...normal PC-relative relocation.... */ | |
2068 | ||
2069 | /* Determine which operand is being relocated. */ | |
2070 | opnd = get_relocation_opnd (opcode, howto->type); | |
2071 | if (opnd == XTENSA_UNDEFINED) | |
2072 | { | |
2073 | *error_message = "unexpected relocation"; | |
2074 | return bfd_reloc_dangerous; | |
2075 | } | |
2076 | ||
2077 | if (!howto->pc_relative) | |
2078 | { | |
2079 | *error_message = "expected PC-relative relocation"; | |
2080 | return bfd_reloc_dangerous; | |
2081 | } | |
e0001a05 | 2082 | |
43cd72b9 BW |
2083 | newval = relocation; |
2084 | } | |
2085 | } | |
e0001a05 | 2086 | |
43cd72b9 BW |
2087 | /* Apply the relocation. */ |
2088 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2089 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2090 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2091 | sbuff, newval)) | |
e0001a05 | 2092 | { |
2db662be BW |
2093 | const char *opname = xtensa_opcode_name (isa, opcode); |
2094 | const char *msg; | |
2095 | ||
2096 | msg = "cannot encode"; | |
2097 | if (is_direct_call_opcode (opcode)) | |
2098 | { | |
2099 | if ((relocation & 0x3) != 0) | |
2100 | msg = "misaligned call target"; | |
2101 | else | |
2102 | msg = "call target out of range"; | |
2103 | } | |
2104 | else if (opcode == get_l32r_opcode ()) | |
2105 | { | |
2106 | if ((relocation & 0x3) != 0) | |
2107 | msg = "misaligned literal target"; | |
2108 | else if (is_alt_relocation (howto->type)) | |
2109 | msg = "literal target out of range (too many literals)"; | |
2110 | else if (self_address > relocation) | |
2111 | msg = "literal target out of range (try using text-section-literals)"; | |
2112 | else | |
2113 | msg = "literal placed after use"; | |
2114 | } | |
2115 | ||
2116 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2117 | return bfd_reloc_dangerous; |
2118 | } | |
2119 | ||
43cd72b9 | 2120 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2121 | if (is_direct_call_opcode (opcode) |
2122 | && is_windowed_call_opcode (opcode)) | |
2123 | { | |
43cd72b9 BW |
2124 | if ((self_address >> CALL_SEGMENT_BITS) |
2125 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 | 2126 | { |
43cd72b9 BW |
2127 | *error_message = |
2128 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2129 | return bfd_reloc_dangerous; |
2130 | } | |
2131 | } | |
2132 | ||
43cd72b9 BW |
2133 | /* Write the modified instruction back out of the buffer. */ |
2134 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2135 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2136 | input_size - address); | |
e0001a05 NC |
2137 | return bfd_reloc_ok; |
2138 | } | |
2139 | ||
2140 | ||
2db662be | 2141 | static char * |
7fa3d080 | 2142 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2143 | { |
2144 | /* To reduce the size of the memory leak, | |
2145 | we only use a single message buffer. */ | |
2146 | static bfd_size_type alloc_size = 0; | |
2147 | static char *message = NULL; | |
2148 | bfd_size_type orig_len, len = 0; | |
2149 | bfd_boolean is_append; | |
2150 | ||
2151 | VA_OPEN (ap, arglen); | |
2152 | VA_FIXEDARG (ap, const char *, origmsg); | |
2153 | ||
2154 | is_append = (origmsg == message); | |
2155 | ||
2156 | orig_len = strlen (origmsg); | |
2157 | len = orig_len + strlen (fmt) + arglen + 20; | |
2158 | if (len > alloc_size) | |
2159 | { | |
515ef31d | 2160 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2161 | alloc_size = len; |
2162 | } | |
515ef31d NC |
2163 | if (message != NULL) |
2164 | { | |
2165 | if (!is_append) | |
2166 | memcpy (message, origmsg, orig_len); | |
2167 | vsprintf (message + orig_len, fmt, ap); | |
2168 | } | |
e0001a05 NC |
2169 | VA_CLOSE (ap); |
2170 | return message; | |
2171 | } | |
2172 | ||
2173 | ||
e0001a05 NC |
2174 | /* This function is registered as the "special_function" in the |
2175 | Xtensa howto for handling simplify operations. | |
2176 | bfd_perform_relocation / bfd_install_relocation use it to | |
2177 | perform (install) the specified relocation. Since this replaces the code | |
2178 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2179 | stripped-down version of bfd_perform_relocation. */ | |
2180 | ||
2181 | static bfd_reloc_status_type | |
7fa3d080 BW |
2182 | bfd_elf_xtensa_reloc (bfd *abfd, |
2183 | arelent *reloc_entry, | |
2184 | asymbol *symbol, | |
2185 | void *data, | |
2186 | asection *input_section, | |
2187 | bfd *output_bfd, | |
2188 | char **error_message) | |
e0001a05 NC |
2189 | { |
2190 | bfd_vma relocation; | |
2191 | bfd_reloc_status_type flag; | |
2192 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
2193 | bfd_vma output_base = 0; | |
2194 | reloc_howto_type *howto = reloc_entry->howto; | |
2195 | asection *reloc_target_output_section; | |
2196 | bfd_boolean is_weak_undef; | |
2197 | ||
dd1a320b BW |
2198 | if (!xtensa_default_isa) |
2199 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2200 | ||
1049f94e | 2201 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2202 | output, and the reloc is against an external symbol, the resulting |
2203 | reloc will also be against the same symbol. In such a case, we | |
2204 | don't want to change anything about the way the reloc is handled, | |
2205 | since it will all be done at final link time. This test is similar | |
2206 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2207 | howto->partial_inplace go through even if the addend is non-zero. | |
2208 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2209 | relocs to begin with, but that's a long story and there's little we | |
2210 | can do about it now....) */ | |
2211 | ||
7fa3d080 | 2212 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2213 | { |
2214 | reloc_entry->address += input_section->output_offset; | |
2215 | return bfd_reloc_ok; | |
2216 | } | |
2217 | ||
2218 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2219 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2220 | return bfd_reloc_outofrange; |
2221 | ||
4cc11e76 | 2222 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2223 | initial relocation command value. */ |
2224 | ||
2225 | /* Get symbol value. (Common symbols are special.) */ | |
2226 | if (bfd_is_com_section (symbol->section)) | |
2227 | relocation = 0; | |
2228 | else | |
2229 | relocation = symbol->value; | |
2230 | ||
2231 | reloc_target_output_section = symbol->section->output_section; | |
2232 | ||
2233 | /* Convert input-section-relative symbol value to absolute. */ | |
2234 | if ((output_bfd && !howto->partial_inplace) | |
2235 | || reloc_target_output_section == NULL) | |
2236 | output_base = 0; | |
2237 | else | |
2238 | output_base = reloc_target_output_section->vma; | |
2239 | ||
2240 | relocation += output_base + symbol->section->output_offset; | |
2241 | ||
2242 | /* Add in supplied addend. */ | |
2243 | relocation += reloc_entry->addend; | |
2244 | ||
2245 | /* Here the variable relocation holds the final address of the | |
2246 | symbol we are relocating against, plus any addend. */ | |
2247 | if (output_bfd) | |
2248 | { | |
2249 | if (!howto->partial_inplace) | |
2250 | { | |
2251 | /* This is a partial relocation, and we want to apply the relocation | |
2252 | to the reloc entry rather than the raw data. Everything except | |
2253 | relocations against section symbols has already been handled | |
2254 | above. */ | |
43cd72b9 | 2255 | |
e0001a05 NC |
2256 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2257 | reloc_entry->addend = relocation; | |
2258 | reloc_entry->address += input_section->output_offset; | |
2259 | return bfd_reloc_ok; | |
2260 | } | |
2261 | else | |
2262 | { | |
2263 | reloc_entry->address += input_section->output_offset; | |
2264 | reloc_entry->addend = 0; | |
2265 | } | |
2266 | } | |
2267 | ||
2268 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2269 | && (symbol->flags & BSF_WEAK) != 0); | |
2270 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2271 | (bfd_byte *) data, (bfd_vma) octets, | |
2272 | is_weak_undef, error_message); | |
2273 | ||
2274 | if (flag == bfd_reloc_dangerous) | |
2275 | { | |
2276 | /* Add the symbol name to the error message. */ | |
2277 | if (! *error_message) | |
2278 | *error_message = ""; | |
2279 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2280 | strlen (symbol->name) + 17, | |
70961b9d AM |
2281 | symbol->name, |
2282 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2283 | } |
2284 | ||
2285 | return flag; | |
2286 | } | |
2287 | ||
2288 | ||
2289 | /* Set up an entry in the procedure linkage table. */ | |
2290 | ||
2291 | static bfd_vma | |
f0e6fdb2 | 2292 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2293 | bfd *output_bfd, |
2294 | unsigned reloc_index) | |
e0001a05 NC |
2295 | { |
2296 | asection *splt, *sgotplt; | |
2297 | bfd_vma plt_base, got_base; | |
2298 | bfd_vma code_offset, lit_offset; | |
2299 | int chunk; | |
2300 | ||
2301 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2302 | splt = elf_xtensa_get_plt_section (info, chunk); |
2303 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2304 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2305 | ||
2306 | plt_base = splt->output_section->vma + splt->output_offset; | |
2307 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2308 | ||
2309 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2310 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2311 | ||
2312 | /* Fill in the literal entry. This is the offset of the dynamic | |
2313 | relocation entry. */ | |
2314 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2315 | sgotplt->contents + lit_offset); | |
2316 | ||
2317 | /* Fill in the entry in the procedure linkage table. */ | |
2318 | memcpy (splt->contents + code_offset, | |
2319 | (bfd_big_endian (output_bfd) | |
2320 | ? elf_xtensa_be_plt_entry | |
2321 | : elf_xtensa_le_plt_entry), | |
2322 | PLT_ENTRY_SIZE); | |
2323 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
2324 | plt_base + code_offset + 3), | |
2325 | splt->contents + code_offset + 4); | |
2326 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
2327 | plt_base + code_offset + 6), | |
2328 | splt->contents + code_offset + 7); | |
2329 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
2330 | plt_base + code_offset + 9), | |
2331 | splt->contents + code_offset + 10); | |
2332 | ||
2333 | return plt_base + code_offset; | |
2334 | } | |
2335 | ||
2336 | ||
28dbbc02 BW |
2337 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2338 | ||
2339 | static bfd_boolean | |
2340 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2341 | bfd *abfd, | |
2342 | asection *input_section, | |
2343 | bfd_byte *contents, | |
2344 | bfd_boolean is_ld_model, | |
2345 | char **error_message) | |
2346 | { | |
2347 | static xtensa_insnbuf ibuff = NULL; | |
2348 | static xtensa_insnbuf sbuff = NULL; | |
2349 | xtensa_isa isa = xtensa_default_isa; | |
2350 | xtensa_format fmt; | |
2351 | xtensa_opcode old_op, new_op; | |
2352 | bfd_size_type input_size; | |
2353 | int r_type; | |
2354 | unsigned dest_reg, src_reg; | |
2355 | ||
2356 | if (ibuff == NULL) | |
2357 | { | |
2358 | ibuff = xtensa_insnbuf_alloc (isa); | |
2359 | sbuff = xtensa_insnbuf_alloc (isa); | |
2360 | } | |
2361 | ||
2362 | input_size = bfd_get_section_limit (abfd, input_section); | |
2363 | ||
2364 | /* Read the instruction into a buffer and decode the opcode. */ | |
2365 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2366 | input_size - rel->r_offset); | |
2367 | fmt = xtensa_format_decode (isa, ibuff); | |
2368 | if (fmt == XTENSA_UNDEFINED) | |
2369 | { | |
2370 | *error_message = "cannot decode instruction format"; | |
2371 | return FALSE; | |
2372 | } | |
2373 | ||
2374 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2375 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2376 | ||
2377 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2378 | if (old_op == XTENSA_UNDEFINED) | |
2379 | { | |
2380 | *error_message = "cannot decode instruction opcode"; | |
2381 | return FALSE; | |
2382 | } | |
2383 | ||
2384 | r_type = ELF32_R_TYPE (rel->r_info); | |
2385 | switch (r_type) | |
2386 | { | |
2387 | case R_XTENSA_TLS_FUNC: | |
2388 | case R_XTENSA_TLS_ARG: | |
2389 | if (old_op != get_l32r_opcode () | |
2390 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2391 | sbuff, &dest_reg) != 0) | |
2392 | { | |
2393 | *error_message = "cannot extract L32R destination for TLS access"; | |
2394 | return FALSE; | |
2395 | } | |
2396 | break; | |
2397 | ||
2398 | case R_XTENSA_TLS_CALL: | |
2399 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2400 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2401 | sbuff, &src_reg) != 0) | |
2402 | { | |
2403 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2404 | return FALSE; | |
2405 | } | |
2406 | break; | |
2407 | ||
2408 | default: | |
2409 | abort (); | |
2410 | } | |
2411 | ||
2412 | if (is_ld_model) | |
2413 | { | |
2414 | switch (r_type) | |
2415 | { | |
2416 | case R_XTENSA_TLS_FUNC: | |
2417 | case R_XTENSA_TLS_ARG: | |
2418 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2419 | versions of Xtensa). */ | |
2420 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2421 | if (new_op == XTENSA_UNDEFINED) | |
2422 | { | |
2423 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2424 | if (new_op == XTENSA_UNDEFINED | |
2425 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2426 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2427 | sbuff, 1) != 0 | |
2428 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2429 | sbuff, 1) != 0 | |
2430 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2431 | sbuff, 1) != 0) | |
2432 | { | |
2433 | *error_message = "cannot encode OR for TLS access"; | |
2434 | return FALSE; | |
2435 | } | |
2436 | } | |
2437 | else | |
2438 | { | |
2439 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2440 | { | |
2441 | *error_message = "cannot encode NOP for TLS access"; | |
2442 | return FALSE; | |
2443 | } | |
2444 | } | |
2445 | break; | |
2446 | ||
2447 | case R_XTENSA_TLS_CALL: | |
2448 | /* Read THREADPTR into the CALLX's return value register. */ | |
2449 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2450 | if (new_op == XTENSA_UNDEFINED | |
2451 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2452 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2453 | sbuff, dest_reg + 2) != 0) | |
2454 | { | |
2455 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2456 | return FALSE; | |
2457 | } | |
2458 | break; | |
2459 | } | |
2460 | } | |
2461 | else | |
2462 | { | |
2463 | switch (r_type) | |
2464 | { | |
2465 | case R_XTENSA_TLS_FUNC: | |
2466 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2467 | if (new_op == XTENSA_UNDEFINED | |
2468 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2469 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2470 | sbuff, dest_reg) != 0) | |
2471 | { | |
2472 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2473 | return FALSE; | |
2474 | } | |
2475 | break; | |
2476 | ||
2477 | case R_XTENSA_TLS_ARG: | |
2478 | /* Nothing to do. Keep the original L32R instruction. */ | |
2479 | return TRUE; | |
2480 | ||
2481 | case R_XTENSA_TLS_CALL: | |
2482 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2483 | to the first argument register (holding the offset) and put | |
2484 | the result in the CALLX's return value register. */ | |
2485 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2486 | if (new_op == XTENSA_UNDEFINED | |
2487 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2488 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2489 | sbuff, dest_reg + 2) != 0 | |
2490 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2491 | sbuff, dest_reg + 2) != 0 | |
2492 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2493 | sbuff, src_reg) != 0) | |
2494 | { | |
2495 | *error_message = "cannot encode ADD for TLS access"; | |
2496 | return FALSE; | |
2497 | } | |
2498 | break; | |
2499 | } | |
2500 | } | |
2501 | ||
2502 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2503 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
2504 | input_size - rel->r_offset); | |
2505 | ||
2506 | return TRUE; | |
2507 | } | |
2508 | ||
2509 | ||
2510 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2511 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2512 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2513 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2514 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2515 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2516 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2517 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2518 | ||
e0001a05 | 2519 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2520 | both relocatable and final links. */ |
e0001a05 NC |
2521 | |
2522 | static bfd_boolean | |
7fa3d080 BW |
2523 | elf_xtensa_relocate_section (bfd *output_bfd, |
2524 | struct bfd_link_info *info, | |
2525 | bfd *input_bfd, | |
2526 | asection *input_section, | |
2527 | bfd_byte *contents, | |
2528 | Elf_Internal_Rela *relocs, | |
2529 | Elf_Internal_Sym *local_syms, | |
2530 | asection **local_sections) | |
e0001a05 | 2531 | { |
f0e6fdb2 | 2532 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2533 | Elf_Internal_Shdr *symtab_hdr; |
2534 | Elf_Internal_Rela *rel; | |
2535 | Elf_Internal_Rela *relend; | |
2536 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2537 | property_table_entry *lit_table = 0; |
2538 | int ltblsize = 0; | |
28dbbc02 | 2539 | char *local_got_tls_types; |
e0001a05 | 2540 | char *error_message = NULL; |
43cd72b9 | 2541 | bfd_size_type input_size; |
28dbbc02 | 2542 | int tls_type; |
e0001a05 | 2543 | |
43cd72b9 BW |
2544 | if (!xtensa_default_isa) |
2545 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2546 | |
28dbbc02 BW |
2547 | BFD_ASSERT (is_xtensa_elf (input_bfd)); |
2548 | ||
f0e6fdb2 | 2549 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
2550 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2551 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2552 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2553 | |
88d65ad6 BW |
2554 | if (elf_hash_table (info)->dynamic_sections_created) |
2555 | { | |
2556 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2557 | &lit_table, XTENSA_LIT_SEC_NAME, |
2558 | TRUE); | |
88d65ad6 BW |
2559 | if (ltblsize < 0) |
2560 | return FALSE; | |
2561 | } | |
2562 | ||
43cd72b9 BW |
2563 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2564 | ||
e0001a05 NC |
2565 | rel = relocs; |
2566 | relend = relocs + input_section->reloc_count; | |
2567 | for (; rel < relend; rel++) | |
2568 | { | |
2569 | int r_type; | |
2570 | reloc_howto_type *howto; | |
2571 | unsigned long r_symndx; | |
2572 | struct elf_link_hash_entry *h; | |
2573 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2574 | char sym_type; |
2575 | const char *name; | |
e0001a05 NC |
2576 | asection *sec; |
2577 | bfd_vma relocation; | |
2578 | bfd_reloc_status_type r; | |
2579 | bfd_boolean is_weak_undef; | |
2580 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2581 | bfd_boolean warned; |
28dbbc02 | 2582 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2583 | |
2584 | r_type = ELF32_R_TYPE (rel->r_info); | |
2585 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2586 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2587 | continue; | |
2588 | ||
2589 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2590 | { | |
2591 | bfd_set_error (bfd_error_bad_value); | |
2592 | return FALSE; | |
2593 | } | |
2594 | howto = &elf_howto_table[r_type]; | |
2595 | ||
2596 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2597 | ||
ab96bf03 AM |
2598 | h = NULL; |
2599 | sym = NULL; | |
2600 | sec = NULL; | |
2601 | is_weak_undef = FALSE; | |
2602 | unresolved_reloc = FALSE; | |
2603 | warned = FALSE; | |
2604 | ||
2605 | if (howto->partial_inplace && !info->relocatable) | |
2606 | { | |
2607 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2608 | problems with DWARF info in partial links, there may be | |
2609 | an addend stored in the contents. Take it out of there | |
2610 | and move it back into the addend field of the reloc. */ | |
2611 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2612 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2613 | } | |
2614 | ||
2615 | if (r_symndx < symtab_hdr->sh_info) | |
2616 | { | |
2617 | sym = local_syms + r_symndx; | |
28dbbc02 | 2618 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2619 | sec = local_sections[r_symndx]; |
2620 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2621 | } | |
2622 | else | |
2623 | { | |
2624 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
2625 | r_symndx, symtab_hdr, sym_hashes, | |
2626 | h, sec, relocation, | |
2627 | unresolved_reloc, warned); | |
2628 | ||
2629 | if (relocation == 0 | |
2630 | && !unresolved_reloc | |
2631 | && h->root.type == bfd_link_hash_undefweak) | |
2632 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2633 | |
2634 | sym_type = h->type; | |
ab96bf03 AM |
2635 | } |
2636 | ||
2637 | if (sec != NULL && elf_discarded_section (sec)) | |
2638 | { | |
2639 | /* For relocs against symbols from removed linkonce sections, | |
2640 | or sections discarded by a linker script, we just want the | |
2641 | section contents zeroed. Avoid any special processing. */ | |
2642 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
2643 | rel->r_info = 0; | |
2644 | rel->r_addend = 0; | |
2645 | continue; | |
2646 | } | |
2647 | ||
1049f94e | 2648 | if (info->relocatable) |
e0001a05 | 2649 | { |
43cd72b9 | 2650 | /* This is a relocatable link. |
e0001a05 NC |
2651 | 1) If the reloc is against a section symbol, adjust |
2652 | according to the output section. | |
2653 | 2) If there is a new target for this relocation, | |
2654 | the new target will be in the same output section. | |
2655 | We adjust the relocation by the output section | |
2656 | difference. */ | |
2657 | ||
2658 | if (relaxing_section) | |
2659 | { | |
2660 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2661 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2662 | contents)) | |
2663 | return FALSE; | |
e0001a05 NC |
2664 | } |
2665 | ||
43cd72b9 | 2666 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2667 | { |
43cd72b9 | 2668 | char *error_message = NULL; |
e0001a05 NC |
2669 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2670 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2671 | r = contract_asm_expansion (contents, input_size, rel, |
2672 | &error_message); | |
2673 | if (r != bfd_reloc_ok) | |
2674 | { | |
2675 | if (!((*info->callbacks->reloc_dangerous) | |
2676 | (info, error_message, input_bfd, input_section, | |
2677 | rel->r_offset))) | |
2678 | return FALSE; | |
2679 | } | |
e0001a05 NC |
2680 | r_type = ELF32_R_TYPE (rel->r_info); |
2681 | } | |
2682 | ||
1049f94e | 2683 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2684 | anything unless the reloc is against a section symbol, |
2685 | in which case we have to adjust according to where the | |
2686 | section symbol winds up in the output section. */ | |
2687 | if (r_symndx < symtab_hdr->sh_info) | |
2688 | { | |
2689 | sym = local_syms + r_symndx; | |
2690 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2691 | { | |
2692 | sec = local_sections[r_symndx]; | |
2693 | rel->r_addend += sec->output_offset + sym->st_value; | |
2694 | } | |
2695 | } | |
2696 | ||
2697 | /* If there is an addend with a partial_inplace howto, | |
2698 | then move the addend to the contents. This is a hack | |
1049f94e | 2699 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2700 | with some previous version of BFD. Now we can't easily get |
2701 | rid of the hack without breaking backward compatibility.... */ | |
2702 | if (rel->r_addend) | |
2703 | { | |
2704 | howto = &elf_howto_table[r_type]; | |
2705 | if (howto->partial_inplace) | |
2706 | { | |
2707 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2708 | rel->r_addend, contents, | |
2709 | rel->r_offset, FALSE, | |
2710 | &error_message); | |
2711 | if (r != bfd_reloc_ok) | |
2712 | { | |
2713 | if (!((*info->callbacks->reloc_dangerous) | |
2714 | (info, error_message, input_bfd, input_section, | |
2715 | rel->r_offset))) | |
2716 | return FALSE; | |
2717 | } | |
2718 | rel->r_addend = 0; | |
2719 | } | |
2720 | } | |
2721 | ||
1049f94e | 2722 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2723 | continue; |
2724 | } | |
2725 | ||
2726 | /* This is a final link. */ | |
2727 | ||
e0001a05 NC |
2728 | if (relaxing_section) |
2729 | { | |
2730 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2731 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2732 | &relocation); | |
e0001a05 NC |
2733 | } |
2734 | ||
2735 | /* Sanity check the address. */ | |
43cd72b9 | 2736 | if (rel->r_offset >= input_size |
e0001a05 NC |
2737 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2738 | { | |
43cd72b9 BW |
2739 | (*_bfd_error_handler) |
2740 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2741 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2742 | bfd_set_error (bfd_error_bad_value); |
2743 | return FALSE; | |
2744 | } | |
2745 | ||
28dbbc02 BW |
2746 | if (h != NULL) |
2747 | name = h->root.root.string; | |
2748 | else | |
e0001a05 | 2749 | { |
28dbbc02 BW |
2750 | name = (bfd_elf_string_from_elf_section |
2751 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2752 | if (name == NULL || *name == '\0') | |
2753 | name = bfd_section_name (input_bfd, sec); | |
2754 | } | |
e0001a05 | 2755 | |
28dbbc02 BW |
2756 | if (r_symndx != 0 |
2757 | && r_type != R_XTENSA_NONE | |
2758 | && (h == NULL | |
2759 | || h->root.type == bfd_link_hash_defined | |
2760 | || h->root.type == bfd_link_hash_defweak) | |
2761 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2762 | { | |
2763 | (*_bfd_error_handler) | |
2764 | ((sym_type == STT_TLS | |
2765 | ? _("%B(%A+0x%lx): %s used with TLS symbol %s") | |
2766 | : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), | |
2767 | input_bfd, | |
2768 | input_section, | |
2769 | (long) rel->r_offset, | |
2770 | howto->name, | |
2771 | name); | |
2772 | } | |
2773 | ||
2774 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2775 | ||
2776 | tls_type = GOT_UNKNOWN; | |
2777 | if (h) | |
2778 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2779 | else if (local_got_tls_types) | |
2780 | tls_type = local_got_tls_types [r_symndx]; | |
2781 | ||
2782 | switch (r_type) | |
2783 | { | |
2784 | case R_XTENSA_32: | |
2785 | case R_XTENSA_PLT: | |
2786 | if (elf_hash_table (info)->dynamic_sections_created | |
2787 | && (input_section->flags & SEC_ALLOC) != 0 | |
2788 | && (dynamic_symbol || info->shared)) | |
e0001a05 NC |
2789 | { |
2790 | Elf_Internal_Rela outrel; | |
2791 | bfd_byte *loc; | |
2792 | asection *srel; | |
2793 | ||
2794 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
f0e6fdb2 | 2795 | srel = htab->srelplt; |
e0001a05 | 2796 | else |
f0e6fdb2 | 2797 | srel = htab->srelgot; |
e0001a05 NC |
2798 | |
2799 | BFD_ASSERT (srel != NULL); | |
2800 | ||
2801 | outrel.r_offset = | |
2802 | _bfd_elf_section_offset (output_bfd, info, | |
2803 | input_section, rel->r_offset); | |
2804 | ||
2805 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2806 | memset (&outrel, 0, sizeof outrel); | |
2807 | else | |
2808 | { | |
f0578e28 BW |
2809 | outrel.r_offset += (input_section->output_section->vma |
2810 | + input_section->output_offset); | |
e0001a05 | 2811 | |
88d65ad6 BW |
2812 | /* Complain if the relocation is in a read-only section |
2813 | and not in a literal pool. */ | |
2814 | if ((input_section->flags & SEC_READONLY) != 0 | |
2815 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2816 | outrel.r_offset)) |
88d65ad6 BW |
2817 | { |
2818 | error_message = | |
2819 | _("dynamic relocation in read-only section"); | |
2820 | if (!((*info->callbacks->reloc_dangerous) | |
2821 | (info, error_message, input_bfd, input_section, | |
2822 | rel->r_offset))) | |
2823 | return FALSE; | |
2824 | } | |
2825 | ||
e0001a05 NC |
2826 | if (dynamic_symbol) |
2827 | { | |
2828 | outrel.r_addend = rel->r_addend; | |
2829 | rel->r_addend = 0; | |
2830 | ||
2831 | if (r_type == R_XTENSA_32) | |
2832 | { | |
2833 | outrel.r_info = | |
2834 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2835 | relocation = 0; | |
2836 | } | |
2837 | else /* r_type == R_XTENSA_PLT */ | |
2838 | { | |
2839 | outrel.r_info = | |
2840 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2841 | ||
2842 | /* Create the PLT entry and set the initial | |
2843 | contents of the literal entry to the address of | |
2844 | the PLT entry. */ | |
43cd72b9 | 2845 | relocation = |
f0e6fdb2 | 2846 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2847 | srel->reloc_count); |
2848 | } | |
2849 | unresolved_reloc = FALSE; | |
2850 | } | |
2851 | else | |
2852 | { | |
2853 | /* Generate a RELATIVE relocation. */ | |
2854 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2855 | outrel.r_addend = 0; | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | loc = (srel->contents | |
2860 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2861 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2862 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2863 | <= srel->size); |
e0001a05 | 2864 | } |
d9ab3f29 BW |
2865 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2866 | { | |
2867 | /* This should only happen for non-PIC code, which is not | |
2868 | supposed to be used on systems with dynamic linking. | |
2869 | Just ignore these relocations. */ | |
2870 | continue; | |
2871 | } | |
28dbbc02 BW |
2872 | break; |
2873 | ||
2874 | case R_XTENSA_TLS_TPOFF: | |
2875 | /* Switch to LE model for local symbols in an executable. */ | |
2876 | if (! info->shared && ! dynamic_symbol) | |
2877 | { | |
2878 | relocation = tpoff (info, relocation); | |
2879 | break; | |
2880 | } | |
2881 | /* fall through */ | |
2882 | ||
2883 | case R_XTENSA_TLSDESC_FN: | |
2884 | case R_XTENSA_TLSDESC_ARG: | |
2885 | { | |
2886 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2887 | { | |
2888 | if (! info->shared || (tls_type & GOT_TLS_IE) != 0) | |
2889 | r_type = R_XTENSA_NONE; | |
2890 | } | |
2891 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2892 | { | |
2893 | if (info->shared) | |
2894 | { | |
2895 | if ((tls_type & GOT_TLS_IE) != 0) | |
2896 | r_type = R_XTENSA_TLS_TPOFF; | |
2897 | } | |
2898 | else | |
2899 | { | |
2900 | r_type = R_XTENSA_TLS_TPOFF; | |
2901 | if (! dynamic_symbol) | |
2902 | { | |
2903 | relocation = tpoff (info, relocation); | |
2904 | break; | |
2905 | } | |
2906 | } | |
2907 | } | |
2908 | ||
2909 | if (r_type == R_XTENSA_NONE) | |
2910 | /* Nothing to do here; skip to the next reloc. */ | |
2911 | continue; | |
2912 | ||
2913 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2914 | { | |
2915 | error_message = | |
2916 | _("TLS relocation invalid without dynamic sections"); | |
2917 | if (!((*info->callbacks->reloc_dangerous) | |
2918 | (info, error_message, input_bfd, input_section, | |
2919 | rel->r_offset))) | |
2920 | return FALSE; | |
2921 | } | |
2922 | else | |
2923 | { | |
2924 | Elf_Internal_Rela outrel; | |
2925 | bfd_byte *loc; | |
2926 | asection *srel = htab->srelgot; | |
2927 | int indx; | |
2928 | ||
2929 | outrel.r_offset = (input_section->output_section->vma | |
2930 | + input_section->output_offset | |
2931 | + rel->r_offset); | |
2932 | ||
2933 | /* Complain if the relocation is in a read-only section | |
2934 | and not in a literal pool. */ | |
2935 | if ((input_section->flags & SEC_READONLY) != 0 | |
2936 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2937 | outrel.r_offset)) | |
2938 | { | |
2939 | error_message = | |
2940 | _("dynamic relocation in read-only section"); | |
2941 | if (!((*info->callbacks->reloc_dangerous) | |
2942 | (info, error_message, input_bfd, input_section, | |
2943 | rel->r_offset))) | |
2944 | return FALSE; | |
2945 | } | |
2946 | ||
2947 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2948 | if (indx == 0) | |
2949 | outrel.r_addend = relocation - dtpoff_base (info); | |
2950 | else | |
2951 | outrel.r_addend = 0; | |
2952 | rel->r_addend = 0; | |
2953 | ||
2954 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2955 | relocation = 0; | |
2956 | unresolved_reloc = FALSE; | |
2957 | ||
2958 | BFD_ASSERT (srel); | |
2959 | loc = (srel->contents | |
2960 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2961 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2962 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2963 | <= srel->size); | |
2964 | } | |
2965 | } | |
2966 | break; | |
2967 | ||
2968 | case R_XTENSA_TLS_DTPOFF: | |
2969 | if (! info->shared) | |
2970 | /* Switch from LD model to LE model. */ | |
2971 | relocation = tpoff (info, relocation); | |
2972 | else | |
2973 | relocation -= dtpoff_base (info); | |
2974 | break; | |
2975 | ||
2976 | case R_XTENSA_TLS_FUNC: | |
2977 | case R_XTENSA_TLS_ARG: | |
2978 | case R_XTENSA_TLS_CALL: | |
2979 | /* Check if optimizing to IE or LE model. */ | |
2980 | if ((tls_type & GOT_TLS_IE) != 0) | |
2981 | { | |
2982 | bfd_boolean is_ld_model = | |
2983 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
2984 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
2985 | is_ld_model, &error_message)) | |
2986 | { | |
2987 | if (!((*info->callbacks->reloc_dangerous) | |
2988 | (info, error_message, input_bfd, input_section, | |
2989 | rel->r_offset))) | |
2990 | return FALSE; | |
2991 | } | |
2992 | ||
2993 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
2994 | { | |
2995 | /* Skip subsequent relocations on the same instruction. */ | |
2996 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
2997 | rel++; | |
2998 | } | |
2999 | } | |
3000 | continue; | |
3001 | ||
3002 | default: | |
3003 | if (elf_hash_table (info)->dynamic_sections_created | |
3004 | && dynamic_symbol && (is_operand_relocation (r_type) | |
3005 | || r_type == R_XTENSA_32_PCREL)) | |
3006 | { | |
3007 | error_message = | |
3008 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
3009 | strlen (name) + 2, name); | |
3010 | if (!((*info->callbacks->reloc_dangerous) | |
3011 | (info, error_message, input_bfd, input_section, | |
3012 | rel->r_offset))) | |
3013 | return FALSE; | |
3014 | continue; | |
3015 | } | |
3016 | break; | |
e0001a05 NC |
3017 | } |
3018 | ||
3019 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
3020 | because such sections are not SEC_ALLOC and thus ld.so will | |
3021 | not process them. */ | |
3022 | if (unresolved_reloc | |
3023 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
f5385ebf | 3024 | && h->def_dynamic)) |
bf1747de BW |
3025 | { |
3026 | (*_bfd_error_handler) | |
3027 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
3028 | input_bfd, | |
3029 | input_section, | |
3030 | (long) rel->r_offset, | |
3031 | howto->name, | |
28dbbc02 | 3032 | name); |
bf1747de BW |
3033 | return FALSE; |
3034 | } | |
e0001a05 | 3035 | |
28dbbc02 BW |
3036 | /* TLS optimizations may have changed r_type; update "howto". */ |
3037 | howto = &elf_howto_table[r_type]; | |
3038 | ||
e0001a05 NC |
3039 | /* There's no point in calling bfd_perform_relocation here. |
3040 | Just go directly to our "special function". */ | |
3041 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
3042 | relocation + rel->r_addend, | |
3043 | contents, rel->r_offset, is_weak_undef, | |
3044 | &error_message); | |
43cd72b9 | 3045 | |
9b8c98a4 | 3046 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 3047 | { |
43cd72b9 | 3048 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 3049 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 3050 | |
28dbbc02 BW |
3051 | if (rel->r_addend == 0) |
3052 | error_message = vsprint_msg (error_message, ": %s", | |
3053 | strlen (name) + 2, name); | |
e0001a05 | 3054 | else |
28dbbc02 BW |
3055 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3056 | strlen (name) + 22, | |
3057 | name, (int) rel->r_addend); | |
43cd72b9 | 3058 | |
e0001a05 NC |
3059 | if (!((*info->callbacks->reloc_dangerous) |
3060 | (info, error_message, input_bfd, input_section, | |
3061 | rel->r_offset))) | |
3062 | return FALSE; | |
3063 | } | |
3064 | } | |
3065 | ||
88d65ad6 BW |
3066 | if (lit_table) |
3067 | free (lit_table); | |
3068 | ||
3ba3bc8c BW |
3069 | input_section->reloc_done = TRUE; |
3070 | ||
e0001a05 NC |
3071 | return TRUE; |
3072 | } | |
3073 | ||
3074 | ||
3075 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3076 | the PLT and GOT entries are all set up by relocate_section. */ | |
3077 | ||
3078 | static bfd_boolean | |
7fa3d080 BW |
3079 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3080 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3081 | struct elf_link_hash_entry *h, | |
3082 | Elf_Internal_Sym *sym) | |
e0001a05 | 3083 | { |
bf1747de | 3084 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3085 | { |
3086 | /* Mark the symbol as undefined, rather than as defined in | |
3087 | the .plt section. Leave the value alone. */ | |
3088 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3089 | /* If the symbol is weak, we do need to clear the value. |
3090 | Otherwise, the PLT entry would provide a definition for | |
3091 | the symbol even if the symbol wasn't defined anywhere, | |
3092 | and so the symbol would never be NULL. */ | |
3093 | if (!h->ref_regular_nonweak) | |
3094 | sym->st_value = 0; | |
e0001a05 NC |
3095 | } |
3096 | ||
3097 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
3098 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
22edb2f1 | 3099 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3100 | sym->st_shndx = SHN_ABS; |
3101 | ||
3102 | return TRUE; | |
3103 | } | |
3104 | ||
3105 | ||
3106 | /* Combine adjacent literal table entries in the output. Adjacent | |
3107 | entries within each input section may have been removed during | |
3108 | relaxation, but we repeat the process here, even though it's too late | |
3109 | to shrink the output section, because it's important to minimize the | |
3110 | number of literal table entries to reduce the start-up work for the | |
3111 | runtime linker. Returns the number of remaining table entries or -1 | |
3112 | on error. */ | |
3113 | ||
3114 | static int | |
7fa3d080 BW |
3115 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3116 | asection *sxtlit, | |
3117 | asection *sgotloc) | |
e0001a05 | 3118 | { |
e0001a05 NC |
3119 | bfd_byte *contents; |
3120 | property_table_entry *table; | |
e901de89 | 3121 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3122 | bfd_vma offset; |
3123 | int n, m, num; | |
3124 | ||
eea6121a | 3125 | section_size = sxtlit->size; |
e0001a05 NC |
3126 | BFD_ASSERT (section_size % 8 == 0); |
3127 | num = section_size / 8; | |
3128 | ||
eea6121a | 3129 | sgotloc_size = sgotloc->size; |
e901de89 | 3130 | if (sgotloc_size != section_size) |
b536dc1e BW |
3131 | { |
3132 | (*_bfd_error_handler) | |
43cd72b9 | 3133 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3134 | return -1; |
3135 | } | |
e901de89 | 3136 | |
eea6121a AM |
3137 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3138 | if (table == 0) | |
e0001a05 NC |
3139 | return -1; |
3140 | ||
3141 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3142 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3143 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3144 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3145 | |
eea6121a AM |
3146 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3147 | { | |
3148 | if (contents != 0) | |
3149 | free (contents); | |
3150 | free (table); | |
3151 | return -1; | |
3152 | } | |
e0001a05 NC |
3153 | |
3154 | /* There should never be any relocations left at this point, so this | |
3155 | is quite a bit easier than what is done during relaxation. */ | |
3156 | ||
