]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
f0e6fdb2 | 2 | Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
8 | published by the Free Software Foundation; either version 2 of the | |
9 | License, or (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 NC |
20 | |
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | ||
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
31 | #include "xtensa-isa.h" | |
32 | #include "xtensa-config.h" | |
33 | ||
43cd72b9 BW |
34 | #define XTENSA_NO_NOP_REMOVAL 0 |
35 | ||
e0001a05 NC |
36 | /* Local helper functions. */ |
37 | ||
f0e6fdb2 | 38 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 39 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 40 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 41 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 42 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 43 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 44 | static void do_fix_for_final_link |
7fa3d080 | 45 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
46 | |
47 | /* Local functions to handle Xtensa configurability. */ | |
48 | ||
7fa3d080 BW |
49 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
50 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
51 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
52 | static xtensa_opcode get_const16_opcode (void); | |
53 | static xtensa_opcode get_l32r_opcode (void); | |
54 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
55 | static int get_relocation_opnd (xtensa_opcode, int); | |
56 | static int get_relocation_slot (int); | |
e0001a05 | 57 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 58 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 59 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
60 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
61 | static bfd_boolean is_alt_relocation (int); | |
62 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 63 | static bfd_size_type insn_decode_len |
7fa3d080 | 64 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 65 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 66 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 67 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 68 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 69 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
70 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
71 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 72 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 73 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
74 | |
75 | /* Functions for link-time code simplifications. */ | |
76 | ||
43cd72b9 | 77 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 78 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 79 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
80 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
81 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
82 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
83 | |
84 | /* Access to internal relocations, section contents and symbols. */ | |
85 | ||
86 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
87 | (bfd *, asection *, bfd_boolean); |
88 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
89 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
91 | static void pin_contents (asection *, bfd_byte *); | |
92 | static void release_contents (asection *, bfd_byte *); | |
93 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
94 | |
95 | /* Miscellaneous utility functions. */ | |
96 | ||
f0e6fdb2 BW |
97 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
98 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 99 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 100 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
101 | (bfd *, unsigned long); |
102 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
103 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
104 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
105 | static bfd_boolean xtensa_is_property_section (asection *); | |
106 | static bfd_boolean xtensa_is_littable_section (asection *); | |
107 | static int internal_reloc_compare (const void *, const void *); | |
108 | static int internal_reloc_matches (const void *, const void *); | |
74869ac7 | 109 | extern asection *xtensa_get_property_section (asection *, const char *); |
7fa3d080 | 110 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
111 | |
112 | /* Other functions called directly by the linker. */ | |
113 | ||
114 | typedef void (*deps_callback_t) | |
7fa3d080 | 115 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 116 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 117 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
118 | |
119 | ||
43cd72b9 BW |
120 | /* Globally visible flag for choosing size optimization of NOP removal |
121 | instead of branch-target-aware minimization for NOP removal. | |
122 | When nonzero, narrow all instructions and remove all NOPs possible | |
123 | around longcall expansions. */ | |
7fa3d080 | 124 | |
43cd72b9 BW |
125 | int elf32xtensa_size_opt; |
126 | ||
127 | ||
128 | /* The "new_section_hook" is used to set up a per-section | |
129 | "xtensa_relax_info" data structure with additional information used | |
130 | during relaxation. */ | |
e0001a05 | 131 | |
7fa3d080 | 132 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 133 | |
43cd72b9 | 134 | |
43cd72b9 BW |
135 | /* The GNU tools do not easily allow extending interfaces to pass around |
136 | the pointer to the Xtensa ISA information, so instead we add a global | |
137 | variable here (in BFD) that can be used by any of the tools that need | |
138 | this information. */ | |
139 | ||
140 | xtensa_isa xtensa_default_isa; | |
141 | ||
142 | ||
e0001a05 NC |
143 | /* When this is true, relocations may have been modified to refer to |
144 | symbols from other input files. The per-section list of "fix" | |
145 | records needs to be checked when resolving relocations. */ | |
146 | ||
147 | static bfd_boolean relaxing_section = FALSE; | |
148 | ||
43cd72b9 BW |
149 | /* When this is true, during final links, literals that cannot be |
150 | coalesced and their relocations may be moved to other sections. */ | |
151 | ||
152 | int elf32xtensa_no_literal_movement = 1; | |
153 | ||
e0001a05 NC |
154 | \f |
155 | static reloc_howto_type elf_howto_table[] = | |
156 | { | |
157 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
158 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
159 | FALSE, 0x00000000, 0x00000000, FALSE), | |
160 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
161 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
162 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
163 | /* Replace a 32-bit value with a value from the runtime linker (only | |
164 | used by linker-generated stub functions). The r_addend value is | |
165 | special: 1 means to substitute a pointer to the runtime linker's | |
166 | dynamic resolver function; 2 means to substitute the link map for | |
167 | the shared object. */ | |
168 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
169 | NULL, "R_XTENSA_RTLD", | |
170 | FALSE, 0x00000000, 0x00000000, FALSE), | |
171 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
172 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
173 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
174 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
175 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
176 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
177 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
178 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
179 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
180 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
181 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
182 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
183 | EMPTY_HOWTO (7), | |
184 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
185 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", | |
186 | FALSE, 0x00000000, 0x00000000, TRUE), | |
187 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
188 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", | |
189 | FALSE, 0x00000000, 0x00000000, TRUE), | |
190 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
191 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", | |
192 | FALSE, 0x00000000, 0x00000000, TRUE), | |
193 | /* Assembly auto-expansion. */ | |
194 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
195 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", | |
196 | FALSE, 0x00000000, 0x00000000, FALSE), | |
197 | /* Relax assembly auto-expansion. */ | |
198 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
199 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", | |
200 | FALSE, 0x00000000, 0x00000000, TRUE), | |
201 | EMPTY_HOWTO (13), | |
202 | EMPTY_HOWTO (14), | |
203 | /* GNU extension to record C++ vtable hierarchy. */ | |
204 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
205 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
206 | FALSE, 0x00000000, 0x00000000, FALSE), | |
207 | /* GNU extension to record C++ vtable member usage. */ | |
208 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
209 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
43cd72b9 BW |
210 | FALSE, 0x00000000, 0x00000000, FALSE), |
211 | ||
212 | /* Relocations for supporting difference of symbols. */ | |
213 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
214 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", | |
215 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
216 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, | |
217 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", | |
218 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
219 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
220 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", | |
221 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
222 | ||
223 | /* General immediate operand relocations. */ | |
224 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
225 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", | |
226 | FALSE, 0x00000000, 0x00000000, TRUE), | |
227 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
228 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", | |
229 | FALSE, 0x00000000, 0x00000000, TRUE), | |
230 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
231 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", | |
232 | FALSE, 0x00000000, 0x00000000, TRUE), | |
233 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
234 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", | |
235 | FALSE, 0x00000000, 0x00000000, TRUE), | |
236 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
237 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", | |
238 | FALSE, 0x00000000, 0x00000000, TRUE), | |
239 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
240 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", | |
241 | FALSE, 0x00000000, 0x00000000, TRUE), | |
242 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
243 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", | |
244 | FALSE, 0x00000000, 0x00000000, TRUE), | |
245 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
246 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", | |
247 | FALSE, 0x00000000, 0x00000000, TRUE), | |
248 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
249 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", | |
250 | FALSE, 0x00000000, 0x00000000, TRUE), | |
251 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
252 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", | |
253 | FALSE, 0x00000000, 0x00000000, TRUE), | |
254 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
255 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", | |
256 | FALSE, 0x00000000, 0x00000000, TRUE), | |
257 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
258 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", | |
259 | FALSE, 0x00000000, 0x00000000, TRUE), | |
260 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
261 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", | |
262 | FALSE, 0x00000000, 0x00000000, TRUE), | |
263 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
264 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", | |
265 | FALSE, 0x00000000, 0x00000000, TRUE), | |
266 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
267 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", | |
268 | FALSE, 0x00000000, 0x00000000, TRUE), | |
269 | ||
270 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
271 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", | |
273 | FALSE, 0x00000000, 0x00000000, TRUE), | |
274 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
275 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", | |
276 | FALSE, 0x00000000, 0x00000000, TRUE), | |
277 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", | |
279 | FALSE, 0x00000000, 0x00000000, TRUE), | |
280 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
281 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", | |
282 | FALSE, 0x00000000, 0x00000000, TRUE), | |
283 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", | |
285 | FALSE, 0x00000000, 0x00000000, TRUE), | |
286 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
287 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", | |
288 | FALSE, 0x00000000, 0x00000000, TRUE), | |
289 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", | |
291 | FALSE, 0x00000000, 0x00000000, TRUE), | |
292 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
293 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", | |
294 | FALSE, 0x00000000, 0x00000000, TRUE), | |
295 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
296 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", | |
297 | FALSE, 0x00000000, 0x00000000, TRUE), | |
298 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
299 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", | |
300 | FALSE, 0x00000000, 0x00000000, TRUE), | |
301 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
302 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", | |
303 | FALSE, 0x00000000, 0x00000000, TRUE), | |
304 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
305 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", | |
306 | FALSE, 0x00000000, 0x00000000, TRUE), | |
307 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
308 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", | |
309 | FALSE, 0x00000000, 0x00000000, TRUE), | |
310 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
311 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", | |
312 | FALSE, 0x00000000, 0x00000000, TRUE), | |
313 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
314 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", | |
315 | FALSE, 0x00000000, 0x00000000, TRUE) | |
e0001a05 NC |
316 | }; |
317 | ||
43cd72b9 | 318 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
319 | #define TRACE(str) \ |
320 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
321 | #else | |
322 | #define TRACE(str) | |
323 | #endif | |
324 | ||
325 | static reloc_howto_type * | |
7fa3d080 BW |
326 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
327 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
328 | { |
329 | switch (code) | |
330 | { | |
331 | case BFD_RELOC_NONE: | |
332 | TRACE ("BFD_RELOC_NONE"); | |
333 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
334 | ||
335 | case BFD_RELOC_32: | |
336 | TRACE ("BFD_RELOC_32"); | |
337 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
338 | ||
43cd72b9 BW |
339 | case BFD_RELOC_XTENSA_DIFF8: |
340 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
341 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
342 | ||
343 | case BFD_RELOC_XTENSA_DIFF16: | |
344 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
345 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
346 | ||
347 | case BFD_RELOC_XTENSA_DIFF32: | |
348 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
349 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
350 | ||
e0001a05 NC |
351 | case BFD_RELOC_XTENSA_RTLD: |
352 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
353 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
354 | ||
355 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
356 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
357 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
358 | ||
359 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
360 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
361 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
362 | ||
363 | case BFD_RELOC_XTENSA_RELATIVE: | |
364 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
365 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
366 | ||
367 | case BFD_RELOC_XTENSA_PLT: | |
368 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
369 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
370 | ||
371 | case BFD_RELOC_XTENSA_OP0: | |
372 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
373 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
374 | ||
375 | case BFD_RELOC_XTENSA_OP1: | |
376 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
377 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
378 | ||
379 | case BFD_RELOC_XTENSA_OP2: | |
380 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
381 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
382 | ||
383 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
384 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
385 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
386 | ||
387 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
388 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
389 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
390 | ||
391 | case BFD_RELOC_VTABLE_INHERIT: | |
392 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
393 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
394 | ||
395 | case BFD_RELOC_VTABLE_ENTRY: | |
396 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
397 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
398 | ||
399 | default: | |
43cd72b9 BW |
400 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
401 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
402 | { | |
403 | unsigned n = (R_XTENSA_SLOT0_OP + | |
404 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
405 | return &elf_howto_table[n]; | |
406 | } | |
407 | ||
408 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
409 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
410 | { | |
411 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
412 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
413 | return &elf_howto_table[n]; | |
414 | } | |
415 | ||
e0001a05 NC |
416 | break; |
417 | } | |
418 | ||
419 | TRACE ("Unknown"); | |
420 | return NULL; | |
421 | } | |
422 | ||
423 | ||
424 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
425 | it in the BFD internal arelent representation of the relocation. */ | |
426 | ||
427 | static void | |
7fa3d080 BW |
428 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
429 | arelent *cache_ptr, | |
430 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
431 | { |
432 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
433 | ||
434 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
435 | cache_ptr->howto = &elf_howto_table[r_type]; | |
436 | } | |
437 | ||
438 | \f | |
439 | /* Functions for the Xtensa ELF linker. */ | |
440 | ||
441 | /* The name of the dynamic interpreter. This is put in the .interp | |
442 | section. */ | |
443 | ||
444 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
445 | ||
446 | /* The size in bytes of an entry in the procedure linkage table. | |
447 | (This does _not_ include the space for the literals associated with | |
448 | the PLT entry.) */ | |
449 | ||
450 | #define PLT_ENTRY_SIZE 16 | |
451 | ||
452 | /* For _really_ large PLTs, we may need to alternate between literals | |
453 | and code to keep the literals within the 256K range of the L32R | |
454 | instructions in the code. It's unlikely that anyone would ever need | |
455 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
456 | Thus, we split the PLT into chunks. Since there's very little | |
457 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
458 | small so that the code for handling multiple chunks get used and | |
459 | tested regularly. With 254 entries, there are 1K of literals for | |
460 | each chunk, and that seems like a nice round number. */ | |
461 | ||
462 | #define PLT_ENTRIES_PER_CHUNK 254 | |
463 | ||
464 | /* PLT entries are actually used as stub functions for lazy symbol | |
465 | resolution. Once the symbol is resolved, the stub function is never | |
466 | invoked. Note: the 32-byte frame size used here cannot be changed | |
467 | without a corresponding change in the runtime linker. */ | |
468 | ||
469 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
470 | { | |
471 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
472 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
473 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
474 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
475 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
476 | 0 /* unused */ | |
477 | }; | |
478 | ||
479 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
480 | { | |
481 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
482 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
483 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
484 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
485 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
486 | 0 /* unused */ | |
487 | }; | |
488 | ||
f0e6fdb2 BW |
489 | /* Xtensa ELF linker hash table. */ |
490 | ||
491 | struct elf_xtensa_link_hash_table | |
492 | { | |
493 | struct elf_link_hash_table elf; | |
494 | ||
495 | /* Short-cuts to get to dynamic linker sections. */ | |
496 | asection *sgot; | |
497 | asection *sgotplt; | |
498 | asection *srelgot; | |
499 | asection *splt; | |
500 | asection *srelplt; | |
501 | asection *sgotloc; | |
502 | asection *spltlittbl; | |
503 | ||
504 | /* Total count of PLT relocations seen during check_relocs. | |
505 | The actual PLT code must be split into multiple sections and all | |
506 | the sections have to be created before size_dynamic_sections, | |
507 | where we figure out the exact number of PLT entries that will be | |
508 | needed. It is OK if this count is an overestimate, e.g., some | |
509 | relocations may be removed by GC. */ | |
510 | int plt_reloc_count; | |
511 | }; | |
512 | ||
513 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
514 | ||
515 | #define elf_xtensa_hash_table(p) \ | |
516 | ((struct elf_xtensa_link_hash_table *) ((p)->hash)) | |
517 | ||
518 | /* Create an Xtensa ELF linker hash table. */ | |
519 | ||
520 | static struct bfd_link_hash_table * | |
521 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
522 | { | |
523 | struct elf_xtensa_link_hash_table *ret; | |
524 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
525 | ||
526 | ret = bfd_malloc (amt); | |
527 | if (ret == NULL) | |
528 | return NULL; | |
529 | ||
530 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
531 | _bfd_elf_link_hash_newfunc, | |
532 | sizeof (struct elf_link_hash_entry))) | |
533 | { | |
534 | free (ret); | |
535 | return NULL; | |
536 | } | |
537 | ||
538 | ret->sgot = NULL; | |
539 | ret->sgotplt = NULL; | |
540 | ret->srelgot = NULL; | |
541 | ret->splt = NULL; | |
542 | ret->srelplt = NULL; | |
543 | ret->sgotloc = NULL; | |
544 | ret->spltlittbl = NULL; | |
545 | ||
546 | ret->plt_reloc_count = 0; | |
547 | ||
548 | return &ret->elf.root; | |
549 | } | |
571b5725 BW |
550 | |
551 | static inline bfd_boolean | |
7fa3d080 BW |
552 | xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
553 | struct bfd_link_info *info) | |
571b5725 BW |
554 | { |
555 | /* Check if we should do dynamic things to this symbol. The | |
556 | "ignore_protected" argument need not be set, because Xtensa code | |
557 | does not require special handling of STV_PROTECTED to make function | |
558 | pointer comparisons work properly. The PLT addresses are never | |
559 | used for function pointers. */ | |
560 | ||
561 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
562 | } | |
563 | ||
e0001a05 NC |
564 | \f |
565 | static int | |
7fa3d080 | 566 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
567 | { |
568 | const property_table_entry *a = (const property_table_entry *) ap; | |
569 | const property_table_entry *b = (const property_table_entry *) bp; | |
570 | ||
43cd72b9 BW |
571 | if (a->address == b->address) |
572 | { | |
43cd72b9 BW |
573 | if (a->size != b->size) |
574 | return (a->size - b->size); | |
575 | ||
576 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
577 | return ((b->flags & XTENSA_PROP_ALIGN) | |
578 | - (a->flags & XTENSA_PROP_ALIGN)); | |
579 | ||
580 | if ((a->flags & XTENSA_PROP_ALIGN) | |
581 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
582 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
583 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
584 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
585 | ||
586 | if ((a->flags & XTENSA_PROP_UNREACHABLE) | |
587 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
588 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
589 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
590 | ||
591 | return (a->flags - b->flags); | |
592 | } | |
593 | ||
594 | return (a->address - b->address); | |
595 | } | |
596 | ||
597 | ||
598 | static int | |
7fa3d080 | 599 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
600 | { |
601 | const property_table_entry *a = (const property_table_entry *) ap; | |
602 | const property_table_entry *b = (const property_table_entry *) bp; | |
603 | ||
604 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
605 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
606 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
607 | return 0; | |
608 | ||
609 | return (a->address - b->address); | |
610 | } | |
611 | ||
612 | ||
43cd72b9 BW |
613 | /* Get the literal table or property table entries for the given |
614 | section. Sets TABLE_P and returns the number of entries. On | |
615 | error, returns a negative value. */ | |
e0001a05 | 616 | |
7fa3d080 BW |
617 | static int |
618 | xtensa_read_table_entries (bfd *abfd, | |
619 | asection *section, | |
620 | property_table_entry **table_p, | |
621 | const char *sec_name, | |
622 | bfd_boolean output_addr) | |
e0001a05 NC |
623 | { |
624 | asection *table_section; | |
e0001a05 NC |
625 | bfd_size_type table_size = 0; |
626 | bfd_byte *table_data; | |
627 | property_table_entry *blocks; | |
e4115460 | 628 | int blk, block_count; |
e0001a05 NC |
629 | bfd_size_type num_records; |
630 | Elf_Internal_Rela *internal_relocs; | |
3ba3bc8c | 631 | bfd_vma section_addr; |
43cd72b9 BW |
632 | flagword predef_flags; |
633 | bfd_size_type table_entry_size; | |
634 | ||
635 | if (!section | |
636 | || !(section->flags & SEC_ALLOC) | |
637 | || (section->flags & SEC_DEBUGGING)) | |
638 | { | |
639 | *table_p = NULL; | |
640 | return 0; | |
641 | } | |
e0001a05 | 642 | |
74869ac7 | 643 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 644 | if (table_section) |
eea6121a | 645 | table_size = table_section->size; |
43cd72b9 | 646 | |
e0001a05 NC |
647 | if (table_size == 0) |
648 | { | |
649 | *table_p = NULL; | |
650 | return 0; | |
651 | } | |
652 | ||
43cd72b9 BW |
653 | predef_flags = xtensa_get_property_predef_flags (table_section); |
654 | table_entry_size = 12; | |
655 | if (predef_flags) | |
656 | table_entry_size -= 4; | |
657 | ||
658 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
659 | table_data = retrieve_contents (abfd, table_section, TRUE); |
660 | blocks = (property_table_entry *) | |
661 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
662 | block_count = 0; | |
43cd72b9 BW |
663 | |
664 | if (output_addr) | |
665 | section_addr = section->output_section->vma + section->output_offset; | |
666 | else | |
667 | section_addr = section->vma; | |
3ba3bc8c | 668 | |
e0001a05 NC |
669 | /* If the file has not yet been relocated, process the relocations |
670 | and sort out the table entries that apply to the specified section. */ | |
671 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); | |
3ba3bc8c | 672 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 NC |
673 | { |
674 | unsigned i; | |
675 | ||
676 | for (i = 0; i < table_section->reloc_count; i++) | |
677 | { | |
678 | Elf_Internal_Rela *rel = &internal_relocs[i]; | |
679 | unsigned long r_symndx; | |
680 | ||
681 | if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE) | |
682 | continue; | |
683 | ||
684 | BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32); | |
685 | r_symndx = ELF32_R_SYM (rel->r_info); | |
686 | ||
687 | if (get_elf_r_symndx_section (abfd, r_symndx) == section) | |
688 | { | |
689 | bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx); | |
43cd72b9 | 690 | BFD_ASSERT (sym_off == 0); |
e0001a05 | 691 | blocks[block_count].address = |
3ba3bc8c | 692 | (section_addr + sym_off + rel->r_addend |
e0001a05 NC |
693 | + bfd_get_32 (abfd, table_data + rel->r_offset)); |
694 | blocks[block_count].size = | |
695 | bfd_get_32 (abfd, table_data + rel->r_offset + 4); | |
43cd72b9 BW |
696 | if (predef_flags) |
697 | blocks[block_count].flags = predef_flags; | |
698 | else | |
699 | blocks[block_count].flags = | |
700 | bfd_get_32 (abfd, table_data + rel->r_offset + 8); | |
e0001a05 NC |
701 | block_count++; |
702 | } | |
703 | } | |
704 | } | |
705 | else | |
706 | { | |
3ba3bc8c BW |
707 | /* The file has already been relocated and the addresses are |
708 | already in the table. */ | |
e0001a05 | 709 | bfd_vma off; |
43cd72b9 | 710 | bfd_size_type section_limit = bfd_get_section_limit (abfd, section); |
e0001a05 | 711 | |
43cd72b9 | 712 | for (off = 0; off < table_size; off += table_entry_size) |
e0001a05 NC |
713 | { |
714 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
715 | ||
3ba3bc8c | 716 | if (address >= section_addr |
43cd72b9 | 717 | && address < section_addr + section_limit) |
e0001a05 NC |
718 | { |
719 | blocks[block_count].address = address; | |
720 | blocks[block_count].size = | |
721 | bfd_get_32 (abfd, table_data + off + 4); | |
43cd72b9 BW |
722 | if (predef_flags) |
723 | blocks[block_count].flags = predef_flags; | |
724 | else | |
725 | blocks[block_count].flags = | |
726 | bfd_get_32 (abfd, table_data + off + 8); | |
e0001a05 NC |
727 | block_count++; |
728 | } | |
729 | } | |
730 | } | |
731 | ||
732 | release_contents (table_section, table_data); | |
733 | release_internal_relocs (table_section, internal_relocs); | |
734 | ||
43cd72b9 | 735 | if (block_count > 0) |
e0001a05 NC |
736 | { |
737 | /* Now sort them into address order for easy reference. */ | |
738 | qsort (blocks, block_count, sizeof (property_table_entry), | |
739 | property_table_compare); | |
e4115460 BW |
740 | |
741 | /* Check that the table contents are valid. Problems may occur, | |
742 | for example, if an unrelocated object file is stripped. */ | |
743 | for (blk = 1; blk < block_count; blk++) | |
744 | { | |
745 | /* The only circumstance where two entries may legitimately | |
746 | have the same address is when one of them is a zero-size | |
747 | placeholder to mark a place where fill can be inserted. | |
748 | The zero-size entry should come first. */ | |
749 | if (blocks[blk - 1].address == blocks[blk].address && | |
750 | blocks[blk - 1].size != 0) | |
751 | { | |
752 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
753 | abfd, section); | |
754 | bfd_set_error (bfd_error_bad_value); | |
755 | free (blocks); | |
756 | return -1; | |
757 | } | |
758 | } | |
e0001a05 | 759 | } |
43cd72b9 | 760 | |
e0001a05 NC |
761 | *table_p = blocks; |
762 | return block_count; | |
763 | } | |
764 | ||
765 | ||
7fa3d080 BW |
766 | static property_table_entry * |
767 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
768 | int property_table_size, | |
769 | bfd_vma addr) | |
e0001a05 NC |
770 | { |
771 | property_table_entry entry; | |
43cd72b9 | 772 | property_table_entry *rv; |
e0001a05 | 773 | |
43cd72b9 BW |
774 | if (property_table_size == 0) |
775 | return NULL; | |
e0001a05 NC |
776 | |
777 | entry.address = addr; | |
778 | entry.size = 1; | |
43cd72b9 | 779 | entry.flags = 0; |
e0001a05 | 780 | |
43cd72b9 BW |
781 | rv = bsearch (&entry, property_table, property_table_size, |
782 | sizeof (property_table_entry), property_table_matches); | |
783 | return rv; | |
784 | } | |
785 | ||
786 | ||
787 | static bfd_boolean | |
7fa3d080 BW |
788 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
789 | int lit_table_size, | |
790 | bfd_vma addr) | |
43cd72b9 BW |
791 | { |
792 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
793 | return TRUE; |
794 | ||
795 | return FALSE; | |
796 | } | |
797 | ||
798 | \f | |
799 | /* Look through the relocs for a section during the first phase, and | |
800 | calculate needed space in the dynamic reloc sections. */ | |
801 | ||
802 | static bfd_boolean | |
7fa3d080 BW |
803 | elf_xtensa_check_relocs (bfd *abfd, |
804 | struct bfd_link_info *info, | |
805 | asection *sec, | |
806 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 807 | { |
f0e6fdb2 | 808 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
809 | Elf_Internal_Shdr *symtab_hdr; |
810 | struct elf_link_hash_entry **sym_hashes; | |
811 | const Elf_Internal_Rela *rel; | |
812 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 813 | |
1049f94e | 814 | if (info->relocatable) |
e0001a05 NC |
815 | return TRUE; |
816 | ||
f0e6fdb2 | 817 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
818 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
819 | sym_hashes = elf_sym_hashes (abfd); | |
820 | ||
e0001a05 NC |
821 | rel_end = relocs + sec->reloc_count; |
822 | for (rel = relocs; rel < rel_end; rel++) | |
823 | { | |
824 | unsigned int r_type; | |
825 | unsigned long r_symndx; | |
826 | struct elf_link_hash_entry *h; | |
827 | ||
828 | r_symndx = ELF32_R_SYM (rel->r_info); | |
829 | r_type = ELF32_R_TYPE (rel->r_info); | |
830 | ||
831 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
832 | { | |
d003868e AM |
833 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
834 | abfd, r_symndx); | |
e0001a05 NC |
835 | return FALSE; |
836 | } | |
837 | ||
838 | if (r_symndx < symtab_hdr->sh_info) | |
839 | h = NULL; | |
840 | else | |
841 | { | |
842 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
843 | while (h->root.type == bfd_link_hash_indirect | |
844 | || h->root.type == bfd_link_hash_warning) | |
845 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
846 | } | |
847 | ||
848 | switch (r_type) | |
849 | { | |
850 | case R_XTENSA_32: | |
851 | if (h == NULL) | |
852 | goto local_literal; | |
853 | ||
854 | if ((sec->flags & SEC_ALLOC) != 0) | |
855 | { | |
e0001a05 NC |
856 | if (h->got.refcount <= 0) |
857 | h->got.refcount = 1; | |
858 | else | |
859 | h->got.refcount += 1; | |
860 | } | |
861 | break; | |
862 | ||
863 | case R_XTENSA_PLT: | |
864 | /* If this relocation is against a local symbol, then it's | |
865 | exactly the same as a normal local GOT entry. */ | |
866 | if (h == NULL) | |
867 | goto local_literal; | |
868 | ||
869 | if ((sec->flags & SEC_ALLOC) != 0) | |
870 | { | |
e0001a05 NC |
871 | if (h->plt.refcount <= 0) |
872 | { | |
f5385ebf | 873 | h->needs_plt = 1; |
e0001a05 NC |
874 | h->plt.refcount = 1; |
875 | } | |
876 | else | |
877 | h->plt.refcount += 1; | |
878 | ||
879 | /* Keep track of the total PLT relocation count even if we | |
880 | don't yet know whether the dynamic sections will be | |
881 | created. */ | |
f0e6fdb2 | 882 | htab->plt_reloc_count += 1; |
e0001a05 NC |
883 | |
884 | if (elf_hash_table (info)->dynamic_sections_created) | |
885 | { | |
f0e6fdb2 | 886 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
887 | return FALSE; |
888 | } | |
889 | } | |
890 | break; | |
891 | ||
892 | local_literal: | |
893 | if ((sec->flags & SEC_ALLOC) != 0) | |
894 | { | |
895 | bfd_signed_vma *local_got_refcounts; | |
896 | ||
897 | /* This is a global offset table entry for a local symbol. */ | |
898 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
899 | if (local_got_refcounts == NULL) | |
900 | { | |
901 | bfd_size_type size; | |
902 | ||
903 | size = symtab_hdr->sh_info; | |
904 | size *= sizeof (bfd_signed_vma); | |
43cd72b9 BW |
905 | local_got_refcounts = |
906 | (bfd_signed_vma *) bfd_zalloc (abfd, size); | |
e0001a05 NC |
907 | if (local_got_refcounts == NULL) |
908 | return FALSE; | |
909 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
910 | } | |
911 | local_got_refcounts[r_symndx] += 1; | |
e0001a05 NC |
912 | } |
913 | break; | |
914 | ||
915 | case R_XTENSA_OP0: | |
916 | case R_XTENSA_OP1: | |
917 | case R_XTENSA_OP2: | |
43cd72b9 BW |
918 | case R_XTENSA_SLOT0_OP: |
919 | case R_XTENSA_SLOT1_OP: | |
920 | case R_XTENSA_SLOT2_OP: | |
921 | case R_XTENSA_SLOT3_OP: | |
922 | case R_XTENSA_SLOT4_OP: | |
923 | case R_XTENSA_SLOT5_OP: | |
924 | case R_XTENSA_SLOT6_OP: | |
925 | case R_XTENSA_SLOT7_OP: | |
926 | case R_XTENSA_SLOT8_OP: | |
927 | case R_XTENSA_SLOT9_OP: | |
928 | case R_XTENSA_SLOT10_OP: | |
929 | case R_XTENSA_SLOT11_OP: | |
930 | case R_XTENSA_SLOT12_OP: | |
931 | case R_XTENSA_SLOT13_OP: | |
932 | case R_XTENSA_SLOT14_OP: | |
933 | case R_XTENSA_SLOT0_ALT: | |
934 | case R_XTENSA_SLOT1_ALT: | |
935 | case R_XTENSA_SLOT2_ALT: | |
936 | case R_XTENSA_SLOT3_ALT: | |
937 | case R_XTENSA_SLOT4_ALT: | |
938 | case R_XTENSA_SLOT5_ALT: | |
939 | case R_XTENSA_SLOT6_ALT: | |
940 | case R_XTENSA_SLOT7_ALT: | |
941 | case R_XTENSA_SLOT8_ALT: | |
942 | case R_XTENSA_SLOT9_ALT: | |
943 | case R_XTENSA_SLOT10_ALT: | |
944 | case R_XTENSA_SLOT11_ALT: | |
945 | case R_XTENSA_SLOT12_ALT: | |
946 | case R_XTENSA_SLOT13_ALT: | |
947 | case R_XTENSA_SLOT14_ALT: | |
e0001a05 NC |
948 | case R_XTENSA_ASM_EXPAND: |
949 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 BW |
950 | case R_XTENSA_DIFF8: |
951 | case R_XTENSA_DIFF16: | |
952 | case R_XTENSA_DIFF32: | |
e0001a05 NC |
953 | /* Nothing to do for these. */ |
954 | break; | |
955 | ||
956 | case R_XTENSA_GNU_VTINHERIT: | |
957 | /* This relocation describes the C++ object vtable hierarchy. | |
958 | Reconstruct it for later use during GC. */ | |
c152c796 | 959 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
e0001a05 NC |
960 | return FALSE; |
961 | break; | |
962 | ||
963 | case R_XTENSA_GNU_VTENTRY: | |
964 | /* This relocation describes which C++ vtable entries are actually | |
965 | used. Record for later use during GC. */ | |
c152c796 | 966 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
e0001a05 NC |
967 | return FALSE; |
968 | break; | |
969 | ||
970 | default: | |
971 | break; | |
972 | } | |
973 | } | |
974 | ||
e0001a05 NC |
975 | return TRUE; |
976 | } | |
977 | ||
978 | ||
979 | static void | |
7fa3d080 BW |
980 | elf_xtensa_make_sym_local (struct bfd_link_info *info, |
981 | struct elf_link_hash_entry *h) | |
982 | { | |
983 | if (info->shared) | |
984 | { | |
985 | if (h->plt.refcount > 0) | |
986 | { | |
987 | /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */ | |
988 | if (h->got.refcount < 0) | |
989 | h->got.refcount = 0; | |
990 | h->got.refcount += h->plt.refcount; | |
991 | h->plt.refcount = 0; | |
992 | } | |
993 | } | |
994 | else | |
995 | { | |
996 | /* Don't need any dynamic relocations at all. */ | |
997 | h->plt.refcount = 0; | |
998 | h->got.refcount = 0; | |
999 | } | |
1000 | } | |
1001 | ||
1002 | ||
1003 | static void | |
1004 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
1005 | struct elf_link_hash_entry *h, | |
1006 | bfd_boolean force_local) | |
e0001a05 NC |
1007 | { |
1008 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1009 | space for RELATIVE relocs. */ | |
1010 | elf_xtensa_make_sym_local (info, h); | |
1011 | ||
1012 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1013 | } | |
1014 | ||
1015 | ||
e0001a05 NC |
1016 | /* Return the section that should be marked against GC for a given |
1017 | relocation. */ | |
1018 | ||
1019 | static asection * | |
7fa3d080 | 1020 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1021 | struct bfd_link_info *info, |
7fa3d080 BW |
1022 | Elf_Internal_Rela *rel, |
1023 | struct elf_link_hash_entry *h, | |
1024 | Elf_Internal_Sym *sym) | |
e0001a05 | 1025 | { |
07adf181 AM |
1026 | if (h != NULL) |
1027 | switch (ELF32_R_TYPE (rel->r_info)) | |
1028 | { | |
1029 | case R_XTENSA_GNU_VTINHERIT: | |
1030 | case R_XTENSA_GNU_VTENTRY: | |
1031 | return NULL; | |
1032 | } | |
1033 | ||
1034 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1035 | } |
1036 | ||
7fa3d080 | 1037 | |
e0001a05 NC |
1038 | /* Update the GOT & PLT entry reference counts |
1039 | for the section being removed. */ | |
1040 | ||
1041 | static bfd_boolean | |
7fa3d080 BW |
1042 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
1043 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1044 | asection *sec, | |
1045 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1046 | { |
1047 | Elf_Internal_Shdr *symtab_hdr; | |
1048 | struct elf_link_hash_entry **sym_hashes; | |
1049 | bfd_signed_vma *local_got_refcounts; | |
1050 | const Elf_Internal_Rela *rel, *relend; | |
1051 | ||
1052 | if ((sec->flags & SEC_ALLOC) == 0) | |
1053 | return TRUE; | |
1054 | ||
1055 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1056 | sym_hashes = elf_sym_hashes (abfd); | |
1057 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1058 | ||
1059 | relend = relocs + sec->reloc_count; | |
1060 | for (rel = relocs; rel < relend; rel++) | |
1061 | { | |
1062 | unsigned long r_symndx; | |
1063 | unsigned int r_type; | |
1064 | struct elf_link_hash_entry *h = NULL; | |
1065 | ||
1066 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1067 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1068 | { |
1069 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1070 | while (h->root.type == bfd_link_hash_indirect | |
1071 | || h->root.type == bfd_link_hash_warning) | |
1072 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1073 | } | |
e0001a05 NC |
1074 | |
1075 | r_type = ELF32_R_TYPE (rel->r_info); | |
1076 | switch (r_type) | |
1077 | { | |
1078 | case R_XTENSA_32: | |
1079 | if (h == NULL) | |
1080 | goto local_literal; | |
1081 | if (h->got.refcount > 0) | |
1082 | h->got.refcount--; | |
1083 | break; | |
1084 | ||
1085 | case R_XTENSA_PLT: | |
1086 | if (h == NULL) | |
1087 | goto local_literal; | |
1088 | if (h->plt.refcount > 0) | |
1089 | h->plt.refcount--; | |
1090 | break; | |
1091 | ||
1092 | local_literal: | |
1093 | if (local_got_refcounts[r_symndx] > 0) | |
1094 | local_got_refcounts[r_symndx] -= 1; | |
1095 | break; | |
1096 | ||
1097 | default: | |
1098 | break; | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | return TRUE; | |
1103 | } | |
1104 | ||
1105 | ||
1106 | /* Create all the dynamic sections. */ | |
1107 | ||
1108 | static bfd_boolean | |
7fa3d080 | 1109 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1110 | { |
f0e6fdb2 | 1111 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1112 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1113 | |
1114 | htab = elf_xtensa_hash_table (info); | |
e0001a05 NC |
1115 | |
1116 | /* First do all the standard stuff. */ | |
1117 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1118 | return FALSE; | |
f0e6fdb2 BW |
1119 | htab->splt = bfd_get_section_by_name (dynobj, ".plt"); |
1120 | htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1121 | htab->sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1122 | htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); | |
e0001a05 NC |
1123 | |
1124 | /* Create any extra PLT sections in case check_relocs has already | |
1125 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1126 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1127 | return FALSE; |
1128 | ||
e901de89 BW |
1129 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1130 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1131 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1132 | |
1133 | /* Mark the ".got.plt" section READONLY. */ | |
f0e6fdb2 BW |
1134 | if (htab->sgotplt == NULL |
1135 | || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) | |
e0001a05 NC |
1136 | return FALSE; |
1137 | ||
1138 | /* Create ".rela.got". */ | |
f0e6fdb2 BW |
1139 | htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags); |
1140 | if (htab->srelgot == NULL | |
1141 | || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2)) | |
e0001a05 NC |
1142 | return FALSE; |
1143 | ||
e901de89 | 1144 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
f0e6fdb2 BW |
1145 | htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags); |
1146 | if (htab->sgotloc == NULL | |
1147 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1148 | return FALSE; |
1149 | ||
e0001a05 | 1150 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
f0e6fdb2 BW |
1151 | htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt", |
1152 | noalloc_flags); | |
1153 | if (htab->spltlittbl == NULL | |
1154 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1155 | return FALSE; |
1156 | ||
1157 | return TRUE; | |
1158 | } | |
1159 | ||
1160 | ||
1161 | static bfd_boolean | |
f0e6fdb2 | 1162 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1163 | { |
f0e6fdb2 | 1164 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1165 | int chunk; |
