]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
515ef31d | 2 | Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 8 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
9 | License, or (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 | 20 | |
e0001a05 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
e0001a05 | 23 | |
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
31 | #include "xtensa-isa.h" | |
32 | #include "xtensa-config.h" | |
33 | ||
43cd72b9 BW |
34 | #define XTENSA_NO_NOP_REMOVAL 0 |
35 | ||
e0001a05 NC |
36 | /* Local helper functions. */ |
37 | ||
f0e6fdb2 | 38 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 39 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 40 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 41 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 42 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 43 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 44 | static void do_fix_for_final_link |
7fa3d080 | 45 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
46 | |
47 | /* Local functions to handle Xtensa configurability. */ | |
48 | ||
7fa3d080 BW |
49 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
50 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
51 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
52 | static xtensa_opcode get_const16_opcode (void); | |
53 | static xtensa_opcode get_l32r_opcode (void); | |
54 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
55 | static int get_relocation_opnd (xtensa_opcode, int); | |
56 | static int get_relocation_slot (int); | |
e0001a05 | 57 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 58 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 59 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
60 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
61 | static bfd_boolean is_alt_relocation (int); | |
62 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 63 | static bfd_size_type insn_decode_len |
7fa3d080 | 64 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 65 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 66 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 67 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 68 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 69 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
70 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
71 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 72 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 73 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
74 | |
75 | /* Functions for link-time code simplifications. */ | |
76 | ||
43cd72b9 | 77 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 78 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 79 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
80 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
81 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
82 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
83 | |
84 | /* Access to internal relocations, section contents and symbols. */ | |
85 | ||
86 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
87 | (bfd *, asection *, bfd_boolean); |
88 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
89 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
91 | static void pin_contents (asection *, bfd_byte *); | |
92 | static void release_contents (asection *, bfd_byte *); | |
93 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
94 | |
95 | /* Miscellaneous utility functions. */ | |
96 | ||
f0e6fdb2 BW |
97 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
98 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 99 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 100 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
101 | (bfd *, unsigned long); |
102 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
103 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
104 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
105 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 106 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 107 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 108 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
109 | static int internal_reloc_compare (const void *, const void *); |
110 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 BW |
111 | static asection *xtensa_get_property_section (asection *, const char *); |
112 | extern asection *xtensa_make_property_section (asection *, const char *); | |
7fa3d080 | 113 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
114 | |
115 | /* Other functions called directly by the linker. */ | |
116 | ||
117 | typedef void (*deps_callback_t) | |
7fa3d080 | 118 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 119 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 120 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
121 | |
122 | ||
43cd72b9 BW |
123 | /* Globally visible flag for choosing size optimization of NOP removal |
124 | instead of branch-target-aware minimization for NOP removal. | |
125 | When nonzero, narrow all instructions and remove all NOPs possible | |
126 | around longcall expansions. */ | |
7fa3d080 | 127 | |
43cd72b9 BW |
128 | int elf32xtensa_size_opt; |
129 | ||
130 | ||
131 | /* The "new_section_hook" is used to set up a per-section | |
132 | "xtensa_relax_info" data structure with additional information used | |
133 | during relaxation. */ | |
e0001a05 | 134 | |
7fa3d080 | 135 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 136 | |
43cd72b9 | 137 | |
43cd72b9 BW |
138 | /* The GNU tools do not easily allow extending interfaces to pass around |
139 | the pointer to the Xtensa ISA information, so instead we add a global | |
140 | variable here (in BFD) that can be used by any of the tools that need | |
141 | this information. */ | |
142 | ||
143 | xtensa_isa xtensa_default_isa; | |
144 | ||
145 | ||
e0001a05 NC |
146 | /* When this is true, relocations may have been modified to refer to |
147 | symbols from other input files. The per-section list of "fix" | |
148 | records needs to be checked when resolving relocations. */ | |
149 | ||
150 | static bfd_boolean relaxing_section = FALSE; | |
151 | ||
43cd72b9 BW |
152 | /* When this is true, during final links, literals that cannot be |
153 | coalesced and their relocations may be moved to other sections. */ | |
154 | ||
155 | int elf32xtensa_no_literal_movement = 1; | |
156 | ||
e0001a05 NC |
157 | \f |
158 | static reloc_howto_type elf_howto_table[] = | |
159 | { | |
160 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
161 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
e5f131d1 | 162 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
163 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
164 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
165 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 166 | |
e0001a05 NC |
167 | /* Replace a 32-bit value with a value from the runtime linker (only |
168 | used by linker-generated stub functions). The r_addend value is | |
169 | special: 1 means to substitute a pointer to the runtime linker's | |
170 | dynamic resolver function; 2 means to substitute the link map for | |
171 | the shared object. */ | |
172 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
173 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
174 | ||
e0001a05 NC |
175 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
176 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 177 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
178 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
179 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 180 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
181 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
182 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 183 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
184 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
185 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
186 | FALSE, 0, 0xffffffff, FALSE), |
187 | ||
e0001a05 | 188 | EMPTY_HOWTO (7), |
e5f131d1 BW |
189 | |
190 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 191 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 192 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 193 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 194 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 195 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
196 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
197 | ||
e0001a05 NC |
198 | /* Assembly auto-expansion. */ |
199 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 200 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
201 | /* Relax assembly auto-expansion. */ |
202 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
203 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
204 | ||
e0001a05 | 205 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
206 | |
207 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
208 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
209 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 210 | |
e0001a05 NC |
211 | /* GNU extension to record C++ vtable hierarchy. */ |
212 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
213 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
e5f131d1 | 214 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
215 | /* GNU extension to record C++ vtable member usage. */ |
216 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
217 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
e5f131d1 | 218 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
219 | |
220 | /* Relocations for supporting difference of symbols. */ | |
221 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
e5f131d1 | 222 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
43cd72b9 | 223 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 224 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
43cd72b9 | 225 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 226 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
227 | |
228 | /* General immediate operand relocations. */ | |
229 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 230 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 231 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 232 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 233 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 234 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 235 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 236 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 237 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 238 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 239 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 240 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 241 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 242 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 243 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 244 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 245 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 246 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 247 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 248 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 249 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 250 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 251 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 252 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 253 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 254 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 255 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 256 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 257 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 258 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
259 | |
260 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
261 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 262 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 263 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 264 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 265 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 266 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 267 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 269 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 270 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 271 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 273 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 274 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 275 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 276 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 277 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 279 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 280 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 281 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 283 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 285 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 286 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 287 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 289 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
e0001a05 NC |
291 | }; |
292 | ||
43cd72b9 | 293 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
294 | #define TRACE(str) \ |
295 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
296 | #else | |
297 | #define TRACE(str) | |
298 | #endif | |
299 | ||
300 | static reloc_howto_type * | |
7fa3d080 BW |
301 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
302 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
303 | { |
304 | switch (code) | |
305 | { | |
306 | case BFD_RELOC_NONE: | |
307 | TRACE ("BFD_RELOC_NONE"); | |
308 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
309 | ||
310 | case BFD_RELOC_32: | |
311 | TRACE ("BFD_RELOC_32"); | |
312 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
313 | ||
1bbb5f21 BW |
314 | case BFD_RELOC_32_PCREL: |
315 | TRACE ("BFD_RELOC_32_PCREL"); | |
316 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
317 | ||
43cd72b9 BW |
318 | case BFD_RELOC_XTENSA_DIFF8: |
319 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
320 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
321 | ||
322 | case BFD_RELOC_XTENSA_DIFF16: | |
323 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
324 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
325 | ||
326 | case BFD_RELOC_XTENSA_DIFF32: | |
327 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
328 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
329 | ||
e0001a05 NC |
330 | case BFD_RELOC_XTENSA_RTLD: |
331 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
332 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
333 | ||
334 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
335 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
336 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
337 | ||
338 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
339 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
340 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
341 | ||
342 | case BFD_RELOC_XTENSA_RELATIVE: | |
343 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
344 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
345 | ||
346 | case BFD_RELOC_XTENSA_PLT: | |
347 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
348 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
349 | ||
350 | case BFD_RELOC_XTENSA_OP0: | |
351 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
352 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
353 | ||
354 | case BFD_RELOC_XTENSA_OP1: | |
355 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
356 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
357 | ||
358 | case BFD_RELOC_XTENSA_OP2: | |
359 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
360 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
361 | ||
362 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
363 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
364 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
365 | ||
366 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
367 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
368 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
369 | ||
370 | case BFD_RELOC_VTABLE_INHERIT: | |
371 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
372 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
373 | ||
374 | case BFD_RELOC_VTABLE_ENTRY: | |
375 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
376 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
377 | ||
378 | default: | |
43cd72b9 BW |
379 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
380 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
381 | { | |
382 | unsigned n = (R_XTENSA_SLOT0_OP + | |
383 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
384 | return &elf_howto_table[n]; | |
385 | } | |
386 | ||
387 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
388 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
389 | { | |
390 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
391 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
392 | return &elf_howto_table[n]; | |
393 | } | |
394 | ||
e0001a05 NC |
395 | break; |
396 | } | |
397 | ||
398 | TRACE ("Unknown"); | |
399 | return NULL; | |
400 | } | |
401 | ||
157090f7 AM |
402 | static reloc_howto_type * |
403 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
404 | const char *r_name) | |
405 | { | |
406 | unsigned int i; | |
407 | ||
408 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
409 | if (elf_howto_table[i].name != NULL | |
410 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
411 | return &elf_howto_table[i]; | |
412 | ||
413 | return NULL; | |
414 | } | |
415 | ||
e0001a05 NC |
416 | |
417 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
418 | it in the BFD internal arelent representation of the relocation. */ | |
419 | ||
420 | static void | |
7fa3d080 BW |
421 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
422 | arelent *cache_ptr, | |
423 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
424 | { |
425 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
426 | ||
427 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
428 | cache_ptr->howto = &elf_howto_table[r_type]; | |
429 | } | |
430 | ||
431 | \f | |
432 | /* Functions for the Xtensa ELF linker. */ | |
433 | ||
434 | /* The name of the dynamic interpreter. This is put in the .interp | |
435 | section. */ | |
436 | ||
437 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
438 | ||
439 | /* The size in bytes of an entry in the procedure linkage table. | |
440 | (This does _not_ include the space for the literals associated with | |
441 | the PLT entry.) */ | |
442 | ||
443 | #define PLT_ENTRY_SIZE 16 | |
444 | ||
445 | /* For _really_ large PLTs, we may need to alternate between literals | |
446 | and code to keep the literals within the 256K range of the L32R | |
447 | instructions in the code. It's unlikely that anyone would ever need | |
448 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
449 | Thus, we split the PLT into chunks. Since there's very little | |
450 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
451 | small so that the code for handling multiple chunks get used and | |
452 | tested regularly. With 254 entries, there are 1K of literals for | |
453 | each chunk, and that seems like a nice round number. */ | |
454 | ||
455 | #define PLT_ENTRIES_PER_CHUNK 254 | |
456 | ||
457 | /* PLT entries are actually used as stub functions for lazy symbol | |
458 | resolution. Once the symbol is resolved, the stub function is never | |
459 | invoked. Note: the 32-byte frame size used here cannot be changed | |
460 | without a corresponding change in the runtime linker. */ | |
461 | ||
462 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
463 | { | |
464 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
465 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
466 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
467 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
468 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
469 | 0 /* unused */ | |
470 | }; | |
471 | ||
472 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
473 | { | |
474 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
475 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
476 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
477 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
478 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
479 | 0 /* unused */ | |
480 | }; | |
481 | ||
f0e6fdb2 BW |
482 | /* Xtensa ELF linker hash table. */ |
483 | ||
484 | struct elf_xtensa_link_hash_table | |
485 | { | |
486 | struct elf_link_hash_table elf; | |
487 | ||
488 | /* Short-cuts to get to dynamic linker sections. */ | |
489 | asection *sgot; | |
490 | asection *sgotplt; | |
491 | asection *srelgot; | |
492 | asection *splt; | |
493 | asection *srelplt; | |
494 | asection *sgotloc; | |
495 | asection *spltlittbl; | |
496 | ||
497 | /* Total count of PLT relocations seen during check_relocs. | |
498 | The actual PLT code must be split into multiple sections and all | |
499 | the sections have to be created before size_dynamic_sections, | |
500 | where we figure out the exact number of PLT entries that will be | |
501 | needed. It is OK if this count is an overestimate, e.g., some | |
502 | relocations may be removed by GC. */ | |
503 | int plt_reloc_count; | |
504 | }; | |
505 | ||
506 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
507 | ||
508 | #define elf_xtensa_hash_table(p) \ | |
509 | ((struct elf_xtensa_link_hash_table *) ((p)->hash)) | |
510 | ||
511 | /* Create an Xtensa ELF linker hash table. */ | |
512 | ||
513 | static struct bfd_link_hash_table * | |
514 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
515 | { | |
516 | struct elf_xtensa_link_hash_table *ret; | |
517 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
518 | ||
519 | ret = bfd_malloc (amt); | |
520 | if (ret == NULL) | |
521 | return NULL; | |
522 | ||
523 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
524 | _bfd_elf_link_hash_newfunc, | |
525 | sizeof (struct elf_link_hash_entry))) | |
526 | { | |
527 | free (ret); | |
528 | return NULL; | |
529 | } | |
530 | ||
531 | ret->sgot = NULL; | |
532 | ret->sgotplt = NULL; | |
533 | ret->srelgot = NULL; | |
534 | ret->splt = NULL; | |
535 | ret->srelplt = NULL; | |
536 | ret->sgotloc = NULL; | |
537 | ret->spltlittbl = NULL; | |
538 | ||
539 | ret->plt_reloc_count = 0; | |
540 | ||
541 | return &ret->elf.root; | |
542 | } | |
571b5725 BW |
543 | |
544 | static inline bfd_boolean | |
4608f3d9 | 545 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 546 | struct bfd_link_info *info) |
571b5725 BW |
547 | { |
548 | /* Check if we should do dynamic things to this symbol. The | |
549 | "ignore_protected" argument need not be set, because Xtensa code | |
550 | does not require special handling of STV_PROTECTED to make function | |
551 | pointer comparisons work properly. The PLT addresses are never | |
552 | used for function pointers. */ | |
553 | ||
554 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
555 | } | |
556 | ||
e0001a05 NC |
557 | \f |
558 | static int | |
7fa3d080 | 559 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
560 | { |
561 | const property_table_entry *a = (const property_table_entry *) ap; | |
562 | const property_table_entry *b = (const property_table_entry *) bp; | |
563 | ||
43cd72b9 BW |
564 | if (a->address == b->address) |
565 | { | |
43cd72b9 BW |
566 | if (a->size != b->size) |
567 | return (a->size - b->size); | |
568 | ||
569 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
570 | return ((b->flags & XTENSA_PROP_ALIGN) | |
571 | - (a->flags & XTENSA_PROP_ALIGN)); | |
572 | ||
573 | if ((a->flags & XTENSA_PROP_ALIGN) | |
574 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
575 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
576 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
577 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
578 | ||
579 | if ((a->flags & XTENSA_PROP_UNREACHABLE) | |
580 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
581 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
582 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
583 | ||
584 | return (a->flags - b->flags); | |
585 | } | |
586 | ||
587 | return (a->address - b->address); | |
588 | } | |
589 | ||
590 | ||
591 | static int | |
7fa3d080 | 592 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
593 | { |
594 | const property_table_entry *a = (const property_table_entry *) ap; | |
595 | const property_table_entry *b = (const property_table_entry *) bp; | |
596 | ||
597 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
598 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
599 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
600 | return 0; | |
601 | ||
602 | return (a->address - b->address); | |
603 | } | |
604 | ||
605 | ||
43cd72b9 BW |
606 | /* Get the literal table or property table entries for the given |
607 | section. Sets TABLE_P and returns the number of entries. On | |
608 | error, returns a negative value. */ | |
e0001a05 | 609 | |
7fa3d080 BW |
610 | static int |
611 | xtensa_read_table_entries (bfd *abfd, | |
612 | asection *section, | |
613 | property_table_entry **table_p, | |
614 | const char *sec_name, | |
615 | bfd_boolean output_addr) | |
e0001a05 NC |
616 | { |
617 | asection *table_section; | |
e0001a05 NC |
618 | bfd_size_type table_size = 0; |
619 | bfd_byte *table_data; | |
620 | property_table_entry *blocks; | |
e4115460 | 621 | int blk, block_count; |
e0001a05 | 622 | bfd_size_type num_records; |
bcc2cc8e BW |
623 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
624 | bfd_vma section_addr, off; | |
43cd72b9 | 625 | flagword predef_flags; |
bcc2cc8e | 626 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
627 | |
628 | if (!section | |
629 | || !(section->flags & SEC_ALLOC) | |
630 | || (section->flags & SEC_DEBUGGING)) | |
631 | { | |
632 | *table_p = NULL; | |
633 | return 0; | |
634 | } | |
e0001a05 | 635 | |
74869ac7 | 636 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 637 | if (table_section) |
eea6121a | 638 | table_size = table_section->size; |
43cd72b9 | 639 | |
e0001a05 NC |
640 | if (table_size == 0) |
641 | { | |
642 | *table_p = NULL; | |
643 | return 0; | |
644 | } | |
645 | ||
43cd72b9 BW |
646 | predef_flags = xtensa_get_property_predef_flags (table_section); |
647 | table_entry_size = 12; | |
648 | if (predef_flags) | |
649 | table_entry_size -= 4; | |
650 | ||
651 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
652 | table_data = retrieve_contents (abfd, table_section, TRUE); |
653 | blocks = (property_table_entry *) | |
654 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
655 | block_count = 0; | |
43cd72b9 BW |
656 | |
657 | if (output_addr) | |
658 | section_addr = section->output_section->vma + section->output_offset; | |
659 | else | |
660 | section_addr = section->vma; | |
3ba3bc8c | 661 | |
e0001a05 | 662 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 663 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 664 | { |
bcc2cc8e BW |
665 | qsort (internal_relocs, table_section->reloc_count, |
666 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
667 | irel = internal_relocs; | |
668 | } | |
669 | else | |
670 | irel = NULL; | |
671 | ||
672 | section_limit = bfd_get_section_limit (abfd, section); | |
673 | rel_end = internal_relocs + table_section->reloc_count; | |
674 | ||
675 | for (off = 0; off < table_size; off += table_entry_size) | |
676 | { | |
677 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
678 | ||
679 | /* Skip any relocations before the current offset. This should help | |
680 | avoid confusion caused by unexpected relocations for the preceding | |
681 | table entry. */ | |
682 | while (irel && | |
683 | (irel->r_offset < off | |
684 | || (irel->r_offset == off | |
685 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
686 | { | |
687 | irel += 1; | |
688 | if (irel >= rel_end) | |
689 | irel = 0; | |
690 | } | |
e0001a05 | 691 | |
bcc2cc8e | 692 | if (irel && irel->r_offset == off) |
e0001a05 | 693 | { |
bcc2cc8e BW |
694 | bfd_vma sym_off; |
695 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
696 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 697 | |
bcc2cc8e | 698 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
699 | continue; |
700 | ||
bcc2cc8e BW |
701 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
702 | BFD_ASSERT (sym_off == 0); | |
703 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 704 | } |
bcc2cc8e | 705 | else |
e0001a05 | 706 | { |
bcc2cc8e BW |
707 | if (address < section_addr |
708 | || address >= section_addr + section_limit) | |
709 | continue; | |
e0001a05 | 710 | } |
bcc2cc8e BW |
711 | |
712 | blocks[block_count].address = address; | |
713 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
714 | if (predef_flags) | |
715 | blocks[block_count].flags = predef_flags; | |
716 | else | |
717 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
718 | block_count++; | |
e0001a05 NC |
719 | } |
720 | ||
721 | release_contents (table_section, table_data); | |
722 | release_internal_relocs (table_section, internal_relocs); | |
723 | ||
43cd72b9 | 724 | if (block_count > 0) |
e0001a05 NC |
725 | { |
726 | /* Now sort them into address order for easy reference. */ | |
727 | qsort (blocks, block_count, sizeof (property_table_entry), | |
728 | property_table_compare); | |
e4115460 BW |
729 | |
730 | /* Check that the table contents are valid. Problems may occur, | |
731 | for example, if an unrelocated object file is stripped. */ | |
732 | for (blk = 1; blk < block_count; blk++) | |
733 | { | |
734 | /* The only circumstance where two entries may legitimately | |
735 | have the same address is when one of them is a zero-size | |
736 | placeholder to mark a place where fill can be inserted. | |
737 | The zero-size entry should come first. */ | |
738 | if (blocks[blk - 1].address == blocks[blk].address && | |
739 | blocks[blk - 1].size != 0) | |
740 | { | |
741 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
742 | abfd, section); | |
743 | bfd_set_error (bfd_error_bad_value); | |
744 | free (blocks); | |
745 | return -1; | |
746 | } | |
747 | } | |
e0001a05 | 748 | } |
43cd72b9 | 749 | |
e0001a05 NC |
750 | *table_p = blocks; |
751 | return block_count; | |
752 | } | |
753 | ||
754 | ||
7fa3d080 BW |
755 | static property_table_entry * |
756 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
757 | int property_table_size, | |
758 | bfd_vma addr) | |
e0001a05 NC |
759 | { |
760 | property_table_entry entry; | |
43cd72b9 | 761 | property_table_entry *rv; |
e0001a05 | 762 | |
43cd72b9 BW |
763 | if (property_table_size == 0) |
764 | return NULL; | |
e0001a05 NC |
765 | |
766 | entry.address = addr; | |
767 | entry.size = 1; | |
43cd72b9 | 768 | entry.flags = 0; |
e0001a05 | 769 | |
43cd72b9 BW |
770 | rv = bsearch (&entry, property_table, property_table_size, |
771 | sizeof (property_table_entry), property_table_matches); | |
772 | return rv; | |
773 | } | |
774 | ||
775 | ||
776 | static bfd_boolean | |
7fa3d080 BW |
777 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
778 | int lit_table_size, | |
779 | bfd_vma addr) | |
43cd72b9 BW |
780 | { |
781 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
782 | return TRUE; |
783 | ||
784 | return FALSE; | |
785 | } | |
786 | ||
787 | \f | |
788 | /* Look through the relocs for a section during the first phase, and | |
789 | calculate needed space in the dynamic reloc sections. */ | |
790 | ||
791 | static bfd_boolean | |
7fa3d080 BW |
792 | elf_xtensa_check_relocs (bfd *abfd, |
793 | struct bfd_link_info *info, | |
794 | asection *sec, | |
795 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 796 | { |
f0e6fdb2 | 797 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
798 | Elf_Internal_Shdr *symtab_hdr; |
799 | struct elf_link_hash_entry **sym_hashes; | |
800 | const Elf_Internal_Rela *rel; | |
801 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 802 | |
1049f94e | 803 | if (info->relocatable) |
e0001a05 NC |
804 | return TRUE; |
805 | ||
f0e6fdb2 | 806 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
807 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
808 | sym_hashes = elf_sym_hashes (abfd); | |
809 | ||
e0001a05 NC |
810 | rel_end = relocs + sec->reloc_count; |
811 | for (rel = relocs; rel < rel_end; rel++) | |
812 | { | |
813 | unsigned int r_type; | |
814 | unsigned long r_symndx; | |
815 | struct elf_link_hash_entry *h; | |
816 | ||
817 | r_symndx = ELF32_R_SYM (rel->r_info); | |
818 | r_type = ELF32_R_TYPE (rel->r_info); | |
819 | ||
820 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
821 | { | |
d003868e AM |
822 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
823 | abfd, r_symndx); | |
e0001a05 NC |
824 | return FALSE; |
825 | } | |
826 | ||
827 | if (r_symndx < symtab_hdr->sh_info) | |
828 | h = NULL; | |
829 | else | |
830 | { | |
831 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
832 | while (h->root.type == bfd_link_hash_indirect | |
833 | || h->root.type == bfd_link_hash_warning) | |
834 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
835 | } | |
836 | ||
837 | switch (r_type) | |
838 | { | |
839 | case R_XTENSA_32: | |
840 | if (h == NULL) | |
841 | goto local_literal; | |
842 | ||
843 | if ((sec->flags & SEC_ALLOC) != 0) | |
844 | { | |
e0001a05 NC |
845 | if (h->got.refcount <= 0) |
846 | h->got.refcount = 1; | |
847 | else | |
848 | h->got.refcount += 1; | |
849 | } | |
850 | break; | |
851 | ||
852 | case R_XTENSA_PLT: | |
853 | /* If this relocation is against a local symbol, then it's | |
854 | exactly the same as a normal local GOT entry. */ | |
855 | if (h == NULL) | |
856 | goto local_literal; | |
857 | ||
858 | if ((sec->flags & SEC_ALLOC) != 0) | |
859 | { | |
e0001a05 NC |
860 | if (h->plt.refcount <= 0) |
861 | { | |
f5385ebf | 862 | h->needs_plt = 1; |
e0001a05 NC |
863 | h->plt.refcount = 1; |
864 | } | |
865 | else | |
866 | h->plt.refcount += 1; | |
867 | ||
868 | /* Keep track of the total PLT relocation count even if we | |
869 | don't yet know whether the dynamic sections will be | |
870 | created. */ | |
f0e6fdb2 | 871 | htab->plt_reloc_count += 1; |
e0001a05 NC |
872 | |
873 | if (elf_hash_table (info)->dynamic_sections_created) | |
874 | { | |
f0e6fdb2 | 875 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
876 | return FALSE; |
877 | } | |
878 | } | |
879 | break; | |
880 | ||
881 | local_literal: | |
882 | if ((sec->flags & SEC_ALLOC) != 0) | |
883 | { | |
884 | bfd_signed_vma *local_got_refcounts; | |
885 | ||
886 | /* This is a global offset table entry for a local symbol. */ | |
887 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
888 | if (local_got_refcounts == NULL) | |
889 | { | |
890 | bfd_size_type size; | |
891 | ||
892 | size = symtab_hdr->sh_info; | |
893 | size *= sizeof (bfd_signed_vma); | |
43cd72b9 BW |
894 | local_got_refcounts = |
895 | (bfd_signed_vma *) bfd_zalloc (abfd, size); | |
e0001a05 NC |
896 | if (local_got_refcounts == NULL) |
897 | return FALSE; | |
898 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
899 | } | |
900 | local_got_refcounts[r_symndx] += 1; | |
e0001a05 NC |
901 | } |
902 | break; | |
903 | ||
e0001a05 NC |
904 | case R_XTENSA_GNU_VTINHERIT: |
905 | /* This relocation describes the C++ object vtable hierarchy. | |
906 | Reconstruct it for later use during GC. */ | |
c152c796 | 907 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
e0001a05 NC |
908 | return FALSE; |
909 | break; | |
910 | ||
911 | case R_XTENSA_GNU_VTENTRY: | |
912 | /* This relocation describes which C++ vtable entries are actually | |
913 | used. Record for later use during GC. */ | |
d17e0c6e JB |
914 | BFD_ASSERT (h != NULL); |
915 | if (h != NULL | |
916 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
e0001a05 NC |
917 | return FALSE; |
918 | break; | |
919 | ||
920 | default: | |
921 | break; | |
922 | } | |
923 | } | |
924 | ||
e0001a05 NC |
925 | return TRUE; |
926 | } | |
927 | ||
928 | ||
95147441 BW |
929 | static void |
930 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
931 | struct elf_link_hash_entry *h) | |
932 | { | |
933 | if (info->shared) | |
934 | { | |
935 | if (h->plt.refcount > 0) | |
936 | { | |
937 | /* For shared objects, there's no need for PLT entries for local | |
938 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
939 | if (h->got.refcount < 0) | |
940 | h->got.refcount = 0; | |
941 | h->got.refcount += h->plt.refcount; | |
942 | h->plt.refcount = 0; | |
943 | } | |
944 | } | |
945 | else | |
946 | { | |
947 | /* Don't need any dynamic relocations at all. */ | |
948 | h->plt.refcount = 0; | |
949 | h->got.refcount = 0; | |
950 | } | |
951 | } | |
952 | ||
953 | ||
954 | static void | |
955 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
956 | struct elf_link_hash_entry *h, | |
957 | bfd_boolean force_local) | |
958 | { | |
959 | /* For a shared link, move the plt refcount to the got refcount to leave | |
960 | space for RELATIVE relocs. */ | |
961 | elf_xtensa_make_sym_local (info, h); | |
962 | ||
963 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
964 | } | |
965 | ||
966 | ||
e0001a05 NC |
967 | /* Return the section that should be marked against GC for a given |
968 | relocation. */ | |
969 | ||
970 | static asection * | |
7fa3d080 | 971 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 972 | struct bfd_link_info *info, |
7fa3d080 BW |
973 | Elf_Internal_Rela *rel, |
974 | struct elf_link_hash_entry *h, | |
975 | Elf_Internal_Sym *sym) | |
e0001a05 | 976 | { |
e1e5c0b5 BW |
977 | /* Property sections are marked "KEEP" in the linker scripts, but they |
978 | should not cause other sections to be marked. (This approach relies | |
979 | on elf_xtensa_discard_info to remove property table entries that | |
980 | describe discarded sections. Alternatively, it might be more | |
981 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
982 | the gc_mark_extra_sections hook to mark only the property sections | |
983 | that describe marked sections. That alternative does not work well | |
984 | with the current property table sections, which do not correspond | |
985 | one-to-one with the sections they describe, but that should be fixed | |
986 | someday.) */ | |
987 | if (xtensa_is_property_section (sec)) | |
988 | return NULL; | |
989 | ||
07adf181 AM |
990 | if (h != NULL) |
991 | switch (ELF32_R_TYPE (rel->r_info)) | |
992 | { | |
993 | case R_XTENSA_GNU_VTINHERIT: | |
994 | case R_XTENSA_GNU_VTENTRY: | |
995 | return NULL; | |
996 | } | |
997 | ||
998 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
999 | } |
1000 | ||
7fa3d080 | 1001 | |
e0001a05 NC |
1002 | /* Update the GOT & PLT entry reference counts |
1003 | for the section being removed. */ | |
1004 | ||
1005 | static bfd_boolean | |
7fa3d080 BW |
1006 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
1007 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1008 | asection *sec, | |
1009 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1010 | { |
1011 | Elf_Internal_Shdr *symtab_hdr; | |
1012 | struct elf_link_hash_entry **sym_hashes; | |
1013 | bfd_signed_vma *local_got_refcounts; | |
1014 | const Elf_Internal_Rela *rel, *relend; | |
1015 | ||
7dda2462 TG |
1016 | if (info->relocatable) |
1017 | return TRUE; | |
1018 | ||
e0001a05 NC |
1019 | if ((sec->flags & SEC_ALLOC) == 0) |
1020 | return TRUE; | |
1021 | ||
1022 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1023 | sym_hashes = elf_sym_hashes (abfd); | |
1024 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1025 | ||
1026 | relend = relocs + sec->reloc_count; | |
1027 | for (rel = relocs; rel < relend; rel++) | |
1028 | { | |
1029 | unsigned long r_symndx; | |
1030 | unsigned int r_type; | |
1031 | struct elf_link_hash_entry *h = NULL; | |
1032 | ||
1033 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1034 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1035 | { |
1036 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1037 | while (h->root.type == bfd_link_hash_indirect | |
1038 | || h->root.type == bfd_link_hash_warning) | |
1039 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1040 | } | |
e0001a05 NC |
1041 | |
1042 | r_type = ELF32_R_TYPE (rel->r_info); | |
1043 | switch (r_type) | |
1044 | { | |
1045 | case R_XTENSA_32: | |
1046 | if (h == NULL) | |
1047 | goto local_literal; | |
1048 | if (h->got.refcount > 0) | |
1049 | h->got.refcount--; | |
1050 | break; | |
1051 | ||
1052 | case R_XTENSA_PLT: | |
1053 | if (h == NULL) | |
1054 | goto local_literal; | |
1055 | if (h->plt.refcount > 0) | |
1056 | h->plt.refcount--; | |
1057 | break; | |
1058 | ||
1059 | local_literal: | |
1060 | if (local_got_refcounts[r_symndx] > 0) | |
1061 | local_got_refcounts[r_symndx] -= 1; | |
1062 | break; | |
1063 | ||
1064 | default: | |
1065 | break; | |
1066 | } | |
1067 | } | |
1068 | ||
1069 | return TRUE; | |
1070 | } | |
1071 | ||
1072 | ||
1073 | /* Create all the dynamic sections. */ | |
1074 | ||
1075 | static bfd_boolean | |
7fa3d080 | 1076 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1077 | { |
f0e6fdb2 | 1078 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1079 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1080 | |
1081 | htab = elf_xtensa_hash_table (info); | |
e0001a05 NC |
1082 | |
1083 | /* First do all the standard stuff. */ | |
1084 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1085 | return FALSE; | |
f0e6fdb2 BW |
1086 | htab->splt = bfd_get_section_by_name (dynobj, ".plt"); |
1087 | htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1088 | htab->sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1089 | htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); | |
e0001a05 NC |
1090 | |
1091 | /* Create any extra PLT sections in case check_relocs has already | |
1092 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1093 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1094 | return FALSE; |
1095 | ||
e901de89 BW |
1096 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1097 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1098 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1099 | |
1100 | /* Mark the ".got.plt" section READONLY. */ | |
f0e6fdb2 BW |
1101 | if (htab->sgotplt == NULL |
1102 | || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) | |
e0001a05 NC |
1103 | return FALSE; |
1104 | ||
1105 | /* Create ".rela.got". */ | |
f0e6fdb2 BW |
1106 | htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags); |
1107 | if (htab->srelgot == NULL | |
1108 | || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2)) | |
e0001a05 NC |
1109 | return FALSE; |
1110 | ||
e901de89 | 1111 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
f0e6fdb2 BW |
1112 | htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags); |
1113 | if (htab->sgotloc == NULL | |
1114 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1115 | return FALSE; |
1116 | ||
e0001a05 | 1117 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
f0e6fdb2 BW |
1118 | htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt", |
1119 | noalloc_flags); | |
1120 | if (htab->spltlittbl == NULL | |