3157 | /* Copy the raw contents into a property table array and sort it. */ | |
3158 | offset = 0; | |
3159 | for (n = 0; n < num; n++) | |
3160 | { | |
3161 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3162 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3163 | offset += 8; | |
3164 | } | |
3165 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3166 | ||
3167 | for (n = 0; n < num; n++) | |
3168 | { | |
3169 | bfd_boolean remove = FALSE; | |
3170 | ||
3171 | if (table[n].size == 0) | |
3172 | remove = TRUE; | |
3173 | else if (n > 0 && | |
3174 | (table[n-1].address + table[n-1].size == table[n].address)) | |
3175 | { | |
3176 | table[n-1].size += table[n].size; | |
3177 | remove = TRUE; | |
3178 | } | |
3179 | ||
3180 | if (remove) | |
3181 | { | |
3182 | for (m = n; m < num - 1; m++) | |
3183 | { | |
3184 | table[m].address = table[m+1].address; | |
3185 | table[m].size = table[m+1].size; | |
3186 | } | |
3187 | ||
3188 | n--; | |
3189 | num--; | |
3190 | } | |
3191 | } | |
3192 | ||
3193 | /* Copy the data back to the raw contents. */ | |
3194 | offset = 0; | |
3195 | for (n = 0; n < num; n++) | |
3196 | { | |
3197 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3198 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3199 | offset += 8; | |
3200 | } | |
3201 | ||
3202 | /* Clear the removed bytes. */ | |
3203 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3204 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3205 | |
e901de89 BW |
3206 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3207 | section_size)) | |
e0001a05 NC |
3208 | return -1; |
3209 | ||
e901de89 BW |
3210 | /* Copy the contents to ".got.loc". */ |
3211 | memcpy (sgotloc->contents, contents, section_size); | |
3212 | ||
e0001a05 | 3213 | free (contents); |
b614a702 | 3214 | free (table); |
e0001a05 NC |
3215 | return num; |
3216 | } | |
3217 | ||
3218 | ||
3219 | /* Finish up the dynamic sections. */ | |
3220 | ||
3221 | static bfd_boolean | |
7fa3d080 BW |
3222 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3223 | struct bfd_link_info *info) | |
e0001a05 | 3224 | { |
f0e6fdb2 | 3225 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3226 | bfd *dynobj; |
e901de89 | 3227 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3228 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3229 | int num_xtlit_entries = 0; |
e0001a05 NC |
3230 | |
3231 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3232 | return TRUE; | |
3233 | ||
f0e6fdb2 | 3234 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
3235 | dynobj = elf_hash_table (info)->dynobj; |
3236 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
3237 | BFD_ASSERT (sdyn != NULL); | |
3238 | ||
3239 | /* Set the first entry in the global offset table to the address of | |
3240 | the dynamic section. */ | |
f0e6fdb2 | 3241 | sgot = htab->sgot; |
e0001a05 NC |
3242 | if (sgot) |
3243 | { | |
eea6121a | 3244 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3245 | if (sdyn == NULL) |
7fa3d080 | 3246 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3247 | else |
3248 | bfd_put_32 (output_bfd, | |
3249 | sdyn->output_section->vma + sdyn->output_offset, | |
3250 | sgot->contents); | |
3251 | } | |
3252 | ||
f0e6fdb2 | 3253 | srelplt = htab->srelplt; |
7fa3d080 | 3254 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
3255 | { |
3256 | asection *sgotplt, *srelgot, *spltlittbl; | |
3257 | int chunk, plt_chunks, plt_entries; | |
3258 | Elf_Internal_Rela irela; | |
3259 | bfd_byte *loc; | |
3260 | unsigned rtld_reloc; | |
3261 | ||
f0e6fdb2 BW |
3262 | srelgot = htab->srelgot; |
3263 | spltlittbl = htab->spltlittbl; | |
3264 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3265 | |
3266 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3267 | of them follow immediately after.... */ | |
3268 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3269 | { | |
3270 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3271 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3272 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3273 | break; | |
3274 | } | |
3275 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3276 | ||
eea6121a | 3277 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3278 | plt_chunks = |
3279 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3280 | ||
3281 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3282 | { | |
3283 | int chunk_entries = 0; | |
3284 | ||
f0e6fdb2 | 3285 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3286 | BFD_ASSERT (sgotplt != NULL); |
3287 | ||
3288 | /* Emit special RTLD relocations for the first two entries in | |
3289 | each chunk of the .got.plt section. */ | |
3290 | ||
3291 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3292 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3293 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3294 | irela.r_offset = (sgotplt->output_section->vma | |
3295 | + sgotplt->output_offset); | |
3296 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3297 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3298 | rtld_reloc += 1; | |
3299 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3300 | ||
3301 | /* Next literal immediately follows the first. */ | |
3302 | loc += sizeof (Elf32_External_Rela); | |
3303 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3304 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3305 | irela.r_offset = (sgotplt->output_section->vma | |
3306 | + sgotplt->output_offset + 4); | |
3307 | /* Tell rtld to set value to object's link map. */ | |
3308 | irela.r_addend = 2; | |
3309 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3310 | rtld_reloc += 1; | |
3311 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3312 | ||
3313 | /* Fill in the literal table. */ | |
3314 | if (chunk < plt_chunks - 1) | |
3315 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3316 | else | |
3317 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3318 | ||
eea6121a | 3319 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3320 | bfd_put_32 (output_bfd, |
3321 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3322 | spltlittbl->contents + (chunk * 8) + 0); | |
3323 | bfd_put_32 (output_bfd, | |
3324 | 8 + (chunk_entries * 4), | |
3325 | spltlittbl->contents + (chunk * 8) + 4); | |
3326 | } | |
3327 | ||
3328 | /* All the dynamic relocations have been emitted at this point. | |
3329 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
3330 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
3331 | * srelgot->reloc_count) | |
3332 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
3333 | * srelplt->reloc_count)) | |
e0001a05 NC |
3334 | abort (); |
3335 | ||
3336 | /* The .xt.lit.plt section has just been modified. This must | |
3337 | happen before the code below which combines adjacent literal | |
3338 | table entries, and the .xt.lit.plt contents have to be forced to | |
3339 | the output here. */ | |
3340 | if (! bfd_set_section_contents (output_bfd, | |
3341 | spltlittbl->output_section, | |
3342 | spltlittbl->contents, | |
3343 | spltlittbl->output_offset, | |
eea6121a | 3344 | spltlittbl->size)) |
e0001a05 NC |
3345 | return FALSE; |
3346 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3347 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3348 | } | |
3349 | ||
3350 | /* Combine adjacent literal table entries. */ | |
1049f94e | 3351 | BFD_ASSERT (! info->relocatable); |
e901de89 | 3352 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3353 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3354 | BFD_ASSERT (sgotloc); |
3355 | if (sxtlit) | |
3356 | { | |
3357 | num_xtlit_entries = | |
3358 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3359 | if (num_xtlit_entries < 0) | |
3360 | return FALSE; | |
3361 | } | |
e0001a05 NC |
3362 | |
3363 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3364 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3365 | for (; dyncon < dynconend; dyncon++) |
3366 | { | |
3367 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3368 | |
3369 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3370 | ||
3371 | switch (dyn.d_tag) | |
3372 | { | |
3373 | default: | |
3374 | break; | |
3375 | ||
3376 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3377 | dyn.d_un.d_val = num_xtlit_entries; |
3378 | break; | |
3379 | ||
3380 | case DT_XTENSA_GOT_LOC_OFF: | |
e29297b7 | 3381 | dyn.d_un.d_ptr = htab->sgotloc->output_section->vma; |
f0e6fdb2 BW |
3382 | break; |
3383 | ||
e0001a05 | 3384 | case DT_PLTGOT: |
e29297b7 | 3385 | dyn.d_un.d_ptr = htab->sgot->output_section->vma; |
f0e6fdb2 BW |
3386 | break; |
3387 | ||
e0001a05 | 3388 | case DT_JMPREL: |
e29297b7 | 3389 | dyn.d_un.d_ptr = htab->srelplt->output_section->vma; |
e0001a05 NC |
3390 | break; |
3391 | ||
3392 | case DT_PLTRELSZ: | |
e29297b7 | 3393 | dyn.d_un.d_val = htab->srelplt->output_section->size; |
e0001a05 NC |
3394 | break; |
3395 | ||
3396 | case DT_RELASZ: | |
3397 | /* Adjust RELASZ to not include JMPREL. This matches what | |
3398 | glibc expects and what is done for several other ELF | |
3399 | targets (e.g., i386, alpha), but the "correct" behavior | |
3400 | seems to be unresolved. Since the linker script arranges | |
3401 | for .rela.plt to follow all other relocation sections, we | |
3402 | don't have to worry about changing the DT_RELA entry. */ | |
f0e6fdb2 | 3403 | if (htab->srelplt) |
e29297b7 | 3404 | dyn.d_un.d_val -= htab->srelplt->output_section->size; |
e0001a05 NC |
3405 | break; |
3406 | } | |
3407 | ||
3408 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3409 | } | |
3410 | ||
3411 | return TRUE; | |
3412 | } | |
3413 | ||
3414 | \f | |
3415 | /* Functions for dealing with the e_flags field. */ | |
3416 | ||
3417 | /* Merge backend specific data from an object file to the output | |
3418 | object file when linking. */ | |
3419 | ||
3420 | static bfd_boolean | |
7fa3d080 | 3421 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
3422 | { |
3423 | unsigned out_mach, in_mach; | |
3424 | flagword out_flag, in_flag; | |
3425 | ||
3426 | /* Check if we have the same endianess. */ | |
3427 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
3428 | return FALSE; | |
3429 | ||
3430 | /* Don't even pretend to support mixed-format linking. */ | |
3431 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3432 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3433 | return FALSE; | |
3434 | ||
3435 | out_flag = elf_elfheader (obfd)->e_flags; | |
3436 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3437 | ||
3438 | out_mach = out_flag & EF_XTENSA_MACH; | |
3439 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3440 | if (out_mach != in_mach) |
e0001a05 NC |
3441 | { |
3442 | (*_bfd_error_handler) | |
43cd72b9 | 3443 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 3444 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3445 | bfd_set_error (bfd_error_wrong_format); |
3446 | return FALSE; | |
3447 | } | |
3448 | ||
3449 | if (! elf_flags_init (obfd)) | |
3450 | { | |
3451 | elf_flags_init (obfd) = TRUE; | |
3452 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3453 | |
e0001a05 NC |
3454 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3455 | && bfd_get_arch_info (obfd)->the_default) | |
3456 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3457 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3458 | |
e0001a05 NC |
3459 | return TRUE; |
3460 | } | |
3461 | ||
43cd72b9 BW |
3462 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
3463 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
e0001a05 | 3464 | |
43cd72b9 BW |
3465 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
3466 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
e0001a05 NC |
3467 | |
3468 | return TRUE; | |
3469 | } | |
3470 | ||
3471 | ||
3472 | static bfd_boolean | |
7fa3d080 | 3473 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3474 | { |
3475 | BFD_ASSERT (!elf_flags_init (abfd) | |
3476 | || elf_elfheader (abfd)->e_flags == flags); | |
3477 | ||
3478 | elf_elfheader (abfd)->e_flags |= flags; | |
3479 | elf_flags_init (abfd) = TRUE; | |
3480 | ||
3481 | return TRUE; | |
3482 | } | |
3483 | ||
3484 | ||
e0001a05 | 3485 | static bfd_boolean |
7fa3d080 | 3486 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3487 | { |
3488 | FILE *f = (FILE *) farg; | |
3489 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3490 | ||
3491 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3492 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3493 | fprintf (f, "\nMachine = Base\n"); |
3494 | else | |
3495 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3496 | ||
3497 | fprintf (f, "Insn tables = %s\n", | |
3498 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3499 | ||
3500 | fprintf (f, "Literal tables = %s\n", | |
3501 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3502 | ||
3503 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3504 | } | |
3505 | ||
3506 | ||
3507 | /* Set the right machine number for an Xtensa ELF file. */ | |
3508 | ||
3509 | static bfd_boolean | |
7fa3d080 | 3510 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3511 | { |
3512 | int mach; | |
3513 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3514 | ||
3515 | switch (arch) | |
3516 | { | |
3517 | case E_XTENSA_MACH: | |
3518 | mach = bfd_mach_xtensa; | |
3519 | break; | |
3520 | default: | |
3521 | return FALSE; | |
3522 | } | |
3523 | ||
3524 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3525 | return TRUE; | |
3526 | } | |
3527 | ||
3528 | ||
3529 | /* The final processing done just before writing out an Xtensa ELF object | |
3530 | file. This gets the Xtensa architecture right based on the machine | |
3531 | number. */ | |
3532 | ||
3533 | static void | |
7fa3d080 BW |
3534 | elf_xtensa_final_write_processing (bfd *abfd, |
3535 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
3536 | { |
3537 | int mach; | |
3538 | unsigned long val; | |
3539 | ||
3540 | switch (mach = bfd_get_mach (abfd)) | |
3541 | { | |
3542 | case bfd_mach_xtensa: | |
3543 | val = E_XTENSA_MACH; | |
3544 | break; | |
3545 | default: | |
3546 | return; | |
3547 | } | |
3548 | ||
3549 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
3550 | elf_elfheader (abfd)->e_flags |= val; | |
3551 | } | |
3552 | ||
3553 | ||
3554 | static enum elf_reloc_type_class | |
7fa3d080 | 3555 | elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela) |
e0001a05 NC |
3556 | { |
3557 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3558 | { | |
3559 | case R_XTENSA_RELATIVE: | |
3560 | return reloc_class_relative; | |
3561 | case R_XTENSA_JMP_SLOT: | |
3562 | return reloc_class_plt; | |
3563 | default: | |
3564 | return reloc_class_normal; | |
3565 | } | |
3566 | } | |
3567 | ||
3568 | \f | |
3569 | static bfd_boolean | |
7fa3d080 BW |
3570 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3571 | struct elf_reloc_cookie *cookie, | |
3572 | struct bfd_link_info *info, | |
3573 | asection *sec) | |
e0001a05 NC |
3574 | { |
3575 | bfd_byte *contents; | |
e0001a05 | 3576 | bfd_vma offset, actual_offset; |
1d25768e BW |
3577 | bfd_size_type removed_bytes = 0; |
3578 | bfd_size_type entry_size; | |
e0001a05 NC |
3579 | |
3580 | if (sec->output_section | |
3581 | && bfd_is_abs_section (sec->output_section)) | |
3582 | return FALSE; | |
3583 | ||
1d25768e BW |
3584 | if (xtensa_is_proptable_section (sec)) |
3585 | entry_size = 12; | |
3586 | else | |
3587 | entry_size = 8; | |
3588 | ||
a3ef2d63 | 3589 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3590 | return FALSE; |
3591 | ||
e0001a05 NC |
3592 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3593 | if (!contents) | |
3594 | return FALSE; | |
3595 | ||
3596 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3597 | if (!cookie->rels) | |
3598 | { | |
3599 | release_contents (sec, contents); | |
3600 | return FALSE; | |
3601 | } | |
3602 | ||
1d25768e BW |
3603 | /* Sort the relocations. They should already be in order when |
3604 | relaxation is enabled, but it might not be. */ | |
3605 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3606 | internal_reloc_compare); | |
3607 | ||
e0001a05 NC |
3608 | cookie->rel = cookie->rels; |
3609 | cookie->relend = cookie->rels + sec->reloc_count; | |
3610 | ||
a3ef2d63 | 3611 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3612 | { |
3613 | actual_offset = offset - removed_bytes; | |
3614 | ||
3615 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3616 | won't adjust their offsets, so do that here. */ | |
3617 | while (cookie->rel < cookie->relend | |
3618 | && cookie->rel->r_offset < offset) | |
3619 | { | |
3620 | cookie->rel->r_offset -= removed_bytes; | |
3621 | cookie->rel++; | |
3622 | } | |
3623 | ||
3624 | while (cookie->rel < cookie->relend | |
3625 | && cookie->rel->r_offset == offset) | |
3626 | { | |
c152c796 | 3627 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3628 | { |
3629 | /* Remove the table entry. (If the reloc type is NONE, then | |
3630 | the entry has already been merged with another and deleted | |
3631 | during relaxation.) */ | |
3632 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3633 | { | |
3634 | /* Shift the contents up. */ | |
a3ef2d63 | 3635 | if (offset + entry_size < sec->size) |
e0001a05 | 3636 | memmove (&contents[actual_offset], |
1d25768e | 3637 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3638 | sec->size - offset - entry_size); |
1d25768e | 3639 | removed_bytes += entry_size; |
e0001a05 NC |
3640 | } |
3641 | ||
3642 | /* Remove this relocation. */ | |
3643 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3644 | } | |
3645 | ||
3646 | /* Adjust the relocation offset for previous removals. This | |
3647 | should not be done before calling ...symbol_deleted_p | |
3648 | because it might mess up the offset comparisons there. | |
3649 | Make sure the offset doesn't underflow in the case where | |
3650 | the first entry is removed. */ | |
3651 | if (cookie->rel->r_offset >= removed_bytes) | |
3652 | cookie->rel->r_offset -= removed_bytes; | |
3653 | else | |
3654 | cookie->rel->r_offset = 0; | |
3655 | ||
3656 | cookie->rel++; | |
3657 | } | |
3658 | } | |
3659 | ||
3660 | if (removed_bytes != 0) | |
3661 | { | |
3662 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3663 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3664 | { | |
3665 | if (cookie->rel->r_offset >= removed_bytes) | |
3666 | cookie->rel->r_offset -= removed_bytes; | |
3667 | else | |
3668 | cookie->rel->r_offset = 0; | |
3669 | } | |
3670 | ||
3671 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3672 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3673 | |
3674 | pin_contents (sec, contents); | |
3675 | pin_internal_relocs (sec, cookie->rels); | |
3676 | ||
eea6121a | 3677 | /* Shrink size. */ |
a3ef2d63 BW |
3678 | if (sec->rawsize == 0) |
3679 | sec->rawsize = sec->size; | |
3680 | sec->size -= removed_bytes; | |
b536dc1e BW |
3681 | |
3682 | if (xtensa_is_littable_section (sec)) | |
3683 | { | |
f0e6fdb2 BW |
3684 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3685 | if (sgotloc) | |
3686 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3687 | } |
e0001a05 NC |
3688 | } |
3689 | else | |
3690 | { | |
3691 | release_contents (sec, contents); | |
3692 | release_internal_relocs (sec, cookie->rels); | |
3693 | } | |
3694 | ||
3695 | return (removed_bytes != 0); | |
3696 | } | |
3697 | ||
3698 | ||
3699 | static bfd_boolean | |
7fa3d080 BW |
3700 | elf_xtensa_discard_info (bfd *abfd, |
3701 | struct elf_reloc_cookie *cookie, | |
3702 | struct bfd_link_info *info) | |
e0001a05 NC |
3703 | { |
3704 | asection *sec; | |
3705 | bfd_boolean changed = FALSE; | |
3706 | ||
3707 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3708 | { | |
3709 | if (xtensa_is_property_section (sec)) | |
3710 | { | |
3711 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3712 | changed = TRUE; | |
3713 | } | |
3714 | } | |
3715 | ||
3716 | return changed; | |
3717 | } | |
3718 | ||
3719 | ||
3720 | static bfd_boolean | |
7fa3d080 | 3721 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3722 | { |
3723 | return xtensa_is_property_section (sec); | |
3724 | } | |
3725 | ||
a77dc2cc BW |
3726 | |
3727 | static unsigned int | |
3728 | elf_xtensa_action_discarded (asection *sec) | |
3729 | { | |
3730 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3731 | return 0; | |
3732 | ||
3733 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3734 | return 0; | |
3735 | ||
3736 | return _bfd_elf_default_action_discarded (sec); | |
3737 | } | |
3738 | ||
e0001a05 NC |
3739 | \f |
3740 | /* Support for core dump NOTE sections. */ | |
3741 | ||
3742 | static bfd_boolean | |
7fa3d080 | 3743 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3744 | { |
3745 | int offset; | |
eea6121a | 3746 | unsigned int size; |
e0001a05 NC |
3747 | |
3748 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3749 | based on the size. Just assume this is GNU/Linux. */ | |
3750 | ||
3751 | /* pr_cursig */ | |
3752 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
3753 | ||
3754 | /* pr_pid */ | |
3755 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
3756 | ||
3757 | /* pr_reg */ | |
3758 | offset = 72; | |
eea6121a | 3759 | size = note->descsz - offset - 4; |
e0001a05 NC |
3760 | |
3761 | /* Make a ".reg/999" section. */ | |
3762 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3763 | size, note->descpos + offset); |
e0001a05 NC |
3764 | } |
3765 | ||
3766 | ||
3767 | static bfd_boolean | |
7fa3d080 | 3768 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3769 | { |
3770 | switch (note->descsz) | |
3771 | { | |
3772 | default: | |
3773 | return FALSE; | |
3774 | ||
3775 | case 128: /* GNU/Linux elf_prpsinfo */ | |
3776 | elf_tdata (abfd)->core_program | |
3777 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
3778 | elf_tdata (abfd)->core_command | |
3779 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
3780 | } | |
3781 | ||
3782 | /* Note that for some reason, a spurious space is tacked | |
3783 | onto the end of the args in some (at least one anyway) | |
3784 | implementations, so strip it off if it exists. */ | |
3785 | ||
3786 | { | |
3787 | char *command = elf_tdata (abfd)->core_command; | |
3788 | int n = strlen (command); | |
3789 | ||
3790 | if (0 < n && command[n - 1] == ' ') | |
3791 | command[n - 1] = '\0'; | |
3792 | } | |
3793 | ||
3794 | return TRUE; | |
3795 | } | |
3796 | ||
3797 | \f | |
3798 | /* Generic Xtensa configurability stuff. */ | |
3799 | ||
3800 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3801 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3802 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3803 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3804 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3805 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3806 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3807 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3808 | ||
3809 | static void | |
7fa3d080 | 3810 | init_call_opcodes (void) |
e0001a05 NC |
3811 | { |
3812 | if (callx0_op == XTENSA_UNDEFINED) | |
3813 | { | |
3814 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3815 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3816 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3817 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3818 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3819 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3820 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3821 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3822 | } | |
3823 | } | |
3824 | ||
3825 | ||
3826 | static bfd_boolean | |
7fa3d080 | 3827 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3828 | { |
3829 | init_call_opcodes (); | |
3830 | return (opcode == callx0_op | |
3831 | || opcode == callx4_op | |
3832 | || opcode == callx8_op | |
3833 | || opcode == callx12_op); | |
3834 | } | |
3835 | ||
3836 | ||
3837 | static bfd_boolean | |
7fa3d080 | 3838 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3839 | { |
3840 | init_call_opcodes (); | |
3841 | return (opcode == call0_op | |
3842 | || opcode == call4_op | |
3843 | || opcode == call8_op | |
3844 | || opcode == call12_op); | |
3845 | } | |
3846 | ||
3847 | ||
3848 | static bfd_boolean | |
7fa3d080 | 3849 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3850 | { |
3851 | init_call_opcodes (); | |
3852 | return (opcode == call4_op | |
3853 | || opcode == call8_op | |
3854 | || opcode == call12_op | |
3855 | || opcode == callx4_op | |
3856 | || opcode == callx8_op | |
3857 | || opcode == callx12_op); | |
3858 | } | |
3859 | ||
3860 | ||
28dbbc02 BW |
3861 | static bfd_boolean |
3862 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3863 | { | |
3864 | unsigned dst = (unsigned) -1; | |
3865 | ||
3866 | init_call_opcodes (); | |
3867 | if (opcode == callx0_op) | |
3868 | dst = 0; | |
3869 | else if (opcode == callx4_op) | |
3870 | dst = 4; | |
3871 | else if (opcode == callx8_op) | |
3872 | dst = 8; | |
3873 | else if (opcode == callx12_op) | |
3874 | dst = 12; | |
3875 | ||
3876 | if (dst == (unsigned) -1) | |
3877 | return FALSE; | |
3878 | ||
3879 | *pdst = dst; | |
3880 | return TRUE; | |
3881 | } | |
3882 | ||
3883 | ||
43cd72b9 BW |
3884 | static xtensa_opcode |
3885 | get_const16_opcode (void) | |
3886 | { | |
3887 | static bfd_boolean done_lookup = FALSE; | |
3888 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3889 | if (!done_lookup) | |
3890 | { | |
3891 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3892 | done_lookup = TRUE; | |
3893 | } | |
3894 | return const16_opcode; | |
3895 | } | |
3896 | ||
3897 | ||
e0001a05 NC |
3898 | static xtensa_opcode |
3899 | get_l32r_opcode (void) | |
3900 | { | |
3901 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3902 | static bfd_boolean done_lookup = FALSE; |
3903 | ||
3904 | if (!done_lookup) | |
e0001a05 NC |
3905 | { |
3906 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3907 | done_lookup = TRUE; |
e0001a05 NC |
3908 | } |
3909 | return l32r_opcode; | |
3910 | } | |
3911 | ||
3912 | ||
3913 | static bfd_vma | |
7fa3d080 | 3914 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3915 | { |
3916 | bfd_vma offset; | |
3917 | ||
3918 | offset = addr - ((pc+3) & -4); | |
3919 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3920 | offset = (signed int) offset >> 2; | |
3921 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3922 | return offset; | |
3923 | } | |
3924 | ||
3925 | ||
e0001a05 | 3926 | static int |
7fa3d080 | 3927 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3928 | { |
43cd72b9 BW |
3929 | xtensa_isa isa = xtensa_default_isa; |
3930 | int last_immed, last_opnd, opi; | |
3931 | ||
3932 | if (opcode == XTENSA_UNDEFINED) | |
3933 | return XTENSA_UNDEFINED; | |
3934 | ||
3935 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3936 | If there are no PC-relative immediates, then choose the last visible | |
3937 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3938 | last_immed = XTENSA_UNDEFINED; | |
3939 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3940 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3941 | { | |
3942 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3943 | continue; | |
3944 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3945 | { | |
3946 | last_immed = opi; | |
3947 | break; | |
3948 | } | |
3949 | if (last_immed == XTENSA_UNDEFINED | |
3950 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3951 | last_immed = opi; | |
3952 | } | |
3953 | if (last_immed < 0) | |
3954 | return XTENSA_UNDEFINED; | |
3955 | ||
3956 | /* If the operand number was specified in an old-style relocation, | |
3957 | check for consistency with the operand computed above. */ | |
3958 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3959 | { | |
3960 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3961 | if (reloc_opnd != last_immed) | |
3962 | return XTENSA_UNDEFINED; | |
3963 | } | |
3964 | ||
3965 | return last_immed; | |
3966 | } | |
3967 | ||
3968 | ||
3969 | int | |
7fa3d080 | 3970 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3971 | { |
3972 | switch (r_type) | |
3973 | { | |
3974 | case R_XTENSA_OP0: | |
3975 | case R_XTENSA_OP1: | |
3976 | case R_XTENSA_OP2: | |
3977 | return 0; | |
3978 | ||
3979 | default: | |
3980 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3981 | return r_type - R_XTENSA_SLOT0_OP; | |
3982 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3983 | return r_type - R_XTENSA_SLOT0_ALT; | |
3984 | break; | |
3985 | } | |
3986 | ||
3987 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
3988 | } |
3989 | ||
3990 | ||
3991 | /* Get the opcode for a relocation. */ | |
3992 | ||
3993 | static xtensa_opcode | |
7fa3d080 BW |
3994 | get_relocation_opcode (bfd *abfd, |
3995 | asection *sec, | |
3996 | bfd_byte *contents, | |
3997 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3998 | { |
3999 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 4000 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 4001 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4002 | xtensa_format fmt; |
4003 | int slot; | |
e0001a05 NC |
4004 | |
4005 | if (contents == NULL) | |
4006 | return XTENSA_UNDEFINED; | |
4007 | ||
43cd72b9 | 4008 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
4009 | return XTENSA_UNDEFINED; |
4010 | ||
4011 | if (ibuff == NULL) | |
43cd72b9 BW |
4012 | { |
4013 | ibuff = xtensa_insnbuf_alloc (isa); | |
4014 | sbuff = xtensa_insnbuf_alloc (isa); | |
4015 | } | |
4016 | ||
e0001a05 | 4017 | /* Decode the instruction. */ |
43cd72b9 BW |
4018 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4019 | sec->size - irel->r_offset); | |
4020 | fmt = xtensa_format_decode (isa, ibuff); | |
4021 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
4022 | if (slot == XTENSA_UNDEFINED) | |
4023 | return XTENSA_UNDEFINED; | |
4024 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
4025 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
4026 | } |
4027 | ||
4028 | ||
4029 | bfd_boolean | |
7fa3d080 BW |
4030 | is_l32r_relocation (bfd *abfd, |
4031 | asection *sec, | |
4032 | bfd_byte *contents, | |
4033 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4034 | { |
4035 | xtensa_opcode opcode; | |
43cd72b9 | 4036 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4037 | return FALSE; |
43cd72b9 | 4038 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4039 | return (opcode == get_l32r_opcode ()); |
4040 | } | |
4041 | ||
e0001a05 | 4042 | |
43cd72b9 | 4043 | static bfd_size_type |
7fa3d080 BW |
4044 | get_asm_simplify_size (bfd_byte *contents, |
4045 | bfd_size_type content_len, | |
4046 | bfd_size_type offset) | |
e0001a05 | 4047 | { |
43cd72b9 | 4048 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4049 | |
43cd72b9 BW |
4050 | /* Decode the size of the next two instructions. */ |
4051 | insnlen = insn_decode_len (contents, content_len, offset); | |
4052 | if (insnlen == 0) | |
4053 | return 0; | |
e0001a05 | 4054 | |
43cd72b9 | 4055 | size += insnlen; |
e0001a05 | 4056 | |
43cd72b9 BW |
4057 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4058 | if (insnlen == 0) | |
4059 | return 0; | |
e0001a05 | 4060 | |
43cd72b9 BW |
4061 | size += insnlen; |
4062 | return size; | |
4063 | } | |
e0001a05 | 4064 | |
43cd72b9 BW |
4065 | |
4066 | bfd_boolean | |
7fa3d080 | 4067 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4068 | { |
4069 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4070 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4071 | } |
4072 | ||
4073 | ||
43cd72b9 | 4074 | bfd_boolean |
7fa3d080 | 4075 | is_operand_relocation (int r_type) |
e0001a05 | 4076 | { |
43cd72b9 BW |
4077 | switch (r_type) |
4078 | { | |
4079 | case R_XTENSA_OP0: | |
4080 | case R_XTENSA_OP1: | |
4081 | case R_XTENSA_OP2: | |
4082 | return TRUE; | |
e0001a05 | 4083 | |
43cd72b9 BW |
4084 | default: |
4085 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4086 | return TRUE; | |
4087 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4088 | return TRUE; | |
4089 | break; | |
4090 | } | |
e0001a05 | 4091 | |
43cd72b9 | 4092 | return FALSE; |
e0001a05 NC |
4093 | } |
4094 | ||
43cd72b9 BW |
4095 | |
4096 | #define MIN_INSN_LENGTH 2 | |
e0001a05 | 4097 | |
43cd72b9 BW |
4098 | /* Return 0 if it fails to decode. */ |
4099 | ||
4100 | bfd_size_type | |
7fa3d080 BW |
4101 | insn_decode_len (bfd_byte *contents, |
4102 | bfd_size_type content_len, | |
4103 | bfd_size_type offset) | |
e0001a05 | 4104 | { |
43cd72b9 BW |
4105 | int insn_len; |
4106 | xtensa_isa isa = xtensa_default_isa; | |
4107 | xtensa_format fmt; | |
4108 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4109 | |
43cd72b9 BW |
4110 | if (offset + MIN_INSN_LENGTH > content_len) |
4111 | return 0; | |
e0001a05 | 4112 | |
43cd72b9 BW |
4113 | if (ibuff == NULL) |
4114 | ibuff = xtensa_insnbuf_alloc (isa); | |
4115 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4116 | content_len - offset); | |
4117 | fmt = xtensa_format_decode (isa, ibuff); | |
4118 | if (fmt == XTENSA_UNDEFINED) | |
4119 | return 0; | |
4120 | insn_len = xtensa_format_length (isa, fmt); | |
4121 | if (insn_len == XTENSA_UNDEFINED) | |
4122 | return 0; | |
4123 | return insn_len; | |
e0001a05 NC |
4124 | } |
4125 | ||
4126 | ||
43cd72b9 BW |
4127 | /* Decode the opcode for a single slot instruction. |
4128 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4129 | |
43cd72b9 | 4130 | xtensa_opcode |
7fa3d080 BW |
4131 | insn_decode_opcode (bfd_byte *contents, |
4132 | bfd_size_type content_len, | |
4133 | bfd_size_type offset, | |
4134 | int slot) | |
e0001a05 | 4135 | { |
e0001a05 | 4136 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4137 | xtensa_format fmt; |
4138 | static xtensa_insnbuf insnbuf = NULL; | |
4139 | static xtensa_insnbuf slotbuf = NULL; | |
4140 | ||
4141 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4142 | return XTENSA_UNDEFINED; |
4143 | ||
4144 | if (insnbuf == NULL) | |
43cd72b9 BW |
4145 | { |
4146 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4147 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4148 | } | |
4149 | ||
4150 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4151 | content_len - offset); | |
4152 | fmt = xtensa_format_decode (isa, insnbuf); | |
4153 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4154 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4155 | |
4156 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4157 | return XTENSA_UNDEFINED; |
e0001a05 | 4158 | |
43cd72b9 BW |
4159 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4160 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4161 | } | |
e0001a05 | 4162 | |
e0001a05 | 4163 | |
43cd72b9 BW |
4164 | /* The offset is the offset in the contents. |
4165 | The address is the address of that offset. */ | |
e0001a05 | 4166 | |
43cd72b9 | 4167 | static bfd_boolean |
7fa3d080 BW |
4168 | check_branch_target_aligned (bfd_byte *contents, |
4169 | bfd_size_type content_length, | |
4170 | bfd_vma offset, | |
4171 | bfd_vma address) | |
43cd72b9 BW |
4172 | { |
4173 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4174 | if (insn_len == 0) | |
4175 | return FALSE; | |
4176 | return check_branch_target_aligned_address (address, insn_len); | |
4177 | } | |
e0001a05 | 4178 | |
e0001a05 | 4179 | |
43cd72b9 | 4180 | static bfd_boolean |
7fa3d080 BW |
4181 | check_loop_aligned (bfd_byte *contents, |
4182 | bfd_size_type content_length, | |
4183 | bfd_vma offset, | |
4184 | bfd_vma address) | |
e0001a05 | 4185 | { |
43cd72b9 | 4186 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4187 | xtensa_opcode opcode; |
e0001a05 | 4188 | |
64b607e6 BW |
4189 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4190 | if (opcode == XTENSA_UNDEFINED | |
4191 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4192 | { | |
4193 | BFD_ASSERT (FALSE); | |
4194 | return FALSE; | |
4195 | } | |
4196 | ||
43cd72b9 | 4197 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4198 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4199 | if (loop_len == 0 || insn_len == 0) |
4200 | { | |
4201 | BFD_ASSERT (FALSE); | |
4202 | return FALSE; | |
4203 | } | |
e0001a05 | 4204 | |
43cd72b9 BW |
4205 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4206 | } | |
e0001a05 | 4207 | |
e0001a05 NC |
4208 | |
4209 | static bfd_boolean | |
7fa3d080 | 4210 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4211 | { |
43cd72b9 BW |
4212 | if (len == 8) |
4213 | return (addr % 8 == 0); | |
4214 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4215 | } |
4216 | ||
43cd72b9 BW |
4217 | \f |
4218 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4219 | |
7fa3d080 BW |
4220 | /* When FLIX is available we need to access certain instructions only |
4221 | when they are 16-bit or 24-bit instructions. This table caches | |
4222 | information about such instructions by walking through all the | |
4223 | opcodes and finding the smallest single-slot format into which each | |
4224 | can be encoded. */ | |
4225 | ||
4226 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4227 | |
4228 | ||
7fa3d080 BW |
4229 | static void |
4230 | init_op_single_format_table (void) | |
e0001a05 | 4231 | { |
7fa3d080 BW |
4232 | xtensa_isa isa = xtensa_default_isa; |
4233 | xtensa_insnbuf ibuf; | |
4234 | xtensa_opcode opcode; | |
4235 | xtensa_format fmt; | |
4236 | int num_opcodes; | |
4237 | ||
4238 | if (op_single_fmt_table) | |
4239 | return; | |
4240 | ||
4241 | ibuf = xtensa_insnbuf_alloc (isa); | |
4242 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4243 | ||
4244 | op_single_fmt_table = (xtensa_format *) | |
4245 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4246 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4247 | { | |
4248 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4249 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4250 | { | |
4251 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4252 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4253 | { | |
4254 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4255 | int fmt_length = xtensa_format_length (isa, fmt); | |
4256 | if (old_fmt == XTENSA_UNDEFINED | |
4257 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4258 | op_single_fmt_table[opcode] = fmt; | |
4259 | } | |
4260 | } | |
4261 | } | |
4262 | xtensa_insnbuf_free (isa, ibuf); | |
4263 | } | |
4264 | ||
4265 | ||
4266 | static xtensa_format | |
4267 | get_single_format (xtensa_opcode opcode) | |
4268 | { | |
4269 | init_op_single_format_table (); | |
4270 | return op_single_fmt_table[opcode]; | |
4271 | } | |
e0001a05 | 4272 | |
e0001a05 | 4273 | |
43cd72b9 BW |
4274 | /* For the set of narrowable instructions we do NOT include the |
4275 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4276 | involved during linker relaxation that may require these to | |
4277 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4278 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4279 | |
7fa3d080 BW |
4280 | struct string_pair |
4281 | { | |
4282 | const char *wide; | |
4283 | const char *narrow; | |
4284 | }; | |
4285 | ||
43cd72b9 | 4286 | struct string_pair narrowable[] = |
e0001a05 | 4287 | { |
43cd72b9 BW |
4288 | { "add", "add.n" }, |
4289 | { "addi", "addi.n" }, | |
4290 | { "addmi", "addi.n" }, | |
4291 | { "l32i", "l32i.n" }, | |
4292 | { "movi", "movi.n" }, | |
4293 | { "ret", "ret.n" }, | |
4294 | { "retw", "retw.n" }, | |
4295 | { "s32i", "s32i.n" }, | |
4296 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4297 | }; | |
e0001a05 | 4298 | |
43cd72b9 | 4299 | struct string_pair widenable[] = |
e0001a05 | 4300 | { |
43cd72b9 BW |
4301 | { "add", "add.n" }, |
4302 | { "addi", "addi.n" }, | |
4303 | { "addmi", "addi.n" }, | |