1166 | ||
1167 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1168 | ".got.plt" sections. */ | |
1169 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1170 | { | |
1171 | char *sname; | |
1172 | flagword flags; | |
1173 | asection *s; | |
1174 | ||
1175 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1176 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1177 | break; |
1178 | ||
1179 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1180 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1181 | ||
1182 | sname = (char *) bfd_malloc (10); | |
1183 | sprintf (sname, ".plt.%u", chunk); | |
ba05963f | 1184 | s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1185 | if (s == NULL |
e0001a05 NC |
1186 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1187 | return FALSE; | |
1188 | ||
1189 | sname = (char *) bfd_malloc (14); | |
1190 | sprintf (sname, ".got.plt.%u", chunk); | |
3496cb2a | 1191 | s = bfd_make_section_with_flags (dynobj, sname, flags); |
e0001a05 | 1192 | if (s == NULL |
e0001a05 NC |
1193 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1194 | return FALSE; | |
1195 | } | |
1196 | ||
1197 | return TRUE; | |
1198 | } | |
1199 | ||
1200 | ||
1201 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1202 | regular object. The current definition is in some section of the | |
1203 | dynamic object, but we're not including those sections. We have to | |
1204 | change the definition to something the rest of the link can | |
1205 | understand. */ | |
1206 | ||
1207 | static bfd_boolean | |
7fa3d080 BW |
1208 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1209 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1210 | { |
1211 | /* If this is a weak symbol, and there is a real definition, the | |
1212 | processor independent code will have arranged for us to see the | |
1213 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1214 | if (h->u.weakdef) |
e0001a05 | 1215 | { |
f6e332e6 AM |
1216 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1217 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1218 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1219 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1220 | return TRUE; |
1221 | } | |
1222 | ||
1223 | /* This is a reference to a symbol defined by a dynamic object. The | |
1224 | reference must go through the GOT, so there's no need for COPY relocs, | |
1225 | .dynbss, etc. */ | |
1226 | ||
1227 | return TRUE; | |
1228 | } | |
1229 | ||
1230 | ||
e0001a05 | 1231 | static bfd_boolean |
7fa3d080 | 1232 | elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1233 | { |
1234 | struct bfd_link_info *info = (struct bfd_link_info *) arg; | |
1235 | ||
1236 | if (h->root.type == bfd_link_hash_warning) | |
1237 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1238 | ||
571b5725 | 1239 | if (! xtensa_elf_dynamic_symbol_p (h, info)) |
e0001a05 NC |
1240 | elf_xtensa_make_sym_local (info, h); |
1241 | ||
e0001a05 NC |
1242 | return TRUE; |
1243 | } | |
1244 | ||
1245 | ||
1246 | static bfd_boolean | |
7fa3d080 | 1247 | elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1248 | { |
1249 | asection *srelplt = (asection *) arg; | |
1250 | ||
1251 | if (h->root.type == bfd_link_hash_warning) | |
1252 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1253 | ||
1254 | if (h->plt.refcount > 0) | |
eea6121a | 1255 | srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1256 | |
1257 | return TRUE; | |
1258 | } | |
1259 | ||
1260 | ||
1261 | static bfd_boolean | |
7fa3d080 | 1262 | elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1263 | { |
1264 | asection *srelgot = (asection *) arg; | |
1265 | ||
1266 | if (h->root.type == bfd_link_hash_warning) | |
1267 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1268 | ||
1269 | if (h->got.refcount > 0) | |
eea6121a | 1270 | srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1271 | |
1272 | return TRUE; | |
1273 | } | |
1274 | ||
1275 | ||
1276 | static void | |
f0e6fdb2 | 1277 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1278 | { |
f0e6fdb2 | 1279 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1280 | bfd *i; |
1281 | ||
f0e6fdb2 BW |
1282 | htab = elf_xtensa_hash_table (info); |
1283 | ||
e0001a05 NC |
1284 | for (i = info->input_bfds; i; i = i->link_next) |
1285 | { | |
1286 | bfd_signed_vma *local_got_refcounts; | |
1287 | bfd_size_type j, cnt; | |
1288 | Elf_Internal_Shdr *symtab_hdr; | |
1289 | ||
1290 | local_got_refcounts = elf_local_got_refcounts (i); | |
1291 | if (!local_got_refcounts) | |
1292 | continue; | |
1293 | ||
1294 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1295 | cnt = symtab_hdr->sh_info; | |
1296 | ||
1297 | for (j = 0; j < cnt; ++j) | |
1298 | { | |
1299 | if (local_got_refcounts[j] > 0) | |
f0e6fdb2 BW |
1300 | htab->srelgot->size += (local_got_refcounts[j] |
1301 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1302 | } |
1303 | } | |
1304 | } | |
1305 | ||
1306 | ||
1307 | /* Set the sizes of the dynamic sections. */ | |
1308 | ||
1309 | static bfd_boolean | |
7fa3d080 BW |
1310 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1311 | struct bfd_link_info *info) | |
e0001a05 | 1312 | { |
f0e6fdb2 | 1313 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1314 | bfd *dynobj, *abfd; |
1315 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1316 | bfd_boolean relplt, relgot; |
1317 | int plt_entries, plt_chunks, chunk; | |
1318 | ||
1319 | plt_entries = 0; | |
1320 | plt_chunks = 0; | |
e0001a05 | 1321 | |
f0e6fdb2 | 1322 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
1323 | dynobj = elf_hash_table (info)->dynobj; |
1324 | if (dynobj == NULL) | |
1325 | abort (); | |
f0e6fdb2 BW |
1326 | srelgot = htab->srelgot; |
1327 | srelplt = htab->srelplt; | |
e0001a05 NC |
1328 | |
1329 | if (elf_hash_table (info)->dynamic_sections_created) | |
1330 | { | |
f0e6fdb2 BW |
1331 | BFD_ASSERT (htab->srelgot != NULL |
1332 | && htab->srelplt != NULL | |
1333 | && htab->sgot != NULL | |
1334 | && htab->spltlittbl != NULL | |
1335 | && htab->sgotloc != NULL); | |
1336 | ||
e0001a05 | 1337 | /* Set the contents of the .interp section to the interpreter. */ |
893c4fe2 | 1338 | if (info->executable) |
e0001a05 NC |
1339 | { |
1340 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1341 | if (s == NULL) | |
1342 | abort (); | |
eea6121a | 1343 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1344 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1345 | } | |
1346 | ||
1347 | /* Allocate room for one word in ".got". */ | |
f0e6fdb2 | 1348 | htab->sgot->size = 4; |
e0001a05 NC |
1349 | |
1350 | /* Adjust refcounts for symbols that we now know are not "dynamic". */ | |
1351 | elf_link_hash_traverse (elf_hash_table (info), | |
1352 | elf_xtensa_fix_refcounts, | |
7fa3d080 | 1353 | (void *) info); |
e0001a05 NC |
1354 | |
1355 | /* Allocate space in ".rela.got" for literals that reference | |
1356 | global symbols. */ | |
e0001a05 NC |
1357 | elf_link_hash_traverse (elf_hash_table (info), |
1358 | elf_xtensa_allocate_got_size, | |
7fa3d080 | 1359 | (void *) srelgot); |
e0001a05 NC |
1360 | |
1361 | /* If we are generating a shared object, we also need space in | |
1362 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1363 | reference local symbols. */ | |
1364 | if (info->shared) | |
f0e6fdb2 | 1365 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 NC |
1366 | |
1367 | /* Allocate space in ".rela.plt" for literals that have PLT entries. */ | |
e0001a05 NC |
1368 | elf_link_hash_traverse (elf_hash_table (info), |
1369 | elf_xtensa_allocate_plt_size, | |
7fa3d080 | 1370 | (void *) srelplt); |
e0001a05 NC |
1371 | |
1372 | /* Allocate space in ".plt" to match the size of ".rela.plt". For | |
1373 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1374 | For each chunk of ".plt", we also need two more 4-byte | |
1375 | literals, two corresponding entries in ".rela.got", and an | |
1376 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1377 | spltlittbl = htab->spltlittbl; |
eea6121a | 1378 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1379 | plt_chunks = |
1380 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1381 | ||
1382 | /* Iterate over all the PLT chunks, including any extra sections | |
1383 | created earlier because the initial count of PLT relocations | |
1384 | was an overestimate. */ | |
1385 | for (chunk = 0; | |
f0e6fdb2 | 1386 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1387 | chunk++) |
1388 | { | |
1389 | int chunk_entries; | |
1390 | ||
f0e6fdb2 BW |
1391 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1392 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1393 | |
1394 | if (chunk < plt_chunks - 1) | |
1395 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1396 | else if (chunk == plt_chunks - 1) | |
1397 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1398 | else | |
1399 | chunk_entries = 0; | |
1400 | ||
1401 | if (chunk_entries != 0) | |
1402 | { | |
eea6121a AM |
1403 | sgotplt->size = 4 * (chunk_entries + 2); |
1404 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1405 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1406 | spltlittbl->size += 8; | |
e0001a05 NC |
1407 | } |
1408 | else | |
1409 | { | |
eea6121a AM |
1410 | sgotplt->size = 0; |
1411 | splt->size = 0; | |
e0001a05 NC |
1412 | } |
1413 | } | |
e901de89 BW |
1414 | |
1415 | /* Allocate space in ".got.loc" to match the total size of all the | |
1416 | literal tables. */ | |
f0e6fdb2 | 1417 | sgotloc = htab->sgotloc; |
eea6121a | 1418 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1419 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1420 | { | |
1421 | if (abfd->flags & DYNAMIC) | |
1422 | continue; | |
1423 | for (s = abfd->sections; s != NULL; s = s->next) | |
1424 | { | |
b536dc1e BW |
1425 | if (! elf_discarded_section (s) |
1426 | && xtensa_is_littable_section (s) | |
1427 | && s != spltlittbl) | |
eea6121a | 1428 | sgotloc->size += s->size; |
e901de89 BW |
1429 | } |
1430 | } | |
e0001a05 NC |
1431 | } |
1432 | ||
1433 | /* Allocate memory for dynamic sections. */ | |
1434 | relplt = FALSE; | |
1435 | relgot = FALSE; | |
1436 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1437 | { | |
1438 | const char *name; | |
e0001a05 NC |
1439 | |
1440 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1441 | continue; | |
1442 | ||
1443 | /* It's OK to base decisions on the section name, because none | |
1444 | of the dynobj section names depend upon the input files. */ | |
1445 | name = bfd_get_section_name (dynobj, s); | |
1446 | ||
0112cd26 | 1447 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1448 | { |
c456f082 | 1449 | if (s->size != 0) |
e0001a05 | 1450 | { |
c456f082 AM |
1451 | if (strcmp (name, ".rela.plt") == 0) |
1452 | relplt = TRUE; | |
1453 | else if (strcmp (name, ".rela.got") == 0) | |
1454 | relgot = TRUE; | |
1455 | ||
1456 | /* We use the reloc_count field as a counter if we need | |
1457 | to copy relocs into the output file. */ | |
1458 | s->reloc_count = 0; | |
e0001a05 NC |
1459 | } |
1460 | } | |
0112cd26 NC |
1461 | else if (! CONST_STRNEQ (name, ".plt.") |
1462 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1463 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1464 | && strcmp (name, ".plt") != 0 |
1465 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1466 | && strcmp (name, ".xt.lit.plt") != 0 |
1467 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1468 | { |
1469 | /* It's not one of our sections, so don't allocate space. */ | |
1470 | continue; | |
1471 | } | |
1472 | ||
c456f082 AM |
1473 | if (s->size == 0) |
1474 | { | |
1475 | /* If we don't need this section, strip it from the output | |
1476 | file. We must create the ".plt*" and ".got.plt*" | |
1477 | sections in create_dynamic_sections and/or check_relocs | |
1478 | based on a conservative estimate of the PLT relocation | |
1479 | count, because the sections must be created before the | |
1480 | linker maps input sections to output sections. The | |
1481 | linker does that before size_dynamic_sections, where we | |
1482 | compute the exact size of the PLT, so there may be more | |
1483 | of these sections than are actually needed. */ | |
1484 | s->flags |= SEC_EXCLUDE; | |
1485 | } | |
1486 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1487 | { |
1488 | /* Allocate memory for the section contents. */ | |
eea6121a | 1489 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1490 | if (s->contents == NULL) |
e0001a05 NC |
1491 | return FALSE; |
1492 | } | |
1493 | } | |
1494 | ||
1495 | if (elf_hash_table (info)->dynamic_sections_created) | |
1496 | { | |
1497 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1498 | known until finish_dynamic_sections, but we need to get the relocs | |
1499 | in place before they are sorted. */ | |
e0001a05 NC |
1500 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1501 | { | |
1502 | Elf_Internal_Rela irela; | |
1503 | bfd_byte *loc; | |
1504 | ||
1505 | irela.r_offset = 0; | |
1506 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1507 | irela.r_addend = 0; | |
1508 | ||
1509 | loc = (srelgot->contents | |
1510 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1511 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1512 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1513 | loc + sizeof (Elf32_External_Rela)); | |
1514 | srelgot->reloc_count += 2; | |
1515 | } | |
1516 | ||
1517 | /* Add some entries to the .dynamic section. We fill in the | |
1518 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1519 | must add the entries now so that we get the correct size for | |
1520 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1521 | dynamic linker and used by the debugger. */ | |
1522 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1523 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1524 | |
ba05963f | 1525 | if (info->executable) |
e0001a05 NC |
1526 | { |
1527 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1528 | return FALSE; | |
1529 | } | |
1530 | ||
1531 | if (relplt) | |
1532 | { | |
1533 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1534 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1535 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1536 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1537 | return FALSE; | |
1538 | } | |
1539 | ||
1540 | if (relgot) | |
1541 | { | |
1542 | if (!add_dynamic_entry (DT_RELA, 0) | |
1543 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1544 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1545 | return FALSE; | |
1546 | } | |
1547 | ||
e0001a05 NC |
1548 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) |
1549 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) | |
1550 | return FALSE; | |
1551 | } | |
1552 | #undef add_dynamic_entry | |
1553 | ||
1554 | return TRUE; | |
1555 | } | |
1556 | ||
e0001a05 NC |
1557 | \f |
1558 | /* Perform the specified relocation. The instruction at (contents + address) | |
1559 | is modified to set one operand to represent the value in "relocation". The | |
1560 | operand position is determined by the relocation type recorded in the | |
1561 | howto. */ | |
1562 | ||
1563 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1564 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1565 | |
1566 | static bfd_reloc_status_type | |
7fa3d080 BW |
1567 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1568 | bfd *abfd, | |
1569 | asection *input_section, | |
1570 | bfd_vma relocation, | |
1571 | bfd_byte *contents, | |
1572 | bfd_vma address, | |
1573 | bfd_boolean is_weak_undef, | |
1574 | char **error_message) | |
e0001a05 | 1575 | { |
43cd72b9 | 1576 | xtensa_format fmt; |
e0001a05 | 1577 | xtensa_opcode opcode; |
e0001a05 | 1578 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1579 | static xtensa_insnbuf ibuff = NULL; |
1580 | static xtensa_insnbuf sbuff = NULL; | |
1581 | bfd_vma self_address = 0; | |
1582 | bfd_size_type input_size; | |
1583 | int opnd, slot; | |
e0001a05 NC |
1584 | uint32 newval; |
1585 | ||
43cd72b9 BW |
1586 | if (!ibuff) |
1587 | { | |
1588 | ibuff = xtensa_insnbuf_alloc (isa); | |
1589 | sbuff = xtensa_insnbuf_alloc (isa); | |
1590 | } | |
1591 | ||
1592 | input_size = bfd_get_section_limit (abfd, input_section); | |
1593 | ||
e0001a05 NC |
1594 | switch (howto->type) |
1595 | { | |
1596 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1597 | case R_XTENSA_DIFF8: |
1598 | case R_XTENSA_DIFF16: | |
1599 | case R_XTENSA_DIFF32: | |
e0001a05 NC |
1600 | return bfd_reloc_ok; |
1601 | ||
1602 | case R_XTENSA_ASM_EXPAND: | |
1603 | if (!is_weak_undef) | |
1604 | { | |
1605 | /* Check for windowed CALL across a 1GB boundary. */ | |
1606 | xtensa_opcode opcode = | |
1607 | get_expanded_call_opcode (contents + address, | |
43cd72b9 | 1608 | input_size - address, 0); |
e0001a05 NC |
1609 | if (is_windowed_call_opcode (opcode)) |
1610 | { | |
1611 | self_address = (input_section->output_section->vma | |
1612 | + input_section->output_offset | |
1613 | + address); | |
43cd72b9 BW |
1614 | if ((self_address >> CALL_SEGMENT_BITS) |
1615 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 NC |
1616 | { |
1617 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1618 | "return may fail"; | |
1619 | return bfd_reloc_dangerous; | |
1620 | } | |
1621 | } | |
1622 | } | |
1623 | return bfd_reloc_ok; | |
1624 | ||
1625 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1626 | { |
e0001a05 | 1627 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1628 | bfd_reloc_status_type retval = |
1629 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1630 | error_message); | |
e0001a05 | 1631 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1632 | return bfd_reloc_dangerous; |
e0001a05 NC |
1633 | |
1634 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1635 | address += 3; | |
43cd72b9 | 1636 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1637 | } |
1638 | break; | |
1639 | ||
1640 | case R_XTENSA_32: | |
1641 | case R_XTENSA_PLT: | |
1642 | { | |
1643 | bfd_vma x; | |
1644 | x = bfd_get_32 (abfd, contents + address); | |
1645 | x = x + relocation; | |
1646 | bfd_put_32 (abfd, x, contents + address); | |
1647 | } | |
1648 | return bfd_reloc_ok; | |
1649 | } | |
1650 | ||
43cd72b9 BW |
1651 | /* Only instruction slot-specific relocations handled below.... */ |
1652 | slot = get_relocation_slot (howto->type); | |
1653 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 1654 | { |
43cd72b9 | 1655 | *error_message = "unexpected relocation"; |
e0001a05 NC |
1656 | return bfd_reloc_dangerous; |
1657 | } | |
1658 | ||
43cd72b9 BW |
1659 | /* Read the instruction into a buffer and decode the opcode. */ |
1660 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
1661 | input_size - address); | |
1662 | fmt = xtensa_format_decode (isa, ibuff); | |
1663 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 1664 | { |
43cd72b9 | 1665 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
1666 | return bfd_reloc_dangerous; |
1667 | } | |
1668 | ||
43cd72b9 | 1669 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 1670 | |
43cd72b9 BW |
1671 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1672 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 1673 | { |
43cd72b9 | 1674 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
1675 | return bfd_reloc_dangerous; |
1676 | } | |
1677 | ||
43cd72b9 BW |
1678 | /* Check for opcode-specific "alternate" relocations. */ |
1679 | if (is_alt_relocation (howto->type)) | |
1680 | { | |
1681 | if (opcode == get_l32r_opcode ()) | |
1682 | { | |
1683 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
1684 | bfd *output_bfd = input_section->output_section->owner; | |
1685 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
1686 | if (!lit4_sec) | |
1687 | { | |
1688 | *error_message = "relocation references missing .lit4 section"; | |
1689 | return bfd_reloc_dangerous; | |
1690 | } | |
1691 | self_address = ((lit4_sec->vma & ~0xfff) | |
1692 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
1693 | newval = relocation; | |
1694 | opnd = 1; | |
1695 | } | |
1696 | else if (opcode == get_const16_opcode ()) | |
1697 | { | |
1698 | /* ALT used for high 16 bits. */ | |
1699 | newval = relocation >> 16; | |
1700 | opnd = 1; | |
1701 | } | |
1702 | else | |
1703 | { | |
1704 | /* No other "alternate" relocations currently defined. */ | |
1705 | *error_message = "unexpected relocation"; | |
1706 | return bfd_reloc_dangerous; | |
1707 | } | |
1708 | } | |
1709 | else /* Not an "alternate" relocation.... */ | |
1710 | { | |
1711 | if (opcode == get_const16_opcode ()) | |
1712 | { | |
1713 | newval = relocation & 0xffff; | |
1714 | opnd = 1; | |
1715 | } | |
1716 | else | |
1717 | { | |
1718 | /* ...normal PC-relative relocation.... */ | |
1719 | ||
1720 | /* Determine which operand is being relocated. */ | |
1721 | opnd = get_relocation_opnd (opcode, howto->type); | |
1722 | if (opnd == XTENSA_UNDEFINED) | |
1723 | { | |
1724 | *error_message = "unexpected relocation"; | |
1725 | return bfd_reloc_dangerous; | |
1726 | } | |
1727 | ||
1728 | if (!howto->pc_relative) | |
1729 | { | |
1730 | *error_message = "expected PC-relative relocation"; | |
1731 | return bfd_reloc_dangerous; | |
1732 | } | |
e0001a05 | 1733 | |
43cd72b9 BW |
1734 | /* Calculate the PC address for this instruction. */ |
1735 | self_address = (input_section->output_section->vma | |
1736 | + input_section->output_offset | |
1737 | + address); | |
e0001a05 | 1738 | |
43cd72b9 BW |
1739 | newval = relocation; |
1740 | } | |
1741 | } | |
e0001a05 | 1742 | |
43cd72b9 BW |
1743 | /* Apply the relocation. */ |
1744 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
1745 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
1746 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
1747 | sbuff, newval)) | |
e0001a05 | 1748 | { |
2db662be BW |
1749 | const char *opname = xtensa_opcode_name (isa, opcode); |
1750 | const char *msg; | |
1751 | ||
1752 | msg = "cannot encode"; | |
1753 | if (is_direct_call_opcode (opcode)) | |
1754 | { | |
1755 | if ((relocation & 0x3) != 0) | |
1756 | msg = "misaligned call target"; | |
1757 | else | |
1758 | msg = "call target out of range"; | |
1759 | } | |
1760 | else if (opcode == get_l32r_opcode ()) | |
1761 | { | |
1762 | if ((relocation & 0x3) != 0) | |
1763 | msg = "misaligned literal target"; | |
1764 | else if (is_alt_relocation (howto->type)) | |
1765 | msg = "literal target out of range (too many literals)"; | |
1766 | else if (self_address > relocation) | |
1767 | msg = "literal target out of range (try using text-section-literals)"; | |
1768 | else | |
1769 | msg = "literal placed after use"; | |
1770 | } | |
1771 | ||
1772 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
1773 | return bfd_reloc_dangerous; |
1774 | } | |
1775 | ||
43cd72b9 | 1776 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
1777 | if (is_direct_call_opcode (opcode) |
1778 | && is_windowed_call_opcode (opcode)) | |
1779 | { | |
43cd72b9 BW |
1780 | if ((self_address >> CALL_SEGMENT_BITS) |
1781 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 | 1782 | { |
43cd72b9 BW |
1783 | *error_message = |
1784 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
1785 | return bfd_reloc_dangerous; |
1786 | } | |
1787 | } | |
1788 | ||
43cd72b9 BW |
1789 | /* Write the modified instruction back out of the buffer. */ |
1790 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
1791 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
1792 | input_size - address); | |
e0001a05 NC |
1793 | return bfd_reloc_ok; |
1794 | } | |
1795 | ||
1796 | ||
2db662be | 1797 | static char * |
7fa3d080 | 1798 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
1799 | { |
1800 | /* To reduce the size of the memory leak, | |
1801 | we only use a single message buffer. */ | |
1802 | static bfd_size_type alloc_size = 0; | |
1803 | static char *message = NULL; | |
1804 | bfd_size_type orig_len, len = 0; | |
1805 | bfd_boolean is_append; | |
1806 | ||
1807 | VA_OPEN (ap, arglen); | |
1808 | VA_FIXEDARG (ap, const char *, origmsg); | |
1809 | ||
1810 | is_append = (origmsg == message); | |
1811 | ||
1812 | orig_len = strlen (origmsg); | |
1813 | len = orig_len + strlen (fmt) + arglen + 20; | |
1814 | if (len > alloc_size) | |
1815 | { | |
1816 | message = (char *) bfd_realloc (message, len); | |
1817 | alloc_size = len; | |
1818 | } | |
1819 | if (!is_append) | |
1820 | memcpy (message, origmsg, orig_len); | |
1821 | vsprintf (message + orig_len, fmt, ap); | |
1822 | VA_CLOSE (ap); | |
1823 | return message; | |
1824 | } | |
1825 | ||
1826 | ||
e0001a05 NC |
1827 | /* This function is registered as the "special_function" in the |
1828 | Xtensa howto for handling simplify operations. | |
1829 | bfd_perform_relocation / bfd_install_relocation use it to | |
1830 | perform (install) the specified relocation. Since this replaces the code | |
1831 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
1832 | stripped-down version of bfd_perform_relocation. */ | |
1833 | ||
1834 | static bfd_reloc_status_type | |
7fa3d080 BW |
1835 | bfd_elf_xtensa_reloc (bfd *abfd, |
1836 | arelent *reloc_entry, | |
1837 | asymbol *symbol, | |
1838 | void *data, | |
1839 | asection *input_section, | |
1840 | bfd *output_bfd, | |
1841 | char **error_message) | |
e0001a05 NC |
1842 | { |
1843 | bfd_vma relocation; | |
1844 | bfd_reloc_status_type flag; | |
1845 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
1846 | bfd_vma output_base = 0; | |
1847 | reloc_howto_type *howto = reloc_entry->howto; | |
1848 | asection *reloc_target_output_section; | |
1849 | bfd_boolean is_weak_undef; | |
1850 | ||
dd1a320b BW |
1851 | if (!xtensa_default_isa) |
1852 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
1853 | ||
1049f94e | 1854 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
1855 | output, and the reloc is against an external symbol, the resulting |
1856 | reloc will also be against the same symbol. In such a case, we | |
1857 | don't want to change anything about the way the reloc is handled, | |
1858 | since it will all be done at final link time. This test is similar | |
1859 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
1860 | howto->partial_inplace go through even if the addend is non-zero. | |
1861 | (The real problem is that partial_inplace is set for XTENSA_32 | |
1862 | relocs to begin with, but that's a long story and there's little we | |
1863 | can do about it now....) */ | |
1864 | ||
7fa3d080 | 1865 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
1866 | { |
1867 | reloc_entry->address += input_section->output_offset; | |
1868 | return bfd_reloc_ok; | |
1869 | } | |
1870 | ||
1871 | /* Is the address of the relocation really within the section? */ | |
07515404 | 1872 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
1873 | return bfd_reloc_outofrange; |
1874 | ||
4cc11e76 | 1875 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
1876 | initial relocation command value. */ |
1877 | ||
1878 | /* Get symbol value. (Common symbols are special.) */ | |
1879 | if (bfd_is_com_section (symbol->section)) | |
1880 | relocation = 0; | |
1881 | else | |
1882 | relocation = symbol->value; | |
1883 | ||
1884 | reloc_target_output_section = symbol->section->output_section; | |
1885 | ||
1886 | /* Convert input-section-relative symbol value to absolute. */ | |
1887 | if ((output_bfd && !howto->partial_inplace) | |
1888 | || reloc_target_output_section == NULL) | |
1889 | output_base = 0; | |
1890 | else | |
1891 | output_base = reloc_target_output_section->vma; | |
1892 | ||
1893 | relocation += output_base + symbol->section->output_offset; | |
1894 | ||
1895 | /* Add in supplied addend. */ | |
1896 | relocation += reloc_entry->addend; | |
1897 | ||
1898 | /* Here the variable relocation holds the final address of the | |
1899 | symbol we are relocating against, plus any addend. */ | |
1900 | if (output_bfd) | |
1901 | { | |
1902 | if (!howto->partial_inplace) | |
1903 | { | |
1904 | /* This is a partial relocation, and we want to apply the relocation | |
1905 | to the reloc entry rather than the raw data. Everything except | |
1906 | relocations against section symbols has already been handled | |
1907 | above. */ | |
43cd72b9 | 1908 | |
e0001a05 NC |
1909 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
1910 | reloc_entry->addend = relocation; | |
1911 | reloc_entry->address += input_section->output_offset; | |
1912 | return bfd_reloc_ok; | |
1913 | } | |
1914 | else | |
1915 | { | |
1916 | reloc_entry->address += input_section->output_offset; | |
1917 | reloc_entry->addend = 0; | |
1918 | } | |
1919 | } | |
1920 | ||
1921 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
1922 | && (symbol->flags & BSF_WEAK) != 0); | |
1923 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1924 | (bfd_byte *) data, (bfd_vma) octets, | |
1925 | is_weak_undef, error_message); | |
1926 | ||
1927 | if (flag == bfd_reloc_dangerous) | |
1928 | { | |
1929 | /* Add the symbol name to the error message. */ | |
1930 | if (! *error_message) | |
1931 | *error_message = ""; | |
1932 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
1933 | strlen (symbol->name) + 17, | |
70961b9d AM |
1934 | symbol->name, |
1935 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
1936 | } |
1937 | ||
1938 | return flag; | |
1939 | } | |
1940 | ||
1941 | ||
1942 | /* Set up an entry in the procedure linkage table. */ | |
1943 | ||
1944 | static bfd_vma | |
f0e6fdb2 | 1945 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
1946 | bfd *output_bfd, |
1947 | unsigned reloc_index) | |
e0001a05 NC |
1948 | { |
1949 | asection *splt, *sgotplt; | |
1950 | bfd_vma plt_base, got_base; | |
1951 | bfd_vma code_offset, lit_offset; | |
1952 | int chunk; | |
1953 | ||
1954 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
1955 | splt = elf_xtensa_get_plt_section (info, chunk); |
1956 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
1957 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
1958 | ||
1959 | plt_base = splt->output_section->vma + splt->output_offset; | |
1960 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
1961 | ||
1962 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
1963 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
1964 | ||
1965 | /* Fill in the literal entry. This is the offset of the dynamic | |
1966 | relocation entry. */ | |
1967 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
1968 | sgotplt->contents + lit_offset); | |
1969 | ||
1970 | /* Fill in the entry in the procedure linkage table. */ | |
1971 | memcpy (splt->contents + code_offset, | |
1972 | (bfd_big_endian (output_bfd) | |
1973 | ? elf_xtensa_be_plt_entry | |
1974 | : elf_xtensa_le_plt_entry), | |
1975 | PLT_ENTRY_SIZE); | |
1976 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
1977 | plt_base + code_offset + 3), | |
1978 | splt->contents + code_offset + 4); | |
1979 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
1980 | plt_base + code_offset + 6), | |
1981 | splt->contents + code_offset + 7); | |
1982 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
1983 | plt_base + code_offset + 9), | |
1984 | splt->contents + code_offset + 10); | |
1985 | ||
1986 | return plt_base + code_offset; | |
1987 | } | |
1988 | ||
1989 | ||
e0001a05 | 1990 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 1991 | both relocatable and final links. */ |
e0001a05 NC |
1992 | |
1993 | static bfd_boolean | |
7fa3d080 BW |
1994 | elf_xtensa_relocate_section (bfd *output_bfd, |
1995 | struct bfd_link_info *info, | |
1996 | bfd *input_bfd, | |
1997 | asection *input_section, | |
1998 | bfd_byte *contents, | |
1999 | Elf_Internal_Rela *relocs, | |
2000 | Elf_Internal_Sym *local_syms, | |
2001 | asection **local_sections) | |
e0001a05 | 2002 | { |
f0e6fdb2 | 2003 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2004 | Elf_Internal_Shdr *symtab_hdr; |
2005 | Elf_Internal_Rela *rel; | |
2006 | Elf_Internal_Rela *relend; | |
2007 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2008 | property_table_entry *lit_table = 0; |
2009 | int ltblsize = 0; | |
e0001a05 | 2010 | char *error_message = NULL; |
43cd72b9 | 2011 | bfd_size_type input_size; |
e0001a05 | 2012 | |
43cd72b9 BW |
2013 | if (!xtensa_default_isa) |
2014 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2015 | |
f0e6fdb2 | 2016 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
2017 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2018 | sym_hashes = elf_sym_hashes (input_bfd); | |
2019 | ||
88d65ad6 BW |
2020 | if (elf_hash_table (info)->dynamic_sections_created) |
2021 | { | |
2022 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2023 | &lit_table, XTENSA_LIT_SEC_NAME, |
2024 | TRUE); | |
88d65ad6 BW |
2025 | if (ltblsize < 0) |
2026 | return FALSE; | |
2027 | } | |
2028 | ||
43cd72b9 BW |
2029 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2030 | ||
e0001a05 NC |
2031 | rel = relocs; |
2032 | relend = relocs + input_section->reloc_count; | |
2033 | for (; rel < relend; rel++) | |
2034 | { | |
2035 | int r_type; | |
2036 | reloc_howto_type *howto; | |
2037 | unsigned long r_symndx; | |
2038 | struct elf_link_hash_entry *h; | |
2039 | Elf_Internal_Sym *sym; | |
2040 | asection *sec; | |
2041 | bfd_vma relocation; | |
2042 | bfd_reloc_status_type r; | |
2043 | bfd_boolean is_weak_undef; | |
2044 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2045 | bfd_boolean warned; |
e0001a05 NC |
2046 | |
2047 | r_type = ELF32_R_TYPE (rel->r_info); | |
2048 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2049 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2050 | continue; | |
2051 | ||
2052 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2053 | { | |
2054 | bfd_set_error (bfd_error_bad_value); | |
2055 | return FALSE; | |
2056 | } | |
2057 | howto = &elf_howto_table[r_type]; | |
2058 | ||
2059 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2060 | ||
1049f94e | 2061 | if (info->relocatable) |
e0001a05 | 2062 | { |
43cd72b9 | 2063 | /* This is a relocatable link. |
e0001a05 NC |
2064 | 1) If the reloc is against a section symbol, adjust |
2065 | according to the output section. | |
2066 | 2) If there is a new target for this relocation, | |
2067 | the new target will be in the same output section. | |
2068 | We adjust the relocation by the output section | |
2069 | difference. */ | |
2070 | ||
2071 | if (relaxing_section) | |
2072 | { | |
2073 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2074 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2075 | contents)) | |
2076 | return FALSE; | |
e0001a05 NC |
2077 | r_type = ELF32_R_TYPE (rel->r_info); |
2078 | } | |
2079 | ||
43cd72b9 | 2080 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2081 | { |
43cd72b9 | 2082 | char *error_message = NULL; |
e0001a05 NC |
2083 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2084 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2085 | r = contract_asm_expansion (contents, input_size, rel, |
2086 | &error_message); | |
2087 | if (r != bfd_reloc_ok) | |
2088 | { | |
2089 | if (!((*info->callbacks->reloc_dangerous) | |
2090 | (info, error_message, input_bfd, input_section, | |
2091 | rel->r_offset))) | |
2092 | return FALSE; | |
2093 | } | |
e0001a05 NC |
2094 | r_type = ELF32_R_TYPE (rel->r_info); |
2095 | } | |
2096 | ||
1049f94e | 2097 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2098 | anything unless the reloc is against a section symbol, |
2099 | in which case we have to adjust according to where the | |
2100 | section symbol winds up in the output section. */ | |
2101 | if (r_symndx < symtab_hdr->sh_info) | |
2102 | { | |
2103 | sym = local_syms + r_symndx; | |
2104 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2105 | { | |
2106 | sec = local_sections[r_symndx]; | |
2107 | rel->r_addend += sec->output_offset + sym->st_value; | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | /* If there is an addend with a partial_inplace howto, | |
2112 | then move the addend to the contents. This is a hack | |
1049f94e | 2113 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2114 | with some previous version of BFD. Now we can't easily get |
2115 | rid of the hack without breaking backward compatibility.... */ | |
2116 | if (rel->r_addend) | |
2117 | { | |
2118 | howto = &elf_howto_table[r_type]; | |
2119 | if (howto->partial_inplace) | |
2120 | { | |
2121 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2122 | rel->r_addend, contents, | |
2123 | rel->r_offset, FALSE, | |
2124 | &error_message); | |
2125 | if (r != bfd_reloc_ok) | |
2126 | { | |
2127 | if (!((*info->callbacks->reloc_dangerous) | |
2128 | (info, error_message, input_bfd, input_section, | |
2129 | rel->r_offset))) | |
2130 | return FALSE; | |
2131 | } | |
2132 | rel->r_addend = 0; | |
2133 | } | |
2134 | } | |
2135 | ||
1049f94e | 2136 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2137 | continue; |
2138 | } | |
2139 | ||
2140 | /* This is a final link. */ | |
2141 | ||
2142 | h = NULL; | |
2143 | sym = NULL; | |
2144 | sec = NULL; | |
2145 | is_weak_undef = FALSE; | |
2146 | unresolved_reloc = FALSE; | |
9b8c98a4 | 2147 | warned = FALSE; |
e0001a05 NC |
2148 | |
2149 | if (howto->partial_inplace) | |
2150 | { | |
2151 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2152 | problems with DWARF info in partial links, there may be | |
2153 | an addend stored in the contents. Take it out of there | |
2154 | and move it back into the addend field of the reloc. */ | |
2155 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2156 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2157 | } | |
2158 | ||
2159 | if (r_symndx < symtab_hdr->sh_info) | |
2160 | { | |
2161 | sym = local_syms + r_symndx; | |
2162 | sec = local_sections[r_symndx]; | |
8517fae7 | 2163 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
e0001a05 NC |
2164 | } |
2165 | else | |
2166 | { | |
b2a8e766 AM |
2167 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2168 | r_symndx, symtab_hdr, sym_hashes, | |
2169 | h, sec, relocation, | |
2170 | unresolved_reloc, warned); | |
560e09e9 NC |
2171 | |
2172 | if (relocation == 0 | |
2173 | && !unresolved_reloc | |
2174 | && h->root.type == bfd_link_hash_undefweak) | |
e0001a05 | 2175 | is_weak_undef = TRUE; |
e0001a05 NC |
2176 | } |
2177 | ||
2178 | if (relaxing_section) | |
2179 | { | |
2180 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2181 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2182 | &relocation); | |
e0001a05 NC |
2183 | |
2184 | /* Update some already cached values. */ | |
2185 | r_type = ELF32_R_TYPE (rel->r_info); | |
2186 | howto = &elf_howto_table[r_type]; | |
2187 | } | |
2188 | ||
2189 | /* Sanity check the address. */ | |
43cd72b9 | 2190 | if (rel->r_offset >= input_size |
e0001a05 NC |
2191 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2192 | { | |
43cd72b9 BW |
2193 | (*_bfd_error_handler) |
2194 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2195 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2196 | bfd_set_error (bfd_error_bad_value); |
2197 | return FALSE; | |
2198 | } | |
2199 | ||
2200 | /* Generate dynamic relocations. */ | |
2201 | if (elf_hash_table (info)->dynamic_sections_created) | |
2202 | { | |
571b5725 | 2203 | bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 | 2204 | |
43cd72b9 | 2205 | if (dynamic_symbol && is_operand_relocation (r_type)) |
e0001a05 NC |
2206 | { |
2207 | /* This is an error. The symbol's real value won't be known | |
2208 | until runtime and it's likely to be out of range anyway. */ | |
2209 | const char *name = h->root.root.string; | |
2210 | error_message = vsprint_msg ("invalid relocation for dynamic " | |
2211 | "symbol", ": %s", | |
2212 | strlen (name) + 2, name); | |
2213 | if (!((*info->callbacks->reloc_dangerous) | |
2214 | (info, error_message, input_bfd, input_section, | |
2215 | rel->r_offset))) | |
2216 | return FALSE; | |
2217 | } | |
2218 | else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
2219 | && (input_section->flags & SEC_ALLOC) != 0 | |
2220 | && (dynamic_symbol || info->shared)) | |
2221 | { | |
2222 | Elf_Internal_Rela outrel; | |
2223 | bfd_byte *loc; | |
2224 | asection *srel; | |
2225 | ||
2226 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
f0e6fdb2 | 2227 | srel = htab->srelplt; |
e0001a05 | 2228 | else |
f0e6fdb2 | 2229 | srel = htab->srelgot; |
e0001a05 NC |
2230 | |
2231 | BFD_ASSERT (srel != NULL); | |
2232 | ||
2233 | outrel.r_offset = | |
2234 | _bfd_elf_section_offset (output_bfd, info, | |
2235 | input_section, rel->r_offset); | |
2236 | ||
2237 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2238 | memset (&outrel, 0, sizeof outrel); | |
2239 | else | |
2240 | { | |
f0578e28 BW |
2241 | outrel.r_offset += (input_section->output_section->vma |
2242 | + input_section->output_offset); | |
e0001a05 | 2243 | |
88d65ad6 BW |
2244 | /* Complain if the relocation is in a read-only section |
2245 | and not in a literal pool. */ | |
2246 | if ((input_section->flags & SEC_READONLY) != 0 | |
2247 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2248 | outrel.r_offset)) |
88d65ad6 BW |
2249 | { |
2250 | error_message = | |
2251 | _("dynamic relocation in read-only section"); | |
2252 | if (!((*info->callbacks->reloc_dangerous) | |
2253 | (info, error_message, input_bfd, input_section, | |
2254 | rel->r_offset))) | |
2255 | return FALSE; | |
2256 | } | |
2257 | ||
e0001a05 NC |
2258 | if (dynamic_symbol) |
2259 | { | |
2260 | outrel.r_addend = rel->r_addend; | |
2261 | rel->r_addend = 0; | |
2262 | ||
2263 | if (r_type == R_XTENSA_32) | |
2264 | { | |
2265 | outrel.r_info = | |
2266 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2267 | relocation = 0; | |
2268 | } | |
2269 | else /* r_type == R_XTENSA_PLT */ | |
2270 | { | |
2271 | outrel.r_info = | |
2272 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2273 | ||
2274 | /* Create the PLT entry and set the initial | |
2275 | contents of the literal entry to the address of | |
2276 | the PLT entry. */ | |
43cd72b9 | 2277 | relocation = |
f0e6fdb2 | 2278 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2279 | srel->reloc_count); |
2280 | } | |
2281 | unresolved_reloc = FALSE; | |
2282 | } | |
2283 | else | |
2284 | { | |
2285 | /* Generate a RELATIVE relocation. */ | |
2286 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2287 | outrel.r_addend = 0; | |
2288 | } | |
2289 | } | |
2290 | ||
2291 | loc = (srel->contents | |
2292 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2293 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2294 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2295 | <= srel->size); |
e0001a05 NC |
2296 | } |
2297 | } | |
2298 | ||
2299 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2300 | because such sections are not SEC_ALLOC and thus ld.so will | |
2301 | not process them. */ | |
2302 | if (unresolved_reloc | |
2303 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
f5385ebf | 2304 | && h->def_dynamic)) |
bf1747de BW |
2305 | { |
2306 | (*_bfd_error_handler) | |
2307 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
2308 | input_bfd, | |
2309 | input_section, | |
2310 | (long) rel->r_offset, | |
2311 | howto->name, | |
2312 | h->root.root.string); | |
2313 | return FALSE; | |
2314 | } | |
e0001a05 | 2315 | |
b1e24c02 DJ |
2316 | if (r_symndx == 0) |
2317 | { | |
2318 | /* r_symndx will be zero only for relocs against symbols from | |
2319 | removed linkonce sections, or sections discarded by a linker | |
2320 | script. For these relocs, we just want the section contents | |
2321 | zeroed. Avoid any special processing. */ | |
2322 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
2323 | continue; | |
2324 | } | |
2325 | ||
e0001a05 NC |
2326 | /* There's no point in calling bfd_perform_relocation here. |
2327 | Just go directly to our "special function". */ | |
2328 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2329 | relocation + rel->r_addend, | |
2330 | contents, rel->r_offset, is_weak_undef, | |
2331 | &error_message); | |
43cd72b9 | 2332 | |
9b8c98a4 | 2333 | if (r != bfd_reloc_ok && !warned) |
e0001a05 NC |
2334 | { |
2335 | const char *name; | |
2336 | ||
43cd72b9 | 2337 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 2338 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 2339 | |
7fa3d080 | 2340 | if (h) |
e0001a05 NC |
2341 | name = h->root.root.string; |
2342 | else | |
2343 | { | |
2344 | name = bfd_elf_string_from_elf_section | |
2345 | (input_bfd, symtab_hdr->sh_link, sym->st_name); | |
2346 | if (name && *name == '\0') | |
2347 | name = bfd_section_name (input_bfd, sec); | |
2348 | } | |
2349 | if (name) | |
43cd72b9 BW |
2350 | { |
2351 | if (rel->r_addend == 0) | |
2352 | error_message = vsprint_msg (error_message, ": %s", | |
2353 | strlen (name) + 2, name); | |
2354 | else | |
2355 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", | |
2356 | strlen (name) + 22, | |
0fd3a477 | 2357 | name, (int)rel->r_addend); |
43cd72b9 BW |
2358 | } |
2359 | ||
e0001a05 NC |
2360 | if (!((*info->callbacks->reloc_dangerous) |
2361 | (info, error_message, input_bfd, input_section, | |
2362 | rel->r_offset))) | |
2363 | return FALSE; | |
2364 | } | |
2365 | } | |
2366 | ||
88d65ad6 BW |
2367 | if (lit_table) |
2368 | free (lit_table); | |
2369 | ||
3ba3bc8c BW |
2370 | input_section->reloc_done = TRUE; |
2371 | ||
e0001a05 NC |
2372 | return TRUE; |
2373 | } | |
2374 | ||
2375 | ||
2376 | /* Finish up dynamic symbol handling. There's not much to do here since | |
2377 | the PLT and GOT entries are all set up by relocate_section. */ | |
2378 | ||
2379 | static bfd_boolean | |
7fa3d080 BW |