1121 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1122 | return FALSE; |
1123 | ||
1124 | return TRUE; | |
1125 | } | |
1126 | ||
1127 | ||
1128 | static bfd_boolean | |
f0e6fdb2 | 1129 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1130 | { |
f0e6fdb2 | 1131 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1132 | int chunk; |
1133 | ||
1134 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1135 | ".got.plt" sections. */ | |
1136 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1137 | { | |
1138 | char *sname; | |
1139 | flagword flags; | |
1140 | asection *s; | |
1141 | ||
1142 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1143 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1144 | break; |
1145 | ||
1146 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1147 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1148 | ||
1149 | sname = (char *) bfd_malloc (10); | |
1150 | sprintf (sname, ".plt.%u", chunk); | |
ba05963f | 1151 | s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1152 | if (s == NULL |
e0001a05 NC |
1153 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1154 | return FALSE; | |
1155 | ||
1156 | sname = (char *) bfd_malloc (14); | |
1157 | sprintf (sname, ".got.plt.%u", chunk); | |
3496cb2a | 1158 | s = bfd_make_section_with_flags (dynobj, sname, flags); |
e0001a05 | 1159 | if (s == NULL |
e0001a05 NC |
1160 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1161 | return FALSE; | |
1162 | } | |
1163 | ||
1164 | return TRUE; | |
1165 | } | |
1166 | ||
1167 | ||
1168 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1169 | regular object. The current definition is in some section of the | |
1170 | dynamic object, but we're not including those sections. We have to | |
1171 | change the definition to something the rest of the link can | |
1172 | understand. */ | |
1173 | ||
1174 | static bfd_boolean | |
7fa3d080 BW |
1175 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1176 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1177 | { |
1178 | /* If this is a weak symbol, and there is a real definition, the | |
1179 | processor independent code will have arranged for us to see the | |
1180 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1181 | if (h->u.weakdef) |
e0001a05 | 1182 | { |
f6e332e6 AM |
1183 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1184 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1185 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1186 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1187 | return TRUE; |
1188 | } | |
1189 | ||
1190 | /* This is a reference to a symbol defined by a dynamic object. The | |
1191 | reference must go through the GOT, so there's no need for COPY relocs, | |
1192 | .dynbss, etc. */ | |
1193 | ||
1194 | return TRUE; | |
1195 | } | |
1196 | ||
1197 | ||
e0001a05 | 1198 | static bfd_boolean |
f1ab2340 | 1199 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1200 | { |
f1ab2340 BW |
1201 | struct bfd_link_info *info; |
1202 | struct elf_xtensa_link_hash_table *htab; | |
1203 | bfd_boolean is_dynamic; | |
e0001a05 | 1204 | |
f1ab2340 BW |
1205 | if (h->root.type == bfd_link_hash_indirect) |
1206 | return TRUE; | |
e0001a05 NC |
1207 | |
1208 | if (h->root.type == bfd_link_hash_warning) | |
1209 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1210 | ||
f1ab2340 BW |
1211 | info = (struct bfd_link_info *) arg; |
1212 | htab = elf_xtensa_hash_table (info); | |
e0001a05 | 1213 | |
f1ab2340 | 1214 | is_dynamic = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 | 1215 | |
f1ab2340 | 1216 | if (! is_dynamic) |
95147441 | 1217 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1218 | |
f1ab2340 BW |
1219 | if (h->plt.refcount > 0) |
1220 | htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1221 | |
1222 | if (h->got.refcount > 0) | |
f1ab2340 | 1223 | htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1224 | |
1225 | return TRUE; | |
1226 | } | |
1227 | ||
1228 | ||
1229 | static void | |
f0e6fdb2 | 1230 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1231 | { |
f0e6fdb2 | 1232 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1233 | bfd *i; |
1234 | ||
f0e6fdb2 BW |
1235 | htab = elf_xtensa_hash_table (info); |
1236 | ||
e0001a05 NC |
1237 | for (i = info->input_bfds; i; i = i->link_next) |
1238 | { | |
1239 | bfd_signed_vma *local_got_refcounts; | |
1240 | bfd_size_type j, cnt; | |
1241 | Elf_Internal_Shdr *symtab_hdr; | |
1242 | ||
1243 | local_got_refcounts = elf_local_got_refcounts (i); | |
1244 | if (!local_got_refcounts) | |
1245 | continue; | |
1246 | ||
1247 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1248 | cnt = symtab_hdr->sh_info; | |
1249 | ||
1250 | for (j = 0; j < cnt; ++j) | |
1251 | { | |
1252 | if (local_got_refcounts[j] > 0) | |
f0e6fdb2 BW |
1253 | htab->srelgot->size += (local_got_refcounts[j] |
1254 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1255 | } |
1256 | } | |
1257 | } | |
1258 | ||
1259 | ||
1260 | /* Set the sizes of the dynamic sections. */ | |
1261 | ||
1262 | static bfd_boolean | |
7fa3d080 BW |
1263 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1264 | struct bfd_link_info *info) | |
e0001a05 | 1265 | { |
f0e6fdb2 | 1266 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1267 | bfd *dynobj, *abfd; |
1268 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1269 | bfd_boolean relplt, relgot; |
1270 | int plt_entries, plt_chunks, chunk; | |
1271 | ||
1272 | plt_entries = 0; | |
1273 | plt_chunks = 0; | |
e0001a05 | 1274 | |
f0e6fdb2 | 1275 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
1276 | dynobj = elf_hash_table (info)->dynobj; |
1277 | if (dynobj == NULL) | |
1278 | abort (); | |
f0e6fdb2 BW |
1279 | srelgot = htab->srelgot; |
1280 | srelplt = htab->srelplt; | |
e0001a05 NC |
1281 | |
1282 | if (elf_hash_table (info)->dynamic_sections_created) | |
1283 | { | |
f0e6fdb2 BW |
1284 | BFD_ASSERT (htab->srelgot != NULL |
1285 | && htab->srelplt != NULL | |
1286 | && htab->sgot != NULL | |
1287 | && htab->spltlittbl != NULL | |
1288 | && htab->sgotloc != NULL); | |
1289 | ||
e0001a05 | 1290 | /* Set the contents of the .interp section to the interpreter. */ |
893c4fe2 | 1291 | if (info->executable) |
e0001a05 NC |
1292 | { |
1293 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1294 | if (s == NULL) | |
1295 | abort (); | |
eea6121a | 1296 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1297 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1298 | } | |
1299 | ||
1300 | /* Allocate room for one word in ".got". */ | |
f0e6fdb2 | 1301 | htab->sgot->size = 4; |
e0001a05 | 1302 | |
f1ab2340 BW |
1303 | /* Allocate space in ".rela.got" for literals that reference global |
1304 | symbols and space in ".rela.plt" for literals that have PLT | |
1305 | entries. */ | |
e0001a05 | 1306 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1307 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1308 | (void *) info); |
e0001a05 | 1309 | |
e0001a05 NC |
1310 | /* If we are generating a shared object, we also need space in |
1311 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1312 | reference local symbols. */ | |
1313 | if (info->shared) | |
f0e6fdb2 | 1314 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1315 | |
e0001a05 NC |
1316 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1317 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1318 | For each chunk of ".plt", we also need two more 4-byte | |
1319 | literals, two corresponding entries in ".rela.got", and an | |
1320 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1321 | spltlittbl = htab->spltlittbl; |
eea6121a | 1322 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1323 | plt_chunks = |
1324 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1325 | ||
1326 | /* Iterate over all the PLT chunks, including any extra sections | |
1327 | created earlier because the initial count of PLT relocations | |
1328 | was an overestimate. */ | |
1329 | for (chunk = 0; | |
f0e6fdb2 | 1330 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1331 | chunk++) |
1332 | { | |
1333 | int chunk_entries; | |
1334 | ||
f0e6fdb2 BW |
1335 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1336 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1337 | |
1338 | if (chunk < plt_chunks - 1) | |
1339 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1340 | else if (chunk == plt_chunks - 1) | |
1341 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1342 | else | |
1343 | chunk_entries = 0; | |
1344 | ||
1345 | if (chunk_entries != 0) | |
1346 | { | |
eea6121a AM |
1347 | sgotplt->size = 4 * (chunk_entries + 2); |
1348 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1349 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1350 | spltlittbl->size += 8; | |
e0001a05 NC |
1351 | } |
1352 | else | |
1353 | { | |
eea6121a AM |
1354 | sgotplt->size = 0; |
1355 | splt->size = 0; | |
e0001a05 NC |
1356 | } |
1357 | } | |
e901de89 BW |
1358 | |
1359 | /* Allocate space in ".got.loc" to match the total size of all the | |
1360 | literal tables. */ | |
f0e6fdb2 | 1361 | sgotloc = htab->sgotloc; |
eea6121a | 1362 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1363 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1364 | { | |
1365 | if (abfd->flags & DYNAMIC) | |
1366 | continue; | |
1367 | for (s = abfd->sections; s != NULL; s = s->next) | |
1368 | { | |
b536dc1e BW |
1369 | if (! elf_discarded_section (s) |
1370 | && xtensa_is_littable_section (s) | |
1371 | && s != spltlittbl) | |
eea6121a | 1372 | sgotloc->size += s->size; |
e901de89 BW |
1373 | } |
1374 | } | |
e0001a05 NC |
1375 | } |
1376 | ||
1377 | /* Allocate memory for dynamic sections. */ | |
1378 | relplt = FALSE; | |
1379 | relgot = FALSE; | |
1380 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1381 | { | |
1382 | const char *name; | |
e0001a05 NC |
1383 | |
1384 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1385 | continue; | |
1386 | ||
1387 | /* It's OK to base decisions on the section name, because none | |
1388 | of the dynobj section names depend upon the input files. */ | |
1389 | name = bfd_get_section_name (dynobj, s); | |
1390 | ||
0112cd26 | 1391 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1392 | { |
c456f082 | 1393 | if (s->size != 0) |
e0001a05 | 1394 | { |
c456f082 AM |
1395 | if (strcmp (name, ".rela.plt") == 0) |
1396 | relplt = TRUE; | |
1397 | else if (strcmp (name, ".rela.got") == 0) | |
1398 | relgot = TRUE; | |
1399 | ||
1400 | /* We use the reloc_count field as a counter if we need | |
1401 | to copy relocs into the output file. */ | |
1402 | s->reloc_count = 0; | |
e0001a05 NC |
1403 | } |
1404 | } | |
0112cd26 NC |
1405 | else if (! CONST_STRNEQ (name, ".plt.") |
1406 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1407 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1408 | && strcmp (name, ".plt") != 0 |
1409 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1410 | && strcmp (name, ".xt.lit.plt") != 0 |
1411 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1412 | { |
1413 | /* It's not one of our sections, so don't allocate space. */ | |
1414 | continue; | |
1415 | } | |
1416 | ||
c456f082 AM |
1417 | if (s->size == 0) |
1418 | { | |
1419 | /* If we don't need this section, strip it from the output | |
1420 | file. We must create the ".plt*" and ".got.plt*" | |
1421 | sections in create_dynamic_sections and/or check_relocs | |
1422 | based on a conservative estimate of the PLT relocation | |
1423 | count, because the sections must be created before the | |
1424 | linker maps input sections to output sections. The | |
1425 | linker does that before size_dynamic_sections, where we | |
1426 | compute the exact size of the PLT, so there may be more | |
1427 | of these sections than are actually needed. */ | |
1428 | s->flags |= SEC_EXCLUDE; | |
1429 | } | |
1430 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1431 | { |
1432 | /* Allocate memory for the section contents. */ | |
eea6121a | 1433 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1434 | if (s->contents == NULL) |
e0001a05 NC |
1435 | return FALSE; |
1436 | } | |
1437 | } | |
1438 | ||
1439 | if (elf_hash_table (info)->dynamic_sections_created) | |
1440 | { | |
1441 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1442 | known until finish_dynamic_sections, but we need to get the relocs | |
1443 | in place before they are sorted. */ | |
e0001a05 NC |
1444 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1445 | { | |
1446 | Elf_Internal_Rela irela; | |
1447 | bfd_byte *loc; | |
1448 | ||
1449 | irela.r_offset = 0; | |
1450 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1451 | irela.r_addend = 0; | |
1452 | ||
1453 | loc = (srelgot->contents | |
1454 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1455 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1456 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1457 | loc + sizeof (Elf32_External_Rela)); | |
1458 | srelgot->reloc_count += 2; | |
1459 | } | |
1460 | ||
1461 | /* Add some entries to the .dynamic section. We fill in the | |
1462 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1463 | must add the entries now so that we get the correct size for | |
1464 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1465 | dynamic linker and used by the debugger. */ | |
1466 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1467 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1468 | |
ba05963f | 1469 | if (info->executable) |
e0001a05 NC |
1470 | { |
1471 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1472 | return FALSE; | |
1473 | } | |
1474 | ||
1475 | if (relplt) | |
1476 | { | |
c243ad3b | 1477 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1478 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1479 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1480 | return FALSE; | |
1481 | } | |
1482 | ||
1483 | if (relgot) | |
1484 | { | |
1485 | if (!add_dynamic_entry (DT_RELA, 0) | |
1486 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1487 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1488 | return FALSE; | |
1489 | } | |
1490 | ||
c243ad3b BW |
1491 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1492 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1493 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1494 | return FALSE; | |
1495 | } | |
1496 | #undef add_dynamic_entry | |
1497 | ||
1498 | return TRUE; | |
1499 | } | |
1500 | ||
e0001a05 NC |
1501 | \f |
1502 | /* Perform the specified relocation. The instruction at (contents + address) | |
1503 | is modified to set one operand to represent the value in "relocation". The | |
1504 | operand position is determined by the relocation type recorded in the | |
1505 | howto. */ | |
1506 | ||
1507 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1508 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1509 | |
1510 | static bfd_reloc_status_type | |
7fa3d080 BW |
1511 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1512 | bfd *abfd, | |
1513 | asection *input_section, | |
1514 | bfd_vma relocation, | |
1515 | bfd_byte *contents, | |
1516 | bfd_vma address, | |
1517 | bfd_boolean is_weak_undef, | |
1518 | char **error_message) | |
e0001a05 | 1519 | { |
43cd72b9 | 1520 | xtensa_format fmt; |
e0001a05 | 1521 | xtensa_opcode opcode; |
e0001a05 | 1522 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1523 | static xtensa_insnbuf ibuff = NULL; |
1524 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1525 | bfd_vma self_address; |
43cd72b9 BW |
1526 | bfd_size_type input_size; |
1527 | int opnd, slot; | |
e0001a05 NC |
1528 | uint32 newval; |
1529 | ||
43cd72b9 BW |
1530 | if (!ibuff) |
1531 | { | |
1532 | ibuff = xtensa_insnbuf_alloc (isa); | |
1533 | sbuff = xtensa_insnbuf_alloc (isa); | |
1534 | } | |
1535 | ||
1536 | input_size = bfd_get_section_limit (abfd, input_section); | |
1537 | ||
1bbb5f21 BW |
1538 | /* Calculate the PC address for this instruction. */ |
1539 | self_address = (input_section->output_section->vma | |
1540 | + input_section->output_offset | |
1541 | + address); | |
1542 | ||
e0001a05 NC |
1543 | switch (howto->type) |
1544 | { | |
1545 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1546 | case R_XTENSA_DIFF8: |
1547 | case R_XTENSA_DIFF16: | |
1548 | case R_XTENSA_DIFF32: | |
e0001a05 NC |
1549 | return bfd_reloc_ok; |
1550 | ||
1551 | case R_XTENSA_ASM_EXPAND: | |
1552 | if (!is_weak_undef) | |
1553 | { | |
1554 | /* Check for windowed CALL across a 1GB boundary. */ | |
1555 | xtensa_opcode opcode = | |
1556 | get_expanded_call_opcode (contents + address, | |
43cd72b9 | 1557 | input_size - address, 0); |
e0001a05 NC |
1558 | if (is_windowed_call_opcode (opcode)) |
1559 | { | |
43cd72b9 BW |
1560 | if ((self_address >> CALL_SEGMENT_BITS) |
1561 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 NC |
1562 | { |
1563 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1564 | "return may fail"; | |
1565 | return bfd_reloc_dangerous; | |
1566 | } | |
1567 | } | |
1568 | } | |
1569 | return bfd_reloc_ok; | |
1570 | ||
1571 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1572 | { |
e0001a05 | 1573 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1574 | bfd_reloc_status_type retval = |
1575 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1576 | error_message); | |
e0001a05 | 1577 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1578 | return bfd_reloc_dangerous; |
e0001a05 NC |
1579 | |
1580 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1581 | address += 3; | |
c46082c8 | 1582 | self_address += 3; |
43cd72b9 | 1583 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1584 | } |
1585 | break; | |
1586 | ||
1587 | case R_XTENSA_32: | |
1588 | case R_XTENSA_PLT: | |
1589 | { | |
1590 | bfd_vma x; | |
1591 | x = bfd_get_32 (abfd, contents + address); | |
1592 | x = x + relocation; | |
1593 | bfd_put_32 (abfd, x, contents + address); | |
1594 | } | |
1595 | return bfd_reloc_ok; | |
1bbb5f21 BW |
1596 | |
1597 | case R_XTENSA_32_PCREL: | |
1598 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
1599 | return bfd_reloc_ok; | |
e0001a05 NC |
1600 | } |
1601 | ||
43cd72b9 BW |
1602 | /* Only instruction slot-specific relocations handled below.... */ |
1603 | slot = get_relocation_slot (howto->type); | |
1604 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 1605 | { |
43cd72b9 | 1606 | *error_message = "unexpected relocation"; |
e0001a05 NC |
1607 | return bfd_reloc_dangerous; |
1608 | } | |
1609 | ||
43cd72b9 BW |
1610 | /* Read the instruction into a buffer and decode the opcode. */ |
1611 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
1612 | input_size - address); | |
1613 | fmt = xtensa_format_decode (isa, ibuff); | |
1614 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 1615 | { |
43cd72b9 | 1616 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
1617 | return bfd_reloc_dangerous; |
1618 | } | |
1619 | ||
43cd72b9 | 1620 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 1621 | |
43cd72b9 BW |
1622 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1623 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 1624 | { |
43cd72b9 | 1625 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
1626 | return bfd_reloc_dangerous; |
1627 | } | |
1628 | ||
43cd72b9 BW |
1629 | /* Check for opcode-specific "alternate" relocations. */ |
1630 | if (is_alt_relocation (howto->type)) | |
1631 | { | |
1632 | if (opcode == get_l32r_opcode ()) | |
1633 | { | |
1634 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
1635 | bfd *output_bfd = input_section->output_section->owner; | |
1636 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
1637 | if (!lit4_sec) | |
1638 | { | |
1639 | *error_message = "relocation references missing .lit4 section"; | |
1640 | return bfd_reloc_dangerous; | |
1641 | } | |
1642 | self_address = ((lit4_sec->vma & ~0xfff) | |
1643 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
1644 | newval = relocation; | |
1645 | opnd = 1; | |
1646 | } | |
1647 | else if (opcode == get_const16_opcode ()) | |
1648 | { | |
1649 | /* ALT used for high 16 bits. */ | |
1650 | newval = relocation >> 16; | |
1651 | opnd = 1; | |
1652 | } | |
1653 | else | |
1654 | { | |
1655 | /* No other "alternate" relocations currently defined. */ | |
1656 | *error_message = "unexpected relocation"; | |
1657 | return bfd_reloc_dangerous; | |
1658 | } | |
1659 | } | |
1660 | else /* Not an "alternate" relocation.... */ | |
1661 | { | |
1662 | if (opcode == get_const16_opcode ()) | |
1663 | { | |
1664 | newval = relocation & 0xffff; | |
1665 | opnd = 1; | |
1666 | } | |
1667 | else | |
1668 | { | |
1669 | /* ...normal PC-relative relocation.... */ | |
1670 | ||
1671 | /* Determine which operand is being relocated. */ | |
1672 | opnd = get_relocation_opnd (opcode, howto->type); | |
1673 | if (opnd == XTENSA_UNDEFINED) | |
1674 | { | |
1675 | *error_message = "unexpected relocation"; | |
1676 | return bfd_reloc_dangerous; | |
1677 | } | |
1678 | ||
1679 | if (!howto->pc_relative) | |
1680 | { | |
1681 | *error_message = "expected PC-relative relocation"; | |
1682 | return bfd_reloc_dangerous; | |
1683 | } | |
e0001a05 | 1684 | |
43cd72b9 BW |
1685 | newval = relocation; |
1686 | } | |
1687 | } | |
e0001a05 | 1688 | |
43cd72b9 BW |
1689 | /* Apply the relocation. */ |
1690 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
1691 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
1692 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
1693 | sbuff, newval)) | |
e0001a05 | 1694 | { |
2db662be BW |
1695 | const char *opname = xtensa_opcode_name (isa, opcode); |
1696 | const char *msg; | |
1697 | ||
1698 | msg = "cannot encode"; | |
1699 | if (is_direct_call_opcode (opcode)) | |
1700 | { | |
1701 | if ((relocation & 0x3) != 0) | |
1702 | msg = "misaligned call target"; | |
1703 | else | |
1704 | msg = "call target out of range"; | |
1705 | } | |
1706 | else if (opcode == get_l32r_opcode ()) | |
1707 | { | |
1708 | if ((relocation & 0x3) != 0) | |
1709 | msg = "misaligned literal target"; | |
1710 | else if (is_alt_relocation (howto->type)) | |
1711 | msg = "literal target out of range (too many literals)"; | |
1712 | else if (self_address > relocation) | |
1713 | msg = "literal target out of range (try using text-section-literals)"; | |
1714 | else | |
1715 | msg = "literal placed after use"; | |
1716 | } | |
1717 | ||
1718 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
1719 | return bfd_reloc_dangerous; |
1720 | } | |
1721 | ||
43cd72b9 | 1722 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
1723 | if (is_direct_call_opcode (opcode) |
1724 | && is_windowed_call_opcode (opcode)) | |
1725 | { | |
43cd72b9 BW |
1726 | if ((self_address >> CALL_SEGMENT_BITS) |
1727 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 | 1728 | { |
43cd72b9 BW |
1729 | *error_message = |
1730 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
1731 | return bfd_reloc_dangerous; |
1732 | } | |
1733 | } | |
1734 | ||
43cd72b9 BW |
1735 | /* Write the modified instruction back out of the buffer. */ |
1736 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
1737 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
1738 | input_size - address); | |
e0001a05 NC |
1739 | return bfd_reloc_ok; |
1740 | } | |
1741 | ||
1742 | ||
2db662be | 1743 | static char * |
7fa3d080 | 1744 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
1745 | { |
1746 | /* To reduce the size of the memory leak, | |
1747 | we only use a single message buffer. */ | |
1748 | static bfd_size_type alloc_size = 0; | |
1749 | static char *message = NULL; | |
1750 | bfd_size_type orig_len, len = 0; | |
1751 | bfd_boolean is_append; | |
1752 | ||
1753 | VA_OPEN (ap, arglen); | |
1754 | VA_FIXEDARG (ap, const char *, origmsg); | |
1755 | ||
1756 | is_append = (origmsg == message); | |
1757 | ||
1758 | orig_len = strlen (origmsg); | |
1759 | len = orig_len + strlen (fmt) + arglen + 20; | |
1760 | if (len > alloc_size) | |
1761 | { | |
515ef31d | 1762 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
1763 | alloc_size = len; |
1764 | } | |
515ef31d NC |
1765 | if (message != NULL) |
1766 | { | |
1767 | if (!is_append) | |
1768 | memcpy (message, origmsg, orig_len); | |
1769 | vsprintf (message + orig_len, fmt, ap); | |
1770 | } | |
e0001a05 NC |
1771 | VA_CLOSE (ap); |
1772 | return message; | |
1773 | } | |
1774 | ||
1775 | ||
e0001a05 NC |
1776 | /* This function is registered as the "special_function" in the |
1777 | Xtensa howto for handling simplify operations. | |
1778 | bfd_perform_relocation / bfd_install_relocation use it to | |
1779 | perform (install) the specified relocation. Since this replaces the code | |
1780 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
1781 | stripped-down version of bfd_perform_relocation. */ | |
1782 | ||
1783 | static bfd_reloc_status_type | |
7fa3d080 BW |
1784 | bfd_elf_xtensa_reloc (bfd *abfd, |
1785 | arelent *reloc_entry, | |
1786 | asymbol *symbol, | |
1787 | void *data, | |
1788 | asection *input_section, | |
1789 | bfd *output_bfd, | |
1790 | char **error_message) | |
e0001a05 NC |
1791 | { |
1792 | bfd_vma relocation; | |
1793 | bfd_reloc_status_type flag; | |
1794 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
1795 | bfd_vma output_base = 0; | |
1796 | reloc_howto_type *howto = reloc_entry->howto; | |
1797 | asection *reloc_target_output_section; | |
1798 | bfd_boolean is_weak_undef; | |
1799 | ||
dd1a320b BW |
1800 | if (!xtensa_default_isa) |
1801 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
1802 | ||
1049f94e | 1803 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
1804 | output, and the reloc is against an external symbol, the resulting |
1805 | reloc will also be against the same symbol. In such a case, we | |
1806 | don't want to change anything about the way the reloc is handled, | |
1807 | since it will all be done at final link time. This test is similar | |
1808 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
1809 | howto->partial_inplace go through even if the addend is non-zero. | |
1810 | (The real problem is that partial_inplace is set for XTENSA_32 | |
1811 | relocs to begin with, but that's a long story and there's little we | |
1812 | can do about it now....) */ | |
1813 | ||
7fa3d080 | 1814 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
1815 | { |
1816 | reloc_entry->address += input_section->output_offset; | |
1817 | return bfd_reloc_ok; | |
1818 | } | |
1819 | ||
1820 | /* Is the address of the relocation really within the section? */ | |
07515404 | 1821 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
1822 | return bfd_reloc_outofrange; |
1823 | ||
4cc11e76 | 1824 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
1825 | initial relocation command value. */ |
1826 | ||
1827 | /* Get symbol value. (Common symbols are special.) */ | |
1828 | if (bfd_is_com_section (symbol->section)) | |
1829 | relocation = 0; | |
1830 | else | |
1831 | relocation = symbol->value; | |
1832 | ||
1833 | reloc_target_output_section = symbol->section->output_section; | |
1834 | ||
1835 | /* Convert input-section-relative symbol value to absolute. */ | |
1836 | if ((output_bfd && !howto->partial_inplace) | |
1837 | || reloc_target_output_section == NULL) | |
1838 | output_base = 0; | |
1839 | else | |
1840 | output_base = reloc_target_output_section->vma; | |
1841 | ||
1842 | relocation += output_base + symbol->section->output_offset; | |
1843 | ||
1844 | /* Add in supplied addend. */ | |
1845 | relocation += reloc_entry->addend; | |
1846 | ||
1847 | /* Here the variable relocation holds the final address of the | |
1848 | symbol we are relocating against, plus any addend. */ | |
1849 | if (output_bfd) | |
1850 | { | |
1851 | if (!howto->partial_inplace) | |
1852 | { | |
1853 | /* This is a partial relocation, and we want to apply the relocation | |
1854 | to the reloc entry rather than the raw data. Everything except | |
1855 | relocations against section symbols has already been handled | |
1856 | above. */ | |
43cd72b9 | 1857 | |
e0001a05 NC |
1858 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
1859 | reloc_entry->addend = relocation; | |
1860 | reloc_entry->address += input_section->output_offset; | |
1861 | return bfd_reloc_ok; | |
1862 | } | |
1863 | else | |
1864 | { | |
1865 | reloc_entry->address += input_section->output_offset; | |
1866 | reloc_entry->addend = 0; | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
1871 | && (symbol->flags & BSF_WEAK) != 0); | |
1872 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1873 | (bfd_byte *) data, (bfd_vma) octets, | |
1874 | is_weak_undef, error_message); | |
1875 | ||
1876 | if (flag == bfd_reloc_dangerous) | |
1877 | { | |
1878 | /* Add the symbol name to the error message. */ | |
1879 | if (! *error_message) | |
1880 | *error_message = ""; | |
1881 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
1882 | strlen (symbol->name) + 17, | |
70961b9d AM |
1883 | symbol->name, |
1884 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
1885 | } |
1886 | ||
1887 | return flag; | |
1888 | } | |
1889 | ||
1890 | ||
1891 | /* Set up an entry in the procedure linkage table. */ | |
1892 | ||
1893 | static bfd_vma | |
f0e6fdb2 | 1894 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
1895 | bfd *output_bfd, |
1896 | unsigned reloc_index) | |
e0001a05 NC |
1897 | { |
1898 | asection *splt, *sgotplt; | |
1899 | bfd_vma plt_base, got_base; | |
1900 | bfd_vma code_offset, lit_offset; | |
1901 | int chunk; | |
1902 | ||
1903 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
1904 | splt = elf_xtensa_get_plt_section (info, chunk); |
1905 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
1906 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
1907 | ||
1908 | plt_base = splt->output_section->vma + splt->output_offset; | |
1909 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
1910 | ||
1911 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
1912 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
1913 | ||
1914 | /* Fill in the literal entry. This is the offset of the dynamic | |
1915 | relocation entry. */ | |
1916 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
1917 | sgotplt->contents + lit_offset); | |
1918 | ||
1919 | /* Fill in the entry in the procedure linkage table. */ | |
1920 | memcpy (splt->contents + code_offset, | |
1921 | (bfd_big_endian (output_bfd) | |
1922 | ? elf_xtensa_be_plt_entry | |
1923 | : elf_xtensa_le_plt_entry), | |
1924 | PLT_ENTRY_SIZE); | |
1925 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
1926 | plt_base + code_offset + 3), | |
1927 | splt->contents + code_offset + 4); | |
1928 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
1929 | plt_base + code_offset + 6), | |
1930 | splt->contents + code_offset + 7); | |
1931 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
1932 | plt_base + code_offset + 9), | |
1933 | splt->contents + code_offset + 10); | |
1934 | ||
1935 | return plt_base + code_offset; | |
1936 | } | |
1937 | ||
1938 | ||
e0001a05 | 1939 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 1940 | both relocatable and final links. */ |
e0001a05 NC |
1941 | |
1942 | static bfd_boolean | |
7fa3d080 BW |
1943 | elf_xtensa_relocate_section (bfd *output_bfd, |
1944 | struct bfd_link_info *info, | |
1945 | bfd *input_bfd, | |
1946 | asection *input_section, | |
1947 | bfd_byte *contents, | |
1948 | Elf_Internal_Rela *relocs, | |
1949 | Elf_Internal_Sym *local_syms, | |
1950 | asection **local_sections) | |
e0001a05 | 1951 | { |
f0e6fdb2 | 1952 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1953 | Elf_Internal_Shdr *symtab_hdr; |
1954 | Elf_Internal_Rela *rel; | |
1955 | Elf_Internal_Rela *relend; | |
1956 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
1957 | property_table_entry *lit_table = 0; |
1958 | int ltblsize = 0; | |
e0001a05 | 1959 | char *error_message = NULL; |
43cd72b9 | 1960 | bfd_size_type input_size; |
e0001a05 | 1961 | |
43cd72b9 BW |
1962 | if (!xtensa_default_isa) |
1963 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 1964 | |
f0e6fdb2 | 1965 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
1966 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
1967 | sym_hashes = elf_sym_hashes (input_bfd); | |
1968 | ||
88d65ad6 BW |
1969 | if (elf_hash_table (info)->dynamic_sections_created) |
1970 | { | |
1971 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
1972 | &lit_table, XTENSA_LIT_SEC_NAME, |
1973 | TRUE); | |
88d65ad6 BW |
1974 | if (ltblsize < 0) |
1975 | return FALSE; | |
1976 | } | |
1977 | ||
43cd72b9 BW |
1978 | input_size = bfd_get_section_limit (input_bfd, input_section); |
1979 | ||
e0001a05 NC |
1980 | rel = relocs; |
1981 | relend = relocs + input_section->reloc_count; | |
1982 | for (; rel < relend; rel++) | |
1983 | { | |
1984 | int r_type; | |
1985 | reloc_howto_type *howto; | |
1986 | unsigned long r_symndx; | |
1987 | struct elf_link_hash_entry *h; | |
1988 | Elf_Internal_Sym *sym; | |
1989 | asection *sec; | |
1990 | bfd_vma relocation; | |
1991 | bfd_reloc_status_type r; | |
1992 | bfd_boolean is_weak_undef; | |
1993 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 1994 | bfd_boolean warned; |
e0001a05 NC |
1995 | |
1996 | r_type = ELF32_R_TYPE (rel->r_info); | |
1997 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
1998 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
1999 | continue; | |
2000 | ||
2001 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2002 | { | |
2003 | bfd_set_error (bfd_error_bad_value); | |
2004 | return FALSE; | |
2005 | } | |
2006 | howto = &elf_howto_table[r_type]; | |
2007 | ||
2008 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2009 | ||
ab96bf03 AM |
2010 | h = NULL; |
2011 | sym = NULL; | |
2012 | sec = NULL; | |
2013 | is_weak_undef = FALSE; | |
2014 | unresolved_reloc = FALSE; | |
2015 | warned = FALSE; | |
2016 | ||
2017 | if (howto->partial_inplace && !info->relocatable) | |
2018 | { | |
2019 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2020 | problems with DWARF info in partial links, there may be | |
2021 | an addend stored in the contents. Take it out of there | |
2022 | and move it back into the addend field of the reloc. */ | |
2023 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2024 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2025 | } | |
2026 | ||
2027 | if (r_symndx < symtab_hdr->sh_info) | |
2028 | { | |
2029 | sym = local_syms + r_symndx; | |
2030 | sec = local_sections[r_symndx]; | |
2031 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2032 | } | |
2033 | else | |
2034 | { | |
2035 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
2036 | r_symndx, symtab_hdr, sym_hashes, | |
2037 | h, sec, relocation, | |
2038 | unresolved_reloc, warned); | |
2039 | ||
2040 | if (relocation == 0 | |
2041 | && !unresolved_reloc | |
2042 | && h->root.type == bfd_link_hash_undefweak) | |
2043 | is_weak_undef = TRUE; | |
2044 | } | |
2045 | ||
2046 | if (sec != NULL && elf_discarded_section (sec)) | |
2047 | { | |
2048 | /* For relocs against symbols from removed linkonce sections, | |
2049 | or sections discarded by a linker script, we just want the | |
2050 | section contents zeroed. Avoid any special processing. */ | |
2051 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
2052 | rel->r_info = 0; | |
2053 | rel->r_addend = 0; | |
2054 | continue; | |
2055 | } | |
2056 | ||
1049f94e | 2057 | if (info->relocatable) |
e0001a05 | 2058 | { |
43cd72b9 | 2059 | /* This is a relocatable link. |
e0001a05 NC |
2060 | 1) If the reloc is against a section symbol, adjust |
2061 | according to the output section. | |
2062 | 2) If there is a new target for this relocation, | |
2063 | the new target will be in the same output section. | |
2064 | We adjust the relocation by the output section | |
2065 | difference. */ | |
2066 | ||
2067 | if (relaxing_section) | |
2068 | { | |
2069 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2070 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2071 | contents)) | |
2072 | return FALSE; | |
e0001a05 NC |
2073 | } |
2074 | ||
43cd72b9 | 2075 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2076 | { |
43cd72b9 | 2077 | char *error_message = NULL; |
e0001a05 NC |
2078 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2079 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2080 | r = contract_asm_expansion (contents, input_size, rel, |
2081 | &error_message); | |
2082 | if (r != bfd_reloc_ok) | |
2083 | { | |
2084 | if (!((*info->callbacks->reloc_dangerous) | |
2085 | (info, error_message, input_bfd, input_section, | |
2086 | rel->r_offset))) | |
2087 | return FALSE; | |
2088 | } | |
e0001a05 NC |
2089 | r_type = ELF32_R_TYPE (rel->r_info); |
2090 | } | |
2091 | ||
1049f94e | 2092 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2093 | anything unless the reloc is against a section symbol, |
2094 | in which case we have to adjust according to where the | |
2095 | section symbol winds up in the output section. */ | |
2096 | if (r_symndx < symtab_hdr->sh_info) | |
2097 | { | |
2098 | sym = local_syms + r_symndx; | |
2099 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2100 | { | |
2101 | sec = local_sections[r_symndx]; | |
2102 | rel->r_addend += sec->output_offset + sym->st_value; | |
2103 | } | |
2104 | } | |
2105 | ||
2106 | /* If there is an addend with a partial_inplace howto, | |
2107 | then move the addend to the contents. This is a hack | |
1049f94e | 2108 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2109 | with some previous version of BFD. Now we can't easily get |
2110 | rid of the hack without breaking backward compatibility.... */ | |
2111 | if (rel->r_addend) | |
2112 | { | |
2113 | howto = &elf_howto_table[r_type]; | |
2114 | if (howto->partial_inplace) | |
2115 | { | |
2116 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2117 | rel->r_addend, contents, | |
2118 | rel->r_offset, FALSE, | |
2119 | &error_message); | |
2120 | if (r != bfd_reloc_ok) | |
2121 | { | |
2122 | if (!((*info->callbacks->reloc_dangerous) | |
2123 | (info, error_message, input_bfd, input_section, | |
2124 | rel->r_offset))) | |
2125 | return FALSE; | |
2126 | } | |
2127 | rel->r_addend = 0; | |
2128 | } | |
2129 | } | |
2130 | ||
1049f94e | 2131 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2132 | continue; |
2133 | } | |
2134 | ||
2135 | /* This is a final link. */ | |
2136 | ||
e0001a05 NC |
2137 | if (relaxing_section) |
2138 | { | |
2139 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2140 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2141 | &relocation); | |
e0001a05 NC |
2142 | } |
2143 | ||
2144 | /* Sanity check the address. */ | |
43cd72b9 | 2145 | if (rel->r_offset >= input_size |
e0001a05 NC |
2146 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2147 | { | |
43cd72b9 BW |
2148 | (*_bfd_error_handler) |
2149 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2150 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2151 | bfd_set_error (bfd_error_bad_value); |
2152 | return FALSE; | |
2153 | } | |
2154 | ||
2155 | /* Generate dynamic relocations. */ | |
2156 | if (elf_hash_table (info)->dynamic_sections_created) | |
2157 | { | |
4608f3d9 | 2158 | bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 | 2159 | |
1bbb5f21 BW |
2160 | if (dynamic_symbol && (is_operand_relocation (r_type) |
2161 | || r_type == R_XTENSA_32_PCREL)) | |
e0001a05 | 2162 | { |
e0001a05 | 2163 | const char *name = h->root.root.string; |
1bbb5f21 BW |
2164 | error_message = |
2165 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
2166 | strlen (name) + 2, name); | |
e0001a05 NC |
2167 | if (!((*info->callbacks->reloc_dangerous) |
2168 | (info, error_message, input_bfd, input_section, | |
2169 | rel->r_offset))) | |
2170 | return FALSE; | |
d9ab3f29 | 2171 | continue; |
e0001a05 NC |
2172 | } |
2173 | else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
2174 | && (input_section->flags & SEC_ALLOC) != 0 | |
2175 | && (dynamic_symbol || info->shared)) | |
2176 | { | |
2177 | Elf_Internal_Rela outrel; | |
2178 | bfd_byte *loc; | |
2179 | asection *srel; | |
2180 | ||
2181 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
f0e6fdb2 | 2182 | srel = htab->srelplt; |
e0001a05 | 2183 | else |
f0e6fdb2 | 2184 | srel = htab->srelgot; |
e0001a05 NC |
2185 | |
2186 | BFD_ASSERT (srel != NULL); | |
2187 | ||
2188 | outrel.r_offset = | |
2189 | _bfd_elf_section_offset (output_bfd, info, | |
2190 | input_section, rel->r_offset); | |
2191 | ||
2192 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2193 | memset (&outrel, 0, sizeof outrel); | |
2194 | else | |
2195 | { | |
f0578e28 BW |
2196 | outrel.r_offset += (input_section->output_section->vma |
2197 | + input_section->output_offset); | |
e0001a05 | 2198 | |
88d65ad6 BW |
2199 | /* Complain if the relocation is in a read-only section |
2200 | and not in a literal pool. */ | |
2201 | if ((input_section->flags & SEC_READONLY) != 0 | |
2202 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2203 | outrel.r_offset)) |
88d65ad6 BW |
2204 | { |
2205 | error_message = | |
2206 | _("dynamic relocation in read-only section"); | |
2207 | if (!((*info->callbacks->reloc_dangerous) | |
2208 | (info, error_message, input_bfd, input_section, | |
2209 | rel->r_offset))) | |
2210 | return FALSE; | |
2211 | } | |
2212 | ||
e0001a05 NC |
2213 | if (dynamic_symbol) |
2214 | { | |
2215 | outrel.r_addend = rel->r_addend; | |
2216 | rel->r_addend = 0; | |
2217 | ||
2218 | if (r_type == R_XTENSA_32) | |
2219 | { | |
2220 | outrel.r_info = | |
2221 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2222 | relocation = 0; | |
2223 | } | |
2224 | else /* r_type == R_XTENSA_PLT */ | |
2225 | { | |
2226 | outrel.r_info = | |
2227 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2228 | ||
2229 | /* Create the PLT entry and set the initial | |
2230 | contents of the literal entry to the address of | |
2231 | the PLT entry. */ | |
43cd72b9 | 2232 | relocation = |
f0e6fdb2 | 2233 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2234 | srel->reloc_count); |
2235 | } | |
2236 | unresolved_reloc = FALSE; | |
2237 | } | |
2238 | else | |
2239 | { | |
2240 | /* Generate a RELATIVE relocation. */ | |
2241 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2242 | outrel.r_addend = 0; | |
2243 | } | |
2244 | } | |
2245 | ||
2246 | loc = (srel->contents | |
2247 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2248 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2249 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2250 | <= srel->size); |
e0001a05 | 2251 | } |
d9ab3f29 BW |
2252 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2253 | { | |
2254 | /* This should only happen for non-PIC code, which is not | |
2255 | supposed to be used on systems with dynamic linking. | |
2256 | Just ignore these relocations. */ | |
2257 | continue; | |
2258 | } | |
e0001a05 NC |
2259 | } |
2260 | ||
2261 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2262 | because such sections are not SEC_ALLOC and thus ld.so will | |
2263 | not process them. */ | |
2264 | if (unresolved_reloc | |
2265 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
f5385ebf | 2266 | && h->def_dynamic)) |
bf1747de BW |
2267 | { |
2268 | (*_bfd_error_handler) | |
2269 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
2270 | input_bfd, | |
2271 | input_section, | |
2272 | (long) rel->r_offset, | |
2273 | howto->name, | |
2274 | h->root.root.string); | |
2275 | return FALSE; | |
2276 | } | |
e0001a05 NC |
2277 | |
2278 | /* There's no point in calling bfd_perform_relocation here. | |