4304 | { "beqz", "beqz.n" }, | |
4305 | { "bnez", "bnez.n" }, | |
4306 | { "l32i", "l32i.n" }, | |
4307 | { "movi", "movi.n" }, | |
4308 | { "ret", "ret.n" }, | |
4309 | { "retw", "retw.n" }, | |
4310 | { "s32i", "s32i.n" }, | |
4311 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4312 | }; | |
e0001a05 NC |
4313 | |
4314 | ||
64b607e6 BW |
4315 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4316 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4317 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4318 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4319 | but require some special case operand checks in some cases. */ |
4320 | ||
64b607e6 BW |
4321 | static xtensa_insnbuf |
4322 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4323 | xtensa_format fmt, | |
4324 | xtensa_opcode opcode) | |
e0001a05 | 4325 | { |
43cd72b9 | 4326 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4327 | xtensa_format o_fmt; |
4328 | unsigned opi; | |
e0001a05 | 4329 | |
43cd72b9 BW |
4330 | static xtensa_insnbuf o_insnbuf = NULL; |
4331 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4332 | |
64b607e6 | 4333 | if (o_insnbuf == NULL) |
43cd72b9 | 4334 | { |
43cd72b9 BW |
4335 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4336 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4337 | } | |
e0001a05 | 4338 | |
64b607e6 | 4339 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4340 | { |
4341 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4342 | |
43cd72b9 BW |
4343 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4344 | { | |
4345 | uint32 value, newval; | |
4346 | int i, operand_count, o_operand_count; | |
4347 | xtensa_opcode o_opcode; | |
e0001a05 | 4348 | |
43cd72b9 BW |
4349 | /* Address does not matter in this case. We might need to |
4350 | fix it to handle branches/jumps. */ | |
4351 | bfd_vma self_address = 0; | |
e0001a05 | 4352 | |
43cd72b9 BW |
4353 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4354 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4355 | return 0; |
43cd72b9 BW |
4356 | o_fmt = get_single_format (o_opcode); |
4357 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4358 | return 0; |
e0001a05 | 4359 | |
43cd72b9 BW |
4360 | if (xtensa_format_length (isa, fmt) != 3 |
4361 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4362 | return 0; |
e0001a05 | 4363 | |
43cd72b9 BW |
4364 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4365 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4366 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4367 | |
43cd72b9 | 4368 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4369 | return 0; |
e0001a05 | 4370 | |
43cd72b9 BW |
4371 | if (!is_or) |
4372 | { | |
4373 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4374 | return 0; |
43cd72b9 BW |
4375 | } |
4376 | else | |
4377 | { | |
4378 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4379 | |
64b607e6 BW |
4380 | if (o_operand_count + 1 != operand_count |
4381 | || xtensa_operand_get_field (isa, opcode, 0, | |
4382 | fmt, 0, slotbuf, &rawval0) != 0 | |
4383 | || xtensa_operand_get_field (isa, opcode, 1, | |
4384 | fmt, 0, slotbuf, &rawval1) != 0 | |
4385 | || xtensa_operand_get_field (isa, opcode, 2, | |
4386 | fmt, 0, slotbuf, &rawval2) != 0 | |
4387 | || rawval1 != rawval2 | |
4388 | || rawval0 == rawval1 /* it is a nop */) | |
4389 | return 0; | |
43cd72b9 | 4390 | } |
e0001a05 | 4391 | |
43cd72b9 BW |
4392 | for (i = 0; i < o_operand_count; ++i) |
4393 | { | |
4394 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4395 | slotbuf, &value) | |
4396 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4397 | return 0; |
e0001a05 | 4398 | |
43cd72b9 BW |
4399 | /* PC-relative branches need adjustment, but |
4400 | the PC-rel operand will always have a relocation. */ | |
4401 | newval = value; | |
4402 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4403 | self_address) | |
4404 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4405 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4406 | o_slotbuf, newval)) | |
64b607e6 | 4407 | return 0; |
43cd72b9 | 4408 | } |
e0001a05 | 4409 | |
64b607e6 BW |
4410 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4411 | return 0; | |
e0001a05 | 4412 | |
64b607e6 | 4413 | return o_insnbuf; |
43cd72b9 BW |
4414 | } |
4415 | } | |
64b607e6 | 4416 | return 0; |
43cd72b9 | 4417 | } |
e0001a05 | 4418 | |
e0001a05 | 4419 | |
64b607e6 BW |
4420 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4421 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4422 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4423 | |
43cd72b9 | 4424 | static bfd_boolean |
64b607e6 BW |
4425 | narrow_instruction (bfd_byte *contents, |
4426 | bfd_size_type content_length, | |
4427 | bfd_size_type offset) | |
e0001a05 | 4428 | { |
43cd72b9 | 4429 | xtensa_opcode opcode; |
64b607e6 | 4430 | bfd_size_type insn_len; |
43cd72b9 | 4431 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4432 | xtensa_format fmt; |
4433 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4434 | |
43cd72b9 BW |
4435 | static xtensa_insnbuf insnbuf = NULL; |
4436 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4437 | |
43cd72b9 BW |
4438 | if (insnbuf == NULL) |
4439 | { | |
4440 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4441 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4442 | } |
e0001a05 | 4443 | |
43cd72b9 | 4444 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4445 | |
43cd72b9 | 4446 | if (content_length < 2) |
e0001a05 NC |
4447 | return FALSE; |
4448 | ||
64b607e6 | 4449 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4450 | These have all been specified in the assembler aleady. */ |
4451 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4452 | content_length - offset); | |
4453 | fmt = xtensa_format_decode (isa, insnbuf); | |
4454 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4455 | return FALSE; |
4456 | ||
43cd72b9 | 4457 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4458 | return FALSE; |
4459 | ||
43cd72b9 BW |
4460 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4461 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4462 | return FALSE; |
43cd72b9 BW |
4463 | insn_len = xtensa_format_length (isa, fmt); |
4464 | if (insn_len > content_length) | |
4465 | return FALSE; | |
4466 | ||
64b607e6 BW |
4467 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4468 | if (o_insnbuf) | |
4469 | { | |
4470 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4471 | content_length - offset); | |
4472 | return TRUE; | |
4473 | } | |
4474 | ||
4475 | return FALSE; | |
4476 | } | |
4477 | ||
4478 | ||
4479 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4480 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4481 | return the instruction buffer holding the wide instruction. Otherwise, | |
4482 | return 0. The set of valid widenings are specified by a string table | |
4483 | but require some special case operand checks in some cases. */ | |
4484 | ||
4485 | static xtensa_insnbuf | |
4486 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4487 | xtensa_format fmt, | |
4488 | xtensa_opcode opcode) | |
4489 | { | |
4490 | xtensa_isa isa = xtensa_default_isa; | |
4491 | xtensa_format o_fmt; | |
4492 | unsigned opi; | |
4493 | ||
4494 | static xtensa_insnbuf o_insnbuf = NULL; | |
4495 | static xtensa_insnbuf o_slotbuf = NULL; | |
4496 | ||
4497 | if (o_insnbuf == NULL) | |
4498 | { | |
4499 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4500 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4501 | } | |
4502 | ||
4503 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4504 | { |
43cd72b9 BW |
4505 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4506 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4507 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4508 | |
43cd72b9 BW |
4509 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4510 | { | |
4511 | uint32 value, newval; | |
4512 | int i, operand_count, o_operand_count, check_operand_count; | |
4513 | xtensa_opcode o_opcode; | |
e0001a05 | 4514 | |
43cd72b9 BW |
4515 | /* Address does not matter in this case. We might need to fix it |
4516 | to handle branches/jumps. */ | |
4517 | bfd_vma self_address = 0; | |
e0001a05 | 4518 | |
43cd72b9 BW |
4519 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4520 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4521 | return 0; |
43cd72b9 BW |
4522 | o_fmt = get_single_format (o_opcode); |
4523 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4524 | return 0; |
e0001a05 | 4525 | |
43cd72b9 BW |
4526 | if (xtensa_format_length (isa, fmt) != 2 |
4527 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4528 | return 0; |
e0001a05 | 4529 | |
43cd72b9 BW |
4530 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4531 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4532 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4533 | check_operand_count = o_operand_count; | |
e0001a05 | 4534 | |
43cd72b9 | 4535 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4536 | return 0; |
e0001a05 | 4537 | |
43cd72b9 BW |
4538 | if (!is_or) |
4539 | { | |
4540 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4541 | return 0; |
43cd72b9 BW |
4542 | } |
4543 | else | |
4544 | { | |
4545 | uint32 rawval0, rawval1; | |
4546 | ||
64b607e6 BW |
4547 | if (o_operand_count != operand_count + 1 |
4548 | || xtensa_operand_get_field (isa, opcode, 0, | |
4549 | fmt, 0, slotbuf, &rawval0) != 0 | |
4550 | || xtensa_operand_get_field (isa, opcode, 1, | |
4551 | fmt, 0, slotbuf, &rawval1) != 0 | |
4552 | || rawval0 == rawval1 /* it is a nop */) | |
4553 | return 0; | |
43cd72b9 BW |
4554 | } |
4555 | if (is_branch) | |
4556 | check_operand_count--; | |
4557 | ||
64b607e6 | 4558 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4559 | { |
4560 | int new_i = i; | |
4561 | if (is_or && i == o_operand_count - 1) | |
4562 | new_i = i - 1; | |
4563 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4564 | slotbuf, &value) | |
4565 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4566 | return 0; |
43cd72b9 BW |
4567 | |
4568 | /* PC-relative branches need adjustment, but | |
4569 | the PC-rel operand will always have a relocation. */ | |
4570 | newval = value; | |
4571 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4572 | self_address) | |
4573 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4574 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4575 | o_slotbuf, newval)) | |
64b607e6 | 4576 | return 0; |
43cd72b9 BW |
4577 | } |
4578 | ||
4579 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4580 | return 0; |
43cd72b9 | 4581 | |
64b607e6 | 4582 | return o_insnbuf; |
43cd72b9 BW |
4583 | } |
4584 | } | |
64b607e6 BW |
4585 | return 0; |
4586 | } | |
4587 | ||
4588 | ||
4589 | /* Attempt to widen an instruction. If the widening is valid, perform | |
4590 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4591 | the return value is FALSE and the contents are not modified. */ | |
4592 | ||
4593 | static bfd_boolean | |
4594 | widen_instruction (bfd_byte *contents, | |
4595 | bfd_size_type content_length, | |
4596 | bfd_size_type offset) | |
4597 | { | |
4598 | xtensa_opcode opcode; | |
4599 | bfd_size_type insn_len; | |
4600 | xtensa_isa isa = xtensa_default_isa; | |
4601 | xtensa_format fmt; | |
4602 | xtensa_insnbuf o_insnbuf; | |
4603 | ||
4604 | static xtensa_insnbuf insnbuf = NULL; | |
4605 | static xtensa_insnbuf slotbuf = NULL; | |
4606 | ||
4607 | if (insnbuf == NULL) | |
4608 | { | |
4609 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4610 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4611 | } | |
4612 | ||
4613 | BFD_ASSERT (offset < content_length); | |
4614 | ||
4615 | if (content_length < 2) | |
4616 | return FALSE; | |
4617 | ||
4618 | /* We will hand-code a few of these for a little while. | |
4619 | These have all been specified in the assembler aleady. */ | |
4620 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4621 | content_length - offset); | |
4622 | fmt = xtensa_format_decode (isa, insnbuf); | |
4623 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4624 | return FALSE; | |
4625 | ||
4626 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4627 | return FALSE; | |
4628 | ||
4629 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4630 | if (opcode == XTENSA_UNDEFINED) | |
4631 | return FALSE; | |
4632 | insn_len = xtensa_format_length (isa, fmt); | |
4633 | if (insn_len > content_length) | |
4634 | return FALSE; | |
4635 | ||
4636 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4637 | if (o_insnbuf) | |
4638 | { | |
4639 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4640 | content_length - offset); | |
4641 | return TRUE; | |
4642 | } | |
43cd72b9 | 4643 | return FALSE; |
e0001a05 NC |
4644 | } |
4645 | ||
43cd72b9 BW |
4646 | \f |
4647 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4648 | |
43cd72b9 | 4649 | static bfd_reloc_status_type |
7fa3d080 BW |
4650 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4651 | bfd_vma address, | |
4652 | bfd_vma content_length, | |
4653 | char **error_message) | |
e0001a05 | 4654 | { |
43cd72b9 BW |
4655 | static xtensa_insnbuf insnbuf = NULL; |
4656 | static xtensa_insnbuf slotbuf = NULL; | |
4657 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4658 | xtensa_opcode opcode; | |
4659 | xtensa_opcode direct_call_opcode; | |
4660 | xtensa_isa isa = xtensa_default_isa; | |
4661 | bfd_byte *chbuf = contents + address; | |
4662 | int opn; | |
e0001a05 | 4663 | |
43cd72b9 | 4664 | if (insnbuf == NULL) |
e0001a05 | 4665 | { |
43cd72b9 BW |
4666 | insnbuf = xtensa_insnbuf_alloc (isa); |
4667 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4668 | } |
e0001a05 | 4669 | |
43cd72b9 BW |
4670 | if (content_length < address) |
4671 | { | |
4672 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4673 | return bfd_reloc_other; | |
4674 | } | |
e0001a05 | 4675 | |
43cd72b9 BW |
4676 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4677 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4678 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4679 | { | |
4680 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4681 | return bfd_reloc_other; | |
4682 | } | |
4683 | ||
4684 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
4685 | core_format = xtensa_format_lookup (isa, "x24"); | |
4686 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4687 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
4688 | for (opn = 0; opn < 3; opn++) | |
4689 | { | |
4690 | uint32 regno = 1; | |
4691 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4692 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4693 | slotbuf, regno); | |
4694 | } | |
4695 | xtensa_format_encode (isa, core_format, insnbuf); | |
4696 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4697 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4698 | |
43cd72b9 BW |
4699 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4700 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4701 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4702 | |
43cd72b9 BW |
4703 | xtensa_format_encode (isa, core_format, insnbuf); |
4704 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4705 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4706 | content_length - address - 3); | |
e0001a05 | 4707 | |
43cd72b9 BW |
4708 | return bfd_reloc_ok; |
4709 | } | |
e0001a05 | 4710 | |
e0001a05 | 4711 | |
43cd72b9 | 4712 | static bfd_reloc_status_type |
7fa3d080 BW |
4713 | contract_asm_expansion (bfd_byte *contents, |
4714 | bfd_vma content_length, | |
4715 | Elf_Internal_Rela *irel, | |
4716 | char **error_message) | |
43cd72b9 BW |
4717 | { |
4718 | bfd_reloc_status_type retval = | |
4719 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4720 | error_message); | |
e0001a05 | 4721 | |
43cd72b9 BW |
4722 | if (retval != bfd_reloc_ok) |
4723 | return bfd_reloc_dangerous; | |
e0001a05 | 4724 | |
43cd72b9 BW |
4725 | /* Update the irel->r_offset field so that the right immediate and |
4726 | the right instruction are modified during the relocation. */ | |
4727 | irel->r_offset += 3; | |
4728 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4729 | return bfd_reloc_ok; | |
4730 | } | |
e0001a05 | 4731 | |
e0001a05 | 4732 | |
43cd72b9 | 4733 | static xtensa_opcode |
7fa3d080 | 4734 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4735 | { |
43cd72b9 | 4736 | init_call_opcodes (); |
e0001a05 | 4737 | |
43cd72b9 BW |
4738 | if (opcode == callx0_op) return call0_op; |
4739 | if (opcode == callx4_op) return call4_op; | |
4740 | if (opcode == callx8_op) return call8_op; | |
4741 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4742 | |
43cd72b9 BW |
4743 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4744 | return XTENSA_UNDEFINED; | |
4745 | } | |
e0001a05 | 4746 | |
e0001a05 | 4747 | |
43cd72b9 BW |
4748 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4749 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4750 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4751 | |
43cd72b9 BW |
4752 | #define L32R_TARGET_REG_OPERAND 0 |
4753 | #define CONST16_TARGET_REG_OPERAND 0 | |
4754 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4755 | |
43cd72b9 | 4756 | static xtensa_opcode |
7fa3d080 | 4757 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4758 | { |
43cd72b9 BW |
4759 | static xtensa_insnbuf insnbuf = NULL; |
4760 | static xtensa_insnbuf slotbuf = NULL; | |
4761 | xtensa_format fmt; | |
4762 | xtensa_opcode opcode; | |
4763 | xtensa_isa isa = xtensa_default_isa; | |
4764 | uint32 regno, const16_regno, call_regno; | |
4765 | int offset = 0; | |
e0001a05 | 4766 | |
43cd72b9 | 4767 | if (insnbuf == NULL) |
e0001a05 | 4768 | { |
43cd72b9 BW |
4769 | insnbuf = xtensa_insnbuf_alloc (isa); |
4770 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4771 | } |
43cd72b9 BW |
4772 | |
4773 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4774 | fmt = xtensa_format_decode (isa, insnbuf); | |
4775 | if (fmt == XTENSA_UNDEFINED | |
4776 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4777 | return XTENSA_UNDEFINED; | |
4778 | ||
4779 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4780 | if (opcode == XTENSA_UNDEFINED) | |
4781 | return XTENSA_UNDEFINED; | |
4782 | ||
4783 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4784 | { |
43cd72b9 BW |
4785 | if (p_uses_l32r) |
4786 | *p_uses_l32r = TRUE; | |
4787 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4788 | fmt, 0, slotbuf, ®no) | |
4789 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4790 | ®no)) | |
4791 | return XTENSA_UNDEFINED; | |
e0001a05 | 4792 | } |
43cd72b9 | 4793 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4794 | { |
43cd72b9 BW |
4795 | if (p_uses_l32r) |
4796 | *p_uses_l32r = FALSE; | |
4797 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4798 | fmt, 0, slotbuf, ®no) | |
4799 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4800 | ®no)) | |
4801 | return XTENSA_UNDEFINED; | |
4802 | ||
4803 | /* Check that the next instruction is also CONST16. */ | |
4804 | offset += xtensa_format_length (isa, fmt); | |
4805 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4806 | fmt = xtensa_format_decode (isa, insnbuf); | |
4807 | if (fmt == XTENSA_UNDEFINED | |
4808 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4809 | return XTENSA_UNDEFINED; | |
4810 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4811 | if (opcode != get_const16_opcode ()) | |
4812 | return XTENSA_UNDEFINED; | |
4813 | ||
4814 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4815 | fmt, 0, slotbuf, &const16_regno) | |
4816 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4817 | &const16_regno) | |
4818 | || const16_regno != regno) | |
4819 | return XTENSA_UNDEFINED; | |
e0001a05 | 4820 | } |
43cd72b9 BW |
4821 | else |
4822 | return XTENSA_UNDEFINED; | |
e0001a05 | 4823 | |
43cd72b9 BW |
4824 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4825 | offset += xtensa_format_length (isa, fmt); | |
4826 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4827 | fmt = xtensa_format_decode (isa, insnbuf); | |
4828 | if (fmt == XTENSA_UNDEFINED | |
4829 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4830 | return XTENSA_UNDEFINED; | |
4831 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4832 | if (opcode == XTENSA_UNDEFINED | |
4833 | || !is_indirect_call_opcode (opcode)) | |
4834 | return XTENSA_UNDEFINED; | |
e0001a05 | 4835 | |
43cd72b9 BW |
4836 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4837 | fmt, 0, slotbuf, &call_regno) | |
4838 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4839 | &call_regno)) | |
4840 | return XTENSA_UNDEFINED; | |
e0001a05 | 4841 | |
43cd72b9 BW |
4842 | if (call_regno != regno) |
4843 | return XTENSA_UNDEFINED; | |
e0001a05 | 4844 | |
43cd72b9 BW |
4845 | return opcode; |
4846 | } | |
e0001a05 | 4847 | |
43cd72b9 BW |
4848 | \f |
4849 | /* Data structures used during relaxation. */ | |
e0001a05 | 4850 | |
43cd72b9 | 4851 | /* r_reloc: relocation values. */ |
e0001a05 | 4852 | |
43cd72b9 BW |
4853 | /* Through the relaxation process, we need to keep track of the values |
4854 | that will result from evaluating relocations. The standard ELF | |
4855 | relocation structure is not sufficient for this purpose because we're | |
4856 | operating on multiple input files at once, so we need to know which | |
4857 | input file a relocation refers to. The r_reloc structure thus | |
4858 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4859 | |
43cd72b9 BW |
4860 | For efficiency, an r_reloc also contains a "target_offset" field to |
4861 | cache the target-section-relative offset value that is represented by | |
4862 | the relocation. | |
4863 | ||
4864 | The r_reloc also contains a virtual offset that allows multiple | |
4865 | inserted literals to be placed at the same "address" with | |
4866 | different offsets. */ | |
e0001a05 | 4867 | |
43cd72b9 | 4868 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4869 | |
43cd72b9 | 4870 | struct r_reloc_struct |
e0001a05 | 4871 | { |
43cd72b9 BW |
4872 | bfd *abfd; |
4873 | Elf_Internal_Rela rela; | |
e0001a05 | 4874 | bfd_vma target_offset; |
43cd72b9 | 4875 | bfd_vma virtual_offset; |
e0001a05 NC |
4876 | }; |
4877 | ||
e0001a05 | 4878 | |
43cd72b9 BW |
4879 | /* The r_reloc structure is included by value in literal_value, but not |
4880 | every literal_value has an associated relocation -- some are simple | |
4881 | constants. In such cases, we set all the fields in the r_reloc | |
4882 | struct to zero. The r_reloc_is_const function should be used to | |
4883 | detect this case. */ | |
e0001a05 | 4884 | |
43cd72b9 | 4885 | static bfd_boolean |
7fa3d080 | 4886 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4887 | { |
43cd72b9 | 4888 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4889 | } |
4890 | ||
4891 | ||
43cd72b9 | 4892 | static bfd_vma |
7fa3d080 | 4893 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4894 | { |
43cd72b9 BW |
4895 | bfd_vma target_offset; |
4896 | unsigned long r_symndx; | |
e0001a05 | 4897 | |
43cd72b9 BW |
4898 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4899 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4900 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4901 | return (target_offset + r_rel->rela.r_addend); | |
4902 | } | |
e0001a05 | 4903 | |
e0001a05 | 4904 | |
43cd72b9 | 4905 | static struct elf_link_hash_entry * |
7fa3d080 | 4906 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4907 | { |
43cd72b9 BW |
4908 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4909 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4910 | } | |
e0001a05 | 4911 | |
43cd72b9 BW |
4912 | |
4913 | static asection * | |
7fa3d080 | 4914 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4915 | { |
4916 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4917 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4918 | } | |
e0001a05 NC |
4919 | |
4920 | ||
4921 | static bfd_boolean | |
7fa3d080 | 4922 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4923 | { |
43cd72b9 BW |
4924 | asection *sec; |
4925 | if (r_rel == NULL) | |
e0001a05 | 4926 | return FALSE; |
e0001a05 | 4927 | |
43cd72b9 BW |
4928 | sec = r_reloc_get_section (r_rel); |
4929 | if (sec == bfd_abs_section_ptr | |
4930 | || sec == bfd_com_section_ptr | |
4931 | || sec == bfd_und_section_ptr) | |
4932 | return FALSE; | |
4933 | return TRUE; | |
e0001a05 NC |
4934 | } |
4935 | ||
4936 | ||
7fa3d080 BW |
4937 | static void |
4938 | r_reloc_init (r_reloc *r_rel, | |
4939 | bfd *abfd, | |
4940 | Elf_Internal_Rela *irel, | |
4941 | bfd_byte *contents, | |
4942 | bfd_size_type content_length) | |
4943 | { | |
4944 | int r_type; | |
4945 | reloc_howto_type *howto; | |
4946 | ||
4947 | if (irel) | |
4948 | { | |
4949 | r_rel->rela = *irel; | |
4950 | r_rel->abfd = abfd; | |
4951 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4952 | r_rel->virtual_offset = 0; | |
4953 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4954 | howto = &elf_howto_table[r_type]; | |
4955 | if (howto->partial_inplace) | |
4956 | { | |
4957 | bfd_vma inplace_val; | |
4958 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4959 | ||
4960 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4961 | r_rel->target_offset += inplace_val; | |
4962 | } | |
4963 | } | |
4964 | else | |
4965 | memset (r_rel, 0, sizeof (r_reloc)); | |
4966 | } | |
4967 | ||
4968 | ||
43cd72b9 BW |
4969 | #if DEBUG |
4970 | ||
e0001a05 | 4971 | static void |
7fa3d080 | 4972 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 4973 | { |
43cd72b9 BW |
4974 | if (r_reloc_is_defined (r_rel)) |
4975 | { | |
4976 | asection *sec = r_reloc_get_section (r_rel); | |
4977 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
4978 | } | |
4979 | else if (r_reloc_get_hash_entry (r_rel)) | |
4980 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
4981 | else | |
4982 | fprintf (fp, " ?? + "); | |
e0001a05 | 4983 | |
43cd72b9 BW |
4984 | fprintf_vma (fp, r_rel->target_offset); |
4985 | if (r_rel->virtual_offset) | |
4986 | { | |
4987 | fprintf (fp, " + "); | |
4988 | fprintf_vma (fp, r_rel->virtual_offset); | |
4989 | } | |
4990 | ||
4991 | fprintf (fp, ")"); | |
4992 | } | |
e0001a05 | 4993 | |
43cd72b9 | 4994 | #endif /* DEBUG */ |
e0001a05 | 4995 | |
43cd72b9 BW |
4996 | \f |
4997 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 4998 | |
43cd72b9 BW |
4999 | /* To determine whether literals can be coalesced, we need to first |
5000 | record all the relocations that reference the literals. The | |
5001 | source_reloc structure below is used for this purpose. The | |
5002 | source_reloc entries are kept in a per-literal-section array, sorted | |
5003 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5004 | |
43cd72b9 BW |
5005 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5006 | the relocation. The r_rel field records the relocation value, i.e., | |
5007 | the offset of the literal being referenced. The opnd field is needed | |
5008 | to determine the range of the immediate field to which the relocation | |
5009 | applies, so we can determine whether another literal with the same | |
5010 | value is within range. The is_null field is true when the relocation | |
5011 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5012 | that is converted to a direct CALL). */ | |
e0001a05 | 5013 | |
43cd72b9 BW |
5014 | typedef struct source_reloc_struct source_reloc; |
5015 | ||
5016 | struct source_reloc_struct | |
e0001a05 | 5017 | { |
43cd72b9 BW |
5018 | asection *source_sec; |
5019 | r_reloc r_rel; | |
5020 | xtensa_opcode opcode; | |
5021 | int opnd; | |
5022 | bfd_boolean is_null; | |
5023 | bfd_boolean is_abs_literal; | |
5024 | }; | |
e0001a05 | 5025 | |
e0001a05 | 5026 | |
e0001a05 | 5027 | static void |
7fa3d080 BW |
5028 | init_source_reloc (source_reloc *reloc, |
5029 | asection *source_sec, | |
5030 | const r_reloc *r_rel, | |
5031 | xtensa_opcode opcode, | |
5032 | int opnd, | |
5033 | bfd_boolean is_abs_literal) | |
e0001a05 | 5034 | { |
43cd72b9 BW |
5035 | reloc->source_sec = source_sec; |
5036 | reloc->r_rel = *r_rel; | |
5037 | reloc->opcode = opcode; | |
5038 | reloc->opnd = opnd; | |
5039 | reloc->is_null = FALSE; | |
5040 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5041 | } |
5042 | ||
e0001a05 | 5043 | |
43cd72b9 BW |
5044 | /* Find the source_reloc for a particular source offset and relocation |
5045 | type. Note that the array is sorted by _target_ offset, so this is | |
5046 | just a linear search. */ | |
e0001a05 | 5047 | |
43cd72b9 | 5048 | static source_reloc * |
7fa3d080 BW |
5049 | find_source_reloc (source_reloc *src_relocs, |
5050 | int src_count, | |
5051 | asection *sec, | |
5052 | Elf_Internal_Rela *irel) | |
e0001a05 | 5053 | { |
43cd72b9 | 5054 | int i; |
e0001a05 | 5055 | |
43cd72b9 BW |
5056 | for (i = 0; i < src_count; i++) |
5057 | { | |
5058 | if (src_relocs[i].source_sec == sec | |
5059 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5060 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5061 | == ELF32_R_TYPE (irel->r_info))) | |
5062 | return &src_relocs[i]; | |
5063 | } | |
e0001a05 | 5064 | |
43cd72b9 | 5065 | return NULL; |
e0001a05 NC |
5066 | } |
5067 | ||
5068 | ||
43cd72b9 | 5069 | static int |
7fa3d080 | 5070 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5071 | { |
43cd72b9 BW |
5072 | const source_reloc *a = (const source_reloc *) ap; |
5073 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5074 | |
43cd72b9 BW |
5075 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5076 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5077 | |
43cd72b9 BW |
5078 | /* We don't need to sort on these criteria for correctness, |
5079 | but enforcing a more strict ordering prevents unstable qsort | |
5080 | from behaving differently with different implementations. | |
5081 | Without the code below we get correct but different results | |
5082 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5083 | same results no matter the host. */ | |
5084 | ||
5085 | if ((!a->is_null) - (!b->is_null)) | |
5086 | return ((!a->is_null) - (!b->is_null)); | |
5087 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5088 | } |
5089 | ||
43cd72b9 BW |
5090 | \f |
5091 | /* Literal values and value hash tables. */ | |
e0001a05 | 5092 | |
43cd72b9 BW |
5093 | /* Literals with the same value can be coalesced. The literal_value |
5094 | structure records the value of a literal: the "r_rel" field holds the | |
5095 | information from the relocation on the literal (if there is one) and | |
5096 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5097 | |
43cd72b9 BW |
5098 | The value_map structure records a literal value along with the |
5099 | location of a literal holding that value. The value_map hash table | |
5100 | is indexed by the literal value, so that we can quickly check if a | |
5101 | particular literal value has been seen before and is thus a candidate | |
5102 | for coalescing. */ | |
e0001a05 | 5103 | |
43cd72b9 BW |
5104 | typedef struct literal_value_struct literal_value; |
5105 | typedef struct value_map_struct value_map; | |
5106 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5107 | |
43cd72b9 | 5108 | struct literal_value_struct |
e0001a05 | 5109 | { |
43cd72b9 BW |
5110 | r_reloc r_rel; |
5111 | unsigned long value; | |
5112 | bfd_boolean is_abs_literal; | |
5113 | }; | |
5114 | ||
5115 | struct value_map_struct | |
5116 | { | |
5117 | literal_value val; /* The literal value. */ | |
5118 | r_reloc loc; /* Location of the literal. */ | |
5119 | value_map *next; | |
5120 | }; | |
5121 | ||
5122 | struct value_map_hash_table_struct | |
5123 | { | |
5124 | unsigned bucket_count; | |
5125 | value_map **buckets; | |
5126 | unsigned count; | |
5127 | bfd_boolean has_last_loc; | |
5128 | r_reloc last_loc; | |
5129 | }; | |
5130 | ||
5131 | ||
e0001a05 | 5132 | static void |
7fa3d080 BW |
5133 | init_literal_value (literal_value *lit, |
5134 | const r_reloc *r_rel, | |
5135 | unsigned long value, | |
5136 | bfd_boolean is_abs_literal) | |
e0001a05 | 5137 | { |
43cd72b9 BW |
5138 | lit->r_rel = *r_rel; |
5139 | lit->value = value; | |
5140 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5141 | } |
5142 | ||
5143 | ||
43cd72b9 | 5144 | static bfd_boolean |
7fa3d080 BW |
5145 | literal_value_equal (const literal_value *src1, |
5146 | const literal_value *src2, | |
5147 | bfd_boolean final_static_link) | |
e0001a05 | 5148 | { |
43cd72b9 | 5149 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5150 | |
43cd72b9 BW |
5151 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
5152 | return FALSE; | |
e0001a05 | 5153 | |
43cd72b9 BW |
5154 | if (r_reloc_is_const (&src1->r_rel)) |
5155 | return (src1->value == src2->value); | |
e0001a05 | 5156 | |
43cd72b9 BW |
5157 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5158 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5159 | return FALSE; | |
e0001a05 | 5160 | |
43cd72b9 BW |
5161 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5162 | return FALSE; | |
5163 | ||
5164 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) | |
5165 | return FALSE; | |
5166 | ||
5167 | if (src1->value != src2->value) | |
5168 | return FALSE; | |
5169 | ||
5170 | /* Now check for the same section (if defined) or the same elf_hash | |
5171 | (if undefined or weak). */ | |
5172 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5173 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5174 | if (r_reloc_is_defined (&src1->r_rel) | |
5175 | && (final_static_link | |
5176 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5177 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5178 | { | |
5179 | if (r_reloc_get_section (&src1->r_rel) | |
5180 | != r_reloc_get_section (&src2->r_rel)) | |
5181 | return FALSE; | |
5182 | } | |
5183 | else | |
5184 | { | |
5185 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5186 | if (h1 != h2 || h1 == 0) | |
5187 | return FALSE; | |
5188 | } | |
5189 | ||
5190 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5191 | return FALSE; | |
5192 | ||
5193 | return TRUE; | |
e0001a05 NC |
5194 | } |
5195 | ||
e0001a05 | 5196 | |
43cd72b9 BW |
5197 | /* Must be power of 2. */ |
5198 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5199 | |
43cd72b9 | 5200 | static value_map_hash_table * |
7fa3d080 | 5201 | value_map_hash_table_init (void) |
43cd72b9 BW |
5202 | { |
5203 | value_map_hash_table *values; | |
e0001a05 | 5204 | |
43cd72b9 BW |
5205 | values = (value_map_hash_table *) |
5206 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5207 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5208 | values->count = 0; | |
5209 | values->buckets = (value_map **) | |
5210 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
5211 | if (values->buckets == NULL) | |
5212 | { | |
5213 | free (values); | |
5214 | return NULL; | |
5215 | } | |
5216 | values->has_last_loc = FALSE; | |
5217 | ||
5218 | return values; | |
5219 | } | |
5220 | ||
5221 | ||
5222 | static void | |
7fa3d080 | 5223 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5224 | { |
43cd72b9 BW |
5225 | free (table->buckets); |
5226 | free (table); | |
5227 | } | |
5228 | ||
5229 | ||
5230 | static unsigned | |
7fa3d080 | 5231 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5232 | { |
5233 | return (val >> 2) + (val >> 10); | |
5234 | } | |
5235 | ||
5236 | ||
5237 | static unsigned | |
7fa3d080 | 5238 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5239 | { |
5240 | unsigned hash_val; | |
e0001a05 | 5241 | |
43cd72b9 BW |
5242 | hash_val = hash_bfd_vma (src->value); |
5243 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5244 | { |
43cd72b9 BW |
5245 | void *sec_or_hash; |
5246 | ||
5247 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5248 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5249 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
5250 | ||
5251 | /* Now check for the same section and the same elf_hash. */ | |
5252 | if (r_reloc_is_defined (&src->r_rel)) | |
5253 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5254 | else | |
5255 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5256 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5257 | } |
43cd72b9 BW |
5258 | return hash_val; |
5259 | } | |
e0001a05 | 5260 | |
e0001a05 | 5261 | |
43cd72b9 | 5262 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5263 | |
43cd72b9 | 5264 | static value_map * |
7fa3d080 BW |
5265 | value_map_get_cached_value (value_map_hash_table *map, |
5266 | const literal_value *val, | |
5267 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5268 | { |
5269 | value_map *map_e; | |
5270 | value_map *bucket; | |
5271 | unsigned idx; | |
5272 | ||
5273 | idx = literal_value_hash (val); | |
5274 | idx = idx & (map->bucket_count - 1); | |
5275 | bucket = map->buckets[idx]; | |
5276 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5277 | { |
43cd72b9 BW |
5278 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5279 | return map_e; | |
5280 | } | |
5281 | return NULL; | |
5282 | } | |
e0001a05 | 5283 | |
e0001a05 | 5284 | |
43cd72b9 BW |
5285 | /* Record a new literal value. It is illegal to call this if VALUE |
5286 | already has an entry here. */ | |
5287 | ||
5288 | static value_map * | |
7fa3d080 BW |
5289 | add_value_map (value_map_hash_table *map, |
5290 | const literal_value *val, | |
5291 | const r_reloc *loc, | |
5292 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5293 | { |
5294 | value_map **bucket_p; | |
5295 | unsigned idx; | |
5296 | ||
5297 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5298 | if (val_e == NULL) | |
5299 | { | |
5300 | bfd_set_error (bfd_error_no_memory); | |
5301 | return NULL; | |
e0001a05 NC |
5302 | } |
5303 | ||
43cd72b9 BW |
5304 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5305 | val_e->val = *val; | |
5306 | val_e->loc = *loc; | |
5307 | ||
5308 | idx = literal_value_hash (val); | |
5309 | idx = idx & (map->bucket_count - 1); | |
5310 | bucket_p = &map->buckets[idx]; | |
5311 | ||
5312 | val_e->next = *bucket_p; | |
5313 | *bucket_p = val_e; | |
5314 | map->count++; | |
5315 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
5316 | ||
5317 | return val_e; | |
e0001a05 NC |
5318 | } |
5319 | ||
43cd72b9 BW |
5320 | \f |
5321 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5322 | conversion, space fill, code & literal removal, etc. */ | |
5323 | ||
5324 | /* The following text actions are generated: | |
5325 | ||
5326 | "ta_remove_insn" remove an instruction or instructions | |
5327 | "ta_remove_longcall" convert longcall to call | |
5328 | "ta_convert_longcall" convert longcall to nop/call | |
5329 | "ta_narrow_insn" narrow a wide instruction | |
5330 | "ta_widen" widen a narrow instruction | |
5331 | "ta_fill" add fill or remove fill | |
5332 | removed < 0 is a fill; branches to the fill address will be | |
5333 | changed to address + fill size (e.g., address - removed) | |
5334 | removed >= 0 branches to the fill address will stay unchanged | |
5335 | "ta_remove_literal" remove a literal; this action is | |
5336 | indicated when a literal is removed | |
5337 | or replaced. | |
5338 | "ta_add_literal" insert a new literal; this action is | |
5339 | indicated when a literal has been moved. | |
5340 | It may use a virtual_offset because | |
5341 | multiple literals can be placed at the | |
5342 | same location. | |
5343 | ||
5344 | For each of these text actions, we also record the number of bytes | |
5345 | removed by performing the text action. In the case of a "ta_widen" | |
5346 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5347 | ||
5348 | typedef struct text_action_struct text_action; | |
5349 | typedef struct text_action_list_struct text_action_list; | |