2380 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
2381 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2382 | struct elf_link_hash_entry *h, | |
2383 | Elf_Internal_Sym *sym) | |
e0001a05 | 2384 | { |
bf1747de | 2385 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
2386 | { |
2387 | /* Mark the symbol as undefined, rather than as defined in | |
2388 | the .plt section. Leave the value alone. */ | |
2389 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
2390 | /* If the symbol is weak, we do need to clear the value. |
2391 | Otherwise, the PLT entry would provide a definition for | |
2392 | the symbol even if the symbol wasn't defined anywhere, | |
2393 | and so the symbol would never be NULL. */ | |
2394 | if (!h->ref_regular_nonweak) | |
2395 | sym->st_value = 0; | |
e0001a05 NC |
2396 | } |
2397 | ||
2398 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
2399 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
22edb2f1 | 2400 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
2401 | sym->st_shndx = SHN_ABS; |
2402 | ||
2403 | return TRUE; | |
2404 | } | |
2405 | ||
2406 | ||
2407 | /* Combine adjacent literal table entries in the output. Adjacent | |
2408 | entries within each input section may have been removed during | |
2409 | relaxation, but we repeat the process here, even though it's too late | |
2410 | to shrink the output section, because it's important to minimize the | |
2411 | number of literal table entries to reduce the start-up work for the | |
2412 | runtime linker. Returns the number of remaining table entries or -1 | |
2413 | on error. */ | |
2414 | ||
2415 | static int | |
7fa3d080 BW |
2416 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
2417 | asection *sxtlit, | |
2418 | asection *sgotloc) | |
e0001a05 | 2419 | { |
e0001a05 NC |
2420 | bfd_byte *contents; |
2421 | property_table_entry *table; | |
e901de89 | 2422 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
2423 | bfd_vma offset; |
2424 | int n, m, num; | |
2425 | ||
eea6121a | 2426 | section_size = sxtlit->size; |
e0001a05 NC |
2427 | BFD_ASSERT (section_size % 8 == 0); |
2428 | num = section_size / 8; | |
2429 | ||
eea6121a | 2430 | sgotloc_size = sgotloc->size; |
e901de89 | 2431 | if (sgotloc_size != section_size) |
b536dc1e BW |
2432 | { |
2433 | (*_bfd_error_handler) | |
43cd72b9 | 2434 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
2435 | return -1; |
2436 | } | |
e901de89 | 2437 | |
eea6121a AM |
2438 | table = bfd_malloc (num * sizeof (property_table_entry)); |
2439 | if (table == 0) | |
e0001a05 NC |
2440 | return -1; |
2441 | ||
2442 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
2443 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 2444 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 2445 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 2446 | |
eea6121a AM |
2447 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
2448 | { | |
2449 | if (contents != 0) | |
2450 | free (contents); | |
2451 | free (table); | |
2452 | return -1; | |
2453 | } | |
e0001a05 NC |
2454 | |
2455 | /* There should never be any relocations left at this point, so this | |
2456 | is quite a bit easier than what is done during relaxation. */ | |
2457 | ||
2458 | /* Copy the raw contents into a property table array and sort it. */ | |
2459 | offset = 0; | |
2460 | for (n = 0; n < num; n++) | |
2461 | { | |
2462 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
2463 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
2464 | offset += 8; | |
2465 | } | |
2466 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
2467 | ||
2468 | for (n = 0; n < num; n++) | |
2469 | { | |
2470 | bfd_boolean remove = FALSE; | |
2471 | ||
2472 | if (table[n].size == 0) | |
2473 | remove = TRUE; | |
2474 | else if (n > 0 && | |
2475 | (table[n-1].address + table[n-1].size == table[n].address)) | |
2476 | { | |
2477 | table[n-1].size += table[n].size; | |
2478 | remove = TRUE; | |
2479 | } | |
2480 | ||
2481 | if (remove) | |
2482 | { | |
2483 | for (m = n; m < num - 1; m++) | |
2484 | { | |
2485 | table[m].address = table[m+1].address; | |
2486 | table[m].size = table[m+1].size; | |
2487 | } | |
2488 | ||
2489 | n--; | |
2490 | num--; | |
2491 | } | |
2492 | } | |
2493 | ||
2494 | /* Copy the data back to the raw contents. */ | |
2495 | offset = 0; | |
2496 | for (n = 0; n < num; n++) | |
2497 | { | |
2498 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
2499 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
2500 | offset += 8; | |
2501 | } | |
2502 | ||
2503 | /* Clear the removed bytes. */ | |
2504 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 2505 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 2506 | |
e901de89 BW |
2507 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
2508 | section_size)) | |
e0001a05 NC |
2509 | return -1; |
2510 | ||
e901de89 BW |
2511 | /* Copy the contents to ".got.loc". */ |
2512 | memcpy (sgotloc->contents, contents, section_size); | |
2513 | ||
e0001a05 | 2514 | free (contents); |
b614a702 | 2515 | free (table); |
e0001a05 NC |
2516 | return num; |
2517 | } | |
2518 | ||
2519 | ||
2520 | /* Finish up the dynamic sections. */ | |
2521 | ||
2522 | static bfd_boolean | |
7fa3d080 BW |
2523 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
2524 | struct bfd_link_info *info) | |
e0001a05 | 2525 | { |
f0e6fdb2 | 2526 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 2527 | bfd *dynobj; |
e901de89 | 2528 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 NC |
2529 | Elf32_External_Dyn *dyncon, *dynconend; |
2530 | int num_xtlit_entries; | |
2531 | ||
2532 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2533 | return TRUE; | |
2534 | ||
f0e6fdb2 | 2535 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
2536 | dynobj = elf_hash_table (info)->dynobj; |
2537 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2538 | BFD_ASSERT (sdyn != NULL); | |
2539 | ||
2540 | /* Set the first entry in the global offset table to the address of | |
2541 | the dynamic section. */ | |
f0e6fdb2 | 2542 | sgot = htab->sgot; |
e0001a05 NC |
2543 | if (sgot) |
2544 | { | |
eea6121a | 2545 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 2546 | if (sdyn == NULL) |
7fa3d080 | 2547 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
2548 | else |
2549 | bfd_put_32 (output_bfd, | |
2550 | sdyn->output_section->vma + sdyn->output_offset, | |
2551 | sgot->contents); | |
2552 | } | |
2553 | ||
f0e6fdb2 | 2554 | srelplt = htab->srelplt; |
7fa3d080 | 2555 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
2556 | { |
2557 | asection *sgotplt, *srelgot, *spltlittbl; | |
2558 | int chunk, plt_chunks, plt_entries; | |
2559 | Elf_Internal_Rela irela; | |
2560 | bfd_byte *loc; | |
2561 | unsigned rtld_reloc; | |
2562 | ||
f0e6fdb2 BW |
2563 | srelgot = htab->srelgot; |
2564 | spltlittbl = htab->spltlittbl; | |
2565 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
2566 | |
2567 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
2568 | of them follow immediately after.... */ | |
2569 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
2570 | { | |
2571 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2572 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2573 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
2574 | break; | |
2575 | } | |
2576 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
2577 | ||
eea6121a | 2578 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
2579 | plt_chunks = |
2580 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
2581 | ||
2582 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
2583 | { | |
2584 | int chunk_entries = 0; | |
2585 | ||
f0e6fdb2 | 2586 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
2587 | BFD_ASSERT (sgotplt != NULL); |
2588 | ||
2589 | /* Emit special RTLD relocations for the first two entries in | |
2590 | each chunk of the .got.plt section. */ | |
2591 | ||
2592 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2593 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2594 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2595 | irela.r_offset = (sgotplt->output_section->vma | |
2596 | + sgotplt->output_offset); | |
2597 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
2598 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2599 | rtld_reloc += 1; | |
2600 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2601 | ||
2602 | /* Next literal immediately follows the first. */ | |
2603 | loc += sizeof (Elf32_External_Rela); | |
2604 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2605 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2606 | irela.r_offset = (sgotplt->output_section->vma | |
2607 | + sgotplt->output_offset + 4); | |
2608 | /* Tell rtld to set value to object's link map. */ | |
2609 | irela.r_addend = 2; | |
2610 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2611 | rtld_reloc += 1; | |
2612 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2613 | ||
2614 | /* Fill in the literal table. */ | |
2615 | if (chunk < plt_chunks - 1) | |
2616 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
2617 | else | |
2618 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
2619 | ||
eea6121a | 2620 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
2621 | bfd_put_32 (output_bfd, |
2622 | sgotplt->output_section->vma + sgotplt->output_offset, | |
2623 | spltlittbl->contents + (chunk * 8) + 0); | |
2624 | bfd_put_32 (output_bfd, | |
2625 | 8 + (chunk_entries * 4), | |
2626 | spltlittbl->contents + (chunk * 8) + 4); | |
2627 | } | |
2628 | ||
2629 | /* All the dynamic relocations have been emitted at this point. | |
2630 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
2631 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
2632 | * srelgot->reloc_count) | |
2633 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
2634 | * srelplt->reloc_count)) | |
e0001a05 NC |
2635 | abort (); |
2636 | ||
2637 | /* The .xt.lit.plt section has just been modified. This must | |
2638 | happen before the code below which combines adjacent literal | |
2639 | table entries, and the .xt.lit.plt contents have to be forced to | |
2640 | the output here. */ | |
2641 | if (! bfd_set_section_contents (output_bfd, | |
2642 | spltlittbl->output_section, | |
2643 | spltlittbl->contents, | |
2644 | spltlittbl->output_offset, | |
eea6121a | 2645 | spltlittbl->size)) |
e0001a05 NC |
2646 | return FALSE; |
2647 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
2648 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
2649 | } | |
2650 | ||
2651 | /* Combine adjacent literal table entries. */ | |
1049f94e | 2652 | BFD_ASSERT (! info->relocatable); |
e901de89 | 2653 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 2654 | sgotloc = htab->sgotloc; |
b536dc1e | 2655 | BFD_ASSERT (sxtlit && sgotloc); |
e901de89 BW |
2656 | num_xtlit_entries = |
2657 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
e0001a05 NC |
2658 | if (num_xtlit_entries < 0) |
2659 | return FALSE; | |
2660 | ||
2661 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 2662 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
2663 | for (; dyncon < dynconend; dyncon++) |
2664 | { | |
2665 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
2666 | |
2667 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
2668 | ||
2669 | switch (dyn.d_tag) | |
2670 | { | |
2671 | default: | |
2672 | break; | |
2673 | ||
2674 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
2675 | dyn.d_un.d_val = num_xtlit_entries; |
2676 | break; | |
2677 | ||
2678 | case DT_XTENSA_GOT_LOC_OFF: | |
f0e6fdb2 BW |
2679 | dyn.d_un.d_ptr = htab->sgotloc->vma; |
2680 | break; | |
2681 | ||
e0001a05 | 2682 | case DT_PLTGOT: |
f0e6fdb2 BW |
2683 | dyn.d_un.d_ptr = htab->sgot->vma; |
2684 | break; | |
2685 | ||
e0001a05 | 2686 | case DT_JMPREL: |
f0e6fdb2 | 2687 | dyn.d_un.d_ptr = htab->srelplt->vma; |
e0001a05 NC |
2688 | break; |
2689 | ||
2690 | case DT_PLTRELSZ: | |
f0e6fdb2 | 2691 | dyn.d_un.d_val = htab->srelplt->size; |
e0001a05 NC |
2692 | break; |
2693 | ||
2694 | case DT_RELASZ: | |
2695 | /* Adjust RELASZ to not include JMPREL. This matches what | |
2696 | glibc expects and what is done for several other ELF | |
2697 | targets (e.g., i386, alpha), but the "correct" behavior | |
2698 | seems to be unresolved. Since the linker script arranges | |
2699 | for .rela.plt to follow all other relocation sections, we | |
2700 | don't have to worry about changing the DT_RELA entry. */ | |
f0e6fdb2 BW |
2701 | if (htab->srelplt) |
2702 | dyn.d_un.d_val -= htab->srelplt->size; | |
e0001a05 NC |
2703 | break; |
2704 | } | |
2705 | ||
2706 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2707 | } | |
2708 | ||
2709 | return TRUE; | |
2710 | } | |
2711 | ||
2712 | \f | |
2713 | /* Functions for dealing with the e_flags field. */ | |
2714 | ||
2715 | /* Merge backend specific data from an object file to the output | |
2716 | object file when linking. */ | |
2717 | ||
2718 | static bfd_boolean | |
7fa3d080 | 2719 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
2720 | { |
2721 | unsigned out_mach, in_mach; | |
2722 | flagword out_flag, in_flag; | |
2723 | ||
2724 | /* Check if we have the same endianess. */ | |
2725 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
2726 | return FALSE; | |
2727 | ||
2728 | /* Don't even pretend to support mixed-format linking. */ | |
2729 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2730 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2731 | return FALSE; | |
2732 | ||
2733 | out_flag = elf_elfheader (obfd)->e_flags; | |
2734 | in_flag = elf_elfheader (ibfd)->e_flags; | |
2735 | ||
2736 | out_mach = out_flag & EF_XTENSA_MACH; | |
2737 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 2738 | if (out_mach != in_mach) |
e0001a05 NC |
2739 | { |
2740 | (*_bfd_error_handler) | |
43cd72b9 | 2741 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 2742 | ibfd, out_mach, in_mach); |
e0001a05 NC |
2743 | bfd_set_error (bfd_error_wrong_format); |
2744 | return FALSE; | |
2745 | } | |
2746 | ||
2747 | if (! elf_flags_init (obfd)) | |
2748 | { | |
2749 | elf_flags_init (obfd) = TRUE; | |
2750 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 2751 | |
e0001a05 NC |
2752 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
2753 | && bfd_get_arch_info (obfd)->the_default) | |
2754 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
2755 | bfd_get_mach (ibfd)); | |
43cd72b9 | 2756 | |
e0001a05 NC |
2757 | return TRUE; |
2758 | } | |
2759 | ||
43cd72b9 BW |
2760 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
2761 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
e0001a05 | 2762 | |
43cd72b9 BW |
2763 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
2764 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
e0001a05 NC |
2765 | |
2766 | return TRUE; | |
2767 | } | |
2768 | ||
2769 | ||
2770 | static bfd_boolean | |
7fa3d080 | 2771 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
2772 | { |
2773 | BFD_ASSERT (!elf_flags_init (abfd) | |
2774 | || elf_elfheader (abfd)->e_flags == flags); | |
2775 | ||
2776 | elf_elfheader (abfd)->e_flags |= flags; | |
2777 | elf_flags_init (abfd) = TRUE; | |
2778 | ||
2779 | return TRUE; | |
2780 | } | |
2781 | ||
2782 | ||
e0001a05 | 2783 | static bfd_boolean |
7fa3d080 | 2784 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
2785 | { |
2786 | FILE *f = (FILE *) farg; | |
2787 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
2788 | ||
2789 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 2790 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
2791 | fprintf (f, "\nMachine = Base\n"); |
2792 | else | |
2793 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
2794 | ||
2795 | fprintf (f, "Insn tables = %s\n", | |
2796 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
2797 | ||
2798 | fprintf (f, "Literal tables = %s\n", | |
2799 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
2800 | ||
2801 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
2802 | } | |
2803 | ||
2804 | ||
2805 | /* Set the right machine number for an Xtensa ELF file. */ | |
2806 | ||
2807 | static bfd_boolean | |
7fa3d080 | 2808 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
2809 | { |
2810 | int mach; | |
2811 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
2812 | ||
2813 | switch (arch) | |
2814 | { | |
2815 | case E_XTENSA_MACH: | |
2816 | mach = bfd_mach_xtensa; | |
2817 | break; | |
2818 | default: | |
2819 | return FALSE; | |
2820 | } | |
2821 | ||
2822 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
2823 | return TRUE; | |
2824 | } | |
2825 | ||
2826 | ||
2827 | /* The final processing done just before writing out an Xtensa ELF object | |
2828 | file. This gets the Xtensa architecture right based on the machine | |
2829 | number. */ | |
2830 | ||
2831 | static void | |
7fa3d080 BW |
2832 | elf_xtensa_final_write_processing (bfd *abfd, |
2833 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
2834 | { |
2835 | int mach; | |
2836 | unsigned long val; | |
2837 | ||
2838 | switch (mach = bfd_get_mach (abfd)) | |
2839 | { | |
2840 | case bfd_mach_xtensa: | |
2841 | val = E_XTENSA_MACH; | |
2842 | break; | |
2843 | default: | |
2844 | return; | |
2845 | } | |
2846 | ||
2847 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
2848 | elf_elfheader (abfd)->e_flags |= val; | |
2849 | } | |
2850 | ||
2851 | ||
2852 | static enum elf_reloc_type_class | |
7fa3d080 | 2853 | elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela) |
e0001a05 NC |
2854 | { |
2855 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
2856 | { | |
2857 | case R_XTENSA_RELATIVE: | |
2858 | return reloc_class_relative; | |
2859 | case R_XTENSA_JMP_SLOT: | |
2860 | return reloc_class_plt; | |
2861 | default: | |
2862 | return reloc_class_normal; | |
2863 | } | |
2864 | } | |
2865 | ||
2866 | \f | |
2867 | static bfd_boolean | |
7fa3d080 BW |
2868 | elf_xtensa_discard_info_for_section (bfd *abfd, |
2869 | struct elf_reloc_cookie *cookie, | |
2870 | struct bfd_link_info *info, | |
2871 | asection *sec) | |
e0001a05 NC |
2872 | { |
2873 | bfd_byte *contents; | |
2874 | bfd_vma section_size; | |
2875 | bfd_vma offset, actual_offset; | |
2876 | size_t removed_bytes = 0; | |
2877 | ||
eea6121a | 2878 | section_size = sec->size; |
e0001a05 NC |
2879 | if (section_size == 0 || section_size % 8 != 0) |
2880 | return FALSE; | |
2881 | ||
2882 | if (sec->output_section | |
2883 | && bfd_is_abs_section (sec->output_section)) | |
2884 | return FALSE; | |
2885 | ||
2886 | contents = retrieve_contents (abfd, sec, info->keep_memory); | |
2887 | if (!contents) | |
2888 | return FALSE; | |
2889 | ||
2890 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
2891 | if (!cookie->rels) | |
2892 | { | |
2893 | release_contents (sec, contents); | |
2894 | return FALSE; | |
2895 | } | |
2896 | ||
2897 | cookie->rel = cookie->rels; | |
2898 | cookie->relend = cookie->rels + sec->reloc_count; | |
2899 | ||
2900 | for (offset = 0; offset < section_size; offset += 8) | |
2901 | { | |
2902 | actual_offset = offset - removed_bytes; | |
2903 | ||
2904 | /* The ...symbol_deleted_p function will skip over relocs but it | |
2905 | won't adjust their offsets, so do that here. */ | |
2906 | while (cookie->rel < cookie->relend | |
2907 | && cookie->rel->r_offset < offset) | |
2908 | { | |
2909 | cookie->rel->r_offset -= removed_bytes; | |
2910 | cookie->rel++; | |
2911 | } | |
2912 | ||
2913 | while (cookie->rel < cookie->relend | |
2914 | && cookie->rel->r_offset == offset) | |
2915 | { | |
c152c796 | 2916 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
2917 | { |
2918 | /* Remove the table entry. (If the reloc type is NONE, then | |
2919 | the entry has already been merged with another and deleted | |
2920 | during relaxation.) */ | |
2921 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
2922 | { | |
2923 | /* Shift the contents up. */ | |
2924 | if (offset + 8 < section_size) | |
2925 | memmove (&contents[actual_offset], | |
2926 | &contents[actual_offset+8], | |
2927 | section_size - offset - 8); | |
2928 | removed_bytes += 8; | |
2929 | } | |
2930 | ||
2931 | /* Remove this relocation. */ | |
2932 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
2933 | } | |
2934 | ||
2935 | /* Adjust the relocation offset for previous removals. This | |
2936 | should not be done before calling ...symbol_deleted_p | |
2937 | because it might mess up the offset comparisons there. | |
2938 | Make sure the offset doesn't underflow in the case where | |
2939 | the first entry is removed. */ | |
2940 | if (cookie->rel->r_offset >= removed_bytes) | |
2941 | cookie->rel->r_offset -= removed_bytes; | |
2942 | else | |
2943 | cookie->rel->r_offset = 0; | |
2944 | ||
2945 | cookie->rel++; | |
2946 | } | |
2947 | } | |
2948 | ||
2949 | if (removed_bytes != 0) | |
2950 | { | |
2951 | /* Adjust any remaining relocs (shouldn't be any). */ | |
2952 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
2953 | { | |
2954 | if (cookie->rel->r_offset >= removed_bytes) | |
2955 | cookie->rel->r_offset -= removed_bytes; | |
2956 | else | |
2957 | cookie->rel->r_offset = 0; | |
2958 | } | |
2959 | ||
2960 | /* Clear the removed bytes. */ | |
2961 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
2962 | ||
2963 | pin_contents (sec, contents); | |
2964 | pin_internal_relocs (sec, cookie->rels); | |
2965 | ||
eea6121a AM |
2966 | /* Shrink size. */ |
2967 | sec->size = section_size - removed_bytes; | |
b536dc1e BW |
2968 | |
2969 | if (xtensa_is_littable_section (sec)) | |
2970 | { | |
f0e6fdb2 BW |
2971 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
2972 | if (sgotloc) | |
2973 | sgotloc->size -= removed_bytes; | |
b536dc1e | 2974 | } |
e0001a05 NC |
2975 | } |
2976 | else | |
2977 | { | |
2978 | release_contents (sec, contents); | |
2979 | release_internal_relocs (sec, cookie->rels); | |
2980 | } | |
2981 | ||
2982 | return (removed_bytes != 0); | |
2983 | } | |
2984 | ||
2985 | ||
2986 | static bfd_boolean | |
7fa3d080 BW |
2987 | elf_xtensa_discard_info (bfd *abfd, |
2988 | struct elf_reloc_cookie *cookie, | |
2989 | struct bfd_link_info *info) | |
e0001a05 NC |
2990 | { |
2991 | asection *sec; | |
2992 | bfd_boolean changed = FALSE; | |
2993 | ||
2994 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
2995 | { | |
2996 | if (xtensa_is_property_section (sec)) | |
2997 | { | |
2998 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
2999 | changed = TRUE; | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | return changed; | |
3004 | } | |
3005 | ||
3006 | ||
3007 | static bfd_boolean | |
7fa3d080 | 3008 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3009 | { |
3010 | return xtensa_is_property_section (sec); | |
3011 | } | |
3012 | ||
a77dc2cc BW |
3013 | |
3014 | static unsigned int | |
3015 | elf_xtensa_action_discarded (asection *sec) | |
3016 | { | |
3017 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3018 | return 0; | |
3019 | ||
3020 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3021 | return 0; | |
3022 | ||
3023 | return _bfd_elf_default_action_discarded (sec); | |
3024 | } | |
3025 | ||
e0001a05 NC |
3026 | \f |
3027 | /* Support for core dump NOTE sections. */ | |
3028 | ||
3029 | static bfd_boolean | |
7fa3d080 | 3030 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3031 | { |
3032 | int offset; | |
eea6121a | 3033 | unsigned int size; |
e0001a05 NC |
3034 | |
3035 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3036 | based on the size. Just assume this is GNU/Linux. */ | |
3037 | ||
3038 | /* pr_cursig */ | |
3039 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
3040 | ||
3041 | /* pr_pid */ | |
3042 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
3043 | ||
3044 | /* pr_reg */ | |
3045 | offset = 72; | |
eea6121a | 3046 | size = note->descsz - offset - 4; |
e0001a05 NC |
3047 | |
3048 | /* Make a ".reg/999" section. */ | |
3049 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3050 | size, note->descpos + offset); |
e0001a05 NC |
3051 | } |
3052 | ||
3053 | ||
3054 | static bfd_boolean | |
7fa3d080 | 3055 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3056 | { |
3057 | switch (note->descsz) | |
3058 | { | |
3059 | default: | |
3060 | return FALSE; | |
3061 | ||
3062 | case 128: /* GNU/Linux elf_prpsinfo */ | |
3063 | elf_tdata (abfd)->core_program | |
3064 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
3065 | elf_tdata (abfd)->core_command | |
3066 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
3067 | } | |
3068 | ||
3069 | /* Note that for some reason, a spurious space is tacked | |
3070 | onto the end of the args in some (at least one anyway) | |
3071 | implementations, so strip it off if it exists. */ | |
3072 | ||
3073 | { | |
3074 | char *command = elf_tdata (abfd)->core_command; | |
3075 | int n = strlen (command); | |
3076 | ||
3077 | if (0 < n && command[n - 1] == ' ') | |
3078 | command[n - 1] = '\0'; | |
3079 | } | |
3080 | ||
3081 | return TRUE; | |
3082 | } | |
3083 | ||
3084 | \f | |
3085 | /* Generic Xtensa configurability stuff. */ | |
3086 | ||
3087 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3088 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3089 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3090 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3091 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3092 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3093 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3094 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3095 | ||
3096 | static void | |
7fa3d080 | 3097 | init_call_opcodes (void) |
e0001a05 NC |
3098 | { |
3099 | if (callx0_op == XTENSA_UNDEFINED) | |
3100 | { | |
3101 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3102 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3103 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3104 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3105 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3106 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3107 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3108 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3109 | } | |
3110 | } | |
3111 | ||
3112 | ||
3113 | static bfd_boolean | |
7fa3d080 | 3114 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3115 | { |
3116 | init_call_opcodes (); | |
3117 | return (opcode == callx0_op | |
3118 | || opcode == callx4_op | |
3119 | || opcode == callx8_op | |
3120 | || opcode == callx12_op); | |
3121 | } | |
3122 | ||
3123 | ||
3124 | static bfd_boolean | |
7fa3d080 | 3125 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3126 | { |
3127 | init_call_opcodes (); | |
3128 | return (opcode == call0_op | |
3129 | || opcode == call4_op | |
3130 | || opcode == call8_op | |
3131 | || opcode == call12_op); | |
3132 | } | |
3133 | ||
3134 | ||
3135 | static bfd_boolean | |
7fa3d080 | 3136 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3137 | { |
3138 | init_call_opcodes (); | |
3139 | return (opcode == call4_op | |
3140 | || opcode == call8_op | |
3141 | || opcode == call12_op | |
3142 | || opcode == callx4_op | |
3143 | || opcode == callx8_op | |
3144 | || opcode == callx12_op); | |
3145 | } | |
3146 | ||
3147 | ||
43cd72b9 BW |
3148 | static xtensa_opcode |
3149 | get_const16_opcode (void) | |
3150 | { | |
3151 | static bfd_boolean done_lookup = FALSE; | |
3152 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3153 | if (!done_lookup) | |
3154 | { | |
3155 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3156 | done_lookup = TRUE; | |
3157 | } | |
3158 | return const16_opcode; | |
3159 | } | |
3160 | ||
3161 | ||
e0001a05 NC |
3162 | static xtensa_opcode |
3163 | get_l32r_opcode (void) | |
3164 | { | |
3165 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3166 | static bfd_boolean done_lookup = FALSE; |
3167 | ||
3168 | if (!done_lookup) | |
e0001a05 NC |
3169 | { |
3170 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3171 | done_lookup = TRUE; |
e0001a05 NC |
3172 | } |
3173 | return l32r_opcode; | |
3174 | } | |
3175 | ||
3176 | ||
3177 | static bfd_vma | |
7fa3d080 | 3178 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3179 | { |
3180 | bfd_vma offset; | |
3181 | ||
3182 | offset = addr - ((pc+3) & -4); | |
3183 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3184 | offset = (signed int) offset >> 2; | |
3185 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3186 | return offset; | |
3187 | } | |
3188 | ||
3189 | ||
e0001a05 | 3190 | static int |
7fa3d080 | 3191 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3192 | { |
43cd72b9 BW |
3193 | xtensa_isa isa = xtensa_default_isa; |
3194 | int last_immed, last_opnd, opi; | |
3195 | ||
3196 | if (opcode == XTENSA_UNDEFINED) | |
3197 | return XTENSA_UNDEFINED; | |
3198 | ||
3199 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3200 | If there are no PC-relative immediates, then choose the last visible | |
3201 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3202 | last_immed = XTENSA_UNDEFINED; | |
3203 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3204 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3205 | { | |
3206 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3207 | continue; | |
3208 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3209 | { | |
3210 | last_immed = opi; | |
3211 | break; | |
3212 | } | |
3213 | if (last_immed == XTENSA_UNDEFINED | |
3214 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3215 | last_immed = opi; | |
3216 | } | |
3217 | if (last_immed < 0) | |
3218 | return XTENSA_UNDEFINED; | |
3219 | ||
3220 | /* If the operand number was specified in an old-style relocation, | |
3221 | check for consistency with the operand computed above. */ | |
3222 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3223 | { | |
3224 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3225 | if (reloc_opnd != last_immed) | |
3226 | return XTENSA_UNDEFINED; | |
3227 | } | |
3228 | ||
3229 | return last_immed; | |
3230 | } | |
3231 | ||
3232 | ||
3233 | int | |
7fa3d080 | 3234 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3235 | { |
3236 | switch (r_type) | |
3237 | { | |
3238 | case R_XTENSA_OP0: | |
3239 | case R_XTENSA_OP1: | |
3240 | case R_XTENSA_OP2: | |
3241 | return 0; | |
3242 | ||
3243 | default: | |
3244 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3245 | return r_type - R_XTENSA_SLOT0_OP; | |
3246 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3247 | return r_type - R_XTENSA_SLOT0_ALT; | |
3248 | break; | |
3249 | } | |
3250 | ||
3251 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
3252 | } |
3253 | ||
3254 | ||
3255 | /* Get the opcode for a relocation. */ | |
3256 | ||
3257 | static xtensa_opcode | |
7fa3d080 BW |
3258 | get_relocation_opcode (bfd *abfd, |
3259 | asection *sec, | |
3260 | bfd_byte *contents, | |
3261 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3262 | { |
3263 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 3264 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 3265 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3266 | xtensa_format fmt; |
3267 | int slot; | |
e0001a05 NC |
3268 | |
3269 | if (contents == NULL) | |
3270 | return XTENSA_UNDEFINED; | |
3271 | ||
43cd72b9 | 3272 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
3273 | return XTENSA_UNDEFINED; |
3274 | ||
3275 | if (ibuff == NULL) | |
43cd72b9 BW |
3276 | { |
3277 | ibuff = xtensa_insnbuf_alloc (isa); | |
3278 | sbuff = xtensa_insnbuf_alloc (isa); | |
3279 | } | |
3280 | ||
e0001a05 | 3281 | /* Decode the instruction. */ |
43cd72b9 BW |
3282 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
3283 | sec->size - irel->r_offset); | |
3284 | fmt = xtensa_format_decode (isa, ibuff); | |
3285 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
3286 | if (slot == XTENSA_UNDEFINED) | |
3287 | return XTENSA_UNDEFINED; | |
3288 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
3289 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
3290 | } |
3291 | ||
3292 | ||
3293 | bfd_boolean | |
7fa3d080 BW |
3294 | is_l32r_relocation (bfd *abfd, |
3295 | asection *sec, | |
3296 | bfd_byte *contents, | |
3297 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3298 | { |
3299 | xtensa_opcode opcode; | |
43cd72b9 | 3300 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 3301 | return FALSE; |
43cd72b9 | 3302 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
3303 | return (opcode == get_l32r_opcode ()); |
3304 | } | |
3305 | ||
e0001a05 | 3306 | |
43cd72b9 | 3307 | static bfd_size_type |
7fa3d080 BW |
3308 | get_asm_simplify_size (bfd_byte *contents, |
3309 | bfd_size_type content_len, | |
3310 | bfd_size_type offset) | |
e0001a05 | 3311 | { |
43cd72b9 | 3312 | bfd_size_type insnlen, size = 0; |
e0001a05 | 3313 | |
43cd72b9 BW |
3314 | /* Decode the size of the next two instructions. */ |
3315 | insnlen = insn_decode_len (contents, content_len, offset); | |
3316 | if (insnlen == 0) | |
3317 | return 0; | |
e0001a05 | 3318 | |
43cd72b9 | 3319 | size += insnlen; |
e0001a05 | 3320 | |
43cd72b9 BW |
3321 | insnlen = insn_decode_len (contents, content_len, offset + size); |
3322 | if (insnlen == 0) | |
3323 | return 0; | |
e0001a05 | 3324 | |
43cd72b9 BW |
3325 | size += insnlen; |
3326 | return size; | |
3327 | } | |
e0001a05 | 3328 | |
43cd72b9 BW |
3329 | |
3330 | bfd_boolean | |
7fa3d080 | 3331 | is_alt_relocation (int r_type) |
43cd72b9 BW |
3332 | { |
3333 | return (r_type >= R_XTENSA_SLOT0_ALT | |
3334 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
3335 | } |
3336 | ||
3337 | ||
43cd72b9 | 3338 | bfd_boolean |
7fa3d080 | 3339 | is_operand_relocation (int r_type) |
e0001a05 | 3340 | { |
43cd72b9 BW |
3341 | switch (r_type) |
3342 | { | |
3343 | case R_XTENSA_OP0: | |
3344 | case R_XTENSA_OP1: | |
3345 | case R_XTENSA_OP2: | |
3346 | return TRUE; | |
e0001a05 | 3347 | |
43cd72b9 BW |
3348 | default: |
3349 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3350 | return TRUE; | |
3351 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3352 | return TRUE; | |
3353 | break; | |
3354 | } | |
e0001a05 | 3355 | |
43cd72b9 | 3356 | return FALSE; |
e0001a05 NC |
3357 | } |
3358 | ||
43cd72b9 BW |
3359 | |
3360 | #define MIN_INSN_LENGTH 2 | |
e0001a05 | 3361 | |
43cd72b9 BW |
3362 | /* Return 0 if it fails to decode. */ |
3363 | ||
3364 | bfd_size_type | |
7fa3d080 BW |
3365 | insn_decode_len (bfd_byte *contents, |
3366 | bfd_size_type content_len, | |
3367 | bfd_size_type offset) | |
e0001a05 | 3368 | { |
43cd72b9 BW |
3369 | int insn_len; |
3370 | xtensa_isa isa = xtensa_default_isa; | |
3371 | xtensa_format fmt; | |
3372 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 3373 | |
43cd72b9 BW |
3374 | if (offset + MIN_INSN_LENGTH > content_len) |
3375 | return 0; | |
e0001a05 | 3376 | |
43cd72b9 BW |
3377 | if (ibuff == NULL) |
3378 | ibuff = xtensa_insnbuf_alloc (isa); | |
3379 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
3380 | content_len - offset); | |
3381 | fmt = xtensa_format_decode (isa, ibuff); | |
3382 | if (fmt == XTENSA_UNDEFINED) | |
3383 | return 0; | |
3384 | insn_len = xtensa_format_length (isa, fmt); | |
3385 | if (insn_len == XTENSA_UNDEFINED) | |
3386 | return 0; | |
3387 | return insn_len; | |
e0001a05 NC |
3388 | } |
3389 | ||
3390 | ||
43cd72b9 BW |
3391 | /* Decode the opcode for a single slot instruction. |
3392 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 3393 | |
43cd72b9 | 3394 | xtensa_opcode |
7fa3d080 BW |
3395 | insn_decode_opcode (bfd_byte *contents, |
3396 | bfd_size_type content_len, | |
3397 | bfd_size_type offset, | |
3398 | int slot) | |
e0001a05 | 3399 | { |
e0001a05 | 3400 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3401 | xtensa_format fmt; |
3402 | static xtensa_insnbuf insnbuf = NULL; | |
3403 | static xtensa_insnbuf slotbuf = NULL; | |
3404 | ||
3405 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
3406 | return XTENSA_UNDEFINED; |
3407 | ||
3408 | if (insnbuf == NULL) | |
43cd72b9 BW |
3409 | { |
3410 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3411 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3412 | } | |
3413 | ||
3414 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3415 | content_len - offset); | |
3416 | fmt = xtensa_format_decode (isa, insnbuf); | |
3417 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 3418 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
3419 | |
3420 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 3421 | return XTENSA_UNDEFINED; |
e0001a05 | 3422 | |
43cd72b9 BW |
3423 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
3424 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
3425 | } | |
e0001a05 | 3426 | |
e0001a05 | 3427 | |
43cd72b9 BW |
3428 | /* The offset is the offset in the contents. |
3429 | The address is the address of that offset. */ | |
e0001a05 | 3430 | |
43cd72b9 | 3431 | static bfd_boolean |
7fa3d080 BW |
3432 | check_branch_target_aligned (bfd_byte *contents, |
3433 | bfd_size_type content_length, | |
3434 | bfd_vma offset, | |
3435 | bfd_vma address) | |
43cd72b9 BW |
3436 | { |
3437 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
3438 | if (insn_len == 0) | |
3439 | return FALSE; | |
3440 | return check_branch_target_aligned_address (address, insn_len); | |
3441 | } | |
e0001a05 | 3442 | |
e0001a05 | 3443 | |
43cd72b9 | 3444 | static bfd_boolean |
7fa3d080 BW |
3445 | check_loop_aligned (bfd_byte *contents, |
3446 | bfd_size_type content_length, | |
3447 | bfd_vma offset, | |
3448 | bfd_vma address) | |
e0001a05 | 3449 | { |
43cd72b9 | 3450 | bfd_size_type loop_len, insn_len; |
64b607e6 | 3451 | xtensa_opcode opcode; |
e0001a05 | 3452 | |
64b607e6 BW |
3453 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
3454 | if (opcode == XTENSA_UNDEFINED | |
3455 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
3456 | { | |
3457 | BFD_ASSERT (FALSE); | |
3458 | return FALSE; | |
3459 | } | |
3460 | ||
43cd72b9 | 3461 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 3462 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
3463 | if (loop_len == 0 || insn_len == 0) |
3464 | { | |
3465 | BFD_ASSERT (FALSE); | |
3466 | return FALSE; | |
3467 | } | |
e0001a05 | 3468 | |
43cd72b9 BW |
3469 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
3470 | } | |
e0001a05 | 3471 | |
e0001a05 NC |
3472 | |
3473 | static bfd_boolean | |
7fa3d080 | 3474 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 3475 | { |
43cd72b9 BW |
3476 | if (len == 8) |
3477 | return (addr % 8 == 0); | |
3478 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
3479 | } |
3480 | ||
43cd72b9 BW |
3481 | \f |
3482 | /* Instruction widening and narrowing. */ | |
e0001a05 | 3483 | |
7fa3d080 BW |
3484 | /* When FLIX is available we need to access certain instructions only |
3485 | when they are 16-bit or 24-bit instructions. This table caches | |
3486 | information about such instructions by walking through all the | |
3487 | opcodes and finding the smallest single-slot format into which each | |
3488 | can be encoded. */ | |
3489 | ||
3490 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
3491 | |
3492 | ||
7fa3d080 BW |
3493 | static void |
3494 | init_op_single_format_table (void) | |
e0001a05 | 3495 | { |
7fa3d080 BW |
3496 | xtensa_isa isa = xtensa_default_isa; |
3497 | xtensa_insnbuf ibuf; | |
3498 | xtensa_opcode opcode; | |
3499 | xtensa_format fmt; | |
3500 | int num_opcodes; | |
3501 | ||
3502 | if (op_single_fmt_table) | |
3503 | return; | |
3504 | ||
3505 | ibuf = xtensa_insnbuf_alloc (isa); | |
3506 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
3507 | ||
3508 | op_single_fmt_table = (xtensa_format *) | |
3509 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
3510 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
3511 | { | |
3512 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
3513 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
3514 | { | |
3515 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
3516 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
3517 | { | |
3518 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
3519 | int fmt_length = xtensa_format_length (isa, fmt); | |
3520 | if (old_fmt == XTENSA_UNDEFINED | |
3521 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
3522 | op_single_fmt_table[opcode] = fmt; | |
3523 | } | |
3524 | } | |
3525 | } | |
3526 | xtensa_insnbuf_free (isa, ibuf); | |
3527 | } | |
3528 | ||
3529 | ||
3530 | static xtensa_format | |
3531 | get_single_format (xtensa_opcode opcode) | |
3532 | { | |
3533 | init_op_single_format_table (); | |
3534 | return op_single_fmt_table[opcode]; | |
3535 | } | |
e0001a05 | 3536 | |
e0001a05 | 3537 | |
43cd72b9 BW |
3538 | /* For the set of narrowable instructions we do NOT include the |
3539 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
3540 | involved during linker relaxation that may require these to | |
3541 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
3542 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 3543 | |
7fa3d080 BW |
3544 | struct string_pair |
3545 | { | |
3546 | const char *wide; | |
3547 | const char *narrow; | |
3548 | }; | |
3549 | ||
43cd72b9 | 3550 | struct string_pair narrowable[] = |
e0001a05 | 3551 | { |
43cd72b9 BW |
3552 | { "add", "add.n" }, |
3553 | { "addi", "addi.n" }, | |
3554 | { "addmi", "addi.n" }, | |
3555 | { "l32i", "l32i.n" }, | |
3556 | { "movi", "movi.n" }, | |
3557 | { "ret", "ret.n" }, | |
3558 | { "retw", "retw.n" }, | |
3559 | { "s32i", "s32i.n" }, | |
3560 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3561 | }; | |
e0001a05 | 3562 | |
43cd72b9 | 3563 | struct string_pair widenable[] = |
e0001a05 | 3564 | { |
43cd72b9 BW |
3565 | { "add", "add.n" }, |
3566 | { "addi", "addi.n" }, | |
3567 | { "addmi", "addi.n" }, | |
3568 | { "beqz", "beqz.n" }, | |
3569 | { "bnez", "bnez.n" }, | |
3570 | { "l32i", "l32i.n" }, | |
3571 | { "movi", "movi.n" }, | |
3572 | { "ret", "ret.n" }, | |
3573 | { "retw", "retw.n" }, | |
3574 | { "s32i", "s32i.n" }, | |
3575 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3576 | }; | |
e0001a05 NC |
3577 | |
3578 | ||
64b607e6 BW |
3579 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
3580 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
3581 | return the instruction buffer holding the narrow instruction. Otherwise, | |
3582 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
3583 | but require some special case operand checks in some cases. */ |
3584 | ||
64b607e6 BW |
3585 | static xtensa_insnbuf |
3586 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
3587 | xtensa_format fmt, | |
3588 | xtensa_opcode opcode) | |
e0001a05 | 3589 | { |
43cd72b9 | 3590 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
3591 | xtensa_format o_fmt; |
3592 | unsigned opi; | |
e0001a05 | 3593 | |
43cd72b9 BW |
3594 | static xtensa_insnbuf o_insnbuf = NULL; |
3595 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 3596 | |
64b607e6 | 3597 | if (o_insnbuf == NULL) |
43cd72b9 | 3598 | { |
43cd72b9 BW |
3599 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
3600 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3601 | } | |
e0001a05 | 3602 | |
64b607e6 | 3603 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
3604 | { |
3605 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 3606 | |
43cd72b9 BW |
3607 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
3608 | { | |
3609 | uint32 value, newval; | |
3610 | int i, operand_count, o_operand_count; | |
3611 | xtensa_opcode o_opcode; | |
e0001a05 | 3612 | |
43cd72b9 BW |
3613 | /* Address does not matter in this case. We might need to |
3614 | fix it to handle branches/jumps. */ | |
3615 | bfd_vma self_address = 0; | |
e0001a05 | 3616 | |
43cd72b9 BW |
3617 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
3618 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 3619 | return 0; |
43cd72b9 BW |
3620 | o_fmt = get_single_format (o_opcode); |
3621 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 3622 | return 0; |
e0001a05 | 3623 | |
43cd72b9 BW |
3624 | if (xtensa_format_length (isa, fmt) != 3 |
3625 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 3626 | return 0; |
e0001a05 | 3627 | |
43cd72b9 BW |
3628 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3629 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3630 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 3631 | |
43cd72b9 | 3632 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 3633 | return 0; |
e0001a05 | 3634 | |
43cd72b9 BW |
3635 | if (!is_or) |
3636 | { | |
3637 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 3638 | return 0; |
43cd72b9 BW |
3639 | } |
3640 | else | |
3641 | { | |
3642 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 3643 | |
64b607e6 BW |
3644 | if (o_operand_count + 1 != operand_count |
3645 | || xtensa_operand_get_field (isa, opcode, 0, | |
3646 | fmt, 0, slotbuf, &rawval0) != 0 | |
3647 | || xtensa_operand_get_field (isa, opcode, 1, | |
3648 | fmt, 0, slotbuf, &rawval1) != 0 | |
3649 | || xtensa_operand_get_field (isa, opcode, 2, | |
3650 | fmt, 0, slotbuf, &rawval2) != 0 | |
3651 | || rawval1 != rawval2 | |
3652 | || rawval0 == rawval1 /* it is a nop */) | |
3653 | return 0; | |
43cd72b9 | 3654 | } |
e0001a05 | 3655 | |
43cd72b9 BW |
3656 | for (i = 0; i < o_operand_count; ++i) |
3657 | { | |
3658 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
3659 | slotbuf, &value) | |
3660 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 3661 | return 0; |
e0001a05 | 3662 | |
43cd72b9 BW |
3663 | /* PC-relative branches need adjustment, but |
3664 | the PC-rel operand will always have a relocation. */ | |
3665 | newval = value; | |