2279 | Just go directly to our "special function". */ | |
2280 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2281 | relocation + rel->r_addend, | |
2282 | contents, rel->r_offset, is_weak_undef, | |
2283 | &error_message); | |
43cd72b9 | 2284 | |
9b8c98a4 | 2285 | if (r != bfd_reloc_ok && !warned) |
e0001a05 NC |
2286 | { |
2287 | const char *name; | |
2288 | ||
43cd72b9 | 2289 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 2290 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 2291 | |
7fa3d080 | 2292 | if (h) |
e0001a05 NC |
2293 | name = h->root.root.string; |
2294 | else | |
2295 | { | |
2296 | name = bfd_elf_string_from_elf_section | |
2297 | (input_bfd, symtab_hdr->sh_link, sym->st_name); | |
2298 | if (name && *name == '\0') | |
2299 | name = bfd_section_name (input_bfd, sec); | |
2300 | } | |
2301 | if (name) | |
43cd72b9 BW |
2302 | { |
2303 | if (rel->r_addend == 0) | |
2304 | error_message = vsprint_msg (error_message, ": %s", | |
2305 | strlen (name) + 2, name); | |
2306 | else | |
2307 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", | |
2308 | strlen (name) + 22, | |
0fd3a477 | 2309 | name, (int)rel->r_addend); |
43cd72b9 BW |
2310 | } |
2311 | ||
e0001a05 NC |
2312 | if (!((*info->callbacks->reloc_dangerous) |
2313 | (info, error_message, input_bfd, input_section, | |
2314 | rel->r_offset))) | |
2315 | return FALSE; | |
2316 | } | |
2317 | } | |
2318 | ||
88d65ad6 BW |
2319 | if (lit_table) |
2320 | free (lit_table); | |
2321 | ||
3ba3bc8c BW |
2322 | input_section->reloc_done = TRUE; |
2323 | ||
e0001a05 NC |
2324 | return TRUE; |
2325 | } | |
2326 | ||
2327 | ||
2328 | /* Finish up dynamic symbol handling. There's not much to do here since | |
2329 | the PLT and GOT entries are all set up by relocate_section. */ | |
2330 | ||
2331 | static bfd_boolean | |
7fa3d080 BW |
2332 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
2333 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2334 | struct elf_link_hash_entry *h, | |
2335 | Elf_Internal_Sym *sym) | |
e0001a05 | 2336 | { |
bf1747de | 2337 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
2338 | { |
2339 | /* Mark the symbol as undefined, rather than as defined in | |
2340 | the .plt section. Leave the value alone. */ | |
2341 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
2342 | /* If the symbol is weak, we do need to clear the value. |
2343 | Otherwise, the PLT entry would provide a definition for | |
2344 | the symbol even if the symbol wasn't defined anywhere, | |
2345 | and so the symbol would never be NULL. */ | |
2346 | if (!h->ref_regular_nonweak) | |
2347 | sym->st_value = 0; | |
e0001a05 NC |
2348 | } |
2349 | ||
2350 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
2351 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
22edb2f1 | 2352 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
2353 | sym->st_shndx = SHN_ABS; |
2354 | ||
2355 | return TRUE; | |
2356 | } | |
2357 | ||
2358 | ||
2359 | /* Combine adjacent literal table entries in the output. Adjacent | |
2360 | entries within each input section may have been removed during | |
2361 | relaxation, but we repeat the process here, even though it's too late | |
2362 | to shrink the output section, because it's important to minimize the | |
2363 | number of literal table entries to reduce the start-up work for the | |
2364 | runtime linker. Returns the number of remaining table entries or -1 | |
2365 | on error. */ | |
2366 | ||
2367 | static int | |
7fa3d080 BW |
2368 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
2369 | asection *sxtlit, | |
2370 | asection *sgotloc) | |
e0001a05 | 2371 | { |
e0001a05 NC |
2372 | bfd_byte *contents; |
2373 | property_table_entry *table; | |
e901de89 | 2374 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
2375 | bfd_vma offset; |
2376 | int n, m, num; | |
2377 | ||
eea6121a | 2378 | section_size = sxtlit->size; |
e0001a05 NC |
2379 | BFD_ASSERT (section_size % 8 == 0); |
2380 | num = section_size / 8; | |
2381 | ||
eea6121a | 2382 | sgotloc_size = sgotloc->size; |
e901de89 | 2383 | if (sgotloc_size != section_size) |
b536dc1e BW |
2384 | { |
2385 | (*_bfd_error_handler) | |
43cd72b9 | 2386 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
2387 | return -1; |
2388 | } | |
e901de89 | 2389 | |
eea6121a AM |
2390 | table = bfd_malloc (num * sizeof (property_table_entry)); |
2391 | if (table == 0) | |
e0001a05 NC |
2392 | return -1; |
2393 | ||
2394 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
2395 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 2396 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 2397 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 2398 | |
eea6121a AM |
2399 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
2400 | { | |
2401 | if (contents != 0) | |
2402 | free (contents); | |
2403 | free (table); | |
2404 | return -1; | |
2405 | } | |
e0001a05 NC |
2406 | |
2407 | /* There should never be any relocations left at this point, so this | |
2408 | is quite a bit easier than what is done during relaxation. */ | |
2409 | ||
2410 | /* Copy the raw contents into a property table array and sort it. */ | |
2411 | offset = 0; | |
2412 | for (n = 0; n < num; n++) | |
2413 | { | |
2414 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
2415 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
2416 | offset += 8; | |
2417 | } | |
2418 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
2419 | ||
2420 | for (n = 0; n < num; n++) | |
2421 | { | |
2422 | bfd_boolean remove = FALSE; | |
2423 | ||
2424 | if (table[n].size == 0) | |
2425 | remove = TRUE; | |
2426 | else if (n > 0 && | |
2427 | (table[n-1].address + table[n-1].size == table[n].address)) | |
2428 | { | |
2429 | table[n-1].size += table[n].size; | |
2430 | remove = TRUE; | |
2431 | } | |
2432 | ||
2433 | if (remove) | |
2434 | { | |
2435 | for (m = n; m < num - 1; m++) | |
2436 | { | |
2437 | table[m].address = table[m+1].address; | |
2438 | table[m].size = table[m+1].size; | |
2439 | } | |
2440 | ||
2441 | n--; | |
2442 | num--; | |
2443 | } | |
2444 | } | |
2445 | ||
2446 | /* Copy the data back to the raw contents. */ | |
2447 | offset = 0; | |
2448 | for (n = 0; n < num; n++) | |
2449 | { | |
2450 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
2451 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
2452 | offset += 8; | |
2453 | } | |
2454 | ||
2455 | /* Clear the removed bytes. */ | |
2456 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 2457 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 2458 | |
e901de89 BW |
2459 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
2460 | section_size)) | |
e0001a05 NC |
2461 | return -1; |
2462 | ||
e901de89 BW |
2463 | /* Copy the contents to ".got.loc". */ |
2464 | memcpy (sgotloc->contents, contents, section_size); | |
2465 | ||
e0001a05 | 2466 | free (contents); |
b614a702 | 2467 | free (table); |
e0001a05 NC |
2468 | return num; |
2469 | } | |
2470 | ||
2471 | ||
2472 | /* Finish up the dynamic sections. */ | |
2473 | ||
2474 | static bfd_boolean | |
7fa3d080 BW |
2475 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
2476 | struct bfd_link_info *info) | |
e0001a05 | 2477 | { |
f0e6fdb2 | 2478 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 2479 | bfd *dynobj; |
e901de89 | 2480 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 2481 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 2482 | int num_xtlit_entries = 0; |
e0001a05 NC |
2483 | |
2484 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2485 | return TRUE; | |
2486 | ||
f0e6fdb2 | 2487 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
2488 | dynobj = elf_hash_table (info)->dynobj; |
2489 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2490 | BFD_ASSERT (sdyn != NULL); | |
2491 | ||
2492 | /* Set the first entry in the global offset table to the address of | |
2493 | the dynamic section. */ | |
f0e6fdb2 | 2494 | sgot = htab->sgot; |
e0001a05 NC |
2495 | if (sgot) |
2496 | { | |
eea6121a | 2497 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 2498 | if (sdyn == NULL) |
7fa3d080 | 2499 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
2500 | else |
2501 | bfd_put_32 (output_bfd, | |
2502 | sdyn->output_section->vma + sdyn->output_offset, | |
2503 | sgot->contents); | |
2504 | } | |
2505 | ||
f0e6fdb2 | 2506 | srelplt = htab->srelplt; |
7fa3d080 | 2507 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
2508 | { |
2509 | asection *sgotplt, *srelgot, *spltlittbl; | |
2510 | int chunk, plt_chunks, plt_entries; | |
2511 | Elf_Internal_Rela irela; | |
2512 | bfd_byte *loc; | |
2513 | unsigned rtld_reloc; | |
2514 | ||
f0e6fdb2 BW |
2515 | srelgot = htab->srelgot; |
2516 | spltlittbl = htab->spltlittbl; | |
2517 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
2518 | |
2519 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
2520 | of them follow immediately after.... */ | |
2521 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
2522 | { | |
2523 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2524 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2525 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
2526 | break; | |
2527 | } | |
2528 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
2529 | ||
eea6121a | 2530 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
2531 | plt_chunks = |
2532 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
2533 | ||
2534 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
2535 | { | |
2536 | int chunk_entries = 0; | |
2537 | ||
f0e6fdb2 | 2538 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
2539 | BFD_ASSERT (sgotplt != NULL); |
2540 | ||
2541 | /* Emit special RTLD relocations for the first two entries in | |
2542 | each chunk of the .got.plt section. */ | |
2543 | ||
2544 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2545 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2546 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2547 | irela.r_offset = (sgotplt->output_section->vma | |
2548 | + sgotplt->output_offset); | |
2549 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
2550 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2551 | rtld_reloc += 1; | |
2552 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2553 | ||
2554 | /* Next literal immediately follows the first. */ | |
2555 | loc += sizeof (Elf32_External_Rela); | |
2556 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2557 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2558 | irela.r_offset = (sgotplt->output_section->vma | |
2559 | + sgotplt->output_offset + 4); | |
2560 | /* Tell rtld to set value to object's link map. */ | |
2561 | irela.r_addend = 2; | |
2562 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2563 | rtld_reloc += 1; | |
2564 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2565 | ||
2566 | /* Fill in the literal table. */ | |
2567 | if (chunk < plt_chunks - 1) | |
2568 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
2569 | else | |
2570 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
2571 | ||
eea6121a | 2572 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
2573 | bfd_put_32 (output_bfd, |
2574 | sgotplt->output_section->vma + sgotplt->output_offset, | |
2575 | spltlittbl->contents + (chunk * 8) + 0); | |
2576 | bfd_put_32 (output_bfd, | |
2577 | 8 + (chunk_entries * 4), | |
2578 | spltlittbl->contents + (chunk * 8) + 4); | |
2579 | } | |
2580 | ||
2581 | /* All the dynamic relocations have been emitted at this point. | |
2582 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
2583 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
2584 | * srelgot->reloc_count) | |
2585 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
2586 | * srelplt->reloc_count)) | |
e0001a05 NC |
2587 | abort (); |
2588 | ||
2589 | /* The .xt.lit.plt section has just been modified. This must | |
2590 | happen before the code below which combines adjacent literal | |
2591 | table entries, and the .xt.lit.plt contents have to be forced to | |
2592 | the output here. */ | |
2593 | if (! bfd_set_section_contents (output_bfd, | |
2594 | spltlittbl->output_section, | |
2595 | spltlittbl->contents, | |
2596 | spltlittbl->output_offset, | |
eea6121a | 2597 | spltlittbl->size)) |
e0001a05 NC |
2598 | return FALSE; |
2599 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
2600 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
2601 | } | |
2602 | ||
2603 | /* Combine adjacent literal table entries. */ | |
1049f94e | 2604 | BFD_ASSERT (! info->relocatable); |
e901de89 | 2605 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 2606 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
2607 | BFD_ASSERT (sgotloc); |
2608 | if (sxtlit) | |
2609 | { | |
2610 | num_xtlit_entries = | |
2611 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
2612 | if (num_xtlit_entries < 0) | |
2613 | return FALSE; | |
2614 | } | |
e0001a05 NC |
2615 | |
2616 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 2617 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
2618 | for (; dyncon < dynconend; dyncon++) |
2619 | { | |
2620 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
2621 | |
2622 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
2623 | ||
2624 | switch (dyn.d_tag) | |
2625 | { | |
2626 | default: | |
2627 | break; | |
2628 | ||
2629 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
2630 | dyn.d_un.d_val = num_xtlit_entries; |
2631 | break; | |
2632 | ||
2633 | case DT_XTENSA_GOT_LOC_OFF: | |
e29297b7 | 2634 | dyn.d_un.d_ptr = htab->sgotloc->output_section->vma; |
f0e6fdb2 BW |
2635 | break; |
2636 | ||
e0001a05 | 2637 | case DT_PLTGOT: |
e29297b7 | 2638 | dyn.d_un.d_ptr = htab->sgot->output_section->vma; |
f0e6fdb2 BW |
2639 | break; |
2640 | ||
e0001a05 | 2641 | case DT_JMPREL: |
e29297b7 | 2642 | dyn.d_un.d_ptr = htab->srelplt->output_section->vma; |
e0001a05 NC |
2643 | break; |
2644 | ||
2645 | case DT_PLTRELSZ: | |
e29297b7 | 2646 | dyn.d_un.d_val = htab->srelplt->output_section->size; |
e0001a05 NC |
2647 | break; |
2648 | ||
2649 | case DT_RELASZ: | |
2650 | /* Adjust RELASZ to not include JMPREL. This matches what | |
2651 | glibc expects and what is done for several other ELF | |
2652 | targets (e.g., i386, alpha), but the "correct" behavior | |
2653 | seems to be unresolved. Since the linker script arranges | |
2654 | for .rela.plt to follow all other relocation sections, we | |
2655 | don't have to worry about changing the DT_RELA entry. */ | |
f0e6fdb2 | 2656 | if (htab->srelplt) |
e29297b7 | 2657 | dyn.d_un.d_val -= htab->srelplt->output_section->size; |
e0001a05 NC |
2658 | break; |
2659 | } | |
2660 | ||
2661 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2662 | } | |
2663 | ||
2664 | return TRUE; | |
2665 | } | |
2666 | ||
2667 | \f | |
2668 | /* Functions for dealing with the e_flags field. */ | |
2669 | ||
2670 | /* Merge backend specific data from an object file to the output | |
2671 | object file when linking. */ | |
2672 | ||
2673 | static bfd_boolean | |
7fa3d080 | 2674 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
2675 | { |
2676 | unsigned out_mach, in_mach; | |
2677 | flagword out_flag, in_flag; | |
2678 | ||
2679 | /* Check if we have the same endianess. */ | |
2680 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
2681 | return FALSE; | |
2682 | ||
2683 | /* Don't even pretend to support mixed-format linking. */ | |
2684 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2685 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2686 | return FALSE; | |
2687 | ||
2688 | out_flag = elf_elfheader (obfd)->e_flags; | |
2689 | in_flag = elf_elfheader (ibfd)->e_flags; | |
2690 | ||
2691 | out_mach = out_flag & EF_XTENSA_MACH; | |
2692 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 2693 | if (out_mach != in_mach) |
e0001a05 NC |
2694 | { |
2695 | (*_bfd_error_handler) | |
43cd72b9 | 2696 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 2697 | ibfd, out_mach, in_mach); |
e0001a05 NC |
2698 | bfd_set_error (bfd_error_wrong_format); |
2699 | return FALSE; | |
2700 | } | |
2701 | ||
2702 | if (! elf_flags_init (obfd)) | |
2703 | { | |
2704 | elf_flags_init (obfd) = TRUE; | |
2705 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 2706 | |
e0001a05 NC |
2707 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
2708 | && bfd_get_arch_info (obfd)->the_default) | |
2709 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
2710 | bfd_get_mach (ibfd)); | |
43cd72b9 | 2711 | |
e0001a05 NC |
2712 | return TRUE; |
2713 | } | |
2714 | ||
43cd72b9 BW |
2715 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
2716 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
e0001a05 | 2717 | |
43cd72b9 BW |
2718 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
2719 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
e0001a05 NC |
2720 | |
2721 | return TRUE; | |
2722 | } | |
2723 | ||
2724 | ||
2725 | static bfd_boolean | |
7fa3d080 | 2726 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
2727 | { |
2728 | BFD_ASSERT (!elf_flags_init (abfd) | |
2729 | || elf_elfheader (abfd)->e_flags == flags); | |
2730 | ||
2731 | elf_elfheader (abfd)->e_flags |= flags; | |
2732 | elf_flags_init (abfd) = TRUE; | |
2733 | ||
2734 | return TRUE; | |
2735 | } | |
2736 | ||
2737 | ||
e0001a05 | 2738 | static bfd_boolean |
7fa3d080 | 2739 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
2740 | { |
2741 | FILE *f = (FILE *) farg; | |
2742 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
2743 | ||
2744 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 2745 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
2746 | fprintf (f, "\nMachine = Base\n"); |
2747 | else | |
2748 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
2749 | ||
2750 | fprintf (f, "Insn tables = %s\n", | |
2751 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
2752 | ||
2753 | fprintf (f, "Literal tables = %s\n", | |
2754 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
2755 | ||
2756 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
2757 | } | |
2758 | ||
2759 | ||
2760 | /* Set the right machine number for an Xtensa ELF file. */ | |
2761 | ||
2762 | static bfd_boolean | |
7fa3d080 | 2763 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
2764 | { |
2765 | int mach; | |
2766 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
2767 | ||
2768 | switch (arch) | |
2769 | { | |
2770 | case E_XTENSA_MACH: | |
2771 | mach = bfd_mach_xtensa; | |
2772 | break; | |
2773 | default: | |
2774 | return FALSE; | |
2775 | } | |
2776 | ||
2777 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
2778 | return TRUE; | |
2779 | } | |
2780 | ||
2781 | ||
2782 | /* The final processing done just before writing out an Xtensa ELF object | |
2783 | file. This gets the Xtensa architecture right based on the machine | |
2784 | number. */ | |
2785 | ||
2786 | static void | |
7fa3d080 BW |
2787 | elf_xtensa_final_write_processing (bfd *abfd, |
2788 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
2789 | { |
2790 | int mach; | |
2791 | unsigned long val; | |
2792 | ||
2793 | switch (mach = bfd_get_mach (abfd)) | |
2794 | { | |
2795 | case bfd_mach_xtensa: | |
2796 | val = E_XTENSA_MACH; | |
2797 | break; | |
2798 | default: | |
2799 | return; | |
2800 | } | |
2801 | ||
2802 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
2803 | elf_elfheader (abfd)->e_flags |= val; | |
2804 | } | |
2805 | ||
2806 | ||
2807 | static enum elf_reloc_type_class | |
7fa3d080 | 2808 | elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela) |
e0001a05 NC |
2809 | { |
2810 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
2811 | { | |
2812 | case R_XTENSA_RELATIVE: | |
2813 | return reloc_class_relative; | |
2814 | case R_XTENSA_JMP_SLOT: | |
2815 | return reloc_class_plt; | |
2816 | default: | |
2817 | return reloc_class_normal; | |
2818 | } | |
2819 | } | |
2820 | ||
2821 | \f | |
2822 | static bfd_boolean | |
7fa3d080 BW |
2823 | elf_xtensa_discard_info_for_section (bfd *abfd, |
2824 | struct elf_reloc_cookie *cookie, | |
2825 | struct bfd_link_info *info, | |
2826 | asection *sec) | |
e0001a05 NC |
2827 | { |
2828 | bfd_byte *contents; | |
e0001a05 | 2829 | bfd_vma offset, actual_offset; |
1d25768e BW |
2830 | bfd_size_type removed_bytes = 0; |
2831 | bfd_size_type entry_size; | |
e0001a05 NC |
2832 | |
2833 | if (sec->output_section | |
2834 | && bfd_is_abs_section (sec->output_section)) | |
2835 | return FALSE; | |
2836 | ||
1d25768e BW |
2837 | if (xtensa_is_proptable_section (sec)) |
2838 | entry_size = 12; | |
2839 | else | |
2840 | entry_size = 8; | |
2841 | ||
a3ef2d63 | 2842 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
2843 | return FALSE; |
2844 | ||
e0001a05 NC |
2845 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
2846 | if (!contents) | |
2847 | return FALSE; | |
2848 | ||
2849 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
2850 | if (!cookie->rels) | |
2851 | { | |
2852 | release_contents (sec, contents); | |
2853 | return FALSE; | |
2854 | } | |
2855 | ||
1d25768e BW |
2856 | /* Sort the relocations. They should already be in order when |
2857 | relaxation is enabled, but it might not be. */ | |
2858 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
2859 | internal_reloc_compare); | |
2860 | ||
e0001a05 NC |
2861 | cookie->rel = cookie->rels; |
2862 | cookie->relend = cookie->rels + sec->reloc_count; | |
2863 | ||
a3ef2d63 | 2864 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
2865 | { |
2866 | actual_offset = offset - removed_bytes; | |
2867 | ||
2868 | /* The ...symbol_deleted_p function will skip over relocs but it | |
2869 | won't adjust their offsets, so do that here. */ | |
2870 | while (cookie->rel < cookie->relend | |
2871 | && cookie->rel->r_offset < offset) | |
2872 | { | |
2873 | cookie->rel->r_offset -= removed_bytes; | |
2874 | cookie->rel++; | |
2875 | } | |
2876 | ||
2877 | while (cookie->rel < cookie->relend | |
2878 | && cookie->rel->r_offset == offset) | |
2879 | { | |
c152c796 | 2880 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
2881 | { |
2882 | /* Remove the table entry. (If the reloc type is NONE, then | |
2883 | the entry has already been merged with another and deleted | |
2884 | during relaxation.) */ | |
2885 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
2886 | { | |
2887 | /* Shift the contents up. */ | |
a3ef2d63 | 2888 | if (offset + entry_size < sec->size) |
e0001a05 | 2889 | memmove (&contents[actual_offset], |
1d25768e | 2890 | &contents[actual_offset + entry_size], |
a3ef2d63 | 2891 | sec->size - offset - entry_size); |
1d25768e | 2892 | removed_bytes += entry_size; |
e0001a05 NC |
2893 | } |
2894 | ||
2895 | /* Remove this relocation. */ | |
2896 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
2897 | } | |
2898 | ||
2899 | /* Adjust the relocation offset for previous removals. This | |
2900 | should not be done before calling ...symbol_deleted_p | |
2901 | because it might mess up the offset comparisons there. | |
2902 | Make sure the offset doesn't underflow in the case where | |
2903 | the first entry is removed. */ | |
2904 | if (cookie->rel->r_offset >= removed_bytes) | |
2905 | cookie->rel->r_offset -= removed_bytes; | |
2906 | else | |
2907 | cookie->rel->r_offset = 0; | |
2908 | ||
2909 | cookie->rel++; | |
2910 | } | |
2911 | } | |
2912 | ||
2913 | if (removed_bytes != 0) | |
2914 | { | |
2915 | /* Adjust any remaining relocs (shouldn't be any). */ | |
2916 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
2917 | { | |
2918 | if (cookie->rel->r_offset >= removed_bytes) | |
2919 | cookie->rel->r_offset -= removed_bytes; | |
2920 | else | |
2921 | cookie->rel->r_offset = 0; | |
2922 | } | |
2923 | ||
2924 | /* Clear the removed bytes. */ | |
a3ef2d63 | 2925 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
2926 | |
2927 | pin_contents (sec, contents); | |
2928 | pin_internal_relocs (sec, cookie->rels); | |
2929 | ||
eea6121a | 2930 | /* Shrink size. */ |
a3ef2d63 BW |
2931 | if (sec->rawsize == 0) |
2932 | sec->rawsize = sec->size; | |
2933 | sec->size -= removed_bytes; | |
b536dc1e BW |
2934 | |
2935 | if (xtensa_is_littable_section (sec)) | |
2936 | { | |
f0e6fdb2 BW |
2937 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
2938 | if (sgotloc) | |
2939 | sgotloc->size -= removed_bytes; | |
b536dc1e | 2940 | } |
e0001a05 NC |
2941 | } |
2942 | else | |
2943 | { | |
2944 | release_contents (sec, contents); | |
2945 | release_internal_relocs (sec, cookie->rels); | |
2946 | } | |
2947 | ||
2948 | return (removed_bytes != 0); | |
2949 | } | |
2950 | ||
2951 | ||
2952 | static bfd_boolean | |
7fa3d080 BW |
2953 | elf_xtensa_discard_info (bfd *abfd, |
2954 | struct elf_reloc_cookie *cookie, | |
2955 | struct bfd_link_info *info) | |
e0001a05 NC |
2956 | { |
2957 | asection *sec; | |
2958 | bfd_boolean changed = FALSE; | |
2959 | ||
2960 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
2961 | { | |
2962 | if (xtensa_is_property_section (sec)) | |
2963 | { | |
2964 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
2965 | changed = TRUE; | |
2966 | } | |
2967 | } | |
2968 | ||
2969 | return changed; | |
2970 | } | |
2971 | ||
2972 | ||
2973 | static bfd_boolean | |
7fa3d080 | 2974 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
2975 | { |
2976 | return xtensa_is_property_section (sec); | |
2977 | } | |
2978 | ||
a77dc2cc BW |
2979 | |
2980 | static unsigned int | |
2981 | elf_xtensa_action_discarded (asection *sec) | |
2982 | { | |
2983 | if (strcmp (".xt_except_table", sec->name) == 0) | |
2984 | return 0; | |
2985 | ||
2986 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
2987 | return 0; | |
2988 | ||
2989 | return _bfd_elf_default_action_discarded (sec); | |
2990 | } | |
2991 | ||
e0001a05 NC |
2992 | \f |
2993 | /* Support for core dump NOTE sections. */ | |
2994 | ||
2995 | static bfd_boolean | |
7fa3d080 | 2996 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
2997 | { |
2998 | int offset; | |
eea6121a | 2999 | unsigned int size; |
e0001a05 NC |
3000 | |
3001 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3002 | based on the size. Just assume this is GNU/Linux. */ | |
3003 | ||
3004 | /* pr_cursig */ | |
3005 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
3006 | ||
3007 | /* pr_pid */ | |
3008 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
3009 | ||
3010 | /* pr_reg */ | |
3011 | offset = 72; | |
eea6121a | 3012 | size = note->descsz - offset - 4; |
e0001a05 NC |
3013 | |
3014 | /* Make a ".reg/999" section. */ | |
3015 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3016 | size, note->descpos + offset); |
e0001a05 NC |
3017 | } |
3018 | ||
3019 | ||
3020 | static bfd_boolean | |
7fa3d080 | 3021 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3022 | { |
3023 | switch (note->descsz) | |
3024 | { | |
3025 | default: | |
3026 | return FALSE; | |
3027 | ||
3028 | case 128: /* GNU/Linux elf_prpsinfo */ | |
3029 | elf_tdata (abfd)->core_program | |
3030 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
3031 | elf_tdata (abfd)->core_command | |
3032 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
3033 | } | |
3034 | ||
3035 | /* Note that for some reason, a spurious space is tacked | |
3036 | onto the end of the args in some (at least one anyway) | |
3037 | implementations, so strip it off if it exists. */ | |
3038 | ||
3039 | { | |
3040 | char *command = elf_tdata (abfd)->core_command; | |
3041 | int n = strlen (command); | |
3042 | ||
3043 | if (0 < n && command[n - 1] == ' ') | |
3044 | command[n - 1] = '\0'; | |
3045 | } | |
3046 | ||
3047 | return TRUE; | |
3048 | } | |
3049 | ||
3050 | \f | |
3051 | /* Generic Xtensa configurability stuff. */ | |
3052 | ||
3053 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3054 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3055 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3056 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3057 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3058 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3059 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3060 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3061 | ||
3062 | static void | |
7fa3d080 | 3063 | init_call_opcodes (void) |
e0001a05 NC |
3064 | { |
3065 | if (callx0_op == XTENSA_UNDEFINED) | |
3066 | { | |
3067 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3068 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3069 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3070 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3071 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3072 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3073 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3074 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3075 | } | |
3076 | } | |
3077 | ||
3078 | ||
3079 | static bfd_boolean | |
7fa3d080 | 3080 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3081 | { |
3082 | init_call_opcodes (); | |
3083 | return (opcode == callx0_op | |
3084 | || opcode == callx4_op | |
3085 | || opcode == callx8_op | |
3086 | || opcode == callx12_op); | |
3087 | } | |
3088 | ||
3089 | ||
3090 | static bfd_boolean | |
7fa3d080 | 3091 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3092 | { |
3093 | init_call_opcodes (); | |
3094 | return (opcode == call0_op | |
3095 | || opcode == call4_op | |
3096 | || opcode == call8_op | |
3097 | || opcode == call12_op); | |
3098 | } | |
3099 | ||
3100 | ||
3101 | static bfd_boolean | |
7fa3d080 | 3102 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3103 | { |
3104 | init_call_opcodes (); | |
3105 | return (opcode == call4_op | |
3106 | || opcode == call8_op | |
3107 | || opcode == call12_op | |
3108 | || opcode == callx4_op | |
3109 | || opcode == callx8_op | |
3110 | || opcode == callx12_op); | |
3111 | } | |
3112 | ||
3113 | ||
43cd72b9 BW |
3114 | static xtensa_opcode |
3115 | get_const16_opcode (void) | |
3116 | { | |
3117 | static bfd_boolean done_lookup = FALSE; | |
3118 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3119 | if (!done_lookup) | |
3120 | { | |
3121 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3122 | done_lookup = TRUE; | |
3123 | } | |
3124 | return const16_opcode; | |
3125 | } | |
3126 | ||
3127 | ||
e0001a05 NC |
3128 | static xtensa_opcode |
3129 | get_l32r_opcode (void) | |
3130 | { | |
3131 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3132 | static bfd_boolean done_lookup = FALSE; |
3133 | ||
3134 | if (!done_lookup) | |
e0001a05 NC |
3135 | { |
3136 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3137 | done_lookup = TRUE; |
e0001a05 NC |
3138 | } |
3139 | return l32r_opcode; | |
3140 | } | |
3141 | ||
3142 | ||
3143 | static bfd_vma | |
7fa3d080 | 3144 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3145 | { |
3146 | bfd_vma offset; | |
3147 | ||
3148 | offset = addr - ((pc+3) & -4); | |
3149 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3150 | offset = (signed int) offset >> 2; | |
3151 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3152 | return offset; | |
3153 | } | |
3154 | ||
3155 | ||
e0001a05 | 3156 | static int |
7fa3d080 | 3157 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3158 | { |
43cd72b9 BW |
3159 | xtensa_isa isa = xtensa_default_isa; |
3160 | int last_immed, last_opnd, opi; | |
3161 | ||
3162 | if (opcode == XTENSA_UNDEFINED) | |
3163 | return XTENSA_UNDEFINED; | |
3164 | ||
3165 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3166 | If there are no PC-relative immediates, then choose the last visible | |
3167 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3168 | last_immed = XTENSA_UNDEFINED; | |
3169 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3170 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3171 | { | |
3172 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3173 | continue; | |
3174 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3175 | { | |
3176 | last_immed = opi; | |
3177 | break; | |
3178 | } | |
3179 | if (last_immed == XTENSA_UNDEFINED | |
3180 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3181 | last_immed = opi; | |
3182 | } | |
3183 | if (last_immed < 0) | |
3184 | return XTENSA_UNDEFINED; | |
3185 | ||
3186 | /* If the operand number was specified in an old-style relocation, | |
3187 | check for consistency with the operand computed above. */ | |
3188 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3189 | { | |
3190 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3191 | if (reloc_opnd != last_immed) | |
3192 | return XTENSA_UNDEFINED; | |
3193 | } | |
3194 | ||
3195 | return last_immed; | |
3196 | } | |
3197 | ||
3198 | ||
3199 | int | |
7fa3d080 | 3200 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3201 | { |
3202 | switch (r_type) | |
3203 | { | |
3204 | case R_XTENSA_OP0: | |
3205 | case R_XTENSA_OP1: | |
3206 | case R_XTENSA_OP2: | |
3207 | return 0; | |
3208 | ||
3209 | default: | |
3210 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3211 | return r_type - R_XTENSA_SLOT0_OP; | |
3212 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3213 | return r_type - R_XTENSA_SLOT0_ALT; | |
3214 | break; | |
3215 | } | |
3216 | ||
3217 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
3218 | } |
3219 | ||
3220 | ||
3221 | /* Get the opcode for a relocation. */ | |
3222 | ||
3223 | static xtensa_opcode | |
7fa3d080 BW |
3224 | get_relocation_opcode (bfd *abfd, |
3225 | asection *sec, | |
3226 | bfd_byte *contents, | |
3227 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3228 | { |
3229 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 3230 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 3231 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3232 | xtensa_format fmt; |
3233 | int slot; | |
e0001a05 NC |
3234 | |
3235 | if (contents == NULL) | |
3236 | return XTENSA_UNDEFINED; | |
3237 | ||
43cd72b9 | 3238 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
3239 | return XTENSA_UNDEFINED; |
3240 | ||
3241 | if (ibuff == NULL) | |
43cd72b9 BW |
3242 | { |
3243 | ibuff = xtensa_insnbuf_alloc (isa); | |
3244 | sbuff = xtensa_insnbuf_alloc (isa); | |
3245 | } | |
3246 | ||
e0001a05 | 3247 | /* Decode the instruction. */ |
43cd72b9 BW |
3248 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
3249 | sec->size - irel->r_offset); | |
3250 | fmt = xtensa_format_decode (isa, ibuff); | |
3251 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
3252 | if (slot == XTENSA_UNDEFINED) | |
3253 | return XTENSA_UNDEFINED; | |
3254 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
3255 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
3256 | } |
3257 | ||
3258 | ||
3259 | bfd_boolean | |
7fa3d080 BW |
3260 | is_l32r_relocation (bfd *abfd, |
3261 | asection *sec, | |
3262 | bfd_byte *contents, | |
3263 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3264 | { |
3265 | xtensa_opcode opcode; | |
43cd72b9 | 3266 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 3267 | return FALSE; |
43cd72b9 | 3268 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
3269 | return (opcode == get_l32r_opcode ()); |
3270 | } | |
3271 | ||
e0001a05 | 3272 | |
43cd72b9 | 3273 | static bfd_size_type |
7fa3d080 BW |
3274 | get_asm_simplify_size (bfd_byte *contents, |
3275 | bfd_size_type content_len, | |
3276 | bfd_size_type offset) | |
e0001a05 | 3277 | { |
43cd72b9 | 3278 | bfd_size_type insnlen, size = 0; |
e0001a05 | 3279 | |
43cd72b9 BW |
3280 | /* Decode the size of the next two instructions. */ |
3281 | insnlen = insn_decode_len (contents, content_len, offset); | |
3282 | if (insnlen == 0) | |
3283 | return 0; | |
e0001a05 | 3284 | |
43cd72b9 | 3285 | size += insnlen; |
e0001a05 | 3286 | |
43cd72b9 BW |
3287 | insnlen = insn_decode_len (contents, content_len, offset + size); |
3288 | if (insnlen == 0) | |
3289 | return 0; | |
e0001a05 | 3290 | |
43cd72b9 BW |
3291 | size += insnlen; |
3292 | return size; | |
3293 | } | |
e0001a05 | 3294 | |
43cd72b9 BW |
3295 | |
3296 | bfd_boolean | |
7fa3d080 | 3297 | is_alt_relocation (int r_type) |
43cd72b9 BW |
3298 | { |
3299 | return (r_type >= R_XTENSA_SLOT0_ALT | |
3300 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
3301 | } |
3302 | ||
3303 | ||
43cd72b9 | 3304 | bfd_boolean |
7fa3d080 | 3305 | is_operand_relocation (int r_type) |
e0001a05 | 3306 | { |
43cd72b9 BW |
3307 | switch (r_type) |
3308 | { | |
3309 | case R_XTENSA_OP0: | |
3310 | case R_XTENSA_OP1: | |
3311 | case R_XTENSA_OP2: | |
3312 | return TRUE; | |
e0001a05 | 3313 | |
43cd72b9 BW |
3314 | default: |
3315 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3316 | return TRUE; | |
3317 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3318 | return TRUE; | |
3319 | break; | |
3320 | } | |
e0001a05 | 3321 | |
43cd72b9 | 3322 | return FALSE; |
e0001a05 NC |
3323 | } |
3324 | ||
43cd72b9 BW |
3325 | |
3326 | #define MIN_INSN_LENGTH 2 | |
e0001a05 | 3327 | |
43cd72b9 BW |
3328 | /* Return 0 if it fails to decode. */ |
3329 | ||
3330 | bfd_size_type | |
7fa3d080 BW |
3331 | insn_decode_len (bfd_byte *contents, |
3332 | bfd_size_type content_len, | |
3333 | bfd_size_type offset) | |
e0001a05 | 3334 | { |
43cd72b9 BW |
3335 | int insn_len; |
3336 | xtensa_isa isa = xtensa_default_isa; | |
3337 | xtensa_format fmt; | |
3338 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 3339 | |
43cd72b9 BW |
3340 | if (offset + MIN_INSN_LENGTH > content_len) |
3341 | return 0; | |
e0001a05 | 3342 | |
43cd72b9 BW |
3343 | if (ibuff == NULL) |
3344 | ibuff = xtensa_insnbuf_alloc (isa); | |
3345 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
3346 | content_len - offset); | |
3347 | fmt = xtensa_format_decode (isa, ibuff); | |
3348 | if (fmt == XTENSA_UNDEFINED) | |
3349 | return 0; | |
3350 | insn_len = xtensa_format_length (isa, fmt); | |
3351 | if (insn_len == XTENSA_UNDEFINED) | |
3352 | return 0; | |
3353 | return insn_len; | |
e0001a05 NC |
3354 | } |
3355 | ||
3356 | ||
43cd72b9 BW |
3357 | /* Decode the opcode for a single slot instruction. |
3358 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 3359 | |
43cd72b9 | 3360 | xtensa_opcode |
7fa3d080 BW |
3361 | insn_decode_opcode (bfd_byte *contents, |
3362 | bfd_size_type content_len, | |
3363 | bfd_size_type offset, | |
3364 | int slot) | |
e0001a05 | 3365 | { |
e0001a05 | 3366 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3367 | xtensa_format fmt; |
3368 | static xtensa_insnbuf insnbuf = NULL; | |
3369 | static xtensa_insnbuf slotbuf = NULL; | |
3370 | ||
3371 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
3372 | return XTENSA_UNDEFINED; |
3373 | ||
3374 | if (insnbuf == NULL) | |
43cd72b9 BW |
3375 | { |
3376 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3377 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3378 | } | |
3379 | ||
3380 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3381 | content_len - offset); | |
3382 | fmt = xtensa_format_decode (isa, insnbuf); | |
3383 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 3384 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
3385 | |
3386 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 3387 | return XTENSA_UNDEFINED; |
e0001a05 | 3388 | |
43cd72b9 BW |
3389 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
3390 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
3391 | } | |
e0001a05 | 3392 | |
e0001a05 | 3393 | |
43cd72b9 BW |
3394 | /* The offset is the offset in the contents. |
3395 | The address is the address of that offset. */ | |
e0001a05 | 3396 | |
43cd72b9 | 3397 | static bfd_boolean |
7fa3d080 BW |
3398 | check_branch_target_aligned (bfd_byte *contents, |
3399 | bfd_size_type content_length, | |
3400 | bfd_vma offset, | |
3401 | bfd_vma address) | |
43cd72b9 BW |
3402 | { |
3403 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
3404 | if (insn_len == 0) | |
3405 | return FALSE; | |
3406 | return check_branch_target_aligned_address (address, insn_len); | |
3407 | } | |
e0001a05 | 3408 | |
e0001a05 | 3409 | |
43cd72b9 | 3410 | static bfd_boolean |
7fa3d080 BW |
3411 | check_loop_aligned (bfd_byte *contents, |
3412 | bfd_size_type content_length, | |
3413 | bfd_vma offset, | |
3414 | bfd_vma address) | |
e0001a05 | 3415 | { |
43cd72b9 | 3416 | bfd_size_type loop_len, insn_len; |
64b607e6 | 3417 | xtensa_opcode opcode; |
e0001a05 | 3418 | |
64b607e6 BW |
3419 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
3420 | if (opcode == XTENSA_UNDEFINED | |
3421 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
3422 | { | |
3423 | BFD_ASSERT (FALSE); | |
3424 | return FALSE; | |
3425 | } | |
3426 | ||
43cd72b9 | 3427 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 3428 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
3429 | if (loop_len == 0 || insn_len == 0) |
3430 | { | |
3431 | BFD_ASSERT (FALSE); | |
3432 | return FALSE; | |
3433 | } | |
e0001a05 | 3434 | |
43cd72b9 BW |
3435 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
3436 | } | |
e0001a05 | 3437 | |
e0001a05 NC |
3438 | |
3439 | static bfd_boolean | |
7fa3d080 | 3440 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 3441 | { |
43cd72b9 BW |
3442 | if (len == 8) |
3443 | return (addr % 8 == 0); | |
3444 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
3445 | } |
3446 | ||
43cd72b9 BW |
3447 | \f |
3448 | /* Instruction widening and narrowing. */ | |
e0001a05 | 3449 | |
7fa3d080 BW |
3450 | /* When FLIX is available we need to access certain instructions only |
3451 | when they are 16-bit or 24-bit instructions. This table caches | |
3452 | information about such instructions by walking through all the | |
3453 | opcodes and finding the smallest single-slot format into which each | |
3454 | can be encoded. */ | |
3455 | ||
3456 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
3457 | |
3458 | ||
7fa3d080 BW |
3459 | static void |
3460 | init_op_single_format_table (void) | |
e0001a05 | 3461 | { |
7fa3d080 BW |
3462 | xtensa_isa isa = xtensa_default_isa; |
3463 | xtensa_insnbuf ibuf; | |
3464 | xtensa_opcode opcode; | |
3465 | xtensa_format fmt; | |
3466 | int num_opcodes; | |
3467 | ||
3468 | if (op_single_fmt_table) | |
3469 | return; | |
3470 | ||
3471 | ibuf = xtensa_insnbuf_alloc (isa); | |
3472 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
3473 | ||
3474 | op_single_fmt_table = (xtensa_format *) | |
3475 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
3476 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
3477 | { | |
3478 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
3479 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
3480 | { | |
3481 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
3482 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
3483 | { | |
3484 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
3485 | int fmt_length = xtensa_format_length (isa, fmt); | |
3486 | if (old_fmt == XTENSA_UNDEFINED | |
3487 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
3488 | op_single_fmt_table[opcode] = fmt; | |
3489 | } | |
3490 | } | |
3491 | } | |
3492 | xtensa_insnbuf_free (isa, ibuf); | |
3493 | } | |
3494 | ||
3495 | ||
3496 | static xtensa_format | |
3497 | get_single_format (xtensa_opcode opcode) | |
3498 | { | |
3499 | init_op_single_format_table (); | |
3500 | return op_single_fmt_table[opcode]; | |
3501 | } | |
e0001a05 | 3502 | |
e0001a05 | 3503 | |
43cd72b9 BW |
3504 | /* For the set of narrowable instructions we do NOT include the |
3505 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
3506 | involved during linker relaxation that may require these to | |
3507 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