5350 | typedef enum text_action_enum_t text_action_t; | |
5351 | ||
5352 | enum text_action_enum_t | |
5353 | { | |
5354 | ta_none, | |
5355 | ta_remove_insn, /* removed = -size */ | |
5356 | ta_remove_longcall, /* removed = -size */ | |
5357 | ta_convert_longcall, /* removed = 0 */ | |
5358 | ta_narrow_insn, /* removed = -1 */ | |
5359 | ta_widen_insn, /* removed = +1 */ | |
5360 | ta_fill, /* removed = +size */ | |
5361 | ta_remove_literal, | |
5362 | ta_add_literal | |
5363 | }; | |
e0001a05 | 5364 | |
e0001a05 | 5365 | |
43cd72b9 BW |
5366 | /* Structure for a text action record. */ |
5367 | struct text_action_struct | |
e0001a05 | 5368 | { |
43cd72b9 BW |
5369 | text_action_t action; |
5370 | asection *sec; /* Optional */ | |
5371 | bfd_vma offset; | |
5372 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5373 | int removed_bytes; | |
5374 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 5375 | |
43cd72b9 BW |
5376 | text_action *next; |
5377 | }; | |
e0001a05 | 5378 | |
e0001a05 | 5379 | |
43cd72b9 BW |
5380 | /* List of all of the actions taken on a text section. */ |
5381 | struct text_action_list_struct | |
5382 | { | |
5383 | text_action *head; | |
5384 | }; | |
e0001a05 | 5385 | |
e0001a05 | 5386 | |
7fa3d080 BW |
5387 | static text_action * |
5388 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
5389 | { |
5390 | text_action **m_p; | |
5391 | ||
5392 | /* It is not necessary to fill at the end of a section. */ | |
5393 | if (sec->size == offset) | |
5394 | return NULL; | |
5395 | ||
7fa3d080 | 5396 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5397 | { |
5398 | text_action *t = *m_p; | |
5399 | /* When the action is another fill at the same address, | |
5400 | just increase the size. */ | |
5401 | if (t->offset == offset && t->action == ta_fill) | |
5402 | return t; | |
5403 | } | |
5404 | return NULL; | |
5405 | } | |
5406 | ||
5407 | ||
5408 | static int | |
7fa3d080 BW |
5409 | compute_removed_action_diff (const text_action *ta, |
5410 | asection *sec, | |
5411 | bfd_vma offset, | |
5412 | int removed, | |
5413 | int removable_space) | |
43cd72b9 BW |
5414 | { |
5415 | int new_removed; | |
5416 | int current_removed = 0; | |
5417 | ||
7fa3d080 | 5418 | if (ta) |
43cd72b9 BW |
5419 | current_removed = ta->removed_bytes; |
5420 | ||
5421 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5422 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5423 | ||
5424 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5425 | if (sec->size == offset) | |
5426 | new_removed = removable_space - 0; | |
5427 | else | |
5428 | { | |
5429 | int space; | |
5430 | int added = -removed - current_removed; | |
5431 | /* Ignore multiples of the section alignment. */ | |
5432 | added = ((1 << sec->alignment_power) - 1) & added; | |
5433 | new_removed = (-added); | |
5434 | ||
5435 | /* Modify for removable. */ | |
5436 | space = removable_space - new_removed; | |
5437 | new_removed = (removable_space | |
5438 | - (((1 << sec->alignment_power) - 1) & space)); | |
5439 | } | |
5440 | return (new_removed - current_removed); | |
5441 | } | |
5442 | ||
5443 | ||
7fa3d080 BW |
5444 | static void |
5445 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5446 | { |
5447 | ta->removed_bytes += fill_diff; | |
5448 | } | |
5449 | ||
5450 | ||
5451 | /* Add a modification action to the text. For the case of adding or | |
5452 | removing space, modify any current fill and assume that | |
5453 | "unreachable_space" bytes can be freely contracted. Note that a | |
5454 | negative removed value is a fill. */ | |
5455 | ||
5456 | static void | |
7fa3d080 BW |
5457 | text_action_add (text_action_list *l, |
5458 | text_action_t action, | |
5459 | asection *sec, | |
5460 | bfd_vma offset, | |
5461 | int removed) | |
43cd72b9 BW |
5462 | { |
5463 | text_action **m_p; | |
5464 | text_action *ta; | |
5465 | ||
5466 | /* It is not necessary to fill at the end of a section. */ | |
5467 | if (action == ta_fill && sec->size == offset) | |
5468 | return; | |
5469 | ||
5470 | /* It is not necessary to fill 0 bytes. */ | |
5471 | if (action == ta_fill && removed == 0) | |
5472 | return; | |
5473 | ||
7fa3d080 | 5474 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5475 | { |
5476 | text_action *t = *m_p; | |
658ff993 SA |
5477 | |
5478 | if (action == ta_fill) | |
43cd72b9 | 5479 | { |
658ff993 SA |
5480 | /* When the action is another fill at the same address, |
5481 | just increase the size. */ | |
5482 | if (t->offset == offset && t->action == ta_fill) | |
5483 | { | |
5484 | t->removed_bytes += removed; | |
5485 | return; | |
5486 | } | |
5487 | /* Fills need to happen before widens so that we don't | |
5488 | insert fill bytes into the instruction stream. */ | |
5489 | if (t->offset == offset && t->action == ta_widen_insn) | |
5490 | break; | |
43cd72b9 BW |
5491 | } |
5492 | } | |
5493 | ||
5494 | /* Create a new record and fill it up. */ | |
5495 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5496 | ta->action = action; | |
5497 | ta->sec = sec; | |
5498 | ta->offset = offset; | |
5499 | ta->removed_bytes = removed; | |
5500 | ta->next = (*m_p); | |
5501 | *m_p = ta; | |
5502 | } | |
5503 | ||
5504 | ||
5505 | static void | |
7fa3d080 BW |
5506 | text_action_add_literal (text_action_list *l, |
5507 | text_action_t action, | |
5508 | const r_reloc *loc, | |
5509 | const literal_value *value, | |
5510 | int removed) | |
43cd72b9 BW |
5511 | { |
5512 | text_action **m_p; | |
5513 | text_action *ta; | |
5514 | asection *sec = r_reloc_get_section (loc); | |
5515 | bfd_vma offset = loc->target_offset; | |
5516 | bfd_vma virtual_offset = loc->virtual_offset; | |
5517 | ||
5518 | BFD_ASSERT (action == ta_add_literal); | |
5519 | ||
5520 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
5521 | { | |
5522 | if ((*m_p)->offset > offset | |
5523 | && ((*m_p)->offset != offset | |
5524 | || (*m_p)->virtual_offset > virtual_offset)) | |
5525 | break; | |
5526 | } | |
5527 | ||
5528 | /* Create a new record and fill it up. */ | |
5529 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5530 | ta->action = action; | |
5531 | ta->sec = sec; | |
5532 | ta->offset = offset; | |
5533 | ta->virtual_offset = virtual_offset; | |
5534 | ta->value = *value; | |
5535 | ta->removed_bytes = removed; | |
5536 | ta->next = (*m_p); | |
5537 | *m_p = ta; | |
5538 | } | |
5539 | ||
5540 | ||
03669f1c BW |
5541 | /* Find the total offset adjustment for the relaxations specified by |
5542 | text_actions, beginning from a particular starting action. This is | |
5543 | typically used from offset_with_removed_text to search an entire list of | |
5544 | actions, but it may also be called directly when adjusting adjacent offsets | |
5545 | so that each search may begin where the previous one left off. */ | |
5546 | ||
5547 | static int | |
5548 | removed_by_actions (text_action **p_start_action, | |
5549 | bfd_vma offset, | |
5550 | bfd_boolean before_fill) | |
43cd72b9 BW |
5551 | { |
5552 | text_action *r; | |
5553 | int removed = 0; | |
5554 | ||
03669f1c BW |
5555 | r = *p_start_action; |
5556 | while (r) | |
43cd72b9 | 5557 | { |
03669f1c BW |
5558 | if (r->offset > offset) |
5559 | break; | |
5560 | ||
5561 | if (r->offset == offset | |
5562 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5563 | break; | |
5564 | ||
5565 | removed += r->removed_bytes; | |
5566 | ||
5567 | r = r->next; | |
43cd72b9 BW |
5568 | } |
5569 | ||
03669f1c BW |
5570 | *p_start_action = r; |
5571 | return removed; | |
5572 | } | |
5573 | ||
5574 | ||
5575 | static bfd_vma | |
5576 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) | |
5577 | { | |
5578 | text_action *r = action_list->head; | |
5579 | return offset - removed_by_actions (&r, offset, FALSE); | |
43cd72b9 BW |
5580 | } |
5581 | ||
5582 | ||
03e94c08 BW |
5583 | static unsigned |
5584 | action_list_count (text_action_list *action_list) | |
5585 | { | |
5586 | text_action *r = action_list->head; | |
5587 | unsigned count = 0; | |
5588 | for (r = action_list->head; r != NULL; r = r->next) | |
5589 | { | |
5590 | count++; | |
5591 | } | |
5592 | return count; | |
5593 | } | |
5594 | ||
5595 | ||
43cd72b9 BW |
5596 | /* The find_insn_action routine will only find non-fill actions. */ |
5597 | ||
7fa3d080 BW |
5598 | static text_action * |
5599 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
5600 | { |
5601 | text_action *t; | |
5602 | for (t = action_list->head; t; t = t->next) | |
5603 | { | |
5604 | if (t->offset == offset) | |
5605 | { | |
5606 | switch (t->action) | |
5607 | { | |
5608 | case ta_none: | |
5609 | case ta_fill: | |
5610 | break; | |
5611 | case ta_remove_insn: | |
5612 | case ta_remove_longcall: | |
5613 | case ta_convert_longcall: | |
5614 | case ta_narrow_insn: | |
5615 | case ta_widen_insn: | |
5616 | return t; | |
5617 | case ta_remove_literal: | |
5618 | case ta_add_literal: | |
5619 | BFD_ASSERT (0); | |
5620 | break; | |
5621 | } | |
5622 | } | |
5623 | } | |
5624 | return NULL; | |
5625 | } | |
5626 | ||
5627 | ||
5628 | #if DEBUG | |
5629 | ||
5630 | static void | |
7fa3d080 | 5631 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
5632 | { |
5633 | text_action *r; | |
5634 | ||
5635 | fprintf (fp, "Text Action\n"); | |
5636 | for (r = action_list->head; r != NULL; r = r->next) | |
5637 | { | |
5638 | const char *t = "unknown"; | |
5639 | switch (r->action) | |
5640 | { | |
5641 | case ta_remove_insn: | |
5642 | t = "remove_insn"; break; | |
5643 | case ta_remove_longcall: | |
5644 | t = "remove_longcall"; break; | |
5645 | case ta_convert_longcall: | |
c46082c8 | 5646 | t = "convert_longcall"; break; |
43cd72b9 BW |
5647 | case ta_narrow_insn: |
5648 | t = "narrow_insn"; break; | |
5649 | case ta_widen_insn: | |
5650 | t = "widen_insn"; break; | |
5651 | case ta_fill: | |
5652 | t = "fill"; break; | |
5653 | case ta_none: | |
5654 | t = "none"; break; | |
5655 | case ta_remove_literal: | |
5656 | t = "remove_literal"; break; | |
5657 | case ta_add_literal: | |
5658 | t = "add_literal"; break; | |
5659 | } | |
5660 | ||
5661 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5662 | r->sec->owner->filename, | |
5663 | r->sec->name, r->offset, t, r->removed_bytes); | |
5664 | } | |
5665 | } | |
5666 | ||
5667 | #endif /* DEBUG */ | |
5668 | ||
5669 | \f | |
5670 | /* Lists of literals being coalesced or removed. */ | |
5671 | ||
5672 | /* In the usual case, the literal identified by "from" is being | |
5673 | coalesced with another literal identified by "to". If the literal is | |
5674 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5675 | The removed_literal entries are kept on a per-section list, sorted | |
5676 | by the "from" offset field. */ | |
5677 | ||
5678 | typedef struct removed_literal_struct removed_literal; | |
5679 | typedef struct removed_literal_list_struct removed_literal_list; | |
5680 | ||
5681 | struct removed_literal_struct | |
5682 | { | |
5683 | r_reloc from; | |
5684 | r_reloc to; | |
5685 | removed_literal *next; | |
5686 | }; | |
5687 | ||
5688 | struct removed_literal_list_struct | |
5689 | { | |
5690 | removed_literal *head; | |
5691 | removed_literal *tail; | |
5692 | }; | |
5693 | ||
5694 | ||
43cd72b9 BW |
5695 | /* Record that the literal at "from" is being removed. If "to" is not |
5696 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5697 | ||
5698 | static void | |
7fa3d080 BW |
5699 | add_removed_literal (removed_literal_list *removed_list, |
5700 | const r_reloc *from, | |
5701 | const r_reloc *to) | |
43cd72b9 BW |
5702 | { |
5703 | removed_literal *r, *new_r, *next_r; | |
5704 | ||
5705 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5706 | ||
5707 | new_r->from = *from; | |
5708 | if (to) | |
5709 | new_r->to = *to; | |
5710 | else | |
5711 | new_r->to.abfd = NULL; | |
5712 | new_r->next = NULL; | |
5713 | ||
5714 | r = removed_list->head; | |
5715 | if (r == NULL) | |
5716 | { | |
5717 | removed_list->head = new_r; | |
5718 | removed_list->tail = new_r; | |
5719 | } | |
5720 | /* Special check for common case of append. */ | |
5721 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5722 | { | |
5723 | removed_list->tail->next = new_r; | |
5724 | removed_list->tail = new_r; | |
5725 | } | |
5726 | else | |
5727 | { | |
7fa3d080 | 5728 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5729 | { |
5730 | r = r->next; | |
5731 | } | |
5732 | next_r = r->next; | |
5733 | r->next = new_r; | |
5734 | new_r->next = next_r; | |
5735 | if (next_r == NULL) | |
5736 | removed_list->tail = new_r; | |
5737 | } | |
5738 | } | |
5739 | ||
5740 | ||
5741 | /* Check if the list of removed literals contains an entry for the | |
5742 | given address. Return the entry if found. */ | |
5743 | ||
5744 | static removed_literal * | |
7fa3d080 | 5745 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
5746 | { |
5747 | removed_literal *r = removed_list->head; | |
5748 | while (r && r->from.target_offset < addr) | |
5749 | r = r->next; | |
5750 | if (r && r->from.target_offset == addr) | |
5751 | return r; | |
5752 | return NULL; | |
5753 | } | |
5754 | ||
5755 | ||
5756 | #if DEBUG | |
5757 | ||
5758 | static void | |
7fa3d080 | 5759 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
5760 | { |
5761 | removed_literal *r; | |
5762 | r = removed_list->head; | |
5763 | if (r) | |
5764 | fprintf (fp, "Removed Literals\n"); | |
5765 | for (; r != NULL; r = r->next) | |
5766 | { | |
5767 | print_r_reloc (fp, &r->from); | |
5768 | fprintf (fp, " => "); | |
5769 | if (r->to.abfd == NULL) | |
5770 | fprintf (fp, "REMOVED"); | |
5771 | else | |
5772 | print_r_reloc (fp, &r->to); | |
5773 | fprintf (fp, "\n"); | |
5774 | } | |
5775 | } | |
5776 | ||
5777 | #endif /* DEBUG */ | |
5778 | ||
5779 | \f | |
5780 | /* Per-section data for relaxation. */ | |
5781 | ||
5782 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
5783 | ||
5784 | struct xtensa_relax_info_struct | |
5785 | { | |
5786 | bfd_boolean is_relaxable_literal_section; | |
5787 | bfd_boolean is_relaxable_asm_section; | |
5788 | int visited; /* Number of times visited. */ | |
5789 | ||
5790 | source_reloc *src_relocs; /* Array[src_count]. */ | |
5791 | int src_count; | |
5792 | int src_next; /* Next src_relocs entry to assign. */ | |
5793 | ||
5794 | removed_literal_list removed_list; | |
5795 | text_action_list action_list; | |
5796 | ||
5797 | reloc_bfd_fix *fix_list; | |
5798 | reloc_bfd_fix *fix_array; | |
5799 | unsigned fix_array_count; | |
5800 | ||
5801 | /* Support for expanding the reloc array that is stored | |
5802 | in the section structure. If the relocations have been | |
5803 | reallocated, the newly allocated relocations will be referenced | |
5804 | here along with the actual size allocated. The relocation | |
5805 | count will always be found in the section structure. */ | |
5806 | Elf_Internal_Rela *allocated_relocs; | |
5807 | unsigned relocs_count; | |
5808 | unsigned allocated_relocs_count; | |
5809 | }; | |
5810 | ||
5811 | struct elf_xtensa_section_data | |
5812 | { | |
5813 | struct bfd_elf_section_data elf; | |
5814 | xtensa_relax_info relax_info; | |
5815 | }; | |
5816 | ||
43cd72b9 BW |
5817 | |
5818 | static bfd_boolean | |
7fa3d080 | 5819 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 5820 | { |
f592407e AM |
5821 | if (!sec->used_by_bfd) |
5822 | { | |
5823 | struct elf_xtensa_section_data *sdata; | |
5824 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 5825 | |
f592407e AM |
5826 | sdata = bfd_zalloc (abfd, amt); |
5827 | if (sdata == NULL) | |
5828 | return FALSE; | |
5829 | sec->used_by_bfd = sdata; | |
5830 | } | |
43cd72b9 BW |
5831 | |
5832 | return _bfd_elf_new_section_hook (abfd, sec); | |
5833 | } | |
5834 | ||
5835 | ||
7fa3d080 BW |
5836 | static xtensa_relax_info * |
5837 | get_xtensa_relax_info (asection *sec) | |
5838 | { | |
5839 | struct elf_xtensa_section_data *section_data; | |
5840 | ||
5841 | /* No info available if no section or if it is an output section. */ | |
5842 | if (!sec || sec == sec->output_section) | |
5843 | return NULL; | |
5844 | ||
5845 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5846 | return §ion_data->relax_info; | |
5847 | } | |
5848 | ||
5849 | ||
43cd72b9 | 5850 | static void |
7fa3d080 | 5851 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5852 | { |
5853 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5854 | ||
5855 | relax_info->is_relaxable_literal_section = FALSE; | |
5856 | relax_info->is_relaxable_asm_section = FALSE; | |
5857 | relax_info->visited = 0; | |
5858 | ||
5859 | relax_info->src_relocs = NULL; | |
5860 | relax_info->src_count = 0; | |
5861 | relax_info->src_next = 0; | |
5862 | ||
5863 | relax_info->removed_list.head = NULL; | |
5864 | relax_info->removed_list.tail = NULL; | |
5865 | ||
5866 | relax_info->action_list.head = NULL; | |
5867 | ||
5868 | relax_info->fix_list = NULL; | |
5869 | relax_info->fix_array = NULL; | |
5870 | relax_info->fix_array_count = 0; | |
5871 | ||
5872 | relax_info->allocated_relocs = NULL; | |
5873 | relax_info->relocs_count = 0; | |
5874 | relax_info->allocated_relocs_count = 0; | |
5875 | } | |
5876 | ||
43cd72b9 BW |
5877 | \f |
5878 | /* Coalescing literals may require a relocation to refer to a section in | |
5879 | a different input file, but the standard relocation information | |
5880 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5881 | to "fix" the relocations that refer to sections in other input files. | |
5882 | These structures are kept on per-section lists. The "src_type" field | |
5883 | records the relocation type in case there are multiple relocations on | |
5884 | the same location. FIXME: This is ugly; an alternative might be to | |
5885 | add new symbols with the "owner" field to some other input file. */ | |
5886 | ||
5887 | struct reloc_bfd_fix_struct | |
5888 | { | |
5889 | asection *src_sec; | |
5890 | bfd_vma src_offset; | |
5891 | unsigned src_type; /* Relocation type. */ | |
5892 | ||
43cd72b9 BW |
5893 | asection *target_sec; |
5894 | bfd_vma target_offset; | |
5895 | bfd_boolean translated; | |
5896 | ||
5897 | reloc_bfd_fix *next; | |
5898 | }; | |
5899 | ||
5900 | ||
43cd72b9 | 5901 | static reloc_bfd_fix * |
7fa3d080 BW |
5902 | reloc_bfd_fix_init (asection *src_sec, |
5903 | bfd_vma src_offset, | |
5904 | unsigned src_type, | |
7fa3d080 BW |
5905 | asection *target_sec, |
5906 | bfd_vma target_offset, | |
5907 | bfd_boolean translated) | |
43cd72b9 BW |
5908 | { |
5909 | reloc_bfd_fix *fix; | |
5910 | ||
5911 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5912 | fix->src_sec = src_sec; | |
5913 | fix->src_offset = src_offset; | |
5914 | fix->src_type = src_type; | |
43cd72b9 BW |
5915 | fix->target_sec = target_sec; |
5916 | fix->target_offset = target_offset; | |
5917 | fix->translated = translated; | |
5918 | ||
5919 | return fix; | |
5920 | } | |
5921 | ||
5922 | ||
5923 | static void | |
7fa3d080 | 5924 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5925 | { |
5926 | xtensa_relax_info *relax_info; | |
5927 | ||
5928 | relax_info = get_xtensa_relax_info (src_sec); | |
5929 | fix->next = relax_info->fix_list; | |
5930 | relax_info->fix_list = fix; | |
5931 | } | |
5932 | ||
5933 | ||
5934 | static int | |
7fa3d080 | 5935 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5936 | { |
5937 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5938 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5939 | ||
5940 | if (a->src_offset != b->src_offset) | |
5941 | return (a->src_offset - b->src_offset); | |
5942 | return (a->src_type - b->src_type); | |
5943 | } | |
5944 | ||
5945 | ||
5946 | static void | |
7fa3d080 | 5947 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5948 | { |
5949 | unsigned i, count = 0; | |
5950 | reloc_bfd_fix *r; | |
5951 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5952 | ||
5953 | if (relax_info == NULL) | |
5954 | return; | |
5955 | if (relax_info->fix_list == NULL) | |
5956 | return; | |
5957 | ||
5958 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5959 | count++; | |
5960 | ||
5961 | relax_info->fix_array = | |
5962 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
5963 | relax_info->fix_array_count = count; | |
5964 | ||
5965 | r = relax_info->fix_list; | |
5966 | for (i = 0; i < count; i++, r = r->next) | |
5967 | { | |
5968 | relax_info->fix_array[count - 1 - i] = *r; | |
5969 | relax_info->fix_array[count - 1 - i].next = NULL; | |
5970 | } | |
5971 | ||
5972 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
5973 | sizeof (reloc_bfd_fix), fix_compare); | |
5974 | } | |
5975 | ||
5976 | ||
5977 | static reloc_bfd_fix * | |
7fa3d080 | 5978 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
5979 | { |
5980 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5981 | reloc_bfd_fix *rv; | |
5982 | reloc_bfd_fix key; | |
5983 | ||
5984 | if (relax_info == NULL) | |
5985 | return NULL; | |
5986 | if (relax_info->fix_list == NULL) | |
5987 | return NULL; | |
5988 | ||
5989 | if (relax_info->fix_array == NULL) | |
5990 | cache_fix_array (sec); | |
5991 | ||
5992 | key.src_offset = offset; | |
5993 | key.src_type = type; | |
5994 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
5995 | sizeof (reloc_bfd_fix), fix_compare); | |
5996 | return rv; | |
5997 | } | |
5998 | ||
5999 | \f | |
6000 | /* Section caching. */ | |
6001 | ||
6002 | typedef struct section_cache_struct section_cache_t; | |
6003 | ||
6004 | struct section_cache_struct | |
6005 | { | |
6006 | asection *sec; | |
6007 | ||
6008 | bfd_byte *contents; /* Cache of the section contents. */ | |
6009 | bfd_size_type content_length; | |
6010 | ||
6011 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6012 | unsigned pte_count; | |
6013 | ||
6014 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6015 | unsigned reloc_count; | |
6016 | }; | |
6017 | ||
6018 | ||
7fa3d080 BW |
6019 | static void |
6020 | init_section_cache (section_cache_t *sec_cache) | |
6021 | { | |
6022 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6023 | } | |
43cd72b9 BW |
6024 | |
6025 | ||
6026 | static void | |
7fa3d080 | 6027 | clear_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6028 | { |
7fa3d080 BW |
6029 | if (sec_cache->sec) |
6030 | { | |
6031 | release_contents (sec_cache->sec, sec_cache->contents); | |
6032 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
6033 | if (sec_cache->ptbl) | |
6034 | free (sec_cache->ptbl); | |
6035 | memset (sec_cache, 0, sizeof (sec_cache)); | |
6036 | } | |
43cd72b9 BW |
6037 | } |
6038 | ||
6039 | ||
6040 | static bfd_boolean | |
7fa3d080 BW |
6041 | section_cache_section (section_cache_t *sec_cache, |
6042 | asection *sec, | |
6043 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6044 | { |
6045 | bfd *abfd; | |
6046 | property_table_entry *prop_table = NULL; | |
6047 | int ptblsize = 0; | |
6048 | bfd_byte *contents = NULL; | |
6049 | Elf_Internal_Rela *internal_relocs = NULL; | |
6050 | bfd_size_type sec_size; | |
6051 | ||
6052 | if (sec == NULL) | |
6053 | return FALSE; | |
6054 | if (sec == sec_cache->sec) | |
6055 | return TRUE; | |
6056 | ||
6057 | abfd = sec->owner; | |
6058 | sec_size = bfd_get_section_limit (abfd, sec); | |
6059 | ||
6060 | /* Get the contents. */ | |
6061 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6062 | if (contents == NULL && sec_size != 0) | |
6063 | goto err; | |
6064 | ||
6065 | /* Get the relocations. */ | |
6066 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6067 | link_info->keep_memory); | |
6068 | ||
6069 | /* Get the entry table. */ | |
6070 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6071 | XTENSA_PROP_SEC_NAME, FALSE); | |
6072 | if (ptblsize < 0) | |
6073 | goto err; | |
6074 | ||
6075 | /* Fill in the new section cache. */ | |
6076 | clear_section_cache (sec_cache); | |
6077 | memset (sec_cache, 0, sizeof (sec_cache)); | |
6078 | ||
6079 | sec_cache->sec = sec; | |
6080 | sec_cache->contents = contents; | |
6081 | sec_cache->content_length = sec_size; | |
6082 | sec_cache->relocs = internal_relocs; | |
6083 | sec_cache->reloc_count = sec->reloc_count; | |
6084 | sec_cache->pte_count = ptblsize; | |
6085 | sec_cache->ptbl = prop_table; | |
6086 | ||
6087 | return TRUE; | |
6088 | ||
6089 | err: | |
6090 | release_contents (sec, contents); | |
6091 | release_internal_relocs (sec, internal_relocs); | |
6092 | if (prop_table) | |
6093 | free (prop_table); | |
6094 | return FALSE; | |
6095 | } | |
6096 | ||
43cd72b9 BW |
6097 | \f |
6098 | /* Extended basic blocks. */ | |
6099 | ||
6100 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6101 | range, we guarantee that all instructions are decodable, the | |
6102 | property table entries are contiguous, and no property table | |
6103 | specifies a segment that cannot have instructions moved. This | |
6104 | structure contains caches of the contents, property table and | |
6105 | relocations for the specified section for easy use. The range is | |
6106 | specified by ranges of indices for the byte offset, property table | |
6107 | offsets and relocation offsets. These must be consistent. */ | |
6108 | ||
6109 | typedef struct ebb_struct ebb_t; | |
6110 | ||
6111 | struct ebb_struct | |
6112 | { | |
6113 | asection *sec; | |
6114 | ||
6115 | bfd_byte *contents; /* Cache of the section contents. */ | |
6116 | bfd_size_type content_length; | |
6117 | ||
6118 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6119 | unsigned pte_count; | |
6120 | ||
6121 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6122 | unsigned reloc_count; | |
6123 | ||
6124 | bfd_vma start_offset; /* Offset in section. */ | |
6125 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6126 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6127 | ||
6128 | bfd_vma end_offset; | |
6129 | unsigned end_ptbl_idx; | |
6130 | unsigned end_reloc_idx; | |
6131 | ||
6132 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6133 | ||
6134 | /* The unreachable property table at the end of this set of blocks; | |
6135 | NULL if the end is not an unreachable block. */ | |
6136 | property_table_entry *ends_unreachable; | |
6137 | }; | |
6138 | ||
6139 | ||
6140 | enum ebb_target_enum | |
6141 | { | |
6142 | EBB_NO_ALIGN = 0, | |
6143 | EBB_DESIRE_TGT_ALIGN, | |
6144 | EBB_REQUIRE_TGT_ALIGN, | |
6145 | EBB_REQUIRE_LOOP_ALIGN, | |
6146 | EBB_REQUIRE_ALIGN | |
6147 | }; | |
6148 | ||
6149 | ||
6150 | /* proposed_action_struct is similar to the text_action_struct except | |
6151 | that is represents a potential transformation, not one that will | |
6152 | occur. We build a list of these for an extended basic block | |
6153 | and use them to compute the actual actions desired. We must be | |
6154 | careful that the entire set of actual actions we perform do not | |
6155 | break any relocations that would fit if the actions were not | |
6156 | performed. */ | |
6157 | ||
6158 | typedef struct proposed_action_struct proposed_action; | |
6159 | ||
6160 | struct proposed_action_struct | |
6161 | { | |
6162 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6163 | bfd_vma alignment_pow; | |
6164 | text_action_t action; | |
6165 | bfd_vma offset; | |
6166 | int removed_bytes; | |
6167 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6168 | }; | |
6169 | ||
6170 | ||
6171 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6172 | extended basic block. */ | |
6173 | ||
6174 | typedef struct ebb_constraint_struct ebb_constraint; | |
6175 | ||
6176 | struct ebb_constraint_struct | |
6177 | { | |
6178 | ebb_t ebb; | |
6179 | bfd_boolean start_movable; | |
6180 | ||
6181 | /* Bytes of extra space at the beginning if movable. */ | |
6182 | int start_extra_space; | |
6183 | ||
6184 | enum ebb_target_enum start_align; | |
6185 | ||
6186 | bfd_boolean end_movable; | |
6187 | ||
6188 | /* Bytes of extra space at the end if movable. */ | |
6189 | int end_extra_space; | |
6190 | ||
6191 | unsigned action_count; | |
6192 | unsigned action_allocated; | |
6193 | ||
6194 | /* Array of proposed actions. */ | |
6195 | proposed_action *actions; | |
6196 | ||
6197 | /* Action alignments -- one for each proposed action. */ | |
6198 | enum ebb_target_enum *action_aligns; | |
6199 | }; | |
6200 | ||
6201 | ||
43cd72b9 | 6202 | static void |
7fa3d080 | 6203 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6204 | { |
6205 | memset (c, 0, sizeof (ebb_constraint)); | |
6206 | } | |
6207 | ||
6208 | ||
6209 | static void | |
7fa3d080 | 6210 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6211 | { |
7fa3d080 | 6212 | if (c->actions) |
43cd72b9 BW |
6213 | free (c->actions); |
6214 | } | |
6215 | ||
6216 | ||
6217 | static void | |
7fa3d080 BW |
6218 | init_ebb (ebb_t *ebb, |
6219 | asection *sec, | |
6220 | bfd_byte *contents, | |
6221 | bfd_size_type content_length, | |
6222 | property_table_entry *prop_table, | |
6223 | unsigned ptblsize, | |
6224 | Elf_Internal_Rela *internal_relocs, | |
6225 | unsigned reloc_count) | |
43cd72b9 BW |
6226 | { |
6227 | memset (ebb, 0, sizeof (ebb_t)); | |
6228 | ebb->sec = sec; | |
6229 | ebb->contents = contents; | |
6230 | ebb->content_length = content_length; | |
6231 | ebb->ptbl = prop_table; | |
6232 | ebb->pte_count = ptblsize; | |
6233 | ebb->relocs = internal_relocs; | |
6234 | ebb->reloc_count = reloc_count; | |
6235 | ebb->start_offset = 0; | |
6236 | ebb->end_offset = ebb->content_length - 1; | |
6237 | ebb->start_ptbl_idx = 0; | |
6238 | ebb->end_ptbl_idx = ptblsize; | |
6239 | ebb->start_reloc_idx = 0; | |
6240 | ebb->end_reloc_idx = reloc_count; | |
6241 | } | |
6242 | ||
6243 | ||
6244 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6245 | for building a basic block around an instruction is to push it | |
6246 | forward until we hit the end of a section, an unreachable block or | |
6247 | a block that cannot be transformed. Then we push it backwards | |
6248 | searching for similar conditions. */ | |
6249 | ||
7fa3d080 BW |
6250 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6251 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6252 | static bfd_size_type insn_block_decodable_len | |
6253 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6254 | ||
43cd72b9 | 6255 | static bfd_boolean |
7fa3d080 | 6256 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6257 | { |
6258 | if (!extend_ebb_bounds_forward (ebb)) | |
6259 | return FALSE; | |
6260 | if (!extend_ebb_bounds_backward (ebb)) | |
6261 | return FALSE; | |
6262 | return TRUE; | |
6263 | } | |
6264 | ||
6265 | ||
6266 | static bfd_boolean | |
7fa3d080 | 6267 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6268 | { |
6269 | property_table_entry *the_entry, *new_entry; | |
6270 | ||
6271 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6272 | ||
6273 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6274 | the end of the property tables, (3) we hit a non-contiguous property | |
6275 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6276 | ||
6277 | while (1) | |
6278 | { | |
6279 | bfd_vma entry_end; | |
6280 | bfd_size_type insn_block_len; | |
6281 | ||
6282 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6283 | insn_block_len = | |
6284 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6285 | ebb->end_offset, | |
6286 | entry_end - ebb->end_offset); | |
6287 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6288 | { | |
6289 | (*_bfd_error_handler) | |
6290 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6291 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6292 | return FALSE; | |
6293 | } | |
6294 | ebb->end_offset += insn_block_len; | |
6295 | ||
6296 | if (ebb->end_offset == ebb->sec->size) | |
6297 | ebb->ends_section = TRUE; | |
6298 | ||
6299 | /* Update the reloc counter. */ | |
6300 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6301 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6302 | < ebb->end_offset)) | |
6303 | { | |
6304 | ebb->end_reloc_idx++; | |
6305 | } | |
6306 | ||
6307 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6308 | return TRUE; | |
6309 | ||
6310 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6311 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6312 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6313 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6314 | break; | |
6315 | ||
6316 | if (the_entry->address + the_entry->size != new_entry->address) | |
6317 | break; | |
6318 | ||
6319 | the_entry = new_entry; | |
6320 | ebb->end_ptbl_idx++; | |
6321 | } | |
6322 | ||
6323 | /* Quick check for an unreachable or end of file just at the end. */ | |
6324 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6325 | { | |
6326 | if (ebb->end_offset == ebb->content_length) | |
6327 | ebb->ends_section = TRUE; | |
6328 | } | |
6329 | else | |
6330 | { | |
6331 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6332 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6333 | && the_entry->address + the_entry->size == new_entry->address) | |
6334 | ebb->ends_unreachable = new_entry; | |
6335 | } | |
6336 | ||
6337 | /* Any other ending requires exact alignment. */ | |
6338 | return TRUE; | |
6339 | } | |
6340 | ||
6341 | ||
6342 | static bfd_boolean | |
7fa3d080 | 6343 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6344 | { |
6345 | property_table_entry *the_entry, *new_entry; | |
6346 | ||
6347 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6348 | ||
6349 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6350 | (2) we are at the beginning of the property tables, (3) we hit a | |
6351 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6352 | ||
6353 | while (1) | |
6354 | { | |
6355 | bfd_vma block_begin; | |
6356 | bfd_size_type insn_block_len; | |
6357 | ||
6358 | block_begin = the_entry->address - ebb->sec->vma; | |
6359 | insn_block_len = | |
6360 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6361 | block_begin, | |
6362 | ebb->start_offset - block_begin); | |
6363 | if (insn_block_len != ebb->start_offset - block_begin) | |
6364 | { | |
6365 | (*_bfd_error_handler) | |
6366 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6367 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6368 | return FALSE; | |
6369 | } | |
6370 | ebb->start_offset -= insn_block_len; | |
6371 | ||
6372 | /* Update the reloc counter. */ | |
6373 | while (ebb->start_reloc_idx > 0 | |
6374 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6375 | >= ebb->start_offset)) | |
6376 | { | |
6377 | ebb->start_reloc_idx--; | |
6378 | } | |
6379 | ||
6380 | if (ebb->start_ptbl_idx == 0) | |
6381 | return TRUE; | |
6382 | ||
6383 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6384 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6385 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6386 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6387 | return TRUE; | |
6388 | if (new_entry->address + new_entry->size != the_entry->address) | |
6389 | return TRUE; | |
6390 | ||
6391 | the_entry = new_entry; | |
6392 | ebb->start_ptbl_idx--; | |
6393 | } | |
6394 | return TRUE; | |
6395 | } | |
6396 | ||
6397 | ||
6398 | static bfd_size_type | |
7fa3d080 BW |
6399 | insn_block_decodable_len (bfd_byte *contents, |
6400 | bfd_size_type content_len, | |
6401 | bfd_vma block_offset, | |
6402 | bfd_size_type block_len) | |
43cd72b9 BW |
6403 | { |
6404 | bfd_vma offset = block_offset; | |
6405 | ||
6406 | while (offset < block_offset + block_len) | |
6407 | { | |
6408 | bfd_size_type insn_len = 0; | |
6409 | ||
6410 | insn_len = insn_decode_len (contents, content_len, offset); | |
6411 | if (insn_len == 0) | |
6412 | return (offset - block_offset); | |
6413 | offset += insn_len; | |
6414 | } | |
6415 | return (offset - block_offset); | |
6416 | } | |
6417 | ||
6418 | ||
6419 | static void | |
7fa3d080 | 6420 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6421 | enum ebb_target_enum align_type, |
288f74fa | 6422 | bfd_vma alignment_pow, |
7fa3d080 BW |
6423 | text_action_t action, |
6424 | bfd_vma offset, | |
6425 | int removed_bytes, | |
6426 | bfd_boolean do_action) | |
43cd72b9 | 6427 | { |
b08b5071 | 6428 | proposed_action *act; |
43cd72b9 | 6429 | |
43cd72b9 BW |
6430 | if (c->action_allocated <= c->action_count) |
6431 | { | |
b08b5071 | 6432 | unsigned new_allocated, i; |
823fc61f | 6433 | proposed_action *new_actions; |
b08b5071 BW |
6434 | |
6435 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6436 | new_actions = (proposed_action *) |
43cd72b9 BW |
6437 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6438 | ||
6439 | for (i = 0; i < c->action_count; i++) | |
6440 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 6441 | if (c->actions) |
43cd72b9 BW |
6442 | free (c->actions); |
6443 | c->actions = new_actions; | |
6444 | c->action_allocated = new_allocated; | |
6445 | } | |
b08b5071 BW |
6446 | |
6447 | act = &c->actions[c->action_count]; | |
6448 | act->align_type = align_type; | |
6449 | act->alignment_pow = alignment_pow; | |
6450 | act->action = action; | |
6451 | act->offset = offset; | |
6452 | act->removed_bytes = removed_bytes; | |
6453 | act->do_action = do_action; | |
6454 | ||
43cd72b9 BW |
6455 | c->action_count++; |
6456 | } | |
6457 | ||
6458 | \f | |
6459 | /* Access to internal relocations, section contents and symbols. */ | |
6460 | ||
6461 | /* During relaxation, we need to modify relocations, section contents, | |
6462 | and symbol definitions, and we need to keep the original values from | |
6463 | being reloaded from the input files, i.e., we need to "pin" the | |
6464 | modified values in memory. We also want to continue to observe the | |
6465 | setting of the "keep-memory" flag. The following functions wrap the | |
6466 | standard BFD functions to take care of this for us. */ | |
6467 | ||
6468 | static Elf_Internal_Rela * | |
7fa3d080 | 6469 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6470 | { |
6471 | Elf_Internal_Rela *internal_relocs; | |
6472 | ||
6473 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6474 | return NULL; | |
6475 | ||
6476 | internal_relocs = elf_section_data (sec)->relocs; | |
6477 | if (internal_relocs == NULL) | |
6478 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6479 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6480 | return internal_relocs; |
6481 | } | |
6482 | ||
6483 | ||
6484 | static void | |
7fa3d080 | 6485 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6486 | { |
6487 | elf_section_data (sec)->relocs = internal_relocs; | |
6488 | } | |
6489 | ||
6490 | ||
6491 | static void | |
7fa3d080 | 6492 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6493 | { |
6494 | if (internal_relocs | |
6495 | && elf_section_data (sec)->relocs != internal_relocs) | |
6496 | free (internal_relocs); | |
6497 | } | |
6498 | ||
6499 | ||
6500 | static bfd_byte * | |
7fa3d080 | 6501 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6502 | { |
6503 | bfd_byte *contents; | |
6504 | bfd_size_type sec_size; | |
6505 | ||
6506 | sec_size = bfd_get_section_limit (abfd, sec); | |
6507 | contents = elf_section_data (sec)->this_hdr.contents; | |
6508 | ||
6509 | if (contents == NULL && sec_size != 0) | |
6510 | { | |
6511 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6512 | { | |
7fa3d080 | 6513 | if (contents) |
43cd72b9 BW |
6514 | free (contents); |
6515 | return NULL; | |
6516 | } | |
6517 | if (keep_memory) | |
6518 | elf_section_data (sec)->this_hdr.contents = contents; | |
6519 | } | |
6520 | return contents; | |
6521 | } | |
6522 | ||
6523 | ||
6524 | static void | |
7fa3d080 | 6525 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6526 | { |
6527 | elf_section_data (sec)->this_hdr.contents = contents; | |
6528 | } | |
6529 | ||
6530 | ||
6531 | static void | |
7fa3d080 | 6532 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6533 | { |
6534 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
6535 | free (contents); | |
6536 | } | |
6537 | ||
6538 | ||
6539 | static Elf_Internal_Sym * | |