3666 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3667 | self_address) | |
3668 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3669 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3670 | o_slotbuf, newval)) | |
64b607e6 | 3671 | return 0; |
43cd72b9 | 3672 | } |
e0001a05 | 3673 | |
64b607e6 BW |
3674 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
3675 | return 0; | |
e0001a05 | 3676 | |
64b607e6 | 3677 | return o_insnbuf; |
43cd72b9 BW |
3678 | } |
3679 | } | |
64b607e6 | 3680 | return 0; |
43cd72b9 | 3681 | } |
e0001a05 | 3682 | |
e0001a05 | 3683 | |
64b607e6 BW |
3684 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
3685 | the action in-place directly into the contents and return TRUE. Otherwise, | |
3686 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 3687 | |
43cd72b9 | 3688 | static bfd_boolean |
64b607e6 BW |
3689 | narrow_instruction (bfd_byte *contents, |
3690 | bfd_size_type content_length, | |
3691 | bfd_size_type offset) | |
e0001a05 | 3692 | { |
43cd72b9 | 3693 | xtensa_opcode opcode; |
64b607e6 | 3694 | bfd_size_type insn_len; |
43cd72b9 | 3695 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
3696 | xtensa_format fmt; |
3697 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 3698 | |
43cd72b9 BW |
3699 | static xtensa_insnbuf insnbuf = NULL; |
3700 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 3701 | |
43cd72b9 BW |
3702 | if (insnbuf == NULL) |
3703 | { | |
3704 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3705 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 3706 | } |
e0001a05 | 3707 | |
43cd72b9 | 3708 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 3709 | |
43cd72b9 | 3710 | if (content_length < 2) |
e0001a05 NC |
3711 | return FALSE; |
3712 | ||
64b607e6 | 3713 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
3714 | These have all been specified in the assembler aleady. */ |
3715 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3716 | content_length - offset); | |
3717 | fmt = xtensa_format_decode (isa, insnbuf); | |
3718 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
3719 | return FALSE; |
3720 | ||
43cd72b9 | 3721 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
3722 | return FALSE; |
3723 | ||
43cd72b9 BW |
3724 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
3725 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 3726 | return FALSE; |
43cd72b9 BW |
3727 | insn_len = xtensa_format_length (isa, fmt); |
3728 | if (insn_len > content_length) | |
3729 | return FALSE; | |
3730 | ||
64b607e6 BW |
3731 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
3732 | if (o_insnbuf) | |
3733 | { | |
3734 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3735 | content_length - offset); | |
3736 | return TRUE; | |
3737 | } | |
3738 | ||
3739 | return FALSE; | |
3740 | } | |
3741 | ||
3742 | ||
3743 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
3744 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
3745 | return the instruction buffer holding the wide instruction. Otherwise, | |
3746 | return 0. The set of valid widenings are specified by a string table | |
3747 | but require some special case operand checks in some cases. */ | |
3748 | ||
3749 | static xtensa_insnbuf | |
3750 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
3751 | xtensa_format fmt, | |
3752 | xtensa_opcode opcode) | |
3753 | { | |
3754 | xtensa_isa isa = xtensa_default_isa; | |
3755 | xtensa_format o_fmt; | |
3756 | unsigned opi; | |
3757 | ||
3758 | static xtensa_insnbuf o_insnbuf = NULL; | |
3759 | static xtensa_insnbuf o_slotbuf = NULL; | |
3760 | ||
3761 | if (o_insnbuf == NULL) | |
3762 | { | |
3763 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
3764 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3765 | } | |
3766 | ||
3767 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 3768 | { |
43cd72b9 BW |
3769 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
3770 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
3771 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 3772 | |
43cd72b9 BW |
3773 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
3774 | { | |
3775 | uint32 value, newval; | |
3776 | int i, operand_count, o_operand_count, check_operand_count; | |
3777 | xtensa_opcode o_opcode; | |
e0001a05 | 3778 | |
43cd72b9 BW |
3779 | /* Address does not matter in this case. We might need to fix it |
3780 | to handle branches/jumps. */ | |
3781 | bfd_vma self_address = 0; | |
e0001a05 | 3782 | |
43cd72b9 BW |
3783 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
3784 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 3785 | return 0; |
43cd72b9 BW |
3786 | o_fmt = get_single_format (o_opcode); |
3787 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 3788 | return 0; |
e0001a05 | 3789 | |
43cd72b9 BW |
3790 | if (xtensa_format_length (isa, fmt) != 2 |
3791 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 3792 | return 0; |
e0001a05 | 3793 | |
43cd72b9 BW |
3794 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3795 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3796 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
3797 | check_operand_count = o_operand_count; | |
e0001a05 | 3798 | |
43cd72b9 | 3799 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 3800 | return 0; |
e0001a05 | 3801 | |
43cd72b9 BW |
3802 | if (!is_or) |
3803 | { | |
3804 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 3805 | return 0; |
43cd72b9 BW |
3806 | } |
3807 | else | |
3808 | { | |
3809 | uint32 rawval0, rawval1; | |
3810 | ||
64b607e6 BW |
3811 | if (o_operand_count != operand_count + 1 |
3812 | || xtensa_operand_get_field (isa, opcode, 0, | |
3813 | fmt, 0, slotbuf, &rawval0) != 0 | |
3814 | || xtensa_operand_get_field (isa, opcode, 1, | |
3815 | fmt, 0, slotbuf, &rawval1) != 0 | |
3816 | || rawval0 == rawval1 /* it is a nop */) | |
3817 | return 0; | |
43cd72b9 BW |
3818 | } |
3819 | if (is_branch) | |
3820 | check_operand_count--; | |
3821 | ||
64b607e6 | 3822 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
3823 | { |
3824 | int new_i = i; | |
3825 | if (is_or && i == o_operand_count - 1) | |
3826 | new_i = i - 1; | |
3827 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
3828 | slotbuf, &value) | |
3829 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 3830 | return 0; |
43cd72b9 BW |
3831 | |
3832 | /* PC-relative branches need adjustment, but | |
3833 | the PC-rel operand will always have a relocation. */ | |
3834 | newval = value; | |
3835 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3836 | self_address) | |
3837 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3838 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3839 | o_slotbuf, newval)) | |
64b607e6 | 3840 | return 0; |
43cd72b9 BW |
3841 | } |
3842 | ||
3843 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 3844 | return 0; |
43cd72b9 | 3845 | |
64b607e6 | 3846 | return o_insnbuf; |
43cd72b9 BW |
3847 | } |
3848 | } | |
64b607e6 BW |
3849 | return 0; |
3850 | } | |
3851 | ||
3852 | ||
3853 | /* Attempt to widen an instruction. If the widening is valid, perform | |
3854 | the action in-place directly into the contents and return TRUE. Otherwise, | |
3855 | the return value is FALSE and the contents are not modified. */ | |
3856 | ||
3857 | static bfd_boolean | |
3858 | widen_instruction (bfd_byte *contents, | |
3859 | bfd_size_type content_length, | |
3860 | bfd_size_type offset) | |
3861 | { | |
3862 | xtensa_opcode opcode; | |
3863 | bfd_size_type insn_len; | |
3864 | xtensa_isa isa = xtensa_default_isa; | |
3865 | xtensa_format fmt; | |
3866 | xtensa_insnbuf o_insnbuf; | |
3867 | ||
3868 | static xtensa_insnbuf insnbuf = NULL; | |
3869 | static xtensa_insnbuf slotbuf = NULL; | |
3870 | ||
3871 | if (insnbuf == NULL) | |
3872 | { | |
3873 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3874 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3875 | } | |
3876 | ||
3877 | BFD_ASSERT (offset < content_length); | |
3878 | ||
3879 | if (content_length < 2) | |
3880 | return FALSE; | |
3881 | ||
3882 | /* We will hand-code a few of these for a little while. | |
3883 | These have all been specified in the assembler aleady. */ | |
3884 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3885 | content_length - offset); | |
3886 | fmt = xtensa_format_decode (isa, insnbuf); | |
3887 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
3888 | return FALSE; | |
3889 | ||
3890 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
3891 | return FALSE; | |
3892 | ||
3893 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
3894 | if (opcode == XTENSA_UNDEFINED) | |
3895 | return FALSE; | |
3896 | insn_len = xtensa_format_length (isa, fmt); | |
3897 | if (insn_len > content_length) | |
3898 | return FALSE; | |
3899 | ||
3900 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
3901 | if (o_insnbuf) | |
3902 | { | |
3903 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3904 | content_length - offset); | |
3905 | return TRUE; | |
3906 | } | |
43cd72b9 | 3907 | return FALSE; |
e0001a05 NC |
3908 | } |
3909 | ||
43cd72b9 BW |
3910 | \f |
3911 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 3912 | |
43cd72b9 | 3913 | static bfd_reloc_status_type |
7fa3d080 BW |
3914 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
3915 | bfd_vma address, | |
3916 | bfd_vma content_length, | |
3917 | char **error_message) | |
e0001a05 | 3918 | { |
43cd72b9 BW |
3919 | static xtensa_insnbuf insnbuf = NULL; |
3920 | static xtensa_insnbuf slotbuf = NULL; | |
3921 | xtensa_format core_format = XTENSA_UNDEFINED; | |
3922 | xtensa_opcode opcode; | |
3923 | xtensa_opcode direct_call_opcode; | |
3924 | xtensa_isa isa = xtensa_default_isa; | |
3925 | bfd_byte *chbuf = contents + address; | |
3926 | int opn; | |
e0001a05 | 3927 | |
43cd72b9 | 3928 | if (insnbuf == NULL) |
e0001a05 | 3929 | { |
43cd72b9 BW |
3930 | insnbuf = xtensa_insnbuf_alloc (isa); |
3931 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 3932 | } |
e0001a05 | 3933 | |
43cd72b9 BW |
3934 | if (content_length < address) |
3935 | { | |
3936 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3937 | return bfd_reloc_other; | |
3938 | } | |
e0001a05 | 3939 | |
43cd72b9 BW |
3940 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
3941 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
3942 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
3943 | { | |
3944 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3945 | return bfd_reloc_other; | |
3946 | } | |
3947 | ||
3948 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
3949 | core_format = xtensa_format_lookup (isa, "x24"); | |
3950 | opcode = xtensa_opcode_lookup (isa, "or"); | |
3951 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
3952 | for (opn = 0; opn < 3; opn++) | |
3953 | { | |
3954 | uint32 regno = 1; | |
3955 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
3956 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
3957 | slotbuf, regno); | |
3958 | } | |
3959 | xtensa_format_encode (isa, core_format, insnbuf); | |
3960 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3961 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 3962 | |
43cd72b9 BW |
3963 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
3964 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
3965 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 3966 | |
43cd72b9 BW |
3967 | xtensa_format_encode (isa, core_format, insnbuf); |
3968 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3969 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
3970 | content_length - address - 3); | |
e0001a05 | 3971 | |
43cd72b9 BW |
3972 | return bfd_reloc_ok; |
3973 | } | |
e0001a05 | 3974 | |
e0001a05 | 3975 | |
43cd72b9 | 3976 | static bfd_reloc_status_type |
7fa3d080 BW |
3977 | contract_asm_expansion (bfd_byte *contents, |
3978 | bfd_vma content_length, | |
3979 | Elf_Internal_Rela *irel, | |
3980 | char **error_message) | |
43cd72b9 BW |
3981 | { |
3982 | bfd_reloc_status_type retval = | |
3983 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
3984 | error_message); | |
e0001a05 | 3985 | |
43cd72b9 BW |
3986 | if (retval != bfd_reloc_ok) |
3987 | return bfd_reloc_dangerous; | |
e0001a05 | 3988 | |
43cd72b9 BW |
3989 | /* Update the irel->r_offset field so that the right immediate and |
3990 | the right instruction are modified during the relocation. */ | |
3991 | irel->r_offset += 3; | |
3992 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
3993 | return bfd_reloc_ok; | |
3994 | } | |
e0001a05 | 3995 | |
e0001a05 | 3996 | |
43cd72b9 | 3997 | static xtensa_opcode |
7fa3d080 | 3998 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 3999 | { |
43cd72b9 | 4000 | init_call_opcodes (); |
e0001a05 | 4001 | |
43cd72b9 BW |
4002 | if (opcode == callx0_op) return call0_op; |
4003 | if (opcode == callx4_op) return call4_op; | |
4004 | if (opcode == callx8_op) return call8_op; | |
4005 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4006 | |
43cd72b9 BW |
4007 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4008 | return XTENSA_UNDEFINED; | |
4009 | } | |
e0001a05 | 4010 | |
e0001a05 | 4011 | |
43cd72b9 BW |
4012 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4013 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4014 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4015 | |
43cd72b9 BW |
4016 | #define L32R_TARGET_REG_OPERAND 0 |
4017 | #define CONST16_TARGET_REG_OPERAND 0 | |
4018 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4019 | |
43cd72b9 | 4020 | static xtensa_opcode |
7fa3d080 | 4021 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4022 | { |
43cd72b9 BW |
4023 | static xtensa_insnbuf insnbuf = NULL; |
4024 | static xtensa_insnbuf slotbuf = NULL; | |
4025 | xtensa_format fmt; | |
4026 | xtensa_opcode opcode; | |
4027 | xtensa_isa isa = xtensa_default_isa; | |
4028 | uint32 regno, const16_regno, call_regno; | |
4029 | int offset = 0; | |
e0001a05 | 4030 | |
43cd72b9 | 4031 | if (insnbuf == NULL) |
e0001a05 | 4032 | { |
43cd72b9 BW |
4033 | insnbuf = xtensa_insnbuf_alloc (isa); |
4034 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4035 | } |
43cd72b9 BW |
4036 | |
4037 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4038 | fmt = xtensa_format_decode (isa, insnbuf); | |
4039 | if (fmt == XTENSA_UNDEFINED | |
4040 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4041 | return XTENSA_UNDEFINED; | |
4042 | ||
4043 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4044 | if (opcode == XTENSA_UNDEFINED) | |
4045 | return XTENSA_UNDEFINED; | |
4046 | ||
4047 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4048 | { |
43cd72b9 BW |
4049 | if (p_uses_l32r) |
4050 | *p_uses_l32r = TRUE; | |
4051 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4052 | fmt, 0, slotbuf, ®no) | |
4053 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4054 | ®no)) | |
4055 | return XTENSA_UNDEFINED; | |
e0001a05 | 4056 | } |
43cd72b9 | 4057 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4058 | { |
43cd72b9 BW |
4059 | if (p_uses_l32r) |
4060 | *p_uses_l32r = FALSE; | |
4061 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4062 | fmt, 0, slotbuf, ®no) | |
4063 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4064 | ®no)) | |
4065 | return XTENSA_UNDEFINED; | |
4066 | ||
4067 | /* Check that the next instruction is also CONST16. */ | |
4068 | offset += xtensa_format_length (isa, fmt); | |
4069 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4070 | fmt = xtensa_format_decode (isa, insnbuf); | |
4071 | if (fmt == XTENSA_UNDEFINED | |
4072 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4073 | return XTENSA_UNDEFINED; | |
4074 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4075 | if (opcode != get_const16_opcode ()) | |
4076 | return XTENSA_UNDEFINED; | |
4077 | ||
4078 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4079 | fmt, 0, slotbuf, &const16_regno) | |
4080 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4081 | &const16_regno) | |
4082 | || const16_regno != regno) | |
4083 | return XTENSA_UNDEFINED; | |
e0001a05 | 4084 | } |
43cd72b9 BW |
4085 | else |
4086 | return XTENSA_UNDEFINED; | |
e0001a05 | 4087 | |
43cd72b9 BW |
4088 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4089 | offset += xtensa_format_length (isa, fmt); | |
4090 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4091 | fmt = xtensa_format_decode (isa, insnbuf); | |
4092 | if (fmt == XTENSA_UNDEFINED | |
4093 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4094 | return XTENSA_UNDEFINED; | |
4095 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4096 | if (opcode == XTENSA_UNDEFINED | |
4097 | || !is_indirect_call_opcode (opcode)) | |
4098 | return XTENSA_UNDEFINED; | |
e0001a05 | 4099 | |
43cd72b9 BW |
4100 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4101 | fmt, 0, slotbuf, &call_regno) | |
4102 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4103 | &call_regno)) | |
4104 | return XTENSA_UNDEFINED; | |
e0001a05 | 4105 | |
43cd72b9 BW |
4106 | if (call_regno != regno) |
4107 | return XTENSA_UNDEFINED; | |
e0001a05 | 4108 | |
43cd72b9 BW |
4109 | return opcode; |
4110 | } | |
e0001a05 | 4111 | |
43cd72b9 BW |
4112 | \f |
4113 | /* Data structures used during relaxation. */ | |
e0001a05 | 4114 | |
43cd72b9 | 4115 | /* r_reloc: relocation values. */ |
e0001a05 | 4116 | |
43cd72b9 BW |
4117 | /* Through the relaxation process, we need to keep track of the values |
4118 | that will result from evaluating relocations. The standard ELF | |
4119 | relocation structure is not sufficient for this purpose because we're | |
4120 | operating on multiple input files at once, so we need to know which | |
4121 | input file a relocation refers to. The r_reloc structure thus | |
4122 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4123 | |
43cd72b9 BW |
4124 | For efficiency, an r_reloc also contains a "target_offset" field to |
4125 | cache the target-section-relative offset value that is represented by | |
4126 | the relocation. | |
4127 | ||
4128 | The r_reloc also contains a virtual offset that allows multiple | |
4129 | inserted literals to be placed at the same "address" with | |
4130 | different offsets. */ | |
e0001a05 | 4131 | |
43cd72b9 | 4132 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4133 | |
43cd72b9 | 4134 | struct r_reloc_struct |
e0001a05 | 4135 | { |
43cd72b9 BW |
4136 | bfd *abfd; |
4137 | Elf_Internal_Rela rela; | |
e0001a05 | 4138 | bfd_vma target_offset; |
43cd72b9 | 4139 | bfd_vma virtual_offset; |
e0001a05 NC |
4140 | }; |
4141 | ||
e0001a05 | 4142 | |
43cd72b9 BW |
4143 | /* The r_reloc structure is included by value in literal_value, but not |
4144 | every literal_value has an associated relocation -- some are simple | |
4145 | constants. In such cases, we set all the fields in the r_reloc | |
4146 | struct to zero. The r_reloc_is_const function should be used to | |
4147 | detect this case. */ | |
e0001a05 | 4148 | |
43cd72b9 | 4149 | static bfd_boolean |
7fa3d080 | 4150 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4151 | { |
43cd72b9 | 4152 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4153 | } |
4154 | ||
4155 | ||
43cd72b9 | 4156 | static bfd_vma |
7fa3d080 | 4157 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4158 | { |
43cd72b9 BW |
4159 | bfd_vma target_offset; |
4160 | unsigned long r_symndx; | |
e0001a05 | 4161 | |
43cd72b9 BW |
4162 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4163 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4164 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4165 | return (target_offset + r_rel->rela.r_addend); | |
4166 | } | |
e0001a05 | 4167 | |
e0001a05 | 4168 | |
43cd72b9 | 4169 | static struct elf_link_hash_entry * |
7fa3d080 | 4170 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4171 | { |
43cd72b9 BW |
4172 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4173 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4174 | } | |
e0001a05 | 4175 | |
43cd72b9 BW |
4176 | |
4177 | static asection * | |
7fa3d080 | 4178 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4179 | { |
4180 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4181 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4182 | } | |
e0001a05 NC |
4183 | |
4184 | ||
4185 | static bfd_boolean | |
7fa3d080 | 4186 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4187 | { |
43cd72b9 BW |
4188 | asection *sec; |
4189 | if (r_rel == NULL) | |
e0001a05 | 4190 | return FALSE; |
e0001a05 | 4191 | |
43cd72b9 BW |
4192 | sec = r_reloc_get_section (r_rel); |
4193 | if (sec == bfd_abs_section_ptr | |
4194 | || sec == bfd_com_section_ptr | |
4195 | || sec == bfd_und_section_ptr) | |
4196 | return FALSE; | |
4197 | return TRUE; | |
e0001a05 NC |
4198 | } |
4199 | ||
4200 | ||
7fa3d080 BW |
4201 | static void |
4202 | r_reloc_init (r_reloc *r_rel, | |
4203 | bfd *abfd, | |
4204 | Elf_Internal_Rela *irel, | |
4205 | bfd_byte *contents, | |
4206 | bfd_size_type content_length) | |
4207 | { | |
4208 | int r_type; | |
4209 | reloc_howto_type *howto; | |
4210 | ||
4211 | if (irel) | |
4212 | { | |
4213 | r_rel->rela = *irel; | |
4214 | r_rel->abfd = abfd; | |
4215 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4216 | r_rel->virtual_offset = 0; | |
4217 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4218 | howto = &elf_howto_table[r_type]; | |
4219 | if (howto->partial_inplace) | |
4220 | { | |
4221 | bfd_vma inplace_val; | |
4222 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4223 | ||
4224 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4225 | r_rel->target_offset += inplace_val; | |
4226 | } | |
4227 | } | |
4228 | else | |
4229 | memset (r_rel, 0, sizeof (r_reloc)); | |
4230 | } | |
4231 | ||
4232 | ||
43cd72b9 BW |
4233 | #if DEBUG |
4234 | ||
e0001a05 | 4235 | static void |
7fa3d080 | 4236 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 4237 | { |
43cd72b9 BW |
4238 | if (r_reloc_is_defined (r_rel)) |
4239 | { | |
4240 | asection *sec = r_reloc_get_section (r_rel); | |
4241 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
4242 | } | |
4243 | else if (r_reloc_get_hash_entry (r_rel)) | |
4244 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
4245 | else | |
4246 | fprintf (fp, " ?? + "); | |
e0001a05 | 4247 | |
43cd72b9 BW |
4248 | fprintf_vma (fp, r_rel->target_offset); |
4249 | if (r_rel->virtual_offset) | |
4250 | { | |
4251 | fprintf (fp, " + "); | |
4252 | fprintf_vma (fp, r_rel->virtual_offset); | |
4253 | } | |
4254 | ||
4255 | fprintf (fp, ")"); | |
4256 | } | |
e0001a05 | 4257 | |
43cd72b9 | 4258 | #endif /* DEBUG */ |
e0001a05 | 4259 | |
43cd72b9 BW |
4260 | \f |
4261 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 4262 | |
43cd72b9 BW |
4263 | /* To determine whether literals can be coalesced, we need to first |
4264 | record all the relocations that reference the literals. The | |
4265 | source_reloc structure below is used for this purpose. The | |
4266 | source_reloc entries are kept in a per-literal-section array, sorted | |
4267 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 4268 | |
43cd72b9 BW |
4269 | The source_sec and r_rel.rela.r_offset fields identify the source of |
4270 | the relocation. The r_rel field records the relocation value, i.e., | |
4271 | the offset of the literal being referenced. The opnd field is needed | |
4272 | to determine the range of the immediate field to which the relocation | |
4273 | applies, so we can determine whether another literal with the same | |
4274 | value is within range. The is_null field is true when the relocation | |
4275 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
4276 | that is converted to a direct CALL). */ | |
e0001a05 | 4277 | |
43cd72b9 BW |
4278 | typedef struct source_reloc_struct source_reloc; |
4279 | ||
4280 | struct source_reloc_struct | |
e0001a05 | 4281 | { |
43cd72b9 BW |
4282 | asection *source_sec; |
4283 | r_reloc r_rel; | |
4284 | xtensa_opcode opcode; | |
4285 | int opnd; | |
4286 | bfd_boolean is_null; | |
4287 | bfd_boolean is_abs_literal; | |
4288 | }; | |
e0001a05 | 4289 | |
e0001a05 | 4290 | |
e0001a05 | 4291 | static void |
7fa3d080 BW |
4292 | init_source_reloc (source_reloc *reloc, |
4293 | asection *source_sec, | |
4294 | const r_reloc *r_rel, | |
4295 | xtensa_opcode opcode, | |
4296 | int opnd, | |
4297 | bfd_boolean is_abs_literal) | |
e0001a05 | 4298 | { |
43cd72b9 BW |
4299 | reloc->source_sec = source_sec; |
4300 | reloc->r_rel = *r_rel; | |
4301 | reloc->opcode = opcode; | |
4302 | reloc->opnd = opnd; | |
4303 | reloc->is_null = FALSE; | |
4304 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4305 | } |
4306 | ||
e0001a05 | 4307 | |
43cd72b9 BW |
4308 | /* Find the source_reloc for a particular source offset and relocation |
4309 | type. Note that the array is sorted by _target_ offset, so this is | |
4310 | just a linear search. */ | |
e0001a05 | 4311 | |
43cd72b9 | 4312 | static source_reloc * |
7fa3d080 BW |
4313 | find_source_reloc (source_reloc *src_relocs, |
4314 | int src_count, | |
4315 | asection *sec, | |
4316 | Elf_Internal_Rela *irel) | |
e0001a05 | 4317 | { |
43cd72b9 | 4318 | int i; |
e0001a05 | 4319 | |
43cd72b9 BW |
4320 | for (i = 0; i < src_count; i++) |
4321 | { | |
4322 | if (src_relocs[i].source_sec == sec | |
4323 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
4324 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
4325 | == ELF32_R_TYPE (irel->r_info))) | |
4326 | return &src_relocs[i]; | |
4327 | } | |
e0001a05 | 4328 | |
43cd72b9 | 4329 | return NULL; |
e0001a05 NC |
4330 | } |
4331 | ||
4332 | ||
43cd72b9 | 4333 | static int |
7fa3d080 | 4334 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 4335 | { |
43cd72b9 BW |
4336 | const source_reloc *a = (const source_reloc *) ap; |
4337 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 4338 | |
43cd72b9 BW |
4339 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
4340 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 4341 | |
43cd72b9 BW |
4342 | /* We don't need to sort on these criteria for correctness, |
4343 | but enforcing a more strict ordering prevents unstable qsort | |
4344 | from behaving differently with different implementations. | |
4345 | Without the code below we get correct but different results | |
4346 | on Solaris 2.7 and 2.8. We would like to always produce the | |
4347 | same results no matter the host. */ | |
4348 | ||
4349 | if ((!a->is_null) - (!b->is_null)) | |
4350 | return ((!a->is_null) - (!b->is_null)); | |
4351 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
4352 | } |
4353 | ||
43cd72b9 BW |
4354 | \f |
4355 | /* Literal values and value hash tables. */ | |
e0001a05 | 4356 | |
43cd72b9 BW |
4357 | /* Literals with the same value can be coalesced. The literal_value |
4358 | structure records the value of a literal: the "r_rel" field holds the | |
4359 | information from the relocation on the literal (if there is one) and | |
4360 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 4361 | |
43cd72b9 BW |
4362 | The value_map structure records a literal value along with the |
4363 | location of a literal holding that value. The value_map hash table | |
4364 | is indexed by the literal value, so that we can quickly check if a | |
4365 | particular literal value has been seen before and is thus a candidate | |
4366 | for coalescing. */ | |
e0001a05 | 4367 | |
43cd72b9 BW |
4368 | typedef struct literal_value_struct literal_value; |
4369 | typedef struct value_map_struct value_map; | |
4370 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 4371 | |
43cd72b9 | 4372 | struct literal_value_struct |
e0001a05 | 4373 | { |
43cd72b9 BW |
4374 | r_reloc r_rel; |
4375 | unsigned long value; | |
4376 | bfd_boolean is_abs_literal; | |
4377 | }; | |
4378 | ||
4379 | struct value_map_struct | |
4380 | { | |
4381 | literal_value val; /* The literal value. */ | |
4382 | r_reloc loc; /* Location of the literal. */ | |
4383 | value_map *next; | |
4384 | }; | |
4385 | ||
4386 | struct value_map_hash_table_struct | |
4387 | { | |
4388 | unsigned bucket_count; | |
4389 | value_map **buckets; | |
4390 | unsigned count; | |
4391 | bfd_boolean has_last_loc; | |
4392 | r_reloc last_loc; | |
4393 | }; | |
4394 | ||
4395 | ||
e0001a05 | 4396 | static void |
7fa3d080 BW |
4397 | init_literal_value (literal_value *lit, |
4398 | const r_reloc *r_rel, | |
4399 | unsigned long value, | |
4400 | bfd_boolean is_abs_literal) | |
e0001a05 | 4401 | { |
43cd72b9 BW |
4402 | lit->r_rel = *r_rel; |
4403 | lit->value = value; | |
4404 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4405 | } |
4406 | ||
4407 | ||
43cd72b9 | 4408 | static bfd_boolean |
7fa3d080 BW |
4409 | literal_value_equal (const literal_value *src1, |
4410 | const literal_value *src2, | |
4411 | bfd_boolean final_static_link) | |
e0001a05 | 4412 | { |
43cd72b9 | 4413 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 4414 | |
43cd72b9 BW |
4415 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
4416 | return FALSE; | |
e0001a05 | 4417 | |
43cd72b9 BW |
4418 | if (r_reloc_is_const (&src1->r_rel)) |
4419 | return (src1->value == src2->value); | |
e0001a05 | 4420 | |
43cd72b9 BW |
4421 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
4422 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
4423 | return FALSE; | |
e0001a05 | 4424 | |
43cd72b9 BW |
4425 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
4426 | return FALSE; | |
4427 | ||
4428 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) | |
4429 | return FALSE; | |
4430 | ||
4431 | if (src1->value != src2->value) | |
4432 | return FALSE; | |
4433 | ||
4434 | /* Now check for the same section (if defined) or the same elf_hash | |
4435 | (if undefined or weak). */ | |
4436 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
4437 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
4438 | if (r_reloc_is_defined (&src1->r_rel) | |
4439 | && (final_static_link | |
4440 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
4441 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
4442 | { | |
4443 | if (r_reloc_get_section (&src1->r_rel) | |
4444 | != r_reloc_get_section (&src2->r_rel)) | |
4445 | return FALSE; | |
4446 | } | |
4447 | else | |
4448 | { | |
4449 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
4450 | if (h1 != h2 || h1 == 0) | |
4451 | return FALSE; | |
4452 | } | |
4453 | ||
4454 | if (src1->is_abs_literal != src2->is_abs_literal) | |
4455 | return FALSE; | |
4456 | ||
4457 | return TRUE; | |
e0001a05 NC |
4458 | } |
4459 | ||
e0001a05 | 4460 | |
43cd72b9 BW |
4461 | /* Must be power of 2. */ |
4462 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 4463 | |
43cd72b9 | 4464 | static value_map_hash_table * |
7fa3d080 | 4465 | value_map_hash_table_init (void) |
43cd72b9 BW |
4466 | { |
4467 | value_map_hash_table *values; | |
e0001a05 | 4468 | |
43cd72b9 BW |
4469 | values = (value_map_hash_table *) |
4470 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
4471 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
4472 | values->count = 0; | |
4473 | values->buckets = (value_map **) | |
4474 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
4475 | if (values->buckets == NULL) | |
4476 | { | |
4477 | free (values); | |
4478 | return NULL; | |
4479 | } | |
4480 | values->has_last_loc = FALSE; | |
4481 | ||
4482 | return values; | |
4483 | } | |
4484 | ||
4485 | ||
4486 | static void | |
7fa3d080 | 4487 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 4488 | { |
43cd72b9 BW |
4489 | free (table->buckets); |
4490 | free (table); | |
4491 | } | |
4492 | ||
4493 | ||
4494 | static unsigned | |
7fa3d080 | 4495 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
4496 | { |
4497 | return (val >> 2) + (val >> 10); | |
4498 | } | |
4499 | ||
4500 | ||
4501 | static unsigned | |
7fa3d080 | 4502 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
4503 | { |
4504 | unsigned hash_val; | |
e0001a05 | 4505 | |
43cd72b9 BW |
4506 | hash_val = hash_bfd_vma (src->value); |
4507 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 4508 | { |
43cd72b9 BW |
4509 | void *sec_or_hash; |
4510 | ||
4511 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
4512 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
4513 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
4514 | ||
4515 | /* Now check for the same section and the same elf_hash. */ | |
4516 | if (r_reloc_is_defined (&src->r_rel)) | |
4517 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
4518 | else | |
4519 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 4520 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 4521 | } |
43cd72b9 BW |
4522 | return hash_val; |
4523 | } | |
e0001a05 | 4524 | |
e0001a05 | 4525 | |
43cd72b9 | 4526 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 4527 | |
43cd72b9 | 4528 | static value_map * |
7fa3d080 BW |
4529 | value_map_get_cached_value (value_map_hash_table *map, |
4530 | const literal_value *val, | |
4531 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4532 | { |
4533 | value_map *map_e; | |
4534 | value_map *bucket; | |
4535 | unsigned idx; | |
4536 | ||
4537 | idx = literal_value_hash (val); | |
4538 | idx = idx & (map->bucket_count - 1); | |
4539 | bucket = map->buckets[idx]; | |
4540 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 4541 | { |
43cd72b9 BW |
4542 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
4543 | return map_e; | |
4544 | } | |
4545 | return NULL; | |
4546 | } | |
e0001a05 | 4547 | |
e0001a05 | 4548 | |
43cd72b9 BW |
4549 | /* Record a new literal value. It is illegal to call this if VALUE |
4550 | already has an entry here. */ | |
4551 | ||
4552 | static value_map * | |
7fa3d080 BW |
4553 | add_value_map (value_map_hash_table *map, |
4554 | const literal_value *val, | |
4555 | const r_reloc *loc, | |
4556 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4557 | { |
4558 | value_map **bucket_p; | |
4559 | unsigned idx; | |
4560 | ||
4561 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
4562 | if (val_e == NULL) | |
4563 | { | |
4564 | bfd_set_error (bfd_error_no_memory); | |
4565 | return NULL; | |
e0001a05 NC |
4566 | } |
4567 | ||
43cd72b9 BW |
4568 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
4569 | val_e->val = *val; | |
4570 | val_e->loc = *loc; | |
4571 | ||
4572 | idx = literal_value_hash (val); | |
4573 | idx = idx & (map->bucket_count - 1); | |
4574 | bucket_p = &map->buckets[idx]; | |
4575 | ||
4576 | val_e->next = *bucket_p; | |
4577 | *bucket_p = val_e; | |
4578 | map->count++; | |
4579 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
4580 | ||
4581 | return val_e; | |
e0001a05 NC |
4582 | } |
4583 | ||
43cd72b9 BW |
4584 | \f |
4585 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
4586 | conversion, space fill, code & literal removal, etc. */ | |
4587 | ||
4588 | /* The following text actions are generated: | |
4589 | ||
4590 | "ta_remove_insn" remove an instruction or instructions | |
4591 | "ta_remove_longcall" convert longcall to call | |
4592 | "ta_convert_longcall" convert longcall to nop/call | |
4593 | "ta_narrow_insn" narrow a wide instruction | |
4594 | "ta_widen" widen a narrow instruction | |
4595 | "ta_fill" add fill or remove fill | |
4596 | removed < 0 is a fill; branches to the fill address will be | |
4597 | changed to address + fill size (e.g., address - removed) | |
4598 | removed >= 0 branches to the fill address will stay unchanged | |
4599 | "ta_remove_literal" remove a literal; this action is | |
4600 | indicated when a literal is removed | |
4601 | or replaced. | |
4602 | "ta_add_literal" insert a new literal; this action is | |
4603 | indicated when a literal has been moved. | |
4604 | It may use a virtual_offset because | |
4605 | multiple literals can be placed at the | |
4606 | same location. | |
4607 | ||
4608 | For each of these text actions, we also record the number of bytes | |
4609 | removed by performing the text action. In the case of a "ta_widen" | |
4610 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
4611 | ||
4612 | typedef struct text_action_struct text_action; | |
4613 | typedef struct text_action_list_struct text_action_list; | |
4614 | typedef enum text_action_enum_t text_action_t; | |
4615 | ||
4616 | enum text_action_enum_t | |
4617 | { | |
4618 | ta_none, | |
4619 | ta_remove_insn, /* removed = -size */ | |
4620 | ta_remove_longcall, /* removed = -size */ | |
4621 | ta_convert_longcall, /* removed = 0 */ | |
4622 | ta_narrow_insn, /* removed = -1 */ | |
4623 | ta_widen_insn, /* removed = +1 */ | |
4624 | ta_fill, /* removed = +size */ | |
4625 | ta_remove_literal, | |
4626 | ta_add_literal | |
4627 | }; | |
e0001a05 | 4628 | |
e0001a05 | 4629 | |
43cd72b9 BW |
4630 | /* Structure for a text action record. */ |
4631 | struct text_action_struct | |
e0001a05 | 4632 | { |
43cd72b9 BW |
4633 | text_action_t action; |
4634 | asection *sec; /* Optional */ | |
4635 | bfd_vma offset; | |
4636 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
4637 | int removed_bytes; | |
4638 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 4639 | |
43cd72b9 BW |
4640 | text_action *next; |
4641 | }; | |
e0001a05 | 4642 | |
e0001a05 | 4643 | |
43cd72b9 BW |
4644 | /* List of all of the actions taken on a text section. */ |
4645 | struct text_action_list_struct | |
4646 | { | |
4647 | text_action *head; | |
4648 | }; | |
e0001a05 | 4649 | |
e0001a05 | 4650 | |
7fa3d080 BW |
4651 | static text_action * |
4652 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
4653 | { |
4654 | text_action **m_p; | |
4655 | ||
4656 | /* It is not necessary to fill at the end of a section. */ | |
4657 | if (sec->size == offset) | |
4658 | return NULL; | |
4659 | ||
7fa3d080 | 4660 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4661 | { |
4662 | text_action *t = *m_p; | |
4663 | /* When the action is another fill at the same address, | |
4664 | just increase the size. */ | |
4665 | if (t->offset == offset && t->action == ta_fill) | |
4666 | return t; | |
4667 | } | |
4668 | return NULL; | |
4669 | } | |
4670 | ||
4671 | ||
4672 | static int | |
7fa3d080 BW |
4673 | compute_removed_action_diff (const text_action *ta, |
4674 | asection *sec, | |
4675 | bfd_vma offset, | |
4676 | int removed, | |
4677 | int removable_space) | |
43cd72b9 BW |
4678 | { |
4679 | int new_removed; | |
4680 | int current_removed = 0; | |
4681 | ||
7fa3d080 | 4682 | if (ta) |
43cd72b9 BW |
4683 | current_removed = ta->removed_bytes; |
4684 | ||
4685 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
4686 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
4687 | ||
4688 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
4689 | if (sec->size == offset) | |
4690 | new_removed = removable_space - 0; | |
4691 | else | |
4692 | { | |
4693 | int space; | |
4694 | int added = -removed - current_removed; | |
4695 | /* Ignore multiples of the section alignment. */ | |
4696 | added = ((1 << sec->alignment_power) - 1) & added; | |
4697 | new_removed = (-added); | |
4698 | ||
4699 | /* Modify for removable. */ | |
4700 | space = removable_space - new_removed; | |
4701 | new_removed = (removable_space | |
4702 | - (((1 << sec->alignment_power) - 1) & space)); | |
4703 | } | |
4704 | return (new_removed - current_removed); | |
4705 | } | |
4706 | ||
4707 | ||
7fa3d080 BW |
4708 | static void |
4709 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
4710 | { |
4711 | ta->removed_bytes += fill_diff; | |
4712 | } | |
4713 | ||
4714 | ||
4715 | /* Add a modification action to the text. For the case of adding or | |
4716 | removing space, modify any current fill and assume that | |
4717 | "unreachable_space" bytes can be freely contracted. Note that a | |
4718 | negative removed value is a fill. */ | |
4719 | ||
4720 | static void | |
7fa3d080 BW |
4721 | text_action_add (text_action_list *l, |
4722 | text_action_t action, | |
4723 | asection *sec, | |
4724 | bfd_vma offset, | |
4725 | int removed) | |
43cd72b9 BW |
4726 | { |
4727 | text_action **m_p; | |
4728 | text_action *ta; | |
4729 | ||
4730 | /* It is not necessary to fill at the end of a section. */ | |
4731 | if (action == ta_fill && sec->size == offset) | |
4732 | return; | |
4733 | ||
4734 | /* It is not necessary to fill 0 bytes. */ | |
4735 | if (action == ta_fill && removed == 0) | |
4736 | return; | |
4737 | ||
7fa3d080 | 4738 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4739 | { |
4740 | text_action *t = *m_p; | |
4741 | /* When the action is another fill at the same address, | |
4742 | just increase the size. */ | |
4743 | if (t->offset == offset && t->action == ta_fill && action == ta_fill) | |
4744 | { | |
4745 | t->removed_bytes += removed; | |
4746 | return; | |
4747 | } | |
4748 | } | |
4749 | ||
4750 | /* Create a new record and fill it up. */ | |
4751 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4752 | ta->action = action; | |
4753 | ta->sec = sec; | |
4754 | ta->offset = offset; | |
4755 | ta->removed_bytes = removed; | |
4756 | ta->next = (*m_p); | |
4757 | *m_p = ta; | |
4758 | } | |
4759 | ||
4760 | ||
4761 | static void | |
7fa3d080 BW |
4762 | text_action_add_literal (text_action_list *l, |
4763 | text_action_t action, | |
4764 | const r_reloc *loc, | |
4765 | const literal_value *value, | |
4766 | int removed) | |
43cd72b9 BW |
4767 | { |
4768 | text_action **m_p; | |
4769 | text_action *ta; | |
4770 | asection *sec = r_reloc_get_section (loc); | |
4771 | bfd_vma offset = loc->target_offset; | |
4772 | bfd_vma virtual_offset = loc->virtual_offset; | |
4773 | ||
4774 | BFD_ASSERT (action == ta_add_literal); | |
4775 | ||
4776 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
4777 | { | |
4778 | if ((*m_p)->offset > offset | |
4779 | && ((*m_p)->offset != offset | |
4780 | || (*m_p)->virtual_offset > virtual_offset)) | |
4781 | break; | |
4782 | } | |
4783 | ||
4784 | /* Create a new record and fill it up. */ | |
4785 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4786 | ta->action = action; | |
4787 | ta->sec = sec; | |
4788 | ta->offset = offset; | |
4789 | ta->virtual_offset = virtual_offset; | |
4790 | ta->value = *value; | |
4791 | ta->removed_bytes = removed; | |
4792 | ta->next = (*m_p); | |
4793 | *m_p = ta; | |
4794 | } | |
4795 | ||
4796 | ||
7fa3d080 BW |
4797 | static bfd_vma |
4798 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
4799 | { |
4800 | text_action *r; | |
4801 | int removed = 0; | |
4802 | ||
4803 | for (r = action_list->head; r && r->offset <= offset; r = r->next) | |
4804 | { | |
4805 | if (r->offset < offset | |
4806 | || (r->action == ta_fill && r->removed_bytes < 0)) | |
4807 | removed += r->removed_bytes; | |
4808 | } | |
4809 | ||
4810 | return (offset - removed); | |
4811 | } | |
4812 | ||
4813 | ||
03e94c08 BW |
4814 | static unsigned |
4815 | action_list_count (text_action_list *action_list) | |
4816 | { | |
4817 | text_action *r = action_list->head; | |
4818 | unsigned count = 0; | |
4819 | for (r = action_list->head; r != NULL; r = r->next) | |
4820 | { | |
4821 | count++; | |
4822 | } | |
4823 | return count; | |
4824 | } | |
4825 | ||
4826 | ||
7fa3d080 BW |
4827 | static bfd_vma |
4828 | offset_with_removed_text_before_fill (text_action_list *action_list, | |
4829 | bfd_vma offset) | |
43cd72b9 BW |
4830 | { |
4831 | text_action *r; | |
4832 | int removed = 0; | |
4833 | ||
4834 | for (r = action_list->head; r && r->offset < offset; r = r->next) | |
4835 | removed += r->removed_bytes; | |
4836 | ||
4837 | return (offset - removed); | |
4838 | } | |
4839 | ||
4840 | ||
4841 | /* The find_insn_action routine will only find non-fill actions. */ | |
4842 | ||
7fa3d080 BW |
4843 | static text_action * |
4844 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
4845 | { |
4846 | text_action *t; | |
4847 | for (t = action_list->head; t; t = t->next) | |
4848 | { | |
4849 | if (t->offset == offset) | |
4850 | { | |
4851 | switch (t->action) | |
4852 | { | |
4853 | case ta_none: | |
4854 | case ta_fill: | |
4855 | break; | |
4856 | case ta_remove_insn: | |
4857 | case ta_remove_longcall: | |
4858 | case ta_convert_longcall: | |
4859 | case ta_narrow_insn: | |
4860 | case ta_widen_insn: | |
4861 | return t; | |
4862 | case ta_remove_literal: | |
4863 | case ta_add_literal: | |
4864 | BFD_ASSERT (0); | |
4865 | break; | |
4866 | } | |
4867 | } | |
4868 | } | |
4869 | return NULL; | |
4870 | } | |
4871 | ||
4872 | ||
4873 | #if DEBUG | |
4874 | ||
4875 | static void | |
7fa3d080 | 4876 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
4877 | { |
4878 | text_action *r; | |
4879 | ||
4880 | fprintf (fp, "Text Action\n"); | |
4881 | for (r = action_list->head; r != NULL; r = r->next) | |
4882 | { | |
4883 | const char *t = "unknown"; | |
4884 | switch (r->action) | |
4885 | { | |
4886 | case ta_remove_insn: | |
4887 | t = "remove_insn"; break; | |
4888 | case ta_remove_longcall: | |
4889 | t = "remove_longcall"; break; | |
4890 | case ta_convert_longcall: | |
4891 | t = "remove_longcall"; break; | |
4892 | case ta_narrow_insn: | |
4893 | t = "narrow_insn"; break; | |
4894 | case ta_widen_insn: | |
4895 | t = "widen_insn"; break; | |
4896 | case ta_fill: | |
4897 | t = "fill"; break; | |
4898 | case ta_none: | |
4899 | t = "none"; break; | |
4900 | case ta_remove_literal: | |
4901 | t = "remove_literal"; break; | |
4902 | case ta_add_literal: | |
4903 | t = "add_literal"; break; | |
4904 | } | |
4905 | ||
4906 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
4907 | r->sec->owner->filename, | |
4908 | r->sec->name, r->offset, t, r->removed_bytes); | |
4909 | } | |
4910 | } | |
4911 | ||
4912 | #endif /* DEBUG */ | |
4913 | ||
4914 | \f | |
4915 | /* Lists of literals being coalesced or removed. */ | |
4916 | ||
4917 | /* In the usual case, the literal identified by "from" is being | |