3508 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 3509 | |
7fa3d080 BW |
3510 | struct string_pair |
3511 | { | |
3512 | const char *wide; | |
3513 | const char *narrow; | |
3514 | }; | |
3515 | ||
43cd72b9 | 3516 | struct string_pair narrowable[] = |
e0001a05 | 3517 | { |
43cd72b9 BW |
3518 | { "add", "add.n" }, |
3519 | { "addi", "addi.n" }, | |
3520 | { "addmi", "addi.n" }, | |
3521 | { "l32i", "l32i.n" }, | |
3522 | { "movi", "movi.n" }, | |
3523 | { "ret", "ret.n" }, | |
3524 | { "retw", "retw.n" }, | |
3525 | { "s32i", "s32i.n" }, | |
3526 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3527 | }; | |
e0001a05 | 3528 | |
43cd72b9 | 3529 | struct string_pair widenable[] = |
e0001a05 | 3530 | { |
43cd72b9 BW |
3531 | { "add", "add.n" }, |
3532 | { "addi", "addi.n" }, | |
3533 | { "addmi", "addi.n" }, | |
3534 | { "beqz", "beqz.n" }, | |
3535 | { "bnez", "bnez.n" }, | |
3536 | { "l32i", "l32i.n" }, | |
3537 | { "movi", "movi.n" }, | |
3538 | { "ret", "ret.n" }, | |
3539 | { "retw", "retw.n" }, | |
3540 | { "s32i", "s32i.n" }, | |
3541 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3542 | }; | |
e0001a05 NC |
3543 | |
3544 | ||
64b607e6 BW |
3545 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
3546 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
3547 | return the instruction buffer holding the narrow instruction. Otherwise, | |
3548 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
3549 | but require some special case operand checks in some cases. */ |
3550 | ||
64b607e6 BW |
3551 | static xtensa_insnbuf |
3552 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
3553 | xtensa_format fmt, | |
3554 | xtensa_opcode opcode) | |
e0001a05 | 3555 | { |
43cd72b9 | 3556 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
3557 | xtensa_format o_fmt; |
3558 | unsigned opi; | |
e0001a05 | 3559 | |
43cd72b9 BW |
3560 | static xtensa_insnbuf o_insnbuf = NULL; |
3561 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 3562 | |
64b607e6 | 3563 | if (o_insnbuf == NULL) |
43cd72b9 | 3564 | { |
43cd72b9 BW |
3565 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
3566 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3567 | } | |
e0001a05 | 3568 | |
64b607e6 | 3569 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
3570 | { |
3571 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 3572 | |
43cd72b9 BW |
3573 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
3574 | { | |
3575 | uint32 value, newval; | |
3576 | int i, operand_count, o_operand_count; | |
3577 | xtensa_opcode o_opcode; | |
e0001a05 | 3578 | |
43cd72b9 BW |
3579 | /* Address does not matter in this case. We might need to |
3580 | fix it to handle branches/jumps. */ | |
3581 | bfd_vma self_address = 0; | |
e0001a05 | 3582 | |
43cd72b9 BW |
3583 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
3584 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 3585 | return 0; |
43cd72b9 BW |
3586 | o_fmt = get_single_format (o_opcode); |
3587 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 3588 | return 0; |
e0001a05 | 3589 | |
43cd72b9 BW |
3590 | if (xtensa_format_length (isa, fmt) != 3 |
3591 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 3592 | return 0; |
e0001a05 | 3593 | |
43cd72b9 BW |
3594 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3595 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3596 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 3597 | |
43cd72b9 | 3598 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 3599 | return 0; |
e0001a05 | 3600 | |
43cd72b9 BW |
3601 | if (!is_or) |
3602 | { | |
3603 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 3604 | return 0; |
43cd72b9 BW |
3605 | } |
3606 | else | |
3607 | { | |
3608 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 3609 | |
64b607e6 BW |
3610 | if (o_operand_count + 1 != operand_count |
3611 | || xtensa_operand_get_field (isa, opcode, 0, | |
3612 | fmt, 0, slotbuf, &rawval0) != 0 | |
3613 | || xtensa_operand_get_field (isa, opcode, 1, | |
3614 | fmt, 0, slotbuf, &rawval1) != 0 | |
3615 | || xtensa_operand_get_field (isa, opcode, 2, | |
3616 | fmt, 0, slotbuf, &rawval2) != 0 | |
3617 | || rawval1 != rawval2 | |
3618 | || rawval0 == rawval1 /* it is a nop */) | |
3619 | return 0; | |
43cd72b9 | 3620 | } |
e0001a05 | 3621 | |
43cd72b9 BW |
3622 | for (i = 0; i < o_operand_count; ++i) |
3623 | { | |
3624 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
3625 | slotbuf, &value) | |
3626 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 3627 | return 0; |
e0001a05 | 3628 | |
43cd72b9 BW |
3629 | /* PC-relative branches need adjustment, but |
3630 | the PC-rel operand will always have a relocation. */ | |
3631 | newval = value; | |
3632 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3633 | self_address) | |
3634 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3635 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3636 | o_slotbuf, newval)) | |
64b607e6 | 3637 | return 0; |
43cd72b9 | 3638 | } |
e0001a05 | 3639 | |
64b607e6 BW |
3640 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
3641 | return 0; | |
e0001a05 | 3642 | |
64b607e6 | 3643 | return o_insnbuf; |
43cd72b9 BW |
3644 | } |
3645 | } | |
64b607e6 | 3646 | return 0; |
43cd72b9 | 3647 | } |
e0001a05 | 3648 | |
e0001a05 | 3649 | |
64b607e6 BW |
3650 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
3651 | the action in-place directly into the contents and return TRUE. Otherwise, | |
3652 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 3653 | |
43cd72b9 | 3654 | static bfd_boolean |
64b607e6 BW |
3655 | narrow_instruction (bfd_byte *contents, |
3656 | bfd_size_type content_length, | |
3657 | bfd_size_type offset) | |
e0001a05 | 3658 | { |
43cd72b9 | 3659 | xtensa_opcode opcode; |
64b607e6 | 3660 | bfd_size_type insn_len; |
43cd72b9 | 3661 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
3662 | xtensa_format fmt; |
3663 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 3664 | |
43cd72b9 BW |
3665 | static xtensa_insnbuf insnbuf = NULL; |
3666 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 3667 | |
43cd72b9 BW |
3668 | if (insnbuf == NULL) |
3669 | { | |
3670 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3671 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 3672 | } |
e0001a05 | 3673 | |
43cd72b9 | 3674 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 3675 | |
43cd72b9 | 3676 | if (content_length < 2) |
e0001a05 NC |
3677 | return FALSE; |
3678 | ||
64b607e6 | 3679 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
3680 | These have all been specified in the assembler aleady. */ |
3681 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3682 | content_length - offset); | |
3683 | fmt = xtensa_format_decode (isa, insnbuf); | |
3684 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
3685 | return FALSE; |
3686 | ||
43cd72b9 | 3687 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
3688 | return FALSE; |
3689 | ||
43cd72b9 BW |
3690 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
3691 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 3692 | return FALSE; |
43cd72b9 BW |
3693 | insn_len = xtensa_format_length (isa, fmt); |
3694 | if (insn_len > content_length) | |
3695 | return FALSE; | |
3696 | ||
64b607e6 BW |
3697 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
3698 | if (o_insnbuf) | |
3699 | { | |
3700 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3701 | content_length - offset); | |
3702 | return TRUE; | |
3703 | } | |
3704 | ||
3705 | return FALSE; | |
3706 | } | |
3707 | ||
3708 | ||
3709 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
3710 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
3711 | return the instruction buffer holding the wide instruction. Otherwise, | |
3712 | return 0. The set of valid widenings are specified by a string table | |
3713 | but require some special case operand checks in some cases. */ | |
3714 | ||
3715 | static xtensa_insnbuf | |
3716 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
3717 | xtensa_format fmt, | |
3718 | xtensa_opcode opcode) | |
3719 | { | |
3720 | xtensa_isa isa = xtensa_default_isa; | |
3721 | xtensa_format o_fmt; | |
3722 | unsigned opi; | |
3723 | ||
3724 | static xtensa_insnbuf o_insnbuf = NULL; | |
3725 | static xtensa_insnbuf o_slotbuf = NULL; | |
3726 | ||
3727 | if (o_insnbuf == NULL) | |
3728 | { | |
3729 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
3730 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3731 | } | |
3732 | ||
3733 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 3734 | { |
43cd72b9 BW |
3735 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
3736 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
3737 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 3738 | |
43cd72b9 BW |
3739 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
3740 | { | |
3741 | uint32 value, newval; | |
3742 | int i, operand_count, o_operand_count, check_operand_count; | |
3743 | xtensa_opcode o_opcode; | |
e0001a05 | 3744 | |
43cd72b9 BW |
3745 | /* Address does not matter in this case. We might need to fix it |
3746 | to handle branches/jumps. */ | |
3747 | bfd_vma self_address = 0; | |
e0001a05 | 3748 | |
43cd72b9 BW |
3749 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
3750 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 3751 | return 0; |
43cd72b9 BW |
3752 | o_fmt = get_single_format (o_opcode); |
3753 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 3754 | return 0; |
e0001a05 | 3755 | |
43cd72b9 BW |
3756 | if (xtensa_format_length (isa, fmt) != 2 |
3757 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 3758 | return 0; |
e0001a05 | 3759 | |
43cd72b9 BW |
3760 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3761 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3762 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
3763 | check_operand_count = o_operand_count; | |
e0001a05 | 3764 | |
43cd72b9 | 3765 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 3766 | return 0; |
e0001a05 | 3767 | |
43cd72b9 BW |
3768 | if (!is_or) |
3769 | { | |
3770 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 3771 | return 0; |
43cd72b9 BW |
3772 | } |
3773 | else | |
3774 | { | |
3775 | uint32 rawval0, rawval1; | |
3776 | ||
64b607e6 BW |
3777 | if (o_operand_count != operand_count + 1 |
3778 | || xtensa_operand_get_field (isa, opcode, 0, | |
3779 | fmt, 0, slotbuf, &rawval0) != 0 | |
3780 | || xtensa_operand_get_field (isa, opcode, 1, | |
3781 | fmt, 0, slotbuf, &rawval1) != 0 | |
3782 | || rawval0 == rawval1 /* it is a nop */) | |
3783 | return 0; | |
43cd72b9 BW |
3784 | } |
3785 | if (is_branch) | |
3786 | check_operand_count--; | |
3787 | ||
64b607e6 | 3788 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
3789 | { |
3790 | int new_i = i; | |
3791 | if (is_or && i == o_operand_count - 1) | |
3792 | new_i = i - 1; | |
3793 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
3794 | slotbuf, &value) | |
3795 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 3796 | return 0; |
43cd72b9 BW |
3797 | |
3798 | /* PC-relative branches need adjustment, but | |
3799 | the PC-rel operand will always have a relocation. */ | |
3800 | newval = value; | |
3801 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3802 | self_address) | |
3803 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3804 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3805 | o_slotbuf, newval)) | |
64b607e6 | 3806 | return 0; |
43cd72b9 BW |
3807 | } |
3808 | ||
3809 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 3810 | return 0; |
43cd72b9 | 3811 | |
64b607e6 | 3812 | return o_insnbuf; |
43cd72b9 BW |
3813 | } |
3814 | } | |
64b607e6 BW |
3815 | return 0; |
3816 | } | |
3817 | ||
3818 | ||
3819 | /* Attempt to widen an instruction. If the widening is valid, perform | |
3820 | the action in-place directly into the contents and return TRUE. Otherwise, | |
3821 | the return value is FALSE and the contents are not modified. */ | |
3822 | ||
3823 | static bfd_boolean | |
3824 | widen_instruction (bfd_byte *contents, | |
3825 | bfd_size_type content_length, | |
3826 | bfd_size_type offset) | |
3827 | { | |
3828 | xtensa_opcode opcode; | |
3829 | bfd_size_type insn_len; | |
3830 | xtensa_isa isa = xtensa_default_isa; | |
3831 | xtensa_format fmt; | |
3832 | xtensa_insnbuf o_insnbuf; | |
3833 | ||
3834 | static xtensa_insnbuf insnbuf = NULL; | |
3835 | static xtensa_insnbuf slotbuf = NULL; | |
3836 | ||
3837 | if (insnbuf == NULL) | |
3838 | { | |
3839 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3840 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3841 | } | |
3842 | ||
3843 | BFD_ASSERT (offset < content_length); | |
3844 | ||
3845 | if (content_length < 2) | |
3846 | return FALSE; | |
3847 | ||
3848 | /* We will hand-code a few of these for a little while. | |
3849 | These have all been specified in the assembler aleady. */ | |
3850 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3851 | content_length - offset); | |
3852 | fmt = xtensa_format_decode (isa, insnbuf); | |
3853 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
3854 | return FALSE; | |
3855 | ||
3856 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
3857 | return FALSE; | |
3858 | ||
3859 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
3860 | if (opcode == XTENSA_UNDEFINED) | |
3861 | return FALSE; | |
3862 | insn_len = xtensa_format_length (isa, fmt); | |
3863 | if (insn_len > content_length) | |
3864 | return FALSE; | |
3865 | ||
3866 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
3867 | if (o_insnbuf) | |
3868 | { | |
3869 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3870 | content_length - offset); | |
3871 | return TRUE; | |
3872 | } | |
43cd72b9 | 3873 | return FALSE; |
e0001a05 NC |
3874 | } |
3875 | ||
43cd72b9 BW |
3876 | \f |
3877 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 3878 | |
43cd72b9 | 3879 | static bfd_reloc_status_type |
7fa3d080 BW |
3880 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
3881 | bfd_vma address, | |
3882 | bfd_vma content_length, | |
3883 | char **error_message) | |
e0001a05 | 3884 | { |
43cd72b9 BW |
3885 | static xtensa_insnbuf insnbuf = NULL; |
3886 | static xtensa_insnbuf slotbuf = NULL; | |
3887 | xtensa_format core_format = XTENSA_UNDEFINED; | |
3888 | xtensa_opcode opcode; | |
3889 | xtensa_opcode direct_call_opcode; | |
3890 | xtensa_isa isa = xtensa_default_isa; | |
3891 | bfd_byte *chbuf = contents + address; | |
3892 | int opn; | |
e0001a05 | 3893 | |
43cd72b9 | 3894 | if (insnbuf == NULL) |
e0001a05 | 3895 | { |
43cd72b9 BW |
3896 | insnbuf = xtensa_insnbuf_alloc (isa); |
3897 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 3898 | } |
e0001a05 | 3899 | |
43cd72b9 BW |
3900 | if (content_length < address) |
3901 | { | |
3902 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3903 | return bfd_reloc_other; | |
3904 | } | |
e0001a05 | 3905 | |
43cd72b9 BW |
3906 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
3907 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
3908 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
3909 | { | |
3910 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3911 | return bfd_reloc_other; | |
3912 | } | |
3913 | ||
3914 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
3915 | core_format = xtensa_format_lookup (isa, "x24"); | |
3916 | opcode = xtensa_opcode_lookup (isa, "or"); | |
3917 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
3918 | for (opn = 0; opn < 3; opn++) | |
3919 | { | |
3920 | uint32 regno = 1; | |
3921 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
3922 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
3923 | slotbuf, regno); | |
3924 | } | |
3925 | xtensa_format_encode (isa, core_format, insnbuf); | |
3926 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3927 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 3928 | |
43cd72b9 BW |
3929 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
3930 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
3931 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 3932 | |
43cd72b9 BW |
3933 | xtensa_format_encode (isa, core_format, insnbuf); |
3934 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3935 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
3936 | content_length - address - 3); | |
e0001a05 | 3937 | |
43cd72b9 BW |
3938 | return bfd_reloc_ok; |
3939 | } | |
e0001a05 | 3940 | |
e0001a05 | 3941 | |
43cd72b9 | 3942 | static bfd_reloc_status_type |
7fa3d080 BW |
3943 | contract_asm_expansion (bfd_byte *contents, |
3944 | bfd_vma content_length, | |
3945 | Elf_Internal_Rela *irel, | |
3946 | char **error_message) | |
43cd72b9 BW |
3947 | { |
3948 | bfd_reloc_status_type retval = | |
3949 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
3950 | error_message); | |
e0001a05 | 3951 | |
43cd72b9 BW |
3952 | if (retval != bfd_reloc_ok) |
3953 | return bfd_reloc_dangerous; | |
e0001a05 | 3954 | |
43cd72b9 BW |
3955 | /* Update the irel->r_offset field so that the right immediate and |
3956 | the right instruction are modified during the relocation. */ | |
3957 | irel->r_offset += 3; | |
3958 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
3959 | return bfd_reloc_ok; | |
3960 | } | |
e0001a05 | 3961 | |
e0001a05 | 3962 | |
43cd72b9 | 3963 | static xtensa_opcode |
7fa3d080 | 3964 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 3965 | { |
43cd72b9 | 3966 | init_call_opcodes (); |
e0001a05 | 3967 | |
43cd72b9 BW |
3968 | if (opcode == callx0_op) return call0_op; |
3969 | if (opcode == callx4_op) return call4_op; | |
3970 | if (opcode == callx8_op) return call8_op; | |
3971 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 3972 | |
43cd72b9 BW |
3973 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
3974 | return XTENSA_UNDEFINED; | |
3975 | } | |
e0001a05 | 3976 | |
e0001a05 | 3977 | |
43cd72b9 BW |
3978 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
3979 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
3980 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 3981 | |
43cd72b9 BW |
3982 | #define L32R_TARGET_REG_OPERAND 0 |
3983 | #define CONST16_TARGET_REG_OPERAND 0 | |
3984 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 3985 | |
43cd72b9 | 3986 | static xtensa_opcode |
7fa3d080 | 3987 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 3988 | { |
43cd72b9 BW |
3989 | static xtensa_insnbuf insnbuf = NULL; |
3990 | static xtensa_insnbuf slotbuf = NULL; | |
3991 | xtensa_format fmt; | |
3992 | xtensa_opcode opcode; | |
3993 | xtensa_isa isa = xtensa_default_isa; | |
3994 | uint32 regno, const16_regno, call_regno; | |
3995 | int offset = 0; | |
e0001a05 | 3996 | |
43cd72b9 | 3997 | if (insnbuf == NULL) |
e0001a05 | 3998 | { |
43cd72b9 BW |
3999 | insnbuf = xtensa_insnbuf_alloc (isa); |
4000 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4001 | } |
43cd72b9 BW |
4002 | |
4003 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4004 | fmt = xtensa_format_decode (isa, insnbuf); | |
4005 | if (fmt == XTENSA_UNDEFINED | |
4006 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4007 | return XTENSA_UNDEFINED; | |
4008 | ||
4009 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4010 | if (opcode == XTENSA_UNDEFINED) | |
4011 | return XTENSA_UNDEFINED; | |
4012 | ||
4013 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4014 | { |
43cd72b9 BW |
4015 | if (p_uses_l32r) |
4016 | *p_uses_l32r = TRUE; | |
4017 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4018 | fmt, 0, slotbuf, ®no) | |
4019 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4020 | ®no)) | |
4021 | return XTENSA_UNDEFINED; | |
e0001a05 | 4022 | } |
43cd72b9 | 4023 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4024 | { |
43cd72b9 BW |
4025 | if (p_uses_l32r) |
4026 | *p_uses_l32r = FALSE; | |
4027 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4028 | fmt, 0, slotbuf, ®no) | |
4029 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4030 | ®no)) | |
4031 | return XTENSA_UNDEFINED; | |
4032 | ||
4033 | /* Check that the next instruction is also CONST16. */ | |
4034 | offset += xtensa_format_length (isa, fmt); | |
4035 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4036 | fmt = xtensa_format_decode (isa, insnbuf); | |
4037 | if (fmt == XTENSA_UNDEFINED | |
4038 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4039 | return XTENSA_UNDEFINED; | |
4040 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4041 | if (opcode != get_const16_opcode ()) | |
4042 | return XTENSA_UNDEFINED; | |
4043 | ||
4044 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4045 | fmt, 0, slotbuf, &const16_regno) | |
4046 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4047 | &const16_regno) | |
4048 | || const16_regno != regno) | |
4049 | return XTENSA_UNDEFINED; | |
e0001a05 | 4050 | } |
43cd72b9 BW |
4051 | else |
4052 | return XTENSA_UNDEFINED; | |
e0001a05 | 4053 | |
43cd72b9 BW |
4054 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4055 | offset += xtensa_format_length (isa, fmt); | |
4056 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4057 | fmt = xtensa_format_decode (isa, insnbuf); | |
4058 | if (fmt == XTENSA_UNDEFINED | |
4059 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4060 | return XTENSA_UNDEFINED; | |
4061 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4062 | if (opcode == XTENSA_UNDEFINED | |
4063 | || !is_indirect_call_opcode (opcode)) | |
4064 | return XTENSA_UNDEFINED; | |
e0001a05 | 4065 | |
43cd72b9 BW |
4066 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4067 | fmt, 0, slotbuf, &call_regno) | |
4068 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4069 | &call_regno)) | |
4070 | return XTENSA_UNDEFINED; | |
e0001a05 | 4071 | |
43cd72b9 BW |
4072 | if (call_regno != regno) |
4073 | return XTENSA_UNDEFINED; | |
e0001a05 | 4074 | |
43cd72b9 BW |
4075 | return opcode; |
4076 | } | |
e0001a05 | 4077 | |
43cd72b9 BW |
4078 | \f |
4079 | /* Data structures used during relaxation. */ | |
e0001a05 | 4080 | |
43cd72b9 | 4081 | /* r_reloc: relocation values. */ |
e0001a05 | 4082 | |
43cd72b9 BW |
4083 | /* Through the relaxation process, we need to keep track of the values |
4084 | that will result from evaluating relocations. The standard ELF | |
4085 | relocation structure is not sufficient for this purpose because we're | |
4086 | operating on multiple input files at once, so we need to know which | |
4087 | input file a relocation refers to. The r_reloc structure thus | |
4088 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4089 | |
43cd72b9 BW |
4090 | For efficiency, an r_reloc also contains a "target_offset" field to |
4091 | cache the target-section-relative offset value that is represented by | |
4092 | the relocation. | |
4093 | ||
4094 | The r_reloc also contains a virtual offset that allows multiple | |
4095 | inserted literals to be placed at the same "address" with | |
4096 | different offsets. */ | |
e0001a05 | 4097 | |
43cd72b9 | 4098 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4099 | |
43cd72b9 | 4100 | struct r_reloc_struct |
e0001a05 | 4101 | { |
43cd72b9 BW |
4102 | bfd *abfd; |
4103 | Elf_Internal_Rela rela; | |
e0001a05 | 4104 | bfd_vma target_offset; |
43cd72b9 | 4105 | bfd_vma virtual_offset; |
e0001a05 NC |
4106 | }; |
4107 | ||
e0001a05 | 4108 | |
43cd72b9 BW |
4109 | /* The r_reloc structure is included by value in literal_value, but not |
4110 | every literal_value has an associated relocation -- some are simple | |
4111 | constants. In such cases, we set all the fields in the r_reloc | |
4112 | struct to zero. The r_reloc_is_const function should be used to | |
4113 | detect this case. */ | |
e0001a05 | 4114 | |
43cd72b9 | 4115 | static bfd_boolean |
7fa3d080 | 4116 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4117 | { |
43cd72b9 | 4118 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4119 | } |
4120 | ||
4121 | ||
43cd72b9 | 4122 | static bfd_vma |
7fa3d080 | 4123 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4124 | { |
43cd72b9 BW |
4125 | bfd_vma target_offset; |
4126 | unsigned long r_symndx; | |
e0001a05 | 4127 | |
43cd72b9 BW |
4128 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4129 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4130 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4131 | return (target_offset + r_rel->rela.r_addend); | |
4132 | } | |
e0001a05 | 4133 | |
e0001a05 | 4134 | |
43cd72b9 | 4135 | static struct elf_link_hash_entry * |
7fa3d080 | 4136 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4137 | { |
43cd72b9 BW |
4138 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4139 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4140 | } | |
e0001a05 | 4141 | |
43cd72b9 BW |
4142 | |
4143 | static asection * | |
7fa3d080 | 4144 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4145 | { |
4146 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4147 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4148 | } | |
e0001a05 NC |
4149 | |
4150 | ||
4151 | static bfd_boolean | |
7fa3d080 | 4152 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4153 | { |
43cd72b9 BW |
4154 | asection *sec; |
4155 | if (r_rel == NULL) | |
e0001a05 | 4156 | return FALSE; |
e0001a05 | 4157 | |
43cd72b9 BW |
4158 | sec = r_reloc_get_section (r_rel); |
4159 | if (sec == bfd_abs_section_ptr | |
4160 | || sec == bfd_com_section_ptr | |
4161 | || sec == bfd_und_section_ptr) | |
4162 | return FALSE; | |
4163 | return TRUE; | |
e0001a05 NC |
4164 | } |
4165 | ||
4166 | ||
7fa3d080 BW |
4167 | static void |
4168 | r_reloc_init (r_reloc *r_rel, | |
4169 | bfd *abfd, | |
4170 | Elf_Internal_Rela *irel, | |
4171 | bfd_byte *contents, | |
4172 | bfd_size_type content_length) | |
4173 | { | |
4174 | int r_type; | |
4175 | reloc_howto_type *howto; | |
4176 | ||
4177 | if (irel) | |
4178 | { | |
4179 | r_rel->rela = *irel; | |
4180 | r_rel->abfd = abfd; | |
4181 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4182 | r_rel->virtual_offset = 0; | |
4183 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4184 | howto = &elf_howto_table[r_type]; | |
4185 | if (howto->partial_inplace) | |
4186 | { | |
4187 | bfd_vma inplace_val; | |
4188 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4189 | ||
4190 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4191 | r_rel->target_offset += inplace_val; | |
4192 | } | |
4193 | } | |
4194 | else | |
4195 | memset (r_rel, 0, sizeof (r_reloc)); | |
4196 | } | |
4197 | ||
4198 | ||
43cd72b9 BW |
4199 | #if DEBUG |
4200 | ||
e0001a05 | 4201 | static void |
7fa3d080 | 4202 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 4203 | { |
43cd72b9 BW |
4204 | if (r_reloc_is_defined (r_rel)) |
4205 | { | |
4206 | asection *sec = r_reloc_get_section (r_rel); | |
4207 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
4208 | } | |
4209 | else if (r_reloc_get_hash_entry (r_rel)) | |
4210 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
4211 | else | |
4212 | fprintf (fp, " ?? + "); | |
e0001a05 | 4213 | |
43cd72b9 BW |
4214 | fprintf_vma (fp, r_rel->target_offset); |
4215 | if (r_rel->virtual_offset) | |
4216 | { | |
4217 | fprintf (fp, " + "); | |
4218 | fprintf_vma (fp, r_rel->virtual_offset); | |
4219 | } | |
4220 | ||
4221 | fprintf (fp, ")"); | |
4222 | } | |
e0001a05 | 4223 | |
43cd72b9 | 4224 | #endif /* DEBUG */ |
e0001a05 | 4225 | |
43cd72b9 BW |
4226 | \f |
4227 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 4228 | |
43cd72b9 BW |
4229 | /* To determine whether literals can be coalesced, we need to first |
4230 | record all the relocations that reference the literals. The | |
4231 | source_reloc structure below is used for this purpose. The | |
4232 | source_reloc entries are kept in a per-literal-section array, sorted | |
4233 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 4234 | |
43cd72b9 BW |
4235 | The source_sec and r_rel.rela.r_offset fields identify the source of |
4236 | the relocation. The r_rel field records the relocation value, i.e., | |
4237 | the offset of the literal being referenced. The opnd field is needed | |
4238 | to determine the range of the immediate field to which the relocation | |
4239 | applies, so we can determine whether another literal with the same | |
4240 | value is within range. The is_null field is true when the relocation | |
4241 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
4242 | that is converted to a direct CALL). */ | |
e0001a05 | 4243 | |
43cd72b9 BW |
4244 | typedef struct source_reloc_struct source_reloc; |
4245 | ||
4246 | struct source_reloc_struct | |
e0001a05 | 4247 | { |
43cd72b9 BW |
4248 | asection *source_sec; |
4249 | r_reloc r_rel; | |
4250 | xtensa_opcode opcode; | |
4251 | int opnd; | |
4252 | bfd_boolean is_null; | |
4253 | bfd_boolean is_abs_literal; | |
4254 | }; | |
e0001a05 | 4255 | |
e0001a05 | 4256 | |
e0001a05 | 4257 | static void |
7fa3d080 BW |
4258 | init_source_reloc (source_reloc *reloc, |
4259 | asection *source_sec, | |
4260 | const r_reloc *r_rel, | |
4261 | xtensa_opcode opcode, | |
4262 | int opnd, | |
4263 | bfd_boolean is_abs_literal) | |
e0001a05 | 4264 | { |
43cd72b9 BW |
4265 | reloc->source_sec = source_sec; |
4266 | reloc->r_rel = *r_rel; | |
4267 | reloc->opcode = opcode; | |
4268 | reloc->opnd = opnd; | |
4269 | reloc->is_null = FALSE; | |
4270 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4271 | } |
4272 | ||
e0001a05 | 4273 | |
43cd72b9 BW |
4274 | /* Find the source_reloc for a particular source offset and relocation |
4275 | type. Note that the array is sorted by _target_ offset, so this is | |
4276 | just a linear search. */ | |
e0001a05 | 4277 | |
43cd72b9 | 4278 | static source_reloc * |
7fa3d080 BW |
4279 | find_source_reloc (source_reloc *src_relocs, |
4280 | int src_count, | |
4281 | asection *sec, | |
4282 | Elf_Internal_Rela *irel) | |
e0001a05 | 4283 | { |
43cd72b9 | 4284 | int i; |
e0001a05 | 4285 | |
43cd72b9 BW |
4286 | for (i = 0; i < src_count; i++) |
4287 | { | |
4288 | if (src_relocs[i].source_sec == sec | |
4289 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
4290 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
4291 | == ELF32_R_TYPE (irel->r_info))) | |
4292 | return &src_relocs[i]; | |
4293 | } | |
e0001a05 | 4294 | |
43cd72b9 | 4295 | return NULL; |
e0001a05 NC |
4296 | } |
4297 | ||
4298 | ||
43cd72b9 | 4299 | static int |
7fa3d080 | 4300 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 4301 | { |
43cd72b9 BW |
4302 | const source_reloc *a = (const source_reloc *) ap; |
4303 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 4304 | |
43cd72b9 BW |
4305 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
4306 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 4307 | |
43cd72b9 BW |
4308 | /* We don't need to sort on these criteria for correctness, |
4309 | but enforcing a more strict ordering prevents unstable qsort | |
4310 | from behaving differently with different implementations. | |
4311 | Without the code below we get correct but different results | |
4312 | on Solaris 2.7 and 2.8. We would like to always produce the | |
4313 | same results no matter the host. */ | |
4314 | ||
4315 | if ((!a->is_null) - (!b->is_null)) | |
4316 | return ((!a->is_null) - (!b->is_null)); | |
4317 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
4318 | } |
4319 | ||
43cd72b9 BW |
4320 | \f |
4321 | /* Literal values and value hash tables. */ | |
e0001a05 | 4322 | |
43cd72b9 BW |
4323 | /* Literals with the same value can be coalesced. The literal_value |
4324 | structure records the value of a literal: the "r_rel" field holds the | |
4325 | information from the relocation on the literal (if there is one) and | |
4326 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 4327 | |
43cd72b9 BW |
4328 | The value_map structure records a literal value along with the |
4329 | location of a literal holding that value. The value_map hash table | |
4330 | is indexed by the literal value, so that we can quickly check if a | |
4331 | particular literal value has been seen before and is thus a candidate | |
4332 | for coalescing. */ | |
e0001a05 | 4333 | |
43cd72b9 BW |
4334 | typedef struct literal_value_struct literal_value; |
4335 | typedef struct value_map_struct value_map; | |
4336 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 4337 | |
43cd72b9 | 4338 | struct literal_value_struct |
e0001a05 | 4339 | { |
43cd72b9 BW |
4340 | r_reloc r_rel; |
4341 | unsigned long value; | |
4342 | bfd_boolean is_abs_literal; | |
4343 | }; | |
4344 | ||
4345 | struct value_map_struct | |
4346 | { | |
4347 | literal_value val; /* The literal value. */ | |
4348 | r_reloc loc; /* Location of the literal. */ | |
4349 | value_map *next; | |
4350 | }; | |
4351 | ||
4352 | struct value_map_hash_table_struct | |
4353 | { | |
4354 | unsigned bucket_count; | |
4355 | value_map **buckets; | |
4356 | unsigned count; | |
4357 | bfd_boolean has_last_loc; | |
4358 | r_reloc last_loc; | |
4359 | }; | |
4360 | ||
4361 | ||
e0001a05 | 4362 | static void |
7fa3d080 BW |
4363 | init_literal_value (literal_value *lit, |
4364 | const r_reloc *r_rel, | |
4365 | unsigned long value, | |
4366 | bfd_boolean is_abs_literal) | |
e0001a05 | 4367 | { |
43cd72b9 BW |
4368 | lit->r_rel = *r_rel; |
4369 | lit->value = value; | |
4370 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4371 | } |
4372 | ||
4373 | ||
43cd72b9 | 4374 | static bfd_boolean |
7fa3d080 BW |
4375 | literal_value_equal (const literal_value *src1, |
4376 | const literal_value *src2, | |
4377 | bfd_boolean final_static_link) | |
e0001a05 | 4378 | { |
43cd72b9 | 4379 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 4380 | |
43cd72b9 BW |
4381 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
4382 | return FALSE; | |
e0001a05 | 4383 | |
43cd72b9 BW |
4384 | if (r_reloc_is_const (&src1->r_rel)) |
4385 | return (src1->value == src2->value); | |
e0001a05 | 4386 | |
43cd72b9 BW |
4387 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
4388 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
4389 | return FALSE; | |
e0001a05 | 4390 | |
43cd72b9 BW |
4391 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
4392 | return FALSE; | |
4393 | ||
4394 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) | |
4395 | return FALSE; | |
4396 | ||
4397 | if (src1->value != src2->value) | |
4398 | return FALSE; | |
4399 | ||
4400 | /* Now check for the same section (if defined) or the same elf_hash | |
4401 | (if undefined or weak). */ | |
4402 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
4403 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
4404 | if (r_reloc_is_defined (&src1->r_rel) | |
4405 | && (final_static_link | |
4406 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
4407 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
4408 | { | |
4409 | if (r_reloc_get_section (&src1->r_rel) | |
4410 | != r_reloc_get_section (&src2->r_rel)) | |
4411 | return FALSE; | |
4412 | } | |
4413 | else | |
4414 | { | |
4415 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
4416 | if (h1 != h2 || h1 == 0) | |
4417 | return FALSE; | |
4418 | } | |
4419 | ||
4420 | if (src1->is_abs_literal != src2->is_abs_literal) | |
4421 | return FALSE; | |
4422 | ||
4423 | return TRUE; | |
e0001a05 NC |
4424 | } |
4425 | ||
e0001a05 | 4426 | |
43cd72b9 BW |
4427 | /* Must be power of 2. */ |
4428 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 4429 | |
43cd72b9 | 4430 | static value_map_hash_table * |
7fa3d080 | 4431 | value_map_hash_table_init (void) |
43cd72b9 BW |
4432 | { |
4433 | value_map_hash_table *values; | |
e0001a05 | 4434 | |
43cd72b9 BW |
4435 | values = (value_map_hash_table *) |
4436 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
4437 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
4438 | values->count = 0; | |
4439 | values->buckets = (value_map **) | |
4440 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
4441 | if (values->buckets == NULL) | |
4442 | { | |
4443 | free (values); | |
4444 | return NULL; | |
4445 | } | |
4446 | values->has_last_loc = FALSE; | |
4447 | ||
4448 | return values; | |
4449 | } | |
4450 | ||
4451 | ||
4452 | static void | |
7fa3d080 | 4453 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 4454 | { |
43cd72b9 BW |
4455 | free (table->buckets); |
4456 | free (table); | |
4457 | } | |
4458 | ||
4459 | ||
4460 | static unsigned | |
7fa3d080 | 4461 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
4462 | { |
4463 | return (val >> 2) + (val >> 10); | |
4464 | } | |
4465 | ||
4466 | ||
4467 | static unsigned | |
7fa3d080 | 4468 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
4469 | { |
4470 | unsigned hash_val; | |
e0001a05 | 4471 | |
43cd72b9 BW |
4472 | hash_val = hash_bfd_vma (src->value); |
4473 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 4474 | { |
43cd72b9 BW |
4475 | void *sec_or_hash; |
4476 | ||
4477 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
4478 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
4479 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
4480 | ||
4481 | /* Now check for the same section and the same elf_hash. */ | |
4482 | if (r_reloc_is_defined (&src->r_rel)) | |
4483 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
4484 | else | |
4485 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 4486 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 4487 | } |
43cd72b9 BW |
4488 | return hash_val; |
4489 | } | |
e0001a05 | 4490 | |
e0001a05 | 4491 | |
43cd72b9 | 4492 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 4493 | |
43cd72b9 | 4494 | static value_map * |
7fa3d080 BW |
4495 | value_map_get_cached_value (value_map_hash_table *map, |
4496 | const literal_value *val, | |
4497 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4498 | { |
4499 | value_map *map_e; | |
4500 | value_map *bucket; | |
4501 | unsigned idx; | |
4502 | ||
4503 | idx = literal_value_hash (val); | |
4504 | idx = idx & (map->bucket_count - 1); | |
4505 | bucket = map->buckets[idx]; | |
4506 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 4507 | { |
43cd72b9 BW |
4508 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
4509 | return map_e; | |
4510 | } | |
4511 | return NULL; | |
4512 | } | |
e0001a05 | 4513 | |
e0001a05 | 4514 | |
43cd72b9 BW |
4515 | /* Record a new literal value. It is illegal to call this if VALUE |
4516 | already has an entry here. */ | |
4517 | ||
4518 | static value_map * | |
7fa3d080 BW |
4519 | add_value_map (value_map_hash_table *map, |
4520 | const literal_value *val, | |
4521 | const r_reloc *loc, | |
4522 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4523 | { |
4524 | value_map **bucket_p; | |
4525 | unsigned idx; | |
4526 | ||
4527 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
4528 | if (val_e == NULL) | |
4529 | { | |
4530 | bfd_set_error (bfd_error_no_memory); | |
4531 | return NULL; | |
e0001a05 NC |
4532 | } |
4533 | ||
43cd72b9 BW |
4534 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
4535 | val_e->val = *val; | |
4536 | val_e->loc = *loc; | |
4537 | ||
4538 | idx = literal_value_hash (val); | |
4539 | idx = idx & (map->bucket_count - 1); | |
4540 | bucket_p = &map->buckets[idx]; | |
4541 | ||
4542 | val_e->next = *bucket_p; | |
4543 | *bucket_p = val_e; | |
4544 | map->count++; | |
4545 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
4546 | ||
4547 | return val_e; | |
e0001a05 NC |
4548 | } |
4549 | ||
43cd72b9 BW |
4550 | \f |
4551 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
4552 | conversion, space fill, code & literal removal, etc. */ | |
4553 | ||
4554 | /* The following text actions are generated: | |
4555 | ||
4556 | "ta_remove_insn" remove an instruction or instructions | |
4557 | "ta_remove_longcall" convert longcall to call | |
4558 | "ta_convert_longcall" convert longcall to nop/call | |
4559 | "ta_narrow_insn" narrow a wide instruction | |
4560 | "ta_widen" widen a narrow instruction | |
4561 | "ta_fill" add fill or remove fill | |
4562 | removed < 0 is a fill; branches to the fill address will be | |
4563 | changed to address + fill size (e.g., address - removed) | |
4564 | removed >= 0 branches to the fill address will stay unchanged | |
4565 | "ta_remove_literal" remove a literal; this action is | |
4566 | indicated when a literal is removed | |
4567 | or replaced. | |
4568 | "ta_add_literal" insert a new literal; this action is | |
4569 | indicated when a literal has been moved. | |
4570 | It may use a virtual_offset because | |
4571 | multiple literals can be placed at the | |
4572 | same location. | |
4573 | ||
4574 | For each of these text actions, we also record the number of bytes | |
4575 | removed by performing the text action. In the case of a "ta_widen" | |
4576 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
4577 | ||
4578 | typedef struct text_action_struct text_action; | |
4579 | typedef struct text_action_list_struct text_action_list; | |
4580 | typedef enum text_action_enum_t text_action_t; | |
4581 | ||
4582 | enum text_action_enum_t | |
4583 | { | |
4584 | ta_none, | |
4585 | ta_remove_insn, /* removed = -size */ | |
4586 | ta_remove_longcall, /* removed = -size */ | |
4587 | ta_convert_longcall, /* removed = 0 */ | |
4588 | ta_narrow_insn, /* removed = -1 */ | |
4589 | ta_widen_insn, /* removed = +1 */ | |
4590 | ta_fill, /* removed = +size */ | |
4591 | ta_remove_literal, | |
4592 | ta_add_literal | |
4593 | }; | |
e0001a05 | 4594 | |
e0001a05 | 4595 | |
43cd72b9 BW |
4596 | /* Structure for a text action record. */ |
4597 | struct text_action_struct | |
e0001a05 | 4598 | { |
43cd72b9 BW |
4599 | text_action_t action; |
4600 | asection *sec; /* Optional */ | |
4601 | bfd_vma offset; | |
4602 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
4603 | int removed_bytes; | |
4604 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 4605 | |
43cd72b9 BW |
4606 | text_action *next; |
4607 | }; | |
e0001a05 | 4608 | |
e0001a05 | 4609 | |
43cd72b9 BW |
4610 | /* List of all of the actions taken on a text section. */ |
4611 | struct text_action_list_struct | |
4612 | { | |
4613 | text_action *head; | |
4614 | }; | |
e0001a05 | 4615 | |
e0001a05 | 4616 | |
7fa3d080 BW |
4617 | static text_action * |
4618 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
4619 | { |
4620 | text_action **m_p; | |
4621 | ||
4622 | /* It is not necessary to fill at the end of a section. */ | |
4623 | if (sec->size == offset) | |
4624 | return NULL; | |
4625 | ||
7fa3d080 | 4626 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4627 | { |
4628 | text_action *t = *m_p; | |
4629 | /* When the action is another fill at the same address, | |
4630 | just increase the size. */ | |
4631 | if (t->offset == offset && t->action == ta_fill) | |
4632 | return t; | |
4633 | } | |
4634 | return NULL; | |
4635 | } | |
4636 | ||
4637 | ||
4638 | static int | |
7fa3d080 BW |
4639 | compute_removed_action_diff (const text_action *ta, |
4640 | asection *sec, | |
4641 | bfd_vma offset, | |
4642 | int removed, | |
4643 | int removable_space) | |
43cd72b9 BW |
4644 | { |
4645 | int new_removed; | |
4646 | int current_removed = 0; | |
4647 | ||
7fa3d080 | 4648 | if (ta) |
43cd72b9 BW |
4649 | current_removed = ta->removed_bytes; |
4650 | ||
4651 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
4652 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
4653 | ||
4654 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
4655 | if (sec->size == offset) | |
4656 | new_removed = removable_space - 0; | |
4657 | else | |
4658 | { | |
4659 | int space; | |
4660 | int added = -removed - current_removed; | |