7fa3d080 | 6540 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6541 | { |
6542 | Elf_Internal_Shdr *symtab_hdr; | |
6543 | Elf_Internal_Sym *isymbuf; | |
6544 | size_t locsymcount; | |
6545 | ||
6546 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6547 | locsymcount = symtab_hdr->sh_info; | |
6548 | ||
6549 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6550 | if (isymbuf == NULL && locsymcount != 0) | |
6551 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6552 | NULL, NULL, NULL); | |
6553 | ||
6554 | /* Save the symbols for this input file so they won't be read again. */ | |
6555 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6556 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6557 | ||
6558 | return isymbuf; | |
6559 | } | |
6560 | ||
6561 | \f | |
6562 | /* Code for link-time relaxation. */ | |
6563 | ||
6564 | /* Initialization for relaxation: */ | |
7fa3d080 | 6565 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6566 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6567 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6568 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6569 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6570 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6571 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6572 | bfd_boolean *); | |
43cd72b9 | 6573 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6574 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6575 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6576 | (bfd *, asection *, struct bfd_link_info *); |
6577 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6578 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 6579 | static bfd_boolean check_section_ebb_pcrels_fit |
cb337148 BW |
6580 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, |
6581 | const xtensa_opcode *); | |
7fa3d080 | 6582 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6583 | static void text_action_add_proposed |
7fa3d080 BW |
6584 | (text_action_list *, const ebb_constraint *, asection *); |
6585 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
6586 | |
6587 | /* First pass: */ | |
6588 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6589 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6590 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6591 | (asection *, Elf_Internal_Rela *, bfd_vma); |
43cd72b9 | 6592 | static bfd_boolean is_removable_literal |
99ded152 BW |
6593 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6594 | property_table_entry *, int); | |
43cd72b9 | 6595 | static bfd_boolean remove_dead_literal |
7fa3d080 BW |
6596 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
6597 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); | |
6598 | static bfd_boolean identify_literal_placement | |
6599 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6600 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6601 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6602 | bfd_boolean); | |
6603 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6604 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6605 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6606 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6607 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6608 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6609 | |
6610 | /* Second pass: */ | |
7fa3d080 BW |
6611 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6612 | static bfd_boolean translate_section_fixes (asection *); | |
6613 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6614 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6615 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6616 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6617 | static bfd_boolean move_literal |
7fa3d080 BW |
6618 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6619 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6620 | static bfd_boolean relax_property_section |
7fa3d080 | 6621 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6622 | |
6623 | /* Third pass: */ | |
7fa3d080 | 6624 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6625 | |
6626 | ||
6627 | static bfd_boolean | |
7fa3d080 BW |
6628 | elf_xtensa_relax_section (bfd *abfd, |
6629 | asection *sec, | |
6630 | struct bfd_link_info *link_info, | |
6631 | bfd_boolean *again) | |
43cd72b9 BW |
6632 | { |
6633 | static value_map_hash_table *values = NULL; | |
6634 | static bfd_boolean relocations_analyzed = FALSE; | |
6635 | xtensa_relax_info *relax_info; | |
6636 | ||
6637 | if (!relocations_analyzed) | |
6638 | { | |
6639 | /* Do some overall initialization for relaxation. */ | |
6640 | values = value_map_hash_table_init (); | |
6641 | if (values == NULL) | |
6642 | return FALSE; | |
6643 | relaxing_section = TRUE; | |
6644 | if (!analyze_relocations (link_info)) | |
6645 | return FALSE; | |
6646 | relocations_analyzed = TRUE; | |
6647 | } | |
6648 | *again = FALSE; | |
6649 | ||
6650 | /* Don't mess with linker-created sections. */ | |
6651 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6652 | return TRUE; | |
6653 | ||
6654 | relax_info = get_xtensa_relax_info (sec); | |
6655 | BFD_ASSERT (relax_info != NULL); | |
6656 | ||
6657 | switch (relax_info->visited) | |
6658 | { | |
6659 | case 0: | |
6660 | /* Note: It would be nice to fold this pass into | |
6661 | analyze_relocations, but it is important for this step that the | |
6662 | sections be examined in link order. */ | |
6663 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6664 | return FALSE; | |
6665 | *again = TRUE; | |
6666 | break; | |
6667 | ||
6668 | case 1: | |
6669 | if (values) | |
6670 | value_map_hash_table_delete (values); | |
6671 | values = NULL; | |
6672 | if (!relax_section (abfd, sec, link_info)) | |
6673 | return FALSE; | |
6674 | *again = TRUE; | |
6675 | break; | |
6676 | ||
6677 | case 2: | |
6678 | if (!relax_section_symbols (abfd, sec)) | |
6679 | return FALSE; | |
6680 | break; | |
6681 | } | |
6682 | ||
6683 | relax_info->visited++; | |
6684 | return TRUE; | |
6685 | } | |
6686 | ||
6687 | \f | |
6688 | /* Initialization for relaxation. */ | |
6689 | ||
6690 | /* This function is called once at the start of relaxation. It scans | |
6691 | all the input sections and marks the ones that are relaxable (i.e., | |
6692 | literal sections with L32R relocations against them), and then | |
6693 | collects source_reloc information for all the relocations against | |
6694 | those relaxable sections. During this process, it also detects | |
6695 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6696 | calls, that can be optimized back into direct calls. Within each | |
6697 | extended basic block (ebb) containing an optimized longcall, it | |
6698 | computes a set of "text actions" that can be performed to remove | |
6699 | the L32R associated with the longcall while optionally preserving | |
6700 | branch target alignments. */ | |
6701 | ||
6702 | static bfd_boolean | |
7fa3d080 | 6703 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6704 | { |
6705 | bfd *abfd; | |
6706 | asection *sec; | |
6707 | bfd_boolean is_relaxable = FALSE; | |
6708 | ||
6709 | /* Initialize the per-section relaxation info. */ | |
6710 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6711 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6712 | { | |
6713 | init_xtensa_relax_info (sec); | |
6714 | } | |
6715 | ||
6716 | /* Mark relaxable sections (and count relocations against each one). */ | |
6717 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6718 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6719 | { | |
6720 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6721 | return FALSE; | |
6722 | } | |
6723 | ||
6724 | /* Bail out if there are no relaxable sections. */ | |
6725 | if (!is_relaxable) | |
6726 | return TRUE; | |
6727 | ||
6728 | /* Allocate space for source_relocs. */ | |
6729 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6730 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6731 | { | |
6732 | xtensa_relax_info *relax_info; | |
6733 | ||
6734 | relax_info = get_xtensa_relax_info (sec); | |
6735 | if (relax_info->is_relaxable_literal_section | |
6736 | || relax_info->is_relaxable_asm_section) | |
6737 | { | |
6738 | relax_info->src_relocs = (source_reloc *) | |
6739 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
6740 | } | |
25c6282a BW |
6741 | else |
6742 | relax_info->src_count = 0; | |
43cd72b9 BW |
6743 | } |
6744 | ||
6745 | /* Collect info on relocations against each relaxable section. */ | |
6746 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6747 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6748 | { | |
6749 | if (!collect_source_relocs (abfd, sec, link_info)) | |
6750 | return FALSE; | |
6751 | } | |
6752 | ||
6753 | /* Compute the text actions. */ | |
6754 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6755 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6756 | { | |
6757 | if (!compute_text_actions (abfd, sec, link_info)) | |
6758 | return FALSE; | |
6759 | } | |
6760 | ||
6761 | return TRUE; | |
6762 | } | |
6763 | ||
6764 | ||
6765 | /* Find all the sections that might be relaxed. The motivation for | |
6766 | this pass is that collect_source_relocs() needs to record _all_ the | |
6767 | relocations that target each relaxable section. That is expensive | |
6768 | and unnecessary unless the target section is actually going to be | |
6769 | relaxed. This pass identifies all such sections by checking if | |
6770 | they have L32Rs pointing to them. In the process, the total number | |
6771 | of relocations targeting each section is also counted so that we | |
6772 | know how much space to allocate for source_relocs against each | |
6773 | relaxable literal section. */ | |
6774 | ||
6775 | static bfd_boolean | |
7fa3d080 BW |
6776 | find_relaxable_sections (bfd *abfd, |
6777 | asection *sec, | |
6778 | struct bfd_link_info *link_info, | |
6779 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
6780 | { |
6781 | Elf_Internal_Rela *internal_relocs; | |
6782 | bfd_byte *contents; | |
6783 | bfd_boolean ok = TRUE; | |
6784 | unsigned i; | |
6785 | xtensa_relax_info *source_relax_info; | |
25c6282a | 6786 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
6787 | |
6788 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6789 | link_info->keep_memory); | |
6790 | if (internal_relocs == NULL) | |
6791 | return ok; | |
6792 | ||
6793 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6794 | if (contents == NULL && sec->size != 0) | |
6795 | { | |
6796 | ok = FALSE; | |
6797 | goto error_return; | |
6798 | } | |
6799 | ||
6800 | source_relax_info = get_xtensa_relax_info (sec); | |
6801 | for (i = 0; i < sec->reloc_count; i++) | |
6802 | { | |
6803 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6804 | r_reloc r_rel; | |
6805 | asection *target_sec; | |
6806 | xtensa_relax_info *target_relax_info; | |
6807 | ||
6808 | /* If this section has not already been marked as "relaxable", and | |
6809 | if it contains any ASM_EXPAND relocations (marking expanded | |
6810 | longcalls) that can be optimized into direct calls, then mark | |
6811 | the section as "relaxable". */ | |
6812 | if (source_relax_info | |
6813 | && !source_relax_info->is_relaxable_asm_section | |
6814 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
6815 | { | |
6816 | bfd_boolean is_reachable = FALSE; | |
6817 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
6818 | link_info, &is_reachable) | |
6819 | && is_reachable) | |
6820 | { | |
6821 | source_relax_info->is_relaxable_asm_section = TRUE; | |
6822 | *is_relaxable_p = TRUE; | |
6823 | } | |
6824 | } | |
6825 | ||
6826 | r_reloc_init (&r_rel, abfd, irel, contents, | |
6827 | bfd_get_section_limit (abfd, sec)); | |
6828 | ||
6829 | target_sec = r_reloc_get_section (&r_rel); | |
6830 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6831 | if (!target_relax_info) | |
6832 | continue; | |
6833 | ||
6834 | /* Count PC-relative operand relocations against the target section. | |
6835 | Note: The conditions tested here must match the conditions under | |
6836 | which init_source_reloc is called in collect_source_relocs(). */ | |
25c6282a BW |
6837 | is_l32r_reloc = FALSE; |
6838 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6839 | { | |
6840 | xtensa_opcode opcode = | |
6841 | get_relocation_opcode (abfd, sec, contents, irel); | |
6842 | if (opcode != XTENSA_UNDEFINED) | |
6843 | { | |
6844 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
6845 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6846 | || is_l32r_reloc) | |
6847 | target_relax_info->src_count++; | |
6848 | } | |
6849 | } | |
43cd72b9 | 6850 | |
25c6282a | 6851 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
6852 | { |
6853 | /* Mark the target section as relaxable. */ | |
6854 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6855 | *is_relaxable_p = TRUE; | |
6856 | } | |
6857 | } | |
6858 | ||
6859 | error_return: | |
6860 | release_contents (sec, contents); | |
6861 | release_internal_relocs (sec, internal_relocs); | |
6862 | return ok; | |
6863 | } | |
6864 | ||
6865 | ||
6866 | /* Record _all_ the relocations that point to relaxable sections, and | |
6867 | get rid of ASM_EXPAND relocs by either converting them to | |
6868 | ASM_SIMPLIFY or by removing them. */ | |
6869 | ||
6870 | static bfd_boolean | |
7fa3d080 BW |
6871 | collect_source_relocs (bfd *abfd, |
6872 | asection *sec, | |
6873 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6874 | { |
6875 | Elf_Internal_Rela *internal_relocs; | |
6876 | bfd_byte *contents; | |
6877 | bfd_boolean ok = TRUE; | |
6878 | unsigned i; | |
6879 | bfd_size_type sec_size; | |
6880 | ||
6881 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6882 | link_info->keep_memory); | |
6883 | if (internal_relocs == NULL) | |
6884 | return ok; | |
6885 | ||
6886 | sec_size = bfd_get_section_limit (abfd, sec); | |
6887 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6888 | if (contents == NULL && sec_size != 0) | |
6889 | { | |
6890 | ok = FALSE; | |
6891 | goto error_return; | |
6892 | } | |
6893 | ||
6894 | /* Record relocations against relaxable literal sections. */ | |
6895 | for (i = 0; i < sec->reloc_count; i++) | |
6896 | { | |
6897 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6898 | r_reloc r_rel; | |
6899 | asection *target_sec; | |
6900 | xtensa_relax_info *target_relax_info; | |
6901 | ||
6902 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6903 | ||
6904 | target_sec = r_reloc_get_section (&r_rel); | |
6905 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6906 | ||
6907 | if (target_relax_info | |
6908 | && (target_relax_info->is_relaxable_literal_section | |
6909 | || target_relax_info->is_relaxable_asm_section)) | |
6910 | { | |
6911 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6912 | int opnd = -1; | |
6913 | bfd_boolean is_abs_literal = FALSE; | |
6914 | ||
6915 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6916 | { | |
6917 | /* None of the current alternate relocs are PC-relative, | |
6918 | and only PC-relative relocs matter here. However, we | |
6919 | still need to record the opcode for literal | |
6920 | coalescing. */ | |
6921 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6922 | if (opcode == get_l32r_opcode ()) | |
6923 | { | |
6924 | is_abs_literal = TRUE; | |
6925 | opnd = 1; | |
6926 | } | |
6927 | else | |
6928 | opcode = XTENSA_UNDEFINED; | |
6929 | } | |
6930 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6931 | { | |
6932 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6933 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6934 | } | |
6935 | ||
6936 | if (opcode != XTENSA_UNDEFINED) | |
6937 | { | |
6938 | int src_next = target_relax_info->src_next++; | |
6939 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6940 | ||
6941 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6942 | is_abs_literal); | |
6943 | } | |
6944 | } | |
6945 | } | |
6946 | ||
6947 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6948 | src_relocs array for the target literal section may still be | |
6949 | incomplete, but it must at least contain the entries for the L32R | |
6950 | relocations associated with ASM_EXPANDs because they were just | |
6951 | added in the preceding loop over the relocations. */ | |
6952 | ||
6953 | for (i = 0; i < sec->reloc_count; i++) | |
6954 | { | |
6955 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6956 | bfd_boolean is_reachable; | |
6957 | ||
6958 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6959 | &is_reachable)) | |
6960 | continue; | |
6961 | ||
6962 | if (is_reachable) | |
6963 | { | |
6964 | Elf_Internal_Rela *l32r_irel; | |
6965 | r_reloc r_rel; | |
6966 | asection *target_sec; | |
6967 | xtensa_relax_info *target_relax_info; | |
6968 | ||
6969 | /* Mark the source_reloc for the L32R so that it will be | |
6970 | removed in compute_removed_literals(), along with the | |
6971 | associated literal. */ | |
6972 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
6973 | irel, internal_relocs); | |
6974 | if (l32r_irel == NULL) | |
6975 | continue; | |
6976 | ||
6977 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
6978 | ||
6979 | target_sec = r_reloc_get_section (&r_rel); | |
6980 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6981 | ||
6982 | if (target_relax_info | |
6983 | && (target_relax_info->is_relaxable_literal_section | |
6984 | || target_relax_info->is_relaxable_asm_section)) | |
6985 | { | |
6986 | source_reloc *s_reloc; | |
6987 | ||
6988 | /* Search the source_relocs for the entry corresponding to | |
6989 | the l32r_irel. Note: The src_relocs array is not yet | |
6990 | sorted, but it wouldn't matter anyway because we're | |
6991 | searching by source offset instead of target offset. */ | |
6992 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
6993 | target_relax_info->src_next, | |
6994 | sec, l32r_irel); | |
6995 | BFD_ASSERT (s_reloc); | |
6996 | s_reloc->is_null = TRUE; | |
6997 | } | |
6998 | ||
6999 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7000 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7001 | R_XTENSA_ASM_SIMPLIFY); | |
7002 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7003 | ||
7004 | pin_internal_relocs (sec, internal_relocs); | |
7005 | } | |
7006 | else | |
7007 | { | |
7008 | /* It is resolvable but doesn't reach. We resolve now | |
7009 | by eliminating the relocation -- the call will remain | |
7010 | expanded into L32R/CALLX. */ | |
7011 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7012 | pin_internal_relocs (sec, internal_relocs); | |
7013 | } | |
7014 | } | |
7015 | ||
7016 | error_return: | |
7017 | release_contents (sec, contents); | |
7018 | release_internal_relocs (sec, internal_relocs); | |
7019 | return ok; | |
7020 | } | |
7021 | ||
7022 | ||
7023 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7024 | be resolved on a final link or when a partial link locates it in the | |
7025 | same section as the target. Set "is_reachable" flag if the target of | |
7026 | the call is within the range of a direct call, given the current VMA | |
7027 | for this section and the target section. */ | |
7028 | ||
7029 | bfd_boolean | |
7fa3d080 BW |
7030 | is_resolvable_asm_expansion (bfd *abfd, |
7031 | asection *sec, | |
7032 | bfd_byte *contents, | |
7033 | Elf_Internal_Rela *irel, | |
7034 | struct bfd_link_info *link_info, | |
7035 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7036 | { |
7037 | asection *target_sec; | |
7038 | bfd_vma target_offset; | |
7039 | r_reloc r_rel; | |
7040 | xtensa_opcode opcode, direct_call_opcode; | |
7041 | bfd_vma self_address; | |
7042 | bfd_vma dest_address; | |
7043 | bfd_boolean uses_l32r; | |
7044 | bfd_size_type sec_size; | |
7045 | ||
7046 | *is_reachable_p = FALSE; | |
7047 | ||
7048 | if (contents == NULL) | |
7049 | return FALSE; | |
7050 | ||
7051 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
7052 | return FALSE; | |
7053 | ||
7054 | sec_size = bfd_get_section_limit (abfd, sec); | |
7055 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7056 | sec_size - irel->r_offset, &uses_l32r); | |
7057 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7058 | if (!uses_l32r) | |
7059 | return FALSE; | |
7060 | ||
7061 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
7062 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7063 | return FALSE; | |
7064 | ||
7065 | /* Check and see that the target resolves. */ | |
7066 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7067 | if (!r_reloc_is_defined (&r_rel)) | |
7068 | return FALSE; | |
7069 | ||
7070 | target_sec = r_reloc_get_section (&r_rel); | |
7071 | target_offset = r_rel.target_offset; | |
7072 | ||
7073 | /* If the target is in a shared library, then it doesn't reach. This | |
7074 | isn't supposed to come up because the compiler should never generate | |
7075 | non-PIC calls on systems that use shared libraries, but the linker | |
7076 | shouldn't crash regardless. */ | |
7077 | if (!target_sec->output_section) | |
7078 | return FALSE; | |
7079 | ||
7080 | /* For relocatable sections, we can only simplify when the output | |
7081 | section of the target is the same as the output section of the | |
7082 | source. */ | |
7083 | if (link_info->relocatable | |
7084 | && (target_sec->output_section != sec->output_section | |
7085 | || is_reloc_sym_weak (abfd, irel))) | |
7086 | return FALSE; | |
7087 | ||
7088 | self_address = (sec->output_section->vma | |
7089 | + sec->output_offset + irel->r_offset + 3); | |
7090 | dest_address = (target_sec->output_section->vma | |
7091 | + target_sec->output_offset + target_offset); | |
7092 | ||
7093 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, | |
7094 | self_address, dest_address); | |
7095 | ||
7096 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7097 | (dest_address >> CALL_SEGMENT_BITS)) | |
7098 | return FALSE; | |
7099 | ||
7100 | return TRUE; | |
7101 | } | |
7102 | ||
7103 | ||
7104 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7105 | find_associated_l32r_irel (bfd *abfd, |
7106 | asection *sec, | |
7107 | bfd_byte *contents, | |
7108 | Elf_Internal_Rela *other_irel, | |
7109 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7110 | { |
7111 | unsigned i; | |
e0001a05 | 7112 | |
43cd72b9 BW |
7113 | for (i = 0; i < sec->reloc_count; i++) |
7114 | { | |
7115 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7116 | |
43cd72b9 BW |
7117 | if (irel == other_irel) |
7118 | continue; | |
7119 | if (irel->r_offset != other_irel->r_offset) | |
7120 | continue; | |
7121 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7122 | return irel; | |
7123 | } | |
7124 | ||
7125 | return NULL; | |
e0001a05 NC |
7126 | } |
7127 | ||
7128 | ||
cb337148 BW |
7129 | static xtensa_opcode * |
7130 | build_reloc_opcodes (bfd *abfd, | |
7131 | asection *sec, | |
7132 | bfd_byte *contents, | |
7133 | Elf_Internal_Rela *internal_relocs) | |
7134 | { | |
7135 | unsigned i; | |
7136 | xtensa_opcode *reloc_opcodes = | |
7137 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7138 | for (i = 0; i < sec->reloc_count; i++) | |
7139 | { | |
7140 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7141 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7142 | } | |
7143 | return reloc_opcodes; | |
7144 | } | |
7145 | ||
7146 | ||
43cd72b9 BW |
7147 | /* The compute_text_actions function will build a list of potential |
7148 | transformation actions for code in the extended basic block of each | |
7149 | longcall that is optimized to a direct call. From this list we | |
7150 | generate a set of actions to actually perform that optimizes for | |
7151 | space and, if not using size_opt, maintains branch target | |
7152 | alignments. | |
e0001a05 | 7153 | |
43cd72b9 BW |
7154 | These actions to be performed are placed on a per-section list. |
7155 | The actual changes are performed by relax_section() in the second | |
7156 | pass. */ | |
7157 | ||
7158 | bfd_boolean | |
7fa3d080 BW |
7159 | compute_text_actions (bfd *abfd, |
7160 | asection *sec, | |
7161 | struct bfd_link_info *link_info) | |
e0001a05 | 7162 | { |
cb337148 | 7163 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7164 | xtensa_relax_info *relax_info; |
e0001a05 | 7165 | bfd_byte *contents; |
43cd72b9 | 7166 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7167 | bfd_boolean ok = TRUE; |
7168 | unsigned i; | |
43cd72b9 BW |
7169 | property_table_entry *prop_table = 0; |
7170 | int ptblsize = 0; | |
7171 | bfd_size_type sec_size; | |
43cd72b9 | 7172 | |
43cd72b9 BW |
7173 | relax_info = get_xtensa_relax_info (sec); |
7174 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7175 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7176 | ||
7177 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7178 | if (!relax_info->is_relaxable_asm_section) |
7179 | return ok; | |
e0001a05 NC |
7180 | |
7181 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7182 | link_info->keep_memory); | |
e0001a05 | 7183 | |
43cd72b9 BW |
7184 | if (internal_relocs) |
7185 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7186 | internal_reloc_compare); | |
7187 | ||
7188 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7189 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7190 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7191 | { |
7192 | ok = FALSE; | |
7193 | goto error_return; | |
7194 | } | |
7195 | ||
43cd72b9 BW |
7196 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7197 | XTENSA_PROP_SEC_NAME, FALSE); | |
7198 | if (ptblsize < 0) | |
7199 | { | |
7200 | ok = FALSE; | |
7201 | goto error_return; | |
7202 | } | |
7203 | ||
7204 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
7205 | { |
7206 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7207 | bfd_vma r_offset; |
7208 | property_table_entry *the_entry; | |
7209 | int ptbl_idx; | |
7210 | ebb_t *ebb; | |
7211 | ebb_constraint ebb_table; | |
7212 | bfd_size_type simplify_size; | |
7213 | ||
7214 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7215 | continue; | |
7216 | r_offset = irel->r_offset; | |
e0001a05 | 7217 | |
43cd72b9 BW |
7218 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7219 | if (simplify_size == 0) | |
7220 | { | |
7221 | (*_bfd_error_handler) | |
7222 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
7223 | sec->owner, sec, r_offset); | |
7224 | continue; | |
7225 | } | |
e0001a05 | 7226 | |
43cd72b9 BW |
7227 | /* If the instruction table is not around, then don't do this |
7228 | relaxation. */ | |
7229 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7230 | sec->vma + irel->r_offset); | |
7231 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7232 | { | |
7233 | text_action_add (&relax_info->action_list, | |
7234 | ta_convert_longcall, sec, r_offset, | |
7235 | 0); | |
7236 | continue; | |
7237 | } | |
7238 | ||
7239 | /* If the next longcall happens to be at the same address as an | |
7240 | unreachable section of size 0, then skip forward. */ | |
7241 | ptbl_idx = the_entry - prop_table; | |
7242 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7243 | && the_entry->size == 0 | |
7244 | && ptbl_idx + 1 < ptblsize | |
7245 | && (prop_table[ptbl_idx + 1].address | |
7246 | == prop_table[ptbl_idx].address)) | |
7247 | { | |
7248 | ptbl_idx++; | |
7249 | the_entry++; | |
7250 | } | |
e0001a05 | 7251 | |
99ded152 | 7252 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7253 | /* NO_REORDER is OK */ |
7254 | continue; | |
e0001a05 | 7255 | |
43cd72b9 BW |
7256 | init_ebb_constraint (&ebb_table); |
7257 | ebb = &ebb_table.ebb; | |
7258 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7259 | internal_relocs, sec->reloc_count); | |
7260 | ebb->start_offset = r_offset + simplify_size; | |
7261 | ebb->end_offset = r_offset + simplify_size; | |
7262 | ebb->start_ptbl_idx = ptbl_idx; | |
7263 | ebb->end_ptbl_idx = ptbl_idx; | |
7264 | ebb->start_reloc_idx = i; | |
7265 | ebb->end_reloc_idx = i; | |
7266 | ||
cb337148 BW |
7267 | /* Precompute the opcode for each relocation. */ |
7268 | if (reloc_opcodes == NULL) | |
7269 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, | |
7270 | internal_relocs); | |
7271 | ||
43cd72b9 BW |
7272 | if (!extend_ebb_bounds (ebb) |
7273 | || !compute_ebb_proposed_actions (&ebb_table) | |
7274 | || !compute_ebb_actions (&ebb_table) | |
7275 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
cb337148 BW |
7276 | internal_relocs, &ebb_table, |
7277 | reloc_opcodes) | |
43cd72b9 | 7278 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7279 | { |
43cd72b9 BW |
7280 | /* If anything goes wrong or we get unlucky and something does |
7281 | not fit, with our plan because of expansion between | |
7282 | critical branches, just convert to a NOP. */ | |
7283 | ||
7284 | text_action_add (&relax_info->action_list, | |
7285 | ta_convert_longcall, sec, r_offset, 0); | |
7286 | i = ebb_table.ebb.end_reloc_idx; | |
7287 | free_ebb_constraint (&ebb_table); | |
7288 | continue; | |
e0001a05 | 7289 | } |
43cd72b9 BW |
7290 | |
7291 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7292 | ||
7293 | /* Update the index so we do not go looking at the relocations | |
7294 | we have already processed. */ | |
7295 | i = ebb_table.ebb.end_reloc_idx; | |
7296 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7297 | } |
7298 | ||
43cd72b9 | 7299 | #if DEBUG |
7fa3d080 | 7300 | if (relax_info->action_list.head) |
43cd72b9 BW |
7301 | print_action_list (stderr, &relax_info->action_list); |
7302 | #endif | |
7303 | ||
7304 | error_return: | |
e0001a05 NC |
7305 | release_contents (sec, contents); |
7306 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
7307 | if (prop_table) |
7308 | free (prop_table); | |
cb337148 BW |
7309 | if (reloc_opcodes) |
7310 | free (reloc_opcodes); | |
43cd72b9 | 7311 | |
e0001a05 NC |
7312 | return ok; |
7313 | } | |
7314 | ||
7315 | ||
64b607e6 BW |
7316 | /* Do not widen an instruction if it is preceeded by a |
7317 | loop opcode. It might cause misalignment. */ | |
7318 | ||
7319 | static bfd_boolean | |
7320 | prev_instr_is_a_loop (bfd_byte *contents, | |
7321 | bfd_size_type content_length, | |
7322 | bfd_size_type offset) | |
7323 | { | |
7324 | xtensa_opcode prev_opcode; | |
7325 | ||
7326 | if (offset < 3) | |
7327 | return FALSE; | |
7328 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7329 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
7330 | } | |
7331 | ||
7332 | ||
43cd72b9 | 7333 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7334 | |
43cd72b9 | 7335 | bfd_boolean |
7fa3d080 | 7336 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7337 | { |
43cd72b9 BW |
7338 | const ebb_t *ebb = &ebb_table->ebb; |
7339 | unsigned rel_idx = ebb->start_reloc_idx; | |
7340 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7341 | bfd_vma offset = 0; |
7342 | xtensa_isa isa = xtensa_default_isa; | |
7343 | xtensa_format fmt; | |
7344 | static xtensa_insnbuf insnbuf = NULL; | |
7345 | static xtensa_insnbuf slotbuf = NULL; | |
7346 | ||
7347 | if (insnbuf == NULL) | |
7348 | { | |
7349 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7350 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7351 | } | |
e0001a05 | 7352 | |
43cd72b9 BW |
7353 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7354 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7355 | |
43cd72b9 | 7356 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7357 | { |
64b607e6 | 7358 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7359 | bfd_size_type insn_len; |
e0001a05 | 7360 | |
43cd72b9 BW |
7361 | start_offset = entry->address - ebb->sec->vma; |
7362 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7363 | |
43cd72b9 BW |
7364 | if (entry == start_entry) |
7365 | start_offset = ebb->start_offset; | |
7366 | if (entry == end_entry) | |
7367 | end_offset = ebb->end_offset; | |
7368 | offset = start_offset; | |
e0001a05 | 7369 | |
43cd72b9 BW |
7370 | if (offset == entry->address - ebb->sec->vma |
7371 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7372 | { | |
7373 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7374 | BFD_ASSERT (offset != end_offset); | |
7375 | if (offset == end_offset) | |
7376 | return FALSE; | |
e0001a05 | 7377 | |
43cd72b9 BW |
7378 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7379 | offset); | |
43cd72b9 | 7380 | if (insn_len == 0) |
64b607e6 BW |
7381 | goto decode_error; |
7382 | ||
43cd72b9 BW |
7383 | if (check_branch_target_aligned_address (offset, insn_len)) |
7384 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7385 | ||
7386 | ebb_propose_action (ebb_table, align_type, 0, | |
7387 | ta_none, offset, 0, TRUE); | |
7388 | } | |
7389 | ||
7390 | while (offset != end_offset) | |
e0001a05 | 7391 | { |
43cd72b9 | 7392 | Elf_Internal_Rela *irel; |
e0001a05 | 7393 | xtensa_opcode opcode; |
e0001a05 | 7394 | |
43cd72b9 BW |
7395 | while (rel_idx < ebb->end_reloc_idx |
7396 | && (ebb->relocs[rel_idx].r_offset < offset | |
7397 | || (ebb->relocs[rel_idx].r_offset == offset | |
7398 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7399 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7400 | rel_idx++; | |
7401 | ||
7402 | /* Check for longcall. */ | |
7403 | irel = &ebb->relocs[rel_idx]; | |
7404 | if (irel->r_offset == offset | |
7405 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7406 | { | |
7407 | bfd_size_type simplify_size; | |
e0001a05 | 7408 | |
43cd72b9 BW |
7409 | simplify_size = get_asm_simplify_size (ebb->contents, |
7410 | ebb->content_length, | |
7411 | irel->r_offset); | |
7412 | if (simplify_size == 0) | |
64b607e6 | 7413 | goto decode_error; |
43cd72b9 BW |
7414 | |
7415 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7416 | ta_convert_longcall, offset, 0, TRUE); | |
7417 | ||
7418 | offset += simplify_size; | |
7419 | continue; | |
7420 | } | |
e0001a05 | 7421 | |
64b607e6 BW |
7422 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
7423 | goto decode_error; | |
7424 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
7425 | ebb->content_length - offset); | |
7426 | fmt = xtensa_format_decode (isa, insnbuf); | |
7427 | if (fmt == XTENSA_UNDEFINED) | |
7428 | goto decode_error; | |
7429 | insn_len = xtensa_format_length (isa, fmt); | |
7430 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
7431 | goto decode_error; | |
7432 | ||
7433 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 7434 | { |
64b607e6 BW |
7435 | offset += insn_len; |
7436 | continue; | |
43cd72b9 | 7437 | } |
64b607e6 BW |
7438 | |
7439 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7440 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
7441 | if (opcode == XTENSA_UNDEFINED) | |
7442 | goto decode_error; | |
7443 | ||
43cd72b9 | 7444 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 7445 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 7446 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
7447 | { |
7448 | /* Add an instruction narrow action. */ | |
7449 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7450 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 7451 | } |
99ded152 | 7452 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
7453 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
7454 | && ! prev_instr_is_a_loop (ebb->contents, | |
7455 | ebb->content_length, offset)) | |
43cd72b9 BW |
7456 | { |
7457 | /* Add an instruction widen action. */ | |
7458 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7459 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 7460 | } |
64b607e6 | 7461 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
7462 | { |
7463 | /* Check for branch targets. */ | |
7464 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
7465 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
7466 | } |
7467 | ||
7468 | offset += insn_len; | |
e0001a05 NC |
7469 | } |
7470 | } | |
7471 | ||
43cd72b9 BW |
7472 | if (ebb->ends_unreachable) |
7473 | { | |
7474 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7475 | ta_fill, ebb->end_offset, 0, TRUE); | |
7476 | } | |
e0001a05 | 7477 | |
43cd72b9 | 7478 | return TRUE; |
64b607e6 BW |
7479 | |
7480 | decode_error: | |
7481 | (*_bfd_error_handler) | |
7482 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
7483 | ebb->sec->owner, ebb->sec, offset); | |
7484 | return FALSE; | |
43cd72b9 BW |
7485 | } |
7486 | ||
7487 | ||
7488 | /* After all of the information has collected about the | |
7489 | transformations possible in an EBB, compute the appropriate actions | |
7490 | here in compute_ebb_actions. We still must check later to make | |
7491 | sure that the actions do not break any relocations. The algorithm | |
7492 | used here is pretty greedy. Basically, it removes as many no-ops | |
7493 | as possible so that the end of the EBB has the same alignment | |
7494 | characteristics as the original. First, it uses narrowing, then | |
7495 | fill space at the end of the EBB, and finally widenings. If that | |
7496 | does not work, it tries again with one fewer no-op removed. The | |
7497 | optimization will only be performed if all of the branch targets | |
7498 | that were aligned before transformation are also aligned after the | |
7499 | transformation. | |
7500 | ||
7501 | When the size_opt flag is set, ignore the branch target alignments, | |
7502 | narrow all wide instructions, and remove all no-ops unless the end | |
7503 | of the EBB prevents it. */ | |
7504 | ||
7505 | bfd_boolean | |
7fa3d080 | 7506 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
7507 | { |
7508 | unsigned i = 0; | |
7509 | unsigned j; | |
7510 | int removed_bytes = 0; | |
7511 | ebb_t *ebb = &ebb_table->ebb; | |
7512 | unsigned seg_idx_start = 0; | |
7513 | unsigned seg_idx_end = 0; | |
7514 | ||
7515 | /* We perform this like the assembler relaxation algorithm: Start by | |
7516 | assuming all instructions are narrow and all no-ops removed; then | |
7517 | walk through.... */ | |
7518 | ||
7519 | /* For each segment of this that has a solid constraint, check to | |
7520 | see if there are any combinations that will keep the constraint. | |
7521 | If so, use it. */ | |
7522 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 7523 | { |
43cd72b9 BW |
7524 | bfd_boolean requires_text_end_align = FALSE; |
7525 | unsigned longcall_count = 0; | |
7526 | unsigned longcall_convert_count = 0; | |
7527 | unsigned narrowable_count = 0; | |
7528 | unsigned narrowable_convert_count = 0; | |
7529 | unsigned widenable_count = 0; | |
7530 | unsigned widenable_convert_count = 0; | |
e0001a05 | 7531 | |
43cd72b9 BW |
7532 | proposed_action *action = NULL; |
7533 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 7534 | |
43cd72b9 | 7535 | seg_idx_start = seg_idx_end; |
e0001a05 | 7536 | |
43cd72b9 BW |
7537 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
7538 | { | |
7539 | action = &ebb_table->actions[i]; | |
7540 | if (action->action == ta_convert_longcall) | |
7541 | longcall_count++; | |
7542 | if (action->action == ta_narrow_insn) | |
7543 | narrowable_count++; | |
7544 | if (action->action == ta_widen_insn) | |
7545 | widenable_count++; | |
7546 | if (action->action == ta_fill) | |
7547 | break; | |
7548 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7549 | break; | |
7550 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
7551 | && !elf32xtensa_size_opt) | |
7552 | break; | |
7553 | } | |
7554 | seg_idx_end = i; | |
e0001a05 | 7555 | |
43cd72b9 BW |
7556 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
7557 | requires_text_end_align = TRUE; | |
e0001a05 | 7558 | |
43cd72b9 BW |
7559 | if (elf32xtensa_size_opt && !requires_text_end_align |
7560 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
7561 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