4918 | coalesced with another literal identified by "to". If the literal is | |
4919 | unused and is being removed altogether, "to.abfd" will be NULL. | |
4920 | The removed_literal entries are kept on a per-section list, sorted | |
4921 | by the "from" offset field. */ | |
4922 | ||
4923 | typedef struct removed_literal_struct removed_literal; | |
4924 | typedef struct removed_literal_list_struct removed_literal_list; | |
4925 | ||
4926 | struct removed_literal_struct | |
4927 | { | |
4928 | r_reloc from; | |
4929 | r_reloc to; | |
4930 | removed_literal *next; | |
4931 | }; | |
4932 | ||
4933 | struct removed_literal_list_struct | |
4934 | { | |
4935 | removed_literal *head; | |
4936 | removed_literal *tail; | |
4937 | }; | |
4938 | ||
4939 | ||
43cd72b9 BW |
4940 | /* Record that the literal at "from" is being removed. If "to" is not |
4941 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
4942 | ||
4943 | static void | |
7fa3d080 BW |
4944 | add_removed_literal (removed_literal_list *removed_list, |
4945 | const r_reloc *from, | |
4946 | const r_reloc *to) | |
43cd72b9 BW |
4947 | { |
4948 | removed_literal *r, *new_r, *next_r; | |
4949 | ||
4950 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
4951 | ||
4952 | new_r->from = *from; | |
4953 | if (to) | |
4954 | new_r->to = *to; | |
4955 | else | |
4956 | new_r->to.abfd = NULL; | |
4957 | new_r->next = NULL; | |
4958 | ||
4959 | r = removed_list->head; | |
4960 | if (r == NULL) | |
4961 | { | |
4962 | removed_list->head = new_r; | |
4963 | removed_list->tail = new_r; | |
4964 | } | |
4965 | /* Special check for common case of append. */ | |
4966 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
4967 | { | |
4968 | removed_list->tail->next = new_r; | |
4969 | removed_list->tail = new_r; | |
4970 | } | |
4971 | else | |
4972 | { | |
7fa3d080 | 4973 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
4974 | { |
4975 | r = r->next; | |
4976 | } | |
4977 | next_r = r->next; | |
4978 | r->next = new_r; | |
4979 | new_r->next = next_r; | |
4980 | if (next_r == NULL) | |
4981 | removed_list->tail = new_r; | |
4982 | } | |
4983 | } | |
4984 | ||
4985 | ||
4986 | /* Check if the list of removed literals contains an entry for the | |
4987 | given address. Return the entry if found. */ | |
4988 | ||
4989 | static removed_literal * | |
7fa3d080 | 4990 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
4991 | { |
4992 | removed_literal *r = removed_list->head; | |
4993 | while (r && r->from.target_offset < addr) | |
4994 | r = r->next; | |
4995 | if (r && r->from.target_offset == addr) | |
4996 | return r; | |
4997 | return NULL; | |
4998 | } | |
4999 | ||
5000 | ||
5001 | #if DEBUG | |
5002 | ||
5003 | static void | |
7fa3d080 | 5004 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
5005 | { |
5006 | removed_literal *r; | |
5007 | r = removed_list->head; | |
5008 | if (r) | |
5009 | fprintf (fp, "Removed Literals\n"); | |
5010 | for (; r != NULL; r = r->next) | |
5011 | { | |
5012 | print_r_reloc (fp, &r->from); | |
5013 | fprintf (fp, " => "); | |
5014 | if (r->to.abfd == NULL) | |
5015 | fprintf (fp, "REMOVED"); | |
5016 | else | |
5017 | print_r_reloc (fp, &r->to); | |
5018 | fprintf (fp, "\n"); | |
5019 | } | |
5020 | } | |
5021 | ||
5022 | #endif /* DEBUG */ | |
5023 | ||
5024 | \f | |
5025 | /* Per-section data for relaxation. */ | |
5026 | ||
5027 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
5028 | ||
5029 | struct xtensa_relax_info_struct | |
5030 | { | |
5031 | bfd_boolean is_relaxable_literal_section; | |
5032 | bfd_boolean is_relaxable_asm_section; | |
5033 | int visited; /* Number of times visited. */ | |
5034 | ||
5035 | source_reloc *src_relocs; /* Array[src_count]. */ | |
5036 | int src_count; | |
5037 | int src_next; /* Next src_relocs entry to assign. */ | |
5038 | ||
5039 | removed_literal_list removed_list; | |
5040 | text_action_list action_list; | |
5041 | ||
5042 | reloc_bfd_fix *fix_list; | |
5043 | reloc_bfd_fix *fix_array; | |
5044 | unsigned fix_array_count; | |
5045 | ||
5046 | /* Support for expanding the reloc array that is stored | |
5047 | in the section structure. If the relocations have been | |
5048 | reallocated, the newly allocated relocations will be referenced | |
5049 | here along with the actual size allocated. The relocation | |
5050 | count will always be found in the section structure. */ | |
5051 | Elf_Internal_Rela *allocated_relocs; | |
5052 | unsigned relocs_count; | |
5053 | unsigned allocated_relocs_count; | |
5054 | }; | |
5055 | ||
5056 | struct elf_xtensa_section_data | |
5057 | { | |
5058 | struct bfd_elf_section_data elf; | |
5059 | xtensa_relax_info relax_info; | |
5060 | }; | |
5061 | ||
43cd72b9 BW |
5062 | |
5063 | static bfd_boolean | |
7fa3d080 | 5064 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 5065 | { |
f592407e AM |
5066 | if (!sec->used_by_bfd) |
5067 | { | |
5068 | struct elf_xtensa_section_data *sdata; | |
5069 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 5070 | |
f592407e AM |
5071 | sdata = bfd_zalloc (abfd, amt); |
5072 | if (sdata == NULL) | |
5073 | return FALSE; | |
5074 | sec->used_by_bfd = sdata; | |
5075 | } | |
43cd72b9 BW |
5076 | |
5077 | return _bfd_elf_new_section_hook (abfd, sec); | |
5078 | } | |
5079 | ||
5080 | ||
7fa3d080 BW |
5081 | static xtensa_relax_info * |
5082 | get_xtensa_relax_info (asection *sec) | |
5083 | { | |
5084 | struct elf_xtensa_section_data *section_data; | |
5085 | ||
5086 | /* No info available if no section or if it is an output section. */ | |
5087 | if (!sec || sec == sec->output_section) | |
5088 | return NULL; | |
5089 | ||
5090 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5091 | return §ion_data->relax_info; | |
5092 | } | |
5093 | ||
5094 | ||
43cd72b9 | 5095 | static void |
7fa3d080 | 5096 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5097 | { |
5098 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5099 | ||
5100 | relax_info->is_relaxable_literal_section = FALSE; | |
5101 | relax_info->is_relaxable_asm_section = FALSE; | |
5102 | relax_info->visited = 0; | |
5103 | ||
5104 | relax_info->src_relocs = NULL; | |
5105 | relax_info->src_count = 0; | |
5106 | relax_info->src_next = 0; | |
5107 | ||
5108 | relax_info->removed_list.head = NULL; | |
5109 | relax_info->removed_list.tail = NULL; | |
5110 | ||
5111 | relax_info->action_list.head = NULL; | |
5112 | ||
5113 | relax_info->fix_list = NULL; | |
5114 | relax_info->fix_array = NULL; | |
5115 | relax_info->fix_array_count = 0; | |
5116 | ||
5117 | relax_info->allocated_relocs = NULL; | |
5118 | relax_info->relocs_count = 0; | |
5119 | relax_info->allocated_relocs_count = 0; | |
5120 | } | |
5121 | ||
43cd72b9 BW |
5122 | \f |
5123 | /* Coalescing literals may require a relocation to refer to a section in | |
5124 | a different input file, but the standard relocation information | |
5125 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5126 | to "fix" the relocations that refer to sections in other input files. | |
5127 | These structures are kept on per-section lists. The "src_type" field | |
5128 | records the relocation type in case there are multiple relocations on | |
5129 | the same location. FIXME: This is ugly; an alternative might be to | |
5130 | add new symbols with the "owner" field to some other input file. */ | |
5131 | ||
5132 | struct reloc_bfd_fix_struct | |
5133 | { | |
5134 | asection *src_sec; | |
5135 | bfd_vma src_offset; | |
5136 | unsigned src_type; /* Relocation type. */ | |
5137 | ||
5138 | bfd *target_abfd; | |
5139 | asection *target_sec; | |
5140 | bfd_vma target_offset; | |
5141 | bfd_boolean translated; | |
5142 | ||
5143 | reloc_bfd_fix *next; | |
5144 | }; | |
5145 | ||
5146 | ||
43cd72b9 | 5147 | static reloc_bfd_fix * |
7fa3d080 BW |
5148 | reloc_bfd_fix_init (asection *src_sec, |
5149 | bfd_vma src_offset, | |
5150 | unsigned src_type, | |
5151 | bfd *target_abfd, | |
5152 | asection *target_sec, | |
5153 | bfd_vma target_offset, | |
5154 | bfd_boolean translated) | |
43cd72b9 BW |
5155 | { |
5156 | reloc_bfd_fix *fix; | |
5157 | ||
5158 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5159 | fix->src_sec = src_sec; | |
5160 | fix->src_offset = src_offset; | |
5161 | fix->src_type = src_type; | |
5162 | fix->target_abfd = target_abfd; | |
5163 | fix->target_sec = target_sec; | |
5164 | fix->target_offset = target_offset; | |
5165 | fix->translated = translated; | |
5166 | ||
5167 | return fix; | |
5168 | } | |
5169 | ||
5170 | ||
5171 | static void | |
7fa3d080 | 5172 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5173 | { |
5174 | xtensa_relax_info *relax_info; | |
5175 | ||
5176 | relax_info = get_xtensa_relax_info (src_sec); | |
5177 | fix->next = relax_info->fix_list; | |
5178 | relax_info->fix_list = fix; | |
5179 | } | |
5180 | ||
5181 | ||
5182 | static int | |
7fa3d080 | 5183 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5184 | { |
5185 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5186 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5187 | ||
5188 | if (a->src_offset != b->src_offset) | |
5189 | return (a->src_offset - b->src_offset); | |
5190 | return (a->src_type - b->src_type); | |
5191 | } | |
5192 | ||
5193 | ||
5194 | static void | |
7fa3d080 | 5195 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5196 | { |
5197 | unsigned i, count = 0; | |
5198 | reloc_bfd_fix *r; | |
5199 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5200 | ||
5201 | if (relax_info == NULL) | |
5202 | return; | |
5203 | if (relax_info->fix_list == NULL) | |
5204 | return; | |
5205 | ||
5206 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5207 | count++; | |
5208 | ||
5209 | relax_info->fix_array = | |
5210 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
5211 | relax_info->fix_array_count = count; | |
5212 | ||
5213 | r = relax_info->fix_list; | |
5214 | for (i = 0; i < count; i++, r = r->next) | |
5215 | { | |
5216 | relax_info->fix_array[count - 1 - i] = *r; | |
5217 | relax_info->fix_array[count - 1 - i].next = NULL; | |
5218 | } | |
5219 | ||
5220 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
5221 | sizeof (reloc_bfd_fix), fix_compare); | |
5222 | } | |
5223 | ||
5224 | ||
5225 | static reloc_bfd_fix * | |
7fa3d080 | 5226 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
5227 | { |
5228 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5229 | reloc_bfd_fix *rv; | |
5230 | reloc_bfd_fix key; | |
5231 | ||
5232 | if (relax_info == NULL) | |
5233 | return NULL; | |
5234 | if (relax_info->fix_list == NULL) | |
5235 | return NULL; | |
5236 | ||
5237 | if (relax_info->fix_array == NULL) | |
5238 | cache_fix_array (sec); | |
5239 | ||
5240 | key.src_offset = offset; | |
5241 | key.src_type = type; | |
5242 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
5243 | sizeof (reloc_bfd_fix), fix_compare); | |
5244 | return rv; | |
5245 | } | |
5246 | ||
5247 | \f | |
5248 | /* Section caching. */ | |
5249 | ||
5250 | typedef struct section_cache_struct section_cache_t; | |
5251 | ||
5252 | struct section_cache_struct | |
5253 | { | |
5254 | asection *sec; | |
5255 | ||
5256 | bfd_byte *contents; /* Cache of the section contents. */ | |
5257 | bfd_size_type content_length; | |
5258 | ||
5259 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5260 | unsigned pte_count; | |
5261 | ||
5262 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5263 | unsigned reloc_count; | |
5264 | }; | |
5265 | ||
5266 | ||
7fa3d080 BW |
5267 | static void |
5268 | init_section_cache (section_cache_t *sec_cache) | |
5269 | { | |
5270 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
5271 | } | |
43cd72b9 BW |
5272 | |
5273 | ||
5274 | static void | |
7fa3d080 | 5275 | clear_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 5276 | { |
7fa3d080 BW |
5277 | if (sec_cache->sec) |
5278 | { | |
5279 | release_contents (sec_cache->sec, sec_cache->contents); | |
5280 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
5281 | if (sec_cache->ptbl) | |
5282 | free (sec_cache->ptbl); | |
5283 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5284 | } | |
43cd72b9 BW |
5285 | } |
5286 | ||
5287 | ||
5288 | static bfd_boolean | |
7fa3d080 BW |
5289 | section_cache_section (section_cache_t *sec_cache, |
5290 | asection *sec, | |
5291 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
5292 | { |
5293 | bfd *abfd; | |
5294 | property_table_entry *prop_table = NULL; | |
5295 | int ptblsize = 0; | |
5296 | bfd_byte *contents = NULL; | |
5297 | Elf_Internal_Rela *internal_relocs = NULL; | |
5298 | bfd_size_type sec_size; | |
5299 | ||
5300 | if (sec == NULL) | |
5301 | return FALSE; | |
5302 | if (sec == sec_cache->sec) | |
5303 | return TRUE; | |
5304 | ||
5305 | abfd = sec->owner; | |
5306 | sec_size = bfd_get_section_limit (abfd, sec); | |
5307 | ||
5308 | /* Get the contents. */ | |
5309 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5310 | if (contents == NULL && sec_size != 0) | |
5311 | goto err; | |
5312 | ||
5313 | /* Get the relocations. */ | |
5314 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5315 | link_info->keep_memory); | |
5316 | ||
5317 | /* Get the entry table. */ | |
5318 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
5319 | XTENSA_PROP_SEC_NAME, FALSE); | |
5320 | if (ptblsize < 0) | |
5321 | goto err; | |
5322 | ||
5323 | /* Fill in the new section cache. */ | |
5324 | clear_section_cache (sec_cache); | |
5325 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5326 | ||
5327 | sec_cache->sec = sec; | |
5328 | sec_cache->contents = contents; | |
5329 | sec_cache->content_length = sec_size; | |
5330 | sec_cache->relocs = internal_relocs; | |
5331 | sec_cache->reloc_count = sec->reloc_count; | |
5332 | sec_cache->pte_count = ptblsize; | |
5333 | sec_cache->ptbl = prop_table; | |
5334 | ||
5335 | return TRUE; | |
5336 | ||
5337 | err: | |
5338 | release_contents (sec, contents); | |
5339 | release_internal_relocs (sec, internal_relocs); | |
5340 | if (prop_table) | |
5341 | free (prop_table); | |
5342 | return FALSE; | |
5343 | } | |
5344 | ||
43cd72b9 BW |
5345 | \f |
5346 | /* Extended basic blocks. */ | |
5347 | ||
5348 | /* An ebb_struct represents an Extended Basic Block. Within this | |
5349 | range, we guarantee that all instructions are decodable, the | |
5350 | property table entries are contiguous, and no property table | |
5351 | specifies a segment that cannot have instructions moved. This | |
5352 | structure contains caches of the contents, property table and | |
5353 | relocations for the specified section for easy use. The range is | |
5354 | specified by ranges of indices for the byte offset, property table | |
5355 | offsets and relocation offsets. These must be consistent. */ | |
5356 | ||
5357 | typedef struct ebb_struct ebb_t; | |
5358 | ||
5359 | struct ebb_struct | |
5360 | { | |
5361 | asection *sec; | |
5362 | ||
5363 | bfd_byte *contents; /* Cache of the section contents. */ | |
5364 | bfd_size_type content_length; | |
5365 | ||
5366 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5367 | unsigned pte_count; | |
5368 | ||
5369 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5370 | unsigned reloc_count; | |
5371 | ||
5372 | bfd_vma start_offset; /* Offset in section. */ | |
5373 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
5374 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
5375 | ||
5376 | bfd_vma end_offset; | |
5377 | unsigned end_ptbl_idx; | |
5378 | unsigned end_reloc_idx; | |
5379 | ||
5380 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
5381 | ||
5382 | /* The unreachable property table at the end of this set of blocks; | |
5383 | NULL if the end is not an unreachable block. */ | |
5384 | property_table_entry *ends_unreachable; | |
5385 | }; | |
5386 | ||
5387 | ||
5388 | enum ebb_target_enum | |
5389 | { | |
5390 | EBB_NO_ALIGN = 0, | |
5391 | EBB_DESIRE_TGT_ALIGN, | |
5392 | EBB_REQUIRE_TGT_ALIGN, | |
5393 | EBB_REQUIRE_LOOP_ALIGN, | |
5394 | EBB_REQUIRE_ALIGN | |
5395 | }; | |
5396 | ||
5397 | ||
5398 | /* proposed_action_struct is similar to the text_action_struct except | |
5399 | that is represents a potential transformation, not one that will | |
5400 | occur. We build a list of these for an extended basic block | |
5401 | and use them to compute the actual actions desired. We must be | |
5402 | careful that the entire set of actual actions we perform do not | |
5403 | break any relocations that would fit if the actions were not | |
5404 | performed. */ | |
5405 | ||
5406 | typedef struct proposed_action_struct proposed_action; | |
5407 | ||
5408 | struct proposed_action_struct | |
5409 | { | |
5410 | enum ebb_target_enum align_type; /* for the target alignment */ | |
5411 | bfd_vma alignment_pow; | |
5412 | text_action_t action; | |
5413 | bfd_vma offset; | |
5414 | int removed_bytes; | |
5415 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
5416 | }; | |
5417 | ||
5418 | ||
5419 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
5420 | extended basic block. */ | |
5421 | ||
5422 | typedef struct ebb_constraint_struct ebb_constraint; | |
5423 | ||
5424 | struct ebb_constraint_struct | |
5425 | { | |
5426 | ebb_t ebb; | |
5427 | bfd_boolean start_movable; | |
5428 | ||
5429 | /* Bytes of extra space at the beginning if movable. */ | |
5430 | int start_extra_space; | |
5431 | ||
5432 | enum ebb_target_enum start_align; | |
5433 | ||
5434 | bfd_boolean end_movable; | |
5435 | ||
5436 | /* Bytes of extra space at the end if movable. */ | |
5437 | int end_extra_space; | |
5438 | ||
5439 | unsigned action_count; | |
5440 | unsigned action_allocated; | |
5441 | ||
5442 | /* Array of proposed actions. */ | |
5443 | proposed_action *actions; | |
5444 | ||
5445 | /* Action alignments -- one for each proposed action. */ | |
5446 | enum ebb_target_enum *action_aligns; | |
5447 | }; | |
5448 | ||
5449 | ||
43cd72b9 | 5450 | static void |
7fa3d080 | 5451 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
5452 | { |
5453 | memset (c, 0, sizeof (ebb_constraint)); | |
5454 | } | |
5455 | ||
5456 | ||
5457 | static void | |
7fa3d080 | 5458 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 5459 | { |
7fa3d080 | 5460 | if (c->actions) |
43cd72b9 BW |
5461 | free (c->actions); |
5462 | } | |
5463 | ||
5464 | ||
5465 | static void | |
7fa3d080 BW |
5466 | init_ebb (ebb_t *ebb, |
5467 | asection *sec, | |
5468 | bfd_byte *contents, | |
5469 | bfd_size_type content_length, | |
5470 | property_table_entry *prop_table, | |
5471 | unsigned ptblsize, | |
5472 | Elf_Internal_Rela *internal_relocs, | |
5473 | unsigned reloc_count) | |
43cd72b9 BW |
5474 | { |
5475 | memset (ebb, 0, sizeof (ebb_t)); | |
5476 | ebb->sec = sec; | |
5477 | ebb->contents = contents; | |
5478 | ebb->content_length = content_length; | |
5479 | ebb->ptbl = prop_table; | |
5480 | ebb->pte_count = ptblsize; | |
5481 | ebb->relocs = internal_relocs; | |
5482 | ebb->reloc_count = reloc_count; | |
5483 | ebb->start_offset = 0; | |
5484 | ebb->end_offset = ebb->content_length - 1; | |
5485 | ebb->start_ptbl_idx = 0; | |
5486 | ebb->end_ptbl_idx = ptblsize; | |
5487 | ebb->start_reloc_idx = 0; | |
5488 | ebb->end_reloc_idx = reloc_count; | |
5489 | } | |
5490 | ||
5491 | ||
5492 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
5493 | for building a basic block around an instruction is to push it | |
5494 | forward until we hit the end of a section, an unreachable block or | |
5495 | a block that cannot be transformed. Then we push it backwards | |
5496 | searching for similar conditions. */ | |
5497 | ||
7fa3d080 BW |
5498 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
5499 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
5500 | static bfd_size_type insn_block_decodable_len | |
5501 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
5502 | ||
43cd72b9 | 5503 | static bfd_boolean |
7fa3d080 | 5504 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
5505 | { |
5506 | if (!extend_ebb_bounds_forward (ebb)) | |
5507 | return FALSE; | |
5508 | if (!extend_ebb_bounds_backward (ebb)) | |
5509 | return FALSE; | |
5510 | return TRUE; | |
5511 | } | |
5512 | ||
5513 | ||
5514 | static bfd_boolean | |
7fa3d080 | 5515 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
5516 | { |
5517 | property_table_entry *the_entry, *new_entry; | |
5518 | ||
5519 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
5520 | ||
5521 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
5522 | the end of the property tables, (3) we hit a non-contiguous property | |
5523 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
5524 | ||
5525 | while (1) | |
5526 | { | |
5527 | bfd_vma entry_end; | |
5528 | bfd_size_type insn_block_len; | |
5529 | ||
5530 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
5531 | insn_block_len = | |
5532 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5533 | ebb->end_offset, | |
5534 | entry_end - ebb->end_offset); | |
5535 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
5536 | { | |
5537 | (*_bfd_error_handler) | |
5538 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5539 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5540 | return FALSE; | |
5541 | } | |
5542 | ebb->end_offset += insn_block_len; | |
5543 | ||
5544 | if (ebb->end_offset == ebb->sec->size) | |
5545 | ebb->ends_section = TRUE; | |
5546 | ||
5547 | /* Update the reloc counter. */ | |
5548 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
5549 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
5550 | < ebb->end_offset)) | |
5551 | { | |
5552 | ebb->end_reloc_idx++; | |
5553 | } | |
5554 | ||
5555 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5556 | return TRUE; | |
5557 | ||
5558 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5559 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
5560 | || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0) | |
5561 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) | |
5562 | break; | |
5563 | ||
5564 | if (the_entry->address + the_entry->size != new_entry->address) | |
5565 | break; | |
5566 | ||
5567 | the_entry = new_entry; | |
5568 | ebb->end_ptbl_idx++; | |
5569 | } | |
5570 | ||
5571 | /* Quick check for an unreachable or end of file just at the end. */ | |
5572 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5573 | { | |
5574 | if (ebb->end_offset == ebb->content_length) | |
5575 | ebb->ends_section = TRUE; | |
5576 | } | |
5577 | else | |
5578 | { | |
5579 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5580 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
5581 | && the_entry->address + the_entry->size == new_entry->address) | |
5582 | ebb->ends_unreachable = new_entry; | |
5583 | } | |
5584 | ||
5585 | /* Any other ending requires exact alignment. */ | |
5586 | return TRUE; | |
5587 | } | |
5588 | ||
5589 | ||
5590 | static bfd_boolean | |
7fa3d080 | 5591 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
5592 | { |
5593 | property_table_entry *the_entry, *new_entry; | |
5594 | ||
5595 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
5596 | ||
5597 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
5598 | (2) we are at the beginning of the property tables, (3) we hit a | |
5599 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
5600 | ||
5601 | while (1) | |
5602 | { | |
5603 | bfd_vma block_begin; | |
5604 | bfd_size_type insn_block_len; | |
5605 | ||
5606 | block_begin = the_entry->address - ebb->sec->vma; | |
5607 | insn_block_len = | |
5608 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5609 | block_begin, | |
5610 | ebb->start_offset - block_begin); | |
5611 | if (insn_block_len != ebb->start_offset - block_begin) | |
5612 | { | |
5613 | (*_bfd_error_handler) | |
5614 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5615 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5616 | return FALSE; | |
5617 | } | |
5618 | ebb->start_offset -= insn_block_len; | |
5619 | ||
5620 | /* Update the reloc counter. */ | |
5621 | while (ebb->start_reloc_idx > 0 | |
5622 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
5623 | >= ebb->start_offset)) | |
5624 | { | |
5625 | ebb->start_reloc_idx--; | |
5626 | } | |
5627 | ||
5628 | if (ebb->start_ptbl_idx == 0) | |
5629 | return TRUE; | |
5630 | ||
5631 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
5632 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
5633 | || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0) | |
5634 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) | |
5635 | return TRUE; | |
5636 | if (new_entry->address + new_entry->size != the_entry->address) | |
5637 | return TRUE; | |
5638 | ||
5639 | the_entry = new_entry; | |
5640 | ebb->start_ptbl_idx--; | |
5641 | } | |
5642 | return TRUE; | |
5643 | } | |
5644 | ||
5645 | ||
5646 | static bfd_size_type | |
7fa3d080 BW |
5647 | insn_block_decodable_len (bfd_byte *contents, |
5648 | bfd_size_type content_len, | |
5649 | bfd_vma block_offset, | |
5650 | bfd_size_type block_len) | |
43cd72b9 BW |
5651 | { |
5652 | bfd_vma offset = block_offset; | |
5653 | ||
5654 | while (offset < block_offset + block_len) | |
5655 | { | |
5656 | bfd_size_type insn_len = 0; | |
5657 | ||
5658 | insn_len = insn_decode_len (contents, content_len, offset); | |
5659 | if (insn_len == 0) | |
5660 | return (offset - block_offset); | |
5661 | offset += insn_len; | |
5662 | } | |
5663 | return (offset - block_offset); | |
5664 | } | |
5665 | ||
5666 | ||
5667 | static void | |
7fa3d080 | 5668 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 5669 | enum ebb_target_enum align_type, |
288f74fa | 5670 | bfd_vma alignment_pow, |
7fa3d080 BW |
5671 | text_action_t action, |
5672 | bfd_vma offset, | |
5673 | int removed_bytes, | |
5674 | bfd_boolean do_action) | |
43cd72b9 | 5675 | { |
b08b5071 | 5676 | proposed_action *act; |
43cd72b9 | 5677 | |
43cd72b9 BW |
5678 | if (c->action_allocated <= c->action_count) |
5679 | { | |
b08b5071 | 5680 | unsigned new_allocated, i; |
823fc61f | 5681 | proposed_action *new_actions; |
b08b5071 BW |
5682 | |
5683 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 5684 | new_actions = (proposed_action *) |
43cd72b9 BW |
5685 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
5686 | ||
5687 | for (i = 0; i < c->action_count; i++) | |
5688 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 5689 | if (c->actions) |
43cd72b9 BW |
5690 | free (c->actions); |
5691 | c->actions = new_actions; | |
5692 | c->action_allocated = new_allocated; | |
5693 | } | |
b08b5071 BW |
5694 | |
5695 | act = &c->actions[c->action_count]; | |
5696 | act->align_type = align_type; | |
5697 | act->alignment_pow = alignment_pow; | |
5698 | act->action = action; | |
5699 | act->offset = offset; | |
5700 | act->removed_bytes = removed_bytes; | |
5701 | act->do_action = do_action; | |
5702 | ||
43cd72b9 BW |
5703 | c->action_count++; |
5704 | } | |
5705 | ||
5706 | \f | |
5707 | /* Access to internal relocations, section contents and symbols. */ | |
5708 | ||
5709 | /* During relaxation, we need to modify relocations, section contents, | |
5710 | and symbol definitions, and we need to keep the original values from | |
5711 | being reloaded from the input files, i.e., we need to "pin" the | |
5712 | modified values in memory. We also want to continue to observe the | |
5713 | setting of the "keep-memory" flag. The following functions wrap the | |
5714 | standard BFD functions to take care of this for us. */ | |
5715 | ||
5716 | static Elf_Internal_Rela * | |
7fa3d080 | 5717 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5718 | { |
5719 | Elf_Internal_Rela *internal_relocs; | |
5720 | ||
5721 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5722 | return NULL; | |
5723 | ||
5724 | internal_relocs = elf_section_data (sec)->relocs; | |
5725 | if (internal_relocs == NULL) | |
5726 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 5727 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
5728 | return internal_relocs; |
5729 | } | |
5730 | ||
5731 | ||
5732 | static void | |
7fa3d080 | 5733 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5734 | { |
5735 | elf_section_data (sec)->relocs = internal_relocs; | |
5736 | } | |
5737 | ||
5738 | ||
5739 | static void | |
7fa3d080 | 5740 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5741 | { |
5742 | if (internal_relocs | |
5743 | && elf_section_data (sec)->relocs != internal_relocs) | |
5744 | free (internal_relocs); | |
5745 | } | |
5746 | ||
5747 | ||
5748 | static bfd_byte * | |
7fa3d080 | 5749 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5750 | { |
5751 | bfd_byte *contents; | |
5752 | bfd_size_type sec_size; | |
5753 | ||
5754 | sec_size = bfd_get_section_limit (abfd, sec); | |
5755 | contents = elf_section_data (sec)->this_hdr.contents; | |
5756 | ||
5757 | if (contents == NULL && sec_size != 0) | |
5758 | { | |
5759 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
5760 | { | |
7fa3d080 | 5761 | if (contents) |
43cd72b9 BW |
5762 | free (contents); |
5763 | return NULL; | |
5764 | } | |
5765 | if (keep_memory) | |
5766 | elf_section_data (sec)->this_hdr.contents = contents; | |
5767 | } | |
5768 | return contents; | |
5769 | } | |
5770 | ||
5771 | ||
5772 | static void | |
7fa3d080 | 5773 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5774 | { |
5775 | elf_section_data (sec)->this_hdr.contents = contents; | |
5776 | } | |
5777 | ||
5778 | ||
5779 | static void | |
7fa3d080 | 5780 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5781 | { |
5782 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
5783 | free (contents); | |
5784 | } | |
5785 | ||
5786 | ||
5787 | static Elf_Internal_Sym * | |
7fa3d080 | 5788 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
5789 | { |
5790 | Elf_Internal_Shdr *symtab_hdr; | |
5791 | Elf_Internal_Sym *isymbuf; | |
5792 | size_t locsymcount; | |
5793 | ||
5794 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5795 | locsymcount = symtab_hdr->sh_info; | |
5796 | ||
5797 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
5798 | if (isymbuf == NULL && locsymcount != 0) | |
5799 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
5800 | NULL, NULL, NULL); | |
5801 | ||
5802 | /* Save the symbols for this input file so they won't be read again. */ | |
5803 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
5804 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
5805 | ||
5806 | return isymbuf; | |
5807 | } | |
5808 | ||
5809 | \f | |
5810 | /* Code for link-time relaxation. */ | |
5811 | ||
5812 | /* Initialization for relaxation: */ | |
7fa3d080 | 5813 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 5814 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 5815 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 5816 | static bfd_boolean collect_source_relocs |
7fa3d080 | 5817 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 5818 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
5819 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
5820 | bfd_boolean *); | |
43cd72b9 | 5821 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 5822 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 5823 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
5824 | (bfd *, asection *, struct bfd_link_info *); |
5825 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
5826 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 5827 | static bfd_boolean check_section_ebb_pcrels_fit |
cb337148 BW |
5828 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, |
5829 | const xtensa_opcode *); | |
7fa3d080 | 5830 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 5831 | static void text_action_add_proposed |
7fa3d080 BW |
5832 | (text_action_list *, const ebb_constraint *, asection *); |
5833 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
5834 | |
5835 | /* First pass: */ | |
5836 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 5837 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 5838 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 5839 | (asection *, Elf_Internal_Rela *, bfd_vma); |
43cd72b9 | 5840 | static bfd_boolean is_removable_literal |
7fa3d080 | 5841 | (const source_reloc *, int, const source_reloc *, int); |
43cd72b9 | 5842 | static bfd_boolean remove_dead_literal |
7fa3d080 BW |
5843 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
5844 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); | |
5845 | static bfd_boolean identify_literal_placement | |
5846 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
5847 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
5848 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
5849 | bfd_boolean); | |
5850 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 5851 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 5852 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 5853 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
5854 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
5855 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
5856 | |
5857 | /* Second pass: */ | |
7fa3d080 BW |
5858 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
5859 | static bfd_boolean translate_section_fixes (asection *); | |
5860 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
5861 | static void translate_reloc (const r_reloc *, r_reloc *); | |
43cd72b9 | 5862 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 5863 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 5864 | static bfd_boolean move_literal |
7fa3d080 BW |
5865 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
5866 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 5867 | static bfd_boolean relax_property_section |
7fa3d080 | 5868 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
5869 | |
5870 | /* Third pass: */ | |
7fa3d080 | 5871 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
5872 | |
5873 | ||
5874 | static bfd_boolean | |
7fa3d080 BW |
5875 | elf_xtensa_relax_section (bfd *abfd, |
5876 | asection *sec, | |
5877 | struct bfd_link_info *link_info, | |
5878 | bfd_boolean *again) | |
43cd72b9 BW |
5879 | { |
5880 | static value_map_hash_table *values = NULL; | |
5881 | static bfd_boolean relocations_analyzed = FALSE; | |
5882 | xtensa_relax_info *relax_info; | |
5883 | ||
5884 | if (!relocations_analyzed) | |
5885 | { | |
5886 | /* Do some overall initialization for relaxation. */ | |
5887 | values = value_map_hash_table_init (); | |
5888 | if (values == NULL) | |
5889 | return FALSE; | |
5890 | relaxing_section = TRUE; | |
5891 | if (!analyze_relocations (link_info)) | |
5892 | return FALSE; | |
5893 | relocations_analyzed = TRUE; | |
5894 | } | |
5895 | *again = FALSE; | |
5896 | ||
5897 | /* Don't mess with linker-created sections. */ | |
5898 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5899 | return TRUE; | |
5900 | ||
5901 | relax_info = get_xtensa_relax_info (sec); | |
5902 | BFD_ASSERT (relax_info != NULL); | |
5903 | ||
5904 | switch (relax_info->visited) | |
5905 | { | |
5906 | case 0: | |
5907 | /* Note: It would be nice to fold this pass into | |
5908 | analyze_relocations, but it is important for this step that the | |
5909 | sections be examined in link order. */ | |
5910 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
5911 | return FALSE; | |
5912 | *again = TRUE; | |
5913 | break; | |
5914 | ||
5915 | case 1: | |
5916 | if (values) | |
5917 | value_map_hash_table_delete (values); | |
5918 | values = NULL; | |
5919 | if (!relax_section (abfd, sec, link_info)) | |
5920 | return FALSE; | |
5921 | *again = TRUE; | |
5922 | break; | |
5923 | ||
5924 | case 2: | |
5925 | if (!relax_section_symbols (abfd, sec)) | |
5926 | return FALSE; | |
5927 | break; | |
5928 | } | |
5929 | ||
5930 | relax_info->visited++; | |
5931 | return TRUE; | |
5932 | } | |
5933 | ||
5934 | \f | |
5935 | /* Initialization for relaxation. */ | |
5936 | ||
5937 | /* This function is called once at the start of relaxation. It scans | |
5938 | all the input sections and marks the ones that are relaxable (i.e., | |
5939 | literal sections with L32R relocations against them), and then | |
5940 | collects source_reloc information for all the relocations against | |
5941 | those relaxable sections. During this process, it also detects | |
5942 | longcalls, i.e., calls relaxed by the assembler into indirect | |
5943 | calls, that can be optimized back into direct calls. Within each | |
5944 | extended basic block (ebb) containing an optimized longcall, it | |
5945 | computes a set of "text actions" that can be performed to remove | |
5946 | the L32R associated with the longcall while optionally preserving | |
5947 | branch target alignments. */ | |
5948 | ||
5949 | static bfd_boolean | |
7fa3d080 | 5950 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
5951 | { |
5952 | bfd *abfd; | |
5953 | asection *sec; | |
5954 | bfd_boolean is_relaxable = FALSE; | |
5955 | ||
5956 | /* Initialize the per-section relaxation info. */ | |
5957 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5958 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5959 | { | |
5960 | init_xtensa_relax_info (sec); | |
5961 | } | |
5962 | ||
5963 | /* Mark relaxable sections (and count relocations against each one). */ | |
5964 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5965 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5966 | { | |
5967 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
5968 | return FALSE; | |
5969 | } | |
5970 | ||
5971 | /* Bail out if there are no relaxable sections. */ | |
5972 | if (!is_relaxable) | |
5973 | return TRUE; | |
5974 | ||
5975 | /* Allocate space for source_relocs. */ | |
5976 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5977 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5978 | { | |
5979 | xtensa_relax_info *relax_info; | |
5980 | ||
5981 | relax_info = get_xtensa_relax_info (sec); | |
5982 | if (relax_info->is_relaxable_literal_section | |
5983 | || relax_info->is_relaxable_asm_section) | |
5984 | { | |
5985 | relax_info->src_relocs = (source_reloc *) | |
5986 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
5987 | } | |
5988 | } | |
5989 | ||
5990 | /* Collect info on relocations against each relaxable section. */ | |
5991 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5992 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5993 | { | |
5994 | if (!collect_source_relocs (abfd, sec, link_info)) | |
5995 | return FALSE; | |
5996 | } | |
5997 | ||
5998 | /* Compute the text actions. */ | |
5999 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6000 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6001 | { | |
6002 | if (!compute_text_actions (abfd, sec, link_info)) | |
6003 | return FALSE; | |
6004 | } | |
6005 | ||
6006 | return TRUE; | |
6007 | } | |
6008 | ||
6009 | ||
6010 | /* Find all the sections that might be relaxed. The motivation for | |
6011 | this pass is that collect_source_relocs() needs to record _all_ the | |
6012 | relocations that target each relaxable section. That is expensive | |
6013 | and unnecessary unless the target section is actually going to be | |
6014 | relaxed. This pass identifies all such sections by checking if | |
6015 | they have L32Rs pointing to them. In the process, the total number | |
6016 | of relocations targeting each section is also counted so that we | |
6017 | know how much space to allocate for source_relocs against each | |
6018 | relaxable literal section. */ | |
6019 | ||
6020 | static bfd_boolean | |
7fa3d080 BW |
6021 | find_relaxable_sections (bfd *abfd, |
6022 | asection *sec, | |
6023 | struct bfd_link_info *link_info, | |
6024 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
6025 | { |
6026 | Elf_Internal_Rela *internal_relocs; | |
6027 | bfd_byte *contents; | |
6028 | bfd_boolean ok = TRUE; | |
6029 | unsigned i; | |
6030 | xtensa_relax_info *source_relax_info; | |
6031 | ||
6032 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6033 | link_info->keep_memory); | |
6034 | if (internal_relocs == NULL) | |
6035 | return ok; | |
6036 | ||
6037 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6038 | if (contents == NULL && sec->size != 0) | |
6039 | { | |
6040 | ok = FALSE; | |
6041 | goto error_return; | |
6042 | } | |
6043 | ||
6044 | source_relax_info = get_xtensa_relax_info (sec); | |
6045 | for (i = 0; i < sec->reloc_count; i++) | |
6046 | { | |
6047 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6048 | r_reloc r_rel; | |
6049 | asection *target_sec; | |
6050 | xtensa_relax_info *target_relax_info; | |
6051 | ||
6052 | /* If this section has not already been marked as "relaxable", and | |
6053 | if it contains any ASM_EXPAND relocations (marking expanded | |
6054 | longcalls) that can be optimized into direct calls, then mark | |
6055 | the section as "relaxable". */ | |
6056 | if (source_relax_info | |
6057 | && !source_relax_info->is_relaxable_asm_section | |
6058 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
6059 | { | |
6060 | bfd_boolean is_reachable = FALSE; | |
6061 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
6062 | link_info, &is_reachable) | |
6063 | && is_reachable) | |
6064 | { | |
6065 | source_relax_info->is_relaxable_asm_section = TRUE; | |
6066 | *is_relaxable_p = TRUE; | |
6067 | } | |
6068 | } | |
6069 | ||
6070 | r_reloc_init (&r_rel, abfd, irel, contents, | |
6071 | bfd_get_section_limit (abfd, sec)); | |
6072 | ||
6073 | target_sec = r_reloc_get_section (&r_rel); | |
6074 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6075 | if (!target_relax_info) | |
6076 | continue; | |
6077 | ||
6078 | /* Count PC-relative operand relocations against the target section. | |
6079 | Note: The conditions tested here must match the conditions under | |
6080 | which init_source_reloc is called in collect_source_relocs(). */ | |
6081 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)) | |
6082 | && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6083 | || is_l32r_relocation (abfd, sec, contents, irel))) | |
6084 | target_relax_info->src_count++; | |
6085 | ||
6086 | if (is_l32r_relocation (abfd, sec, contents, irel) | |
6087 | && r_reloc_is_defined (&r_rel)) | |
6088 | { | |
6089 | /* Mark the target section as relaxable. */ | |
6090 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6091 | *is_relaxable_p = TRUE; | |
6092 | } | |
6093 | } | |
6094 | ||
6095 | error_return: | |
6096 | release_contents (sec, contents); | |
6097 | release_internal_relocs (sec, internal_relocs); | |
6098 | return ok; | |
6099 | } | |
6100 | ||
6101 | ||
6102 | /* Record _all_ the relocations that point to relaxable sections, and | |
6103 | get rid of ASM_EXPAND relocs by either converting them to | |
6104 | ASM_SIMPLIFY or by removing them. */ | |
6105 | ||
6106 | static bfd_boolean | |
7fa3d080 BW |
6107 | collect_source_relocs (bfd *abfd, |
6108 | asection *sec, | |
6109 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6110 | { |
6111 | Elf_Internal_Rela *internal_relocs; | |
6112 | bfd_byte *contents; | |
6113 | bfd_boolean ok = TRUE; | |
6114 | unsigned i; | |
6115 | bfd_size_type sec_size; | |
6116 | ||
6117 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6118 | link_info->keep_memory); | |
6119 | if (internal_relocs == NULL) | |
6120 | return ok; | |
6121 | ||
6122 | sec_size = bfd_get_section_limit (abfd, sec); | |
6123 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6124 | if (contents == NULL && sec_size != 0) | |
6125 | { | |
6126 | ok = FALSE; | |
6127 | goto error_return; | |
6128 | } | |
6129 | ||
6130 | /* Record relocations against relaxable literal sections. */ | |
6131 | for (i = 0; i < sec->reloc_count; i++) | |
6132 | { | |
6133 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6134 | r_reloc r_rel; | |
6135 | asection *target_sec; | |
6136 | xtensa_relax_info *target_relax_info; | |
6137 | ||
6138 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6139 | ||
6140 | target_sec = r_reloc_get_section (&r_rel); | |
6141 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6142 | ||
6143 | if (target_relax_info | |
6144 | && (target_relax_info->is_relaxable_literal_section | |
6145 | || target_relax_info->is_relaxable_asm_section)) | |
6146 | { | |
6147 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6148 | int opnd = -1; | |
6149 | bfd_boolean is_abs_literal = FALSE; | |
6150 | ||
6151 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6152 | { | |
6153 | /* None of the current alternate relocs are PC-relative, | |
6154 | and only PC-relative relocs matter here. However, we | |
6155 | still need to record the opcode for literal | |
6156 | coalescing. */ | |
6157 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6158 | if (opcode == get_l32r_opcode ()) | |
6159 | { | |
6160 | is_abs_literal = TRUE; | |
6161 | opnd = 1; | |
6162 | } | |
6163 | else | |
6164 | opcode = XTENSA_UNDEFINED; | |
6165 | } | |
6166 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6167 | { | |
6168 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6169 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6170 | } | |
6171 | ||
6172 | if (opcode != XTENSA_UNDEFINED) | |
6173 | { | |
6174 | int src_next = target_relax_info->src_next++; | |
6175 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6176 | ||
6177 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6178 | is_abs_literal); | |
6179 | } | |
6180 | } | |
6181 | } | |
6182 | ||
6183 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6184 | src_relocs array for the target literal section may still be | |
6185 | incomplete, but it must at least contain the entries for the L32R | |
6186 | relocations associated with ASM_EXPANDs because they were just | |
6187 | added in the preceding loop over the relocations. */ | |
6188 | ||
6189 | for (i = 0; i < sec->reloc_count; i++) | |