4661 | /* Ignore multiples of the section alignment. */ | |
4662 | added = ((1 << sec->alignment_power) - 1) & added; | |
4663 | new_removed = (-added); | |
4664 | ||
4665 | /* Modify for removable. */ | |
4666 | space = removable_space - new_removed; | |
4667 | new_removed = (removable_space | |
4668 | - (((1 << sec->alignment_power) - 1) & space)); | |
4669 | } | |
4670 | return (new_removed - current_removed); | |
4671 | } | |
4672 | ||
4673 | ||
7fa3d080 BW |
4674 | static void |
4675 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
4676 | { |
4677 | ta->removed_bytes += fill_diff; | |
4678 | } | |
4679 | ||
4680 | ||
4681 | /* Add a modification action to the text. For the case of adding or | |
4682 | removing space, modify any current fill and assume that | |
4683 | "unreachable_space" bytes can be freely contracted. Note that a | |
4684 | negative removed value is a fill. */ | |
4685 | ||
4686 | static void | |
7fa3d080 BW |
4687 | text_action_add (text_action_list *l, |
4688 | text_action_t action, | |
4689 | asection *sec, | |
4690 | bfd_vma offset, | |
4691 | int removed) | |
43cd72b9 BW |
4692 | { |
4693 | text_action **m_p; | |
4694 | text_action *ta; | |
4695 | ||
4696 | /* It is not necessary to fill at the end of a section. */ | |
4697 | if (action == ta_fill && sec->size == offset) | |
4698 | return; | |
4699 | ||
4700 | /* It is not necessary to fill 0 bytes. */ | |
4701 | if (action == ta_fill && removed == 0) | |
4702 | return; | |
4703 | ||
7fa3d080 | 4704 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4705 | { |
4706 | text_action *t = *m_p; | |
4707 | /* When the action is another fill at the same address, | |
4708 | just increase the size. */ | |
4709 | if (t->offset == offset && t->action == ta_fill && action == ta_fill) | |
4710 | { | |
4711 | t->removed_bytes += removed; | |
4712 | return; | |
4713 | } | |
4714 | } | |
4715 | ||
4716 | /* Create a new record and fill it up. */ | |
4717 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4718 | ta->action = action; | |
4719 | ta->sec = sec; | |
4720 | ta->offset = offset; | |
4721 | ta->removed_bytes = removed; | |
4722 | ta->next = (*m_p); | |
4723 | *m_p = ta; | |
4724 | } | |
4725 | ||
4726 | ||
4727 | static void | |
7fa3d080 BW |
4728 | text_action_add_literal (text_action_list *l, |
4729 | text_action_t action, | |
4730 | const r_reloc *loc, | |
4731 | const literal_value *value, | |
4732 | int removed) | |
43cd72b9 BW |
4733 | { |
4734 | text_action **m_p; | |
4735 | text_action *ta; | |
4736 | asection *sec = r_reloc_get_section (loc); | |
4737 | bfd_vma offset = loc->target_offset; | |
4738 | bfd_vma virtual_offset = loc->virtual_offset; | |
4739 | ||
4740 | BFD_ASSERT (action == ta_add_literal); | |
4741 | ||
4742 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
4743 | { | |
4744 | if ((*m_p)->offset > offset | |
4745 | && ((*m_p)->offset != offset | |
4746 | || (*m_p)->virtual_offset > virtual_offset)) | |
4747 | break; | |
4748 | } | |
4749 | ||
4750 | /* Create a new record and fill it up. */ | |
4751 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4752 | ta->action = action; | |
4753 | ta->sec = sec; | |
4754 | ta->offset = offset; | |
4755 | ta->virtual_offset = virtual_offset; | |
4756 | ta->value = *value; | |
4757 | ta->removed_bytes = removed; | |
4758 | ta->next = (*m_p); | |
4759 | *m_p = ta; | |
4760 | } | |
4761 | ||
4762 | ||
03669f1c BW |
4763 | /* Find the total offset adjustment for the relaxations specified by |
4764 | text_actions, beginning from a particular starting action. This is | |
4765 | typically used from offset_with_removed_text to search an entire list of | |
4766 | actions, but it may also be called directly when adjusting adjacent offsets | |
4767 | so that each search may begin where the previous one left off. */ | |
4768 | ||
4769 | static int | |
4770 | removed_by_actions (text_action **p_start_action, | |
4771 | bfd_vma offset, | |
4772 | bfd_boolean before_fill) | |
43cd72b9 BW |
4773 | { |
4774 | text_action *r; | |
4775 | int removed = 0; | |
4776 | ||
03669f1c BW |
4777 | r = *p_start_action; |
4778 | while (r) | |
43cd72b9 | 4779 | { |
03669f1c BW |
4780 | if (r->offset > offset) |
4781 | break; | |
4782 | ||
4783 | if (r->offset == offset | |
4784 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
4785 | break; | |
4786 | ||
4787 | removed += r->removed_bytes; | |
4788 | ||
4789 | r = r->next; | |
43cd72b9 BW |
4790 | } |
4791 | ||
03669f1c BW |
4792 | *p_start_action = r; |
4793 | return removed; | |
4794 | } | |
4795 | ||
4796 | ||
4797 | static bfd_vma | |
4798 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) | |
4799 | { | |
4800 | text_action *r = action_list->head; | |
4801 | return offset - removed_by_actions (&r, offset, FALSE); | |
43cd72b9 BW |
4802 | } |
4803 | ||
4804 | ||
03e94c08 BW |
4805 | static unsigned |
4806 | action_list_count (text_action_list *action_list) | |
4807 | { | |
4808 | text_action *r = action_list->head; | |
4809 | unsigned count = 0; | |
4810 | for (r = action_list->head; r != NULL; r = r->next) | |
4811 | { | |
4812 | count++; | |
4813 | } | |
4814 | return count; | |
4815 | } | |
4816 | ||
4817 | ||
43cd72b9 BW |
4818 | /* The find_insn_action routine will only find non-fill actions. */ |
4819 | ||
7fa3d080 BW |
4820 | static text_action * |
4821 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
4822 | { |
4823 | text_action *t; | |
4824 | for (t = action_list->head; t; t = t->next) | |
4825 | { | |
4826 | if (t->offset == offset) | |
4827 | { | |
4828 | switch (t->action) | |
4829 | { | |
4830 | case ta_none: | |
4831 | case ta_fill: | |
4832 | break; | |
4833 | case ta_remove_insn: | |
4834 | case ta_remove_longcall: | |
4835 | case ta_convert_longcall: | |
4836 | case ta_narrow_insn: | |
4837 | case ta_widen_insn: | |
4838 | return t; | |
4839 | case ta_remove_literal: | |
4840 | case ta_add_literal: | |
4841 | BFD_ASSERT (0); | |
4842 | break; | |
4843 | } | |
4844 | } | |
4845 | } | |
4846 | return NULL; | |
4847 | } | |
4848 | ||
4849 | ||
4850 | #if DEBUG | |
4851 | ||
4852 | static void | |
7fa3d080 | 4853 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
4854 | { |
4855 | text_action *r; | |
4856 | ||
4857 | fprintf (fp, "Text Action\n"); | |
4858 | for (r = action_list->head; r != NULL; r = r->next) | |
4859 | { | |
4860 | const char *t = "unknown"; | |
4861 | switch (r->action) | |
4862 | { | |
4863 | case ta_remove_insn: | |
4864 | t = "remove_insn"; break; | |
4865 | case ta_remove_longcall: | |
4866 | t = "remove_longcall"; break; | |
4867 | case ta_convert_longcall: | |
c46082c8 | 4868 | t = "convert_longcall"; break; |
43cd72b9 BW |
4869 | case ta_narrow_insn: |
4870 | t = "narrow_insn"; break; | |
4871 | case ta_widen_insn: | |
4872 | t = "widen_insn"; break; | |
4873 | case ta_fill: | |
4874 | t = "fill"; break; | |
4875 | case ta_none: | |
4876 | t = "none"; break; | |
4877 | case ta_remove_literal: | |
4878 | t = "remove_literal"; break; | |
4879 | case ta_add_literal: | |
4880 | t = "add_literal"; break; | |
4881 | } | |
4882 | ||
4883 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
4884 | r->sec->owner->filename, | |
4885 | r->sec->name, r->offset, t, r->removed_bytes); | |
4886 | } | |
4887 | } | |
4888 | ||
4889 | #endif /* DEBUG */ | |
4890 | ||
4891 | \f | |
4892 | /* Lists of literals being coalesced or removed. */ | |
4893 | ||
4894 | /* In the usual case, the literal identified by "from" is being | |
4895 | coalesced with another literal identified by "to". If the literal is | |
4896 | unused and is being removed altogether, "to.abfd" will be NULL. | |
4897 | The removed_literal entries are kept on a per-section list, sorted | |
4898 | by the "from" offset field. */ | |
4899 | ||
4900 | typedef struct removed_literal_struct removed_literal; | |
4901 | typedef struct removed_literal_list_struct removed_literal_list; | |
4902 | ||
4903 | struct removed_literal_struct | |
4904 | { | |
4905 | r_reloc from; | |
4906 | r_reloc to; | |
4907 | removed_literal *next; | |
4908 | }; | |
4909 | ||
4910 | struct removed_literal_list_struct | |
4911 | { | |
4912 | removed_literal *head; | |
4913 | removed_literal *tail; | |
4914 | }; | |
4915 | ||
4916 | ||
43cd72b9 BW |
4917 | /* Record that the literal at "from" is being removed. If "to" is not |
4918 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
4919 | ||
4920 | static void | |
7fa3d080 BW |
4921 | add_removed_literal (removed_literal_list *removed_list, |
4922 | const r_reloc *from, | |
4923 | const r_reloc *to) | |
43cd72b9 BW |
4924 | { |
4925 | removed_literal *r, *new_r, *next_r; | |
4926 | ||
4927 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
4928 | ||
4929 | new_r->from = *from; | |
4930 | if (to) | |
4931 | new_r->to = *to; | |
4932 | else | |
4933 | new_r->to.abfd = NULL; | |
4934 | new_r->next = NULL; | |
4935 | ||
4936 | r = removed_list->head; | |
4937 | if (r == NULL) | |
4938 | { | |
4939 | removed_list->head = new_r; | |
4940 | removed_list->tail = new_r; | |
4941 | } | |
4942 | /* Special check for common case of append. */ | |
4943 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
4944 | { | |
4945 | removed_list->tail->next = new_r; | |
4946 | removed_list->tail = new_r; | |
4947 | } | |
4948 | else | |
4949 | { | |
7fa3d080 | 4950 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
4951 | { |
4952 | r = r->next; | |
4953 | } | |
4954 | next_r = r->next; | |
4955 | r->next = new_r; | |
4956 | new_r->next = next_r; | |
4957 | if (next_r == NULL) | |
4958 | removed_list->tail = new_r; | |
4959 | } | |
4960 | } | |
4961 | ||
4962 | ||
4963 | /* Check if the list of removed literals contains an entry for the | |
4964 | given address. Return the entry if found. */ | |
4965 | ||
4966 | static removed_literal * | |
7fa3d080 | 4967 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
4968 | { |
4969 | removed_literal *r = removed_list->head; | |
4970 | while (r && r->from.target_offset < addr) | |
4971 | r = r->next; | |
4972 | if (r && r->from.target_offset == addr) | |
4973 | return r; | |
4974 | return NULL; | |
4975 | } | |
4976 | ||
4977 | ||
4978 | #if DEBUG | |
4979 | ||
4980 | static void | |
7fa3d080 | 4981 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
4982 | { |
4983 | removed_literal *r; | |
4984 | r = removed_list->head; | |
4985 | if (r) | |
4986 | fprintf (fp, "Removed Literals\n"); | |
4987 | for (; r != NULL; r = r->next) | |
4988 | { | |
4989 | print_r_reloc (fp, &r->from); | |
4990 | fprintf (fp, " => "); | |
4991 | if (r->to.abfd == NULL) | |
4992 | fprintf (fp, "REMOVED"); | |
4993 | else | |
4994 | print_r_reloc (fp, &r->to); | |
4995 | fprintf (fp, "\n"); | |
4996 | } | |
4997 | } | |
4998 | ||
4999 | #endif /* DEBUG */ | |
5000 | ||
5001 | \f | |
5002 | /* Per-section data for relaxation. */ | |
5003 | ||
5004 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
5005 | ||
5006 | struct xtensa_relax_info_struct | |
5007 | { | |
5008 | bfd_boolean is_relaxable_literal_section; | |
5009 | bfd_boolean is_relaxable_asm_section; | |
5010 | int visited; /* Number of times visited. */ | |
5011 | ||
5012 | source_reloc *src_relocs; /* Array[src_count]. */ | |
5013 | int src_count; | |
5014 | int src_next; /* Next src_relocs entry to assign. */ | |
5015 | ||
5016 | removed_literal_list removed_list; | |
5017 | text_action_list action_list; | |
5018 | ||
5019 | reloc_bfd_fix *fix_list; | |
5020 | reloc_bfd_fix *fix_array; | |
5021 | unsigned fix_array_count; | |
5022 | ||
5023 | /* Support for expanding the reloc array that is stored | |
5024 | in the section structure. If the relocations have been | |
5025 | reallocated, the newly allocated relocations will be referenced | |
5026 | here along with the actual size allocated. The relocation | |
5027 | count will always be found in the section structure. */ | |
5028 | Elf_Internal_Rela *allocated_relocs; | |
5029 | unsigned relocs_count; | |
5030 | unsigned allocated_relocs_count; | |
5031 | }; | |
5032 | ||
5033 | struct elf_xtensa_section_data | |
5034 | { | |
5035 | struct bfd_elf_section_data elf; | |
5036 | xtensa_relax_info relax_info; | |
5037 | }; | |
5038 | ||
43cd72b9 BW |
5039 | |
5040 | static bfd_boolean | |
7fa3d080 | 5041 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 5042 | { |
f592407e AM |
5043 | if (!sec->used_by_bfd) |
5044 | { | |
5045 | struct elf_xtensa_section_data *sdata; | |
5046 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 5047 | |
f592407e AM |
5048 | sdata = bfd_zalloc (abfd, amt); |
5049 | if (sdata == NULL) | |
5050 | return FALSE; | |
5051 | sec->used_by_bfd = sdata; | |
5052 | } | |
43cd72b9 BW |
5053 | |
5054 | return _bfd_elf_new_section_hook (abfd, sec); | |
5055 | } | |
5056 | ||
5057 | ||
7fa3d080 BW |
5058 | static xtensa_relax_info * |
5059 | get_xtensa_relax_info (asection *sec) | |
5060 | { | |
5061 | struct elf_xtensa_section_data *section_data; | |
5062 | ||
5063 | /* No info available if no section or if it is an output section. */ | |
5064 | if (!sec || sec == sec->output_section) | |
5065 | return NULL; | |
5066 | ||
5067 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5068 | return §ion_data->relax_info; | |
5069 | } | |
5070 | ||
5071 | ||
43cd72b9 | 5072 | static void |
7fa3d080 | 5073 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5074 | { |
5075 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5076 | ||
5077 | relax_info->is_relaxable_literal_section = FALSE; | |
5078 | relax_info->is_relaxable_asm_section = FALSE; | |
5079 | relax_info->visited = 0; | |
5080 | ||
5081 | relax_info->src_relocs = NULL; | |
5082 | relax_info->src_count = 0; | |
5083 | relax_info->src_next = 0; | |
5084 | ||
5085 | relax_info->removed_list.head = NULL; | |
5086 | relax_info->removed_list.tail = NULL; | |
5087 | ||
5088 | relax_info->action_list.head = NULL; | |
5089 | ||
5090 | relax_info->fix_list = NULL; | |
5091 | relax_info->fix_array = NULL; | |
5092 | relax_info->fix_array_count = 0; | |
5093 | ||
5094 | relax_info->allocated_relocs = NULL; | |
5095 | relax_info->relocs_count = 0; | |
5096 | relax_info->allocated_relocs_count = 0; | |
5097 | } | |
5098 | ||
43cd72b9 BW |
5099 | \f |
5100 | /* Coalescing literals may require a relocation to refer to a section in | |
5101 | a different input file, but the standard relocation information | |
5102 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5103 | to "fix" the relocations that refer to sections in other input files. | |
5104 | These structures are kept on per-section lists. The "src_type" field | |
5105 | records the relocation type in case there are multiple relocations on | |
5106 | the same location. FIXME: This is ugly; an alternative might be to | |
5107 | add new symbols with the "owner" field to some other input file. */ | |
5108 | ||
5109 | struct reloc_bfd_fix_struct | |
5110 | { | |
5111 | asection *src_sec; | |
5112 | bfd_vma src_offset; | |
5113 | unsigned src_type; /* Relocation type. */ | |
5114 | ||
43cd72b9 BW |
5115 | asection *target_sec; |
5116 | bfd_vma target_offset; | |
5117 | bfd_boolean translated; | |
5118 | ||
5119 | reloc_bfd_fix *next; | |
5120 | }; | |
5121 | ||
5122 | ||
43cd72b9 | 5123 | static reloc_bfd_fix * |
7fa3d080 BW |
5124 | reloc_bfd_fix_init (asection *src_sec, |
5125 | bfd_vma src_offset, | |
5126 | unsigned src_type, | |
7fa3d080 BW |
5127 | asection *target_sec, |
5128 | bfd_vma target_offset, | |
5129 | bfd_boolean translated) | |
43cd72b9 BW |
5130 | { |
5131 | reloc_bfd_fix *fix; | |
5132 | ||
5133 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5134 | fix->src_sec = src_sec; | |
5135 | fix->src_offset = src_offset; | |
5136 | fix->src_type = src_type; | |
43cd72b9 BW |
5137 | fix->target_sec = target_sec; |
5138 | fix->target_offset = target_offset; | |
5139 | fix->translated = translated; | |
5140 | ||
5141 | return fix; | |
5142 | } | |
5143 | ||
5144 | ||
5145 | static void | |
7fa3d080 | 5146 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5147 | { |
5148 | xtensa_relax_info *relax_info; | |
5149 | ||
5150 | relax_info = get_xtensa_relax_info (src_sec); | |
5151 | fix->next = relax_info->fix_list; | |
5152 | relax_info->fix_list = fix; | |
5153 | } | |
5154 | ||
5155 | ||
5156 | static int | |
7fa3d080 | 5157 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5158 | { |
5159 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5160 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5161 | ||
5162 | if (a->src_offset != b->src_offset) | |
5163 | return (a->src_offset - b->src_offset); | |
5164 | return (a->src_type - b->src_type); | |
5165 | } | |
5166 | ||
5167 | ||
5168 | static void | |
7fa3d080 | 5169 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5170 | { |
5171 | unsigned i, count = 0; | |
5172 | reloc_bfd_fix *r; | |
5173 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5174 | ||
5175 | if (relax_info == NULL) | |
5176 | return; | |
5177 | if (relax_info->fix_list == NULL) | |
5178 | return; | |
5179 | ||
5180 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5181 | count++; | |
5182 | ||
5183 | relax_info->fix_array = | |
5184 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
5185 | relax_info->fix_array_count = count; | |
5186 | ||
5187 | r = relax_info->fix_list; | |
5188 | for (i = 0; i < count; i++, r = r->next) | |
5189 | { | |
5190 | relax_info->fix_array[count - 1 - i] = *r; | |
5191 | relax_info->fix_array[count - 1 - i].next = NULL; | |
5192 | } | |
5193 | ||
5194 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
5195 | sizeof (reloc_bfd_fix), fix_compare); | |
5196 | } | |
5197 | ||
5198 | ||
5199 | static reloc_bfd_fix * | |
7fa3d080 | 5200 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
5201 | { |
5202 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5203 | reloc_bfd_fix *rv; | |
5204 | reloc_bfd_fix key; | |
5205 | ||
5206 | if (relax_info == NULL) | |
5207 | return NULL; | |
5208 | if (relax_info->fix_list == NULL) | |
5209 | return NULL; | |
5210 | ||
5211 | if (relax_info->fix_array == NULL) | |
5212 | cache_fix_array (sec); | |
5213 | ||
5214 | key.src_offset = offset; | |
5215 | key.src_type = type; | |
5216 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
5217 | sizeof (reloc_bfd_fix), fix_compare); | |
5218 | return rv; | |
5219 | } | |
5220 | ||
5221 | \f | |
5222 | /* Section caching. */ | |
5223 | ||
5224 | typedef struct section_cache_struct section_cache_t; | |
5225 | ||
5226 | struct section_cache_struct | |
5227 | { | |
5228 | asection *sec; | |
5229 | ||
5230 | bfd_byte *contents; /* Cache of the section contents. */ | |
5231 | bfd_size_type content_length; | |
5232 | ||
5233 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5234 | unsigned pte_count; | |
5235 | ||
5236 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5237 | unsigned reloc_count; | |
5238 | }; | |
5239 | ||
5240 | ||
7fa3d080 BW |
5241 | static void |
5242 | init_section_cache (section_cache_t *sec_cache) | |
5243 | { | |
5244 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
5245 | } | |
43cd72b9 BW |
5246 | |
5247 | ||
5248 | static void | |
7fa3d080 | 5249 | clear_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 5250 | { |
7fa3d080 BW |
5251 | if (sec_cache->sec) |
5252 | { | |
5253 | release_contents (sec_cache->sec, sec_cache->contents); | |
5254 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
5255 | if (sec_cache->ptbl) | |
5256 | free (sec_cache->ptbl); | |
5257 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5258 | } | |
43cd72b9 BW |
5259 | } |
5260 | ||
5261 | ||
5262 | static bfd_boolean | |
7fa3d080 BW |
5263 | section_cache_section (section_cache_t *sec_cache, |
5264 | asection *sec, | |
5265 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
5266 | { |
5267 | bfd *abfd; | |
5268 | property_table_entry *prop_table = NULL; | |
5269 | int ptblsize = 0; | |
5270 | bfd_byte *contents = NULL; | |
5271 | Elf_Internal_Rela *internal_relocs = NULL; | |
5272 | bfd_size_type sec_size; | |
5273 | ||
5274 | if (sec == NULL) | |
5275 | return FALSE; | |
5276 | if (sec == sec_cache->sec) | |
5277 | return TRUE; | |
5278 | ||
5279 | abfd = sec->owner; | |
5280 | sec_size = bfd_get_section_limit (abfd, sec); | |
5281 | ||
5282 | /* Get the contents. */ | |
5283 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5284 | if (contents == NULL && sec_size != 0) | |
5285 | goto err; | |
5286 | ||
5287 | /* Get the relocations. */ | |
5288 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5289 | link_info->keep_memory); | |
5290 | ||
5291 | /* Get the entry table. */ | |
5292 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
5293 | XTENSA_PROP_SEC_NAME, FALSE); | |
5294 | if (ptblsize < 0) | |
5295 | goto err; | |
5296 | ||
5297 | /* Fill in the new section cache. */ | |
5298 | clear_section_cache (sec_cache); | |
5299 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5300 | ||
5301 | sec_cache->sec = sec; | |
5302 | sec_cache->contents = contents; | |
5303 | sec_cache->content_length = sec_size; | |
5304 | sec_cache->relocs = internal_relocs; | |
5305 | sec_cache->reloc_count = sec->reloc_count; | |
5306 | sec_cache->pte_count = ptblsize; | |
5307 | sec_cache->ptbl = prop_table; | |
5308 | ||
5309 | return TRUE; | |
5310 | ||
5311 | err: | |
5312 | release_contents (sec, contents); | |
5313 | release_internal_relocs (sec, internal_relocs); | |
5314 | if (prop_table) | |
5315 | free (prop_table); | |
5316 | return FALSE; | |
5317 | } | |
5318 | ||
43cd72b9 BW |
5319 | \f |
5320 | /* Extended basic blocks. */ | |
5321 | ||
5322 | /* An ebb_struct represents an Extended Basic Block. Within this | |
5323 | range, we guarantee that all instructions are decodable, the | |
5324 | property table entries are contiguous, and no property table | |
5325 | specifies a segment that cannot have instructions moved. This | |
5326 | structure contains caches of the contents, property table and | |
5327 | relocations for the specified section for easy use. The range is | |
5328 | specified by ranges of indices for the byte offset, property table | |
5329 | offsets and relocation offsets. These must be consistent. */ | |
5330 | ||
5331 | typedef struct ebb_struct ebb_t; | |
5332 | ||
5333 | struct ebb_struct | |
5334 | { | |
5335 | asection *sec; | |
5336 | ||
5337 | bfd_byte *contents; /* Cache of the section contents. */ | |
5338 | bfd_size_type content_length; | |
5339 | ||
5340 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5341 | unsigned pte_count; | |
5342 | ||
5343 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5344 | unsigned reloc_count; | |
5345 | ||
5346 | bfd_vma start_offset; /* Offset in section. */ | |
5347 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
5348 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
5349 | ||
5350 | bfd_vma end_offset; | |
5351 | unsigned end_ptbl_idx; | |
5352 | unsigned end_reloc_idx; | |
5353 | ||
5354 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
5355 | ||
5356 | /* The unreachable property table at the end of this set of blocks; | |
5357 | NULL if the end is not an unreachable block. */ | |
5358 | property_table_entry *ends_unreachable; | |
5359 | }; | |
5360 | ||
5361 | ||
5362 | enum ebb_target_enum | |
5363 | { | |
5364 | EBB_NO_ALIGN = 0, | |
5365 | EBB_DESIRE_TGT_ALIGN, | |
5366 | EBB_REQUIRE_TGT_ALIGN, | |
5367 | EBB_REQUIRE_LOOP_ALIGN, | |
5368 | EBB_REQUIRE_ALIGN | |
5369 | }; | |
5370 | ||
5371 | ||
5372 | /* proposed_action_struct is similar to the text_action_struct except | |
5373 | that is represents a potential transformation, not one that will | |
5374 | occur. We build a list of these for an extended basic block | |
5375 | and use them to compute the actual actions desired. We must be | |
5376 | careful that the entire set of actual actions we perform do not | |
5377 | break any relocations that would fit if the actions were not | |
5378 | performed. */ | |
5379 | ||
5380 | typedef struct proposed_action_struct proposed_action; | |
5381 | ||
5382 | struct proposed_action_struct | |
5383 | { | |
5384 | enum ebb_target_enum align_type; /* for the target alignment */ | |
5385 | bfd_vma alignment_pow; | |
5386 | text_action_t action; | |
5387 | bfd_vma offset; | |
5388 | int removed_bytes; | |
5389 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
5390 | }; | |
5391 | ||
5392 | ||
5393 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
5394 | extended basic block. */ | |
5395 | ||
5396 | typedef struct ebb_constraint_struct ebb_constraint; | |
5397 | ||
5398 | struct ebb_constraint_struct | |
5399 | { | |
5400 | ebb_t ebb; | |
5401 | bfd_boolean start_movable; | |
5402 | ||
5403 | /* Bytes of extra space at the beginning if movable. */ | |
5404 | int start_extra_space; | |
5405 | ||
5406 | enum ebb_target_enum start_align; | |
5407 | ||
5408 | bfd_boolean end_movable; | |
5409 | ||
5410 | /* Bytes of extra space at the end if movable. */ | |
5411 | int end_extra_space; | |
5412 | ||
5413 | unsigned action_count; | |
5414 | unsigned action_allocated; | |
5415 | ||
5416 | /* Array of proposed actions. */ | |
5417 | proposed_action *actions; | |
5418 | ||
5419 | /* Action alignments -- one for each proposed action. */ | |
5420 | enum ebb_target_enum *action_aligns; | |
5421 | }; | |
5422 | ||
5423 | ||
43cd72b9 | 5424 | static void |
7fa3d080 | 5425 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
5426 | { |
5427 | memset (c, 0, sizeof (ebb_constraint)); | |
5428 | } | |
5429 | ||
5430 | ||
5431 | static void | |
7fa3d080 | 5432 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 5433 | { |
7fa3d080 | 5434 | if (c->actions) |
43cd72b9 BW |
5435 | free (c->actions); |
5436 | } | |
5437 | ||
5438 | ||
5439 | static void | |
7fa3d080 BW |
5440 | init_ebb (ebb_t *ebb, |
5441 | asection *sec, | |
5442 | bfd_byte *contents, | |
5443 | bfd_size_type content_length, | |
5444 | property_table_entry *prop_table, | |
5445 | unsigned ptblsize, | |
5446 | Elf_Internal_Rela *internal_relocs, | |
5447 | unsigned reloc_count) | |
43cd72b9 BW |
5448 | { |
5449 | memset (ebb, 0, sizeof (ebb_t)); | |
5450 | ebb->sec = sec; | |
5451 | ebb->contents = contents; | |
5452 | ebb->content_length = content_length; | |
5453 | ebb->ptbl = prop_table; | |
5454 | ebb->pte_count = ptblsize; | |
5455 | ebb->relocs = internal_relocs; | |
5456 | ebb->reloc_count = reloc_count; | |
5457 | ebb->start_offset = 0; | |
5458 | ebb->end_offset = ebb->content_length - 1; | |
5459 | ebb->start_ptbl_idx = 0; | |
5460 | ebb->end_ptbl_idx = ptblsize; | |
5461 | ebb->start_reloc_idx = 0; | |
5462 | ebb->end_reloc_idx = reloc_count; | |
5463 | } | |
5464 | ||
5465 | ||
5466 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
5467 | for building a basic block around an instruction is to push it | |
5468 | forward until we hit the end of a section, an unreachable block or | |
5469 | a block that cannot be transformed. Then we push it backwards | |
5470 | searching for similar conditions. */ | |
5471 | ||
7fa3d080 BW |
5472 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
5473 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
5474 | static bfd_size_type insn_block_decodable_len | |
5475 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
5476 | ||
43cd72b9 | 5477 | static bfd_boolean |
7fa3d080 | 5478 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
5479 | { |
5480 | if (!extend_ebb_bounds_forward (ebb)) | |
5481 | return FALSE; | |
5482 | if (!extend_ebb_bounds_backward (ebb)) | |
5483 | return FALSE; | |
5484 | return TRUE; | |
5485 | } | |
5486 | ||
5487 | ||
5488 | static bfd_boolean | |
7fa3d080 | 5489 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
5490 | { |
5491 | property_table_entry *the_entry, *new_entry; | |
5492 | ||
5493 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
5494 | ||
5495 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
5496 | the end of the property tables, (3) we hit a non-contiguous property | |
5497 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
5498 | ||
5499 | while (1) | |
5500 | { | |
5501 | bfd_vma entry_end; | |
5502 | bfd_size_type insn_block_len; | |
5503 | ||
5504 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
5505 | insn_block_len = | |
5506 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5507 | ebb->end_offset, | |
5508 | entry_end - ebb->end_offset); | |
5509 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
5510 | { | |
5511 | (*_bfd_error_handler) | |
5512 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5513 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5514 | return FALSE; | |
5515 | } | |
5516 | ebb->end_offset += insn_block_len; | |
5517 | ||
5518 | if (ebb->end_offset == ebb->sec->size) | |
5519 | ebb->ends_section = TRUE; | |
5520 | ||
5521 | /* Update the reloc counter. */ | |
5522 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
5523 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
5524 | < ebb->end_offset)) | |
5525 | { | |
5526 | ebb->end_reloc_idx++; | |
5527 | } | |
5528 | ||
5529 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5530 | return TRUE; | |
5531 | ||
5532 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5533 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 5534 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
5535 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
5536 | break; | |
5537 | ||
5538 | if (the_entry->address + the_entry->size != new_entry->address) | |
5539 | break; | |
5540 | ||
5541 | the_entry = new_entry; | |
5542 | ebb->end_ptbl_idx++; | |
5543 | } | |
5544 | ||
5545 | /* Quick check for an unreachable or end of file just at the end. */ | |
5546 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5547 | { | |
5548 | if (ebb->end_offset == ebb->content_length) | |
5549 | ebb->ends_section = TRUE; | |
5550 | } | |
5551 | else | |
5552 | { | |
5553 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5554 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
5555 | && the_entry->address + the_entry->size == new_entry->address) | |
5556 | ebb->ends_unreachable = new_entry; | |
5557 | } | |
5558 | ||
5559 | /* Any other ending requires exact alignment. */ | |
5560 | return TRUE; | |
5561 | } | |
5562 | ||
5563 | ||
5564 | static bfd_boolean | |
7fa3d080 | 5565 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
5566 | { |
5567 | property_table_entry *the_entry, *new_entry; | |
5568 | ||
5569 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
5570 | ||
5571 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
5572 | (2) we are at the beginning of the property tables, (3) we hit a | |
5573 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
5574 | ||
5575 | while (1) | |
5576 | { | |
5577 | bfd_vma block_begin; | |
5578 | bfd_size_type insn_block_len; | |
5579 | ||
5580 | block_begin = the_entry->address - ebb->sec->vma; | |
5581 | insn_block_len = | |
5582 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5583 | block_begin, | |
5584 | ebb->start_offset - block_begin); | |
5585 | if (insn_block_len != ebb->start_offset - block_begin) | |
5586 | { | |
5587 | (*_bfd_error_handler) | |
5588 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5589 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5590 | return FALSE; | |
5591 | } | |
5592 | ebb->start_offset -= insn_block_len; | |
5593 | ||
5594 | /* Update the reloc counter. */ | |
5595 | while (ebb->start_reloc_idx > 0 | |
5596 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
5597 | >= ebb->start_offset)) | |
5598 | { | |
5599 | ebb->start_reloc_idx--; | |
5600 | } | |
5601 | ||
5602 | if (ebb->start_ptbl_idx == 0) | |
5603 | return TRUE; | |
5604 | ||
5605 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
5606 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 5607 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
5608 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
5609 | return TRUE; | |
5610 | if (new_entry->address + new_entry->size != the_entry->address) | |
5611 | return TRUE; | |
5612 | ||
5613 | the_entry = new_entry; | |
5614 | ebb->start_ptbl_idx--; | |
5615 | } | |
5616 | return TRUE; | |
5617 | } | |
5618 | ||
5619 | ||
5620 | static bfd_size_type | |
7fa3d080 BW |
5621 | insn_block_decodable_len (bfd_byte *contents, |
5622 | bfd_size_type content_len, | |
5623 | bfd_vma block_offset, | |
5624 | bfd_size_type block_len) | |
43cd72b9 BW |
5625 | { |
5626 | bfd_vma offset = block_offset; | |
5627 | ||
5628 | while (offset < block_offset + block_len) | |
5629 | { | |
5630 | bfd_size_type insn_len = 0; | |
5631 | ||
5632 | insn_len = insn_decode_len (contents, content_len, offset); | |
5633 | if (insn_len == 0) | |
5634 | return (offset - block_offset); | |
5635 | offset += insn_len; | |
5636 | } | |
5637 | return (offset - block_offset); | |
5638 | } | |
5639 | ||
5640 | ||
5641 | static void | |
7fa3d080 | 5642 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 5643 | enum ebb_target_enum align_type, |
288f74fa | 5644 | bfd_vma alignment_pow, |
7fa3d080 BW |
5645 | text_action_t action, |
5646 | bfd_vma offset, | |
5647 | int removed_bytes, | |
5648 | bfd_boolean do_action) | |
43cd72b9 | 5649 | { |
b08b5071 | 5650 | proposed_action *act; |
43cd72b9 | 5651 | |
43cd72b9 BW |
5652 | if (c->action_allocated <= c->action_count) |
5653 | { | |
b08b5071 | 5654 | unsigned new_allocated, i; |
823fc61f | 5655 | proposed_action *new_actions; |
b08b5071 BW |
5656 | |
5657 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 5658 | new_actions = (proposed_action *) |
43cd72b9 BW |
5659 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
5660 | ||
5661 | for (i = 0; i < c->action_count; i++) | |
5662 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 5663 | if (c->actions) |
43cd72b9 BW |
5664 | free (c->actions); |
5665 | c->actions = new_actions; | |
5666 | c->action_allocated = new_allocated; | |
5667 | } | |
b08b5071 BW |
5668 | |
5669 | act = &c->actions[c->action_count]; | |
5670 | act->align_type = align_type; | |
5671 | act->alignment_pow = alignment_pow; | |
5672 | act->action = action; | |
5673 | act->offset = offset; | |
5674 | act->removed_bytes = removed_bytes; | |
5675 | act->do_action = do_action; | |
5676 | ||
43cd72b9 BW |
5677 | c->action_count++; |
5678 | } | |
5679 | ||
5680 | \f | |
5681 | /* Access to internal relocations, section contents and symbols. */ | |
5682 | ||
5683 | /* During relaxation, we need to modify relocations, section contents, | |
5684 | and symbol definitions, and we need to keep the original values from | |
5685 | being reloaded from the input files, i.e., we need to "pin" the | |
5686 | modified values in memory. We also want to continue to observe the | |
5687 | setting of the "keep-memory" flag. The following functions wrap the | |
5688 | standard BFD functions to take care of this for us. */ | |
5689 | ||
5690 | static Elf_Internal_Rela * | |
7fa3d080 | 5691 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5692 | { |
5693 | Elf_Internal_Rela *internal_relocs; | |
5694 | ||
5695 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5696 | return NULL; | |
5697 | ||
5698 | internal_relocs = elf_section_data (sec)->relocs; | |
5699 | if (internal_relocs == NULL) | |
5700 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 5701 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
5702 | return internal_relocs; |
5703 | } | |
5704 | ||
5705 | ||
5706 | static void | |
7fa3d080 | 5707 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5708 | { |
5709 | elf_section_data (sec)->relocs = internal_relocs; | |
5710 | } | |
5711 | ||
5712 | ||
5713 | static void | |
7fa3d080 | 5714 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5715 | { |
5716 | if (internal_relocs | |
5717 | && elf_section_data (sec)->relocs != internal_relocs) | |
5718 | free (internal_relocs); | |
5719 | } | |
5720 | ||
5721 | ||
5722 | static bfd_byte * | |
7fa3d080 | 5723 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5724 | { |
5725 | bfd_byte *contents; | |
5726 | bfd_size_type sec_size; | |
5727 | ||
5728 | sec_size = bfd_get_section_limit (abfd, sec); | |
5729 | contents = elf_section_data (sec)->this_hdr.contents; | |
5730 | ||
5731 | if (contents == NULL && sec_size != 0) | |
5732 | { | |
5733 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
5734 | { | |
7fa3d080 | 5735 | if (contents) |
43cd72b9 BW |
5736 | free (contents); |
5737 | return NULL; | |
5738 | } | |
5739 | if (keep_memory) | |
5740 | elf_section_data (sec)->this_hdr.contents = contents; | |
5741 | } | |
5742 | return contents; | |
5743 | } | |
5744 | ||
5745 | ||
5746 | static void | |
7fa3d080 | 5747 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5748 | { |
5749 | elf_section_data (sec)->this_hdr.contents = contents; | |
5750 | } | |
5751 | ||
5752 | ||
5753 | static void | |
7fa3d080 | 5754 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5755 | { |
5756 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
5757 | free (contents); | |
5758 | } | |
5759 | ||
5760 | ||
5761 | static Elf_Internal_Sym * | |
7fa3d080 | 5762 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
5763 | { |
5764 | Elf_Internal_Shdr *symtab_hdr; | |
5765 | Elf_Internal_Sym *isymbuf; | |
5766 | size_t locsymcount; | |
5767 | ||
5768 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5769 | locsymcount = symtab_hdr->sh_info; | |
5770 | ||
5771 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
5772 | if (isymbuf == NULL && locsymcount != 0) | |
5773 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
5774 | NULL, NULL, NULL); | |
5775 | ||
5776 | /* Save the symbols for this input file so they won't be read again. */ | |
5777 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
5778 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
5779 | ||
5780 | return isymbuf; | |
5781 | } | |
5782 | ||
5783 | \f | |
5784 | /* Code for link-time relaxation. */ | |
5785 | ||
5786 | /* Initialization for relaxation: */ | |
7fa3d080 | 5787 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 5788 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 5789 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 5790 | static bfd_boolean collect_source_relocs |
7fa3d080 | 5791 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 5792 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
5793 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
5794 | bfd_boolean *); | |
43cd72b9 | 5795 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 5796 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 5797 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
5798 | (bfd *, asection *, struct bfd_link_info *); |
5799 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
5800 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 5801 | static bfd_boolean check_section_ebb_pcrels_fit |
cb337148 BW |
5802 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, |
5803 | const xtensa_opcode *); | |
7fa3d080 | 5804 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 5805 | static void text_action_add_proposed |
7fa3d080 BW |
5806 | (text_action_list *, const ebb_constraint *, asection *); |
5807 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
5808 | |
5809 | /* First pass: */ | |
5810 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 5811 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 5812 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 5813 | (asection *, Elf_Internal_Rela *, bfd_vma); |
43cd72b9 | 5814 | static bfd_boolean is_removable_literal |
99ded152 BW |
5815 | (const source_reloc *, int, const source_reloc *, int, asection *, |
5816 | property_table_entry *, int); | |
43cd72b9 | 5817 | static bfd_boolean remove_dead_literal |
7fa3d080 BW |
5818 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
5819 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); | |
5820 | static bfd_boolean identify_literal_placement | |
5821 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
5822 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
5823 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
5824 | bfd_boolean); | |
5825 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 5826 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 5827 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 5828 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
5829 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
5830 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
5831 | |
5832 | /* Second pass: */ | |
7fa3d080 BW |
5833 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
5834 | static bfd_boolean translate_section_fixes (asection *); | |
5835 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 5836 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 5837 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 5838 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 5839 | static bfd_boolean move_literal |
7fa3d080 BW |
5840 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
5841 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 5842 | static bfd_boolean relax_property_section |
7fa3d080 | 5843 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
5844 | |
5845 | /* Third pass: */ | |
7fa3d080 | 5846 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
5847 | |
5848 | ||
5849 | static bfd_boolean | |
7fa3d080 BW |
5850 | elf_xtensa_relax_section (bfd *abfd, |
5851 | asection *sec, | |
5852 | struct bfd_link_info *link_info, | |
5853 | bfd_boolean *again) | |
43cd72b9 BW |
5854 | { |
5855 | static value_map_hash_table *values = NULL; | |
5856 | static bfd_boolean relocations_analyzed = FALSE; | |
5857 | xtensa_relax_info *relax_info; | |
5858 | ||
5859 | if (!relocations_analyzed) | |
5860 | { | |
5861 | /* Do some overall initialization for relaxation. */ | |
5862 | values = value_map_hash_table_init (); | |
5863 | if (values == NULL) | |
5864 | return FALSE; | |
5865 | relaxing_section = TRUE; | |
5866 | if (!analyze_relocations (link_info)) | |
5867 | return FALSE; | |
5868 | relocations_analyzed = TRUE; | |
5869 | } | |
5870 | *again = FALSE; | |
5871 | ||
5872 | /* Don't mess with linker-created sections. */ | |
5873 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5874 | return TRUE; | |
5875 | ||
5876 | relax_info = get_xtensa_relax_info (sec); | |
5877 | BFD_ASSERT (relax_info != NULL); | |
5878 | ||
5879 | switch (relax_info->visited) | |
5880 | { | |
5881 | case 0: | |
5882 | /* Note: It would be nice to fold this pass into | |
5883 | analyze_relocations, but it is important for this step that the | |
5884 | sections be examined in link order. */ | |
5885 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
5886 | return FALSE; | |
5887 | *again = TRUE; | |
5888 | break; | |
5889 | ||
5890 | case 1: | |
5891 | if (values) | |
5892 | value_map_hash_table_delete (values); | |
5893 | values = NULL; | |
5894 | if (!relax_section (abfd, sec, link_info)) | |
5895 | return FALSE; | |
5896 | *again = TRUE; | |
5897 | break; | |
5898 | ||
5899 | case 2: | |
5900 | if (!relax_section_symbols (abfd, sec)) | |
5901 | return FALSE; | |
5902 | break; | |
5903 | } | |
5904 | ||
5905 | relax_info->visited++; | |
5906 | return TRUE; | |
5907 | } | |
5908 | ||
5909 | \f | |
5910 | /* Initialization for relaxation. */ | |
5911 | ||
5912 | /* This function is called once at the start of relaxation. It scans | |
5913 | all the input sections and marks the ones that are relaxable (i.e., | |
5914 | literal sections with L32R relocations against them), and then | |
5915 | collects source_reloc information for all the relocations against | |
5916 | those relaxable sections. During this process, it also detects | |