7562 | { | |
7563 | longcall_convert_count = longcall_count; | |
7564 | narrowable_convert_count = narrowable_count; | |
7565 | widenable_convert_count = 0; | |
7566 | } | |
7567 | else | |
7568 | { | |
7569 | /* There is a constraint. Convert the max number of longcalls. */ | |
7570 | narrowable_convert_count = 0; | |
7571 | longcall_convert_count = 0; | |
7572 | widenable_convert_count = 0; | |
e0001a05 | 7573 | |
43cd72b9 | 7574 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 7575 | { |
43cd72b9 BW |
7576 | int removed = (longcall_count - j) * 3 & (align - 1); |
7577 | unsigned desire_narrow = (align - removed) & (align - 1); | |
7578 | unsigned desire_widen = removed; | |
7579 | if (desire_narrow <= narrowable_count) | |
7580 | { | |
7581 | narrowable_convert_count = desire_narrow; | |
7582 | narrowable_convert_count += | |
7583 | (align * ((narrowable_count - narrowable_convert_count) | |
7584 | / align)); | |
7585 | longcall_convert_count = (longcall_count - j); | |
7586 | widenable_convert_count = 0; | |
7587 | break; | |
7588 | } | |
7589 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
7590 | { | |
7591 | narrowable_convert_count = 0; | |
7592 | longcall_convert_count = longcall_count - j; | |
7593 | widenable_convert_count = desire_widen; | |
7594 | break; | |
7595 | } | |
7596 | } | |
7597 | } | |
e0001a05 | 7598 | |
43cd72b9 BW |
7599 | /* Now the number of conversions are saved. Do them. */ |
7600 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
7601 | { | |
7602 | action = &ebb_table->actions[i]; | |
7603 | switch (action->action) | |
7604 | { | |
7605 | case ta_convert_longcall: | |
7606 | if (longcall_convert_count != 0) | |
7607 | { | |
7608 | action->action = ta_remove_longcall; | |
7609 | action->do_action = TRUE; | |
7610 | action->removed_bytes += 3; | |
7611 | longcall_convert_count--; | |
7612 | } | |
7613 | break; | |
7614 | case ta_narrow_insn: | |
7615 | if (narrowable_convert_count != 0) | |
7616 | { | |
7617 | action->do_action = TRUE; | |
7618 | action->removed_bytes += 1; | |
7619 | narrowable_convert_count--; | |
7620 | } | |
7621 | break; | |
7622 | case ta_widen_insn: | |
7623 | if (widenable_convert_count != 0) | |
7624 | { | |
7625 | action->do_action = TRUE; | |
7626 | action->removed_bytes -= 1; | |
7627 | widenable_convert_count--; | |
7628 | } | |
7629 | break; | |
7630 | default: | |
7631 | break; | |
e0001a05 | 7632 | } |
43cd72b9 BW |
7633 | } |
7634 | } | |
e0001a05 | 7635 | |
43cd72b9 BW |
7636 | /* Now we move on to some local opts. Try to remove each of the |
7637 | remaining longcalls. */ | |
e0001a05 | 7638 | |
43cd72b9 BW |
7639 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
7640 | { | |
7641 | removed_bytes = 0; | |
7642 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 7643 | { |
43cd72b9 BW |
7644 | int old_removed_bytes = removed_bytes; |
7645 | proposed_action *action = &ebb_table->actions[i]; | |
7646 | ||
7647 | if (action->do_action && action->action == ta_convert_longcall) | |
7648 | { | |
7649 | bfd_boolean bad_alignment = FALSE; | |
7650 | removed_bytes += 3; | |
7651 | for (j = i + 1; j < ebb_table->action_count; j++) | |
7652 | { | |
7653 | proposed_action *new_action = &ebb_table->actions[j]; | |
7654 | bfd_vma offset = new_action->offset; | |
7655 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
7656 | { | |
7657 | if (!check_branch_target_aligned | |
7658 | (ebb_table->ebb.contents, | |
7659 | ebb_table->ebb.content_length, | |
7660 | offset, offset - removed_bytes)) | |
7661 | { | |
7662 | bad_alignment = TRUE; | |
7663 | break; | |
7664 | } | |
7665 | } | |
7666 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7667 | { | |
7668 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
7669 | ebb_table->ebb.content_length, | |
7670 | offset, | |
7671 | offset - removed_bytes)) | |
7672 | { | |
7673 | bad_alignment = TRUE; | |
7674 | break; | |
7675 | } | |
7676 | } | |
7677 | if (new_action->action == ta_narrow_insn | |
7678 | && !new_action->do_action | |
7679 | && ebb_table->ebb.sec->alignment_power == 2) | |
7680 | { | |
7681 | /* Narrow an instruction and we are done. */ | |
7682 | new_action->do_action = TRUE; | |
7683 | new_action->removed_bytes += 1; | |
7684 | bad_alignment = FALSE; | |
7685 | break; | |
7686 | } | |
7687 | if (new_action->action == ta_widen_insn | |
7688 | && new_action->do_action | |
7689 | && ebb_table->ebb.sec->alignment_power == 2) | |
7690 | { | |
7691 | /* Narrow an instruction and we are done. */ | |
7692 | new_action->do_action = FALSE; | |
7693 | new_action->removed_bytes += 1; | |
7694 | bad_alignment = FALSE; | |
7695 | break; | |
7696 | } | |
5c5d6806 BW |
7697 | if (new_action->do_action) |
7698 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
7699 | } |
7700 | if (!bad_alignment) | |
7701 | { | |
7702 | action->removed_bytes += 3; | |
7703 | action->action = ta_remove_longcall; | |
7704 | action->do_action = TRUE; | |
7705 | } | |
7706 | } | |
7707 | removed_bytes = old_removed_bytes; | |
7708 | if (action->do_action) | |
7709 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
7710 | } |
7711 | } | |
7712 | ||
43cd72b9 BW |
7713 | removed_bytes = 0; |
7714 | for (i = 0; i < ebb_table->action_count; ++i) | |
7715 | { | |
7716 | proposed_action *action = &ebb_table->actions[i]; | |
7717 | if (action->do_action) | |
7718 | removed_bytes += action->removed_bytes; | |
7719 | } | |
7720 | ||
7721 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
7722 | && ebb->ends_unreachable) | |
7723 | { | |
7724 | proposed_action *action; | |
7725 | int br; | |
7726 | int extra_space; | |
7727 | ||
7728 | BFD_ASSERT (ebb_table->action_count != 0); | |
7729 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
7730 | BFD_ASSERT (action->action == ta_fill); | |
7731 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
7732 | ||
7733 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
7734 | br = action->removed_bytes + removed_bytes + extra_space; | |
7735 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
7736 | ||
7737 | action->removed_bytes = extra_space - br; | |
7738 | } | |
7739 | return TRUE; | |
e0001a05 NC |
7740 | } |
7741 | ||
7742 | ||
03e94c08 BW |
7743 | /* The xlate_map is a sorted array of address mappings designed to |
7744 | answer the offset_with_removed_text() query with a binary search instead | |
7745 | of a linear search through the section's action_list. */ | |
7746 | ||
7747 | typedef struct xlate_map_entry xlate_map_entry_t; | |
7748 | typedef struct xlate_map xlate_map_t; | |
7749 | ||
7750 | struct xlate_map_entry | |
7751 | { | |
7752 | unsigned orig_address; | |
7753 | unsigned new_address; | |
7754 | unsigned size; | |
7755 | }; | |
7756 | ||
7757 | struct xlate_map | |
7758 | { | |
7759 | unsigned entry_count; | |
7760 | xlate_map_entry_t *entry; | |
7761 | }; | |
7762 | ||
7763 | ||
7764 | static int | |
7765 | xlate_compare (const void *a_v, const void *b_v) | |
7766 | { | |
7767 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
7768 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
7769 | if (a->orig_address < b->orig_address) | |
7770 | return -1; | |
7771 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
7772 | return 1; | |
7773 | return 0; | |
7774 | } | |
7775 | ||
7776 | ||
7777 | static bfd_vma | |
7778 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
7779 | text_action_list *action_list, | |
7780 | bfd_vma offset) | |
7781 | { | |
7782 | xlate_map_entry_t tmp; | |
7783 | void *r; | |
7784 | xlate_map_entry_t *e; | |
7785 | ||
7786 | if (map == NULL) | |
7787 | return offset_with_removed_text (action_list, offset); | |
7788 | ||
7789 | if (map->entry_count == 0) | |
7790 | return offset; | |
7791 | ||
7792 | tmp.orig_address = offset; | |
7793 | tmp.new_address = offset; | |
7794 | tmp.size = 1; | |
7795 | ||
7796 | r = bsearch (&offset, map->entry, map->entry_count, | |
7797 | sizeof (xlate_map_entry_t), &xlate_compare); | |
7798 | e = (xlate_map_entry_t *) r; | |
7799 | ||
7800 | BFD_ASSERT (e != NULL); | |
7801 | if (e == NULL) | |
7802 | return offset; | |
7803 | return e->new_address - e->orig_address + offset; | |
7804 | } | |
7805 | ||
7806 | ||
7807 | /* Build a binary searchable offset translation map from a section's | |
7808 | action list. */ | |
7809 | ||
7810 | static xlate_map_t * | |
7811 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
7812 | { | |
7813 | xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); | |
7814 | text_action_list *action_list = &relax_info->action_list; | |
7815 | unsigned num_actions = 0; | |
7816 | text_action *r; | |
7817 | int removed; | |
7818 | xlate_map_entry_t *current_entry; | |
7819 | ||
7820 | if (map == NULL) | |
7821 | return NULL; | |
7822 | ||
7823 | num_actions = action_list_count (action_list); | |
7824 | map->entry = (xlate_map_entry_t *) | |
7825 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); | |
7826 | if (map->entry == NULL) | |
7827 | { | |
7828 | free (map); | |
7829 | return NULL; | |
7830 | } | |
7831 | map->entry_count = 0; | |
7832 | ||
7833 | removed = 0; | |
7834 | current_entry = &map->entry[0]; | |
7835 | ||
7836 | current_entry->orig_address = 0; | |
7837 | current_entry->new_address = 0; | |
7838 | current_entry->size = 0; | |
7839 | ||
7840 | for (r = action_list->head; r != NULL; r = r->next) | |
7841 | { | |
7842 | unsigned orig_size = 0; | |
7843 | switch (r->action) | |
7844 | { | |
7845 | case ta_none: | |
7846 | case ta_remove_insn: | |
7847 | case ta_convert_longcall: | |
7848 | case ta_remove_literal: | |
7849 | case ta_add_literal: | |
7850 | break; | |
7851 | case ta_remove_longcall: | |
7852 | orig_size = 6; | |
7853 | break; | |
7854 | case ta_narrow_insn: | |
7855 | orig_size = 3; | |
7856 | break; | |
7857 | case ta_widen_insn: | |
7858 | orig_size = 2; | |
7859 | break; | |
7860 | case ta_fill: | |
7861 | break; | |
7862 | } | |
7863 | current_entry->size = | |
7864 | r->offset + orig_size - current_entry->orig_address; | |
7865 | if (current_entry->size != 0) | |
7866 | { | |
7867 | current_entry++; | |
7868 | map->entry_count++; | |
7869 | } | |
7870 | current_entry->orig_address = r->offset + orig_size; | |
7871 | removed += r->removed_bytes; | |
7872 | current_entry->new_address = r->offset + orig_size - removed; | |
7873 | current_entry->size = 0; | |
7874 | } | |
7875 | ||
7876 | current_entry->size = (bfd_get_section_limit (sec->owner, sec) | |
7877 | - current_entry->orig_address); | |
7878 | if (current_entry->size != 0) | |
7879 | map->entry_count++; | |
7880 | ||
7881 | return map; | |
7882 | } | |
7883 | ||
7884 | ||
7885 | /* Free an offset translation map. */ | |
7886 | ||
7887 | static void | |
7888 | free_xlate_map (xlate_map_t *map) | |
7889 | { | |
7890 | if (map && map->entry) | |
7891 | free (map->entry); | |
7892 | if (map) | |
7893 | free (map); | |
7894 | } | |
7895 | ||
7896 | ||
43cd72b9 BW |
7897 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
7898 | relocations in a section will fit if a proposed set of actions | |
7899 | are performed. */ | |
e0001a05 | 7900 | |
43cd72b9 | 7901 | static bfd_boolean |
7fa3d080 BW |
7902 | check_section_ebb_pcrels_fit (bfd *abfd, |
7903 | asection *sec, | |
7904 | bfd_byte *contents, | |
7905 | Elf_Internal_Rela *internal_relocs, | |
cb337148 BW |
7906 | const ebb_constraint *constraint, |
7907 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 7908 | { |
43cd72b9 BW |
7909 | unsigned i, j; |
7910 | Elf_Internal_Rela *irel; | |
03e94c08 BW |
7911 | xlate_map_t *xmap = NULL; |
7912 | bfd_boolean ok = TRUE; | |
43cd72b9 | 7913 | xtensa_relax_info *relax_info; |
e0001a05 | 7914 | |
43cd72b9 | 7915 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 7916 | |
03e94c08 BW |
7917 | if (relax_info && sec->reloc_count > 100) |
7918 | { | |
7919 | xmap = build_xlate_map (sec, relax_info); | |
7920 | /* NULL indicates out of memory, but the slow version | |
7921 | can still be used. */ | |
7922 | } | |
7923 | ||
43cd72b9 BW |
7924 | for (i = 0; i < sec->reloc_count; i++) |
7925 | { | |
7926 | r_reloc r_rel; | |
7927 | bfd_vma orig_self_offset, orig_target_offset; | |
7928 | bfd_vma self_offset, target_offset; | |
7929 | int r_type; | |
7930 | reloc_howto_type *howto; | |
7931 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 7932 | |
43cd72b9 BW |
7933 | irel = &internal_relocs[i]; |
7934 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 7935 | |
43cd72b9 BW |
7936 | howto = &elf_howto_table[r_type]; |
7937 | /* We maintain the required invariant: PC-relative relocations | |
7938 | that fit before linking must fit after linking. Thus we only | |
7939 | need to deal with relocations to the same section that are | |
7940 | PC-relative. */ | |
1bbb5f21 BW |
7941 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
7942 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
7943 | || !howto->pc_relative) |
7944 | continue; | |
e0001a05 | 7945 | |
43cd72b9 BW |
7946 | r_reloc_init (&r_rel, abfd, irel, contents, |
7947 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 7948 | |
43cd72b9 BW |
7949 | if (r_reloc_get_section (&r_rel) != sec) |
7950 | continue; | |
e0001a05 | 7951 | |
43cd72b9 BW |
7952 | orig_self_offset = irel->r_offset; |
7953 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 7954 | |
43cd72b9 BW |
7955 | self_offset = orig_self_offset; |
7956 | target_offset = orig_target_offset; | |
7957 | ||
7958 | if (relax_info) | |
7959 | { | |
03e94c08 BW |
7960 | self_offset = |
7961 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7962 | orig_self_offset); | |
7963 | target_offset = | |
7964 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7965 | orig_target_offset); | |
43cd72b9 BW |
7966 | } |
7967 | ||
7968 | self_removed_bytes = 0; | |
7969 | target_removed_bytes = 0; | |
7970 | ||
7971 | for (j = 0; j < constraint->action_count; ++j) | |
7972 | { | |
7973 | proposed_action *action = &constraint->actions[j]; | |
7974 | bfd_vma offset = action->offset; | |
7975 | int removed_bytes = action->removed_bytes; | |
7976 | if (offset < orig_self_offset | |
7977 | || (offset == orig_self_offset && action->action == ta_fill | |
7978 | && action->removed_bytes < 0)) | |
7979 | self_removed_bytes += removed_bytes; | |
7980 | if (offset < orig_target_offset | |
7981 | || (offset == orig_target_offset && action->action == ta_fill | |
7982 | && action->removed_bytes < 0)) | |
7983 | target_removed_bytes += removed_bytes; | |
7984 | } | |
7985 | self_offset -= self_removed_bytes; | |
7986 | target_offset -= target_removed_bytes; | |
7987 | ||
7988 | /* Try to encode it. Get the operand and check. */ | |
7989 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7990 | { | |
7991 | /* None of the current alternate relocs are PC-relative, | |
7992 | and only PC-relative relocs matter here. */ | |
7993 | } | |
7994 | else | |
7995 | { | |
7996 | xtensa_opcode opcode; | |
7997 | int opnum; | |
7998 | ||
cb337148 BW |
7999 | if (reloc_opcodes) |
8000 | opcode = reloc_opcodes[i]; | |
8001 | else | |
8002 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
43cd72b9 | 8003 | if (opcode == XTENSA_UNDEFINED) |
03e94c08 BW |
8004 | { |
8005 | ok = FALSE; | |
8006 | break; | |
8007 | } | |
43cd72b9 BW |
8008 | |
8009 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8010 | if (opnum == XTENSA_UNDEFINED) | |
03e94c08 BW |
8011 | { |
8012 | ok = FALSE; | |
8013 | break; | |
8014 | } | |
43cd72b9 BW |
8015 | |
8016 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8017 | { |
8018 | ok = FALSE; | |
8019 | break; | |
8020 | } | |
43cd72b9 BW |
8021 | } |
8022 | } | |
8023 | ||
03e94c08 BW |
8024 | if (xmap) |
8025 | free_xlate_map (xmap); | |
8026 | ||
8027 | return ok; | |
43cd72b9 BW |
8028 | } |
8029 | ||
8030 | ||
8031 | static bfd_boolean | |
7fa3d080 | 8032 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8033 | { |
8034 | int removed = 0; | |
8035 | unsigned i; | |
8036 | ||
8037 | for (i = 0; i < constraint->action_count; i++) | |
8038 | { | |
8039 | const proposed_action *action = &constraint->actions[i]; | |
8040 | if (action->do_action) | |
8041 | removed += action->removed_bytes; | |
8042 | } | |
8043 | if (removed < 0) | |
e0001a05 NC |
8044 | return FALSE; |
8045 | ||
8046 | return TRUE; | |
8047 | } | |
8048 | ||
8049 | ||
43cd72b9 | 8050 | void |
7fa3d080 BW |
8051 | text_action_add_proposed (text_action_list *l, |
8052 | const ebb_constraint *ebb_table, | |
8053 | asection *sec) | |
e0001a05 NC |
8054 | { |
8055 | unsigned i; | |
8056 | ||
43cd72b9 | 8057 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8058 | { |
43cd72b9 | 8059 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8060 | |
43cd72b9 | 8061 | if (!action->do_action) |
e0001a05 | 8062 | continue; |
43cd72b9 BW |
8063 | switch (action->action) |
8064 | { | |
8065 | case ta_remove_insn: | |
8066 | case ta_remove_longcall: | |
8067 | case ta_convert_longcall: | |
8068 | case ta_narrow_insn: | |
8069 | case ta_widen_insn: | |
8070 | case ta_fill: | |
8071 | case ta_remove_literal: | |
8072 | text_action_add (l, action->action, sec, action->offset, | |
8073 | action->removed_bytes); | |
8074 | break; | |
8075 | case ta_none: | |
8076 | break; | |
8077 | default: | |
8078 | BFD_ASSERT (0); | |
8079 | break; | |
8080 | } | |
e0001a05 | 8081 | } |
43cd72b9 | 8082 | } |
e0001a05 | 8083 | |
43cd72b9 BW |
8084 | |
8085 | int | |
7fa3d080 | 8086 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8087 | { |
8088 | int fill_extra_space; | |
8089 | ||
8090 | if (!entry) | |
8091 | return 0; | |
8092 | ||
8093 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8094 | return 0; | |
8095 | ||
8096 | fill_extra_space = entry->size; | |
8097 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8098 | { | |
8099 | /* Fill bytes for alignment: | |
8100 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8101 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8102 | int nsm = (1 << pow) - 1; | |
8103 | bfd_vma addr = entry->address + entry->size; | |
8104 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8105 | fill_extra_space += align_fill; | |
8106 | } | |
8107 | return fill_extra_space; | |
e0001a05 NC |
8108 | } |
8109 | ||
43cd72b9 | 8110 | \f |
e0001a05 NC |
8111 | /* First relaxation pass. */ |
8112 | ||
43cd72b9 BW |
8113 | /* If the section contains relaxable literals, check each literal to |
8114 | see if it has the same value as another literal that has already | |
8115 | been seen, either in the current section or a previous one. If so, | |
8116 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8117 | actual changes are deferred until the next pass. */ |
8118 | ||
8119 | static bfd_boolean | |
7fa3d080 BW |
8120 | compute_removed_literals (bfd *abfd, |
8121 | asection *sec, | |
8122 | struct bfd_link_info *link_info, | |
8123 | value_map_hash_table *values) | |
e0001a05 NC |
8124 | { |
8125 | xtensa_relax_info *relax_info; | |
8126 | bfd_byte *contents; | |
8127 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8128 | source_reloc *src_relocs, *rel; |
e0001a05 | 8129 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8130 | property_table_entry *prop_table = NULL; |
8131 | int ptblsize; | |
8132 | int i, prev_i; | |
8133 | bfd_boolean last_loc_is_prev = FALSE; | |
8134 | bfd_vma last_target_offset = 0; | |
8135 | section_cache_t target_sec_cache; | |
8136 | bfd_size_type sec_size; | |
8137 | ||
8138 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8139 | |
8140 | /* Do nothing if it is not a relaxable literal section. */ | |
8141 | relax_info = get_xtensa_relax_info (sec); | |
8142 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8143 | if (!relax_info->is_relaxable_literal_section) |
8144 | return ok; | |
8145 | ||
8146 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
8147 | link_info->keep_memory); | |
8148 | ||
43cd72b9 | 8149 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8150 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8151 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8152 | { |
8153 | ok = FALSE; | |
8154 | goto error_return; | |
8155 | } | |
8156 | ||
8157 | /* Sort the source_relocs by target offset. */ | |
8158 | src_relocs = relax_info->src_relocs; | |
8159 | qsort (src_relocs, relax_info->src_count, | |
8160 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8161 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8162 | internal_reloc_compare); | |
e0001a05 | 8163 | |
43cd72b9 BW |
8164 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8165 | XTENSA_PROP_SEC_NAME, FALSE); | |
8166 | if (ptblsize < 0) | |
8167 | { | |
8168 | ok = FALSE; | |
8169 | goto error_return; | |
8170 | } | |
8171 | ||
8172 | prev_i = -1; | |
e0001a05 NC |
8173 | for (i = 0; i < relax_info->src_count; i++) |
8174 | { | |
e0001a05 | 8175 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8176 | |
8177 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8178 | if (get_l32r_opcode () != rel->opcode) |
8179 | continue; | |
e0001a05 NC |
8180 | irel = get_irel_at_offset (sec, internal_relocs, |
8181 | rel->r_rel.target_offset); | |
8182 | ||
43cd72b9 BW |
8183 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8184 | R_XTENSA_PLT then do not consider it. This may happen when | |
8185 | the difference of two symbols is used in a literal. */ | |
8186 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8187 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8188 | continue; | |
8189 | ||
e0001a05 NC |
8190 | /* If the target_offset for this relocation is the same as the |
8191 | previous relocation, then we've already considered whether the | |
8192 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8193 | if (i != 0 && prev_i != -1 |
8194 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8195 | continue; |
43cd72b9 BW |
8196 | prev_i = i; |
8197 | ||
8198 | if (last_loc_is_prev && | |
8199 | last_target_offset + 4 != rel->r_rel.target_offset) | |
8200 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8201 | |
8202 | /* Check if the relocation was from an L32R that is being removed | |
8203 | because a CALLX was converted to a direct CALL, and check if | |
8204 | there are no other relocations to the literal. */ | |
99ded152 BW |
8205 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
8206 | sec, prop_table, ptblsize)) | |
e0001a05 | 8207 | { |
43cd72b9 BW |
8208 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8209 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8210 | { |
43cd72b9 BW |
8211 | ok = FALSE; |
8212 | goto error_return; | |
e0001a05 | 8213 | } |
43cd72b9 | 8214 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8215 | continue; |
8216 | } | |
8217 | ||
43cd72b9 BW |
8218 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
8219 | values, | |
8220 | &last_loc_is_prev, irel, | |
8221 | relax_info->src_count - i, rel, | |
8222 | prop_table, ptblsize, | |
8223 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8224 | { |
43cd72b9 BW |
8225 | ok = FALSE; |
8226 | goto error_return; | |
8227 | } | |
8228 | last_target_offset = rel->r_rel.target_offset; | |
8229 | } | |
e0001a05 | 8230 | |
43cd72b9 BW |
8231 | #if DEBUG |
8232 | print_removed_literals (stderr, &relax_info->removed_list); | |
8233 | print_action_list (stderr, &relax_info->action_list); | |
8234 | #endif /* DEBUG */ | |
8235 | ||
8236 | error_return: | |
8237 | if (prop_table) free (prop_table); | |
8238 | clear_section_cache (&target_sec_cache); | |
8239 | ||
8240 | release_contents (sec, contents); | |
8241 | release_internal_relocs (sec, internal_relocs); | |
8242 | return ok; | |
8243 | } | |
8244 | ||
8245 | ||
8246 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8247 | get_irel_at_offset (asection *sec, |
8248 | Elf_Internal_Rela *internal_relocs, | |
8249 | bfd_vma offset) | |
43cd72b9 BW |
8250 | { |
8251 | unsigned i; | |
8252 | Elf_Internal_Rela *irel; | |
8253 | unsigned r_type; | |
8254 | Elf_Internal_Rela key; | |
8255 | ||
8256 | if (!internal_relocs) | |
8257 | return NULL; | |
8258 | ||
8259 | key.r_offset = offset; | |
8260 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8261 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8262 | if (!irel) | |
8263 | return NULL; | |
8264 | ||
8265 | /* bsearch does not guarantee which will be returned if there are | |
8266 | multiple matches. We need the first that is not an alignment. */ | |
8267 | i = irel - internal_relocs; | |
8268 | while (i > 0) | |
8269 | { | |
8270 | if (internal_relocs[i-1].r_offset != offset) | |
8271 | break; | |
8272 | i--; | |
8273 | } | |
8274 | for ( ; i < sec->reloc_count; i++) | |
8275 | { | |
8276 | irel = &internal_relocs[i]; | |
8277 | r_type = ELF32_R_TYPE (irel->r_info); | |
8278 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8279 | return irel; | |
8280 | } | |
8281 | ||
8282 | return NULL; | |
8283 | } | |
8284 | ||
8285 | ||
8286 | bfd_boolean | |
7fa3d080 BW |
8287 | is_removable_literal (const source_reloc *rel, |
8288 | int i, | |
8289 | const source_reloc *src_relocs, | |
99ded152 BW |
8290 | int src_count, |
8291 | asection *sec, | |
8292 | property_table_entry *prop_table, | |
8293 | int ptblsize) | |
43cd72b9 BW |
8294 | { |
8295 | const source_reloc *curr_rel; | |
99ded152 BW |
8296 | property_table_entry *entry; |
8297 | ||
43cd72b9 BW |
8298 | if (!rel->is_null) |
8299 | return FALSE; | |
8300 | ||
99ded152 BW |
8301 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
8302 | sec->vma + rel->r_rel.target_offset); | |
8303 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8304 | return FALSE; | |
8305 | ||
43cd72b9 BW |
8306 | for (++i; i < src_count; ++i) |
8307 | { | |
8308 | curr_rel = &src_relocs[i]; | |
8309 | /* If all others have the same target offset.... */ | |
8310 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8311 | return TRUE; | |
8312 | ||
8313 | if (!curr_rel->is_null | |
8314 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8315 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8316 | return FALSE; | |
8317 | } | |
8318 | return TRUE; | |
8319 | } | |
8320 | ||
8321 | ||
8322 | bfd_boolean | |
7fa3d080 BW |
8323 | remove_dead_literal (bfd *abfd, |
8324 | asection *sec, | |
8325 | struct bfd_link_info *link_info, | |
8326 | Elf_Internal_Rela *internal_relocs, | |
8327 | Elf_Internal_Rela *irel, | |
8328 | source_reloc *rel, | |
8329 | property_table_entry *prop_table, | |
8330 | int ptblsize) | |
43cd72b9 BW |
8331 | { |
8332 | property_table_entry *entry; | |
8333 | xtensa_relax_info *relax_info; | |
8334 | ||
8335 | relax_info = get_xtensa_relax_info (sec); | |
8336 | if (!relax_info) | |
8337 | return FALSE; | |
8338 | ||
8339 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8340 | sec->vma + rel->r_rel.target_offset); | |
8341 | ||
8342 | /* Mark the unused literal so that it will be removed. */ | |
8343 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8344 | ||
8345 | text_action_add (&relax_info->action_list, | |
8346 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8347 | ||
8348 | /* If the section is 4-byte aligned, do not add fill. */ | |
8349 | if (sec->alignment_power > 2) | |
8350 | { | |
8351 | int fill_extra_space; | |
8352 | bfd_vma entry_sec_offset; | |
8353 | text_action *fa; | |
8354 | property_table_entry *the_add_entry; | |
8355 | int removed_diff; | |
8356 | ||
8357 | if (entry) | |
8358 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8359 | else | |
8360 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8361 | ||
8362 | /* If the literal range is at the end of the section, | |
8363 | do not add fill. */ | |
8364 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8365 | entry_sec_offset); | |
8366 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
8367 | ||
8368 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8369 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8370 | -4, fill_extra_space); | |
8371 | if (fa) | |
8372 | adjust_fill_action (fa, removed_diff); | |
8373 | else | |
8374 | text_action_add (&relax_info->action_list, | |
8375 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8376 | } | |
8377 | ||
8378 | /* Zero out the relocation on this literal location. */ | |
8379 | if (irel) | |
8380 | { | |
8381 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8382 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8383 | ||
8384 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8385 | pin_internal_relocs (sec, internal_relocs); | |
8386 | } | |
8387 | ||
8388 | /* Do not modify "last_loc_is_prev". */ | |
8389 | return TRUE; | |
8390 | } | |
8391 | ||
8392 | ||
8393 | bfd_boolean | |
7fa3d080 BW |
8394 | identify_literal_placement (bfd *abfd, |
8395 | asection *sec, | |
8396 | bfd_byte *contents, | |
8397 | struct bfd_link_info *link_info, | |
8398 | value_map_hash_table *values, | |
8399 | bfd_boolean *last_loc_is_prev_p, | |
8400 | Elf_Internal_Rela *irel, | |
8401 | int remaining_src_rels, | |
8402 | source_reloc *rel, | |
8403 | property_table_entry *prop_table, | |
8404 | int ptblsize, | |
8405 | section_cache_t *target_sec_cache, | |
8406 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
8407 | { |
8408 | literal_value val; | |
8409 | value_map *val_map; | |
8410 | xtensa_relax_info *relax_info; | |
8411 | bfd_boolean literal_placed = FALSE; | |
8412 | r_reloc r_rel; | |
8413 | unsigned long value; | |
8414 | bfd_boolean final_static_link; | |
8415 | bfd_size_type sec_size; | |
8416 | ||
8417 | relax_info = get_xtensa_relax_info (sec); | |
8418 | if (!relax_info) | |
8419 | return FALSE; | |
8420 | ||
8421 | sec_size = bfd_get_section_limit (abfd, sec); | |
8422 | ||
8423 | final_static_link = | |
8424 | (!link_info->relocatable | |
8425 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
8426 | ||
8427 | /* The placement algorithm first checks to see if the literal is | |
8428 | already in the value map. If so and the value map is reachable | |
8429 | from all uses, then the literal is moved to that location. If | |
8430 | not, then we identify the last location where a fresh literal was | |
8431 | placed. If the literal can be safely moved there, then we do so. | |
8432 | If not, then we assume that the literal is not to move and leave | |
8433 | the literal where it is, marking it as the last literal | |
8434 | location. */ | |
8435 | ||
8436 | /* Find the literal value. */ | |
8437 | value = 0; | |
8438 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8439 | if (!irel) | |
8440 | { | |
8441 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
8442 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
8443 | } | |
8444 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
8445 | ||
8446 | /* Check if we've seen another literal with the same value that | |
8447 | is in the same output section. */ | |
8448 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
8449 | ||
8450 | if (val_map | |
8451 | && (r_reloc_get_section (&val_map->loc)->output_section | |
8452 | == sec->output_section) | |
8453 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
8454 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
8455 | { | |
8456 | /* No change to last_loc_is_prev. */ | |
8457 | literal_placed = TRUE; | |
8458 | } | |
8459 | ||
8460 | /* For relocatable links, do not try to move literals. To do it | |
8461 | correctly might increase the number of relocations in an input | |
8462 | section making the default relocatable linking fail. */ | |
8463 | if (!link_info->relocatable && !literal_placed | |
8464 | && values->has_last_loc && !(*last_loc_is_prev_p)) | |
8465 | { | |
8466 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
8467 | if (target_sec && target_sec->output_section == sec->output_section) | |
8468 | { | |
8469 | /* Increment the virtual offset. */ | |
8470 | r_reloc try_loc = values->last_loc; | |
8471 | try_loc.virtual_offset += 4; | |
8472 | ||
8473 | /* There is a last loc that was in the same output section. */ | |
8474 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
8475 | && move_shared_literal (sec, link_info, rel, | |
8476 | prop_table, ptblsize, | |
8477 | &try_loc, &val, target_sec_cache)) | |
e0001a05 | 8478 | { |
43cd72b9 BW |
8479 | values->last_loc.virtual_offset += 4; |
8480 | literal_placed = TRUE; | |
8481 | if (!val_map) | |
8482 | val_map = add_value_map (values, &val, &try_loc, | |
8483 | final_static_link); | |
8484 | else | |
8485 | val_map->loc = try_loc; | |
e0001a05 NC |
8486 | } |
8487 | } | |
43cd72b9 BW |
8488 | } |
8489 | ||
8490 | if (!literal_placed) | |
8491 | { | |
8492 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
8493 | values->has_last_loc = TRUE; | |
8494 | values->last_loc = rel->r_rel; | |
8495 | if (!val_map) | |
8496 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 8497 | else |
43cd72b9 BW |
8498 | val_map->loc = rel->r_rel; |
8499 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
8500 | } |
8501 | ||
43cd72b9 | 8502 | return TRUE; |
e0001a05 NC |
8503 | } |
8504 | ||
8505 | ||
8506 | /* Check if the original relocations (presumably on L32R instructions) | |
8507 | identified by reloc[0..N] can be changed to reference the literal | |
8508 | identified by r_rel. If r_rel is out of range for any of the | |
8509 | original relocations, then we don't want to coalesce the original | |
8510 | literal with the one at r_rel. We only check reloc[0..N], where the | |
8511 | offsets are all the same as for reloc[0] (i.e., they're all | |
8512 | referencing the same literal) and where N is also bounded by the | |
8513 | number of remaining entries in the "reloc" array. The "reloc" array | |
8514 | is sorted by target offset so we know all the entries for the same | |
8515 | literal will be contiguous. */ | |
8516 | ||
8517 | static bfd_boolean | |
7fa3d080 BW |
8518 | relocations_reach (source_reloc *reloc, |
8519 | int remaining_relocs, | |
8520 | const r_reloc *r_rel) | |
e0001a05 NC |
8521 | { |
8522 | bfd_vma from_offset, source_address, dest_address; | |
8523 | asection *sec; | |
8524 | int i; | |
8525 | ||
8526 | if (!r_reloc_is_defined (r_rel)) | |
8527 | return FALSE; | |
8528 | ||
8529 | sec = r_reloc_get_section (r_rel); | |
8530 | from_offset = reloc[0].r_rel.target_offset; | |
8531 | ||
8532 | for (i = 0; i < remaining_relocs; i++) | |
8533 | { | |
8534 | if (reloc[i].r_rel.target_offset != from_offset) | |
8535 | break; | |
8536 | ||
8537 | /* Ignore relocations that have been removed. */ | |
8538 | if (reloc[i].is_null) | |
8539 | continue; | |
8540 | ||
8541 | /* The original and new output section for these must be the same | |
8542 | in order to coalesce. */ | |
8543 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
8544 | != sec->output_section) | |
8545 | return FALSE; | |
8546 | ||
d638e0ac BW |
8547 | /* Absolute literals in the same output section can always be |
8548 | combined. */ | |
8549 | if (reloc[i].is_abs_literal) | |
8550 | continue; | |
8551 | ||
43cd72b9 BW |
8552 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
8553 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
8554 | { |
8555 | /* Otherwise, check to see that it fits. */ | |
8556 | source_address = (reloc[i].source_sec->output_section->vma | |
8557 | + reloc[i].source_sec->output_offset | |
8558 | + reloc[i].r_rel.rela.r_offset); | |
8559 | dest_address = (sec->output_section->vma | |
8560 | + sec->output_offset | |
8561 | + r_rel->target_offset); | |
8562 | ||
43cd72b9 BW |
8563 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
8564 | source_address, dest_address)) | |
e0001a05 NC |
8565 | return FALSE; |
8566 | } | |
8567 | } | |
8568 | ||
8569 | return TRUE; | |
8570 | } | |
8571 | ||
8572 | ||
43cd72b9 BW |
8573 | /* Move a literal to another literal location because it is |
8574 | the same as the other literal value. */ | |
e0001a05 | 8575 | |
43cd72b9 | 8576 | static bfd_boolean |
7fa3d080 BW |
8577 | coalesce_shared_literal (asection *sec, |
8578 | source_reloc *rel, | |
8579 | property_table_entry *prop_table, | |
8580 | int ptblsize, | |
8581 | value_map *val_map) | |
e0001a05 | 8582 | { |
43cd72b9 BW |
8583 | property_table_entry *entry; |
8584 | text_action *fa; | |
8585 | property_table_entry *the_add_entry; | |
8586 | int removed_diff; | |
8587 | xtensa_relax_info *relax_info; | |
8588 | ||
8589 | relax_info = get_xtensa_relax_info (sec); | |
8590 | if (!relax_info) | |
8591 | return FALSE; | |
8592 | ||
8593 | entry = elf_xtensa_find_property_entry | |
8594 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 8595 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
8596 | return TRUE; |
8597 | ||
8598 | /* Mark that the literal will be coalesced. */ | |
8599 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
8600 | ||
8601 | text_action_add (&relax_info->action_list, | |
8602 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8603 | ||
8604 | /* If the section is 4-byte aligned, do not add fill. */ | |
8605 | if (sec->alignment_power > 2) | |
e0001a05 | 8606 | { |
43cd72b9 BW |
8607 | int fill_extra_space; |
8608 | bfd_vma entry_sec_offset; | |
8609 | ||
8610 | if (entry) | |
8611 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8612 | else | |
8613 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8614 | ||
8615 | /* If the literal range is at the end of the section, | |
8616 | do not add fill. */ | |
8617 | fill_extra_space = 0; | |
8618 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8619 | entry_sec_offset); | |
8620 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8621 | fill_extra_space = the_add_entry->size; | |
8622 | ||
8623 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8624 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8625 | -4, fill_extra_space); | |
8626 | if (fa) | |
8627 | adjust_fill_action (fa, removed_diff); | |
8628 | else | |
8629 | text_action_add (&relax_info->action_list, | |
8630 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 8631 | } |
43cd72b9 BW |
8632 | |
8633 | return TRUE; | |
8634 | } | |
8635 | ||
8636 | ||
8637 | /* Move a literal to another location. This may actually increase the | |
8638 | total amount of space used because of alignments so we need to do | |
8639 | this carefully. Also, it may make a branch go out of range. */ | |
8640 | ||
8641 | static bfd_boolean | |
7fa3d080 BW |
8642 | move_shared_literal (asection *sec, |
8643 | struct bfd_link_info *link_info, | |
8644 | source_reloc *rel, | |
8645 | property_table_entry *prop_table, | |
8646 | int ptblsize, | |
8647 | const r_reloc *target_loc, | |
8648 | const literal_value *lit_value, | |
8649 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
8650 | { |
8651 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
8652 | text_action *fa, *target_fa; | |
8653 | int removed_diff; | |
8654 | xtensa_relax_info *relax_info, *target_relax_info; | |
8655 | asection *target_sec; | |
8656 | ebb_t *ebb; | |
8657 | ebb_constraint ebb_table; | |
8658 | bfd_boolean relocs_fit; | |
8659 | ||
8660 | /* If this routine always returns FALSE, the literals that cannot be | |
8661 | coalesced will not be moved. */ | |
8662 | if (elf32xtensa_no_literal_movement) | |
8663 | return FALSE; | |
8664 | ||
8665 | relax_info = get_xtensa_relax_info (sec); | |
8666 | if (!relax_info) | |
8667 | return FALSE; | |
8668 | ||
8669 | target_sec = r_reloc_get_section (target_loc); | |
8670 | target_relax_info = get_xtensa_relax_info (target_sec); | |
8671 | ||
8672 | /* Literals to undefined sections may not be moved because they | |
8673 | must report an error. */ | |
8674 | if (bfd_is_und_section (target_sec)) | |
8675 | return FALSE; | |
8676 | ||
8677 | src_entry = elf_xtensa_find_property_entry | |
8678 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
8679 | ||
8680 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
8681 | return FALSE; | |
8682 | ||
8683 | target_entry = elf_xtensa_find_property_entry | |