6190 | { | |
6191 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6192 | bfd_boolean is_reachable; | |
6193 | ||
6194 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6195 | &is_reachable)) | |
6196 | continue; | |
6197 | ||
6198 | if (is_reachable) | |
6199 | { | |
6200 | Elf_Internal_Rela *l32r_irel; | |
6201 | r_reloc r_rel; | |
6202 | asection *target_sec; | |
6203 | xtensa_relax_info *target_relax_info; | |
6204 | ||
6205 | /* Mark the source_reloc for the L32R so that it will be | |
6206 | removed in compute_removed_literals(), along with the | |
6207 | associated literal. */ | |
6208 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
6209 | irel, internal_relocs); | |
6210 | if (l32r_irel == NULL) | |
6211 | continue; | |
6212 | ||
6213 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
6214 | ||
6215 | target_sec = r_reloc_get_section (&r_rel); | |
6216 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6217 | ||
6218 | if (target_relax_info | |
6219 | && (target_relax_info->is_relaxable_literal_section | |
6220 | || target_relax_info->is_relaxable_asm_section)) | |
6221 | { | |
6222 | source_reloc *s_reloc; | |
6223 | ||
6224 | /* Search the source_relocs for the entry corresponding to | |
6225 | the l32r_irel. Note: The src_relocs array is not yet | |
6226 | sorted, but it wouldn't matter anyway because we're | |
6227 | searching by source offset instead of target offset. */ | |
6228 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
6229 | target_relax_info->src_next, | |
6230 | sec, l32r_irel); | |
6231 | BFD_ASSERT (s_reloc); | |
6232 | s_reloc->is_null = TRUE; | |
6233 | } | |
6234 | ||
6235 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
6236 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
6237 | R_XTENSA_ASM_SIMPLIFY); | |
6238 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6239 | ||
6240 | pin_internal_relocs (sec, internal_relocs); | |
6241 | } | |
6242 | else | |
6243 | { | |
6244 | /* It is resolvable but doesn't reach. We resolve now | |
6245 | by eliminating the relocation -- the call will remain | |
6246 | expanded into L32R/CALLX. */ | |
6247 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6248 | pin_internal_relocs (sec, internal_relocs); | |
6249 | } | |
6250 | } | |
6251 | ||
6252 | error_return: | |
6253 | release_contents (sec, contents); | |
6254 | release_internal_relocs (sec, internal_relocs); | |
6255 | return ok; | |
6256 | } | |
6257 | ||
6258 | ||
6259 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
6260 | be resolved on a final link or when a partial link locates it in the | |
6261 | same section as the target. Set "is_reachable" flag if the target of | |
6262 | the call is within the range of a direct call, given the current VMA | |
6263 | for this section and the target section. */ | |
6264 | ||
6265 | bfd_boolean | |
7fa3d080 BW |
6266 | is_resolvable_asm_expansion (bfd *abfd, |
6267 | asection *sec, | |
6268 | bfd_byte *contents, | |
6269 | Elf_Internal_Rela *irel, | |
6270 | struct bfd_link_info *link_info, | |
6271 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
6272 | { |
6273 | asection *target_sec; | |
6274 | bfd_vma target_offset; | |
6275 | r_reloc r_rel; | |
6276 | xtensa_opcode opcode, direct_call_opcode; | |
6277 | bfd_vma self_address; | |
6278 | bfd_vma dest_address; | |
6279 | bfd_boolean uses_l32r; | |
6280 | bfd_size_type sec_size; | |
6281 | ||
6282 | *is_reachable_p = FALSE; | |
6283 | ||
6284 | if (contents == NULL) | |
6285 | return FALSE; | |
6286 | ||
6287 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
6288 | return FALSE; | |
6289 | ||
6290 | sec_size = bfd_get_section_limit (abfd, sec); | |
6291 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
6292 | sec_size - irel->r_offset, &uses_l32r); | |
6293 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
6294 | if (!uses_l32r) | |
6295 | return FALSE; | |
6296 | ||
6297 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
6298 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
6299 | return FALSE; | |
6300 | ||
6301 | /* Check and see that the target resolves. */ | |
6302 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6303 | if (!r_reloc_is_defined (&r_rel)) | |
6304 | return FALSE; | |
6305 | ||
6306 | target_sec = r_reloc_get_section (&r_rel); | |
6307 | target_offset = r_rel.target_offset; | |
6308 | ||
6309 | /* If the target is in a shared library, then it doesn't reach. This | |
6310 | isn't supposed to come up because the compiler should never generate | |
6311 | non-PIC calls on systems that use shared libraries, but the linker | |
6312 | shouldn't crash regardless. */ | |
6313 | if (!target_sec->output_section) | |
6314 | return FALSE; | |
6315 | ||
6316 | /* For relocatable sections, we can only simplify when the output | |
6317 | section of the target is the same as the output section of the | |
6318 | source. */ | |
6319 | if (link_info->relocatable | |
6320 | && (target_sec->output_section != sec->output_section | |
6321 | || is_reloc_sym_weak (abfd, irel))) | |
6322 | return FALSE; | |
6323 | ||
6324 | self_address = (sec->output_section->vma | |
6325 | + sec->output_offset + irel->r_offset + 3); | |
6326 | dest_address = (target_sec->output_section->vma | |
6327 | + target_sec->output_offset + target_offset); | |
6328 | ||
6329 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, | |
6330 | self_address, dest_address); | |
6331 | ||
6332 | if ((self_address >> CALL_SEGMENT_BITS) != | |
6333 | (dest_address >> CALL_SEGMENT_BITS)) | |
6334 | return FALSE; | |
6335 | ||
6336 | return TRUE; | |
6337 | } | |
6338 | ||
6339 | ||
6340 | static Elf_Internal_Rela * | |
7fa3d080 BW |
6341 | find_associated_l32r_irel (bfd *abfd, |
6342 | asection *sec, | |
6343 | bfd_byte *contents, | |
6344 | Elf_Internal_Rela *other_irel, | |
6345 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
6346 | { |
6347 | unsigned i; | |
e0001a05 | 6348 | |
43cd72b9 BW |
6349 | for (i = 0; i < sec->reloc_count; i++) |
6350 | { | |
6351 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 6352 | |
43cd72b9 BW |
6353 | if (irel == other_irel) |
6354 | continue; | |
6355 | if (irel->r_offset != other_irel->r_offset) | |
6356 | continue; | |
6357 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
6358 | return irel; | |
6359 | } | |
6360 | ||
6361 | return NULL; | |
e0001a05 NC |
6362 | } |
6363 | ||
6364 | ||
cb337148 BW |
6365 | static xtensa_opcode * |
6366 | build_reloc_opcodes (bfd *abfd, | |
6367 | asection *sec, | |
6368 | bfd_byte *contents, | |
6369 | Elf_Internal_Rela *internal_relocs) | |
6370 | { | |
6371 | unsigned i; | |
6372 | xtensa_opcode *reloc_opcodes = | |
6373 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
6374 | for (i = 0; i < sec->reloc_count; i++) | |
6375 | { | |
6376 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6377 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
6378 | } | |
6379 | return reloc_opcodes; | |
6380 | } | |
6381 | ||
6382 | ||
43cd72b9 BW |
6383 | /* The compute_text_actions function will build a list of potential |
6384 | transformation actions for code in the extended basic block of each | |
6385 | longcall that is optimized to a direct call. From this list we | |
6386 | generate a set of actions to actually perform that optimizes for | |
6387 | space and, if not using size_opt, maintains branch target | |
6388 | alignments. | |
e0001a05 | 6389 | |
43cd72b9 BW |
6390 | These actions to be performed are placed on a per-section list. |
6391 | The actual changes are performed by relax_section() in the second | |
6392 | pass. */ | |
6393 | ||
6394 | bfd_boolean | |
7fa3d080 BW |
6395 | compute_text_actions (bfd *abfd, |
6396 | asection *sec, | |
6397 | struct bfd_link_info *link_info) | |
e0001a05 | 6398 | { |
cb337148 | 6399 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 6400 | xtensa_relax_info *relax_info; |
e0001a05 | 6401 | bfd_byte *contents; |
43cd72b9 | 6402 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
6403 | bfd_boolean ok = TRUE; |
6404 | unsigned i; | |
43cd72b9 BW |
6405 | property_table_entry *prop_table = 0; |
6406 | int ptblsize = 0; | |
6407 | bfd_size_type sec_size; | |
6408 | static bfd_boolean no_insn_move = FALSE; | |
6409 | ||
6410 | if (no_insn_move) | |
6411 | return ok; | |
6412 | ||
6413 | /* Do nothing if the section contains no optimized longcalls. */ | |
6414 | relax_info = get_xtensa_relax_info (sec); | |
6415 | BFD_ASSERT (relax_info); | |
6416 | if (!relax_info->is_relaxable_asm_section) | |
6417 | return ok; | |
e0001a05 NC |
6418 | |
6419 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6420 | link_info->keep_memory); | |
e0001a05 | 6421 | |
43cd72b9 BW |
6422 | if (internal_relocs) |
6423 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
6424 | internal_reloc_compare); | |
6425 | ||
6426 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 6427 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 6428 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
6429 | { |
6430 | ok = FALSE; | |
6431 | goto error_return; | |
6432 | } | |
6433 | ||
43cd72b9 BW |
6434 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
6435 | XTENSA_PROP_SEC_NAME, FALSE); | |
6436 | if (ptblsize < 0) | |
6437 | { | |
6438 | ok = FALSE; | |
6439 | goto error_return; | |
6440 | } | |
6441 | ||
6442 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
6443 | { |
6444 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
6445 | bfd_vma r_offset; |
6446 | property_table_entry *the_entry; | |
6447 | int ptbl_idx; | |
6448 | ebb_t *ebb; | |
6449 | ebb_constraint ebb_table; | |
6450 | bfd_size_type simplify_size; | |
6451 | ||
6452 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
6453 | continue; | |
6454 | r_offset = irel->r_offset; | |
e0001a05 | 6455 | |
43cd72b9 BW |
6456 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
6457 | if (simplify_size == 0) | |
6458 | { | |
6459 | (*_bfd_error_handler) | |
6460 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
6461 | sec->owner, sec, r_offset); | |
6462 | continue; | |
6463 | } | |
e0001a05 | 6464 | |
43cd72b9 BW |
6465 | /* If the instruction table is not around, then don't do this |
6466 | relaxation. */ | |
6467 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
6468 | sec->vma + irel->r_offset); | |
6469 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
6470 | { | |
6471 | text_action_add (&relax_info->action_list, | |
6472 | ta_convert_longcall, sec, r_offset, | |
6473 | 0); | |
6474 | continue; | |
6475 | } | |
6476 | ||
6477 | /* If the next longcall happens to be at the same address as an | |
6478 | unreachable section of size 0, then skip forward. */ | |
6479 | ptbl_idx = the_entry - prop_table; | |
6480 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
6481 | && the_entry->size == 0 | |
6482 | && ptbl_idx + 1 < ptblsize | |
6483 | && (prop_table[ptbl_idx + 1].address | |
6484 | == prop_table[ptbl_idx].address)) | |
6485 | { | |
6486 | ptbl_idx++; | |
6487 | the_entry++; | |
6488 | } | |
e0001a05 | 6489 | |
43cd72b9 BW |
6490 | if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) |
6491 | /* NO_REORDER is OK */ | |
6492 | continue; | |
e0001a05 | 6493 | |
43cd72b9 BW |
6494 | init_ebb_constraint (&ebb_table); |
6495 | ebb = &ebb_table.ebb; | |
6496 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
6497 | internal_relocs, sec->reloc_count); | |
6498 | ebb->start_offset = r_offset + simplify_size; | |
6499 | ebb->end_offset = r_offset + simplify_size; | |
6500 | ebb->start_ptbl_idx = ptbl_idx; | |
6501 | ebb->end_ptbl_idx = ptbl_idx; | |
6502 | ebb->start_reloc_idx = i; | |
6503 | ebb->end_reloc_idx = i; | |
6504 | ||
cb337148 BW |
6505 | /* Precompute the opcode for each relocation. */ |
6506 | if (reloc_opcodes == NULL) | |
6507 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, | |
6508 | internal_relocs); | |
6509 | ||
43cd72b9 BW |
6510 | if (!extend_ebb_bounds (ebb) |
6511 | || !compute_ebb_proposed_actions (&ebb_table) | |
6512 | || !compute_ebb_actions (&ebb_table) | |
6513 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
cb337148 BW |
6514 | internal_relocs, &ebb_table, |
6515 | reloc_opcodes) | |
43cd72b9 | 6516 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 6517 | { |
43cd72b9 BW |
6518 | /* If anything goes wrong or we get unlucky and something does |
6519 | not fit, with our plan because of expansion between | |
6520 | critical branches, just convert to a NOP. */ | |
6521 | ||
6522 | text_action_add (&relax_info->action_list, | |
6523 | ta_convert_longcall, sec, r_offset, 0); | |
6524 | i = ebb_table.ebb.end_reloc_idx; | |
6525 | free_ebb_constraint (&ebb_table); | |
6526 | continue; | |
e0001a05 | 6527 | } |
43cd72b9 BW |
6528 | |
6529 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
6530 | ||
6531 | /* Update the index so we do not go looking at the relocations | |
6532 | we have already processed. */ | |
6533 | i = ebb_table.ebb.end_reloc_idx; | |
6534 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
6535 | } |
6536 | ||
43cd72b9 | 6537 | #if DEBUG |
7fa3d080 | 6538 | if (relax_info->action_list.head) |
43cd72b9 BW |
6539 | print_action_list (stderr, &relax_info->action_list); |
6540 | #endif | |
6541 | ||
6542 | error_return: | |
e0001a05 NC |
6543 | release_contents (sec, contents); |
6544 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
6545 | if (prop_table) |
6546 | free (prop_table); | |
cb337148 BW |
6547 | if (reloc_opcodes) |
6548 | free (reloc_opcodes); | |
43cd72b9 | 6549 | |
e0001a05 NC |
6550 | return ok; |
6551 | } | |
6552 | ||
6553 | ||
64b607e6 BW |
6554 | /* Do not widen an instruction if it is preceeded by a |
6555 | loop opcode. It might cause misalignment. */ | |
6556 | ||
6557 | static bfd_boolean | |
6558 | prev_instr_is_a_loop (bfd_byte *contents, | |
6559 | bfd_size_type content_length, | |
6560 | bfd_size_type offset) | |
6561 | { | |
6562 | xtensa_opcode prev_opcode; | |
6563 | ||
6564 | if (offset < 3) | |
6565 | return FALSE; | |
6566 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
6567 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
6568 | } | |
6569 | ||
6570 | ||
43cd72b9 | 6571 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 6572 | |
43cd72b9 | 6573 | bfd_boolean |
7fa3d080 | 6574 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 6575 | { |
43cd72b9 BW |
6576 | const ebb_t *ebb = &ebb_table->ebb; |
6577 | unsigned rel_idx = ebb->start_reloc_idx; | |
6578 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
6579 | bfd_vma offset = 0; |
6580 | xtensa_isa isa = xtensa_default_isa; | |
6581 | xtensa_format fmt; | |
6582 | static xtensa_insnbuf insnbuf = NULL; | |
6583 | static xtensa_insnbuf slotbuf = NULL; | |
6584 | ||
6585 | if (insnbuf == NULL) | |
6586 | { | |
6587 | insnbuf = xtensa_insnbuf_alloc (isa); | |
6588 | slotbuf = xtensa_insnbuf_alloc (isa); | |
6589 | } | |
e0001a05 | 6590 | |
43cd72b9 BW |
6591 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
6592 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 6593 | |
43cd72b9 | 6594 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 6595 | { |
64b607e6 | 6596 | bfd_vma start_offset, end_offset; |
43cd72b9 | 6597 | bfd_size_type insn_len; |
e0001a05 | 6598 | |
43cd72b9 BW |
6599 | start_offset = entry->address - ebb->sec->vma; |
6600 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 6601 | |
43cd72b9 BW |
6602 | if (entry == start_entry) |
6603 | start_offset = ebb->start_offset; | |
6604 | if (entry == end_entry) | |
6605 | end_offset = ebb->end_offset; | |
6606 | offset = start_offset; | |
e0001a05 | 6607 | |
43cd72b9 BW |
6608 | if (offset == entry->address - ebb->sec->vma |
6609 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
6610 | { | |
6611 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
6612 | BFD_ASSERT (offset != end_offset); | |
6613 | if (offset == end_offset) | |
6614 | return FALSE; | |
e0001a05 | 6615 | |
43cd72b9 BW |
6616 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
6617 | offset); | |
43cd72b9 | 6618 | if (insn_len == 0) |
64b607e6 BW |
6619 | goto decode_error; |
6620 | ||
43cd72b9 BW |
6621 | if (check_branch_target_aligned_address (offset, insn_len)) |
6622 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
6623 | ||
6624 | ebb_propose_action (ebb_table, align_type, 0, | |
6625 | ta_none, offset, 0, TRUE); | |
6626 | } | |
6627 | ||
6628 | while (offset != end_offset) | |
e0001a05 | 6629 | { |
43cd72b9 | 6630 | Elf_Internal_Rela *irel; |
e0001a05 | 6631 | xtensa_opcode opcode; |
e0001a05 | 6632 | |
43cd72b9 BW |
6633 | while (rel_idx < ebb->end_reloc_idx |
6634 | && (ebb->relocs[rel_idx].r_offset < offset | |
6635 | || (ebb->relocs[rel_idx].r_offset == offset | |
6636 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
6637 | != R_XTENSA_ASM_SIMPLIFY)))) | |
6638 | rel_idx++; | |
6639 | ||
6640 | /* Check for longcall. */ | |
6641 | irel = &ebb->relocs[rel_idx]; | |
6642 | if (irel->r_offset == offset | |
6643 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
6644 | { | |
6645 | bfd_size_type simplify_size; | |
e0001a05 | 6646 | |
43cd72b9 BW |
6647 | simplify_size = get_asm_simplify_size (ebb->contents, |
6648 | ebb->content_length, | |
6649 | irel->r_offset); | |
6650 | if (simplify_size == 0) | |
64b607e6 | 6651 | goto decode_error; |
43cd72b9 BW |
6652 | |
6653 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6654 | ta_convert_longcall, offset, 0, TRUE); | |
6655 | ||
6656 | offset += simplify_size; | |
6657 | continue; | |
6658 | } | |
e0001a05 | 6659 | |
64b607e6 BW |
6660 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
6661 | goto decode_error; | |
6662 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
6663 | ebb->content_length - offset); | |
6664 | fmt = xtensa_format_decode (isa, insnbuf); | |
6665 | if (fmt == XTENSA_UNDEFINED) | |
6666 | goto decode_error; | |
6667 | insn_len = xtensa_format_length (isa, fmt); | |
6668 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
6669 | goto decode_error; | |
6670 | ||
6671 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 6672 | { |
64b607e6 BW |
6673 | offset += insn_len; |
6674 | continue; | |
43cd72b9 | 6675 | } |
64b607e6 BW |
6676 | |
6677 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
6678 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
6679 | if (opcode == XTENSA_UNDEFINED) | |
6680 | goto decode_error; | |
6681 | ||
43cd72b9 BW |
6682 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
6683 | && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0 | |
64b607e6 | 6684 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
6685 | { |
6686 | /* Add an instruction narrow action. */ | |
6687 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6688 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 6689 | } |
64b607e6 BW |
6690 | else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0 |
6691 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 | |
6692 | && ! prev_instr_is_a_loop (ebb->contents, | |
6693 | ebb->content_length, offset)) | |
43cd72b9 BW |
6694 | { |
6695 | /* Add an instruction widen action. */ | |
6696 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6697 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 6698 | } |
64b607e6 | 6699 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
6700 | { |
6701 | /* Check for branch targets. */ | |
6702 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
6703 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
6704 | } |
6705 | ||
6706 | offset += insn_len; | |
e0001a05 NC |
6707 | } |
6708 | } | |
6709 | ||
43cd72b9 BW |
6710 | if (ebb->ends_unreachable) |
6711 | { | |
6712 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6713 | ta_fill, ebb->end_offset, 0, TRUE); | |
6714 | } | |
e0001a05 | 6715 | |
43cd72b9 | 6716 | return TRUE; |
64b607e6 BW |
6717 | |
6718 | decode_error: | |
6719 | (*_bfd_error_handler) | |
6720 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6721 | ebb->sec->owner, ebb->sec, offset); | |
6722 | return FALSE; | |
43cd72b9 BW |
6723 | } |
6724 | ||
6725 | ||
6726 | /* After all of the information has collected about the | |
6727 | transformations possible in an EBB, compute the appropriate actions | |
6728 | here in compute_ebb_actions. We still must check later to make | |
6729 | sure that the actions do not break any relocations. The algorithm | |
6730 | used here is pretty greedy. Basically, it removes as many no-ops | |
6731 | as possible so that the end of the EBB has the same alignment | |
6732 | characteristics as the original. First, it uses narrowing, then | |
6733 | fill space at the end of the EBB, and finally widenings. If that | |
6734 | does not work, it tries again with one fewer no-op removed. The | |
6735 | optimization will only be performed if all of the branch targets | |
6736 | that were aligned before transformation are also aligned after the | |
6737 | transformation. | |
6738 | ||
6739 | When the size_opt flag is set, ignore the branch target alignments, | |
6740 | narrow all wide instructions, and remove all no-ops unless the end | |
6741 | of the EBB prevents it. */ | |
6742 | ||
6743 | bfd_boolean | |
7fa3d080 | 6744 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
6745 | { |
6746 | unsigned i = 0; | |
6747 | unsigned j; | |
6748 | int removed_bytes = 0; | |
6749 | ebb_t *ebb = &ebb_table->ebb; | |
6750 | unsigned seg_idx_start = 0; | |
6751 | unsigned seg_idx_end = 0; | |
6752 | ||
6753 | /* We perform this like the assembler relaxation algorithm: Start by | |
6754 | assuming all instructions are narrow and all no-ops removed; then | |
6755 | walk through.... */ | |
6756 | ||
6757 | /* For each segment of this that has a solid constraint, check to | |
6758 | see if there are any combinations that will keep the constraint. | |
6759 | If so, use it. */ | |
6760 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 6761 | { |
43cd72b9 BW |
6762 | bfd_boolean requires_text_end_align = FALSE; |
6763 | unsigned longcall_count = 0; | |
6764 | unsigned longcall_convert_count = 0; | |
6765 | unsigned narrowable_count = 0; | |
6766 | unsigned narrowable_convert_count = 0; | |
6767 | unsigned widenable_count = 0; | |
6768 | unsigned widenable_convert_count = 0; | |
e0001a05 | 6769 | |
43cd72b9 BW |
6770 | proposed_action *action = NULL; |
6771 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 6772 | |
43cd72b9 | 6773 | seg_idx_start = seg_idx_end; |
e0001a05 | 6774 | |
43cd72b9 BW |
6775 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
6776 | { | |
6777 | action = &ebb_table->actions[i]; | |
6778 | if (action->action == ta_convert_longcall) | |
6779 | longcall_count++; | |
6780 | if (action->action == ta_narrow_insn) | |
6781 | narrowable_count++; | |
6782 | if (action->action == ta_widen_insn) | |
6783 | widenable_count++; | |
6784 | if (action->action == ta_fill) | |
6785 | break; | |
6786 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6787 | break; | |
6788 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
6789 | && !elf32xtensa_size_opt) | |
6790 | break; | |
6791 | } | |
6792 | seg_idx_end = i; | |
e0001a05 | 6793 | |
43cd72b9 BW |
6794 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
6795 | requires_text_end_align = TRUE; | |
e0001a05 | 6796 | |
43cd72b9 BW |
6797 | if (elf32xtensa_size_opt && !requires_text_end_align |
6798 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
6799 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
6800 | { | |
6801 | longcall_convert_count = longcall_count; | |
6802 | narrowable_convert_count = narrowable_count; | |
6803 | widenable_convert_count = 0; | |
6804 | } | |
6805 | else | |
6806 | { | |
6807 | /* There is a constraint. Convert the max number of longcalls. */ | |
6808 | narrowable_convert_count = 0; | |
6809 | longcall_convert_count = 0; | |
6810 | widenable_convert_count = 0; | |
e0001a05 | 6811 | |
43cd72b9 | 6812 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 6813 | { |
43cd72b9 BW |
6814 | int removed = (longcall_count - j) * 3 & (align - 1); |
6815 | unsigned desire_narrow = (align - removed) & (align - 1); | |
6816 | unsigned desire_widen = removed; | |
6817 | if (desire_narrow <= narrowable_count) | |
6818 | { | |
6819 | narrowable_convert_count = desire_narrow; | |
6820 | narrowable_convert_count += | |
6821 | (align * ((narrowable_count - narrowable_convert_count) | |
6822 | / align)); | |
6823 | longcall_convert_count = (longcall_count - j); | |
6824 | widenable_convert_count = 0; | |
6825 | break; | |
6826 | } | |
6827 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
6828 | { | |
6829 | narrowable_convert_count = 0; | |
6830 | longcall_convert_count = longcall_count - j; | |
6831 | widenable_convert_count = desire_widen; | |
6832 | break; | |
6833 | } | |
6834 | } | |
6835 | } | |
e0001a05 | 6836 | |
43cd72b9 BW |
6837 | /* Now the number of conversions are saved. Do them. */ |
6838 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
6839 | { | |
6840 | action = &ebb_table->actions[i]; | |
6841 | switch (action->action) | |
6842 | { | |
6843 | case ta_convert_longcall: | |
6844 | if (longcall_convert_count != 0) | |
6845 | { | |
6846 | action->action = ta_remove_longcall; | |
6847 | action->do_action = TRUE; | |
6848 | action->removed_bytes += 3; | |
6849 | longcall_convert_count--; | |
6850 | } | |
6851 | break; | |
6852 | case ta_narrow_insn: | |
6853 | if (narrowable_convert_count != 0) | |
6854 | { | |
6855 | action->do_action = TRUE; | |
6856 | action->removed_bytes += 1; | |
6857 | narrowable_convert_count--; | |
6858 | } | |
6859 | break; | |
6860 | case ta_widen_insn: | |
6861 | if (widenable_convert_count != 0) | |
6862 | { | |
6863 | action->do_action = TRUE; | |
6864 | action->removed_bytes -= 1; | |
6865 | widenable_convert_count--; | |
6866 | } | |
6867 | break; | |
6868 | default: | |
6869 | break; | |
e0001a05 | 6870 | } |
43cd72b9 BW |
6871 | } |
6872 | } | |
e0001a05 | 6873 | |
43cd72b9 BW |
6874 | /* Now we move on to some local opts. Try to remove each of the |
6875 | remaining longcalls. */ | |
e0001a05 | 6876 | |
43cd72b9 BW |
6877 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
6878 | { | |
6879 | removed_bytes = 0; | |
6880 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 6881 | { |
43cd72b9 BW |
6882 | int old_removed_bytes = removed_bytes; |
6883 | proposed_action *action = &ebb_table->actions[i]; | |
6884 | ||
6885 | if (action->do_action && action->action == ta_convert_longcall) | |
6886 | { | |
6887 | bfd_boolean bad_alignment = FALSE; | |
6888 | removed_bytes += 3; | |
6889 | for (j = i + 1; j < ebb_table->action_count; j++) | |
6890 | { | |
6891 | proposed_action *new_action = &ebb_table->actions[j]; | |
6892 | bfd_vma offset = new_action->offset; | |
6893 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
6894 | { | |
6895 | if (!check_branch_target_aligned | |
6896 | (ebb_table->ebb.contents, | |
6897 | ebb_table->ebb.content_length, | |
6898 | offset, offset - removed_bytes)) | |
6899 | { | |
6900 | bad_alignment = TRUE; | |
6901 | break; | |
6902 | } | |
6903 | } | |
6904 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6905 | { | |
6906 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
6907 | ebb_table->ebb.content_length, | |
6908 | offset, | |
6909 | offset - removed_bytes)) | |
6910 | { | |
6911 | bad_alignment = TRUE; | |
6912 | break; | |
6913 | } | |
6914 | } | |
6915 | if (new_action->action == ta_narrow_insn | |
6916 | && !new_action->do_action | |
6917 | && ebb_table->ebb.sec->alignment_power == 2) | |
6918 | { | |
6919 | /* Narrow an instruction and we are done. */ | |
6920 | new_action->do_action = TRUE; | |
6921 | new_action->removed_bytes += 1; | |
6922 | bad_alignment = FALSE; | |
6923 | break; | |
6924 | } | |
6925 | if (new_action->action == ta_widen_insn | |
6926 | && new_action->do_action | |
6927 | && ebb_table->ebb.sec->alignment_power == 2) | |
6928 | { | |
6929 | /* Narrow an instruction and we are done. */ | |
6930 | new_action->do_action = FALSE; | |
6931 | new_action->removed_bytes += 1; | |
6932 | bad_alignment = FALSE; | |
6933 | break; | |
6934 | } | |
6935 | } | |
6936 | if (!bad_alignment) | |
6937 | { | |
6938 | action->removed_bytes += 3; | |
6939 | action->action = ta_remove_longcall; | |
6940 | action->do_action = TRUE; | |
6941 | } | |
6942 | } | |
6943 | removed_bytes = old_removed_bytes; | |
6944 | if (action->do_action) | |
6945 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
6946 | } |
6947 | } | |
6948 | ||
43cd72b9 BW |
6949 | removed_bytes = 0; |
6950 | for (i = 0; i < ebb_table->action_count; ++i) | |
6951 | { | |
6952 | proposed_action *action = &ebb_table->actions[i]; | |
6953 | if (action->do_action) | |
6954 | removed_bytes += action->removed_bytes; | |
6955 | } | |
6956 | ||
6957 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
6958 | && ebb->ends_unreachable) | |
6959 | { | |
6960 | proposed_action *action; | |
6961 | int br; | |
6962 | int extra_space; | |
6963 | ||
6964 | BFD_ASSERT (ebb_table->action_count != 0); | |
6965 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
6966 | BFD_ASSERT (action->action == ta_fill); | |
6967 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
6968 | ||
6969 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
6970 | br = action->removed_bytes + removed_bytes + extra_space; | |
6971 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
6972 | ||
6973 | action->removed_bytes = extra_space - br; | |
6974 | } | |
6975 | return TRUE; | |
e0001a05 NC |
6976 | } |
6977 | ||
6978 | ||
03e94c08 BW |
6979 | /* The xlate_map is a sorted array of address mappings designed to |
6980 | answer the offset_with_removed_text() query with a binary search instead | |
6981 | of a linear search through the section's action_list. */ | |
6982 | ||
6983 | typedef struct xlate_map_entry xlate_map_entry_t; | |
6984 | typedef struct xlate_map xlate_map_t; | |
6985 | ||
6986 | struct xlate_map_entry | |
6987 | { | |
6988 | unsigned orig_address; | |
6989 | unsigned new_address; | |
6990 | unsigned size; | |
6991 | }; | |
6992 | ||
6993 | struct xlate_map | |
6994 | { | |
6995 | unsigned entry_count; | |
6996 | xlate_map_entry_t *entry; | |
6997 | }; | |
6998 | ||
6999 | ||
7000 | static int | |
7001 | xlate_compare (const void *a_v, const void *b_v) | |
7002 | { | |
7003 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
7004 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
7005 | if (a->orig_address < b->orig_address) | |
7006 | return -1; | |
7007 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
7008 | return 1; | |
7009 | return 0; | |
7010 | } | |
7011 | ||
7012 | ||
7013 | static bfd_vma | |
7014 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
7015 | text_action_list *action_list, | |
7016 | bfd_vma offset) | |
7017 | { | |
7018 | xlate_map_entry_t tmp; | |
7019 | void *r; | |
7020 | xlate_map_entry_t *e; | |
7021 | ||
7022 | if (map == NULL) | |
7023 | return offset_with_removed_text (action_list, offset); | |
7024 | ||
7025 | if (map->entry_count == 0) | |
7026 | return offset; | |
7027 | ||
7028 | tmp.orig_address = offset; | |
7029 | tmp.new_address = offset; | |
7030 | tmp.size = 1; | |
7031 | ||
7032 | r = bsearch (&offset, map->entry, map->entry_count, | |
7033 | sizeof (xlate_map_entry_t), &xlate_compare); | |
7034 | e = (xlate_map_entry_t *) r; | |
7035 | ||
7036 | BFD_ASSERT (e != NULL); | |
7037 | if (e == NULL) | |
7038 | return offset; | |
7039 | return e->new_address - e->orig_address + offset; | |
7040 | } | |
7041 | ||
7042 | ||
7043 | /* Build a binary searchable offset translation map from a section's | |
7044 | action list. */ | |
7045 | ||
7046 | static xlate_map_t * | |
7047 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
7048 | { | |
7049 | xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); | |
7050 | text_action_list *action_list = &relax_info->action_list; | |
7051 | unsigned num_actions = 0; | |
7052 | text_action *r; | |
7053 | int removed; | |
7054 | xlate_map_entry_t *current_entry; | |
7055 | ||
7056 | if (map == NULL) | |
7057 | return NULL; | |
7058 | ||
7059 | num_actions = action_list_count (action_list); | |
7060 | map->entry = (xlate_map_entry_t *) | |
7061 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); | |
7062 | if (map->entry == NULL) | |
7063 | { | |
7064 | free (map); | |
7065 | return NULL; | |
7066 | } | |
7067 | map->entry_count = 0; | |
7068 | ||
7069 | removed = 0; | |
7070 | current_entry = &map->entry[0]; | |
7071 | ||
7072 | current_entry->orig_address = 0; | |
7073 | current_entry->new_address = 0; | |
7074 | current_entry->size = 0; | |
7075 | ||
7076 | for (r = action_list->head; r != NULL; r = r->next) | |
7077 | { | |
7078 | unsigned orig_size = 0; | |
7079 | switch (r->action) | |
7080 | { | |
7081 | case ta_none: | |
7082 | case ta_remove_insn: | |
7083 | case ta_convert_longcall: | |
7084 | case ta_remove_literal: | |
7085 | case ta_add_literal: | |
7086 | break; | |
7087 | case ta_remove_longcall: | |
7088 | orig_size = 6; | |
7089 | break; | |
7090 | case ta_narrow_insn: | |
7091 | orig_size = 3; | |
7092 | break; | |
7093 | case ta_widen_insn: | |
7094 | orig_size = 2; | |
7095 | break; | |
7096 | case ta_fill: | |
7097 | break; | |
7098 | } | |
7099 | current_entry->size = | |
7100 | r->offset + orig_size - current_entry->orig_address; | |
7101 | if (current_entry->size != 0) | |
7102 | { | |
7103 | current_entry++; | |
7104 | map->entry_count++; | |
7105 | } | |
7106 | current_entry->orig_address = r->offset + orig_size; | |
7107 | removed += r->removed_bytes; | |
7108 | current_entry->new_address = r->offset + orig_size - removed; | |
7109 | current_entry->size = 0; | |
7110 | } | |
7111 | ||
7112 | current_entry->size = (bfd_get_section_limit (sec->owner, sec) | |
7113 | - current_entry->orig_address); | |
7114 | if (current_entry->size != 0) | |
7115 | map->entry_count++; | |
7116 | ||
7117 | return map; | |
7118 | } | |
7119 | ||
7120 | ||
7121 | /* Free an offset translation map. */ | |
7122 | ||
7123 | static void | |
7124 | free_xlate_map (xlate_map_t *map) | |
7125 | { | |
7126 | if (map && map->entry) | |
7127 | free (map->entry); | |
7128 | if (map) | |
7129 | free (map); | |
7130 | } | |
7131 | ||
7132 | ||
43cd72b9 BW |
7133 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
7134 | relocations in a section will fit if a proposed set of actions | |
7135 | are performed. */ | |
e0001a05 | 7136 | |
43cd72b9 | 7137 | static bfd_boolean |
7fa3d080 BW |
7138 | check_section_ebb_pcrels_fit (bfd *abfd, |
7139 | asection *sec, | |
7140 | bfd_byte *contents, | |
7141 | Elf_Internal_Rela *internal_relocs, | |
cb337148 BW |
7142 | const ebb_constraint *constraint, |
7143 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 7144 | { |
43cd72b9 BW |
7145 | unsigned i, j; |
7146 | Elf_Internal_Rela *irel; | |
03e94c08 BW |
7147 | xlate_map_t *xmap = NULL; |
7148 | bfd_boolean ok = TRUE; | |
43cd72b9 | 7149 | xtensa_relax_info *relax_info; |
e0001a05 | 7150 | |
43cd72b9 | 7151 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 7152 | |
03e94c08 BW |
7153 | if (relax_info && sec->reloc_count > 100) |
7154 | { | |
7155 | xmap = build_xlate_map (sec, relax_info); | |
7156 | /* NULL indicates out of memory, but the slow version | |
7157 | can still be used. */ | |
7158 | } | |
7159 | ||
43cd72b9 BW |
7160 | for (i = 0; i < sec->reloc_count; i++) |
7161 | { | |
7162 | r_reloc r_rel; | |
7163 | bfd_vma orig_self_offset, orig_target_offset; | |
7164 | bfd_vma self_offset, target_offset; | |
7165 | int r_type; | |
7166 | reloc_howto_type *howto; | |
7167 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 7168 | |
43cd72b9 BW |
7169 | irel = &internal_relocs[i]; |
7170 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 7171 | |
43cd72b9 BW |
7172 | howto = &elf_howto_table[r_type]; |
7173 | /* We maintain the required invariant: PC-relative relocations | |
7174 | that fit before linking must fit after linking. Thus we only | |
7175 | need to deal with relocations to the same section that are | |
7176 | PC-relative. */ | |
7177 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY | |
7178 | || !howto->pc_relative) | |
7179 | continue; | |
e0001a05 | 7180 | |
43cd72b9 BW |
7181 | r_reloc_init (&r_rel, abfd, irel, contents, |
7182 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 7183 | |
43cd72b9 BW |
7184 | if (r_reloc_get_section (&r_rel) != sec) |
7185 | continue; | |
e0001a05 | 7186 | |
43cd72b9 BW |
7187 | orig_self_offset = irel->r_offset; |
7188 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 7189 | |
43cd72b9 BW |
7190 | self_offset = orig_self_offset; |
7191 | target_offset = orig_target_offset; | |
7192 | ||
7193 | if (relax_info) | |
7194 | { | |
03e94c08 BW |
7195 | self_offset = |
7196 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7197 | orig_self_offset); | |
7198 | target_offset = | |
7199 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7200 | orig_target_offset); | |
43cd72b9 BW |
7201 | } |
7202 | ||
7203 | self_removed_bytes = 0; | |
7204 | target_removed_bytes = 0; | |
7205 | ||
7206 | for (j = 0; j < constraint->action_count; ++j) | |
7207 | { | |
7208 | proposed_action *action = &constraint->actions[j]; | |
7209 | bfd_vma offset = action->offset; | |
7210 | int removed_bytes = action->removed_bytes; | |
7211 | if (offset < orig_self_offset | |
7212 | || (offset == orig_self_offset && action->action == ta_fill | |
7213 | && action->removed_bytes < 0)) | |
7214 | self_removed_bytes += removed_bytes; | |
7215 | if (offset < orig_target_offset | |
7216 | || (offset == orig_target_offset && action->action == ta_fill | |
7217 | && action->removed_bytes < 0)) | |
7218 | target_removed_bytes += removed_bytes; | |
7219 | } | |
7220 | self_offset -= self_removed_bytes; | |
7221 | target_offset -= target_removed_bytes; | |
7222 | ||
7223 | /* Try to encode it. Get the operand and check. */ | |
7224 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7225 | { | |
7226 | /* None of the current alternate relocs are PC-relative, | |
7227 | and only PC-relative relocs matter here. */ | |
7228 | } | |
7229 | else | |
7230 | { | |
7231 | xtensa_opcode opcode; | |
7232 | int opnum; | |
7233 | ||
cb337148 BW |
7234 | if (reloc_opcodes) |
7235 | opcode = reloc_opcodes[i]; | |
7236 | else | |
7237 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
43cd72b9 | 7238 | if (opcode == XTENSA_UNDEFINED) |
03e94c08 BW |
7239 | { |
7240 | ok = FALSE; | |
7241 | break; | |
7242 | } | |
43cd72b9 BW |
7243 | |
7244 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7245 | if (opnum == XTENSA_UNDEFINED) | |
03e94c08 BW |
7246 | { |
7247 | ok = FALSE; | |
7248 | break; | |
7249 | } | |
43cd72b9 BW |
7250 | |
7251 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
7252 | { |
7253 | ok = FALSE; | |
7254 | break; | |
7255 | } | |
43cd72b9 BW |
7256 | } |
7257 | } | |
7258 | ||
03e94c08 BW |
7259 | if (xmap) |
7260 | free_xlate_map (xmap); | |
7261 | ||
7262 | return ok; | |
43cd72b9 BW |
7263 | } |
7264 | ||
7265 | ||
7266 | static bfd_boolean | |
7fa3d080 | 7267 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
7268 | { |
7269 | int removed = 0; | |
7270 | unsigned i; | |
7271 | ||
7272 | for (i = 0; i < constraint->action_count; i++) | |
7273 | { | |
7274 | const proposed_action *action = &constraint->actions[i]; | |
7275 | if (action->do_action) | |
7276 | removed += action->removed_bytes; | |
7277 | } | |
7278 | if (removed < 0) | |
e0001a05 NC |
7279 | return FALSE; |
7280 | ||
7281 | return TRUE; | |
7282 | } | |
7283 | ||
7284 | ||
43cd72b9 | 7285 | void |
7fa3d080 BW |
7286 | text_action_add_proposed (text_action_list *l, |
7287 | const ebb_constraint *ebb_table, | |
7288 | asection *sec) | |
e0001a05 NC |
7289 | { |
7290 | unsigned i; | |
7291 | ||
43cd72b9 | 7292 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 7293 | { |
43cd72b9 | 7294 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 7295 | |
43cd72b9 | 7296 | if (!action->do_action) |
e0001a05 | 7297 | continue; |
43cd72b9 BW |
7298 | switch (action->action) |
7299 | { | |
7300 | case ta_remove_insn: | |
7301 | case ta_remove_longcall: | |
7302 | case ta_convert_longcall: | |
7303 | case ta_narrow_insn: | |
7304 | case ta_widen_insn: | |
7305 | case ta_fill: | |
7306 | case ta_remove_literal: | |
7307 | text_action_add (l, action->action, sec, action->offset, | |
7308 | action->removed_bytes); | |
7309 | break; | |
7310 | case ta_none: | |
7311 | break; | |
7312 | default: | |
7313 | BFD_ASSERT (0); | |
7314 | break; | |
7315 | } | |
e0001a05 | 7316 | } |
43cd72b9 | 7317 | } |
e0001a05 | 7318 | |
43cd72b9 BW |
7319 | |
7320 | int | |
7fa3d080 | 7321 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
7322 | { |
7323 | int fill_extra_space; | |
7324 | ||
7325 | if (!entry) | |
7326 | return 0; | |
7327 | ||
7328 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
7329 | return 0; | |
7330 | ||
7331 | fill_extra_space = entry->size; | |
7332 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
7333 | { | |
7334 | /* Fill bytes for alignment: | |
7335 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
7336 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
7337 | int nsm = (1 << pow) - 1; | |
7338 | bfd_vma addr = entry->address + entry->size; | |
7339 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
7340 | fill_extra_space += align_fill; | |
7341 | } | |
7342 | return fill_extra_space; | |
e0001a05 NC |
7343 | } |
7344 | ||
43cd72b9 | 7345 | \f |
e0001a05 NC |
7346 | /* First relaxation pass. */ |
7347 | ||
43cd72b9 BW |
7348 | /* If the section contains relaxable literals, check each literal to |
7349 | see if it has the same value as another literal that has already | |
7350 | been seen, either in the current section or a previous one. If so, | |
7351 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
7352 | actual changes are deferred until the next pass. */ |
7353 | ||
7354 | static bfd_boolean | |
7fa3d080 BW |
7355 | compute_removed_literals (bfd *abfd, |
7356 | asection *sec, | |
7357 | struct bfd_link_info *link_info, | |
7358 | value_map_hash_table *values) | |
e0001a05 NC |
7359 | { |
7360 | xtensa_relax_info *relax_info; | |
7361 | bfd_byte *contents; | |
7362 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 7363 | source_reloc *src_relocs, *rel; |
e0001a05 | 7364 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
7365 | property_table_entry *prop_table = NULL; |
7366 | int ptblsize; | |
7367 | int i, prev_i; | |
7368 | bfd_boolean last_loc_is_prev = FALSE; | |
7369 | bfd_vma last_target_offset = 0; | |
7370 | section_cache_t target_sec_cache; | |
7371 | bfd_size_type sec_size; | |
7372 | ||
7373 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
7374 | |
7375 | /* Do nothing if it is not a relaxable literal section. */ | |
7376 | relax_info = get_xtensa_relax_info (sec); | |
7377 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
7378 | if (!relax_info->is_relaxable_literal_section) |
7379 | return ok; | |
7380 | ||
7381 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7382 | link_info->keep_memory); | |
7383 | ||
43cd72b9 | 7384 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 7385 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7386 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7387 | { |
7388 | ok = FALSE; | |
7389 | goto error_return; | |
7390 | } | |
7391 | ||
7392 | /* Sort the source_relocs by target offset. */ | |
7393 | src_relocs = relax_info->src_relocs; | |
7394 | qsort (src_relocs, relax_info->src_count, | |
7395 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
7396 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
7397 | internal_reloc_compare); | |
e0001a05 | 7398 | |
43cd72b9 BW |
7399 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7400 | XTENSA_PROP_SEC_NAME, FALSE); | |
7401 | if (ptblsize < 0) | |
7402 | { | |
7403 | ok = FALSE; | |
7404 | goto error_return; | |
7405 | } | |
7406 | ||
7407 | prev_i = -1; | |
e0001a05 NC |
7408 | for (i = 0; i < relax_info->src_count; i++) |
7409 | { | |
e0001a05 | 7410 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
7411 | |
7412 | rel = &src_relocs[i]; | |
43cd72b9 BW |
7413 | if (get_l32r_opcode () != rel->opcode) |
7414 | continue; | |
e0001a05 NC |
7415 | irel = get_irel_at_offset (sec, internal_relocs, |
7416 | rel->r_rel.target_offset); | |
7417 | ||
43cd72b9 BW |
7418 | /* If the relocation on this is not a simple R_XTENSA_32 or |
7419 | R_XTENSA_PLT then do not consider it. This may happen when | |
7420 | the difference of two symbols is used in a literal. */ | |
7421 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
7422 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
7423 | continue; | |
7424 | ||
e0001a05 NC |
7425 | /* If the target_offset for this relocation is the same as the |
7426 | previous relocation, then we've already considered whether the | |
7427 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
7428 | if (i != 0 && prev_i != -1 |
7429 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 7430 | continue; |
43cd72b9 BW |
7431 | prev_i = i; |
7432 | ||
7433 | if (last_loc_is_prev && | |
7434 | last_target_offset + 4 != rel->r_rel.target_offset) | |
7435 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
7436 | |
7437 | /* Check if the relocation was from an L32R that is being removed | |
7438 | because a CALLX was converted to a direct CALL, and check if | |
7439 | there are no other relocations to the literal. */ | |
43cd72b9 | 7440 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count)) |
e0001a05 | 7441 | { |
43cd72b9 BW |
7442 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
7443 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 7444 | { |