5917 | longcalls, i.e., calls relaxed by the assembler into indirect | |
5918 | calls, that can be optimized back into direct calls. Within each | |
5919 | extended basic block (ebb) containing an optimized longcall, it | |
5920 | computes a set of "text actions" that can be performed to remove | |
5921 | the L32R associated with the longcall while optionally preserving | |
5922 | branch target alignments. */ | |
5923 | ||
5924 | static bfd_boolean | |
7fa3d080 | 5925 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
5926 | { |
5927 | bfd *abfd; | |
5928 | asection *sec; | |
5929 | bfd_boolean is_relaxable = FALSE; | |
5930 | ||
5931 | /* Initialize the per-section relaxation info. */ | |
5932 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5933 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5934 | { | |
5935 | init_xtensa_relax_info (sec); | |
5936 | } | |
5937 | ||
5938 | /* Mark relaxable sections (and count relocations against each one). */ | |
5939 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5940 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5941 | { | |
5942 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
5943 | return FALSE; | |
5944 | } | |
5945 | ||
5946 | /* Bail out if there are no relaxable sections. */ | |
5947 | if (!is_relaxable) | |
5948 | return TRUE; | |
5949 | ||
5950 | /* Allocate space for source_relocs. */ | |
5951 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5952 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5953 | { | |
5954 | xtensa_relax_info *relax_info; | |
5955 | ||
5956 | relax_info = get_xtensa_relax_info (sec); | |
5957 | if (relax_info->is_relaxable_literal_section | |
5958 | || relax_info->is_relaxable_asm_section) | |
5959 | { | |
5960 | relax_info->src_relocs = (source_reloc *) | |
5961 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
5962 | } | |
25c6282a BW |
5963 | else |
5964 | relax_info->src_count = 0; | |
43cd72b9 BW |
5965 | } |
5966 | ||
5967 | /* Collect info on relocations against each relaxable section. */ | |
5968 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5969 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5970 | { | |
5971 | if (!collect_source_relocs (abfd, sec, link_info)) | |
5972 | return FALSE; | |
5973 | } | |
5974 | ||
5975 | /* Compute the text actions. */ | |
5976 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5977 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5978 | { | |
5979 | if (!compute_text_actions (abfd, sec, link_info)) | |
5980 | return FALSE; | |
5981 | } | |
5982 | ||
5983 | return TRUE; | |
5984 | } | |
5985 | ||
5986 | ||
5987 | /* Find all the sections that might be relaxed. The motivation for | |
5988 | this pass is that collect_source_relocs() needs to record _all_ the | |
5989 | relocations that target each relaxable section. That is expensive | |
5990 | and unnecessary unless the target section is actually going to be | |
5991 | relaxed. This pass identifies all such sections by checking if | |
5992 | they have L32Rs pointing to them. In the process, the total number | |
5993 | of relocations targeting each section is also counted so that we | |
5994 | know how much space to allocate for source_relocs against each | |
5995 | relaxable literal section. */ | |
5996 | ||
5997 | static bfd_boolean | |
7fa3d080 BW |
5998 | find_relaxable_sections (bfd *abfd, |
5999 | asection *sec, | |
6000 | struct bfd_link_info *link_info, | |
6001 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
6002 | { |
6003 | Elf_Internal_Rela *internal_relocs; | |
6004 | bfd_byte *contents; | |
6005 | bfd_boolean ok = TRUE; | |
6006 | unsigned i; | |
6007 | xtensa_relax_info *source_relax_info; | |
25c6282a | 6008 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
6009 | |
6010 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6011 | link_info->keep_memory); | |
6012 | if (internal_relocs == NULL) | |
6013 | return ok; | |
6014 | ||
6015 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6016 | if (contents == NULL && sec->size != 0) | |
6017 | { | |
6018 | ok = FALSE; | |
6019 | goto error_return; | |
6020 | } | |
6021 | ||
6022 | source_relax_info = get_xtensa_relax_info (sec); | |
6023 | for (i = 0; i < sec->reloc_count; i++) | |
6024 | { | |
6025 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6026 | r_reloc r_rel; | |
6027 | asection *target_sec; | |
6028 | xtensa_relax_info *target_relax_info; | |
6029 | ||
6030 | /* If this section has not already been marked as "relaxable", and | |
6031 | if it contains any ASM_EXPAND relocations (marking expanded | |
6032 | longcalls) that can be optimized into direct calls, then mark | |
6033 | the section as "relaxable". */ | |
6034 | if (source_relax_info | |
6035 | && !source_relax_info->is_relaxable_asm_section | |
6036 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
6037 | { | |
6038 | bfd_boolean is_reachable = FALSE; | |
6039 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
6040 | link_info, &is_reachable) | |
6041 | && is_reachable) | |
6042 | { | |
6043 | source_relax_info->is_relaxable_asm_section = TRUE; | |
6044 | *is_relaxable_p = TRUE; | |
6045 | } | |
6046 | } | |
6047 | ||
6048 | r_reloc_init (&r_rel, abfd, irel, contents, | |
6049 | bfd_get_section_limit (abfd, sec)); | |
6050 | ||
6051 | target_sec = r_reloc_get_section (&r_rel); | |
6052 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6053 | if (!target_relax_info) | |
6054 | continue; | |
6055 | ||
6056 | /* Count PC-relative operand relocations against the target section. | |
6057 | Note: The conditions tested here must match the conditions under | |
6058 | which init_source_reloc is called in collect_source_relocs(). */ | |
25c6282a BW |
6059 | is_l32r_reloc = FALSE; |
6060 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6061 | { | |
6062 | xtensa_opcode opcode = | |
6063 | get_relocation_opcode (abfd, sec, contents, irel); | |
6064 | if (opcode != XTENSA_UNDEFINED) | |
6065 | { | |
6066 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
6067 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6068 | || is_l32r_reloc) | |
6069 | target_relax_info->src_count++; | |
6070 | } | |
6071 | } | |
43cd72b9 | 6072 | |
25c6282a | 6073 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
6074 | { |
6075 | /* Mark the target section as relaxable. */ | |
6076 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6077 | *is_relaxable_p = TRUE; | |
6078 | } | |
6079 | } | |
6080 | ||
6081 | error_return: | |
6082 | release_contents (sec, contents); | |
6083 | release_internal_relocs (sec, internal_relocs); | |
6084 | return ok; | |
6085 | } | |
6086 | ||
6087 | ||
6088 | /* Record _all_ the relocations that point to relaxable sections, and | |
6089 | get rid of ASM_EXPAND relocs by either converting them to | |
6090 | ASM_SIMPLIFY or by removing them. */ | |
6091 | ||
6092 | static bfd_boolean | |
7fa3d080 BW |
6093 | collect_source_relocs (bfd *abfd, |
6094 | asection *sec, | |
6095 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6096 | { |
6097 | Elf_Internal_Rela *internal_relocs; | |
6098 | bfd_byte *contents; | |
6099 | bfd_boolean ok = TRUE; | |
6100 | unsigned i; | |
6101 | bfd_size_type sec_size; | |
6102 | ||
6103 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6104 | link_info->keep_memory); | |
6105 | if (internal_relocs == NULL) | |
6106 | return ok; | |
6107 | ||
6108 | sec_size = bfd_get_section_limit (abfd, sec); | |
6109 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6110 | if (contents == NULL && sec_size != 0) | |
6111 | { | |
6112 | ok = FALSE; | |
6113 | goto error_return; | |
6114 | } | |
6115 | ||
6116 | /* Record relocations against relaxable literal sections. */ | |
6117 | for (i = 0; i < sec->reloc_count; i++) | |
6118 | { | |
6119 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6120 | r_reloc r_rel; | |
6121 | asection *target_sec; | |
6122 | xtensa_relax_info *target_relax_info; | |
6123 | ||
6124 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6125 | ||
6126 | target_sec = r_reloc_get_section (&r_rel); | |
6127 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6128 | ||
6129 | if (target_relax_info | |
6130 | && (target_relax_info->is_relaxable_literal_section | |
6131 | || target_relax_info->is_relaxable_asm_section)) | |
6132 | { | |
6133 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6134 | int opnd = -1; | |
6135 | bfd_boolean is_abs_literal = FALSE; | |
6136 | ||
6137 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6138 | { | |
6139 | /* None of the current alternate relocs are PC-relative, | |
6140 | and only PC-relative relocs matter here. However, we | |
6141 | still need to record the opcode for literal | |
6142 | coalescing. */ | |
6143 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6144 | if (opcode == get_l32r_opcode ()) | |
6145 | { | |
6146 | is_abs_literal = TRUE; | |
6147 | opnd = 1; | |
6148 | } | |
6149 | else | |
6150 | opcode = XTENSA_UNDEFINED; | |
6151 | } | |
6152 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6153 | { | |
6154 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6155 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6156 | } | |
6157 | ||
6158 | if (opcode != XTENSA_UNDEFINED) | |
6159 | { | |
6160 | int src_next = target_relax_info->src_next++; | |
6161 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6162 | ||
6163 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6164 | is_abs_literal); | |
6165 | } | |
6166 | } | |
6167 | } | |
6168 | ||
6169 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6170 | src_relocs array for the target literal section may still be | |
6171 | incomplete, but it must at least contain the entries for the L32R | |
6172 | relocations associated with ASM_EXPANDs because they were just | |
6173 | added in the preceding loop over the relocations. */ | |
6174 | ||
6175 | for (i = 0; i < sec->reloc_count; i++) | |
6176 | { | |
6177 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6178 | bfd_boolean is_reachable; | |
6179 | ||
6180 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6181 | &is_reachable)) | |
6182 | continue; | |
6183 | ||
6184 | if (is_reachable) | |
6185 | { | |
6186 | Elf_Internal_Rela *l32r_irel; | |
6187 | r_reloc r_rel; | |
6188 | asection *target_sec; | |
6189 | xtensa_relax_info *target_relax_info; | |
6190 | ||
6191 | /* Mark the source_reloc for the L32R so that it will be | |
6192 | removed in compute_removed_literals(), along with the | |
6193 | associated literal. */ | |
6194 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
6195 | irel, internal_relocs); | |
6196 | if (l32r_irel == NULL) | |
6197 | continue; | |
6198 | ||
6199 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
6200 | ||
6201 | target_sec = r_reloc_get_section (&r_rel); | |
6202 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6203 | ||
6204 | if (target_relax_info | |
6205 | && (target_relax_info->is_relaxable_literal_section | |
6206 | || target_relax_info->is_relaxable_asm_section)) | |
6207 | { | |
6208 | source_reloc *s_reloc; | |
6209 | ||
6210 | /* Search the source_relocs for the entry corresponding to | |
6211 | the l32r_irel. Note: The src_relocs array is not yet | |
6212 | sorted, but it wouldn't matter anyway because we're | |
6213 | searching by source offset instead of target offset. */ | |
6214 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
6215 | target_relax_info->src_next, | |
6216 | sec, l32r_irel); | |
6217 | BFD_ASSERT (s_reloc); | |
6218 | s_reloc->is_null = TRUE; | |
6219 | } | |
6220 | ||
6221 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
6222 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
6223 | R_XTENSA_ASM_SIMPLIFY); | |
6224 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6225 | ||
6226 | pin_internal_relocs (sec, internal_relocs); | |
6227 | } | |
6228 | else | |
6229 | { | |
6230 | /* It is resolvable but doesn't reach. We resolve now | |
6231 | by eliminating the relocation -- the call will remain | |
6232 | expanded into L32R/CALLX. */ | |
6233 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6234 | pin_internal_relocs (sec, internal_relocs); | |
6235 | } | |
6236 | } | |
6237 | ||
6238 | error_return: | |
6239 | release_contents (sec, contents); | |
6240 | release_internal_relocs (sec, internal_relocs); | |
6241 | return ok; | |
6242 | } | |
6243 | ||
6244 | ||
6245 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
6246 | be resolved on a final link or when a partial link locates it in the | |
6247 | same section as the target. Set "is_reachable" flag if the target of | |
6248 | the call is within the range of a direct call, given the current VMA | |
6249 | for this section and the target section. */ | |
6250 | ||
6251 | bfd_boolean | |
7fa3d080 BW |
6252 | is_resolvable_asm_expansion (bfd *abfd, |
6253 | asection *sec, | |
6254 | bfd_byte *contents, | |
6255 | Elf_Internal_Rela *irel, | |
6256 | struct bfd_link_info *link_info, | |
6257 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
6258 | { |
6259 | asection *target_sec; | |
6260 | bfd_vma target_offset; | |
6261 | r_reloc r_rel; | |
6262 | xtensa_opcode opcode, direct_call_opcode; | |
6263 | bfd_vma self_address; | |
6264 | bfd_vma dest_address; | |
6265 | bfd_boolean uses_l32r; | |
6266 | bfd_size_type sec_size; | |
6267 | ||
6268 | *is_reachable_p = FALSE; | |
6269 | ||
6270 | if (contents == NULL) | |
6271 | return FALSE; | |
6272 | ||
6273 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
6274 | return FALSE; | |
6275 | ||
6276 | sec_size = bfd_get_section_limit (abfd, sec); | |
6277 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
6278 | sec_size - irel->r_offset, &uses_l32r); | |
6279 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
6280 | if (!uses_l32r) | |
6281 | return FALSE; | |
6282 | ||
6283 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
6284 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
6285 | return FALSE; | |
6286 | ||
6287 | /* Check and see that the target resolves. */ | |
6288 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6289 | if (!r_reloc_is_defined (&r_rel)) | |
6290 | return FALSE; | |
6291 | ||
6292 | target_sec = r_reloc_get_section (&r_rel); | |
6293 | target_offset = r_rel.target_offset; | |
6294 | ||
6295 | /* If the target is in a shared library, then it doesn't reach. This | |
6296 | isn't supposed to come up because the compiler should never generate | |
6297 | non-PIC calls on systems that use shared libraries, but the linker | |
6298 | shouldn't crash regardless. */ | |
6299 | if (!target_sec->output_section) | |
6300 | return FALSE; | |
6301 | ||
6302 | /* For relocatable sections, we can only simplify when the output | |
6303 | section of the target is the same as the output section of the | |
6304 | source. */ | |
6305 | if (link_info->relocatable | |
6306 | && (target_sec->output_section != sec->output_section | |
6307 | || is_reloc_sym_weak (abfd, irel))) | |
6308 | return FALSE; | |
6309 | ||
6310 | self_address = (sec->output_section->vma | |
6311 | + sec->output_offset + irel->r_offset + 3); | |
6312 | dest_address = (target_sec->output_section->vma | |
6313 | + target_sec->output_offset + target_offset); | |
6314 | ||
6315 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, | |
6316 | self_address, dest_address); | |
6317 | ||
6318 | if ((self_address >> CALL_SEGMENT_BITS) != | |
6319 | (dest_address >> CALL_SEGMENT_BITS)) | |
6320 | return FALSE; | |
6321 | ||
6322 | return TRUE; | |
6323 | } | |
6324 | ||
6325 | ||
6326 | static Elf_Internal_Rela * | |
7fa3d080 BW |
6327 | find_associated_l32r_irel (bfd *abfd, |
6328 | asection *sec, | |
6329 | bfd_byte *contents, | |
6330 | Elf_Internal_Rela *other_irel, | |
6331 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
6332 | { |
6333 | unsigned i; | |
e0001a05 | 6334 | |
43cd72b9 BW |
6335 | for (i = 0; i < sec->reloc_count; i++) |
6336 | { | |
6337 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 6338 | |
43cd72b9 BW |
6339 | if (irel == other_irel) |
6340 | continue; | |
6341 | if (irel->r_offset != other_irel->r_offset) | |
6342 | continue; | |
6343 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
6344 | return irel; | |
6345 | } | |
6346 | ||
6347 | return NULL; | |
e0001a05 NC |
6348 | } |
6349 | ||
6350 | ||
cb337148 BW |
6351 | static xtensa_opcode * |
6352 | build_reloc_opcodes (bfd *abfd, | |
6353 | asection *sec, | |
6354 | bfd_byte *contents, | |
6355 | Elf_Internal_Rela *internal_relocs) | |
6356 | { | |
6357 | unsigned i; | |
6358 | xtensa_opcode *reloc_opcodes = | |
6359 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
6360 | for (i = 0; i < sec->reloc_count; i++) | |
6361 | { | |
6362 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6363 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
6364 | } | |
6365 | return reloc_opcodes; | |
6366 | } | |
6367 | ||
6368 | ||
43cd72b9 BW |
6369 | /* The compute_text_actions function will build a list of potential |
6370 | transformation actions for code in the extended basic block of each | |
6371 | longcall that is optimized to a direct call. From this list we | |
6372 | generate a set of actions to actually perform that optimizes for | |
6373 | space and, if not using size_opt, maintains branch target | |
6374 | alignments. | |
e0001a05 | 6375 | |
43cd72b9 BW |
6376 | These actions to be performed are placed on a per-section list. |
6377 | The actual changes are performed by relax_section() in the second | |
6378 | pass. */ | |
6379 | ||
6380 | bfd_boolean | |
7fa3d080 BW |
6381 | compute_text_actions (bfd *abfd, |
6382 | asection *sec, | |
6383 | struct bfd_link_info *link_info) | |
e0001a05 | 6384 | { |
cb337148 | 6385 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 6386 | xtensa_relax_info *relax_info; |
e0001a05 | 6387 | bfd_byte *contents; |
43cd72b9 | 6388 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
6389 | bfd_boolean ok = TRUE; |
6390 | unsigned i; | |
43cd72b9 BW |
6391 | property_table_entry *prop_table = 0; |
6392 | int ptblsize = 0; | |
6393 | bfd_size_type sec_size; | |
43cd72b9 | 6394 | |
43cd72b9 BW |
6395 | relax_info = get_xtensa_relax_info (sec); |
6396 | BFD_ASSERT (relax_info); | |
25c6282a BW |
6397 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
6398 | ||
6399 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
6400 | if (!relax_info->is_relaxable_asm_section) |
6401 | return ok; | |
e0001a05 NC |
6402 | |
6403 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6404 | link_info->keep_memory); | |
e0001a05 | 6405 | |
43cd72b9 BW |
6406 | if (internal_relocs) |
6407 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
6408 | internal_reloc_compare); | |
6409 | ||
6410 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 6411 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 6412 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
6413 | { |
6414 | ok = FALSE; | |
6415 | goto error_return; | |
6416 | } | |
6417 | ||
43cd72b9 BW |
6418 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
6419 | XTENSA_PROP_SEC_NAME, FALSE); | |
6420 | if (ptblsize < 0) | |
6421 | { | |
6422 | ok = FALSE; | |
6423 | goto error_return; | |
6424 | } | |
6425 | ||
6426 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
6427 | { |
6428 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
6429 | bfd_vma r_offset; |
6430 | property_table_entry *the_entry; | |
6431 | int ptbl_idx; | |
6432 | ebb_t *ebb; | |
6433 | ebb_constraint ebb_table; | |
6434 | bfd_size_type simplify_size; | |
6435 | ||
6436 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
6437 | continue; | |
6438 | r_offset = irel->r_offset; | |
e0001a05 | 6439 | |
43cd72b9 BW |
6440 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
6441 | if (simplify_size == 0) | |
6442 | { | |
6443 | (*_bfd_error_handler) | |
6444 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
6445 | sec->owner, sec, r_offset); | |
6446 | continue; | |
6447 | } | |
e0001a05 | 6448 | |
43cd72b9 BW |
6449 | /* If the instruction table is not around, then don't do this |
6450 | relaxation. */ | |
6451 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
6452 | sec->vma + irel->r_offset); | |
6453 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
6454 | { | |
6455 | text_action_add (&relax_info->action_list, | |
6456 | ta_convert_longcall, sec, r_offset, | |
6457 | 0); | |
6458 | continue; | |
6459 | } | |
6460 | ||
6461 | /* If the next longcall happens to be at the same address as an | |
6462 | unreachable section of size 0, then skip forward. */ | |
6463 | ptbl_idx = the_entry - prop_table; | |
6464 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
6465 | && the_entry->size == 0 | |
6466 | && ptbl_idx + 1 < ptblsize | |
6467 | && (prop_table[ptbl_idx + 1].address | |
6468 | == prop_table[ptbl_idx].address)) | |
6469 | { | |
6470 | ptbl_idx++; | |
6471 | the_entry++; | |
6472 | } | |
e0001a05 | 6473 | |
99ded152 | 6474 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
6475 | /* NO_REORDER is OK */ |
6476 | continue; | |
e0001a05 | 6477 | |
43cd72b9 BW |
6478 | init_ebb_constraint (&ebb_table); |
6479 | ebb = &ebb_table.ebb; | |
6480 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
6481 | internal_relocs, sec->reloc_count); | |
6482 | ebb->start_offset = r_offset + simplify_size; | |
6483 | ebb->end_offset = r_offset + simplify_size; | |
6484 | ebb->start_ptbl_idx = ptbl_idx; | |
6485 | ebb->end_ptbl_idx = ptbl_idx; | |
6486 | ebb->start_reloc_idx = i; | |
6487 | ebb->end_reloc_idx = i; | |
6488 | ||
cb337148 BW |
6489 | /* Precompute the opcode for each relocation. */ |
6490 | if (reloc_opcodes == NULL) | |
6491 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, | |
6492 | internal_relocs); | |
6493 | ||
43cd72b9 BW |
6494 | if (!extend_ebb_bounds (ebb) |
6495 | || !compute_ebb_proposed_actions (&ebb_table) | |
6496 | || !compute_ebb_actions (&ebb_table) | |
6497 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
cb337148 BW |
6498 | internal_relocs, &ebb_table, |
6499 | reloc_opcodes) | |
43cd72b9 | 6500 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 6501 | { |
43cd72b9 BW |
6502 | /* If anything goes wrong or we get unlucky and something does |
6503 | not fit, with our plan because of expansion between | |
6504 | critical branches, just convert to a NOP. */ | |
6505 | ||
6506 | text_action_add (&relax_info->action_list, | |
6507 | ta_convert_longcall, sec, r_offset, 0); | |
6508 | i = ebb_table.ebb.end_reloc_idx; | |
6509 | free_ebb_constraint (&ebb_table); | |
6510 | continue; | |
e0001a05 | 6511 | } |
43cd72b9 BW |
6512 | |
6513 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
6514 | ||
6515 | /* Update the index so we do not go looking at the relocations | |
6516 | we have already processed. */ | |
6517 | i = ebb_table.ebb.end_reloc_idx; | |
6518 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
6519 | } |
6520 | ||
43cd72b9 | 6521 | #if DEBUG |
7fa3d080 | 6522 | if (relax_info->action_list.head) |
43cd72b9 BW |
6523 | print_action_list (stderr, &relax_info->action_list); |
6524 | #endif | |
6525 | ||
6526 | error_return: | |
e0001a05 NC |
6527 | release_contents (sec, contents); |
6528 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
6529 | if (prop_table) |
6530 | free (prop_table); | |
cb337148 BW |
6531 | if (reloc_opcodes) |
6532 | free (reloc_opcodes); | |
43cd72b9 | 6533 | |
e0001a05 NC |
6534 | return ok; |
6535 | } | |
6536 | ||
6537 | ||
64b607e6 BW |
6538 | /* Do not widen an instruction if it is preceeded by a |
6539 | loop opcode. It might cause misalignment. */ | |
6540 | ||
6541 | static bfd_boolean | |
6542 | prev_instr_is_a_loop (bfd_byte *contents, | |
6543 | bfd_size_type content_length, | |
6544 | bfd_size_type offset) | |
6545 | { | |
6546 | xtensa_opcode prev_opcode; | |
6547 | ||
6548 | if (offset < 3) | |
6549 | return FALSE; | |
6550 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
6551 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
6552 | } | |
6553 | ||
6554 | ||
43cd72b9 | 6555 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 6556 | |
43cd72b9 | 6557 | bfd_boolean |
7fa3d080 | 6558 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 6559 | { |
43cd72b9 BW |
6560 | const ebb_t *ebb = &ebb_table->ebb; |
6561 | unsigned rel_idx = ebb->start_reloc_idx; | |
6562 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
6563 | bfd_vma offset = 0; |
6564 | xtensa_isa isa = xtensa_default_isa; | |
6565 | xtensa_format fmt; | |
6566 | static xtensa_insnbuf insnbuf = NULL; | |
6567 | static xtensa_insnbuf slotbuf = NULL; | |
6568 | ||
6569 | if (insnbuf == NULL) | |
6570 | { | |
6571 | insnbuf = xtensa_insnbuf_alloc (isa); | |
6572 | slotbuf = xtensa_insnbuf_alloc (isa); | |
6573 | } | |
e0001a05 | 6574 | |
43cd72b9 BW |
6575 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
6576 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 6577 | |
43cd72b9 | 6578 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 6579 | { |
64b607e6 | 6580 | bfd_vma start_offset, end_offset; |
43cd72b9 | 6581 | bfd_size_type insn_len; |
e0001a05 | 6582 | |
43cd72b9 BW |
6583 | start_offset = entry->address - ebb->sec->vma; |
6584 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 6585 | |
43cd72b9 BW |
6586 | if (entry == start_entry) |
6587 | start_offset = ebb->start_offset; | |
6588 | if (entry == end_entry) | |
6589 | end_offset = ebb->end_offset; | |
6590 | offset = start_offset; | |
e0001a05 | 6591 | |
43cd72b9 BW |
6592 | if (offset == entry->address - ebb->sec->vma |
6593 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
6594 | { | |
6595 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
6596 | BFD_ASSERT (offset != end_offset); | |
6597 | if (offset == end_offset) | |
6598 | return FALSE; | |
e0001a05 | 6599 | |
43cd72b9 BW |
6600 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
6601 | offset); | |
43cd72b9 | 6602 | if (insn_len == 0) |
64b607e6 BW |
6603 | goto decode_error; |
6604 | ||
43cd72b9 BW |
6605 | if (check_branch_target_aligned_address (offset, insn_len)) |
6606 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
6607 | ||
6608 | ebb_propose_action (ebb_table, align_type, 0, | |
6609 | ta_none, offset, 0, TRUE); | |
6610 | } | |
6611 | ||
6612 | while (offset != end_offset) | |
e0001a05 | 6613 | { |
43cd72b9 | 6614 | Elf_Internal_Rela *irel; |
e0001a05 | 6615 | xtensa_opcode opcode; |
e0001a05 | 6616 | |
43cd72b9 BW |
6617 | while (rel_idx < ebb->end_reloc_idx |
6618 | && (ebb->relocs[rel_idx].r_offset < offset | |
6619 | || (ebb->relocs[rel_idx].r_offset == offset | |
6620 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
6621 | != R_XTENSA_ASM_SIMPLIFY)))) | |
6622 | rel_idx++; | |
6623 | ||
6624 | /* Check for longcall. */ | |
6625 | irel = &ebb->relocs[rel_idx]; | |
6626 | if (irel->r_offset == offset | |
6627 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
6628 | { | |
6629 | bfd_size_type simplify_size; | |
e0001a05 | 6630 | |
43cd72b9 BW |
6631 | simplify_size = get_asm_simplify_size (ebb->contents, |
6632 | ebb->content_length, | |
6633 | irel->r_offset); | |
6634 | if (simplify_size == 0) | |
64b607e6 | 6635 | goto decode_error; |
43cd72b9 BW |
6636 | |
6637 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6638 | ta_convert_longcall, offset, 0, TRUE); | |
6639 | ||
6640 | offset += simplify_size; | |
6641 | continue; | |
6642 | } | |
e0001a05 | 6643 | |
64b607e6 BW |
6644 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
6645 | goto decode_error; | |
6646 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
6647 | ebb->content_length - offset); | |
6648 | fmt = xtensa_format_decode (isa, insnbuf); | |
6649 | if (fmt == XTENSA_UNDEFINED) | |
6650 | goto decode_error; | |
6651 | insn_len = xtensa_format_length (isa, fmt); | |
6652 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
6653 | goto decode_error; | |
6654 | ||
6655 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 6656 | { |
64b607e6 BW |
6657 | offset += insn_len; |
6658 | continue; | |
43cd72b9 | 6659 | } |
64b607e6 BW |
6660 | |
6661 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
6662 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
6663 | if (opcode == XTENSA_UNDEFINED) | |
6664 | goto decode_error; | |
6665 | ||
43cd72b9 | 6666 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 6667 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 6668 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
6669 | { |
6670 | /* Add an instruction narrow action. */ | |
6671 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6672 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 6673 | } |
99ded152 | 6674 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
6675 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
6676 | && ! prev_instr_is_a_loop (ebb->contents, | |
6677 | ebb->content_length, offset)) | |
43cd72b9 BW |
6678 | { |
6679 | /* Add an instruction widen action. */ | |
6680 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6681 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 6682 | } |
64b607e6 | 6683 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
6684 | { |
6685 | /* Check for branch targets. */ | |
6686 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
6687 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
6688 | } |
6689 | ||
6690 | offset += insn_len; | |
e0001a05 NC |
6691 | } |
6692 | } | |
6693 | ||
43cd72b9 BW |
6694 | if (ebb->ends_unreachable) |
6695 | { | |
6696 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6697 | ta_fill, ebb->end_offset, 0, TRUE); | |
6698 | } | |
e0001a05 | 6699 | |
43cd72b9 | 6700 | return TRUE; |
64b607e6 BW |
6701 | |
6702 | decode_error: | |
6703 | (*_bfd_error_handler) | |
6704 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6705 | ebb->sec->owner, ebb->sec, offset); | |
6706 | return FALSE; | |
43cd72b9 BW |
6707 | } |
6708 | ||
6709 | ||
6710 | /* After all of the information has collected about the | |
6711 | transformations possible in an EBB, compute the appropriate actions | |
6712 | here in compute_ebb_actions. We still must check later to make | |
6713 | sure that the actions do not break any relocations. The algorithm | |
6714 | used here is pretty greedy. Basically, it removes as many no-ops | |
6715 | as possible so that the end of the EBB has the same alignment | |
6716 | characteristics as the original. First, it uses narrowing, then | |
6717 | fill space at the end of the EBB, and finally widenings. If that | |
6718 | does not work, it tries again with one fewer no-op removed. The | |
6719 | optimization will only be performed if all of the branch targets | |
6720 | that were aligned before transformation are also aligned after the | |
6721 | transformation. | |
6722 | ||
6723 | When the size_opt flag is set, ignore the branch target alignments, | |
6724 | narrow all wide instructions, and remove all no-ops unless the end | |
6725 | of the EBB prevents it. */ | |
6726 | ||
6727 | bfd_boolean | |
7fa3d080 | 6728 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
6729 | { |
6730 | unsigned i = 0; | |
6731 | unsigned j; | |
6732 | int removed_bytes = 0; | |
6733 | ebb_t *ebb = &ebb_table->ebb; | |
6734 | unsigned seg_idx_start = 0; | |
6735 | unsigned seg_idx_end = 0; | |
6736 | ||
6737 | /* We perform this like the assembler relaxation algorithm: Start by | |
6738 | assuming all instructions are narrow and all no-ops removed; then | |
6739 | walk through.... */ | |
6740 | ||
6741 | /* For each segment of this that has a solid constraint, check to | |
6742 | see if there are any combinations that will keep the constraint. | |
6743 | If so, use it. */ | |
6744 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 6745 | { |
43cd72b9 BW |
6746 | bfd_boolean requires_text_end_align = FALSE; |
6747 | unsigned longcall_count = 0; | |
6748 | unsigned longcall_convert_count = 0; | |
6749 | unsigned narrowable_count = 0; | |
6750 | unsigned narrowable_convert_count = 0; | |
6751 | unsigned widenable_count = 0; | |
6752 | unsigned widenable_convert_count = 0; | |
e0001a05 | 6753 | |
43cd72b9 BW |
6754 | proposed_action *action = NULL; |
6755 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 6756 | |
43cd72b9 | 6757 | seg_idx_start = seg_idx_end; |
e0001a05 | 6758 | |
43cd72b9 BW |
6759 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
6760 | { | |
6761 | action = &ebb_table->actions[i]; | |
6762 | if (action->action == ta_convert_longcall) | |
6763 | longcall_count++; | |
6764 | if (action->action == ta_narrow_insn) | |
6765 | narrowable_count++; | |
6766 | if (action->action == ta_widen_insn) | |
6767 | widenable_count++; | |
6768 | if (action->action == ta_fill) | |
6769 | break; | |
6770 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6771 | break; | |
6772 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
6773 | && !elf32xtensa_size_opt) | |
6774 | break; | |
6775 | } | |
6776 | seg_idx_end = i; | |
e0001a05 | 6777 | |
43cd72b9 BW |
6778 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
6779 | requires_text_end_align = TRUE; | |
e0001a05 | 6780 | |
43cd72b9 BW |
6781 | if (elf32xtensa_size_opt && !requires_text_end_align |
6782 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
6783 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
6784 | { | |
6785 | longcall_convert_count = longcall_count; | |
6786 | narrowable_convert_count = narrowable_count; | |
6787 | widenable_convert_count = 0; | |
6788 | } | |
6789 | else | |
6790 | { | |
6791 | /* There is a constraint. Convert the max number of longcalls. */ | |
6792 | narrowable_convert_count = 0; | |
6793 | longcall_convert_count = 0; | |
6794 | widenable_convert_count = 0; | |
e0001a05 | 6795 | |
43cd72b9 | 6796 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 6797 | { |
43cd72b9 BW |
6798 | int removed = (longcall_count - j) * 3 & (align - 1); |
6799 | unsigned desire_narrow = (align - removed) & (align - 1); | |
6800 | unsigned desire_widen = removed; | |
6801 | if (desire_narrow <= narrowable_count) | |
6802 | { | |
6803 | narrowable_convert_count = desire_narrow; | |
6804 | narrowable_convert_count += | |
6805 | (align * ((narrowable_count - narrowable_convert_count) | |
6806 | / align)); | |
6807 | longcall_convert_count = (longcall_count - j); | |
6808 | widenable_convert_count = 0; | |
6809 | break; | |
6810 | } | |
6811 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
6812 | { | |
6813 | narrowable_convert_count = 0; | |
6814 | longcall_convert_count = longcall_count - j; | |
6815 | widenable_convert_count = desire_widen; | |
6816 | break; | |
6817 | } | |
6818 | } | |
6819 | } | |
e0001a05 | 6820 | |
43cd72b9 BW |
6821 | /* Now the number of conversions are saved. Do them. */ |
6822 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
6823 | { | |
6824 | action = &ebb_table->actions[i]; | |
6825 | switch (action->action) | |
6826 | { | |
6827 | case ta_convert_longcall: | |
6828 | if (longcall_convert_count != 0) | |
6829 | { | |
6830 | action->action = ta_remove_longcall; | |
6831 | action->do_action = TRUE; | |
6832 | action->removed_bytes += 3; | |
6833 | longcall_convert_count--; | |
6834 | } | |
6835 | break; | |
6836 | case ta_narrow_insn: | |
6837 | if (narrowable_convert_count != 0) | |
6838 | { | |
6839 | action->do_action = TRUE; | |
6840 | action->removed_bytes += 1; | |
6841 | narrowable_convert_count--; | |
6842 | } | |
6843 | break; | |
6844 | case ta_widen_insn: | |
6845 | if (widenable_convert_count != 0) | |
6846 | { | |
6847 | action->do_action = TRUE; | |
6848 | action->removed_bytes -= 1; | |
6849 | widenable_convert_count--; | |
6850 | } | |
6851 | break; | |
6852 | default: | |
6853 | break; | |
e0001a05 | 6854 | } |
43cd72b9 BW |
6855 | } |
6856 | } | |
e0001a05 | 6857 | |
43cd72b9 BW |
6858 | /* Now we move on to some local opts. Try to remove each of the |
6859 | remaining longcalls. */ | |
e0001a05 | 6860 | |
43cd72b9 BW |
6861 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
6862 | { | |
6863 | removed_bytes = 0; | |
6864 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 6865 | { |
43cd72b9 BW |
6866 | int old_removed_bytes = removed_bytes; |
6867 | proposed_action *action = &ebb_table->actions[i]; | |
6868 | ||
6869 | if (action->do_action && action->action == ta_convert_longcall) | |
6870 | { | |
6871 | bfd_boolean bad_alignment = FALSE; | |
6872 | removed_bytes += 3; | |
6873 | for (j = i + 1; j < ebb_table->action_count; j++) | |
6874 | { | |
6875 | proposed_action *new_action = &ebb_table->actions[j]; | |
6876 | bfd_vma offset = new_action->offset; | |
6877 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
6878 | { | |
6879 | if (!check_branch_target_aligned | |
6880 | (ebb_table->ebb.contents, | |
6881 | ebb_table->ebb.content_length, | |
6882 | offset, offset - removed_bytes)) | |
6883 | { | |
6884 | bad_alignment = TRUE; | |
6885 | break; | |
6886 | } | |
6887 | } | |
6888 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6889 | { | |
6890 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
6891 | ebb_table->ebb.content_length, | |
6892 | offset, | |
6893 | offset - removed_bytes)) | |
6894 | { | |
6895 | bad_alignment = TRUE; | |
6896 | break; | |
6897 | } | |
6898 | } | |
6899 | if (new_action->action == ta_narrow_insn | |
6900 | && !new_action->do_action | |
6901 | && ebb_table->ebb.sec->alignment_power == 2) | |
6902 | { | |
6903 | /* Narrow an instruction and we are done. */ | |
6904 | new_action->do_action = TRUE; | |
6905 | new_action->removed_bytes += 1; | |
6906 | bad_alignment = FALSE; | |
6907 | break; | |
6908 | } | |
6909 | if (new_action->action == ta_widen_insn | |
6910 | && new_action->do_action | |
6911 | && ebb_table->ebb.sec->alignment_power == 2) | |
6912 | { | |
6913 | /* Narrow an instruction and we are done. */ | |
6914 | new_action->do_action = FALSE; | |
6915 | new_action->removed_bytes += 1; | |
6916 | bad_alignment = FALSE; | |
6917 | break; | |
6918 | } | |
5c5d6806 BW |
6919 | if (new_action->do_action) |
6920 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
6921 | } |
6922 | if (!bad_alignment) | |
6923 | { | |
6924 | action->removed_bytes += 3; | |
6925 | action->action = ta_remove_longcall; | |
6926 | action->do_action = TRUE; | |
6927 | } | |
6928 | } | |
6929 | removed_bytes = old_removed_bytes; | |
6930 | if (action->do_action) | |
6931 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
6932 | } |
6933 | } | |
6934 | ||
43cd72b9 BW |
6935 | removed_bytes = 0; |
6936 | for (i = 0; i < ebb_table->action_count; ++i) | |
6937 | { | |
6938 | proposed_action *action = &ebb_table->actions[i]; | |
6939 | if (action->do_action) | |
6940 | removed_bytes += action->removed_bytes; | |
6941 | } | |
6942 | ||
6943 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
6944 | && ebb->ends_unreachable) | |
6945 | { | |
6946 | proposed_action *action; | |
6947 | int br; | |
6948 | int extra_space; | |
6949 | ||
6950 | BFD_ASSERT (ebb_table->action_count != 0); | |
6951 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
6952 | BFD_ASSERT (action->action == ta_fill); | |
6953 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
6954 | ||
6955 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
6956 | br = action->removed_bytes + removed_bytes + extra_space; | |
6957 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
6958 | ||
6959 | action->removed_bytes = extra_space - br; | |
6960 | } | |
6961 | return TRUE; | |
e0001a05 NC |
6962 | } |
6963 | ||
6964 | ||
03e94c08 BW |
6965 | /* The xlate_map is a sorted array of address mappings designed to |
6966 | answer the offset_with_removed_text() query with a binary search instead | |
6967 | of a linear search through the section's action_list. */ | |
6968 | ||
6969 | typedef struct xlate_map_entry xlate_map_entry_t; | |
6970 | typedef struct xlate_map xlate_map_t; | |
6971 | ||
6972 | struct xlate_map_entry | |
6973 | { | |
6974 | unsigned orig_address; | |
6975 | unsigned new_address; | |
6976 | unsigned size; | |
6977 | }; | |
6978 | ||
6979 | struct xlate_map | |
6980 | { | |
6981 | unsigned entry_count; | |
6982 | xlate_map_entry_t *entry; | |
6983 | }; | |
6984 | ||
6985 | ||
6986 | static int | |
6987 | xlate_compare (const void *a_v, const void *b_v) | |
6988 | { | |
6989 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
6990 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
6991 | if (a->orig_address < b->orig_address) | |
6992 | return -1; | |
6993 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
6994 | return 1; | |
6995 | return 0; | |
6996 | } | |
6997 | ||
6998 | ||
6999 | static bfd_vma | |
7000 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
7001 | text_action_list *action_list, | |
7002 | bfd_vma offset) | |
7003 | { | |
7004 | xlate_map_entry_t tmp; | |
7005 | void *r; | |
7006 | xlate_map_entry_t *e; | |
7007 | ||
7008 | if (map == NULL) | |
7009 | return offset_with_removed_text (action_list, offset); | |
7010 | ||
7011 | if (map->entry_count == 0) | |
7012 | return offset; | |
7013 | ||
7014 | tmp.orig_address = offset; | |
7015 | tmp.new_address = offset; | |
7016 | tmp.size = 1; | |
7017 | ||
7018 | r = bsearch (&offset, map->entry, map->entry_count, | |
7019 | sizeof (xlate_map_entry_t), &xlate_compare); | |
7020 | e = (xlate_map_entry_t *) r; | |
7021 | ||
7022 | BFD_ASSERT (e != NULL); | |
7023 | if (e == NULL) | |
7024 | return offset; | |
7025 | return e->new_address - e->orig_address + offset; | |
7026 | } | |
7027 | ||
7028 | ||
7029 | /* Build a binary searchable offset translation map from a section's | |
7030 | action list. */ | |
7031 | ||
7032 | static xlate_map_t * | |
7033 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
7034 | { | |
7035 | xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); | |
7036 | text_action_list *action_list = &relax_info->action_list; | |
7037 | unsigned num_actions = 0; | |
7038 | text_action *r; | |
7039 | int removed; | |
7040 | xlate_map_entry_t *current_entry; | |
7041 | ||
7042 | if (map == NULL) | |
7043 | return NULL; | |
7044 | ||
7045 | num_actions = action_list_count (action_list); | |
7046 | map->entry = (xlate_map_entry_t *) | |
7047 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); | |
7048 | if (map->entry == NULL) | |
7049 | { | |
7050 | free (map); | |
7051 | return NULL; | |
7052 | } | |
7053 | map->entry_count = 0; | |
7054 | ||
7055 | removed = 0; | |
7056 | current_entry = &map->entry[0]; | |
7057 | ||
7058 | current_entry->orig_address = 0; | |
7059 | current_entry->new_address = 0; | |
7060 | current_entry->size = 0; | |
7061 | ||
7062 | for (r = action_list->head; r != NULL; r = r->next) | |
7063 | { | |
7064 | unsigned orig_size = 0; | |
7065 | switch (r->action) | |
7066 | { | |
7067 | case ta_none: | |
7068 | case ta_remove_insn: | |
7069 | case ta_convert_longcall: | |
7070 | case ta_remove_literal: | |
7071 | case ta_add_literal: | |
7072 | break; | |
7073 | case ta_remove_longcall: | |
7074 | orig_size = 6; | |
7075 | break; | |
7076 | case ta_narrow_insn: | |
7077 | orig_size = 3; | |
7078 | break; | |
7079 | case ta_widen_insn: | |
7080 | orig_size = 2; | |
7081 | break; | |
7082 | case ta_fill: | |
7083 | break; | |
7084 | } | |
7085 | current_entry->size = | |
7086 | r->offset + orig_size - current_entry->orig_address; | |
7087 | if (current_entry->size != 0) | |
7088 | { | |
7089 | current_entry++; | |
7090 | map->entry_count++; | |
7091 | } | |
7092 | current_entry->orig_address = r->offset + orig_size; | |
7093 | removed += r->removed_bytes; | |
7094 | current_entry->new_address = r->offset + orig_size - removed; | |
7095 | current_entry->size = 0; | |