8684 | (target_sec_cache->ptbl, target_sec_cache->pte_count, | |
8685 | target_sec->vma + target_loc->target_offset); | |
8686 | ||
8687 | if (!target_entry) | |
8688 | return FALSE; | |
8689 | ||
8690 | /* Make sure that we have not broken any branches. */ | |
8691 | relocs_fit = FALSE; | |
8692 | ||
8693 | init_ebb_constraint (&ebb_table); | |
8694 | ebb = &ebb_table.ebb; | |
8695 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, | |
8696 | target_sec_cache->content_length, | |
8697 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
8698 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
8699 | ||
8700 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
8701 | destination. */ | |
8702 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
8703 | ta_fill, target_loc->target_offset, | |
8704 | -4 - (1 << target_sec->alignment_power), TRUE); | |
8705 | ||
8706 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
8707 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, | |
8708 | target_sec_cache->contents, | |
8709 | target_sec_cache->relocs, | |
cb337148 | 8710 | &ebb_table, NULL); |
43cd72b9 BW |
8711 | |
8712 | if (!relocs_fit) | |
8713 | return FALSE; | |
8714 | ||
8715 | text_action_add_literal (&target_relax_info->action_list, | |
8716 | ta_add_literal, target_loc, lit_value, -4); | |
8717 | ||
8718 | if (target_sec->alignment_power > 2 && target_entry != src_entry) | |
8719 | { | |
8720 | /* May need to add or remove some fill to maintain alignment. */ | |
8721 | int fill_extra_space; | |
8722 | bfd_vma entry_sec_offset; | |
8723 | ||
8724 | entry_sec_offset = | |
8725 | target_entry->address - target_sec->vma + target_entry->size; | |
8726 | ||
8727 | /* If the literal range is at the end of the section, | |
8728 | do not add fill. */ | |
8729 | fill_extra_space = 0; | |
8730 | the_add_entry = | |
8731 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
8732 | target_sec_cache->pte_count, | |
8733 | entry_sec_offset); | |
8734 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8735 | fill_extra_space = the_add_entry->size; | |
8736 | ||
8737 | target_fa = find_fill_action (&target_relax_info->action_list, | |
8738 | target_sec, entry_sec_offset); | |
8739 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
8740 | entry_sec_offset, 4, | |
8741 | fill_extra_space); | |
8742 | if (target_fa) | |
8743 | adjust_fill_action (target_fa, removed_diff); | |
8744 | else | |
8745 | text_action_add (&target_relax_info->action_list, | |
8746 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
8747 | } | |
8748 | ||
8749 | /* Mark that the literal will be moved to the new location. */ | |
8750 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
8751 | ||
8752 | /* Remove the literal. */ | |
8753 | text_action_add (&relax_info->action_list, | |
8754 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8755 | ||
8756 | /* If the section is 4-byte aligned, do not add fill. */ | |
8757 | if (sec->alignment_power > 2 && target_entry != src_entry) | |
8758 | { | |
8759 | int fill_extra_space; | |
8760 | bfd_vma entry_sec_offset; | |
8761 | ||
8762 | if (src_entry) | |
8763 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
8764 | else | |
8765 | entry_sec_offset = rel->r_rel.target_offset+4; | |
8766 | ||
8767 | /* If the literal range is at the end of the section, | |
8768 | do not add fill. */ | |
8769 | fill_extra_space = 0; | |
8770 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8771 | entry_sec_offset); | |
8772 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8773 | fill_extra_space = the_add_entry->size; | |
8774 | ||
8775 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8776 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8777 | -4, fill_extra_space); | |
8778 | if (fa) | |
8779 | adjust_fill_action (fa, removed_diff); | |
8780 | else | |
8781 | text_action_add (&relax_info->action_list, | |
8782 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8783 | } | |
8784 | ||
8785 | return TRUE; | |
e0001a05 NC |
8786 | } |
8787 | ||
8788 | \f | |
8789 | /* Second relaxation pass. */ | |
8790 | ||
8791 | /* Modify all of the relocations to point to the right spot, and if this | |
8792 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 8793 | section size. */ |
e0001a05 | 8794 | |
43cd72b9 | 8795 | bfd_boolean |
7fa3d080 | 8796 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
8797 | { |
8798 | Elf_Internal_Rela *internal_relocs; | |
8799 | xtensa_relax_info *relax_info; | |
8800 | bfd_byte *contents; | |
8801 | bfd_boolean ok = TRUE; | |
8802 | unsigned i; | |
43cd72b9 BW |
8803 | bfd_boolean rv = FALSE; |
8804 | bfd_boolean virtual_action; | |
8805 | bfd_size_type sec_size; | |
e0001a05 | 8806 | |
43cd72b9 | 8807 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8808 | relax_info = get_xtensa_relax_info (sec); |
8809 | BFD_ASSERT (relax_info); | |
8810 | ||
43cd72b9 BW |
8811 | /* First translate any of the fixes that have been added already. */ |
8812 | translate_section_fixes (sec); | |
8813 | ||
e0001a05 NC |
8814 | /* Handle property sections (e.g., literal tables) specially. */ |
8815 | if (xtensa_is_property_section (sec)) | |
8816 | { | |
8817 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
8818 | return relax_property_section (abfd, sec, link_info); | |
8819 | } | |
8820 | ||
43cd72b9 BW |
8821 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8822 | link_info->keep_memory); | |
8823 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
8824 | if (contents == NULL && sec_size != 0) | |
8825 | { | |
8826 | ok = FALSE; | |
8827 | goto error_return; | |
8828 | } | |
8829 | ||
8830 | if (internal_relocs) | |
8831 | { | |
8832 | for (i = 0; i < sec->reloc_count; i++) | |
8833 | { | |
8834 | Elf_Internal_Rela *irel; | |
8835 | xtensa_relax_info *target_relax_info; | |
8836 | bfd_vma source_offset, old_source_offset; | |
8837 | r_reloc r_rel; | |
8838 | unsigned r_type; | |
8839 | asection *target_sec; | |
8840 | ||
8841 | /* Locally change the source address. | |
8842 | Translate the target to the new target address. | |
8843 | If it points to this section and has been removed, | |
8844 | NULLify it. | |
8845 | Write it back. */ | |
8846 | ||
8847 | irel = &internal_relocs[i]; | |
8848 | source_offset = irel->r_offset; | |
8849 | old_source_offset = source_offset; | |
8850 | ||
8851 | r_type = ELF32_R_TYPE (irel->r_info); | |
8852 | r_reloc_init (&r_rel, abfd, irel, contents, | |
8853 | bfd_get_section_limit (abfd, sec)); | |
8854 | ||
8855 | /* If this section could have changed then we may need to | |
8856 | change the relocation's offset. */ | |
8857 | ||
8858 | if (relax_info->is_relaxable_literal_section | |
8859 | || relax_info->is_relaxable_asm_section) | |
8860 | { | |
9b7f5d20 BW |
8861 | pin_internal_relocs (sec, internal_relocs); |
8862 | ||
43cd72b9 BW |
8863 | if (r_type != R_XTENSA_NONE |
8864 | && find_removed_literal (&relax_info->removed_list, | |
8865 | irel->r_offset)) | |
8866 | { | |
8867 | /* Remove this relocation. */ | |
8868 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8869 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8870 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8871 | irel->r_offset = offset_with_removed_text | |
8872 | (&relax_info->action_list, irel->r_offset); | |
43cd72b9 BW |
8873 | continue; |
8874 | } | |
8875 | ||
8876 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
8877 | { | |
8878 | text_action *action = | |
8879 | find_insn_action (&relax_info->action_list, | |
8880 | irel->r_offset); | |
8881 | if (action && (action->action == ta_convert_longcall | |
8882 | || action->action == ta_remove_longcall)) | |
8883 | { | |
8884 | bfd_reloc_status_type retval; | |
8885 | char *error_message = NULL; | |
8886 | ||
8887 | retval = contract_asm_expansion (contents, sec_size, | |
8888 | irel, &error_message); | |
8889 | if (retval != bfd_reloc_ok) | |
8890 | { | |
8891 | (*link_info->callbacks->reloc_dangerous) | |
8892 | (link_info, error_message, abfd, sec, | |
8893 | irel->r_offset); | |
8894 | goto error_return; | |
8895 | } | |
8896 | /* Update the action so that the code that moves | |
8897 | the contents will do the right thing. */ | |
8898 | if (action->action == ta_remove_longcall) | |
8899 | action->action = ta_remove_insn; | |
8900 | else | |
8901 | action->action = ta_none; | |
8902 | /* Refresh the info in the r_rel. */ | |
8903 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8904 | r_type = ELF32_R_TYPE (irel->r_info); | |
8905 | } | |
8906 | } | |
8907 | ||
8908 | source_offset = offset_with_removed_text | |
8909 | (&relax_info->action_list, irel->r_offset); | |
8910 | irel->r_offset = source_offset; | |
8911 | } | |
8912 | ||
8913 | /* If the target section could have changed then | |
8914 | we may need to change the relocation's target offset. */ | |
8915 | ||
8916 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 8917 | |
ae326da8 BW |
8918 | /* For a reference to a discarded section from a DWARF section, |
8919 | i.e., where action_discarded is PRETEND, the symbol will | |
8920 | eventually be modified to refer to the kept section (at least if | |
8921 | the kept and discarded sections are the same size). Anticipate | |
8922 | that here and adjust things accordingly. */ | |
8923 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
8924 | && elf_xtensa_action_discarded (sec) == PRETEND | |
8925 | && sec->sec_info_type != ELF_INFO_TYPE_STABS | |
8926 | && target_sec != NULL | |
8927 | && elf_discarded_section (target_sec)) | |
8928 | { | |
8929 | /* It would be natural to call _bfd_elf_check_kept_section | |
8930 | here, but it's not exported from elflink.c. It's also a | |
8931 | fairly expensive check. Adjusting the relocations to the | |
8932 | discarded section is fairly harmless; it will only adjust | |
8933 | some addends and difference values. If it turns out that | |
8934 | _bfd_elf_check_kept_section fails later, it won't matter, | |
8935 | so just compare the section names to find the right group | |
8936 | member. */ | |
8937 | asection *kept = target_sec->kept_section; | |
8938 | if (kept != NULL) | |
8939 | { | |
8940 | if ((kept->flags & SEC_GROUP) != 0) | |
8941 | { | |
8942 | asection *first = elf_next_in_group (kept); | |
8943 | asection *s = first; | |
8944 | ||
8945 | kept = NULL; | |
8946 | while (s != NULL) | |
8947 | { | |
8948 | if (strcmp (s->name, target_sec->name) == 0) | |
8949 | { | |
8950 | kept = s; | |
8951 | break; | |
8952 | } | |
8953 | s = elf_next_in_group (s); | |
8954 | if (s == first) | |
8955 | break; | |
8956 | } | |
8957 | } | |
8958 | } | |
8959 | if (kept != NULL | |
8960 | && ((target_sec->rawsize != 0 | |
8961 | ? target_sec->rawsize : target_sec->size) | |
8962 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
8963 | target_sec = kept; | |
8964 | } | |
8965 | ||
8966 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
8967 | if (target_relax_info |
8968 | && (target_relax_info->is_relaxable_literal_section | |
8969 | || target_relax_info->is_relaxable_asm_section)) | |
8970 | { | |
8971 | r_reloc new_reloc; | |
9b7f5d20 | 8972 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
8973 | |
8974 | if (r_type == R_XTENSA_DIFF8 | |
8975 | || r_type == R_XTENSA_DIFF16 | |
8976 | || r_type == R_XTENSA_DIFF32) | |
8977 | { | |
8978 | bfd_vma diff_value = 0, new_end_offset, diff_mask = 0; | |
8979 | ||
8980 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
8981 | { | |
8982 | (*link_info->callbacks->reloc_dangerous) | |
8983 | (link_info, _("invalid relocation address"), | |
8984 | abfd, sec, old_source_offset); | |
8985 | goto error_return; | |
8986 | } | |
8987 | ||
8988 | switch (r_type) | |
8989 | { | |
8990 | case R_XTENSA_DIFF8: | |
8991 | diff_value = | |
8992 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
8993 | break; | |
8994 | case R_XTENSA_DIFF16: | |
8995 | diff_value = | |
8996 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
8997 | break; | |
8998 | case R_XTENSA_DIFF32: | |
8999 | diff_value = | |
9000 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
9001 | break; | |
9002 | } | |
9003 | ||
9004 | new_end_offset = offset_with_removed_text | |
9005 | (&target_relax_info->action_list, | |
9006 | r_rel.target_offset + diff_value); | |
9007 | diff_value = new_end_offset - new_reloc.target_offset; | |
9008 | ||
9009 | switch (r_type) | |
9010 | { | |
9011 | case R_XTENSA_DIFF8: | |
9012 | diff_mask = 0xff; | |
9013 | bfd_put_8 (abfd, diff_value, | |
9014 | &contents[old_source_offset]); | |
9015 | break; | |
9016 | case R_XTENSA_DIFF16: | |
9017 | diff_mask = 0xffff; | |
9018 | bfd_put_16 (abfd, diff_value, | |
9019 | &contents[old_source_offset]); | |
9020 | break; | |
9021 | case R_XTENSA_DIFF32: | |
9022 | diff_mask = 0xffffffff; | |
9023 | bfd_put_32 (abfd, diff_value, | |
9024 | &contents[old_source_offset]); | |
9025 | break; | |
9026 | } | |
9027 | ||
9028 | /* Check for overflow. */ | |
9029 | if ((diff_value & ~diff_mask) != 0) | |
9030 | { | |
9031 | (*link_info->callbacks->reloc_dangerous) | |
9032 | (link_info, _("overflow after relaxation"), | |
9033 | abfd, sec, old_source_offset); | |
9034 | goto error_return; | |
9035 | } | |
9036 | ||
9037 | pin_contents (sec, contents); | |
9038 | } | |
dc96b90a BW |
9039 | |
9040 | /* If the relocation still references a section in the same | |
9041 | input file, modify the relocation directly instead of | |
9042 | adding a "fix" record. */ | |
9043 | if (target_sec->owner == abfd) | |
9044 | { | |
9045 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9046 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9047 | irel->r_addend = new_reloc.rela.r_addend; | |
9048 | pin_internal_relocs (sec, internal_relocs); | |
9049 | } | |
9b7f5d20 BW |
9050 | else |
9051 | { | |
dc96b90a BW |
9052 | bfd_vma addend_displacement; |
9053 | reloc_bfd_fix *fix; | |
9054 | ||
9055 | addend_displacement = | |
9056 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9057 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9058 | target_sec, | |
9059 | addend_displacement, TRUE); | |
9060 | add_fix (sec, fix); | |
9b7f5d20 | 9061 | } |
43cd72b9 | 9062 | } |
43cd72b9 BW |
9063 | } |
9064 | } | |
9065 | ||
9066 | if ((relax_info->is_relaxable_literal_section | |
9067 | || relax_info->is_relaxable_asm_section) | |
9068 | && relax_info->action_list.head) | |
9069 | { | |
9070 | /* Walk through the planned actions and build up a table | |
9071 | of move, copy and fill records. Use the move, copy and | |
9072 | fill records to perform the actions once. */ | |
9073 | ||
43cd72b9 BW |
9074 | int removed = 0; |
9075 | bfd_size_type final_size, copy_size, orig_insn_size; | |
9076 | bfd_byte *scratch = NULL; | |
9077 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9078 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9079 | bfd_vma orig_dot = 0; |
9080 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9081 | orig dot in physical memory. */ | |
9082 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9083 | bfd_vma dup_dot = 0; | |
9084 | ||
9085 | text_action *action = relax_info->action_list.head; | |
9086 | ||
9087 | final_size = sec->size; | |
9088 | for (action = relax_info->action_list.head; action; | |
9089 | action = action->next) | |
9090 | { | |
9091 | final_size -= action->removed_bytes; | |
9092 | } | |
9093 | ||
9094 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
9095 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9096 | ||
9097 | /* The dot is the current fill location. */ | |
9098 | #if DEBUG | |
9099 | print_action_list (stderr, &relax_info->action_list); | |
9100 | #endif | |
9101 | ||
9102 | for (action = relax_info->action_list.head; action; | |
9103 | action = action->next) | |
9104 | { | |
9105 | virtual_action = FALSE; | |
9106 | if (action->offset > orig_dot) | |
9107 | { | |
9108 | orig_dot += orig_dot_copied; | |
9109 | orig_dot_copied = 0; | |
9110 | orig_dot_vo = 0; | |
9111 | /* Out of the virtual world. */ | |
9112 | } | |
9113 | ||
9114 | if (action->offset > orig_dot) | |
9115 | { | |
9116 | copy_size = action->offset - orig_dot; | |
9117 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9118 | orig_dot += copy_size; | |
9119 | dup_dot += copy_size; | |
9120 | BFD_ASSERT (action->offset == orig_dot); | |
9121 | } | |
9122 | else if (action->offset < orig_dot) | |
9123 | { | |
9124 | if (action->action == ta_fill | |
9125 | && action->offset - action->removed_bytes == orig_dot) | |
9126 | { | |
9127 | /* This is OK because the fill only effects the dup_dot. */ | |
9128 | } | |
9129 | else if (action->action == ta_add_literal) | |
9130 | { | |
9131 | /* TBD. Might need to handle this. */ | |
9132 | } | |
9133 | } | |
9134 | if (action->offset == orig_dot) | |
9135 | { | |
9136 | if (action->virtual_offset > orig_dot_vo) | |
9137 | { | |
9138 | if (orig_dot_vo == 0) | |
9139 | { | |
9140 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9141 | copy_size = action->virtual_offset - orig_dot_vo; | |
9142 | memmove (&dup_contents[dup_dot], | |
9143 | &contents[orig_dot], copy_size); | |
9144 | orig_dot_copied = copy_size; | |
9145 | dup_dot += copy_size; | |
9146 | } | |
9147 | virtual_action = TRUE; | |
9148 | } | |
9149 | else | |
9150 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9151 | } | |
9152 | switch (action->action) | |
9153 | { | |
9154 | case ta_remove_literal: | |
9155 | case ta_remove_insn: | |
9156 | BFD_ASSERT (action->removed_bytes >= 0); | |
9157 | orig_dot += action->removed_bytes; | |
9158 | break; | |
9159 | ||
9160 | case ta_narrow_insn: | |
9161 | orig_insn_size = 3; | |
9162 | copy_size = 2; | |
9163 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9164 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9165 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9166 | BFD_ASSERT (rv); |
9167 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9168 | orig_dot += orig_insn_size; | |
9169 | dup_dot += copy_size; | |
9170 | break; | |
9171 | ||
9172 | case ta_fill: | |
9173 | if (action->removed_bytes >= 0) | |
9174 | orig_dot += action->removed_bytes; | |
9175 | else | |
9176 | { | |
9177 | /* Already zeroed in dup_contents. Just bump the | |
9178 | counters. */ | |
9179 | dup_dot += (-action->removed_bytes); | |
9180 | } | |
9181 | break; | |
9182 | ||
9183 | case ta_none: | |
9184 | BFD_ASSERT (action->removed_bytes == 0); | |
9185 | break; | |
9186 | ||
9187 | case ta_convert_longcall: | |
9188 | case ta_remove_longcall: | |
9189 | /* These will be removed or converted before we get here. */ | |
9190 | BFD_ASSERT (0); | |
9191 | break; | |
9192 | ||
9193 | case ta_widen_insn: | |
9194 | orig_insn_size = 2; | |
9195 | copy_size = 3; | |
9196 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9197 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9198 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9199 | BFD_ASSERT (rv); |
9200 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9201 | orig_dot += orig_insn_size; | |
9202 | dup_dot += copy_size; | |
9203 | break; | |
9204 | ||
9205 | case ta_add_literal: | |
9206 | orig_insn_size = 0; | |
9207 | copy_size = 4; | |
9208 | BFD_ASSERT (action->removed_bytes == -4); | |
9209 | /* TBD -- place the literal value here and insert | |
9210 | into the table. */ | |
9211 | memset (&dup_contents[dup_dot], 0, 4); | |
9212 | pin_internal_relocs (sec, internal_relocs); | |
9213 | pin_contents (sec, contents); | |
9214 | ||
9215 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9216 | relax_info, &internal_relocs, &action->value)) | |
9217 | goto error_return; | |
9218 | ||
9219 | if (virtual_action) | |
9220 | orig_dot_vo += copy_size; | |
9221 | ||
9222 | orig_dot += orig_insn_size; | |
9223 | dup_dot += copy_size; | |
9224 | break; | |
9225 | ||
9226 | default: | |
9227 | /* Not implemented yet. */ | |
9228 | BFD_ASSERT (0); | |
9229 | break; | |
9230 | } | |
9231 | ||
43cd72b9 BW |
9232 | removed += action->removed_bytes; |
9233 | BFD_ASSERT (dup_dot <= final_size); | |
9234 | BFD_ASSERT (orig_dot <= orig_size); | |
9235 | } | |
9236 | ||
9237 | orig_dot += orig_dot_copied; | |
9238 | orig_dot_copied = 0; | |
9239 | ||
9240 | if (orig_dot != orig_size) | |
9241 | { | |
9242 | copy_size = orig_size - orig_dot; | |
9243 | BFD_ASSERT (orig_size > orig_dot); | |
9244 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9245 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9246 | orig_dot += copy_size; | |
9247 | dup_dot += copy_size; | |
9248 | } | |
9249 | BFD_ASSERT (orig_size == orig_dot); | |
9250 | BFD_ASSERT (final_size == dup_dot); | |
9251 | ||
9252 | /* Move the dup_contents back. */ | |
9253 | if (final_size > orig_size) | |
9254 | { | |
9255 | /* Contents need to be reallocated. Swap the dup_contents into | |
9256 | contents. */ | |
9257 | sec->contents = dup_contents; | |
9258 | free (contents); | |
9259 | contents = dup_contents; | |
9260 | pin_contents (sec, contents); | |
9261 | } | |
9262 | else | |
9263 | { | |
9264 | BFD_ASSERT (final_size <= orig_size); | |
9265 | memset (contents, 0, orig_size); | |
9266 | memcpy (contents, dup_contents, final_size); | |
9267 | free (dup_contents); | |
9268 | } | |
9269 | free (scratch); | |
9270 | pin_contents (sec, contents); | |
9271 | ||
a3ef2d63 BW |
9272 | if (sec->rawsize == 0) |
9273 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9274 | sec->size = final_size; |
9275 | } | |
9276 | ||
9277 | error_return: | |
9278 | release_internal_relocs (sec, internal_relocs); | |
9279 | release_contents (sec, contents); | |
9280 | return ok; | |
9281 | } | |
9282 | ||
9283 | ||
9284 | static bfd_boolean | |
7fa3d080 | 9285 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
9286 | { |
9287 | xtensa_relax_info *relax_info; | |
9288 | reloc_bfd_fix *r; | |
9289 | ||
9290 | relax_info = get_xtensa_relax_info (sec); | |
9291 | if (!relax_info) | |
9292 | return TRUE; | |
9293 | ||
9294 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
9295 | if (!translate_reloc_bfd_fix (r)) | |
9296 | return FALSE; | |
e0001a05 | 9297 | |
43cd72b9 BW |
9298 | return TRUE; |
9299 | } | |
e0001a05 | 9300 | |
e0001a05 | 9301 | |
43cd72b9 BW |
9302 | /* Translate a fix given the mapping in the relax info for the target |
9303 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 9304 | |
43cd72b9 | 9305 | static bfd_boolean |
7fa3d080 | 9306 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
9307 | { |
9308 | reloc_bfd_fix new_fix; | |
9309 | asection *sec; | |
9310 | xtensa_relax_info *relax_info; | |
9311 | removed_literal *removed; | |
9312 | bfd_vma new_offset, target_offset; | |
e0001a05 | 9313 | |
43cd72b9 BW |
9314 | if (fix->translated) |
9315 | return TRUE; | |
e0001a05 | 9316 | |
43cd72b9 BW |
9317 | sec = fix->target_sec; |
9318 | target_offset = fix->target_offset; | |
e0001a05 | 9319 | |
43cd72b9 BW |
9320 | relax_info = get_xtensa_relax_info (sec); |
9321 | if (!relax_info) | |
9322 | { | |
9323 | fix->translated = TRUE; | |
9324 | return TRUE; | |
9325 | } | |
e0001a05 | 9326 | |
43cd72b9 | 9327 | new_fix = *fix; |
e0001a05 | 9328 | |
43cd72b9 BW |
9329 | /* The fix does not need to be translated if the section cannot change. */ |
9330 | if (!relax_info->is_relaxable_literal_section | |
9331 | && !relax_info->is_relaxable_asm_section) | |
9332 | { | |
9333 | fix->translated = TRUE; | |
9334 | return TRUE; | |
9335 | } | |
e0001a05 | 9336 | |
43cd72b9 BW |
9337 | /* If the literal has been moved and this relocation was on an |
9338 | opcode, then the relocation should move to the new literal | |
9339 | location. Otherwise, the relocation should move within the | |
9340 | section. */ | |
9341 | ||
9342 | removed = FALSE; | |
9343 | if (is_operand_relocation (fix->src_type)) | |
9344 | { | |
9345 | /* Check if the original relocation is against a literal being | |
9346 | removed. */ | |
9347 | removed = find_removed_literal (&relax_info->removed_list, | |
9348 | target_offset); | |
e0001a05 NC |
9349 | } |
9350 | ||
43cd72b9 | 9351 | if (removed) |
e0001a05 | 9352 | { |
43cd72b9 | 9353 | asection *new_sec; |
e0001a05 | 9354 | |
43cd72b9 BW |
9355 | /* The fact that there is still a relocation to this literal indicates |
9356 | that the literal is being coalesced, not simply removed. */ | |
9357 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 9358 | |
43cd72b9 BW |
9359 | /* This was moved to some other address (possibly another section). */ |
9360 | new_sec = r_reloc_get_section (&removed->to); | |
9361 | if (new_sec != sec) | |
e0001a05 | 9362 | { |
43cd72b9 BW |
9363 | sec = new_sec; |
9364 | relax_info = get_xtensa_relax_info (sec); | |
9365 | if (!relax_info || | |
9366 | (!relax_info->is_relaxable_literal_section | |
9367 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 9368 | { |
43cd72b9 BW |
9369 | target_offset = removed->to.target_offset; |
9370 | new_fix.target_sec = new_sec; | |
9371 | new_fix.target_offset = target_offset; | |
9372 | new_fix.translated = TRUE; | |
9373 | *fix = new_fix; | |
9374 | return TRUE; | |
e0001a05 | 9375 | } |
e0001a05 | 9376 | } |
43cd72b9 BW |
9377 | target_offset = removed->to.target_offset; |
9378 | new_fix.target_sec = new_sec; | |
e0001a05 | 9379 | } |
43cd72b9 BW |
9380 | |
9381 | /* The target address may have been moved within its section. */ | |
9382 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
9383 | target_offset); | |
9384 | ||
9385 | new_fix.target_offset = new_offset; | |
9386 | new_fix.target_offset = new_offset; | |
9387 | new_fix.translated = TRUE; | |
9388 | *fix = new_fix; | |
9389 | return TRUE; | |
e0001a05 NC |
9390 | } |
9391 | ||
9392 | ||
9393 | /* Fix up a relocation to take account of removed literals. */ | |
9394 | ||
9b7f5d20 BW |
9395 | static asection * |
9396 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 9397 | { |
e0001a05 NC |
9398 | xtensa_relax_info *relax_info; |
9399 | removed_literal *removed; | |
9b7f5d20 BW |
9400 | bfd_vma target_offset, base_offset; |
9401 | text_action *act; | |
e0001a05 NC |
9402 | |
9403 | *new_rel = *orig_rel; | |
9404 | ||
9405 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 9406 | return sec ; |
e0001a05 NC |
9407 | |
9408 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
9409 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
9410 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 9411 | |
43cd72b9 BW |
9412 | target_offset = orig_rel->target_offset; |
9413 | ||
9414 | removed = FALSE; | |
9415 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
9416 | { | |
9417 | /* Check if the original relocation is against a literal being | |
9418 | removed. */ | |
9419 | removed = find_removed_literal (&relax_info->removed_list, | |
9420 | target_offset); | |
9421 | } | |
9422 | if (removed && removed->to.abfd) | |
e0001a05 NC |
9423 | { |
9424 | asection *new_sec; | |
9425 | ||
9426 | /* The fact that there is still a relocation to this literal indicates | |
9427 | that the literal is being coalesced, not simply removed. */ | |
9428 | BFD_ASSERT (removed->to.abfd != NULL); | |
9429 | ||
43cd72b9 BW |
9430 | /* This was moved to some other address |
9431 | (possibly in another section). */ | |
e0001a05 NC |
9432 | *new_rel = removed->to; |
9433 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 9434 | if (new_sec != sec) |
e0001a05 NC |
9435 | { |
9436 | sec = new_sec; | |
9437 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
9438 | if (!relax_info |
9439 | || (!relax_info->is_relaxable_literal_section | |
9440 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 9441 | return sec; |
e0001a05 | 9442 | } |
43cd72b9 | 9443 | target_offset = new_rel->target_offset; |
e0001a05 NC |
9444 | } |
9445 | ||
9b7f5d20 BW |
9446 | /* Find the base offset of the reloc symbol, excluding any addend from the |
9447 | reloc or from the section contents (for a partial_inplace reloc). Then | |
9448 | find the adjusted values of the offsets due to relaxation. The base | |
9449 | offset is needed to determine the change to the reloc's addend; the reloc | |
9450 | addend should not be adjusted due to relaxations located before the base | |
9451 | offset. */ | |
9452 | ||
9453 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9454 | act = relax_info->action_list.head; | |
9455 | if (base_offset <= target_offset) | |
9456 | { | |
9457 | int base_removed = removed_by_actions (&act, base_offset, FALSE); | |
9458 | int addend_removed = removed_by_actions (&act, target_offset, FALSE); | |
9459 | new_rel->target_offset = target_offset - base_removed - addend_removed; | |
9460 | new_rel->rela.r_addend -= addend_removed; | |
9461 | } | |
9462 | else | |
9463 | { | |
9464 | /* Handle a negative addend. The base offset comes first. */ | |
9465 | int tgt_removed = removed_by_actions (&act, target_offset, FALSE); | |
9466 | int addend_removed = removed_by_actions (&act, base_offset, FALSE); | |
9467 | new_rel->target_offset = target_offset - tgt_removed; | |
9468 | new_rel->rela.r_addend += addend_removed; | |
9469 | } | |
e0001a05 | 9470 | |
9b7f5d20 | 9471 | return sec; |
e0001a05 NC |
9472 | } |
9473 | ||
9474 | ||
9475 | /* For dynamic links, there may be a dynamic relocation for each | |
9476 | literal. The number of dynamic relocations must be computed in | |
9477 | size_dynamic_sections, which occurs before relaxation. When a | |
9478 | literal is removed, this function checks if there is a corresponding | |
9479 | dynamic relocation and shrinks the size of the appropriate dynamic | |
9480 | relocation section accordingly. At this point, the contents of the | |
9481 | dynamic relocation sections have not yet been filled in, so there's | |
9482 | nothing else that needs to be done. */ | |
9483 | ||
9484 | static void | |
7fa3d080 BW |
9485 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
9486 | bfd *abfd, | |
9487 | asection *input_section, | |
9488 | Elf_Internal_Rela *rel) | |
e0001a05 | 9489 | { |
f0e6fdb2 | 9490 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
9491 | Elf_Internal_Shdr *symtab_hdr; |
9492 | struct elf_link_hash_entry **sym_hashes; | |
9493 | unsigned long r_symndx; | |
9494 | int r_type; | |
9495 | struct elf_link_hash_entry *h; | |
9496 | bfd_boolean dynamic_symbol; | |
9497 | ||
f0e6fdb2 | 9498 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
9499 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
9500 | sym_hashes = elf_sym_hashes (abfd); | |
9501 | ||
9502 | r_type = ELF32_R_TYPE (rel->r_info); | |
9503 | r_symndx = ELF32_R_SYM (rel->r_info); | |
9504 | ||
9505 | if (r_symndx < symtab_hdr->sh_info) | |
9506 | h = NULL; | |
9507 | else | |
9508 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
9509 | ||
4608f3d9 | 9510 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
9511 | |
9512 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
9513 | && (input_section->flags & SEC_ALLOC) != 0 | |
9514 | && (dynamic_symbol || info->shared)) | |
9515 | { | |
e0001a05 NC |
9516 | asection *srel; |
9517 | bfd_boolean is_plt = FALSE; | |
9518 | ||
e0001a05 NC |
9519 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
9520 | { | |
f0e6fdb2 | 9521 | srel = htab->srelplt; |
e0001a05 NC |
9522 | is_plt = TRUE; |
9523 | } | |
9524 | else | |
f0e6fdb2 | 9525 | srel = htab->srelgot; |
e0001a05 NC |
9526 | |
9527 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 9528 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
9529 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
9530 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
9531 | |
9532 | if (is_plt) | |
9533 | { | |
9534 | asection *splt, *sgotplt, *srelgot; | |
9535 | int reloc_index, chunk; | |
9536 | ||
9537 | /* Find the PLT reloc index of the entry being removed. This | |
9538 | is computed from the size of ".rela.plt". It is needed to | |
9539 | figure out which PLT chunk to resize. Usually "last index | |
9540 | = size - 1" since the index starts at zero, but in this | |
9541 | context, the size has just been decremented so there's no | |
9542 | need to subtract one. */ | |
eea6121a | 9543 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
9544 | |
9545 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
9546 | splt = elf_xtensa_get_plt_section (info, chunk); |
9547 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
9548 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
9549 | ||
9550 | /* Check if an entire PLT chunk has just been eliminated. */ | |
9551 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
9552 | { | |
9553 | /* The two magic GOT entries for that chunk can go away. */ | |
f0e6fdb2 | 9554 | srelgot = htab->srelgot; |
e0001a05 NC |
9555 | BFD_ASSERT (srelgot != NULL); |
9556 | srelgot->reloc_count -= 2; | |
eea6121a AM |
9557 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
9558 | sgotplt->size -= 8; | |
e0001a05 NC |
9559 | |
9560 | /* There should be only one entry left (and it will be | |
9561 | removed below). */ | |
eea6121a AM |
9562 | BFD_ASSERT (sgotplt->size == 4); |
9563 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
9564 | } |
9565 | ||
eea6121a AM |
9566 | BFD_ASSERT (sgotplt->size >= 4); |
9567 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 9568 | |
eea6121a AM |
9569 | sgotplt->size -= 4; |
9570 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
9571 | } |
9572 | } | |
9573 | } | |
9574 | ||
9575 | ||
43cd72b9 BW |
9576 | /* Take an r_rel and move it to another section. This usually |
9577 | requires extending the interal_relocation array and pinning it. If | |
9578 | the original r_rel is from the same BFD, we can complete this here. | |
9579 | Otherwise, we add a fix record to let the final link fix the | |
9580 | appropriate address. Contents and internal relocations for the | |
9581 | section must be pinned after calling this routine. */ | |
9582 | ||
9583 | static bfd_boolean | |
7fa3d080 BW |
9584 | move_literal (bfd *abfd, |
9585 | struct bfd_link_info *link_info, | |
9586 | asection *sec, | |
9587 | bfd_vma offset, | |
9588 | bfd_byte *contents, | |
9589 | xtensa_relax_info *relax_info, | |
9590 | Elf_Internal_Rela **internal_relocs_p, | |
9591 | const literal_value *lit) | |
43cd72b9 BW |
9592 | { |
9593 | Elf_Internal_Rela *new_relocs = NULL; | |
9594 | size_t new_relocs_count = 0; | |
9595 | Elf_Internal_Rela this_rela; | |
9596 | const r_reloc *r_rel; | |
9597 | ||
9598 | r_rel = &lit->r_rel; | |
9599 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
9600 | ||
9601 | if (r_reloc_is_const (r_rel)) | |
9602 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9603 | else | |
9604 | { | |
9605 | int r_type; | |
9606 | unsigned i; | |
9607 | asection *target_sec; | |
9608 | reloc_bfd_fix *fix; | |
9609 | unsigned insert_at; | |
9610 | ||
9611 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
9612 | target_sec = r_reloc_get_section (r_rel); | |
9613 | ||
9614 | /* This is the difficult case. We have to create a fix up. */ | |
9615 | this_rela.r_offset = offset; | |
9616 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
9617 | this_rela.r_addend = | |
9618 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
9619 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9620 | ||
9621 | /* Currently, we cannot move relocations during a relocatable link. */ | |
9622 | BFD_ASSERT (!link_info->relocatable); | |
0f5f1638 | 9623 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
9624 | r_reloc_get_section (r_rel), |
9625 | r_rel->target_offset + r_rel->virtual_offset, | |
9626 | FALSE); | |
9627 | /* We also need to mark that relocations are needed here. */ | |
9628 | sec->flags |= SEC_RELOC; | |
9629 | ||
9630 | translate_reloc_bfd_fix (fix); | |
9631 | /* This fix has not yet been translated. */ | |
9632 | add_fix (sec, fix); | |
9633 | ||
9634 | /* Add the relocation. If we have already allocated our own | |
9635 | space for the relocations and we have room for more, then use | |
9636 | it. Otherwise, allocate new space and move the literals. */ | |
9637 | insert_at = sec->reloc_count; | |
9638 | for (i = 0; i < sec->reloc_count; ++i) | |
9639 | { | |
9640 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
9641 | { | |
9642 | insert_at = i; | |
9643 | break; | |
9644 | } | |
9645 | } | |
9646 | ||
9647 | if (*internal_relocs_p != relax_info->allocated_relocs | |
9648 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
9649 | { | |
9650 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
9651 | || sec->reloc_count == relax_info->relocs_count); | |
9652 | ||
9653 | if (relax_info->allocated_relocs_count == 0) | |
9654 | new_relocs_count = (sec->reloc_count + 2) * 2; | |
9655 | else | |
9656 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
9657 | ||
9658 | new_relocs = (Elf_Internal_Rela *) | |
9659 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
9660 | if (!new_relocs) | |
9661 | return FALSE; | |
9662 | ||
9663 | /* We could handle this more quickly by finding the split point. */ | |
9664 | if (insert_at != 0) | |
9665 | memcpy (new_relocs, *internal_relocs_p, | |
9666 | insert_at * sizeof (Elf_Internal_Rela)); | |
9667 | ||
9668 | new_relocs[insert_at] = this_rela; | |
9669 | ||
9670 | if (insert_at != sec->reloc_count) | |
9671 | memcpy (new_relocs + insert_at + 1, | |
9672 | (*internal_relocs_p) + insert_at, | |
9673 | (sec->reloc_count - insert_at) | |
9674 | * sizeof (Elf_Internal_Rela)); | |
9675 | ||
9676 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
9677 | { | |
9678 | /* The first time we re-allocate, we can only free the | |
9679 | old relocs if they were allocated with bfd_malloc. | |
9680 | This is not true when keep_memory is in effect. */ | |
9681 | if (!link_info->keep_memory) | |
9682 | free (*internal_relocs_p); | |
9683 | } | |
9684 | else | |
9685 | free (*internal_relocs_p); | |
9686 | relax_info->allocated_relocs = new_relocs; | |
9687 | relax_info->allocated_relocs_count = new_relocs_count; | |
9688 | elf_section_data (sec)->relocs = new_relocs; | |
9689 | sec->reloc_count++; | |
9690 | relax_info->relocs_count = sec->reloc_count; | |
9691 | *internal_relocs_p = new_relocs; | |
9692 | } | |
9693 | else | |
9694 | { | |
9695 | if (insert_at != sec->reloc_count) | |
9696 | { | |
9697 | unsigned idx; | |
9698 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
9699 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
9700 | } | |
9701 | (*internal_relocs_p)[insert_at] = this_rela; | |
9702 | sec->reloc_count++; | |
9703 | if (relax_info->allocated_relocs) | |
9704 | relax_info->relocs_count = sec->reloc_count; | |
9705 | } | |
9706 | } | |
9707 | return TRUE; | |
9708 | } | |
9709 | ||
9710 | ||
e0001a05 NC |
9711 | /* This is similar to relax_section except that when a target is moved, |
9712 | we shift addresses up. We also need to modify the size. This | |
9713 | algorithm does NOT allow for relocations into the middle of the | |
9714 | property sections. */ | |
9715 | ||
43cd72b9 | 9716 | static bfd_boolean |
7fa3d080 BW |
9717 | relax_property_section (bfd *abfd, |
9718 | asection *sec, | |
9719 | struct bfd_link_info *link_info) | |
e0001a05 NC |
9720 | { |
9721 | Elf_Internal_Rela *internal_relocs; | |
9722 | bfd_byte *contents; | |
1d25768e | 9723 | unsigned i; |
e0001a05 | 9724 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
9725 | bfd_boolean is_full_prop_section; |
9726 | size_t last_zfill_target_offset = 0; | |
9727 | asection *last_zfill_target_sec = NULL; | |
9728 | bfd_size_type sec_size; | |
1d25768e | 9729 | bfd_size_type entry_size; |
e0001a05 | 9730 | |
43cd72b9 | 9731 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
9732 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
9733 | link_info->keep_memory); | |
9734 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9735 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9736 | { |
9737 | ok = FALSE; | |
9738 | goto error_return; | |
9739 | } | |
9740 | ||
1d25768e BW |