43cd72b9 BW |
7445 | ok = FALSE; |
7446 | goto error_return; | |
e0001a05 | 7447 | } |
43cd72b9 | 7448 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
7449 | continue; |
7450 | } | |
7451 | ||
43cd72b9 BW |
7452 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
7453 | values, | |
7454 | &last_loc_is_prev, irel, | |
7455 | relax_info->src_count - i, rel, | |
7456 | prop_table, ptblsize, | |
7457 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 7458 | { |
43cd72b9 BW |
7459 | ok = FALSE; |
7460 | goto error_return; | |
7461 | } | |
7462 | last_target_offset = rel->r_rel.target_offset; | |
7463 | } | |
e0001a05 | 7464 | |
43cd72b9 BW |
7465 | #if DEBUG |
7466 | print_removed_literals (stderr, &relax_info->removed_list); | |
7467 | print_action_list (stderr, &relax_info->action_list); | |
7468 | #endif /* DEBUG */ | |
7469 | ||
7470 | error_return: | |
7471 | if (prop_table) free (prop_table); | |
7472 | clear_section_cache (&target_sec_cache); | |
7473 | ||
7474 | release_contents (sec, contents); | |
7475 | release_internal_relocs (sec, internal_relocs); | |
7476 | return ok; | |
7477 | } | |
7478 | ||
7479 | ||
7480 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7481 | get_irel_at_offset (asection *sec, |
7482 | Elf_Internal_Rela *internal_relocs, | |
7483 | bfd_vma offset) | |
43cd72b9 BW |
7484 | { |
7485 | unsigned i; | |
7486 | Elf_Internal_Rela *irel; | |
7487 | unsigned r_type; | |
7488 | Elf_Internal_Rela key; | |
7489 | ||
7490 | if (!internal_relocs) | |
7491 | return NULL; | |
7492 | ||
7493 | key.r_offset = offset; | |
7494 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
7495 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
7496 | if (!irel) | |
7497 | return NULL; | |
7498 | ||
7499 | /* bsearch does not guarantee which will be returned if there are | |
7500 | multiple matches. We need the first that is not an alignment. */ | |
7501 | i = irel - internal_relocs; | |
7502 | while (i > 0) | |
7503 | { | |
7504 | if (internal_relocs[i-1].r_offset != offset) | |
7505 | break; | |
7506 | i--; | |
7507 | } | |
7508 | for ( ; i < sec->reloc_count; i++) | |
7509 | { | |
7510 | irel = &internal_relocs[i]; | |
7511 | r_type = ELF32_R_TYPE (irel->r_info); | |
7512 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
7513 | return irel; | |
7514 | } | |
7515 | ||
7516 | return NULL; | |
7517 | } | |
7518 | ||
7519 | ||
7520 | bfd_boolean | |
7fa3d080 BW |
7521 | is_removable_literal (const source_reloc *rel, |
7522 | int i, | |
7523 | const source_reloc *src_relocs, | |
7524 | int src_count) | |
43cd72b9 BW |
7525 | { |
7526 | const source_reloc *curr_rel; | |
7527 | if (!rel->is_null) | |
7528 | return FALSE; | |
7529 | ||
7530 | for (++i; i < src_count; ++i) | |
7531 | { | |
7532 | curr_rel = &src_relocs[i]; | |
7533 | /* If all others have the same target offset.... */ | |
7534 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
7535 | return TRUE; | |
7536 | ||
7537 | if (!curr_rel->is_null | |
7538 | && !xtensa_is_property_section (curr_rel->source_sec) | |
7539 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
7540 | return FALSE; | |
7541 | } | |
7542 | return TRUE; | |
7543 | } | |
7544 | ||
7545 | ||
7546 | bfd_boolean | |
7fa3d080 BW |
7547 | remove_dead_literal (bfd *abfd, |
7548 | asection *sec, | |
7549 | struct bfd_link_info *link_info, | |
7550 | Elf_Internal_Rela *internal_relocs, | |
7551 | Elf_Internal_Rela *irel, | |
7552 | source_reloc *rel, | |
7553 | property_table_entry *prop_table, | |
7554 | int ptblsize) | |
43cd72b9 BW |
7555 | { |
7556 | property_table_entry *entry; | |
7557 | xtensa_relax_info *relax_info; | |
7558 | ||
7559 | relax_info = get_xtensa_relax_info (sec); | |
7560 | if (!relax_info) | |
7561 | return FALSE; | |
7562 | ||
7563 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7564 | sec->vma + rel->r_rel.target_offset); | |
7565 | ||
7566 | /* Mark the unused literal so that it will be removed. */ | |
7567 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
7568 | ||
7569 | text_action_add (&relax_info->action_list, | |
7570 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7571 | ||
7572 | /* If the section is 4-byte aligned, do not add fill. */ | |
7573 | if (sec->alignment_power > 2) | |
7574 | { | |
7575 | int fill_extra_space; | |
7576 | bfd_vma entry_sec_offset; | |
7577 | text_action *fa; | |
7578 | property_table_entry *the_add_entry; | |
7579 | int removed_diff; | |
7580 | ||
7581 | if (entry) | |
7582 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7583 | else | |
7584 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7585 | ||
7586 | /* If the literal range is at the end of the section, | |
7587 | do not add fill. */ | |
7588 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7589 | entry_sec_offset); | |
7590 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
7591 | ||
7592 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7593 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7594 | -4, fill_extra_space); | |
7595 | if (fa) | |
7596 | adjust_fill_action (fa, removed_diff); | |
7597 | else | |
7598 | text_action_add (&relax_info->action_list, | |
7599 | ta_fill, sec, entry_sec_offset, removed_diff); | |
7600 | } | |
7601 | ||
7602 | /* Zero out the relocation on this literal location. */ | |
7603 | if (irel) | |
7604 | { | |
7605 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
7606 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
7607 | ||
7608 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7609 | pin_internal_relocs (sec, internal_relocs); | |
7610 | } | |
7611 | ||
7612 | /* Do not modify "last_loc_is_prev". */ | |
7613 | return TRUE; | |
7614 | } | |
7615 | ||
7616 | ||
7617 | bfd_boolean | |
7fa3d080 BW |
7618 | identify_literal_placement (bfd *abfd, |
7619 | asection *sec, | |
7620 | bfd_byte *contents, | |
7621 | struct bfd_link_info *link_info, | |
7622 | value_map_hash_table *values, | |
7623 | bfd_boolean *last_loc_is_prev_p, | |
7624 | Elf_Internal_Rela *irel, | |
7625 | int remaining_src_rels, | |
7626 | source_reloc *rel, | |
7627 | property_table_entry *prop_table, | |
7628 | int ptblsize, | |
7629 | section_cache_t *target_sec_cache, | |
7630 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
7631 | { |
7632 | literal_value val; | |
7633 | value_map *val_map; | |
7634 | xtensa_relax_info *relax_info; | |
7635 | bfd_boolean literal_placed = FALSE; | |
7636 | r_reloc r_rel; | |
7637 | unsigned long value; | |
7638 | bfd_boolean final_static_link; | |
7639 | bfd_size_type sec_size; | |
7640 | ||
7641 | relax_info = get_xtensa_relax_info (sec); | |
7642 | if (!relax_info) | |
7643 | return FALSE; | |
7644 | ||
7645 | sec_size = bfd_get_section_limit (abfd, sec); | |
7646 | ||
7647 | final_static_link = | |
7648 | (!link_info->relocatable | |
7649 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
7650 | ||
7651 | /* The placement algorithm first checks to see if the literal is | |
7652 | already in the value map. If so and the value map is reachable | |
7653 | from all uses, then the literal is moved to that location. If | |
7654 | not, then we identify the last location where a fresh literal was | |
7655 | placed. If the literal can be safely moved there, then we do so. | |
7656 | If not, then we assume that the literal is not to move and leave | |
7657 | the literal where it is, marking it as the last literal | |
7658 | location. */ | |
7659 | ||
7660 | /* Find the literal value. */ | |
7661 | value = 0; | |
7662 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7663 | if (!irel) | |
7664 | { | |
7665 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
7666 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
7667 | } | |
7668 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
7669 | ||
7670 | /* Check if we've seen another literal with the same value that | |
7671 | is in the same output section. */ | |
7672 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
7673 | ||
7674 | if (val_map | |
7675 | && (r_reloc_get_section (&val_map->loc)->output_section | |
7676 | == sec->output_section) | |
7677 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
7678 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
7679 | { | |
7680 | /* No change to last_loc_is_prev. */ | |
7681 | literal_placed = TRUE; | |
7682 | } | |
7683 | ||
7684 | /* For relocatable links, do not try to move literals. To do it | |
7685 | correctly might increase the number of relocations in an input | |
7686 | section making the default relocatable linking fail. */ | |
7687 | if (!link_info->relocatable && !literal_placed | |
7688 | && values->has_last_loc && !(*last_loc_is_prev_p)) | |
7689 | { | |
7690 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
7691 | if (target_sec && target_sec->output_section == sec->output_section) | |
7692 | { | |
7693 | /* Increment the virtual offset. */ | |
7694 | r_reloc try_loc = values->last_loc; | |
7695 | try_loc.virtual_offset += 4; | |
7696 | ||
7697 | /* There is a last loc that was in the same output section. */ | |
7698 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
7699 | && move_shared_literal (sec, link_info, rel, | |
7700 | prop_table, ptblsize, | |
7701 | &try_loc, &val, target_sec_cache)) | |
e0001a05 | 7702 | { |
43cd72b9 BW |
7703 | values->last_loc.virtual_offset += 4; |
7704 | literal_placed = TRUE; | |
7705 | if (!val_map) | |
7706 | val_map = add_value_map (values, &val, &try_loc, | |
7707 | final_static_link); | |
7708 | else | |
7709 | val_map->loc = try_loc; | |
e0001a05 NC |
7710 | } |
7711 | } | |
43cd72b9 BW |
7712 | } |
7713 | ||
7714 | if (!literal_placed) | |
7715 | { | |
7716 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
7717 | values->has_last_loc = TRUE; | |
7718 | values->last_loc = rel->r_rel; | |
7719 | if (!val_map) | |
7720 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 7721 | else |
43cd72b9 BW |
7722 | val_map->loc = rel->r_rel; |
7723 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
7724 | } |
7725 | ||
43cd72b9 | 7726 | return TRUE; |
e0001a05 NC |
7727 | } |
7728 | ||
7729 | ||
7730 | /* Check if the original relocations (presumably on L32R instructions) | |
7731 | identified by reloc[0..N] can be changed to reference the literal | |
7732 | identified by r_rel. If r_rel is out of range for any of the | |
7733 | original relocations, then we don't want to coalesce the original | |
7734 | literal with the one at r_rel. We only check reloc[0..N], where the | |
7735 | offsets are all the same as for reloc[0] (i.e., they're all | |
7736 | referencing the same literal) and where N is also bounded by the | |
7737 | number of remaining entries in the "reloc" array. The "reloc" array | |
7738 | is sorted by target offset so we know all the entries for the same | |
7739 | literal will be contiguous. */ | |
7740 | ||
7741 | static bfd_boolean | |
7fa3d080 BW |
7742 | relocations_reach (source_reloc *reloc, |
7743 | int remaining_relocs, | |
7744 | const r_reloc *r_rel) | |
e0001a05 NC |
7745 | { |
7746 | bfd_vma from_offset, source_address, dest_address; | |
7747 | asection *sec; | |
7748 | int i; | |
7749 | ||
7750 | if (!r_reloc_is_defined (r_rel)) | |
7751 | return FALSE; | |
7752 | ||
7753 | sec = r_reloc_get_section (r_rel); | |
7754 | from_offset = reloc[0].r_rel.target_offset; | |
7755 | ||
7756 | for (i = 0; i < remaining_relocs; i++) | |
7757 | { | |
7758 | if (reloc[i].r_rel.target_offset != from_offset) | |
7759 | break; | |
7760 | ||
7761 | /* Ignore relocations that have been removed. */ | |
7762 | if (reloc[i].is_null) | |
7763 | continue; | |
7764 | ||
7765 | /* The original and new output section for these must be the same | |
7766 | in order to coalesce. */ | |
7767 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
7768 | != sec->output_section) | |
7769 | return FALSE; | |
7770 | ||
d638e0ac BW |
7771 | /* Absolute literals in the same output section can always be |
7772 | combined. */ | |
7773 | if (reloc[i].is_abs_literal) | |
7774 | continue; | |
7775 | ||
43cd72b9 BW |
7776 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
7777 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
7778 | { |
7779 | /* Otherwise, check to see that it fits. */ | |
7780 | source_address = (reloc[i].source_sec->output_section->vma | |
7781 | + reloc[i].source_sec->output_offset | |
7782 | + reloc[i].r_rel.rela.r_offset); | |
7783 | dest_address = (sec->output_section->vma | |
7784 | + sec->output_offset | |
7785 | + r_rel->target_offset); | |
7786 | ||
43cd72b9 BW |
7787 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
7788 | source_address, dest_address)) | |
e0001a05 NC |
7789 | return FALSE; |
7790 | } | |
7791 | } | |
7792 | ||
7793 | return TRUE; | |
7794 | } | |
7795 | ||
7796 | ||
43cd72b9 BW |
7797 | /* Move a literal to another literal location because it is |
7798 | the same as the other literal value. */ | |
e0001a05 | 7799 | |
43cd72b9 | 7800 | static bfd_boolean |
7fa3d080 BW |
7801 | coalesce_shared_literal (asection *sec, |
7802 | source_reloc *rel, | |
7803 | property_table_entry *prop_table, | |
7804 | int ptblsize, | |
7805 | value_map *val_map) | |
e0001a05 | 7806 | { |
43cd72b9 BW |
7807 | property_table_entry *entry; |
7808 | text_action *fa; | |
7809 | property_table_entry *the_add_entry; | |
7810 | int removed_diff; | |
7811 | xtensa_relax_info *relax_info; | |
7812 | ||
7813 | relax_info = get_xtensa_relax_info (sec); | |
7814 | if (!relax_info) | |
7815 | return FALSE; | |
7816 | ||
7817 | entry = elf_xtensa_find_property_entry | |
7818 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
7819 | if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)) | |
7820 | return TRUE; | |
7821 | ||
7822 | /* Mark that the literal will be coalesced. */ | |
7823 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
7824 | ||
7825 | text_action_add (&relax_info->action_list, | |
7826 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7827 | ||
7828 | /* If the section is 4-byte aligned, do not add fill. */ | |
7829 | if (sec->alignment_power > 2) | |
e0001a05 | 7830 | { |
43cd72b9 BW |
7831 | int fill_extra_space; |
7832 | bfd_vma entry_sec_offset; | |
7833 | ||
7834 | if (entry) | |
7835 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7836 | else | |
7837 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7838 | ||
7839 | /* If the literal range is at the end of the section, | |
7840 | do not add fill. */ | |
7841 | fill_extra_space = 0; | |
7842 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7843 | entry_sec_offset); | |
7844 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7845 | fill_extra_space = the_add_entry->size; | |
7846 | ||
7847 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7848 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7849 | -4, fill_extra_space); | |
7850 | if (fa) | |
7851 | adjust_fill_action (fa, removed_diff); | |
7852 | else | |
7853 | text_action_add (&relax_info->action_list, | |
7854 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 7855 | } |
43cd72b9 BW |
7856 | |
7857 | return TRUE; | |
7858 | } | |
7859 | ||
7860 | ||
7861 | /* Move a literal to another location. This may actually increase the | |
7862 | total amount of space used because of alignments so we need to do | |
7863 | this carefully. Also, it may make a branch go out of range. */ | |
7864 | ||
7865 | static bfd_boolean | |
7fa3d080 BW |
7866 | move_shared_literal (asection *sec, |
7867 | struct bfd_link_info *link_info, | |
7868 | source_reloc *rel, | |
7869 | property_table_entry *prop_table, | |
7870 | int ptblsize, | |
7871 | const r_reloc *target_loc, | |
7872 | const literal_value *lit_value, | |
7873 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
7874 | { |
7875 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
7876 | text_action *fa, *target_fa; | |
7877 | int removed_diff; | |
7878 | xtensa_relax_info *relax_info, *target_relax_info; | |
7879 | asection *target_sec; | |
7880 | ebb_t *ebb; | |
7881 | ebb_constraint ebb_table; | |
7882 | bfd_boolean relocs_fit; | |
7883 | ||
7884 | /* If this routine always returns FALSE, the literals that cannot be | |
7885 | coalesced will not be moved. */ | |
7886 | if (elf32xtensa_no_literal_movement) | |
7887 | return FALSE; | |
7888 | ||
7889 | relax_info = get_xtensa_relax_info (sec); | |
7890 | if (!relax_info) | |
7891 | return FALSE; | |
7892 | ||
7893 | target_sec = r_reloc_get_section (target_loc); | |
7894 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7895 | ||
7896 | /* Literals to undefined sections may not be moved because they | |
7897 | must report an error. */ | |
7898 | if (bfd_is_und_section (target_sec)) | |
7899 | return FALSE; | |
7900 | ||
7901 | src_entry = elf_xtensa_find_property_entry | |
7902 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
7903 | ||
7904 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
7905 | return FALSE; | |
7906 | ||
7907 | target_entry = elf_xtensa_find_property_entry | |
7908 | (target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7909 | target_sec->vma + target_loc->target_offset); | |
7910 | ||
7911 | if (!target_entry) | |
7912 | return FALSE; | |
7913 | ||
7914 | /* Make sure that we have not broken any branches. */ | |
7915 | relocs_fit = FALSE; | |
7916 | ||
7917 | init_ebb_constraint (&ebb_table); | |
7918 | ebb = &ebb_table.ebb; | |
7919 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, | |
7920 | target_sec_cache->content_length, | |
7921 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7922 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
7923 | ||
7924 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
7925 | destination. */ | |
7926 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
7927 | ta_fill, target_loc->target_offset, | |
7928 | -4 - (1 << target_sec->alignment_power), TRUE); | |
7929 | ||
7930 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
7931 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, | |
7932 | target_sec_cache->contents, | |
7933 | target_sec_cache->relocs, | |
cb337148 | 7934 | &ebb_table, NULL); |
43cd72b9 BW |
7935 | |
7936 | if (!relocs_fit) | |
7937 | return FALSE; | |
7938 | ||
7939 | text_action_add_literal (&target_relax_info->action_list, | |
7940 | ta_add_literal, target_loc, lit_value, -4); | |
7941 | ||
7942 | if (target_sec->alignment_power > 2 && target_entry != src_entry) | |
7943 | { | |
7944 | /* May need to add or remove some fill to maintain alignment. */ | |
7945 | int fill_extra_space; | |
7946 | bfd_vma entry_sec_offset; | |
7947 | ||
7948 | entry_sec_offset = | |
7949 | target_entry->address - target_sec->vma + target_entry->size; | |
7950 | ||
7951 | /* If the literal range is at the end of the section, | |
7952 | do not add fill. */ | |
7953 | fill_extra_space = 0; | |
7954 | the_add_entry = | |
7955 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
7956 | target_sec_cache->pte_count, | |
7957 | entry_sec_offset); | |
7958 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7959 | fill_extra_space = the_add_entry->size; | |
7960 | ||
7961 | target_fa = find_fill_action (&target_relax_info->action_list, | |
7962 | target_sec, entry_sec_offset); | |
7963 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
7964 | entry_sec_offset, 4, | |
7965 | fill_extra_space); | |
7966 | if (target_fa) | |
7967 | adjust_fill_action (target_fa, removed_diff); | |
7968 | else | |
7969 | text_action_add (&target_relax_info->action_list, | |
7970 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
7971 | } | |
7972 | ||
7973 | /* Mark that the literal will be moved to the new location. */ | |
7974 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
7975 | ||
7976 | /* Remove the literal. */ | |
7977 | text_action_add (&relax_info->action_list, | |
7978 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7979 | ||
7980 | /* If the section is 4-byte aligned, do not add fill. */ | |
7981 | if (sec->alignment_power > 2 && target_entry != src_entry) | |
7982 | { | |
7983 | int fill_extra_space; | |
7984 | bfd_vma entry_sec_offset; | |
7985 | ||
7986 | if (src_entry) | |
7987 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
7988 | else | |
7989 | entry_sec_offset = rel->r_rel.target_offset+4; | |
7990 | ||
7991 | /* If the literal range is at the end of the section, | |
7992 | do not add fill. */ | |
7993 | fill_extra_space = 0; | |
7994 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7995 | entry_sec_offset); | |
7996 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7997 | fill_extra_space = the_add_entry->size; | |
7998 | ||
7999 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8000 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8001 | -4, fill_extra_space); | |
8002 | if (fa) | |
8003 | adjust_fill_action (fa, removed_diff); | |
8004 | else | |
8005 | text_action_add (&relax_info->action_list, | |
8006 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8007 | } | |
8008 | ||
8009 | return TRUE; | |
e0001a05 NC |
8010 | } |
8011 | ||
8012 | \f | |
8013 | /* Second relaxation pass. */ | |
8014 | ||
8015 | /* Modify all of the relocations to point to the right spot, and if this | |
8016 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 8017 | section size. */ |
e0001a05 | 8018 | |
43cd72b9 | 8019 | bfd_boolean |
7fa3d080 | 8020 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
8021 | { |
8022 | Elf_Internal_Rela *internal_relocs; | |
8023 | xtensa_relax_info *relax_info; | |
8024 | bfd_byte *contents; | |
8025 | bfd_boolean ok = TRUE; | |
8026 | unsigned i; | |
43cd72b9 BW |
8027 | bfd_boolean rv = FALSE; |
8028 | bfd_boolean virtual_action; | |
8029 | bfd_size_type sec_size; | |
e0001a05 | 8030 | |
43cd72b9 | 8031 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8032 | relax_info = get_xtensa_relax_info (sec); |
8033 | BFD_ASSERT (relax_info); | |
8034 | ||
43cd72b9 BW |
8035 | /* First translate any of the fixes that have been added already. */ |
8036 | translate_section_fixes (sec); | |
8037 | ||
e0001a05 NC |
8038 | /* Handle property sections (e.g., literal tables) specially. */ |
8039 | if (xtensa_is_property_section (sec)) | |
8040 | { | |
8041 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
8042 | return relax_property_section (abfd, sec, link_info); | |
8043 | } | |
8044 | ||
43cd72b9 BW |
8045 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8046 | link_info->keep_memory); | |
8047 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
8048 | if (contents == NULL && sec_size != 0) | |
8049 | { | |
8050 | ok = FALSE; | |
8051 | goto error_return; | |
8052 | } | |
8053 | ||
8054 | if (internal_relocs) | |
8055 | { | |
8056 | for (i = 0; i < sec->reloc_count; i++) | |
8057 | { | |
8058 | Elf_Internal_Rela *irel; | |
8059 | xtensa_relax_info *target_relax_info; | |
8060 | bfd_vma source_offset, old_source_offset; | |
8061 | r_reloc r_rel; | |
8062 | unsigned r_type; | |
8063 | asection *target_sec; | |
8064 | ||
8065 | /* Locally change the source address. | |
8066 | Translate the target to the new target address. | |
8067 | If it points to this section and has been removed, | |
8068 | NULLify it. | |
8069 | Write it back. */ | |
8070 | ||
8071 | irel = &internal_relocs[i]; | |
8072 | source_offset = irel->r_offset; | |
8073 | old_source_offset = source_offset; | |
8074 | ||
8075 | r_type = ELF32_R_TYPE (irel->r_info); | |
8076 | r_reloc_init (&r_rel, abfd, irel, contents, | |
8077 | bfd_get_section_limit (abfd, sec)); | |
8078 | ||
8079 | /* If this section could have changed then we may need to | |
8080 | change the relocation's offset. */ | |
8081 | ||
8082 | if (relax_info->is_relaxable_literal_section | |
8083 | || relax_info->is_relaxable_asm_section) | |
8084 | { | |
8085 | if (r_type != R_XTENSA_NONE | |
8086 | && find_removed_literal (&relax_info->removed_list, | |
8087 | irel->r_offset)) | |
8088 | { | |
8089 | /* Remove this relocation. */ | |
8090 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8091 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8092 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8093 | irel->r_offset = offset_with_removed_text | |
8094 | (&relax_info->action_list, irel->r_offset); | |
8095 | pin_internal_relocs (sec, internal_relocs); | |
8096 | continue; | |
8097 | } | |
8098 | ||
8099 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
8100 | { | |
8101 | text_action *action = | |
8102 | find_insn_action (&relax_info->action_list, | |
8103 | irel->r_offset); | |
8104 | if (action && (action->action == ta_convert_longcall | |
8105 | || action->action == ta_remove_longcall)) | |
8106 | { | |
8107 | bfd_reloc_status_type retval; | |
8108 | char *error_message = NULL; | |
8109 | ||
8110 | retval = contract_asm_expansion (contents, sec_size, | |
8111 | irel, &error_message); | |
8112 | if (retval != bfd_reloc_ok) | |
8113 | { | |
8114 | (*link_info->callbacks->reloc_dangerous) | |
8115 | (link_info, error_message, abfd, sec, | |
8116 | irel->r_offset); | |
8117 | goto error_return; | |
8118 | } | |
8119 | /* Update the action so that the code that moves | |
8120 | the contents will do the right thing. */ | |
8121 | if (action->action == ta_remove_longcall) | |
8122 | action->action = ta_remove_insn; | |
8123 | else | |
8124 | action->action = ta_none; | |
8125 | /* Refresh the info in the r_rel. */ | |
8126 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8127 | r_type = ELF32_R_TYPE (irel->r_info); | |
8128 | } | |
8129 | } | |
8130 | ||
8131 | source_offset = offset_with_removed_text | |
8132 | (&relax_info->action_list, irel->r_offset); | |
8133 | irel->r_offset = source_offset; | |
8134 | } | |
8135 | ||
8136 | /* If the target section could have changed then | |
8137 | we may need to change the relocation's target offset. */ | |
8138 | ||
8139 | target_sec = r_reloc_get_section (&r_rel); | |
8140 | target_relax_info = get_xtensa_relax_info (target_sec); | |
8141 | ||
8142 | if (target_relax_info | |
8143 | && (target_relax_info->is_relaxable_literal_section | |
8144 | || target_relax_info->is_relaxable_asm_section)) | |
8145 | { | |
8146 | r_reloc new_reloc; | |
8147 | reloc_bfd_fix *fix; | |
8148 | bfd_vma addend_displacement; | |
8149 | ||
8150 | translate_reloc (&r_rel, &new_reloc); | |
8151 | ||
8152 | if (r_type == R_XTENSA_DIFF8 | |
8153 | || r_type == R_XTENSA_DIFF16 | |
8154 | || r_type == R_XTENSA_DIFF32) | |
8155 | { | |
8156 | bfd_vma diff_value = 0, new_end_offset, diff_mask = 0; | |
8157 | ||
8158 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
8159 | { | |
8160 | (*link_info->callbacks->reloc_dangerous) | |
8161 | (link_info, _("invalid relocation address"), | |
8162 | abfd, sec, old_source_offset); | |
8163 | goto error_return; | |
8164 | } | |
8165 | ||
8166 | switch (r_type) | |
8167 | { | |
8168 | case R_XTENSA_DIFF8: | |
8169 | diff_value = | |
8170 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
8171 | break; | |
8172 | case R_XTENSA_DIFF16: | |
8173 | diff_value = | |
8174 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
8175 | break; | |
8176 | case R_XTENSA_DIFF32: | |
8177 | diff_value = | |
8178 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
8179 | break; | |
8180 | } | |
8181 | ||
8182 | new_end_offset = offset_with_removed_text | |
8183 | (&target_relax_info->action_list, | |
8184 | r_rel.target_offset + diff_value); | |
8185 | diff_value = new_end_offset - new_reloc.target_offset; | |
8186 | ||
8187 | switch (r_type) | |
8188 | { | |
8189 | case R_XTENSA_DIFF8: | |
8190 | diff_mask = 0xff; | |
8191 | bfd_put_8 (abfd, diff_value, | |
8192 | &contents[old_source_offset]); | |
8193 | break; | |
8194 | case R_XTENSA_DIFF16: | |
8195 | diff_mask = 0xffff; | |
8196 | bfd_put_16 (abfd, diff_value, | |
8197 | &contents[old_source_offset]); | |
8198 | break; | |
8199 | case R_XTENSA_DIFF32: | |
8200 | diff_mask = 0xffffffff; | |
8201 | bfd_put_32 (abfd, diff_value, | |
8202 | &contents[old_source_offset]); | |
8203 | break; | |
8204 | } | |
8205 | ||
8206 | /* Check for overflow. */ | |
8207 | if ((diff_value & ~diff_mask) != 0) | |
8208 | { | |
8209 | (*link_info->callbacks->reloc_dangerous) | |
8210 | (link_info, _("overflow after relaxation"), | |
8211 | abfd, sec, old_source_offset); | |
8212 | goto error_return; | |
8213 | } | |
8214 | ||
8215 | pin_contents (sec, contents); | |
8216 | } | |
8217 | ||
8218 | /* FIXME: If the relocation still references a section in | |
8219 | the same input file, the relocation should be modified | |
8220 | directly instead of adding a "fix" record. */ | |
8221 | ||
8222 | addend_displacement = | |
8223 | new_reloc.target_offset + new_reloc.virtual_offset; | |
8224 | ||
8225 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0, | |
8226 | r_reloc_get_section (&new_reloc), | |
8227 | addend_displacement, TRUE); | |
8228 | add_fix (sec, fix); | |
8229 | } | |
8230 | ||
8231 | pin_internal_relocs (sec, internal_relocs); | |
8232 | } | |
8233 | } | |
8234 | ||
8235 | if ((relax_info->is_relaxable_literal_section | |
8236 | || relax_info->is_relaxable_asm_section) | |
8237 | && relax_info->action_list.head) | |
8238 | { | |
8239 | /* Walk through the planned actions and build up a table | |
8240 | of move, copy and fill records. Use the move, copy and | |
8241 | fill records to perform the actions once. */ | |
8242 | ||
8243 | bfd_size_type size = sec->size; | |
8244 | int removed = 0; | |
8245 | bfd_size_type final_size, copy_size, orig_insn_size; | |
8246 | bfd_byte *scratch = NULL; | |
8247 | bfd_byte *dup_contents = NULL; | |
8248 | bfd_size_type orig_size = size; | |
8249 | bfd_vma orig_dot = 0; | |
8250 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
8251 | orig dot in physical memory. */ | |
8252 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
8253 | bfd_vma dup_dot = 0; | |
8254 | ||
8255 | text_action *action = relax_info->action_list.head; | |
8256 | ||
8257 | final_size = sec->size; | |
8258 | for (action = relax_info->action_list.head; action; | |
8259 | action = action->next) | |
8260 | { | |
8261 | final_size -= action->removed_bytes; | |
8262 | } | |
8263 | ||
8264 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
8265 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
8266 | ||
8267 | /* The dot is the current fill location. */ | |
8268 | #if DEBUG | |
8269 | print_action_list (stderr, &relax_info->action_list); | |
8270 | #endif | |
8271 | ||
8272 | for (action = relax_info->action_list.head; action; | |
8273 | action = action->next) | |
8274 | { | |
8275 | virtual_action = FALSE; | |
8276 | if (action->offset > orig_dot) | |
8277 | { | |
8278 | orig_dot += orig_dot_copied; | |
8279 | orig_dot_copied = 0; | |
8280 | orig_dot_vo = 0; | |
8281 | /* Out of the virtual world. */ | |
8282 | } | |
8283 | ||
8284 | if (action->offset > orig_dot) | |
8285 | { | |
8286 | copy_size = action->offset - orig_dot; | |
8287 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
8288 | orig_dot += copy_size; | |
8289 | dup_dot += copy_size; | |
8290 | BFD_ASSERT (action->offset == orig_dot); | |
8291 | } | |
8292 | else if (action->offset < orig_dot) | |
8293 | { | |
8294 | if (action->action == ta_fill | |
8295 | && action->offset - action->removed_bytes == orig_dot) | |
8296 | { | |
8297 | /* This is OK because the fill only effects the dup_dot. */ | |
8298 | } | |
8299 | else if (action->action == ta_add_literal) | |
8300 | { | |
8301 | /* TBD. Might need to handle this. */ | |
8302 | } | |
8303 | } | |
8304 | if (action->offset == orig_dot) | |
8305 | { | |
8306 | if (action->virtual_offset > orig_dot_vo) | |
8307 | { | |
8308 | if (orig_dot_vo == 0) | |
8309 | { | |
8310 | /* Need to copy virtual_offset bytes. Probably four. */ | |
8311 | copy_size = action->virtual_offset - orig_dot_vo; | |
8312 | memmove (&dup_contents[dup_dot], | |
8313 | &contents[orig_dot], copy_size); | |
8314 | orig_dot_copied = copy_size; | |
8315 | dup_dot += copy_size; | |
8316 | } | |
8317 | virtual_action = TRUE; | |
8318 | } | |
8319 | else | |
8320 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
8321 | } | |
8322 | switch (action->action) | |
8323 | { | |
8324 | case ta_remove_literal: | |
8325 | case ta_remove_insn: | |
8326 | BFD_ASSERT (action->removed_bytes >= 0); | |
8327 | orig_dot += action->removed_bytes; | |
8328 | break; | |
8329 | ||
8330 | case ta_narrow_insn: | |
8331 | orig_insn_size = 3; | |
8332 | copy_size = 2; | |
8333 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8334 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 8335 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
8336 | BFD_ASSERT (rv); |
8337 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8338 | orig_dot += orig_insn_size; | |
8339 | dup_dot += copy_size; | |
8340 | break; | |
8341 | ||
8342 | case ta_fill: | |
8343 | if (action->removed_bytes >= 0) | |
8344 | orig_dot += action->removed_bytes; | |
8345 | else | |
8346 | { | |
8347 | /* Already zeroed in dup_contents. Just bump the | |
8348 | counters. */ | |
8349 | dup_dot += (-action->removed_bytes); | |
8350 | } | |
8351 | break; | |
8352 | ||
8353 | case ta_none: | |
8354 | BFD_ASSERT (action->removed_bytes == 0); | |
8355 | break; | |
8356 | ||
8357 | case ta_convert_longcall: | |
8358 | case ta_remove_longcall: | |
8359 | /* These will be removed or converted before we get here. */ | |
8360 | BFD_ASSERT (0); | |
8361 | break; | |
8362 | ||
8363 | case ta_widen_insn: | |
8364 | orig_insn_size = 2; | |
8365 | copy_size = 3; | |
8366 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8367 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 8368 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
8369 | BFD_ASSERT (rv); |
8370 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8371 | orig_dot += orig_insn_size; | |
8372 | dup_dot += copy_size; | |
8373 | break; | |
8374 | ||
8375 | case ta_add_literal: | |
8376 | orig_insn_size = 0; | |
8377 | copy_size = 4; | |
8378 | BFD_ASSERT (action->removed_bytes == -4); | |
8379 | /* TBD -- place the literal value here and insert | |
8380 | into the table. */ | |
8381 | memset (&dup_contents[dup_dot], 0, 4); | |
8382 | pin_internal_relocs (sec, internal_relocs); | |
8383 | pin_contents (sec, contents); | |
8384 | ||
8385 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
8386 | relax_info, &internal_relocs, &action->value)) | |
8387 | goto error_return; | |
8388 | ||
8389 | if (virtual_action) | |
8390 | orig_dot_vo += copy_size; | |
8391 | ||
8392 | orig_dot += orig_insn_size; | |
8393 | dup_dot += copy_size; | |
8394 | break; | |
8395 | ||
8396 | default: | |
8397 | /* Not implemented yet. */ | |
8398 | BFD_ASSERT (0); | |
8399 | break; | |
8400 | } | |
8401 | ||
8402 | size -= action->removed_bytes; | |
8403 | removed += action->removed_bytes; | |
8404 | BFD_ASSERT (dup_dot <= final_size); | |
8405 | BFD_ASSERT (orig_dot <= orig_size); | |
8406 | } | |
8407 | ||
8408 | orig_dot += orig_dot_copied; | |
8409 | orig_dot_copied = 0; | |
8410 | ||
8411 | if (orig_dot != orig_size) | |
8412 | { | |
8413 | copy_size = orig_size - orig_dot; | |
8414 | BFD_ASSERT (orig_size > orig_dot); | |
8415 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
8416 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
8417 | orig_dot += copy_size; | |
8418 | dup_dot += copy_size; | |
8419 | } | |
8420 | BFD_ASSERT (orig_size == orig_dot); | |
8421 | BFD_ASSERT (final_size == dup_dot); | |
8422 | ||
8423 | /* Move the dup_contents back. */ | |
8424 | if (final_size > orig_size) | |
8425 | { | |
8426 | /* Contents need to be reallocated. Swap the dup_contents into | |
8427 | contents. */ | |
8428 | sec->contents = dup_contents; | |
8429 | free (contents); | |
8430 | contents = dup_contents; | |
8431 | pin_contents (sec, contents); | |
8432 | } | |
8433 | else | |
8434 | { | |
8435 | BFD_ASSERT (final_size <= orig_size); | |
8436 | memset (contents, 0, orig_size); | |
8437 | memcpy (contents, dup_contents, final_size); | |
8438 | free (dup_contents); | |
8439 | } | |
8440 | free (scratch); | |
8441 | pin_contents (sec, contents); | |
8442 | ||
8443 | sec->size = final_size; | |
8444 | } | |
8445 | ||
8446 | error_return: | |
8447 | release_internal_relocs (sec, internal_relocs); | |
8448 | release_contents (sec, contents); | |
8449 | return ok; | |
8450 | } | |
8451 | ||
8452 | ||
8453 | static bfd_boolean | |
7fa3d080 | 8454 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
8455 | { |
8456 | xtensa_relax_info *relax_info; | |
8457 | reloc_bfd_fix *r; | |
8458 | ||
8459 | relax_info = get_xtensa_relax_info (sec); | |
8460 | if (!relax_info) | |
8461 | return TRUE; | |
8462 | ||
8463 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
8464 | if (!translate_reloc_bfd_fix (r)) | |
8465 | return FALSE; | |
e0001a05 | 8466 | |
43cd72b9 BW |
8467 | return TRUE; |
8468 | } | |
e0001a05 | 8469 | |
e0001a05 | 8470 | |
43cd72b9 BW |
8471 | /* Translate a fix given the mapping in the relax info for the target |
8472 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 8473 | |
43cd72b9 | 8474 | static bfd_boolean |
7fa3d080 | 8475 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
8476 | { |
8477 | reloc_bfd_fix new_fix; | |
8478 | asection *sec; | |
8479 | xtensa_relax_info *relax_info; | |
8480 | removed_literal *removed; | |
8481 | bfd_vma new_offset, target_offset; | |
e0001a05 | 8482 | |
43cd72b9 BW |
8483 | if (fix->translated) |
8484 | return TRUE; | |
e0001a05 | 8485 | |
43cd72b9 BW |
8486 | sec = fix->target_sec; |
8487 | target_offset = fix->target_offset; | |
e0001a05 | 8488 | |
43cd72b9 BW |
8489 | relax_info = get_xtensa_relax_info (sec); |
8490 | if (!relax_info) | |
8491 | { | |
8492 | fix->translated = TRUE; | |
8493 | return TRUE; | |
8494 | } | |
e0001a05 | 8495 | |
43cd72b9 | 8496 | new_fix = *fix; |
e0001a05 | 8497 | |
43cd72b9 BW |
8498 | /* The fix does not need to be translated if the section cannot change. */ |
8499 | if (!relax_info->is_relaxable_literal_section | |
8500 | && !relax_info->is_relaxable_asm_section) | |
8501 | { | |
8502 | fix->translated = TRUE; | |
8503 | return TRUE; | |
8504 | } | |
e0001a05 | 8505 | |
43cd72b9 BW |
8506 | /* If the literal has been moved and this relocation was on an |
8507 | opcode, then the relocation should move to the new literal | |
8508 | location. Otherwise, the relocation should move within the | |
8509 | section. */ | |
8510 | ||
8511 | removed = FALSE; | |
8512 | if (is_operand_relocation (fix->src_type)) | |
8513 | { | |
8514 | /* Check if the original relocation is against a literal being | |
8515 | removed. */ | |
8516 | removed = find_removed_literal (&relax_info->removed_list, | |
8517 | target_offset); | |
e0001a05 NC |
8518 | } |
8519 | ||
43cd72b9 | 8520 | if (removed) |
e0001a05 | 8521 | { |
43cd72b9 | 8522 | asection *new_sec; |
e0001a05 | 8523 | |
43cd72b9 BW |
8524 | /* The fact that there is still a relocation to this literal indicates |
8525 | that the literal is being coalesced, not simply removed. */ | |
8526 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 8527 | |
43cd72b9 BW |
8528 | /* This was moved to some other address (possibly another section). */ |
8529 | new_sec = r_reloc_get_section (&removed->to); | |
8530 | if (new_sec != sec) | |
e0001a05 | 8531 | { |
43cd72b9 BW |
8532 | sec = new_sec; |
8533 | relax_info = get_xtensa_relax_info (sec); | |
8534 | if (!relax_info || | |
8535 | (!relax_info->is_relaxable_literal_section | |
8536 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 8537 | { |
43cd72b9 BW |
8538 | target_offset = removed->to.target_offset; |
8539 | new_fix.target_sec = new_sec; | |
8540 | new_fix.target_offset = target_offset; | |
8541 | new_fix.translated = TRUE; | |
8542 | *fix = new_fix; | |
8543 | return TRUE; | |
e0001a05 | 8544 | } |
e0001a05 | 8545 | } |
43cd72b9 BW |
8546 | target_offset = removed->to.target_offset; |
8547 | new_fix.target_sec = new_sec; | |
e0001a05 | 8548 | } |
43cd72b9 BW |
8549 | |
8550 | /* The target address may have been moved within its section. */ | |
8551 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
8552 | target_offset); | |
8553 | ||
8554 | new_fix.target_offset = new_offset; | |
8555 | new_fix.target_offset = new_offset; | |
8556 | new_fix.translated = TRUE; | |
8557 | *fix = new_fix; | |
8558 | return TRUE; | |
e0001a05 NC |
8559 | } |
8560 | ||
8561 | ||
8562 | /* Fix up a relocation to take account of removed literals. */ | |
8563 | ||
8564 | static void | |
7fa3d080 | 8565 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel) |
e0001a05 NC |
8566 | { |
8567 | asection *sec; | |
8568 | xtensa_relax_info *relax_info; | |
8569 | removed_literal *removed; | |
43cd72b9 | 8570 | bfd_vma new_offset, target_offset, removed_bytes; |
e0001a05 NC |
8571 | |
8572 | *new_rel = *orig_rel; | |
8573 | ||
8574 | if (!r_reloc_is_defined (orig_rel)) | |
8575 | return; | |
8576 | sec = r_reloc_get_section (orig_rel); | |
8577 | ||
8578 | relax_info = get_xtensa_relax_info (sec); | |
8579 | BFD_ASSERT (relax_info); | |
8580 | ||
43cd72b9 BW |
8581 | if (!relax_info->is_relaxable_literal_section |
8582 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
8583 | return; |
8584 | ||
43cd72b9 BW |
8585 | target_offset = orig_rel->target_offset; |
8586 | ||
8587 | removed = FALSE; | |
8588 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
8589 | { | |
8590 | /* Check if the original relocation is against a literal being | |
8591 | removed. */ | |
8592 | removed = find_removed_literal (&relax_info->removed_list, | |
8593 | target_offset); | |
8594 | } | |
8595 | if (removed && removed->to.abfd) | |
e0001a05 NC |
8596 | { |
8597 | asection *new_sec; | |
8598 | ||
8599 | /* The fact that there is still a relocation to this literal indicates | |
8600 | that the literal is being coalesced, not simply removed. */ | |
8601 | BFD_ASSERT (removed->to.abfd != NULL); | |
8602 | ||
43cd72b9 BW |
8603 | /* This was moved to some other address |
8604 | (possibly in another section). */ | |
e0001a05 NC |
8605 | *new_rel = removed->to; |
8606 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 8607 | if (new_sec != sec) |
e0001a05 NC |
8608 | { |
8609 | sec = new_sec; | |
8610 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
8611 | if (!relax_info |
8612 | || (!relax_info->is_relaxable_literal_section | |
8613 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 NC |
8614 | return; |
8615 | } | |
43cd72b9 | 8616 | target_offset = new_rel->target_offset; |
e0001a05 NC |
8617 | } |
8618 | ||
8619 | /* ...and the target address may have been moved within its section. */ | |
43cd72b9 BW |
8620 | new_offset = offset_with_removed_text (&relax_info->action_list, |
8621 | target_offset); | |
e0001a05 NC |
8622 | |
8623 | /* Modify the offset and addend. */ | |
43cd72b9 | 8624 | removed_bytes = target_offset - new_offset; |
e0001a05 | 8625 | new_rel->target_offset = new_offset; |
43cd72b9 | 8626 | new_rel->rela.r_addend -= removed_bytes; |
e0001a05 NC |
8627 | } |
8628 | ||
8629 | ||
8630 | /* For dynamic links, there may be a dynamic relocation for each | |
8631 | literal. The number of dynamic relocations must be computed in | |
8632 | size_dynamic_sections, which occurs before relaxation. When a | |
8633 | literal is removed, this function checks if there is a corresponding | |
8634 | dynamic relocation and shrinks the size of the appropriate dynamic | |
8635 | relocation section accordingly. At this point, the contents of the | |
8636 | dynamic relocation sections have not yet been filled in, so there's | |
8637 | nothing else that needs to be done. */ | |
8638 | ||
8639 | static void | |
7fa3d080 BW |
8640 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
8641 | bfd *abfd, | |
8642 | asection *input_section, | |
8643 | Elf_Internal_Rela *rel) | |
e0001a05 | 8644 | { |
f0e6fdb2 | 8645 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
8646 | Elf_Internal_Shdr *symtab_hdr; |
8647 | struct elf_link_hash_entry **sym_hashes; | |
8648 | unsigned long r_symndx; | |
8649 | int r_type; | |
8650 | struct elf_link_hash_entry *h; | |
8651 | bfd_boolean dynamic_symbol; | |
8652 | ||
f0e6fdb2 | 8653 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
8654 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
8655 | sym_hashes = elf_sym_hashes (abfd); | |
8656 | ||
8657 | r_type = ELF32_R_TYPE (rel->r_info); | |
8658 | r_symndx = ELF32_R_SYM (rel->r_info); | |
8659 | ||
8660 | if (r_symndx < symtab_hdr->sh_info) | |
8661 | h = NULL; | |
8662 | else | |
8663 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
8664 | ||
571b5725 | 8665 | dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
8666 | |
8667 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
8668 | && (input_section->flags & SEC_ALLOC) != 0 | |
8669 | && (dynamic_symbol || info->shared)) | |
8670 | { | |
e0001a05 NC |
8671 | asection *srel; |
8672 | bfd_boolean is_plt = FALSE; | |
8673 | ||
e0001a05 NC |
8674 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
8675 | { | |
f0e6fdb2 | 8676 | srel = htab->srelplt; |
e0001a05 NC |
8677 | is_plt = TRUE; |
8678 | } | |
8679 | else | |
f0e6fdb2 | 8680 | srel = htab->srelgot; |
e0001a05 NC |
8681 | |
8682 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 8683 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
8684 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
8685 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
8686 | |
8687 | if (is_plt) | |
8688 | { | |
8689 | asection *splt, *sgotplt, *srelgot; | |
8690 | int reloc_index, chunk; | |
8691 | ||
8692 | /* Find the PLT reloc index of the entry being removed. This | |
8693 | is computed from the size of ".rela.plt". It is needed to | |
8694 | figure out which PLT chunk to resize. Usually "last index | |
8695 | = size - 1" since the index starts at zero, but in this | |