7096 | } | |
7097 | ||
7098 | current_entry->size = (bfd_get_section_limit (sec->owner, sec) | |
7099 | - current_entry->orig_address); | |
7100 | if (current_entry->size != 0) | |
7101 | map->entry_count++; | |
7102 | ||
7103 | return map; | |
7104 | } | |
7105 | ||
7106 | ||
7107 | /* Free an offset translation map. */ | |
7108 | ||
7109 | static void | |
7110 | free_xlate_map (xlate_map_t *map) | |
7111 | { | |
7112 | if (map && map->entry) | |
7113 | free (map->entry); | |
7114 | if (map) | |
7115 | free (map); | |
7116 | } | |
7117 | ||
7118 | ||
43cd72b9 BW |
7119 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
7120 | relocations in a section will fit if a proposed set of actions | |
7121 | are performed. */ | |
e0001a05 | 7122 | |
43cd72b9 | 7123 | static bfd_boolean |
7fa3d080 BW |
7124 | check_section_ebb_pcrels_fit (bfd *abfd, |
7125 | asection *sec, | |
7126 | bfd_byte *contents, | |
7127 | Elf_Internal_Rela *internal_relocs, | |
cb337148 BW |
7128 | const ebb_constraint *constraint, |
7129 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 7130 | { |
43cd72b9 BW |
7131 | unsigned i, j; |
7132 | Elf_Internal_Rela *irel; | |
03e94c08 BW |
7133 | xlate_map_t *xmap = NULL; |
7134 | bfd_boolean ok = TRUE; | |
43cd72b9 | 7135 | xtensa_relax_info *relax_info; |
e0001a05 | 7136 | |
43cd72b9 | 7137 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 7138 | |
03e94c08 BW |
7139 | if (relax_info && sec->reloc_count > 100) |
7140 | { | |
7141 | xmap = build_xlate_map (sec, relax_info); | |
7142 | /* NULL indicates out of memory, but the slow version | |
7143 | can still be used. */ | |
7144 | } | |
7145 | ||
43cd72b9 BW |
7146 | for (i = 0; i < sec->reloc_count; i++) |
7147 | { | |
7148 | r_reloc r_rel; | |
7149 | bfd_vma orig_self_offset, orig_target_offset; | |
7150 | bfd_vma self_offset, target_offset; | |
7151 | int r_type; | |
7152 | reloc_howto_type *howto; | |
7153 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 7154 | |
43cd72b9 BW |
7155 | irel = &internal_relocs[i]; |
7156 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 7157 | |
43cd72b9 BW |
7158 | howto = &elf_howto_table[r_type]; |
7159 | /* We maintain the required invariant: PC-relative relocations | |
7160 | that fit before linking must fit after linking. Thus we only | |
7161 | need to deal with relocations to the same section that are | |
7162 | PC-relative. */ | |
1bbb5f21 BW |
7163 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
7164 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
7165 | || !howto->pc_relative) |
7166 | continue; | |
e0001a05 | 7167 | |
43cd72b9 BW |
7168 | r_reloc_init (&r_rel, abfd, irel, contents, |
7169 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 7170 | |
43cd72b9 BW |
7171 | if (r_reloc_get_section (&r_rel) != sec) |
7172 | continue; | |
e0001a05 | 7173 | |
43cd72b9 BW |
7174 | orig_self_offset = irel->r_offset; |
7175 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 7176 | |
43cd72b9 BW |
7177 | self_offset = orig_self_offset; |
7178 | target_offset = orig_target_offset; | |
7179 | ||
7180 | if (relax_info) | |
7181 | { | |
03e94c08 BW |
7182 | self_offset = |
7183 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7184 | orig_self_offset); | |
7185 | target_offset = | |
7186 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7187 | orig_target_offset); | |
43cd72b9 BW |
7188 | } |
7189 | ||
7190 | self_removed_bytes = 0; | |
7191 | target_removed_bytes = 0; | |
7192 | ||
7193 | for (j = 0; j < constraint->action_count; ++j) | |
7194 | { | |
7195 | proposed_action *action = &constraint->actions[j]; | |
7196 | bfd_vma offset = action->offset; | |
7197 | int removed_bytes = action->removed_bytes; | |
7198 | if (offset < orig_self_offset | |
7199 | || (offset == orig_self_offset && action->action == ta_fill | |
7200 | && action->removed_bytes < 0)) | |
7201 | self_removed_bytes += removed_bytes; | |
7202 | if (offset < orig_target_offset | |
7203 | || (offset == orig_target_offset && action->action == ta_fill | |
7204 | && action->removed_bytes < 0)) | |
7205 | target_removed_bytes += removed_bytes; | |
7206 | } | |
7207 | self_offset -= self_removed_bytes; | |
7208 | target_offset -= target_removed_bytes; | |
7209 | ||
7210 | /* Try to encode it. Get the operand and check. */ | |
7211 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7212 | { | |
7213 | /* None of the current alternate relocs are PC-relative, | |
7214 | and only PC-relative relocs matter here. */ | |
7215 | } | |
7216 | else | |
7217 | { | |
7218 | xtensa_opcode opcode; | |
7219 | int opnum; | |
7220 | ||
cb337148 BW |
7221 | if (reloc_opcodes) |
7222 | opcode = reloc_opcodes[i]; | |
7223 | else | |
7224 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
43cd72b9 | 7225 | if (opcode == XTENSA_UNDEFINED) |
03e94c08 BW |
7226 | { |
7227 | ok = FALSE; | |
7228 | break; | |
7229 | } | |
43cd72b9 BW |
7230 | |
7231 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7232 | if (opnum == XTENSA_UNDEFINED) | |
03e94c08 BW |
7233 | { |
7234 | ok = FALSE; | |
7235 | break; | |
7236 | } | |
43cd72b9 BW |
7237 | |
7238 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
7239 | { |
7240 | ok = FALSE; | |
7241 | break; | |
7242 | } | |
43cd72b9 BW |
7243 | } |
7244 | } | |
7245 | ||
03e94c08 BW |
7246 | if (xmap) |
7247 | free_xlate_map (xmap); | |
7248 | ||
7249 | return ok; | |
43cd72b9 BW |
7250 | } |
7251 | ||
7252 | ||
7253 | static bfd_boolean | |
7fa3d080 | 7254 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
7255 | { |
7256 | int removed = 0; | |
7257 | unsigned i; | |
7258 | ||
7259 | for (i = 0; i < constraint->action_count; i++) | |
7260 | { | |
7261 | const proposed_action *action = &constraint->actions[i]; | |
7262 | if (action->do_action) | |
7263 | removed += action->removed_bytes; | |
7264 | } | |
7265 | if (removed < 0) | |
e0001a05 NC |
7266 | return FALSE; |
7267 | ||
7268 | return TRUE; | |
7269 | } | |
7270 | ||
7271 | ||
43cd72b9 | 7272 | void |
7fa3d080 BW |
7273 | text_action_add_proposed (text_action_list *l, |
7274 | const ebb_constraint *ebb_table, | |
7275 | asection *sec) | |
e0001a05 NC |
7276 | { |
7277 | unsigned i; | |
7278 | ||
43cd72b9 | 7279 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 7280 | { |
43cd72b9 | 7281 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 7282 | |
43cd72b9 | 7283 | if (!action->do_action) |
e0001a05 | 7284 | continue; |
43cd72b9 BW |
7285 | switch (action->action) |
7286 | { | |
7287 | case ta_remove_insn: | |
7288 | case ta_remove_longcall: | |
7289 | case ta_convert_longcall: | |
7290 | case ta_narrow_insn: | |
7291 | case ta_widen_insn: | |
7292 | case ta_fill: | |
7293 | case ta_remove_literal: | |
7294 | text_action_add (l, action->action, sec, action->offset, | |
7295 | action->removed_bytes); | |
7296 | break; | |
7297 | case ta_none: | |
7298 | break; | |
7299 | default: | |
7300 | BFD_ASSERT (0); | |
7301 | break; | |
7302 | } | |
e0001a05 | 7303 | } |
43cd72b9 | 7304 | } |
e0001a05 | 7305 | |
43cd72b9 BW |
7306 | |
7307 | int | |
7fa3d080 | 7308 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
7309 | { |
7310 | int fill_extra_space; | |
7311 | ||
7312 | if (!entry) | |
7313 | return 0; | |
7314 | ||
7315 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
7316 | return 0; | |
7317 | ||
7318 | fill_extra_space = entry->size; | |
7319 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
7320 | { | |
7321 | /* Fill bytes for alignment: | |
7322 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
7323 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
7324 | int nsm = (1 << pow) - 1; | |
7325 | bfd_vma addr = entry->address + entry->size; | |
7326 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
7327 | fill_extra_space += align_fill; | |
7328 | } | |
7329 | return fill_extra_space; | |
e0001a05 NC |
7330 | } |
7331 | ||
43cd72b9 | 7332 | \f |
e0001a05 NC |
7333 | /* First relaxation pass. */ |
7334 | ||
43cd72b9 BW |
7335 | /* If the section contains relaxable literals, check each literal to |
7336 | see if it has the same value as another literal that has already | |
7337 | been seen, either in the current section or a previous one. If so, | |
7338 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
7339 | actual changes are deferred until the next pass. */ |
7340 | ||
7341 | static bfd_boolean | |
7fa3d080 BW |
7342 | compute_removed_literals (bfd *abfd, |
7343 | asection *sec, | |
7344 | struct bfd_link_info *link_info, | |
7345 | value_map_hash_table *values) | |
e0001a05 NC |
7346 | { |
7347 | xtensa_relax_info *relax_info; | |
7348 | bfd_byte *contents; | |
7349 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 7350 | source_reloc *src_relocs, *rel; |
e0001a05 | 7351 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
7352 | property_table_entry *prop_table = NULL; |
7353 | int ptblsize; | |
7354 | int i, prev_i; | |
7355 | bfd_boolean last_loc_is_prev = FALSE; | |
7356 | bfd_vma last_target_offset = 0; | |
7357 | section_cache_t target_sec_cache; | |
7358 | bfd_size_type sec_size; | |
7359 | ||
7360 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
7361 | |
7362 | /* Do nothing if it is not a relaxable literal section. */ | |
7363 | relax_info = get_xtensa_relax_info (sec); | |
7364 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
7365 | if (!relax_info->is_relaxable_literal_section) |
7366 | return ok; | |
7367 | ||
7368 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7369 | link_info->keep_memory); | |
7370 | ||
43cd72b9 | 7371 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 7372 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7373 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7374 | { |
7375 | ok = FALSE; | |
7376 | goto error_return; | |
7377 | } | |
7378 | ||
7379 | /* Sort the source_relocs by target offset. */ | |
7380 | src_relocs = relax_info->src_relocs; | |
7381 | qsort (src_relocs, relax_info->src_count, | |
7382 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
7383 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
7384 | internal_reloc_compare); | |
e0001a05 | 7385 | |
43cd72b9 BW |
7386 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7387 | XTENSA_PROP_SEC_NAME, FALSE); | |
7388 | if (ptblsize < 0) | |
7389 | { | |
7390 | ok = FALSE; | |
7391 | goto error_return; | |
7392 | } | |
7393 | ||
7394 | prev_i = -1; | |
e0001a05 NC |
7395 | for (i = 0; i < relax_info->src_count; i++) |
7396 | { | |
e0001a05 | 7397 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
7398 | |
7399 | rel = &src_relocs[i]; | |
43cd72b9 BW |
7400 | if (get_l32r_opcode () != rel->opcode) |
7401 | continue; | |
e0001a05 NC |
7402 | irel = get_irel_at_offset (sec, internal_relocs, |
7403 | rel->r_rel.target_offset); | |
7404 | ||
43cd72b9 BW |
7405 | /* If the relocation on this is not a simple R_XTENSA_32 or |
7406 | R_XTENSA_PLT then do not consider it. This may happen when | |
7407 | the difference of two symbols is used in a literal. */ | |
7408 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
7409 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
7410 | continue; | |
7411 | ||
e0001a05 NC |
7412 | /* If the target_offset for this relocation is the same as the |
7413 | previous relocation, then we've already considered whether the | |
7414 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
7415 | if (i != 0 && prev_i != -1 |
7416 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 7417 | continue; |
43cd72b9 BW |
7418 | prev_i = i; |
7419 | ||
7420 | if (last_loc_is_prev && | |
7421 | last_target_offset + 4 != rel->r_rel.target_offset) | |
7422 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
7423 | |
7424 | /* Check if the relocation was from an L32R that is being removed | |
7425 | because a CALLX was converted to a direct CALL, and check if | |
7426 | there are no other relocations to the literal. */ | |
99ded152 BW |
7427 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
7428 | sec, prop_table, ptblsize)) | |
e0001a05 | 7429 | { |
43cd72b9 BW |
7430 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
7431 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 7432 | { |
43cd72b9 BW |
7433 | ok = FALSE; |
7434 | goto error_return; | |
e0001a05 | 7435 | } |
43cd72b9 | 7436 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
7437 | continue; |
7438 | } | |
7439 | ||
43cd72b9 BW |
7440 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
7441 | values, | |
7442 | &last_loc_is_prev, irel, | |
7443 | relax_info->src_count - i, rel, | |
7444 | prop_table, ptblsize, | |
7445 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 7446 | { |
43cd72b9 BW |
7447 | ok = FALSE; |
7448 | goto error_return; | |
7449 | } | |
7450 | last_target_offset = rel->r_rel.target_offset; | |
7451 | } | |
e0001a05 | 7452 | |
43cd72b9 BW |
7453 | #if DEBUG |
7454 | print_removed_literals (stderr, &relax_info->removed_list); | |
7455 | print_action_list (stderr, &relax_info->action_list); | |
7456 | #endif /* DEBUG */ | |
7457 | ||
7458 | error_return: | |
7459 | if (prop_table) free (prop_table); | |
7460 | clear_section_cache (&target_sec_cache); | |
7461 | ||
7462 | release_contents (sec, contents); | |
7463 | release_internal_relocs (sec, internal_relocs); | |
7464 | return ok; | |
7465 | } | |
7466 | ||
7467 | ||
7468 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7469 | get_irel_at_offset (asection *sec, |
7470 | Elf_Internal_Rela *internal_relocs, | |
7471 | bfd_vma offset) | |
43cd72b9 BW |
7472 | { |
7473 | unsigned i; | |
7474 | Elf_Internal_Rela *irel; | |
7475 | unsigned r_type; | |
7476 | Elf_Internal_Rela key; | |
7477 | ||
7478 | if (!internal_relocs) | |
7479 | return NULL; | |
7480 | ||
7481 | key.r_offset = offset; | |
7482 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
7483 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
7484 | if (!irel) | |
7485 | return NULL; | |
7486 | ||
7487 | /* bsearch does not guarantee which will be returned if there are | |
7488 | multiple matches. We need the first that is not an alignment. */ | |
7489 | i = irel - internal_relocs; | |
7490 | while (i > 0) | |
7491 | { | |
7492 | if (internal_relocs[i-1].r_offset != offset) | |
7493 | break; | |
7494 | i--; | |
7495 | } | |
7496 | for ( ; i < sec->reloc_count; i++) | |
7497 | { | |
7498 | irel = &internal_relocs[i]; | |
7499 | r_type = ELF32_R_TYPE (irel->r_info); | |
7500 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
7501 | return irel; | |
7502 | } | |
7503 | ||
7504 | return NULL; | |
7505 | } | |
7506 | ||
7507 | ||
7508 | bfd_boolean | |
7fa3d080 BW |
7509 | is_removable_literal (const source_reloc *rel, |
7510 | int i, | |
7511 | const source_reloc *src_relocs, | |
99ded152 BW |
7512 | int src_count, |
7513 | asection *sec, | |
7514 | property_table_entry *prop_table, | |
7515 | int ptblsize) | |
43cd72b9 BW |
7516 | { |
7517 | const source_reloc *curr_rel; | |
99ded152 BW |
7518 | property_table_entry *entry; |
7519 | ||
43cd72b9 BW |
7520 | if (!rel->is_null) |
7521 | return FALSE; | |
7522 | ||
99ded152 BW |
7523 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
7524 | sec->vma + rel->r_rel.target_offset); | |
7525 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
7526 | return FALSE; | |
7527 | ||
43cd72b9 BW |
7528 | for (++i; i < src_count; ++i) |
7529 | { | |
7530 | curr_rel = &src_relocs[i]; | |
7531 | /* If all others have the same target offset.... */ | |
7532 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
7533 | return TRUE; | |
7534 | ||
7535 | if (!curr_rel->is_null | |
7536 | && !xtensa_is_property_section (curr_rel->source_sec) | |
7537 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
7538 | return FALSE; | |
7539 | } | |
7540 | return TRUE; | |
7541 | } | |
7542 | ||
7543 | ||
7544 | bfd_boolean | |
7fa3d080 BW |
7545 | remove_dead_literal (bfd *abfd, |
7546 | asection *sec, | |
7547 | struct bfd_link_info *link_info, | |
7548 | Elf_Internal_Rela *internal_relocs, | |
7549 | Elf_Internal_Rela *irel, | |
7550 | source_reloc *rel, | |
7551 | property_table_entry *prop_table, | |
7552 | int ptblsize) | |
43cd72b9 BW |
7553 | { |
7554 | property_table_entry *entry; | |
7555 | xtensa_relax_info *relax_info; | |
7556 | ||
7557 | relax_info = get_xtensa_relax_info (sec); | |
7558 | if (!relax_info) | |
7559 | return FALSE; | |
7560 | ||
7561 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7562 | sec->vma + rel->r_rel.target_offset); | |
7563 | ||
7564 | /* Mark the unused literal so that it will be removed. */ | |
7565 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
7566 | ||
7567 | text_action_add (&relax_info->action_list, | |
7568 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7569 | ||
7570 | /* If the section is 4-byte aligned, do not add fill. */ | |
7571 | if (sec->alignment_power > 2) | |
7572 | { | |
7573 | int fill_extra_space; | |
7574 | bfd_vma entry_sec_offset; | |
7575 | text_action *fa; | |
7576 | property_table_entry *the_add_entry; | |
7577 | int removed_diff; | |
7578 | ||
7579 | if (entry) | |
7580 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7581 | else | |
7582 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7583 | ||
7584 | /* If the literal range is at the end of the section, | |
7585 | do not add fill. */ | |
7586 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7587 | entry_sec_offset); | |
7588 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
7589 | ||
7590 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7591 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7592 | -4, fill_extra_space); | |
7593 | if (fa) | |
7594 | adjust_fill_action (fa, removed_diff); | |
7595 | else | |
7596 | text_action_add (&relax_info->action_list, | |
7597 | ta_fill, sec, entry_sec_offset, removed_diff); | |
7598 | } | |
7599 | ||
7600 | /* Zero out the relocation on this literal location. */ | |
7601 | if (irel) | |
7602 | { | |
7603 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
7604 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
7605 | ||
7606 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7607 | pin_internal_relocs (sec, internal_relocs); | |
7608 | } | |
7609 | ||
7610 | /* Do not modify "last_loc_is_prev". */ | |
7611 | return TRUE; | |
7612 | } | |
7613 | ||
7614 | ||
7615 | bfd_boolean | |
7fa3d080 BW |
7616 | identify_literal_placement (bfd *abfd, |
7617 | asection *sec, | |
7618 | bfd_byte *contents, | |
7619 | struct bfd_link_info *link_info, | |
7620 | value_map_hash_table *values, | |
7621 | bfd_boolean *last_loc_is_prev_p, | |
7622 | Elf_Internal_Rela *irel, | |
7623 | int remaining_src_rels, | |
7624 | source_reloc *rel, | |
7625 | property_table_entry *prop_table, | |
7626 | int ptblsize, | |
7627 | section_cache_t *target_sec_cache, | |
7628 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
7629 | { |
7630 | literal_value val; | |
7631 | value_map *val_map; | |
7632 | xtensa_relax_info *relax_info; | |
7633 | bfd_boolean literal_placed = FALSE; | |
7634 | r_reloc r_rel; | |
7635 | unsigned long value; | |
7636 | bfd_boolean final_static_link; | |
7637 | bfd_size_type sec_size; | |
7638 | ||
7639 | relax_info = get_xtensa_relax_info (sec); | |
7640 | if (!relax_info) | |
7641 | return FALSE; | |
7642 | ||
7643 | sec_size = bfd_get_section_limit (abfd, sec); | |
7644 | ||
7645 | final_static_link = | |
7646 | (!link_info->relocatable | |
7647 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
7648 | ||
7649 | /* The placement algorithm first checks to see if the literal is | |
7650 | already in the value map. If so and the value map is reachable | |
7651 | from all uses, then the literal is moved to that location. If | |
7652 | not, then we identify the last location where a fresh literal was | |
7653 | placed. If the literal can be safely moved there, then we do so. | |
7654 | If not, then we assume that the literal is not to move and leave | |
7655 | the literal where it is, marking it as the last literal | |
7656 | location. */ | |
7657 | ||
7658 | /* Find the literal value. */ | |
7659 | value = 0; | |
7660 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7661 | if (!irel) | |
7662 | { | |
7663 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
7664 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
7665 | } | |
7666 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
7667 | ||
7668 | /* Check if we've seen another literal with the same value that | |
7669 | is in the same output section. */ | |
7670 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
7671 | ||
7672 | if (val_map | |
7673 | && (r_reloc_get_section (&val_map->loc)->output_section | |
7674 | == sec->output_section) | |
7675 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
7676 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
7677 | { | |
7678 | /* No change to last_loc_is_prev. */ | |
7679 | literal_placed = TRUE; | |
7680 | } | |
7681 | ||
7682 | /* For relocatable links, do not try to move literals. To do it | |
7683 | correctly might increase the number of relocations in an input | |
7684 | section making the default relocatable linking fail. */ | |
7685 | if (!link_info->relocatable && !literal_placed | |
7686 | && values->has_last_loc && !(*last_loc_is_prev_p)) | |
7687 | { | |
7688 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
7689 | if (target_sec && target_sec->output_section == sec->output_section) | |
7690 | { | |
7691 | /* Increment the virtual offset. */ | |
7692 | r_reloc try_loc = values->last_loc; | |
7693 | try_loc.virtual_offset += 4; | |
7694 | ||
7695 | /* There is a last loc that was in the same output section. */ | |
7696 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
7697 | && move_shared_literal (sec, link_info, rel, | |
7698 | prop_table, ptblsize, | |
7699 | &try_loc, &val, target_sec_cache)) | |
e0001a05 | 7700 | { |
43cd72b9 BW |
7701 | values->last_loc.virtual_offset += 4; |
7702 | literal_placed = TRUE; | |
7703 | if (!val_map) | |
7704 | val_map = add_value_map (values, &val, &try_loc, | |
7705 | final_static_link); | |
7706 | else | |
7707 | val_map->loc = try_loc; | |
e0001a05 NC |
7708 | } |
7709 | } | |
43cd72b9 BW |
7710 | } |
7711 | ||
7712 | if (!literal_placed) | |
7713 | { | |
7714 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
7715 | values->has_last_loc = TRUE; | |
7716 | values->last_loc = rel->r_rel; | |
7717 | if (!val_map) | |
7718 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 7719 | else |
43cd72b9 BW |
7720 | val_map->loc = rel->r_rel; |
7721 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
7722 | } |
7723 | ||
43cd72b9 | 7724 | return TRUE; |
e0001a05 NC |
7725 | } |
7726 | ||
7727 | ||
7728 | /* Check if the original relocations (presumably on L32R instructions) | |
7729 | identified by reloc[0..N] can be changed to reference the literal | |
7730 | identified by r_rel. If r_rel is out of range for any of the | |
7731 | original relocations, then we don't want to coalesce the original | |
7732 | literal with the one at r_rel. We only check reloc[0..N], where the | |
7733 | offsets are all the same as for reloc[0] (i.e., they're all | |
7734 | referencing the same literal) and where N is also bounded by the | |
7735 | number of remaining entries in the "reloc" array. The "reloc" array | |
7736 | is sorted by target offset so we know all the entries for the same | |
7737 | literal will be contiguous. */ | |
7738 | ||
7739 | static bfd_boolean | |
7fa3d080 BW |
7740 | relocations_reach (source_reloc *reloc, |
7741 | int remaining_relocs, | |
7742 | const r_reloc *r_rel) | |
e0001a05 NC |
7743 | { |
7744 | bfd_vma from_offset, source_address, dest_address; | |
7745 | asection *sec; | |
7746 | int i; | |
7747 | ||
7748 | if (!r_reloc_is_defined (r_rel)) | |
7749 | return FALSE; | |
7750 | ||
7751 | sec = r_reloc_get_section (r_rel); | |
7752 | from_offset = reloc[0].r_rel.target_offset; | |
7753 | ||
7754 | for (i = 0; i < remaining_relocs; i++) | |
7755 | { | |
7756 | if (reloc[i].r_rel.target_offset != from_offset) | |
7757 | break; | |
7758 | ||
7759 | /* Ignore relocations that have been removed. */ | |
7760 | if (reloc[i].is_null) | |
7761 | continue; | |
7762 | ||
7763 | /* The original and new output section for these must be the same | |
7764 | in order to coalesce. */ | |
7765 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
7766 | != sec->output_section) | |
7767 | return FALSE; | |
7768 | ||
d638e0ac BW |
7769 | /* Absolute literals in the same output section can always be |
7770 | combined. */ | |
7771 | if (reloc[i].is_abs_literal) | |
7772 | continue; | |
7773 | ||
43cd72b9 BW |
7774 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
7775 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
7776 | { |
7777 | /* Otherwise, check to see that it fits. */ | |
7778 | source_address = (reloc[i].source_sec->output_section->vma | |
7779 | + reloc[i].source_sec->output_offset | |
7780 | + reloc[i].r_rel.rela.r_offset); | |
7781 | dest_address = (sec->output_section->vma | |
7782 | + sec->output_offset | |
7783 | + r_rel->target_offset); | |
7784 | ||
43cd72b9 BW |
7785 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
7786 | source_address, dest_address)) | |
e0001a05 NC |
7787 | return FALSE; |
7788 | } | |
7789 | } | |
7790 | ||
7791 | return TRUE; | |
7792 | } | |
7793 | ||
7794 | ||
43cd72b9 BW |
7795 | /* Move a literal to another literal location because it is |
7796 | the same as the other literal value. */ | |
e0001a05 | 7797 | |
43cd72b9 | 7798 | static bfd_boolean |
7fa3d080 BW |
7799 | coalesce_shared_literal (asection *sec, |
7800 | source_reloc *rel, | |
7801 | property_table_entry *prop_table, | |
7802 | int ptblsize, | |
7803 | value_map *val_map) | |
e0001a05 | 7804 | { |
43cd72b9 BW |
7805 | property_table_entry *entry; |
7806 | text_action *fa; | |
7807 | property_table_entry *the_add_entry; | |
7808 | int removed_diff; | |
7809 | xtensa_relax_info *relax_info; | |
7810 | ||
7811 | relax_info = get_xtensa_relax_info (sec); | |
7812 | if (!relax_info) | |
7813 | return FALSE; | |
7814 | ||
7815 | entry = elf_xtensa_find_property_entry | |
7816 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 7817 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
7818 | return TRUE; |
7819 | ||
7820 | /* Mark that the literal will be coalesced. */ | |
7821 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
7822 | ||
7823 | text_action_add (&relax_info->action_list, | |
7824 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7825 | ||
7826 | /* If the section is 4-byte aligned, do not add fill. */ | |
7827 | if (sec->alignment_power > 2) | |
e0001a05 | 7828 | { |
43cd72b9 BW |
7829 | int fill_extra_space; |
7830 | bfd_vma entry_sec_offset; | |
7831 | ||
7832 | if (entry) | |
7833 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7834 | else | |
7835 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7836 | ||
7837 | /* If the literal range is at the end of the section, | |
7838 | do not add fill. */ | |
7839 | fill_extra_space = 0; | |
7840 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7841 | entry_sec_offset); | |
7842 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7843 | fill_extra_space = the_add_entry->size; | |
7844 | ||
7845 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7846 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7847 | -4, fill_extra_space); | |
7848 | if (fa) | |
7849 | adjust_fill_action (fa, removed_diff); | |
7850 | else | |
7851 | text_action_add (&relax_info->action_list, | |
7852 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 7853 | } |
43cd72b9 BW |
7854 | |
7855 | return TRUE; | |
7856 | } | |
7857 | ||
7858 | ||
7859 | /* Move a literal to another location. This may actually increase the | |
7860 | total amount of space used because of alignments so we need to do | |
7861 | this carefully. Also, it may make a branch go out of range. */ | |
7862 | ||
7863 | static bfd_boolean | |
7fa3d080 BW |
7864 | move_shared_literal (asection *sec, |
7865 | struct bfd_link_info *link_info, | |
7866 | source_reloc *rel, | |
7867 | property_table_entry *prop_table, | |
7868 | int ptblsize, | |
7869 | const r_reloc *target_loc, | |
7870 | const literal_value *lit_value, | |
7871 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
7872 | { |
7873 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
7874 | text_action *fa, *target_fa; | |
7875 | int removed_diff; | |
7876 | xtensa_relax_info *relax_info, *target_relax_info; | |
7877 | asection *target_sec; | |
7878 | ebb_t *ebb; | |
7879 | ebb_constraint ebb_table; | |
7880 | bfd_boolean relocs_fit; | |
7881 | ||
7882 | /* If this routine always returns FALSE, the literals that cannot be | |
7883 | coalesced will not be moved. */ | |
7884 | if (elf32xtensa_no_literal_movement) | |
7885 | return FALSE; | |
7886 | ||
7887 | relax_info = get_xtensa_relax_info (sec); | |
7888 | if (!relax_info) | |
7889 | return FALSE; | |
7890 | ||
7891 | target_sec = r_reloc_get_section (target_loc); | |
7892 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7893 | ||
7894 | /* Literals to undefined sections may not be moved because they | |
7895 | must report an error. */ | |
7896 | if (bfd_is_und_section (target_sec)) | |
7897 | return FALSE; | |
7898 | ||
7899 | src_entry = elf_xtensa_find_property_entry | |
7900 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
7901 | ||
7902 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
7903 | return FALSE; | |
7904 | ||
7905 | target_entry = elf_xtensa_find_property_entry | |
7906 | (target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7907 | target_sec->vma + target_loc->target_offset); | |
7908 | ||
7909 | if (!target_entry) | |
7910 | return FALSE; | |
7911 | ||
7912 | /* Make sure that we have not broken any branches. */ | |
7913 | relocs_fit = FALSE; | |
7914 | ||
7915 | init_ebb_constraint (&ebb_table); | |
7916 | ebb = &ebb_table.ebb; | |
7917 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, | |
7918 | target_sec_cache->content_length, | |
7919 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7920 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
7921 | ||
7922 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
7923 | destination. */ | |
7924 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
7925 | ta_fill, target_loc->target_offset, | |
7926 | -4 - (1 << target_sec->alignment_power), TRUE); | |
7927 | ||
7928 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
7929 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, | |
7930 | target_sec_cache->contents, | |
7931 | target_sec_cache->relocs, | |
cb337148 | 7932 | &ebb_table, NULL); |
43cd72b9 BW |
7933 | |
7934 | if (!relocs_fit) | |
7935 | return FALSE; | |
7936 | ||
7937 | text_action_add_literal (&target_relax_info->action_list, | |
7938 | ta_add_literal, target_loc, lit_value, -4); | |
7939 | ||
7940 | if (target_sec->alignment_power > 2 && target_entry != src_entry) | |
7941 | { | |
7942 | /* May need to add or remove some fill to maintain alignment. */ | |
7943 | int fill_extra_space; | |
7944 | bfd_vma entry_sec_offset; | |
7945 | ||
7946 | entry_sec_offset = | |
7947 | target_entry->address - target_sec->vma + target_entry->size; | |
7948 | ||
7949 | /* If the literal range is at the end of the section, | |
7950 | do not add fill. */ | |
7951 | fill_extra_space = 0; | |
7952 | the_add_entry = | |
7953 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
7954 | target_sec_cache->pte_count, | |
7955 | entry_sec_offset); | |
7956 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7957 | fill_extra_space = the_add_entry->size; | |
7958 | ||
7959 | target_fa = find_fill_action (&target_relax_info->action_list, | |
7960 | target_sec, entry_sec_offset); | |
7961 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
7962 | entry_sec_offset, 4, | |
7963 | fill_extra_space); | |
7964 | if (target_fa) | |
7965 | adjust_fill_action (target_fa, removed_diff); | |
7966 | else | |
7967 | text_action_add (&target_relax_info->action_list, | |
7968 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
7969 | } | |
7970 | ||
7971 | /* Mark that the literal will be moved to the new location. */ | |
7972 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
7973 | ||
7974 | /* Remove the literal. */ | |
7975 | text_action_add (&relax_info->action_list, | |
7976 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7977 | ||
7978 | /* If the section is 4-byte aligned, do not add fill. */ | |
7979 | if (sec->alignment_power > 2 && target_entry != src_entry) | |
7980 | { | |
7981 | int fill_extra_space; | |
7982 | bfd_vma entry_sec_offset; | |
7983 | ||
7984 | if (src_entry) | |
7985 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
7986 | else | |
7987 | entry_sec_offset = rel->r_rel.target_offset+4; | |
7988 | ||
7989 | /* If the literal range is at the end of the section, | |
7990 | do not add fill. */ | |
7991 | fill_extra_space = 0; | |
7992 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7993 | entry_sec_offset); | |
7994 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7995 | fill_extra_space = the_add_entry->size; | |
7996 | ||
7997 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7998 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7999 | -4, fill_extra_space); | |
8000 | if (fa) | |
8001 | adjust_fill_action (fa, removed_diff); | |
8002 | else | |
8003 | text_action_add (&relax_info->action_list, | |
8004 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8005 | } | |
8006 | ||
8007 | return TRUE; | |
e0001a05 NC |
8008 | } |
8009 | ||
8010 | \f | |
8011 | /* Second relaxation pass. */ | |
8012 | ||
8013 | /* Modify all of the relocations to point to the right spot, and if this | |
8014 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 8015 | section size. */ |
e0001a05 | 8016 | |
43cd72b9 | 8017 | bfd_boolean |
7fa3d080 | 8018 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
8019 | { |
8020 | Elf_Internal_Rela *internal_relocs; | |
8021 | xtensa_relax_info *relax_info; | |
8022 | bfd_byte *contents; | |
8023 | bfd_boolean ok = TRUE; | |
8024 | unsigned i; | |
43cd72b9 BW |
8025 | bfd_boolean rv = FALSE; |
8026 | bfd_boolean virtual_action; | |
8027 | bfd_size_type sec_size; | |
e0001a05 | 8028 | |
43cd72b9 | 8029 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8030 | relax_info = get_xtensa_relax_info (sec); |
8031 | BFD_ASSERT (relax_info); | |
8032 | ||
43cd72b9 BW |
8033 | /* First translate any of the fixes that have been added already. */ |
8034 | translate_section_fixes (sec); | |
8035 | ||
e0001a05 NC |
8036 | /* Handle property sections (e.g., literal tables) specially. */ |
8037 | if (xtensa_is_property_section (sec)) | |
8038 | { | |
8039 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
8040 | return relax_property_section (abfd, sec, link_info); | |
8041 | } | |
8042 | ||
43cd72b9 BW |
8043 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8044 | link_info->keep_memory); | |
8045 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
8046 | if (contents == NULL && sec_size != 0) | |
8047 | { | |
8048 | ok = FALSE; | |
8049 | goto error_return; | |
8050 | } | |
8051 | ||
8052 | if (internal_relocs) | |
8053 | { | |
8054 | for (i = 0; i < sec->reloc_count; i++) | |
8055 | { | |
8056 | Elf_Internal_Rela *irel; | |
8057 | xtensa_relax_info *target_relax_info; | |
8058 | bfd_vma source_offset, old_source_offset; | |
8059 | r_reloc r_rel; | |
8060 | unsigned r_type; | |
8061 | asection *target_sec; | |
8062 | ||
8063 | /* Locally change the source address. | |
8064 | Translate the target to the new target address. | |
8065 | If it points to this section and has been removed, | |
8066 | NULLify it. | |
8067 | Write it back. */ | |
8068 | ||
8069 | irel = &internal_relocs[i]; | |
8070 | source_offset = irel->r_offset; | |
8071 | old_source_offset = source_offset; | |
8072 | ||
8073 | r_type = ELF32_R_TYPE (irel->r_info); | |
8074 | r_reloc_init (&r_rel, abfd, irel, contents, | |
8075 | bfd_get_section_limit (abfd, sec)); | |
8076 | ||
8077 | /* If this section could have changed then we may need to | |
8078 | change the relocation's offset. */ | |
8079 | ||
8080 | if (relax_info->is_relaxable_literal_section | |
8081 | || relax_info->is_relaxable_asm_section) | |
8082 | { | |
9b7f5d20 BW |
8083 | pin_internal_relocs (sec, internal_relocs); |
8084 | ||
43cd72b9 BW |
8085 | if (r_type != R_XTENSA_NONE |
8086 | && find_removed_literal (&relax_info->removed_list, | |
8087 | irel->r_offset)) | |
8088 | { | |
8089 | /* Remove this relocation. */ | |
8090 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8091 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8092 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8093 | irel->r_offset = offset_with_removed_text | |
8094 | (&relax_info->action_list, irel->r_offset); | |
43cd72b9 BW |
8095 | continue; |
8096 | } | |
8097 | ||
8098 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
8099 | { | |
8100 | text_action *action = | |
8101 | find_insn_action (&relax_info->action_list, | |
8102 | irel->r_offset); | |
8103 | if (action && (action->action == ta_convert_longcall | |
8104 | || action->action == ta_remove_longcall)) | |
8105 | { | |
8106 | bfd_reloc_status_type retval; | |
8107 | char *error_message = NULL; | |
8108 | ||
8109 | retval = contract_asm_expansion (contents, sec_size, | |
8110 | irel, &error_message); | |
8111 | if (retval != bfd_reloc_ok) | |
8112 | { | |
8113 | (*link_info->callbacks->reloc_dangerous) | |
8114 | (link_info, error_message, abfd, sec, | |
8115 | irel->r_offset); | |
8116 | goto error_return; | |
8117 | } | |
8118 | /* Update the action so that the code that moves | |
8119 | the contents will do the right thing. */ | |
8120 | if (action->action == ta_remove_longcall) | |
8121 | action->action = ta_remove_insn; | |
8122 | else | |
8123 | action->action = ta_none; | |
8124 | /* Refresh the info in the r_rel. */ | |
8125 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8126 | r_type = ELF32_R_TYPE (irel->r_info); | |
8127 | } | |
8128 | } | |
8129 | ||
8130 | source_offset = offset_with_removed_text | |
8131 | (&relax_info->action_list, irel->r_offset); | |
8132 | irel->r_offset = source_offset; | |
8133 | } | |
8134 | ||
8135 | /* If the target section could have changed then | |
8136 | we may need to change the relocation's target offset. */ | |
8137 | ||
8138 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 8139 | |
ae326da8 BW |
8140 | /* For a reference to a discarded section from a DWARF section, |
8141 | i.e., where action_discarded is PRETEND, the symbol will | |
8142 | eventually be modified to refer to the kept section (at least if | |
8143 | the kept and discarded sections are the same size). Anticipate | |
8144 | that here and adjust things accordingly. */ | |
8145 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
8146 | && elf_xtensa_action_discarded (sec) == PRETEND | |
8147 | && sec->sec_info_type != ELF_INFO_TYPE_STABS | |
8148 | && target_sec != NULL | |
8149 | && elf_discarded_section (target_sec)) | |
8150 | { | |
8151 | /* It would be natural to call _bfd_elf_check_kept_section | |
8152 | here, but it's not exported from elflink.c. It's also a | |
8153 | fairly expensive check. Adjusting the relocations to the | |
8154 | discarded section is fairly harmless; it will only adjust | |
8155 | some addends and difference values. If it turns out that | |
8156 | _bfd_elf_check_kept_section fails later, it won't matter, | |
8157 | so just compare the section names to find the right group | |
8158 | member. */ | |
8159 | asection *kept = target_sec->kept_section; | |
8160 | if (kept != NULL) | |
8161 | { | |
8162 | if ((kept->flags & SEC_GROUP) != 0) | |
8163 | { | |
8164 | asection *first = elf_next_in_group (kept); | |
8165 | asection *s = first; | |
8166 | ||
8167 | kept = NULL; | |
8168 | while (s != NULL) | |
8169 | { | |
8170 | if (strcmp (s->name, target_sec->name) == 0) | |
8171 | { | |
8172 | kept = s; | |
8173 | break; | |
8174 | } | |
8175 | s = elf_next_in_group (s); | |
8176 | if (s == first) | |
8177 | break; | |
8178 | } | |
8179 | } | |
8180 | } | |
8181 | if (kept != NULL | |
8182 | && ((target_sec->rawsize != 0 | |
8183 | ? target_sec->rawsize : target_sec->size) | |
8184 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
8185 | target_sec = kept; | |
8186 | } | |
8187 | ||
8188 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
8189 | if (target_relax_info |
8190 | && (target_relax_info->is_relaxable_literal_section | |
8191 | || target_relax_info->is_relaxable_asm_section)) | |
8192 | { | |
8193 | r_reloc new_reloc; | |
9b7f5d20 | 8194 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
8195 | |
8196 | if (r_type == R_XTENSA_DIFF8 | |
8197 | || r_type == R_XTENSA_DIFF16 | |
8198 | || r_type == R_XTENSA_DIFF32) | |
8199 | { | |
8200 | bfd_vma diff_value = 0, new_end_offset, diff_mask = 0; | |
8201 | ||
8202 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
8203 | { | |
8204 | (*link_info->callbacks->reloc_dangerous) | |
8205 | (link_info, _("invalid relocation address"), | |
8206 | abfd, sec, old_source_offset); | |
8207 | goto error_return; | |
8208 | } | |
8209 | ||
8210 | switch (r_type) | |
8211 | { | |
8212 | case R_XTENSA_DIFF8: | |
8213 | diff_value = | |
8214 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
8215 | break; | |
8216 | case R_XTENSA_DIFF16: | |
8217 | diff_value = | |
8218 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
8219 | break; | |
8220 | case R_XTENSA_DIFF32: | |
8221 | diff_value = | |
8222 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
8223 | break; | |
8224 | } | |
8225 | ||
8226 | new_end_offset = offset_with_removed_text | |
8227 | (&target_relax_info->action_list, | |
8228 | r_rel.target_offset + diff_value); | |
8229 | diff_value = new_end_offset - new_reloc.target_offset; | |
8230 | ||
8231 | switch (r_type) | |
8232 | { | |
8233 | case R_XTENSA_DIFF8: | |
8234 | diff_mask = 0xff; | |
8235 | bfd_put_8 (abfd, diff_value, | |
8236 | &contents[old_source_offset]); | |
8237 | break; | |
8238 | case R_XTENSA_DIFF16: | |
8239 | diff_mask = 0xffff; | |
8240 | bfd_put_16 (abfd, diff_value, | |
8241 | &contents[old_source_offset]); | |
8242 | break; | |
8243 | case R_XTENSA_DIFF32: | |
8244 | diff_mask = 0xffffffff; | |
8245 | bfd_put_32 (abfd, diff_value, | |
8246 | &contents[old_source_offset]); | |
8247 | break; | |
8248 | } | |
8249 | ||
8250 | /* Check for overflow. */ | |
8251 | if ((diff_value & ~diff_mask) != 0) | |
8252 | { | |
8253 | (*link_info->callbacks->reloc_dangerous) | |
8254 | (link_info, _("overflow after relaxation"), | |
8255 | abfd, sec, old_source_offset); | |
8256 | goto error_return; | |
8257 | } | |
8258 | ||
8259 | pin_contents (sec, contents); | |
8260 | } | |
dc96b90a BW |
8261 | |
8262 | /* If the relocation still references a section in the same | |
8263 | input file, modify the relocation directly instead of | |
8264 | adding a "fix" record. */ | |
8265 | if (target_sec->owner == abfd) | |
8266 | { | |
8267 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
8268 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
8269 | irel->r_addend = new_reloc.rela.r_addend; | |
8270 | pin_internal_relocs (sec, internal_relocs); | |
8271 | } | |
9b7f5d20 BW |
8272 | else |
8273 | { | |
dc96b90a BW |
8274 | bfd_vma addend_displacement; |
8275 | reloc_bfd_fix *fix; | |
8276 | ||
8277 | addend_displacement = | |
8278 | new_reloc.target_offset + new_reloc.virtual_offset; | |
8279 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
8280 | target_sec, | |