9741 | is_full_prop_section = xtensa_is_proptable_section (sec); |
9742 | if (is_full_prop_section) | |
9743 | entry_size = 12; | |
9744 | else | |
9745 | entry_size = 8; | |
43cd72b9 BW |
9746 | |
9747 | if (internal_relocs) | |
e0001a05 | 9748 | { |
43cd72b9 | 9749 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9750 | { |
9751 | Elf_Internal_Rela *irel; | |
9752 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
9753 | unsigned r_type; |
9754 | asection *target_sec; | |
43cd72b9 BW |
9755 | literal_value val; |
9756 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
9757 | |
9758 | /* Locally change the source address. | |
9759 | Translate the target to the new target address. | |
9760 | If it points to this section and has been removed, MOVE IT. | |
9761 | Also, don't forget to modify the associated SIZE at | |
9762 | (offset + 4). */ | |
9763 | ||
9764 | irel = &internal_relocs[i]; | |
9765 | r_type = ELF32_R_TYPE (irel->r_info); | |
9766 | if (r_type == R_XTENSA_NONE) | |
9767 | continue; | |
9768 | ||
43cd72b9 BW |
9769 | /* Find the literal value. */ |
9770 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
9771 | size_p = &contents[irel->r_offset + 4]; | |
9772 | flags_p = NULL; | |
9773 | if (is_full_prop_section) | |
1d25768e BW |
9774 | flags_p = &contents[irel->r_offset + 8]; |
9775 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 9776 | |
43cd72b9 | 9777 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
9778 | target_relax_info = get_xtensa_relax_info (target_sec); |
9779 | ||
9780 | if (target_relax_info | |
43cd72b9 BW |
9781 | && (target_relax_info->is_relaxable_literal_section |
9782 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
9783 | { |
9784 | /* Translate the relocation's destination. */ | |
03669f1c BW |
9785 | bfd_vma old_offset = val.r_rel.target_offset; |
9786 | bfd_vma new_offset; | |
e0001a05 | 9787 | long old_size, new_size; |
03669f1c BW |
9788 | text_action *act = target_relax_info->action_list.head; |
9789 | new_offset = old_offset - | |
9790 | removed_by_actions (&act, old_offset, FALSE); | |
e0001a05 NC |
9791 | |
9792 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 9793 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 9794 | new_size = old_size; |
43cd72b9 BW |
9795 | |
9796 | if (old_size == 0) | |
9797 | { | |
9798 | /* Only the first zero-sized unreachable entry is | |
9799 | allowed to expand. In this case the new offset | |
9800 | should be the offset before the fill and the new | |
9801 | size is the expansion size. For other zero-sized | |
9802 | entries the resulting size should be zero with an | |
9803 | offset before or after the fill address depending | |
9804 | on whether the expanding unreachable entry | |
9805 | preceeds it. */ | |
03669f1c BW |
9806 | if (last_zfill_target_sec == 0 |
9807 | || last_zfill_target_sec != target_sec | |
9808 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 9809 | { |
03669f1c BW |
9810 | bfd_vma new_end_offset = new_offset; |
9811 | ||
9812 | /* Recompute the new_offset, but this time don't | |
9813 | include any fill inserted by relaxation. */ | |
9814 | act = target_relax_info->action_list.head; | |
9815 | new_offset = old_offset - | |
9816 | removed_by_actions (&act, old_offset, TRUE); | |
43cd72b9 BW |
9817 | |
9818 | /* If it is not unreachable and we have not yet | |
9819 | seen an unreachable at this address, place it | |
9820 | before the fill address. */ | |
03669f1c BW |
9821 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
9822 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 9823 | { |
03669f1c BW |
9824 | new_size = new_end_offset - new_offset; |
9825 | ||
43cd72b9 | 9826 | last_zfill_target_sec = target_sec; |
03669f1c | 9827 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
9828 | } |
9829 | } | |
9830 | } | |
9831 | else | |
03669f1c BW |
9832 | new_size -= |
9833 | removed_by_actions (&act, old_offset + old_size, TRUE); | |
43cd72b9 | 9834 | |
e0001a05 NC |
9835 | if (new_size != old_size) |
9836 | { | |
9837 | bfd_put_32 (abfd, new_size, size_p); | |
9838 | pin_contents (sec, contents); | |
9839 | } | |
43cd72b9 | 9840 | |
03669f1c | 9841 | if (new_offset != old_offset) |
e0001a05 | 9842 | { |
03669f1c | 9843 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
9844 | irel->r_addend += diff; |
9845 | pin_internal_relocs (sec, internal_relocs); | |
9846 | } | |
9847 | } | |
9848 | } | |
9849 | } | |
9850 | ||
9851 | /* Combine adjacent property table entries. This is also done in | |
9852 | finish_dynamic_sections() but at that point it's too late to | |
9853 | reclaim the space in the output section, so we do this twice. */ | |
9854 | ||
43cd72b9 | 9855 | if (internal_relocs && (!link_info->relocatable |
1d25768e | 9856 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
9857 | { |
9858 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 9859 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 9860 | int removed_bytes = 0; |
1d25768e | 9861 | bfd_vma offset; |
43cd72b9 BW |
9862 | flagword predef_flags; |
9863 | ||
43cd72b9 | 9864 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 9865 | |
1d25768e | 9866 | /* Walk over memory and relocations at the same time. |
e0001a05 NC |
9867 | This REQUIRES that the internal_relocs be sorted by offset. */ |
9868 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
9869 | internal_reloc_compare); | |
e0001a05 NC |
9870 | |
9871 | pin_internal_relocs (sec, internal_relocs); | |
9872 | pin_contents (sec, contents); | |
9873 | ||
1d25768e BW |
9874 | next_rel = internal_relocs; |
9875 | rel_end = internal_relocs + sec->reloc_count; | |
9876 | ||
a3ef2d63 | 9877 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 9878 | |
a3ef2d63 | 9879 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 9880 | { |
1d25768e | 9881 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 9882 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 9883 | bfd_boolean remove_this_rel; |
43cd72b9 | 9884 | flagword flags; |
e0001a05 | 9885 | |
1d25768e BW |
9886 | /* Find the first relocation for the entry at the current offset. |
9887 | Adjust the offsets of any extra relocations for the previous | |
9888 | entry. */ | |
9889 | offset_rel = NULL; | |
9890 | if (next_rel) | |
9891 | { | |
9892 | for (irel = next_rel; irel < rel_end; irel++) | |
9893 | { | |
9894 | if ((irel->r_offset == offset | |
9895 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
9896 | || irel->r_offset > offset) | |
9897 | { | |
9898 | offset_rel = irel; | |
9899 | break; | |
9900 | } | |
9901 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
9902 | } |
9903 | } | |
e0001a05 | 9904 | |
1d25768e BW |
9905 | /* Find the next relocation (if there are any left). */ |
9906 | extra_rel = NULL; | |
9907 | if (offset_rel) | |
e0001a05 | 9908 | { |
1d25768e | 9909 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 9910 | { |
1d25768e BW |
9911 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
9912 | { | |
9913 | extra_rel = irel; | |
9914 | break; | |
9915 | } | |
e0001a05 | 9916 | } |
e0001a05 NC |
9917 | } |
9918 | ||
1d25768e BW |
9919 | /* Check if there are relocations on the current entry. There |
9920 | should usually be a relocation on the offset field. If there | |
9921 | are relocations on the size or flags, then we can't optimize | |
9922 | this entry. Also, find the next relocation to examine on the | |
9923 | next iteration. */ | |
9924 | if (offset_rel) | |
e0001a05 | 9925 | { |
1d25768e | 9926 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 9927 | { |
1d25768e BW |
9928 | next_rel = offset_rel; |
9929 | /* There are no relocations on the current entry, but we | |
9930 | might still be able to remove it if the size is zero. */ | |
9931 | offset_rel = NULL; | |
9932 | } | |
9933 | else if (offset_rel->r_offset > offset | |
9934 | || (extra_rel | |
9935 | && extra_rel->r_offset < offset + entry_size)) | |
9936 | { | |
9937 | /* There is a relocation on the size or flags, so we can't | |
9938 | do anything with this entry. Continue with the next. */ | |
9939 | next_rel = offset_rel; | |
9940 | continue; | |
9941 | } | |
9942 | else | |
9943 | { | |
9944 | BFD_ASSERT (offset_rel->r_offset == offset); | |
9945 | offset_rel->r_offset -= removed_bytes; | |
9946 | next_rel = offset_rel + 1; | |
e0001a05 | 9947 | } |
e0001a05 | 9948 | } |
1d25768e BW |
9949 | else |
9950 | next_rel = NULL; | |
e0001a05 | 9951 | |
1d25768e | 9952 | remove_this_rel = FALSE; |
e0001a05 NC |
9953 | bytes_to_remove = 0; |
9954 | actual_offset = offset - removed_bytes; | |
9955 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
9956 | ||
43cd72b9 BW |
9957 | if (is_full_prop_section) |
9958 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); | |
9959 | else | |
9960 | flags = predef_flags; | |
9961 | ||
1d25768e BW |
9962 | if (size == 0 |
9963 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
9964 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 9965 | { |
43cd72b9 BW |
9966 | /* Always remove entries with zero size and no alignment. */ |
9967 | bytes_to_remove = entry_size; | |
1d25768e BW |
9968 | if (offset_rel) |
9969 | remove_this_rel = TRUE; | |
e0001a05 | 9970 | } |
1d25768e BW |
9971 | else if (offset_rel |
9972 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 9973 | { |
1d25768e | 9974 | if (last_irel) |
e0001a05 | 9975 | { |
1d25768e BW |
9976 | flagword old_flags; |
9977 | bfd_vma old_size = | |
9978 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
9979 | bfd_vma old_address = | |
9980 | (last_irel->r_addend | |
9981 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
9982 | bfd_vma new_address = | |
9983 | (offset_rel->r_addend | |
9984 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
9985 | if (is_full_prop_section) | |
9986 | old_flags = bfd_get_32 | |
9987 | (abfd, &contents[last_irel->r_offset + 8]); | |
9988 | else | |
9989 | old_flags = predef_flags; | |
9990 | ||
9991 | if ((ELF32_R_SYM (offset_rel->r_info) | |
9992 | == ELF32_R_SYM (last_irel->r_info)) | |
9993 | && old_address + old_size == new_address | |
9994 | && old_flags == flags | |
9995 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
9996 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 9997 | { |
1d25768e BW |
9998 | /* Fix the old size. */ |
9999 | bfd_put_32 (abfd, old_size + size, | |
10000 | &contents[last_irel->r_offset + 4]); | |
10001 | bytes_to_remove = entry_size; | |
10002 | remove_this_rel = TRUE; | |
e0001a05 NC |
10003 | } |
10004 | else | |
1d25768e | 10005 | last_irel = offset_rel; |
e0001a05 | 10006 | } |
1d25768e BW |
10007 | else |
10008 | last_irel = offset_rel; | |
e0001a05 NC |
10009 | } |
10010 | ||
1d25768e | 10011 | if (remove_this_rel) |
e0001a05 | 10012 | { |
1d25768e | 10013 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10014 | offset_rel->r_offset = 0; |
e0001a05 NC |
10015 | } |
10016 | ||
10017 | if (bytes_to_remove != 0) | |
10018 | { | |
10019 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10020 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10021 | memmove (&contents[actual_offset], |
43cd72b9 | 10022 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10023 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10024 | } |
10025 | } | |
10026 | ||
43cd72b9 | 10027 | if (removed_bytes) |
e0001a05 | 10028 | { |
1d25768e BW |
10029 | /* Fix up any extra relocations on the last entry. */ |
10030 | for (irel = next_rel; irel < rel_end; irel++) | |
10031 | irel->r_offset -= removed_bytes; | |
10032 | ||
e0001a05 | 10033 | /* Clear the removed bytes. */ |
a3ef2d63 | 10034 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10035 | |
a3ef2d63 BW |
10036 | if (sec->rawsize == 0) |
10037 | sec->rawsize = sec->size; | |
10038 | sec->size -= removed_bytes; | |
e901de89 BW |
10039 | |
10040 | if (xtensa_is_littable_section (sec)) | |
10041 | { | |
f0e6fdb2 BW |
10042 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10043 | if (sgotloc) | |
10044 | sgotloc->size -= removed_bytes; | |
e901de89 | 10045 | } |
e0001a05 NC |
10046 | } |
10047 | } | |
e901de89 | 10048 | |
e0001a05 NC |
10049 | error_return: |
10050 | release_internal_relocs (sec, internal_relocs); | |
10051 | release_contents (sec, contents); | |
10052 | return ok; | |
10053 | } | |
10054 | ||
10055 | \f | |
10056 | /* Third relaxation pass. */ | |
10057 | ||
10058 | /* Change symbol values to account for removed literals. */ | |
10059 | ||
43cd72b9 | 10060 | bfd_boolean |
7fa3d080 | 10061 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10062 | { |
10063 | xtensa_relax_info *relax_info; | |
10064 | unsigned int sec_shndx; | |
10065 | Elf_Internal_Shdr *symtab_hdr; | |
10066 | Elf_Internal_Sym *isymbuf; | |
10067 | unsigned i, num_syms, num_locals; | |
10068 | ||
10069 | relax_info = get_xtensa_relax_info (sec); | |
10070 | BFD_ASSERT (relax_info); | |
10071 | ||
43cd72b9 BW |
10072 | if (!relax_info->is_relaxable_literal_section |
10073 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10074 | return TRUE; |
10075 | ||
10076 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10077 | ||
10078 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10079 | isymbuf = retrieve_local_syms (abfd); | |
10080 | ||
10081 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10082 | num_locals = symtab_hdr->sh_info; | |
10083 | ||
10084 | /* Adjust the local symbols defined in this section. */ | |
10085 | for (i = 0; i < num_locals; i++) | |
10086 | { | |
10087 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10088 | ||
10089 | if (isym->st_shndx == sec_shndx) | |
10090 | { | |
03669f1c BW |
10091 | text_action *act = relax_info->action_list.head; |
10092 | bfd_vma orig_addr = isym->st_value; | |
43cd72b9 | 10093 | |
03669f1c | 10094 | isym->st_value -= removed_by_actions (&act, orig_addr, FALSE); |
43cd72b9 | 10095 | |
03669f1c BW |
10096 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10097 | isym->st_size -= | |
10098 | removed_by_actions (&act, orig_addr + isym->st_size, FALSE); | |
e0001a05 NC |
10099 | } |
10100 | } | |
10101 | ||
10102 | /* Now adjust the global symbols defined in this section. */ | |
10103 | for (i = 0; i < (num_syms - num_locals); i++) | |
10104 | { | |
10105 | struct elf_link_hash_entry *sym_hash; | |
10106 | ||
10107 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10108 | ||
10109 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10110 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10111 | ||
10112 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10113 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10114 | && sym_hash->root.u.def.section == sec) | |
10115 | { | |
03669f1c BW |
10116 | text_action *act = relax_info->action_list.head; |
10117 | bfd_vma orig_addr = sym_hash->root.u.def.value; | |
43cd72b9 | 10118 | |
03669f1c BW |
10119 | sym_hash->root.u.def.value -= |
10120 | removed_by_actions (&act, orig_addr, FALSE); | |
43cd72b9 | 10121 | |
03669f1c BW |
10122 | if (sym_hash->type == STT_FUNC) |
10123 | sym_hash->size -= | |
10124 | removed_by_actions (&act, orig_addr + sym_hash->size, FALSE); | |
e0001a05 NC |
10125 | } |
10126 | } | |
10127 | ||
10128 | return TRUE; | |
10129 | } | |
10130 | ||
10131 | \f | |
10132 | /* "Fix" handling functions, called while performing relocations. */ | |
10133 | ||
43cd72b9 | 10134 | static bfd_boolean |
7fa3d080 BW |
10135 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10136 | bfd *input_bfd, | |
10137 | asection *input_section, | |
10138 | bfd_byte *contents) | |
e0001a05 NC |
10139 | { |
10140 | r_reloc r_rel; | |
10141 | asection *sec, *old_sec; | |
10142 | bfd_vma old_offset; | |
10143 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10144 | reloc_bfd_fix *fix; |
10145 | ||
10146 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10147 | return TRUE; |
e0001a05 | 10148 | |
43cd72b9 BW |
10149 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10150 | if (!fix) | |
10151 | return TRUE; | |
e0001a05 | 10152 | |
43cd72b9 BW |
10153 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10154 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10155 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10156 | old_offset = r_rel.target_offset; |
10157 | ||
10158 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10159 | { |
43cd72b9 BW |
10160 | if (r_type != R_XTENSA_ASM_EXPAND) |
10161 | { | |
10162 | (*_bfd_error_handler) | |
10163 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
10164 | input_bfd, input_section, rel->r_offset, | |
10165 | elf_howto_table[r_type].name); | |
10166 | return FALSE; | |
10167 | } | |
e0001a05 NC |
10168 | /* Leave it be. Resolution will happen in a later stage. */ |
10169 | } | |
10170 | else | |
10171 | { | |
10172 | sec = fix->target_sec; | |
10173 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10174 | - (old_sec->output_offset + old_offset)); | |
10175 | } | |
43cd72b9 | 10176 | return TRUE; |
e0001a05 NC |
10177 | } |
10178 | ||
10179 | ||
10180 | static void | |
7fa3d080 BW |
10181 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10182 | bfd *input_bfd, | |
10183 | asection *input_section, | |
10184 | bfd_byte *contents, | |
10185 | bfd_vma *relocationp) | |
e0001a05 NC |
10186 | { |
10187 | asection *sec; | |
10188 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10189 | reloc_bfd_fix *fix; |
43cd72b9 | 10190 | bfd_vma fixup_diff; |
e0001a05 NC |
10191 | |
10192 | if (r_type == R_XTENSA_NONE) | |
10193 | return; | |
10194 | ||
43cd72b9 BW |
10195 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10196 | if (!fix) | |
e0001a05 NC |
10197 | return; |
10198 | ||
10199 | sec = fix->target_sec; | |
43cd72b9 BW |
10200 | |
10201 | fixup_diff = rel->r_addend; | |
10202 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10203 | { | |
10204 | bfd_vma inplace_val; | |
10205 | BFD_ASSERT (fix->src_offset | |
10206 | < bfd_get_section_limit (input_bfd, input_section)); | |
10207 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10208 | fixup_diff += inplace_val; | |
10209 | } | |
10210 | ||
e0001a05 NC |
10211 | *relocationp = (sec->output_section->vma |
10212 | + sec->output_offset | |
43cd72b9 | 10213 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10214 | } |
10215 | ||
10216 | \f | |
10217 | /* Miscellaneous utility functions.... */ | |
10218 | ||
10219 | static asection * | |
f0e6fdb2 | 10220 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10221 | { |
f0e6fdb2 BW |
10222 | struct elf_xtensa_link_hash_table *htab; |
10223 | bfd *dynobj; | |
e0001a05 NC |
10224 | char plt_name[10]; |
10225 | ||
10226 | if (chunk == 0) | |
f0e6fdb2 BW |
10227 | { |
10228 | htab = elf_xtensa_hash_table (info); | |
10229 | return htab->splt; | |
10230 | } | |
e0001a05 | 10231 | |
f0e6fdb2 | 10232 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
10233 | sprintf (plt_name, ".plt.%u", chunk); |
10234 | return bfd_get_section_by_name (dynobj, plt_name); | |
10235 | } | |
10236 | ||
10237 | ||
10238 | static asection * | |
f0e6fdb2 | 10239 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10240 | { |
f0e6fdb2 BW |
10241 | struct elf_xtensa_link_hash_table *htab; |
10242 | bfd *dynobj; | |
e0001a05 NC |
10243 | char got_name[14]; |
10244 | ||
10245 | if (chunk == 0) | |
f0e6fdb2 BW |
10246 | { |
10247 | htab = elf_xtensa_hash_table (info); | |
10248 | return htab->sgotplt; | |
10249 | } | |
e0001a05 | 10250 | |
f0e6fdb2 | 10251 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
10252 | sprintf (got_name, ".got.plt.%u", chunk); |
10253 | return bfd_get_section_by_name (dynobj, got_name); | |
10254 | } | |
10255 | ||
10256 | ||
10257 | /* Get the input section for a given symbol index. | |
10258 | If the symbol is: | |
10259 | . a section symbol, return the section; | |
10260 | . a common symbol, return the common section; | |
10261 | . an undefined symbol, return the undefined section; | |
10262 | . an indirect symbol, follow the links; | |
10263 | . an absolute value, return the absolute section. */ | |
10264 | ||
10265 | static asection * | |
7fa3d080 | 10266 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10267 | { |
10268 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10269 | asection *target_sec = NULL; | |
43cd72b9 | 10270 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10271 | { |
10272 | Elf_Internal_Sym *isymbuf; | |
10273 | unsigned int section_index; | |
10274 | ||
10275 | isymbuf = retrieve_local_syms (abfd); | |
10276 | section_index = isymbuf[r_symndx].st_shndx; | |
10277 | ||
10278 | if (section_index == SHN_UNDEF) | |
10279 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
10280 | else if (section_index == SHN_ABS) |
10281 | target_sec = bfd_abs_section_ptr; | |
10282 | else if (section_index == SHN_COMMON) | |
10283 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 10284 | else |
cb33740c | 10285 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
10286 | } |
10287 | else | |
10288 | { | |
10289 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10290 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
10291 | ||
10292 | while (h->root.type == bfd_link_hash_indirect | |
10293 | || h->root.type == bfd_link_hash_warning) | |
10294 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10295 | ||
10296 | switch (h->root.type) | |
10297 | { | |
10298 | case bfd_link_hash_defined: | |
10299 | case bfd_link_hash_defweak: | |
10300 | target_sec = h->root.u.def.section; | |
10301 | break; | |
10302 | case bfd_link_hash_common: | |
10303 | target_sec = bfd_com_section_ptr; | |
10304 | break; | |
10305 | case bfd_link_hash_undefined: | |
10306 | case bfd_link_hash_undefweak: | |
10307 | target_sec = bfd_und_section_ptr; | |
10308 | break; | |
10309 | default: /* New indirect warning. */ | |
10310 | target_sec = bfd_und_section_ptr; | |
10311 | break; | |
10312 | } | |
10313 | } | |
10314 | return target_sec; | |
10315 | } | |
10316 | ||
10317 | ||
10318 | static struct elf_link_hash_entry * | |
7fa3d080 | 10319 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10320 | { |
10321 | unsigned long indx; | |
10322 | struct elf_link_hash_entry *h; | |
10323 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10324 | ||
10325 | if (r_symndx < symtab_hdr->sh_info) | |
10326 | return NULL; | |
43cd72b9 | 10327 | |
e0001a05 NC |
10328 | indx = r_symndx - symtab_hdr->sh_info; |
10329 | h = elf_sym_hashes (abfd)[indx]; | |
10330 | while (h->root.type == bfd_link_hash_indirect | |
10331 | || h->root.type == bfd_link_hash_warning) | |
10332 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10333 | return h; | |
10334 | } | |
10335 | ||
10336 | ||
10337 | /* Get the section-relative offset for a symbol number. */ | |
10338 | ||
10339 | static bfd_vma | |
7fa3d080 | 10340 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10341 | { |
10342 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10343 | bfd_vma offset = 0; | |
10344 | ||
43cd72b9 | 10345 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10346 | { |
10347 | Elf_Internal_Sym *isymbuf; | |
10348 | isymbuf = retrieve_local_syms (abfd); | |
10349 | offset = isymbuf[r_symndx].st_value; | |
10350 | } | |
10351 | else | |
10352 | { | |
10353 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10354 | struct elf_link_hash_entry *h = | |
10355 | elf_sym_hashes (abfd)[indx]; | |
10356 | ||
10357 | while (h->root.type == bfd_link_hash_indirect | |
10358 | || h->root.type == bfd_link_hash_warning) | |
10359 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10360 | if (h->root.type == bfd_link_hash_defined | |
10361 | || h->root.type == bfd_link_hash_defweak) | |
10362 | offset = h->root.u.def.value; | |
10363 | } | |
10364 | return offset; | |
10365 | } | |
10366 | ||
10367 | ||
10368 | static bfd_boolean | |
7fa3d080 | 10369 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
10370 | { |
10371 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
10372 | struct elf_link_hash_entry *h; | |
10373 | ||
10374 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
10375 | if (h && h->root.type == bfd_link_hash_defweak) | |
10376 | return TRUE; | |
10377 | return FALSE; | |
10378 | } | |
10379 | ||
10380 | ||
10381 | static bfd_boolean | |
7fa3d080 BW |
10382 | pcrel_reloc_fits (xtensa_opcode opc, |
10383 | int opnd, | |
10384 | bfd_vma self_address, | |
10385 | bfd_vma dest_address) | |
e0001a05 | 10386 | { |
43cd72b9 BW |
10387 | xtensa_isa isa = xtensa_default_isa; |
10388 | uint32 valp = dest_address; | |
10389 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
10390 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
10391 | return FALSE; | |
10392 | return TRUE; | |
e0001a05 NC |
10393 | } |
10394 | ||
10395 | ||
10396 | static bfd_boolean | |
7fa3d080 | 10397 | xtensa_is_property_section (asection *sec) |
e0001a05 | 10398 | { |
1d25768e BW |
10399 | if (xtensa_is_insntable_section (sec) |
10400 | || xtensa_is_littable_section (sec) | |
10401 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 10402 | return TRUE; |
e901de89 | 10403 | |
1d25768e BW |
10404 | return FALSE; |
10405 | } | |
10406 | ||
10407 | ||
10408 | static bfd_boolean | |
10409 | xtensa_is_insntable_section (asection *sec) | |
10410 | { | |
10411 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
10412 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
10413 | return TRUE; |
10414 | ||
e901de89 BW |
10415 | return FALSE; |
10416 | } | |
10417 | ||
10418 | ||
10419 | static bfd_boolean | |
7fa3d080 | 10420 | xtensa_is_littable_section (asection *sec) |
e901de89 | 10421 | { |
1d25768e BW |
10422 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
10423 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 10424 | return TRUE; |
e901de89 | 10425 | |
1d25768e BW |
10426 | return FALSE; |
10427 | } | |
10428 | ||
10429 | ||
10430 | static bfd_boolean | |
10431 | xtensa_is_proptable_section (asection *sec) | |
10432 | { | |
10433 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
10434 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 10435 | return TRUE; |
e0001a05 | 10436 | |
e901de89 | 10437 | return FALSE; |
e0001a05 NC |
10438 | } |
10439 | ||
10440 | ||
43cd72b9 | 10441 | static int |
7fa3d080 | 10442 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 10443 | { |
43cd72b9 BW |
10444 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
10445 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10446 | ||
10447 | if (a->r_offset != b->r_offset) | |
10448 | return (a->r_offset - b->r_offset); | |
10449 | ||
10450 | /* We don't need to sort on these criteria for correctness, | |
10451 | but enforcing a more strict ordering prevents unstable qsort | |
10452 | from behaving differently with different implementations. | |
10453 | Without the code below we get correct but different results | |
10454 | on Solaris 2.7 and 2.8. We would like to always produce the | |
10455 | same results no matter the host. */ | |
10456 | ||
10457 | if (a->r_info != b->r_info) | |
10458 | return (a->r_info - b->r_info); | |
10459 | ||
10460 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
10461 | } |
10462 | ||
10463 | ||
10464 | static int | |
7fa3d080 | 10465 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
10466 | { |
10467 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
10468 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10469 | ||
43cd72b9 BW |
10470 | /* Check if one entry overlaps with the other; this shouldn't happen |
10471 | except when searching for a match. */ | |
e0001a05 NC |
10472 | return (a->r_offset - b->r_offset); |
10473 | } | |
10474 | ||
10475 | ||
74869ac7 BW |
10476 | /* Predicate function used to look up a section in a particular group. */ |
10477 | ||
10478 | static bfd_boolean | |
10479 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
10480 | { | |
10481 | const char *gname = inf; | |
10482 | const char *group_name = elf_group_name (sec); | |
10483 | ||
10484 | return (group_name == gname | |
10485 | || (group_name != NULL | |
10486 | && gname != NULL | |
10487 | && strcmp (group_name, gname) == 0)); | |
10488 | } | |
10489 | ||
10490 | ||
1d25768e BW |
10491 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
10492 | ||
51c8ebc1 BW |
10493 | static char * |
10494 | xtensa_property_section_name (asection *sec, const char *base_name) | |
e0001a05 | 10495 | { |
74869ac7 BW |
10496 | const char *suffix, *group_name; |
10497 | char *prop_sec_name; | |
74869ac7 BW |
10498 | |
10499 | group_name = elf_group_name (sec); | |
10500 | if (group_name) | |
10501 | { | |
10502 | suffix = strrchr (sec->name, '.'); | |
10503 | if (suffix == sec->name) | |
10504 | suffix = 0; | |
10505 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
10506 | + (suffix ? strlen (suffix) : 0)); | |
10507 | strcpy (prop_sec_name, base_name); | |
10508 | if (suffix) | |
10509 | strcat (prop_sec_name, suffix); | |
10510 | } | |
10511 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 10512 | { |
43cd72b9 | 10513 | char *linkonce_kind = 0; |
b614a702 BW |
10514 | |
10515 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
7db48a12 | 10516 | linkonce_kind = "x."; |
b614a702 | 10517 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 10518 | linkonce_kind = "p."; |
43cd72b9 BW |
10519 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
10520 | linkonce_kind = "prop."; | |
e0001a05 | 10521 | else |
b614a702 BW |
10522 | abort (); |
10523 | ||
43cd72b9 BW |
10524 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
10525 | + strlen (linkonce_kind) + 1); | |
b614a702 | 10526 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 10527 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
10528 | |
10529 | suffix = sec->name + linkonce_len; | |
096c35a7 | 10530 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 10531 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 10532 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
10533 | suffix += 2; |
10534 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
10535 | } |
10536 | else | |
10537 | prop_sec_name = strdup (base_name); | |
10538 | ||
51c8ebc1 BW |
10539 | return prop_sec_name; |
10540 | } | |
10541 | ||
10542 | ||
10543 | static asection * | |
10544 | xtensa_get_property_section (asection *sec, const char *base_name) | |
10545 | { | |
10546 | char *prop_sec_name; | |
10547 | asection *prop_sec; | |
10548 | ||
10549 | prop_sec_name = xtensa_property_section_name (sec, base_name); | |
10550 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
10551 | match_section_group, | |
10552 | (void *) elf_group_name (sec)); | |
10553 | free (prop_sec_name); | |
10554 | return prop_sec; | |
10555 | } | |
10556 | ||
10557 | ||
10558 | asection * | |
10559 | xtensa_make_property_section (asection *sec, const char *base_name) | |
10560 | { | |
10561 | char *prop_sec_name; | |
10562 | asection *prop_sec; | |
10563 | ||
74869ac7 | 10564 | /* Check if the section already exists. */ |
51c8ebc1 | 10565 | prop_sec_name = xtensa_property_section_name (sec, base_name); |
74869ac7 BW |
10566 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
10567 | match_section_group, | |
51c8ebc1 | 10568 | (void *) elf_group_name (sec)); |
74869ac7 BW |
10569 | /* If not, create it. */ |
10570 | if (! prop_sec) | |
10571 | { | |
10572 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
10573 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
10574 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
10575 | ||
10576 | prop_sec = bfd_make_section_anyway_with_flags | |
10577 | (sec->owner, strdup (prop_sec_name), flags); | |
10578 | if (! prop_sec) | |
10579 | return 0; | |
b614a702 | 10580 | |
51c8ebc1 | 10581 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
10582 | } |
10583 | ||
74869ac7 BW |
10584 | free (prop_sec_name); |
10585 | return prop_sec; | |
e0001a05 NC |
10586 | } |
10587 | ||
43cd72b9 BW |
10588 | |
10589 | flagword | |
7fa3d080 | 10590 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 10591 | { |
1d25768e | 10592 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 10593 | return (XTENSA_PROP_INSN |
99ded152 | 10594 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10595 | | XTENSA_PROP_INSN_NO_REORDER); |
10596 | ||
10597 | if (xtensa_is_littable_section (sec)) | |
10598 | return (XTENSA_PROP_LITERAL | |
99ded152 | 10599 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10600 | | XTENSA_PROP_INSN_NO_REORDER); |
10601 | ||
10602 | return 0; | |
10603 | } | |
10604 | ||
e0001a05 NC |
10605 | \f |
10606 | /* Other functions called directly by the linker. */ | |
10607 | ||
10608 | bfd_boolean | |
7fa3d080 BW |
10609 | xtensa_callback_required_dependence (bfd *abfd, |
10610 | asection *sec, | |
10611 | struct bfd_link_info *link_info, | |
10612 | deps_callback_t callback, | |
10613 | void *closure) | |
e0001a05 NC |
10614 | { |
10615 | Elf_Internal_Rela *internal_relocs; | |
10616 | bfd_byte *contents; | |
10617 | unsigned i; | |
10618 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
10619 | bfd_size_type sec_size; |
10620 | ||
10621 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
10622 | |
10623 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
10624 | instructions that reference the corresponding ".got.plt*" sections. */ | |
10625 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 10626 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
10627 | { |
10628 | asection *sgotplt; | |
10629 | ||
10630 | /* Find the corresponding ".got.plt*" section. */ | |
10631 | if (sec->name[4] == '\0') | |
10632 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
10633 | else | |
10634 | { | |
10635 | char got_name[14]; | |
10636 | int chunk = 0; | |
10637 | ||
10638 | BFD_ASSERT (sec->name[4] == '.'); | |
10639 | chunk = strtol (&sec->name[5], NULL, 10); | |
10640 | ||
10641 | sprintf (got_name, ".got.plt.%u", chunk); | |
10642 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
10643 | } | |
10644 | BFD_ASSERT (sgotplt); | |
10645 | ||
10646 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
10647 | section referencing a literal at the very beginning of | |
10648 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 10649 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
10650 | } |
10651 | ||
13161072 BW |
10652 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
10653 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
10654 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
10655 | return ok; | |
10656 | ||
e0001a05 NC |
10657 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
10658 | link_info->keep_memory); | |
10659 | if (internal_relocs == NULL | |
43cd72b9 | 10660 | || sec->reloc_count == 0) |
e0001a05 NC |
10661 | return ok; |
10662 | ||
10663 | /* Cache the contents for the duration of this scan. */ | |
10664 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10665 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10666 | { |
10667 | ok = FALSE; | |
10668 | goto error_return; | |
10669 | } | |
10670 | ||
43cd72b9 BW |
10671 | if (!xtensa_default_isa) |
10672 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 10673 | |
43cd72b9 | 10674 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10675 | { |
10676 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 10677 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
10678 | { |
10679 | r_reloc l32r_rel; | |
10680 | asection *target_sec; | |
10681 | bfd_vma target_offset; | |
43cd72b9 BW |
10682 | |
10683 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
10684 | target_sec = NULL; |
10685 | target_offset = 0; | |
10686 | /* L32Rs must be local to the input file. */ | |
10687 | if (r_reloc_is_defined (&l32r_rel)) | |
10688 | { | |
10689 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 10690 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
10691 | } |
10692 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
10693 | closure); | |
10694 | } | |
10695 | } | |
10696 | ||
10697 | error_return: | |
10698 | release_internal_relocs (sec, internal_relocs); | |
10699 | release_contents (sec, contents); | |
10700 | return ok; | |
10701 | } | |
10702 | ||
2f89ff8d L |
10703 | /* The default literal sections should always be marked as "code" (i.e., |
10704 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
10705 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 10706 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 10707 | { |
0112cd26 NC |
10708 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
10709 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
10710 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 10711 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 10712 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 10713 | }; |
e0001a05 NC |
10714 | \f |
10715 | #ifndef ELF_ARCH | |
10716 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
10717 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
10718 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
10719 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
10720 | #define ELF_ARCH bfd_arch_xtensa | |
10721 | ||
4af0a1d8 BW |
10722 | #define ELF_MACHINE_CODE EM_XTENSA |
10723 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
10724 | |
10725 | #if XCHAL_HAVE_MMU | |
10726 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
10727 | #else /* !XCHAL_HAVE_MMU */ | |
10728 | #define ELF_MAXPAGESIZE 1 | |
10729 | #endif /* !XCHAL_HAVE_MMU */ | |
10730 | #endif /* ELF_ARCH */ | |
10731 | ||
10732 | #define elf_backend_can_gc_sections 1 | |
10733 | #define elf_backend_can_refcount 1 | |
10734 | #define elf_backend_plt_readonly 1 | |
10735 | #define elf_backend_got_header_size 4 | |
10736 | #define elf_backend_want_dynbss 0 | |
10737 | #define elf_backend_want_got_plt 1 | |
10738 | ||
10739 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
10740 | ||
28dbbc02 BW |
10741 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
10742 | ||
e0001a05 NC |
10743 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
10744 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
10745 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
10746 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
10747 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
10748 | #define bfd_elf32_bfd_reloc_name_lookup \ |
10749 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 10750 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 10751 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
10752 | |
10753 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
10754 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
10755 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
10756 | #define elf_backend_discard_info elf_xtensa_discard_info | |
10757 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
10758 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
10759 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
10760 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
10761 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
10762 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
10763 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
10764 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 10765 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
10766 | #define elf_backend_object_p elf_xtensa_object_p |
10767 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
10768 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
10769 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 10770 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
74541ad4 AM |
10771 | #define elf_backend_omit_section_dynsym \ |
10772 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 10773 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 10774 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 10775 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
10776 | |
10777 | #include "elf32-target.h" |