8696 | context, the size has just been decremented so there's no | |
8697 | need to subtract one. */ | |
eea6121a | 8698 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
8699 | |
8700 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
8701 | splt = elf_xtensa_get_plt_section (info, chunk); |
8702 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
8703 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
8704 | ||
8705 | /* Check if an entire PLT chunk has just been eliminated. */ | |
8706 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
8707 | { | |
8708 | /* The two magic GOT entries for that chunk can go away. */ | |
f0e6fdb2 | 8709 | srelgot = htab->srelgot; |
e0001a05 NC |
8710 | BFD_ASSERT (srelgot != NULL); |
8711 | srelgot->reloc_count -= 2; | |
eea6121a AM |
8712 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
8713 | sgotplt->size -= 8; | |
e0001a05 NC |
8714 | |
8715 | /* There should be only one entry left (and it will be | |
8716 | removed below). */ | |
eea6121a AM |
8717 | BFD_ASSERT (sgotplt->size == 4); |
8718 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
8719 | } |
8720 | ||
eea6121a AM |
8721 | BFD_ASSERT (sgotplt->size >= 4); |
8722 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 8723 | |
eea6121a AM |
8724 | sgotplt->size -= 4; |
8725 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
8726 | } |
8727 | } | |
8728 | } | |
8729 | ||
8730 | ||
43cd72b9 BW |
8731 | /* Take an r_rel and move it to another section. This usually |
8732 | requires extending the interal_relocation array and pinning it. If | |
8733 | the original r_rel is from the same BFD, we can complete this here. | |
8734 | Otherwise, we add a fix record to let the final link fix the | |
8735 | appropriate address. Contents and internal relocations for the | |
8736 | section must be pinned after calling this routine. */ | |
8737 | ||
8738 | static bfd_boolean | |
7fa3d080 BW |
8739 | move_literal (bfd *abfd, |
8740 | struct bfd_link_info *link_info, | |
8741 | asection *sec, | |
8742 | bfd_vma offset, | |
8743 | bfd_byte *contents, | |
8744 | xtensa_relax_info *relax_info, | |
8745 | Elf_Internal_Rela **internal_relocs_p, | |
8746 | const literal_value *lit) | |
43cd72b9 BW |
8747 | { |
8748 | Elf_Internal_Rela *new_relocs = NULL; | |
8749 | size_t new_relocs_count = 0; | |
8750 | Elf_Internal_Rela this_rela; | |
8751 | const r_reloc *r_rel; | |
8752 | ||
8753 | r_rel = &lit->r_rel; | |
8754 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
8755 | ||
8756 | if (r_reloc_is_const (r_rel)) | |
8757 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8758 | else | |
8759 | { | |
8760 | int r_type; | |
8761 | unsigned i; | |
8762 | asection *target_sec; | |
8763 | reloc_bfd_fix *fix; | |
8764 | unsigned insert_at; | |
8765 | ||
8766 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
8767 | target_sec = r_reloc_get_section (r_rel); | |
8768 | ||
8769 | /* This is the difficult case. We have to create a fix up. */ | |
8770 | this_rela.r_offset = offset; | |
8771 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
8772 | this_rela.r_addend = | |
8773 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
8774 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8775 | ||
8776 | /* Currently, we cannot move relocations during a relocatable link. */ | |
8777 | BFD_ASSERT (!link_info->relocatable); | |
8778 | fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd, | |
8779 | r_reloc_get_section (r_rel), | |
8780 | r_rel->target_offset + r_rel->virtual_offset, | |
8781 | FALSE); | |
8782 | /* We also need to mark that relocations are needed here. */ | |
8783 | sec->flags |= SEC_RELOC; | |
8784 | ||
8785 | translate_reloc_bfd_fix (fix); | |
8786 | /* This fix has not yet been translated. */ | |
8787 | add_fix (sec, fix); | |
8788 | ||
8789 | /* Add the relocation. If we have already allocated our own | |
8790 | space for the relocations and we have room for more, then use | |
8791 | it. Otherwise, allocate new space and move the literals. */ | |
8792 | insert_at = sec->reloc_count; | |
8793 | for (i = 0; i < sec->reloc_count; ++i) | |
8794 | { | |
8795 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
8796 | { | |
8797 | insert_at = i; | |
8798 | break; | |
8799 | } | |
8800 | } | |
8801 | ||
8802 | if (*internal_relocs_p != relax_info->allocated_relocs | |
8803 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
8804 | { | |
8805 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
8806 | || sec->reloc_count == relax_info->relocs_count); | |
8807 | ||
8808 | if (relax_info->allocated_relocs_count == 0) | |
8809 | new_relocs_count = (sec->reloc_count + 2) * 2; | |
8810 | else | |
8811 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
8812 | ||
8813 | new_relocs = (Elf_Internal_Rela *) | |
8814 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
8815 | if (!new_relocs) | |
8816 | return FALSE; | |
8817 | ||
8818 | /* We could handle this more quickly by finding the split point. */ | |
8819 | if (insert_at != 0) | |
8820 | memcpy (new_relocs, *internal_relocs_p, | |
8821 | insert_at * sizeof (Elf_Internal_Rela)); | |
8822 | ||
8823 | new_relocs[insert_at] = this_rela; | |
8824 | ||
8825 | if (insert_at != sec->reloc_count) | |
8826 | memcpy (new_relocs + insert_at + 1, | |
8827 | (*internal_relocs_p) + insert_at, | |
8828 | (sec->reloc_count - insert_at) | |
8829 | * sizeof (Elf_Internal_Rela)); | |
8830 | ||
8831 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
8832 | { | |
8833 | /* The first time we re-allocate, we can only free the | |
8834 | old relocs if they were allocated with bfd_malloc. | |
8835 | This is not true when keep_memory is in effect. */ | |
8836 | if (!link_info->keep_memory) | |
8837 | free (*internal_relocs_p); | |
8838 | } | |
8839 | else | |
8840 | free (*internal_relocs_p); | |
8841 | relax_info->allocated_relocs = new_relocs; | |
8842 | relax_info->allocated_relocs_count = new_relocs_count; | |
8843 | elf_section_data (sec)->relocs = new_relocs; | |
8844 | sec->reloc_count++; | |
8845 | relax_info->relocs_count = sec->reloc_count; | |
8846 | *internal_relocs_p = new_relocs; | |
8847 | } | |
8848 | else | |
8849 | { | |
8850 | if (insert_at != sec->reloc_count) | |
8851 | { | |
8852 | unsigned idx; | |
8853 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
8854 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
8855 | } | |
8856 | (*internal_relocs_p)[insert_at] = this_rela; | |
8857 | sec->reloc_count++; | |
8858 | if (relax_info->allocated_relocs) | |
8859 | relax_info->relocs_count = sec->reloc_count; | |
8860 | } | |
8861 | } | |
8862 | return TRUE; | |
8863 | } | |
8864 | ||
8865 | ||
e0001a05 NC |
8866 | /* This is similar to relax_section except that when a target is moved, |
8867 | we shift addresses up. We also need to modify the size. This | |
8868 | algorithm does NOT allow for relocations into the middle of the | |
8869 | property sections. */ | |
8870 | ||
43cd72b9 | 8871 | static bfd_boolean |
7fa3d080 BW |
8872 | relax_property_section (bfd *abfd, |
8873 | asection *sec, | |
8874 | struct bfd_link_info *link_info) | |
e0001a05 NC |
8875 | { |
8876 | Elf_Internal_Rela *internal_relocs; | |
8877 | bfd_byte *contents; | |
8878 | unsigned i, nexti; | |
8879 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
8880 | bfd_boolean is_full_prop_section; |
8881 | size_t last_zfill_target_offset = 0; | |
8882 | asection *last_zfill_target_sec = NULL; | |
8883 | bfd_size_type sec_size; | |
e0001a05 | 8884 | |
43cd72b9 | 8885 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8886 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8887 | link_info->keep_memory); | |
8888 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 8889 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8890 | { |
8891 | ok = FALSE; | |
8892 | goto error_return; | |
8893 | } | |
8894 | ||
43cd72b9 | 8895 | is_full_prop_section = |
0112cd26 NC |
8896 | ( CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) |
8897 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")); | |
43cd72b9 BW |
8898 | |
8899 | if (internal_relocs) | |
e0001a05 | 8900 | { |
43cd72b9 | 8901 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
8902 | { |
8903 | Elf_Internal_Rela *irel; | |
8904 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
8905 | unsigned r_type; |
8906 | asection *target_sec; | |
43cd72b9 BW |
8907 | literal_value val; |
8908 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
8909 | |
8910 | /* Locally change the source address. | |
8911 | Translate the target to the new target address. | |
8912 | If it points to this section and has been removed, MOVE IT. | |
8913 | Also, don't forget to modify the associated SIZE at | |
8914 | (offset + 4). */ | |
8915 | ||
8916 | irel = &internal_relocs[i]; | |
8917 | r_type = ELF32_R_TYPE (irel->r_info); | |
8918 | if (r_type == R_XTENSA_NONE) | |
8919 | continue; | |
8920 | ||
43cd72b9 BW |
8921 | /* Find the literal value. */ |
8922 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
8923 | size_p = &contents[irel->r_offset + 4]; | |
8924 | flags_p = NULL; | |
8925 | if (is_full_prop_section) | |
8926 | { | |
8927 | flags_p = &contents[irel->r_offset + 8]; | |
8928 | BFD_ASSERT (irel->r_offset + 12 <= sec_size); | |
8929 | } | |
8930 | else | |
8931 | BFD_ASSERT (irel->r_offset + 8 <= sec_size); | |
e0001a05 | 8932 | |
43cd72b9 | 8933 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
8934 | target_relax_info = get_xtensa_relax_info (target_sec); |
8935 | ||
8936 | if (target_relax_info | |
43cd72b9 BW |
8937 | && (target_relax_info->is_relaxable_literal_section |
8938 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
8939 | { |
8940 | /* Translate the relocation's destination. */ | |
43cd72b9 | 8941 | bfd_vma new_offset, new_end_offset; |
e0001a05 NC |
8942 | long old_size, new_size; |
8943 | ||
43cd72b9 BW |
8944 | new_offset = offset_with_removed_text |
8945 | (&target_relax_info->action_list, val.r_rel.target_offset); | |
e0001a05 NC |
8946 | |
8947 | /* Assert that we are not out of bounds. */ | |
43cd72b9 BW |
8948 | old_size = bfd_get_32 (abfd, size_p); |
8949 | ||
8950 | if (old_size == 0) | |
8951 | { | |
8952 | /* Only the first zero-sized unreachable entry is | |
8953 | allowed to expand. In this case the new offset | |
8954 | should be the offset before the fill and the new | |
8955 | size is the expansion size. For other zero-sized | |
8956 | entries the resulting size should be zero with an | |
8957 | offset before or after the fill address depending | |
8958 | on whether the expanding unreachable entry | |
8959 | preceeds it. */ | |
8960 | if (last_zfill_target_sec | |
8961 | && last_zfill_target_sec == target_sec | |
8962 | && last_zfill_target_offset == val.r_rel.target_offset) | |
8963 | new_end_offset = new_offset; | |
8964 | else | |
8965 | { | |
8966 | new_end_offset = new_offset; | |
8967 | new_offset = offset_with_removed_text_before_fill | |
8968 | (&target_relax_info->action_list, | |
8969 | val.r_rel.target_offset); | |
8970 | ||
8971 | /* If it is not unreachable and we have not yet | |
8972 | seen an unreachable at this address, place it | |
8973 | before the fill address. */ | |
8974 | if (!flags_p | |
8975 | || (bfd_get_32 (abfd, flags_p) | |
8976 | & XTENSA_PROP_UNREACHABLE) == 0) | |
8977 | new_end_offset = new_offset; | |
8978 | else | |
8979 | { | |
8980 | last_zfill_target_sec = target_sec; | |
8981 | last_zfill_target_offset = val.r_rel.target_offset; | |
8982 | } | |
8983 | } | |
8984 | } | |
8985 | else | |
8986 | { | |
8987 | new_end_offset = offset_with_removed_text_before_fill | |
8988 | (&target_relax_info->action_list, | |
8989 | val.r_rel.target_offset + old_size); | |
8990 | } | |
e0001a05 | 8991 | |
e0001a05 | 8992 | new_size = new_end_offset - new_offset; |
43cd72b9 | 8993 | |
e0001a05 NC |
8994 | if (new_size != old_size) |
8995 | { | |
8996 | bfd_put_32 (abfd, new_size, size_p); | |
8997 | pin_contents (sec, contents); | |
8998 | } | |
43cd72b9 BW |
8999 | |
9000 | if (new_offset != val.r_rel.target_offset) | |
e0001a05 | 9001 | { |
43cd72b9 | 9002 | bfd_vma diff = new_offset - val.r_rel.target_offset; |
e0001a05 NC |
9003 | irel->r_addend += diff; |
9004 | pin_internal_relocs (sec, internal_relocs); | |
9005 | } | |
9006 | } | |
9007 | } | |
9008 | } | |
9009 | ||
9010 | /* Combine adjacent property table entries. This is also done in | |
9011 | finish_dynamic_sections() but at that point it's too late to | |
9012 | reclaim the space in the output section, so we do this twice. */ | |
9013 | ||
43cd72b9 BW |
9014 | if (internal_relocs && (!link_info->relocatable |
9015 | || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0)) | |
e0001a05 NC |
9016 | { |
9017 | Elf_Internal_Rela *last_irel = NULL; | |
9018 | int removed_bytes = 0; | |
9019 | bfd_vma offset, last_irel_offset; | |
9020 | bfd_vma section_size; | |
43cd72b9 BW |
9021 | bfd_size_type entry_size; |
9022 | flagword predef_flags; | |
9023 | ||
9024 | if (is_full_prop_section) | |
9025 | entry_size = 12; | |
9026 | else | |
9027 | entry_size = 8; | |
9028 | ||
9029 | predef_flags = xtensa_get_property_predef_flags (sec); | |
e0001a05 NC |
9030 | |
9031 | /* Walk over memory and irels at the same time. | |
9032 | This REQUIRES that the internal_relocs be sorted by offset. */ | |
9033 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
9034 | internal_reloc_compare); | |
9035 | nexti = 0; /* Index into internal_relocs. */ | |
9036 | ||
9037 | pin_internal_relocs (sec, internal_relocs); | |
9038 | pin_contents (sec, contents); | |
9039 | ||
9040 | last_irel_offset = (bfd_vma) -1; | |
eea6121a | 9041 | section_size = sec->size; |
43cd72b9 | 9042 | BFD_ASSERT (section_size % entry_size == 0); |
e0001a05 | 9043 | |
43cd72b9 | 9044 | for (offset = 0; offset < section_size; offset += entry_size) |
e0001a05 NC |
9045 | { |
9046 | Elf_Internal_Rela *irel, *next_irel; | |
9047 | bfd_vma bytes_to_remove, size, actual_offset; | |
9048 | bfd_boolean remove_this_irel; | |
43cd72b9 | 9049 | flagword flags; |
e0001a05 NC |
9050 | |
9051 | irel = NULL; | |
9052 | next_irel = NULL; | |
9053 | ||
9054 | /* Find the next two relocations (if there are that many left), | |
9055 | skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is | |
9056 | the starting reloc index. After these two loops, "i" | |
9057 | is the index of the first non-NONE reloc past that starting | |
9058 | index, and "nexti" is the index for the next non-NONE reloc | |
9059 | after "i". */ | |
9060 | ||
9061 | for (i = nexti; i < sec->reloc_count; i++) | |
9062 | { | |
9063 | if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE) | |
9064 | { | |
9065 | irel = &internal_relocs[i]; | |
9066 | break; | |
9067 | } | |
9068 | internal_relocs[i].r_offset -= removed_bytes; | |
9069 | } | |
9070 | ||
9071 | for (nexti = i + 1; nexti < sec->reloc_count; nexti++) | |
9072 | { | |
9073 | if (ELF32_R_TYPE (internal_relocs[nexti].r_info) | |
9074 | != R_XTENSA_NONE) | |
9075 | { | |
9076 | next_irel = &internal_relocs[nexti]; | |
9077 | break; | |
9078 | } | |
9079 | internal_relocs[nexti].r_offset -= removed_bytes; | |
9080 | } | |
9081 | ||
9082 | remove_this_irel = FALSE; | |
9083 | bytes_to_remove = 0; | |
9084 | actual_offset = offset - removed_bytes; | |
9085 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
9086 | ||
43cd72b9 BW |
9087 | if (is_full_prop_section) |
9088 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); | |
9089 | else | |
9090 | flags = predef_flags; | |
9091 | ||
e0001a05 NC |
9092 | /* Check that the irels are sorted by offset, |
9093 | with only one per address. */ | |
9094 | BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset); | |
9095 | BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset); | |
9096 | ||
43cd72b9 BW |
9097 | /* Make sure there aren't relocs on the size or flag fields. */ |
9098 | if ((irel && irel->r_offset == offset + 4) | |
9099 | || (is_full_prop_section | |
9100 | && irel && irel->r_offset == offset + 8)) | |
e0001a05 NC |
9101 | { |
9102 | irel->r_offset -= removed_bytes; | |
9103 | last_irel_offset = irel->r_offset; | |
9104 | } | |
43cd72b9 BW |
9105 | else if (next_irel && (next_irel->r_offset == offset + 4 |
9106 | || (is_full_prop_section | |
9107 | && next_irel->r_offset == offset + 8))) | |
e0001a05 NC |
9108 | { |
9109 | nexti += 1; | |
9110 | irel->r_offset -= removed_bytes; | |
9111 | next_irel->r_offset -= removed_bytes; | |
9112 | last_irel_offset = next_irel->r_offset; | |
9113 | } | |
43cd72b9 BW |
9114 | else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0 |
9115 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 9116 | { |
43cd72b9 BW |
9117 | /* Always remove entries with zero size and no alignment. */ |
9118 | bytes_to_remove = entry_size; | |
e0001a05 NC |
9119 | if (irel && irel->r_offset == offset) |
9120 | { | |
9121 | remove_this_irel = TRUE; | |
9122 | ||
9123 | irel->r_offset -= removed_bytes; | |
9124 | last_irel_offset = irel->r_offset; | |
9125 | } | |
9126 | } | |
9127 | else if (irel && irel->r_offset == offset) | |
9128 | { | |
9129 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32) | |
9130 | { | |
9131 | if (last_irel) | |
9132 | { | |
43cd72b9 BW |
9133 | flagword old_flags; |
9134 | bfd_vma old_size = | |
e0001a05 | 9135 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); |
43cd72b9 BW |
9136 | bfd_vma old_address = |
9137 | (last_irel->r_addend | |
e0001a05 | 9138 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); |
43cd72b9 BW |
9139 | bfd_vma new_address = |
9140 | (irel->r_addend | |
e0001a05 | 9141 | + bfd_get_32 (abfd, &contents[actual_offset])); |
43cd72b9 BW |
9142 | if (is_full_prop_section) |
9143 | old_flags = bfd_get_32 | |
9144 | (abfd, &contents[last_irel->r_offset + 8]); | |
9145 | else | |
9146 | old_flags = predef_flags; | |
9147 | ||
9148 | if ((ELF32_R_SYM (irel->r_info) | |
9149 | == ELF32_R_SYM (last_irel->r_info)) | |
9150 | && old_address + old_size == new_address | |
9151 | && old_flags == flags | |
9152 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
9153 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 9154 | { |
43cd72b9 | 9155 | /* Fix the old size. */ |
e0001a05 NC |
9156 | bfd_put_32 (abfd, old_size + size, |
9157 | &contents[last_irel->r_offset + 4]); | |
43cd72b9 | 9158 | bytes_to_remove = entry_size; |
e0001a05 NC |
9159 | remove_this_irel = TRUE; |
9160 | } | |
9161 | else | |
9162 | last_irel = irel; | |
9163 | } | |
9164 | else | |
9165 | last_irel = irel; | |
9166 | } | |
9167 | ||
9168 | irel->r_offset -= removed_bytes; | |
9169 | last_irel_offset = irel->r_offset; | |
9170 | } | |
9171 | ||
9172 | if (remove_this_irel) | |
9173 | { | |
9174 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
9175 | irel->r_offset -= bytes_to_remove; | |
9176 | } | |
9177 | ||
9178 | if (bytes_to_remove != 0) | |
9179 | { | |
9180 | removed_bytes += bytes_to_remove; | |
43cd72b9 | 9181 | if (offset + bytes_to_remove < section_size) |
e0001a05 | 9182 | memmove (&contents[actual_offset], |
43cd72b9 BW |
9183 | &contents[actual_offset + bytes_to_remove], |
9184 | section_size - offset - bytes_to_remove); | |
e0001a05 NC |
9185 | } |
9186 | } | |
9187 | ||
43cd72b9 | 9188 | if (removed_bytes) |
e0001a05 NC |
9189 | { |
9190 | /* Clear the removed bytes. */ | |
9191 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
9192 | ||
eea6121a | 9193 | sec->size = section_size - removed_bytes; |
e901de89 BW |
9194 | |
9195 | if (xtensa_is_littable_section (sec)) | |
9196 | { | |
f0e6fdb2 BW |
9197 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
9198 | if (sgotloc) | |
9199 | sgotloc->size -= removed_bytes; | |
e901de89 | 9200 | } |
e0001a05 NC |
9201 | } |
9202 | } | |
e901de89 | 9203 | |
e0001a05 NC |
9204 | error_return: |
9205 | release_internal_relocs (sec, internal_relocs); | |
9206 | release_contents (sec, contents); | |
9207 | return ok; | |
9208 | } | |
9209 | ||
9210 | \f | |
9211 | /* Third relaxation pass. */ | |
9212 | ||
9213 | /* Change symbol values to account for removed literals. */ | |
9214 | ||
43cd72b9 | 9215 | bfd_boolean |
7fa3d080 | 9216 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
9217 | { |
9218 | xtensa_relax_info *relax_info; | |
9219 | unsigned int sec_shndx; | |
9220 | Elf_Internal_Shdr *symtab_hdr; | |
9221 | Elf_Internal_Sym *isymbuf; | |
9222 | unsigned i, num_syms, num_locals; | |
9223 | ||
9224 | relax_info = get_xtensa_relax_info (sec); | |
9225 | BFD_ASSERT (relax_info); | |
9226 | ||
43cd72b9 BW |
9227 | if (!relax_info->is_relaxable_literal_section |
9228 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
9229 | return TRUE; |
9230 | ||
9231 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
9232 | ||
9233 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9234 | isymbuf = retrieve_local_syms (abfd); | |
9235 | ||
9236 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
9237 | num_locals = symtab_hdr->sh_info; | |
9238 | ||
9239 | /* Adjust the local symbols defined in this section. */ | |
9240 | for (i = 0; i < num_locals; i++) | |
9241 | { | |
9242 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
9243 | ||
9244 | if (isym->st_shndx == sec_shndx) | |
9245 | { | |
43cd72b9 BW |
9246 | bfd_vma new_address = offset_with_removed_text |
9247 | (&relax_info->action_list, isym->st_value); | |
9248 | bfd_vma new_size = isym->st_size; | |
9249 | ||
9250 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) | |
9251 | { | |
9252 | bfd_vma new_end = offset_with_removed_text | |
9253 | (&relax_info->action_list, isym->st_value + isym->st_size); | |
9254 | new_size = new_end - new_address; | |
9255 | } | |
9256 | ||
9257 | isym->st_value = new_address; | |
9258 | isym->st_size = new_size; | |
e0001a05 NC |
9259 | } |
9260 | } | |
9261 | ||
9262 | /* Now adjust the global symbols defined in this section. */ | |
9263 | for (i = 0; i < (num_syms - num_locals); i++) | |
9264 | { | |
9265 | struct elf_link_hash_entry *sym_hash; | |
9266 | ||
9267 | sym_hash = elf_sym_hashes (abfd)[i]; | |
9268 | ||
9269 | if (sym_hash->root.type == bfd_link_hash_warning) | |
9270 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
9271 | ||
9272 | if ((sym_hash->root.type == bfd_link_hash_defined | |
9273 | || sym_hash->root.type == bfd_link_hash_defweak) | |
9274 | && sym_hash->root.u.def.section == sec) | |
9275 | { | |
43cd72b9 BW |
9276 | bfd_vma new_address = offset_with_removed_text |
9277 | (&relax_info->action_list, sym_hash->root.u.def.value); | |
9278 | bfd_vma new_size = sym_hash->size; | |
9279 | ||
9280 | if (sym_hash->type == STT_FUNC) | |
9281 | { | |
9282 | bfd_vma new_end = offset_with_removed_text | |
9283 | (&relax_info->action_list, | |
9284 | sym_hash->root.u.def.value + sym_hash->size); | |
9285 | new_size = new_end - new_address; | |
9286 | } | |
9287 | ||
9288 | sym_hash->root.u.def.value = new_address; | |
9289 | sym_hash->size = new_size; | |
e0001a05 NC |
9290 | } |
9291 | } | |
9292 | ||
9293 | return TRUE; | |
9294 | } | |
9295 | ||
9296 | \f | |
9297 | /* "Fix" handling functions, called while performing relocations. */ | |
9298 | ||
43cd72b9 | 9299 | static bfd_boolean |
7fa3d080 BW |
9300 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
9301 | bfd *input_bfd, | |
9302 | asection *input_section, | |
9303 | bfd_byte *contents) | |
e0001a05 NC |
9304 | { |
9305 | r_reloc r_rel; | |
9306 | asection *sec, *old_sec; | |
9307 | bfd_vma old_offset; | |
9308 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
9309 | reloc_bfd_fix *fix; |
9310 | ||
9311 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 9312 | return TRUE; |
e0001a05 | 9313 | |
43cd72b9 BW |
9314 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9315 | if (!fix) | |
9316 | return TRUE; | |
e0001a05 | 9317 | |
43cd72b9 BW |
9318 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
9319 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 9320 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
9321 | old_offset = r_rel.target_offset; |
9322 | ||
9323 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 9324 | { |
43cd72b9 BW |
9325 | if (r_type != R_XTENSA_ASM_EXPAND) |
9326 | { | |
9327 | (*_bfd_error_handler) | |
9328 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
9329 | input_bfd, input_section, rel->r_offset, | |
9330 | elf_howto_table[r_type].name); | |
9331 | return FALSE; | |
9332 | } | |
e0001a05 NC |
9333 | /* Leave it be. Resolution will happen in a later stage. */ |
9334 | } | |
9335 | else | |
9336 | { | |
9337 | sec = fix->target_sec; | |
9338 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
9339 | - (old_sec->output_offset + old_offset)); | |
9340 | } | |
43cd72b9 | 9341 | return TRUE; |
e0001a05 NC |
9342 | } |
9343 | ||
9344 | ||
9345 | static void | |
7fa3d080 BW |
9346 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
9347 | bfd *input_bfd, | |
9348 | asection *input_section, | |
9349 | bfd_byte *contents, | |
9350 | bfd_vma *relocationp) | |
e0001a05 NC |
9351 | { |
9352 | asection *sec; | |
9353 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 9354 | reloc_bfd_fix *fix; |
43cd72b9 | 9355 | bfd_vma fixup_diff; |
e0001a05 NC |
9356 | |
9357 | if (r_type == R_XTENSA_NONE) | |
9358 | return; | |
9359 | ||
43cd72b9 BW |
9360 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9361 | if (!fix) | |
e0001a05 NC |
9362 | return; |
9363 | ||
9364 | sec = fix->target_sec; | |
43cd72b9 BW |
9365 | |
9366 | fixup_diff = rel->r_addend; | |
9367 | if (elf_howto_table[fix->src_type].partial_inplace) | |
9368 | { | |
9369 | bfd_vma inplace_val; | |
9370 | BFD_ASSERT (fix->src_offset | |
9371 | < bfd_get_section_limit (input_bfd, input_section)); | |
9372 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
9373 | fixup_diff += inplace_val; | |
9374 | } | |
9375 | ||
e0001a05 NC |
9376 | *relocationp = (sec->output_section->vma |
9377 | + sec->output_offset | |
43cd72b9 | 9378 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
9379 | } |
9380 | ||
9381 | \f | |
9382 | /* Miscellaneous utility functions.... */ | |
9383 | ||
9384 | static asection * | |
f0e6fdb2 | 9385 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 9386 | { |
f0e6fdb2 BW |
9387 | struct elf_xtensa_link_hash_table *htab; |
9388 | bfd *dynobj; | |
e0001a05 NC |
9389 | char plt_name[10]; |
9390 | ||
9391 | if (chunk == 0) | |
f0e6fdb2 BW |
9392 | { |
9393 | htab = elf_xtensa_hash_table (info); | |
9394 | return htab->splt; | |
9395 | } | |
e0001a05 | 9396 | |
f0e6fdb2 | 9397 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
9398 | sprintf (plt_name, ".plt.%u", chunk); |
9399 | return bfd_get_section_by_name (dynobj, plt_name); | |
9400 | } | |
9401 | ||
9402 | ||
9403 | static asection * | |
f0e6fdb2 | 9404 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 9405 | { |
f0e6fdb2 BW |
9406 | struct elf_xtensa_link_hash_table *htab; |
9407 | bfd *dynobj; | |
e0001a05 NC |
9408 | char got_name[14]; |
9409 | ||
9410 | if (chunk == 0) | |
f0e6fdb2 BW |
9411 | { |
9412 | htab = elf_xtensa_hash_table (info); | |
9413 | return htab->sgotplt; | |
9414 | } | |
e0001a05 | 9415 | |
f0e6fdb2 | 9416 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
9417 | sprintf (got_name, ".got.plt.%u", chunk); |
9418 | return bfd_get_section_by_name (dynobj, got_name); | |
9419 | } | |
9420 | ||
9421 | ||
9422 | /* Get the input section for a given symbol index. | |
9423 | If the symbol is: | |
9424 | . a section symbol, return the section; | |
9425 | . a common symbol, return the common section; | |
9426 | . an undefined symbol, return the undefined section; | |
9427 | . an indirect symbol, follow the links; | |
9428 | . an absolute value, return the absolute section. */ | |
9429 | ||
9430 | static asection * | |
7fa3d080 | 9431 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9432 | { |
9433 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9434 | asection *target_sec = NULL; | |
43cd72b9 | 9435 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9436 | { |
9437 | Elf_Internal_Sym *isymbuf; | |
9438 | unsigned int section_index; | |
9439 | ||
9440 | isymbuf = retrieve_local_syms (abfd); | |
9441 | section_index = isymbuf[r_symndx].st_shndx; | |
9442 | ||
9443 | if (section_index == SHN_UNDEF) | |
9444 | target_sec = bfd_und_section_ptr; | |
9445 | else if (section_index > 0 && section_index < SHN_LORESERVE) | |
9446 | target_sec = bfd_section_from_elf_index (abfd, section_index); | |
9447 | else if (section_index == SHN_ABS) | |
9448 | target_sec = bfd_abs_section_ptr; | |
9449 | else if (section_index == SHN_COMMON) | |
9450 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 9451 | else |
e0001a05 NC |
9452 | /* Who knows? */ |
9453 | target_sec = NULL; | |
9454 | } | |
9455 | else | |
9456 | { | |
9457 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9458 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
9459 | ||
9460 | while (h->root.type == bfd_link_hash_indirect | |
9461 | || h->root.type == bfd_link_hash_warning) | |
9462 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9463 | ||
9464 | switch (h->root.type) | |
9465 | { | |
9466 | case bfd_link_hash_defined: | |
9467 | case bfd_link_hash_defweak: | |
9468 | target_sec = h->root.u.def.section; | |
9469 | break; | |
9470 | case bfd_link_hash_common: | |
9471 | target_sec = bfd_com_section_ptr; | |
9472 | break; | |
9473 | case bfd_link_hash_undefined: | |
9474 | case bfd_link_hash_undefweak: | |
9475 | target_sec = bfd_und_section_ptr; | |
9476 | break; | |
9477 | default: /* New indirect warning. */ | |
9478 | target_sec = bfd_und_section_ptr; | |
9479 | break; | |
9480 | } | |
9481 | } | |
9482 | return target_sec; | |
9483 | } | |
9484 | ||
9485 | ||
9486 | static struct elf_link_hash_entry * | |
7fa3d080 | 9487 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9488 | { |
9489 | unsigned long indx; | |
9490 | struct elf_link_hash_entry *h; | |
9491 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9492 | ||
9493 | if (r_symndx < symtab_hdr->sh_info) | |
9494 | return NULL; | |
43cd72b9 | 9495 | |
e0001a05 NC |
9496 | indx = r_symndx - symtab_hdr->sh_info; |
9497 | h = elf_sym_hashes (abfd)[indx]; | |
9498 | while (h->root.type == bfd_link_hash_indirect | |
9499 | || h->root.type == bfd_link_hash_warning) | |
9500 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9501 | return h; | |
9502 | } | |
9503 | ||
9504 | ||
9505 | /* Get the section-relative offset for a symbol number. */ | |
9506 | ||
9507 | static bfd_vma | |
7fa3d080 | 9508 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9509 | { |
9510 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9511 | bfd_vma offset = 0; | |
9512 | ||
43cd72b9 | 9513 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9514 | { |
9515 | Elf_Internal_Sym *isymbuf; | |
9516 | isymbuf = retrieve_local_syms (abfd); | |
9517 | offset = isymbuf[r_symndx].st_value; | |
9518 | } | |
9519 | else | |
9520 | { | |
9521 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9522 | struct elf_link_hash_entry *h = | |
9523 | elf_sym_hashes (abfd)[indx]; | |
9524 | ||
9525 | while (h->root.type == bfd_link_hash_indirect | |
9526 | || h->root.type == bfd_link_hash_warning) | |
9527 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9528 | if (h->root.type == bfd_link_hash_defined | |
9529 | || h->root.type == bfd_link_hash_defweak) | |
9530 | offset = h->root.u.def.value; | |
9531 | } | |
9532 | return offset; | |
9533 | } | |
9534 | ||
9535 | ||
9536 | static bfd_boolean | |
7fa3d080 | 9537 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
9538 | { |
9539 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
9540 | struct elf_link_hash_entry *h; | |
9541 | ||
9542 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
9543 | if (h && h->root.type == bfd_link_hash_defweak) | |
9544 | return TRUE; | |
9545 | return FALSE; | |
9546 | } | |
9547 | ||
9548 | ||
9549 | static bfd_boolean | |
7fa3d080 BW |
9550 | pcrel_reloc_fits (xtensa_opcode opc, |
9551 | int opnd, | |
9552 | bfd_vma self_address, | |
9553 | bfd_vma dest_address) | |
e0001a05 | 9554 | { |
43cd72b9 BW |
9555 | xtensa_isa isa = xtensa_default_isa; |
9556 | uint32 valp = dest_address; | |
9557 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
9558 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
9559 | return FALSE; | |
9560 | return TRUE; | |
e0001a05 NC |
9561 | } |
9562 | ||
9563 | ||
b614a702 | 9564 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
b614a702 | 9565 | |
e0001a05 | 9566 | static bfd_boolean |
7fa3d080 | 9567 | xtensa_is_property_section (asection *sec) |
e0001a05 | 9568 | { |
0112cd26 NC |
9569 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) |
9570 | || CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) | |
9571 | || CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)) | |
b614a702 | 9572 | return TRUE; |
e901de89 | 9573 | |
b614a702 | 9574 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
0112cd26 NC |
9575 | && (CONST_STRNEQ (&sec->name[linkonce_len], "x.") |
9576 | || CONST_STRNEQ (&sec->name[linkonce_len], "p.") | |
9577 | || CONST_STRNEQ (&sec->name[linkonce_len], "prop."))) | |
e901de89 BW |
9578 | return TRUE; |
9579 | ||
e901de89 BW |
9580 | return FALSE; |
9581 | } | |
9582 | ||
9583 | ||
9584 | static bfd_boolean | |
7fa3d080 | 9585 | xtensa_is_littable_section (asection *sec) |
e901de89 | 9586 | { |
0112cd26 | 9587 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)) |
b614a702 | 9588 | return TRUE; |
e901de89 | 9589 | |
b614a702 BW |
9590 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
9591 | && sec->name[linkonce_len] == 'p' | |
9592 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 | 9593 | return TRUE; |
e0001a05 | 9594 | |
e901de89 | 9595 | return FALSE; |
e0001a05 NC |
9596 | } |
9597 | ||
9598 | ||
43cd72b9 | 9599 | static int |
7fa3d080 | 9600 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 9601 | { |
43cd72b9 BW |
9602 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
9603 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9604 | ||
9605 | if (a->r_offset != b->r_offset) | |
9606 | return (a->r_offset - b->r_offset); | |
9607 | ||
9608 | /* We don't need to sort on these criteria for correctness, | |
9609 | but enforcing a more strict ordering prevents unstable qsort | |
9610 | from behaving differently with different implementations. | |
9611 | Without the code below we get correct but different results | |
9612 | on Solaris 2.7 and 2.8. We would like to always produce the | |
9613 | same results no matter the host. */ | |
9614 | ||
9615 | if (a->r_info != b->r_info) | |
9616 | return (a->r_info - b->r_info); | |
9617 | ||
9618 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
9619 | } |
9620 | ||
9621 | ||
9622 | static int | |
7fa3d080 | 9623 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
9624 | { |
9625 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
9626 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9627 | ||
43cd72b9 BW |
9628 | /* Check if one entry overlaps with the other; this shouldn't happen |
9629 | except when searching for a match. */ | |
e0001a05 NC |
9630 | return (a->r_offset - b->r_offset); |
9631 | } | |
9632 | ||
9633 | ||
74869ac7 BW |
9634 | /* Predicate function used to look up a section in a particular group. */ |
9635 | ||
9636 | static bfd_boolean | |
9637 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
9638 | { | |
9639 | const char *gname = inf; | |
9640 | const char *group_name = elf_group_name (sec); | |
9641 | ||
9642 | return (group_name == gname | |
9643 | || (group_name != NULL | |
9644 | && gname != NULL | |
9645 | && strcmp (group_name, gname) == 0)); | |
9646 | } | |
9647 | ||
9648 | ||
9649 | asection * | |
9650 | xtensa_get_property_section (asection *sec, const char *base_name) | |
e0001a05 | 9651 | { |
74869ac7 BW |
9652 | const char *suffix, *group_name; |
9653 | char *prop_sec_name; | |
9654 | asection *prop_sec; | |
9655 | ||
9656 | group_name = elf_group_name (sec); | |
9657 | if (group_name) | |
9658 | { | |
9659 | suffix = strrchr (sec->name, '.'); | |
9660 | if (suffix == sec->name) | |
9661 | suffix = 0; | |
9662 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
9663 | + (suffix ? strlen (suffix) : 0)); | |
9664 | strcpy (prop_sec_name, base_name); | |
9665 | if (suffix) | |
9666 | strcat (prop_sec_name, suffix); | |
9667 | } | |
9668 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 9669 | { |
43cd72b9 | 9670 | char *linkonce_kind = 0; |
b614a702 BW |
9671 | |
9672 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
7db48a12 | 9673 | linkonce_kind = "x."; |
b614a702 | 9674 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 9675 | linkonce_kind = "p."; |
43cd72b9 BW |
9676 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
9677 | linkonce_kind = "prop."; | |
e0001a05 | 9678 | else |
b614a702 BW |
9679 | abort (); |
9680 | ||
43cd72b9 BW |
9681 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
9682 | + strlen (linkonce_kind) + 1); | |
b614a702 | 9683 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 9684 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
9685 | |
9686 | suffix = sec->name + linkonce_len; | |
096c35a7 | 9687 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 9688 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 9689 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
9690 | suffix += 2; |
9691 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
9692 | } |
9693 | else | |
9694 | prop_sec_name = strdup (base_name); | |
9695 | ||
9696 | /* Check if the section already exists. */ | |
9697 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
9698 | match_section_group, | |
9699 | (void *) group_name); | |
9700 | /* If not, create it. */ | |
9701 | if (! prop_sec) | |
9702 | { | |
9703 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
9704 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
9705 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
9706 | ||
9707 | prop_sec = bfd_make_section_anyway_with_flags | |
9708 | (sec->owner, strdup (prop_sec_name), flags); | |
9709 | if (! prop_sec) | |
9710 | return 0; | |
b614a702 | 9711 | |
74869ac7 | 9712 | elf_group_name (prop_sec) = group_name; |
e0001a05 NC |
9713 | } |
9714 | ||
74869ac7 BW |
9715 | free (prop_sec_name); |
9716 | return prop_sec; | |
e0001a05 NC |
9717 | } |
9718 | ||
43cd72b9 BW |
9719 | |
9720 | flagword | |
7fa3d080 | 9721 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 9722 | { |
0112cd26 NC |
9723 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) |
9724 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
43cd72b9 BW |
9725 | return (XTENSA_PROP_INSN |
9726 | | XTENSA_PROP_INSN_NO_TRANSFORM | |
9727 | | XTENSA_PROP_INSN_NO_REORDER); | |
9728 | ||
9729 | if (xtensa_is_littable_section (sec)) | |
9730 | return (XTENSA_PROP_LITERAL | |
9731 | | XTENSA_PROP_INSN_NO_TRANSFORM | |
9732 | | XTENSA_PROP_INSN_NO_REORDER); | |
9733 | ||
9734 | return 0; | |
9735 | } | |
9736 | ||
e0001a05 NC |
9737 | \f |
9738 | /* Other functions called directly by the linker. */ | |
9739 | ||
9740 | bfd_boolean | |
7fa3d080 BW |
9741 | xtensa_callback_required_dependence (bfd *abfd, |
9742 | asection *sec, | |
9743 | struct bfd_link_info *link_info, | |
9744 | deps_callback_t callback, | |
9745 | void *closure) | |
e0001a05 NC |
9746 | { |
9747 | Elf_Internal_Rela *internal_relocs; | |
9748 | bfd_byte *contents; | |
9749 | unsigned i; | |
9750 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
9751 | bfd_size_type sec_size; |
9752 | ||
9753 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
9754 | |
9755 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
9756 | instructions that reference the corresponding ".got.plt*" sections. */ | |
9757 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 9758 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
9759 | { |
9760 | asection *sgotplt; | |
9761 | ||
9762 | /* Find the corresponding ".got.plt*" section. */ | |
9763 | if (sec->name[4] == '\0') | |
9764 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
9765 | else | |
9766 | { | |
9767 | char got_name[14]; | |
9768 | int chunk = 0; | |
9769 | ||
9770 | BFD_ASSERT (sec->name[4] == '.'); | |
9771 | chunk = strtol (&sec->name[5], NULL, 10); | |
9772 | ||
9773 | sprintf (got_name, ".got.plt.%u", chunk); | |
9774 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
9775 | } | |
9776 | BFD_ASSERT (sgotplt); | |
9777 | ||
9778 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
9779 | section referencing a literal at the very beginning of | |
9780 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 9781 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
9782 | } |
9783 | ||
9784 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
9785 | link_info->keep_memory); | |
9786 | if (internal_relocs == NULL | |
43cd72b9 | 9787 | || sec->reloc_count == 0) |
e0001a05 NC |
9788 | return ok; |
9789 | ||
9790 | /* Cache the contents for the duration of this scan. */ | |
9791 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9792 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9793 | { |
9794 | ok = FALSE; | |
9795 | goto error_return; | |
9796 | } | |
9797 | ||
43cd72b9 BW |
9798 | if (!xtensa_default_isa) |
9799 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 9800 | |
43cd72b9 | 9801 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9802 | { |
9803 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 9804 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
9805 | { |
9806 | r_reloc l32r_rel; | |
9807 | asection *target_sec; | |
9808 | bfd_vma target_offset; | |
43cd72b9 BW |
9809 | |
9810 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
9811 | target_sec = NULL; |
9812 | target_offset = 0; | |
9813 | /* L32Rs must be local to the input file. */ | |
9814 | if (r_reloc_is_defined (&l32r_rel)) | |
9815 | { | |
9816 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 9817 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
9818 | } |
9819 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
9820 | closure); | |
9821 | } | |
9822 | } | |
9823 | ||
9824 | error_return: | |
9825 | release_internal_relocs (sec, internal_relocs); | |
9826 | release_contents (sec, contents); | |
9827 | return ok; | |
9828 | } | |
9829 | ||
2f89ff8d L |
9830 | /* The default literal sections should always be marked as "code" (i.e., |
9831 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
9832 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 9833 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 9834 | { |
0112cd26 NC |
9835 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
9836 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
9837 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 9838 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 9839 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 9840 | }; |
e0001a05 NC |
9841 | \f |
9842 | #ifndef ELF_ARCH | |
9843 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
9844 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
9845 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
9846 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
9847 | #define ELF_ARCH bfd_arch_xtensa | |
9848 | ||
4af0a1d8 BW |
9849 | #define ELF_MACHINE_CODE EM_XTENSA |
9850 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
9851 | |
9852 | #if XCHAL_HAVE_MMU | |
9853 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
9854 | #else /* !XCHAL_HAVE_MMU */ | |
9855 | #define ELF_MAXPAGESIZE 1 | |
9856 | #endif /* !XCHAL_HAVE_MMU */ | |
9857 | #endif /* ELF_ARCH */ | |
9858 | ||
9859 | #define elf_backend_can_gc_sections 1 | |
9860 | #define elf_backend_can_refcount 1 | |
9861 | #define elf_backend_plt_readonly 1 | |
9862 | #define elf_backend_got_header_size 4 | |
9863 | #define elf_backend_want_dynbss 0 | |
9864 | #define elf_backend_want_got_plt 1 | |
9865 | ||
9866 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
9867 | ||
e0001a05 NC |
9868 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
9869 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
9870 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
9871 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
9872 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
9873 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags | |
f0e6fdb2 | 9874 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
9875 | |
9876 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
9877 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
9878 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
9879 | #define elf_backend_discard_info elf_xtensa_discard_info | |
9880 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
9881 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
9882 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
9883 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
9884 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
9885 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
9886 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
9887 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
9888 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol | |
e0001a05 NC |
9889 | #define elf_backend_object_p elf_xtensa_object_p |
9890 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
9891 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
9892 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
74541ad4 AM |
9893 | #define elf_backend_omit_section_dynsym \ |
9894 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 9895 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 9896 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
e0001a05 NC |
9897 | |
9898 | #include "elf32-target.h" |