8281 | addend_displacement, TRUE); | |
8282 | add_fix (sec, fix); | |
9b7f5d20 | 8283 | } |
43cd72b9 | 8284 | } |
43cd72b9 BW |
8285 | } |
8286 | } | |
8287 | ||
8288 | if ((relax_info->is_relaxable_literal_section | |
8289 | || relax_info->is_relaxable_asm_section) | |
8290 | && relax_info->action_list.head) | |
8291 | { | |
8292 | /* Walk through the planned actions and build up a table | |
8293 | of move, copy and fill records. Use the move, copy and | |
8294 | fill records to perform the actions once. */ | |
8295 | ||
43cd72b9 BW |
8296 | int removed = 0; |
8297 | bfd_size_type final_size, copy_size, orig_insn_size; | |
8298 | bfd_byte *scratch = NULL; | |
8299 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 8300 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
8301 | bfd_vma orig_dot = 0; |
8302 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
8303 | orig dot in physical memory. */ | |
8304 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
8305 | bfd_vma dup_dot = 0; | |
8306 | ||
8307 | text_action *action = relax_info->action_list.head; | |
8308 | ||
8309 | final_size = sec->size; | |
8310 | for (action = relax_info->action_list.head; action; | |
8311 | action = action->next) | |
8312 | { | |
8313 | final_size -= action->removed_bytes; | |
8314 | } | |
8315 | ||
8316 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
8317 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
8318 | ||
8319 | /* The dot is the current fill location. */ | |
8320 | #if DEBUG | |
8321 | print_action_list (stderr, &relax_info->action_list); | |
8322 | #endif | |
8323 | ||
8324 | for (action = relax_info->action_list.head; action; | |
8325 | action = action->next) | |
8326 | { | |
8327 | virtual_action = FALSE; | |
8328 | if (action->offset > orig_dot) | |
8329 | { | |
8330 | orig_dot += orig_dot_copied; | |
8331 | orig_dot_copied = 0; | |
8332 | orig_dot_vo = 0; | |
8333 | /* Out of the virtual world. */ | |
8334 | } | |
8335 | ||
8336 | if (action->offset > orig_dot) | |
8337 | { | |
8338 | copy_size = action->offset - orig_dot; | |
8339 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
8340 | orig_dot += copy_size; | |
8341 | dup_dot += copy_size; | |
8342 | BFD_ASSERT (action->offset == orig_dot); | |
8343 | } | |
8344 | else if (action->offset < orig_dot) | |
8345 | { | |
8346 | if (action->action == ta_fill | |
8347 | && action->offset - action->removed_bytes == orig_dot) | |
8348 | { | |
8349 | /* This is OK because the fill only effects the dup_dot. */ | |
8350 | } | |
8351 | else if (action->action == ta_add_literal) | |
8352 | { | |
8353 | /* TBD. Might need to handle this. */ | |
8354 | } | |
8355 | } | |
8356 | if (action->offset == orig_dot) | |
8357 | { | |
8358 | if (action->virtual_offset > orig_dot_vo) | |
8359 | { | |
8360 | if (orig_dot_vo == 0) | |
8361 | { | |
8362 | /* Need to copy virtual_offset bytes. Probably four. */ | |
8363 | copy_size = action->virtual_offset - orig_dot_vo; | |
8364 | memmove (&dup_contents[dup_dot], | |
8365 | &contents[orig_dot], copy_size); | |
8366 | orig_dot_copied = copy_size; | |
8367 | dup_dot += copy_size; | |
8368 | } | |
8369 | virtual_action = TRUE; | |
8370 | } | |
8371 | else | |
8372 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
8373 | } | |
8374 | switch (action->action) | |
8375 | { | |
8376 | case ta_remove_literal: | |
8377 | case ta_remove_insn: | |
8378 | BFD_ASSERT (action->removed_bytes >= 0); | |
8379 | orig_dot += action->removed_bytes; | |
8380 | break; | |
8381 | ||
8382 | case ta_narrow_insn: | |
8383 | orig_insn_size = 3; | |
8384 | copy_size = 2; | |
8385 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8386 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 8387 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
8388 | BFD_ASSERT (rv); |
8389 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8390 | orig_dot += orig_insn_size; | |
8391 | dup_dot += copy_size; | |
8392 | break; | |
8393 | ||
8394 | case ta_fill: | |
8395 | if (action->removed_bytes >= 0) | |
8396 | orig_dot += action->removed_bytes; | |
8397 | else | |
8398 | { | |
8399 | /* Already zeroed in dup_contents. Just bump the | |
8400 | counters. */ | |
8401 | dup_dot += (-action->removed_bytes); | |
8402 | } | |
8403 | break; | |
8404 | ||
8405 | case ta_none: | |
8406 | BFD_ASSERT (action->removed_bytes == 0); | |
8407 | break; | |
8408 | ||
8409 | case ta_convert_longcall: | |
8410 | case ta_remove_longcall: | |
8411 | /* These will be removed or converted before we get here. */ | |
8412 | BFD_ASSERT (0); | |
8413 | break; | |
8414 | ||
8415 | case ta_widen_insn: | |
8416 | orig_insn_size = 2; | |
8417 | copy_size = 3; | |
8418 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8419 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 8420 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
8421 | BFD_ASSERT (rv); |
8422 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8423 | orig_dot += orig_insn_size; | |
8424 | dup_dot += copy_size; | |
8425 | break; | |
8426 | ||
8427 | case ta_add_literal: | |
8428 | orig_insn_size = 0; | |
8429 | copy_size = 4; | |
8430 | BFD_ASSERT (action->removed_bytes == -4); | |
8431 | /* TBD -- place the literal value here and insert | |
8432 | into the table. */ | |
8433 | memset (&dup_contents[dup_dot], 0, 4); | |
8434 | pin_internal_relocs (sec, internal_relocs); | |
8435 | pin_contents (sec, contents); | |
8436 | ||
8437 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
8438 | relax_info, &internal_relocs, &action->value)) | |
8439 | goto error_return; | |
8440 | ||
8441 | if (virtual_action) | |
8442 | orig_dot_vo += copy_size; | |
8443 | ||
8444 | orig_dot += orig_insn_size; | |
8445 | dup_dot += copy_size; | |
8446 | break; | |
8447 | ||
8448 | default: | |
8449 | /* Not implemented yet. */ | |
8450 | BFD_ASSERT (0); | |
8451 | break; | |
8452 | } | |
8453 | ||
43cd72b9 BW |
8454 | removed += action->removed_bytes; |
8455 | BFD_ASSERT (dup_dot <= final_size); | |
8456 | BFD_ASSERT (orig_dot <= orig_size); | |
8457 | } | |
8458 | ||
8459 | orig_dot += orig_dot_copied; | |
8460 | orig_dot_copied = 0; | |
8461 | ||
8462 | if (orig_dot != orig_size) | |
8463 | { | |
8464 | copy_size = orig_size - orig_dot; | |
8465 | BFD_ASSERT (orig_size > orig_dot); | |
8466 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
8467 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
8468 | orig_dot += copy_size; | |
8469 | dup_dot += copy_size; | |
8470 | } | |
8471 | BFD_ASSERT (orig_size == orig_dot); | |
8472 | BFD_ASSERT (final_size == dup_dot); | |
8473 | ||
8474 | /* Move the dup_contents back. */ | |
8475 | if (final_size > orig_size) | |
8476 | { | |
8477 | /* Contents need to be reallocated. Swap the dup_contents into | |
8478 | contents. */ | |
8479 | sec->contents = dup_contents; | |
8480 | free (contents); | |
8481 | contents = dup_contents; | |
8482 | pin_contents (sec, contents); | |
8483 | } | |
8484 | else | |
8485 | { | |
8486 | BFD_ASSERT (final_size <= orig_size); | |
8487 | memset (contents, 0, orig_size); | |
8488 | memcpy (contents, dup_contents, final_size); | |
8489 | free (dup_contents); | |
8490 | } | |
8491 | free (scratch); | |
8492 | pin_contents (sec, contents); | |
8493 | ||
a3ef2d63 BW |
8494 | if (sec->rawsize == 0) |
8495 | sec->rawsize = sec->size; | |
43cd72b9 BW |
8496 | sec->size = final_size; |
8497 | } | |
8498 | ||
8499 | error_return: | |
8500 | release_internal_relocs (sec, internal_relocs); | |
8501 | release_contents (sec, contents); | |
8502 | return ok; | |
8503 | } | |
8504 | ||
8505 | ||
8506 | static bfd_boolean | |
7fa3d080 | 8507 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
8508 | { |
8509 | xtensa_relax_info *relax_info; | |
8510 | reloc_bfd_fix *r; | |
8511 | ||
8512 | relax_info = get_xtensa_relax_info (sec); | |
8513 | if (!relax_info) | |
8514 | return TRUE; | |
8515 | ||
8516 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
8517 | if (!translate_reloc_bfd_fix (r)) | |
8518 | return FALSE; | |
e0001a05 | 8519 | |
43cd72b9 BW |
8520 | return TRUE; |
8521 | } | |
e0001a05 | 8522 | |
e0001a05 | 8523 | |
43cd72b9 BW |
8524 | /* Translate a fix given the mapping in the relax info for the target |
8525 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 8526 | |
43cd72b9 | 8527 | static bfd_boolean |
7fa3d080 | 8528 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
8529 | { |
8530 | reloc_bfd_fix new_fix; | |
8531 | asection *sec; | |
8532 | xtensa_relax_info *relax_info; | |
8533 | removed_literal *removed; | |
8534 | bfd_vma new_offset, target_offset; | |
e0001a05 | 8535 | |
43cd72b9 BW |
8536 | if (fix->translated) |
8537 | return TRUE; | |
e0001a05 | 8538 | |
43cd72b9 BW |
8539 | sec = fix->target_sec; |
8540 | target_offset = fix->target_offset; | |
e0001a05 | 8541 | |
43cd72b9 BW |
8542 | relax_info = get_xtensa_relax_info (sec); |
8543 | if (!relax_info) | |
8544 | { | |
8545 | fix->translated = TRUE; | |
8546 | return TRUE; | |
8547 | } | |
e0001a05 | 8548 | |
43cd72b9 | 8549 | new_fix = *fix; |
e0001a05 | 8550 | |
43cd72b9 BW |
8551 | /* The fix does not need to be translated if the section cannot change. */ |
8552 | if (!relax_info->is_relaxable_literal_section | |
8553 | && !relax_info->is_relaxable_asm_section) | |
8554 | { | |
8555 | fix->translated = TRUE; | |
8556 | return TRUE; | |
8557 | } | |
e0001a05 | 8558 | |
43cd72b9 BW |
8559 | /* If the literal has been moved and this relocation was on an |
8560 | opcode, then the relocation should move to the new literal | |
8561 | location. Otherwise, the relocation should move within the | |
8562 | section. */ | |
8563 | ||
8564 | removed = FALSE; | |
8565 | if (is_operand_relocation (fix->src_type)) | |
8566 | { | |
8567 | /* Check if the original relocation is against a literal being | |
8568 | removed. */ | |
8569 | removed = find_removed_literal (&relax_info->removed_list, | |
8570 | target_offset); | |
e0001a05 NC |
8571 | } |
8572 | ||
43cd72b9 | 8573 | if (removed) |
e0001a05 | 8574 | { |
43cd72b9 | 8575 | asection *new_sec; |
e0001a05 | 8576 | |
43cd72b9 BW |
8577 | /* The fact that there is still a relocation to this literal indicates |
8578 | that the literal is being coalesced, not simply removed. */ | |
8579 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 8580 | |
43cd72b9 BW |
8581 | /* This was moved to some other address (possibly another section). */ |
8582 | new_sec = r_reloc_get_section (&removed->to); | |
8583 | if (new_sec != sec) | |
e0001a05 | 8584 | { |
43cd72b9 BW |
8585 | sec = new_sec; |
8586 | relax_info = get_xtensa_relax_info (sec); | |
8587 | if (!relax_info || | |
8588 | (!relax_info->is_relaxable_literal_section | |
8589 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 8590 | { |
43cd72b9 BW |
8591 | target_offset = removed->to.target_offset; |
8592 | new_fix.target_sec = new_sec; | |
8593 | new_fix.target_offset = target_offset; | |
8594 | new_fix.translated = TRUE; | |
8595 | *fix = new_fix; | |
8596 | return TRUE; | |
e0001a05 | 8597 | } |
e0001a05 | 8598 | } |
43cd72b9 BW |
8599 | target_offset = removed->to.target_offset; |
8600 | new_fix.target_sec = new_sec; | |
e0001a05 | 8601 | } |
43cd72b9 BW |
8602 | |
8603 | /* The target address may have been moved within its section. */ | |
8604 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
8605 | target_offset); | |
8606 | ||
8607 | new_fix.target_offset = new_offset; | |
8608 | new_fix.target_offset = new_offset; | |
8609 | new_fix.translated = TRUE; | |
8610 | *fix = new_fix; | |
8611 | return TRUE; | |
e0001a05 NC |
8612 | } |
8613 | ||
8614 | ||
8615 | /* Fix up a relocation to take account of removed literals. */ | |
8616 | ||
9b7f5d20 BW |
8617 | static asection * |
8618 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 8619 | { |
e0001a05 NC |
8620 | xtensa_relax_info *relax_info; |
8621 | removed_literal *removed; | |
9b7f5d20 BW |
8622 | bfd_vma target_offset, base_offset; |
8623 | text_action *act; | |
e0001a05 NC |
8624 | |
8625 | *new_rel = *orig_rel; | |
8626 | ||
8627 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 8628 | return sec ; |
e0001a05 NC |
8629 | |
8630 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
8631 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
8632 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 8633 | |
43cd72b9 BW |
8634 | target_offset = orig_rel->target_offset; |
8635 | ||
8636 | removed = FALSE; | |
8637 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
8638 | { | |
8639 | /* Check if the original relocation is against a literal being | |
8640 | removed. */ | |
8641 | removed = find_removed_literal (&relax_info->removed_list, | |
8642 | target_offset); | |
8643 | } | |
8644 | if (removed && removed->to.abfd) | |
e0001a05 NC |
8645 | { |
8646 | asection *new_sec; | |
8647 | ||
8648 | /* The fact that there is still a relocation to this literal indicates | |
8649 | that the literal is being coalesced, not simply removed. */ | |
8650 | BFD_ASSERT (removed->to.abfd != NULL); | |
8651 | ||
43cd72b9 BW |
8652 | /* This was moved to some other address |
8653 | (possibly in another section). */ | |
e0001a05 NC |
8654 | *new_rel = removed->to; |
8655 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 8656 | if (new_sec != sec) |
e0001a05 NC |
8657 | { |
8658 | sec = new_sec; | |
8659 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
8660 | if (!relax_info |
8661 | || (!relax_info->is_relaxable_literal_section | |
8662 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 8663 | return sec; |
e0001a05 | 8664 | } |
43cd72b9 | 8665 | target_offset = new_rel->target_offset; |
e0001a05 NC |
8666 | } |
8667 | ||
9b7f5d20 BW |
8668 | /* Find the base offset of the reloc symbol, excluding any addend from the |
8669 | reloc or from the section contents (for a partial_inplace reloc). Then | |
8670 | find the adjusted values of the offsets due to relaxation. The base | |
8671 | offset is needed to determine the change to the reloc's addend; the reloc | |
8672 | addend should not be adjusted due to relaxations located before the base | |
8673 | offset. */ | |
8674 | ||
8675 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
8676 | act = relax_info->action_list.head; | |
8677 | if (base_offset <= target_offset) | |
8678 | { | |
8679 | int base_removed = removed_by_actions (&act, base_offset, FALSE); | |
8680 | int addend_removed = removed_by_actions (&act, target_offset, FALSE); | |
8681 | new_rel->target_offset = target_offset - base_removed - addend_removed; | |
8682 | new_rel->rela.r_addend -= addend_removed; | |
8683 | } | |
8684 | else | |
8685 | { | |
8686 | /* Handle a negative addend. The base offset comes first. */ | |
8687 | int tgt_removed = removed_by_actions (&act, target_offset, FALSE); | |
8688 | int addend_removed = removed_by_actions (&act, base_offset, FALSE); | |
8689 | new_rel->target_offset = target_offset - tgt_removed; | |
8690 | new_rel->rela.r_addend += addend_removed; | |
8691 | } | |
e0001a05 | 8692 | |
9b7f5d20 | 8693 | return sec; |
e0001a05 NC |
8694 | } |
8695 | ||
8696 | ||
8697 | /* For dynamic links, there may be a dynamic relocation for each | |
8698 | literal. The number of dynamic relocations must be computed in | |
8699 | size_dynamic_sections, which occurs before relaxation. When a | |
8700 | literal is removed, this function checks if there is a corresponding | |
8701 | dynamic relocation and shrinks the size of the appropriate dynamic | |
8702 | relocation section accordingly. At this point, the contents of the | |
8703 | dynamic relocation sections have not yet been filled in, so there's | |
8704 | nothing else that needs to be done. */ | |
8705 | ||
8706 | static void | |
7fa3d080 BW |
8707 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
8708 | bfd *abfd, | |
8709 | asection *input_section, | |
8710 | Elf_Internal_Rela *rel) | |
e0001a05 | 8711 | { |
f0e6fdb2 | 8712 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
8713 | Elf_Internal_Shdr *symtab_hdr; |
8714 | struct elf_link_hash_entry **sym_hashes; | |
8715 | unsigned long r_symndx; | |
8716 | int r_type; | |
8717 | struct elf_link_hash_entry *h; | |
8718 | bfd_boolean dynamic_symbol; | |
8719 | ||
f0e6fdb2 | 8720 | htab = elf_xtensa_hash_table (info); |
e0001a05 NC |
8721 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
8722 | sym_hashes = elf_sym_hashes (abfd); | |
8723 | ||
8724 | r_type = ELF32_R_TYPE (rel->r_info); | |
8725 | r_symndx = ELF32_R_SYM (rel->r_info); | |
8726 | ||
8727 | if (r_symndx < symtab_hdr->sh_info) | |
8728 | h = NULL; | |
8729 | else | |
8730 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
8731 | ||
4608f3d9 | 8732 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
8733 | |
8734 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
8735 | && (input_section->flags & SEC_ALLOC) != 0 | |
8736 | && (dynamic_symbol || info->shared)) | |
8737 | { | |
e0001a05 NC |
8738 | asection *srel; |
8739 | bfd_boolean is_plt = FALSE; | |
8740 | ||
e0001a05 NC |
8741 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
8742 | { | |
f0e6fdb2 | 8743 | srel = htab->srelplt; |
e0001a05 NC |
8744 | is_plt = TRUE; |
8745 | } | |
8746 | else | |
f0e6fdb2 | 8747 | srel = htab->srelgot; |
e0001a05 NC |
8748 | |
8749 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 8750 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
8751 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
8752 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
8753 | |
8754 | if (is_plt) | |
8755 | { | |
8756 | asection *splt, *sgotplt, *srelgot; | |
8757 | int reloc_index, chunk; | |
8758 | ||
8759 | /* Find the PLT reloc index of the entry being removed. This | |
8760 | is computed from the size of ".rela.plt". It is needed to | |
8761 | figure out which PLT chunk to resize. Usually "last index | |
8762 | = size - 1" since the index starts at zero, but in this | |
8763 | context, the size has just been decremented so there's no | |
8764 | need to subtract one. */ | |
eea6121a | 8765 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
8766 | |
8767 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
8768 | splt = elf_xtensa_get_plt_section (info, chunk); |
8769 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
8770 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
8771 | ||
8772 | /* Check if an entire PLT chunk has just been eliminated. */ | |
8773 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
8774 | { | |
8775 | /* The two magic GOT entries for that chunk can go away. */ | |
f0e6fdb2 | 8776 | srelgot = htab->srelgot; |
e0001a05 NC |
8777 | BFD_ASSERT (srelgot != NULL); |
8778 | srelgot->reloc_count -= 2; | |
eea6121a AM |
8779 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
8780 | sgotplt->size -= 8; | |
e0001a05 NC |
8781 | |
8782 | /* There should be only one entry left (and it will be | |
8783 | removed below). */ | |
eea6121a AM |
8784 | BFD_ASSERT (sgotplt->size == 4); |
8785 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
8786 | } |
8787 | ||
eea6121a AM |
8788 | BFD_ASSERT (sgotplt->size >= 4); |
8789 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 8790 | |
eea6121a AM |
8791 | sgotplt->size -= 4; |
8792 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
8793 | } |
8794 | } | |
8795 | } | |
8796 | ||
8797 | ||
43cd72b9 BW |
8798 | /* Take an r_rel and move it to another section. This usually |
8799 | requires extending the interal_relocation array and pinning it. If | |
8800 | the original r_rel is from the same BFD, we can complete this here. | |
8801 | Otherwise, we add a fix record to let the final link fix the | |
8802 | appropriate address. Contents and internal relocations for the | |
8803 | section must be pinned after calling this routine. */ | |
8804 | ||
8805 | static bfd_boolean | |
7fa3d080 BW |
8806 | move_literal (bfd *abfd, |
8807 | struct bfd_link_info *link_info, | |
8808 | asection *sec, | |
8809 | bfd_vma offset, | |
8810 | bfd_byte *contents, | |
8811 | xtensa_relax_info *relax_info, | |
8812 | Elf_Internal_Rela **internal_relocs_p, | |
8813 | const literal_value *lit) | |
43cd72b9 BW |
8814 | { |
8815 | Elf_Internal_Rela *new_relocs = NULL; | |
8816 | size_t new_relocs_count = 0; | |
8817 | Elf_Internal_Rela this_rela; | |
8818 | const r_reloc *r_rel; | |
8819 | ||
8820 | r_rel = &lit->r_rel; | |
8821 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
8822 | ||
8823 | if (r_reloc_is_const (r_rel)) | |
8824 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8825 | else | |
8826 | { | |
8827 | int r_type; | |
8828 | unsigned i; | |
8829 | asection *target_sec; | |
8830 | reloc_bfd_fix *fix; | |
8831 | unsigned insert_at; | |
8832 | ||
8833 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
8834 | target_sec = r_reloc_get_section (r_rel); | |
8835 | ||
8836 | /* This is the difficult case. We have to create a fix up. */ | |
8837 | this_rela.r_offset = offset; | |
8838 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
8839 | this_rela.r_addend = | |
8840 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
8841 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8842 | ||
8843 | /* Currently, we cannot move relocations during a relocatable link. */ | |
8844 | BFD_ASSERT (!link_info->relocatable); | |
0f5f1638 | 8845 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
8846 | r_reloc_get_section (r_rel), |
8847 | r_rel->target_offset + r_rel->virtual_offset, | |
8848 | FALSE); | |
8849 | /* We also need to mark that relocations are needed here. */ | |
8850 | sec->flags |= SEC_RELOC; | |
8851 | ||
8852 | translate_reloc_bfd_fix (fix); | |
8853 | /* This fix has not yet been translated. */ | |
8854 | add_fix (sec, fix); | |
8855 | ||
8856 | /* Add the relocation. If we have already allocated our own | |
8857 | space for the relocations and we have room for more, then use | |
8858 | it. Otherwise, allocate new space and move the literals. */ | |
8859 | insert_at = sec->reloc_count; | |
8860 | for (i = 0; i < sec->reloc_count; ++i) | |
8861 | { | |
8862 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
8863 | { | |
8864 | insert_at = i; | |
8865 | break; | |
8866 | } | |
8867 | } | |
8868 | ||
8869 | if (*internal_relocs_p != relax_info->allocated_relocs | |
8870 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
8871 | { | |
8872 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
8873 | || sec->reloc_count == relax_info->relocs_count); | |
8874 | ||
8875 | if (relax_info->allocated_relocs_count == 0) | |
8876 | new_relocs_count = (sec->reloc_count + 2) * 2; | |
8877 | else | |
8878 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
8879 | ||
8880 | new_relocs = (Elf_Internal_Rela *) | |
8881 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
8882 | if (!new_relocs) | |
8883 | return FALSE; | |
8884 | ||
8885 | /* We could handle this more quickly by finding the split point. */ | |
8886 | if (insert_at != 0) | |
8887 | memcpy (new_relocs, *internal_relocs_p, | |
8888 | insert_at * sizeof (Elf_Internal_Rela)); | |
8889 | ||
8890 | new_relocs[insert_at] = this_rela; | |
8891 | ||
8892 | if (insert_at != sec->reloc_count) | |
8893 | memcpy (new_relocs + insert_at + 1, | |
8894 | (*internal_relocs_p) + insert_at, | |
8895 | (sec->reloc_count - insert_at) | |
8896 | * sizeof (Elf_Internal_Rela)); | |
8897 | ||
8898 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
8899 | { | |
8900 | /* The first time we re-allocate, we can only free the | |
8901 | old relocs if they were allocated with bfd_malloc. | |
8902 | This is not true when keep_memory is in effect. */ | |
8903 | if (!link_info->keep_memory) | |
8904 | free (*internal_relocs_p); | |
8905 | } | |
8906 | else | |
8907 | free (*internal_relocs_p); | |
8908 | relax_info->allocated_relocs = new_relocs; | |
8909 | relax_info->allocated_relocs_count = new_relocs_count; | |
8910 | elf_section_data (sec)->relocs = new_relocs; | |
8911 | sec->reloc_count++; | |
8912 | relax_info->relocs_count = sec->reloc_count; | |
8913 | *internal_relocs_p = new_relocs; | |
8914 | } | |
8915 | else | |
8916 | { | |
8917 | if (insert_at != sec->reloc_count) | |
8918 | { | |
8919 | unsigned idx; | |
8920 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
8921 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
8922 | } | |
8923 | (*internal_relocs_p)[insert_at] = this_rela; | |
8924 | sec->reloc_count++; | |
8925 | if (relax_info->allocated_relocs) | |
8926 | relax_info->relocs_count = sec->reloc_count; | |
8927 | } | |
8928 | } | |
8929 | return TRUE; | |
8930 | } | |
8931 | ||
8932 | ||
e0001a05 NC |
8933 | /* This is similar to relax_section except that when a target is moved, |
8934 | we shift addresses up. We also need to modify the size. This | |
8935 | algorithm does NOT allow for relocations into the middle of the | |
8936 | property sections. */ | |
8937 | ||
43cd72b9 | 8938 | static bfd_boolean |
7fa3d080 BW |
8939 | relax_property_section (bfd *abfd, |
8940 | asection *sec, | |
8941 | struct bfd_link_info *link_info) | |
e0001a05 NC |
8942 | { |
8943 | Elf_Internal_Rela *internal_relocs; | |
8944 | bfd_byte *contents; | |
1d25768e | 8945 | unsigned i; |
e0001a05 | 8946 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8947 | bfd_boolean is_full_prop_section; |
8948 | size_t last_zfill_target_offset = 0; | |
8949 | asection *last_zfill_target_sec = NULL; | |
8950 | bfd_size_type sec_size; | |
1d25768e | 8951 | bfd_size_type entry_size; |
e0001a05 | 8952 | |
43cd72b9 | 8953 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8954 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8955 | link_info->keep_memory); | |
8956 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 8957 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8958 | { |
8959 | ok = FALSE; | |
8960 | goto error_return; | |
8961 | } | |
8962 | ||
1d25768e BW |
8963 | is_full_prop_section = xtensa_is_proptable_section (sec); |
8964 | if (is_full_prop_section) | |
8965 | entry_size = 12; | |
8966 | else | |
8967 | entry_size = 8; | |
43cd72b9 BW |
8968 | |
8969 | if (internal_relocs) | |
e0001a05 | 8970 | { |
43cd72b9 | 8971 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
8972 | { |
8973 | Elf_Internal_Rela *irel; | |
8974 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
8975 | unsigned r_type; |
8976 | asection *target_sec; | |
43cd72b9 BW |
8977 | literal_value val; |
8978 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
8979 | |
8980 | /* Locally change the source address. | |
8981 | Translate the target to the new target address. | |
8982 | If it points to this section and has been removed, MOVE IT. | |
8983 | Also, don't forget to modify the associated SIZE at | |
8984 | (offset + 4). */ | |
8985 | ||
8986 | irel = &internal_relocs[i]; | |
8987 | r_type = ELF32_R_TYPE (irel->r_info); | |
8988 | if (r_type == R_XTENSA_NONE) | |
8989 | continue; | |
8990 | ||
43cd72b9 BW |
8991 | /* Find the literal value. */ |
8992 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
8993 | size_p = &contents[irel->r_offset + 4]; | |
8994 | flags_p = NULL; | |
8995 | if (is_full_prop_section) | |
1d25768e BW |
8996 | flags_p = &contents[irel->r_offset + 8]; |
8997 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 8998 | |
43cd72b9 | 8999 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
9000 | target_relax_info = get_xtensa_relax_info (target_sec); |
9001 | ||
9002 | if (target_relax_info | |
43cd72b9 BW |
9003 | && (target_relax_info->is_relaxable_literal_section |
9004 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
9005 | { |
9006 | /* Translate the relocation's destination. */ | |
03669f1c BW |
9007 | bfd_vma old_offset = val.r_rel.target_offset; |
9008 | bfd_vma new_offset; | |
e0001a05 | 9009 | long old_size, new_size; |
03669f1c BW |
9010 | text_action *act = target_relax_info->action_list.head; |
9011 | new_offset = old_offset - | |
9012 | removed_by_actions (&act, old_offset, FALSE); | |
e0001a05 NC |
9013 | |
9014 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 9015 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 9016 | new_size = old_size; |
43cd72b9 BW |
9017 | |
9018 | if (old_size == 0) | |
9019 | { | |
9020 | /* Only the first zero-sized unreachable entry is | |
9021 | allowed to expand. In this case the new offset | |
9022 | should be the offset before the fill and the new | |
9023 | size is the expansion size. For other zero-sized | |
9024 | entries the resulting size should be zero with an | |
9025 | offset before or after the fill address depending | |
9026 | on whether the expanding unreachable entry | |
9027 | preceeds it. */ | |
03669f1c BW |
9028 | if (last_zfill_target_sec == 0 |
9029 | || last_zfill_target_sec != target_sec | |
9030 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 9031 | { |
03669f1c BW |
9032 | bfd_vma new_end_offset = new_offset; |
9033 | ||
9034 | /* Recompute the new_offset, but this time don't | |
9035 | include any fill inserted by relaxation. */ | |
9036 | act = target_relax_info->action_list.head; | |
9037 | new_offset = old_offset - | |
9038 | removed_by_actions (&act, old_offset, TRUE); | |
43cd72b9 BW |
9039 | |
9040 | /* If it is not unreachable and we have not yet | |
9041 | seen an unreachable at this address, place it | |
9042 | before the fill address. */ | |
03669f1c BW |
9043 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
9044 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 9045 | { |
03669f1c BW |
9046 | new_size = new_end_offset - new_offset; |
9047 | ||
43cd72b9 | 9048 | last_zfill_target_sec = target_sec; |
03669f1c | 9049 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
9050 | } |
9051 | } | |
9052 | } | |
9053 | else | |
03669f1c BW |
9054 | new_size -= |
9055 | removed_by_actions (&act, old_offset + old_size, TRUE); | |
43cd72b9 | 9056 | |
e0001a05 NC |
9057 | if (new_size != old_size) |
9058 | { | |
9059 | bfd_put_32 (abfd, new_size, size_p); | |
9060 | pin_contents (sec, contents); | |
9061 | } | |
43cd72b9 | 9062 | |
03669f1c | 9063 | if (new_offset != old_offset) |
e0001a05 | 9064 | { |
03669f1c | 9065 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
9066 | irel->r_addend += diff; |
9067 | pin_internal_relocs (sec, internal_relocs); | |
9068 | } | |
9069 | } | |
9070 | } | |
9071 | } | |
9072 | ||
9073 | /* Combine adjacent property table entries. This is also done in | |
9074 | finish_dynamic_sections() but at that point it's too late to | |
9075 | reclaim the space in the output section, so we do this twice. */ | |
9076 | ||
43cd72b9 | 9077 | if (internal_relocs && (!link_info->relocatable |
1d25768e | 9078 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
9079 | { |
9080 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 9081 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 9082 | int removed_bytes = 0; |
1d25768e | 9083 | bfd_vma offset; |
43cd72b9 BW |
9084 | flagword predef_flags; |
9085 | ||
43cd72b9 | 9086 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 9087 | |
1d25768e | 9088 | /* Walk over memory and relocations at the same time. |
e0001a05 NC |
9089 | This REQUIRES that the internal_relocs be sorted by offset. */ |
9090 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
9091 | internal_reloc_compare); | |
e0001a05 NC |
9092 | |
9093 | pin_internal_relocs (sec, internal_relocs); | |
9094 | pin_contents (sec, contents); | |
9095 | ||
1d25768e BW |
9096 | next_rel = internal_relocs; |
9097 | rel_end = internal_relocs + sec->reloc_count; | |
9098 | ||
a3ef2d63 | 9099 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 9100 | |
a3ef2d63 | 9101 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 9102 | { |
1d25768e | 9103 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 9104 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 9105 | bfd_boolean remove_this_rel; |
43cd72b9 | 9106 | flagword flags; |
e0001a05 | 9107 | |
1d25768e BW |
9108 | /* Find the first relocation for the entry at the current offset. |
9109 | Adjust the offsets of any extra relocations for the previous | |
9110 | entry. */ | |
9111 | offset_rel = NULL; | |
9112 | if (next_rel) | |
9113 | { | |
9114 | for (irel = next_rel; irel < rel_end; irel++) | |
9115 | { | |
9116 | if ((irel->r_offset == offset | |
9117 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
9118 | || irel->r_offset > offset) | |
9119 | { | |
9120 | offset_rel = irel; | |
9121 | break; | |
9122 | } | |
9123 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
9124 | } |
9125 | } | |
e0001a05 | 9126 | |
1d25768e BW |
9127 | /* Find the next relocation (if there are any left). */ |
9128 | extra_rel = NULL; | |
9129 | if (offset_rel) | |
e0001a05 | 9130 | { |
1d25768e | 9131 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 9132 | { |
1d25768e BW |
9133 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
9134 | { | |
9135 | extra_rel = irel; | |
9136 | break; | |
9137 | } | |
e0001a05 | 9138 | } |
e0001a05 NC |
9139 | } |
9140 | ||
1d25768e BW |
9141 | /* Check if there are relocations on the current entry. There |
9142 | should usually be a relocation on the offset field. If there | |
9143 | are relocations on the size or flags, then we can't optimize | |
9144 | this entry. Also, find the next relocation to examine on the | |
9145 | next iteration. */ | |
9146 | if (offset_rel) | |
e0001a05 | 9147 | { |
1d25768e | 9148 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 9149 | { |
1d25768e BW |
9150 | next_rel = offset_rel; |
9151 | /* There are no relocations on the current entry, but we | |
9152 | might still be able to remove it if the size is zero. */ | |
9153 | offset_rel = NULL; | |
9154 | } | |
9155 | else if (offset_rel->r_offset > offset | |
9156 | || (extra_rel | |
9157 | && extra_rel->r_offset < offset + entry_size)) | |
9158 | { | |
9159 | /* There is a relocation on the size or flags, so we can't | |
9160 | do anything with this entry. Continue with the next. */ | |
9161 | next_rel = offset_rel; | |
9162 | continue; | |
9163 | } | |
9164 | else | |
9165 | { | |
9166 | BFD_ASSERT (offset_rel->r_offset == offset); | |
9167 | offset_rel->r_offset -= removed_bytes; | |
9168 | next_rel = offset_rel + 1; | |
e0001a05 | 9169 | } |
e0001a05 | 9170 | } |
1d25768e BW |
9171 | else |
9172 | next_rel = NULL; | |
e0001a05 | 9173 | |
1d25768e | 9174 | remove_this_rel = FALSE; |
e0001a05 NC |
9175 | bytes_to_remove = 0; |
9176 | actual_offset = offset - removed_bytes; | |
9177 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
9178 | ||
43cd72b9 BW |
9179 | if (is_full_prop_section) |
9180 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); | |
9181 | else | |
9182 | flags = predef_flags; | |
9183 | ||
1d25768e BW |
9184 | if (size == 0 |
9185 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
9186 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 9187 | { |
43cd72b9 BW |
9188 | /* Always remove entries with zero size and no alignment. */ |
9189 | bytes_to_remove = entry_size; | |
1d25768e BW |
9190 | if (offset_rel) |
9191 | remove_this_rel = TRUE; | |
e0001a05 | 9192 | } |
1d25768e BW |
9193 | else if (offset_rel |
9194 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 9195 | { |
1d25768e | 9196 | if (last_irel) |
e0001a05 | 9197 | { |
1d25768e BW |
9198 | flagword old_flags; |
9199 | bfd_vma old_size = | |
9200 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
9201 | bfd_vma old_address = | |
9202 | (last_irel->r_addend | |
9203 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
9204 | bfd_vma new_address = | |
9205 | (offset_rel->r_addend | |
9206 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
9207 | if (is_full_prop_section) | |
9208 | old_flags = bfd_get_32 | |
9209 | (abfd, &contents[last_irel->r_offset + 8]); | |
9210 | else | |
9211 | old_flags = predef_flags; | |
9212 | ||
9213 | if ((ELF32_R_SYM (offset_rel->r_info) | |
9214 | == ELF32_R_SYM (last_irel->r_info)) | |
9215 | && old_address + old_size == new_address | |
9216 | && old_flags == flags | |
9217 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
9218 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 9219 | { |
1d25768e BW |
9220 | /* Fix the old size. */ |
9221 | bfd_put_32 (abfd, old_size + size, | |
9222 | &contents[last_irel->r_offset + 4]); | |
9223 | bytes_to_remove = entry_size; | |
9224 | remove_this_rel = TRUE; | |
e0001a05 NC |
9225 | } |
9226 | else | |
1d25768e | 9227 | last_irel = offset_rel; |
e0001a05 | 9228 | } |
1d25768e BW |
9229 | else |
9230 | last_irel = offset_rel; | |
e0001a05 NC |
9231 | } |
9232 | ||
1d25768e | 9233 | if (remove_this_rel) |
e0001a05 | 9234 | { |
1d25768e BW |
9235 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
9236 | /* In case this is the last entry, move the relocation offset | |
9237 | to the previous entry, if there is one. */ | |
9238 | if (offset_rel->r_offset >= bytes_to_remove) | |
9239 | offset_rel->r_offset -= bytes_to_remove; | |
9240 | else | |
9241 | offset_rel->r_offset = 0; | |
e0001a05 NC |
9242 | } |
9243 | ||
9244 | if (bytes_to_remove != 0) | |
9245 | { | |
9246 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 9247 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 9248 | memmove (&contents[actual_offset], |
43cd72b9 | 9249 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 9250 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
9251 | } |
9252 | } | |
9253 | ||
43cd72b9 | 9254 | if (removed_bytes) |
e0001a05 | 9255 | { |
1d25768e BW |
9256 | /* Fix up any extra relocations on the last entry. */ |
9257 | for (irel = next_rel; irel < rel_end; irel++) | |
9258 | irel->r_offset -= removed_bytes; | |
9259 | ||
e0001a05 | 9260 | /* Clear the removed bytes. */ |
a3ef2d63 | 9261 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 9262 | |
a3ef2d63 BW |
9263 | if (sec->rawsize == 0) |
9264 | sec->rawsize = sec->size; | |
9265 | sec->size -= removed_bytes; | |
e901de89 BW |
9266 | |
9267 | if (xtensa_is_littable_section (sec)) | |
9268 | { | |
f0e6fdb2 BW |
9269 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
9270 | if (sgotloc) | |
9271 | sgotloc->size -= removed_bytes; | |
e901de89 | 9272 | } |
e0001a05 NC |
9273 | } |
9274 | } | |
e901de89 | 9275 | |
e0001a05 NC |
9276 | error_return: |
9277 | release_internal_relocs (sec, internal_relocs); | |
9278 | release_contents (sec, contents); | |
9279 | return ok; | |
9280 | } | |
9281 | ||
9282 | \f | |
9283 | /* Third relaxation pass. */ | |
9284 | ||
9285 | /* Change symbol values to account for removed literals. */ | |
9286 | ||
43cd72b9 | 9287 | bfd_boolean |
7fa3d080 | 9288 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
9289 | { |
9290 | xtensa_relax_info *relax_info; | |
9291 | unsigned int sec_shndx; | |
9292 | Elf_Internal_Shdr *symtab_hdr; | |
9293 | Elf_Internal_Sym *isymbuf; | |
9294 | unsigned i, num_syms, num_locals; | |
9295 | ||
9296 | relax_info = get_xtensa_relax_info (sec); | |
9297 | BFD_ASSERT (relax_info); | |
9298 | ||
43cd72b9 BW |
9299 | if (!relax_info->is_relaxable_literal_section |
9300 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
9301 | return TRUE; |
9302 | ||
9303 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
9304 | ||
9305 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9306 | isymbuf = retrieve_local_syms (abfd); | |
9307 | ||
9308 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
9309 | num_locals = symtab_hdr->sh_info; | |
9310 | ||
9311 | /* Adjust the local symbols defined in this section. */ | |
9312 | for (i = 0; i < num_locals; i++) | |
9313 | { | |
9314 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
9315 | ||
9316 | if (isym->st_shndx == sec_shndx) | |
9317 | { | |
03669f1c BW |
9318 | text_action *act = relax_info->action_list.head; |
9319 | bfd_vma orig_addr = isym->st_value; | |
43cd72b9 | 9320 | |
03669f1c | 9321 | isym->st_value -= removed_by_actions (&act, orig_addr, FALSE); |
43cd72b9 | 9322 | |
03669f1c BW |
9323 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
9324 | isym->st_size -= | |
9325 | removed_by_actions (&act, orig_addr + isym->st_size, FALSE); | |
e0001a05 NC |
9326 | } |
9327 | } | |
9328 | ||
9329 | /* Now adjust the global symbols defined in this section. */ | |
9330 | for (i = 0; i < (num_syms - num_locals); i++) | |
9331 | { | |
9332 | struct elf_link_hash_entry *sym_hash; | |
9333 | ||
9334 | sym_hash = elf_sym_hashes (abfd)[i]; | |
9335 | ||
9336 | if (sym_hash->root.type == bfd_link_hash_warning) | |
9337 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
9338 | ||
9339 | if ((sym_hash->root.type == bfd_link_hash_defined | |
9340 | || sym_hash->root.type == bfd_link_hash_defweak) | |
9341 | && sym_hash->root.u.def.section == sec) | |
9342 | { | |
03669f1c BW |
9343 | text_action *act = relax_info->action_list.head; |
9344 | bfd_vma orig_addr = sym_hash->root.u.def.value; | |
43cd72b9 | 9345 | |
03669f1c BW |
9346 | sym_hash->root.u.def.value -= |
9347 | removed_by_actions (&act, orig_addr, FALSE); | |
43cd72b9 | 9348 | |
03669f1c BW |
9349 | if (sym_hash->type == STT_FUNC) |
9350 | sym_hash->size -= | |
9351 | removed_by_actions (&act, orig_addr + sym_hash->size, FALSE); | |
e0001a05 NC |
9352 | } |
9353 | } | |
9354 | ||
9355 | return TRUE; | |
9356 | } | |
9357 | ||
9358 | \f | |
9359 | /* "Fix" handling functions, called while performing relocations. */ | |
9360 | ||
43cd72b9 | 9361 | static bfd_boolean |
7fa3d080 BW |
9362 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
9363 | bfd *input_bfd, | |
9364 | asection *input_section, | |
9365 | bfd_byte *contents) | |
e0001a05 NC |
9366 | { |
9367 | r_reloc r_rel; | |
9368 | asection *sec, *old_sec; | |
9369 | bfd_vma old_offset; | |
9370 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
9371 | reloc_bfd_fix *fix; |
9372 | ||
9373 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 9374 | return TRUE; |
e0001a05 | 9375 | |
43cd72b9 BW |
9376 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9377 | if (!fix) | |
9378 | return TRUE; | |
e0001a05 | 9379 | |
43cd72b9 BW |
9380 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
9381 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 9382 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
9383 | old_offset = r_rel.target_offset; |
9384 | ||
9385 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 9386 | { |
43cd72b9 BW |
9387 | if (r_type != R_XTENSA_ASM_EXPAND) |
9388 | { | |
9389 | (*_bfd_error_handler) | |
9390 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
9391 | input_bfd, input_section, rel->r_offset, | |
9392 | elf_howto_table[r_type].name); | |
9393 | return FALSE; | |
9394 | } | |
e0001a05 NC |
9395 | /* Leave it be. Resolution will happen in a later stage. */ |
9396 | } | |
9397 | else | |
9398 | { | |
9399 | sec = fix->target_sec; | |
9400 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
9401 | - (old_sec->output_offset + old_offset)); | |
9402 | } | |
43cd72b9 | 9403 | return TRUE; |
e0001a05 NC |
9404 | } |
9405 | ||
9406 | ||
9407 | static void | |
7fa3d080 BW |
9408 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
9409 | bfd *input_bfd, | |
9410 | asection *input_section, | |
9411 | bfd_byte *contents, | |
9412 | bfd_vma *relocationp) | |
e0001a05 NC |
9413 | { |
9414 | asection *sec; | |
9415 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 9416 | reloc_bfd_fix *fix; |
43cd72b9 | 9417 | bfd_vma fixup_diff; |
e0001a05 NC |
9418 | |
9419 | if (r_type == R_XTENSA_NONE) | |
9420 | return; | |
9421 | ||
43cd72b9 BW |
9422 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9423 | if (!fix) | |
e0001a05 NC |
9424 | return; |
9425 | ||
9426 | sec = fix->target_sec; | |
43cd72b9 BW |
9427 | |
9428 | fixup_diff = rel->r_addend; | |
9429 | if (elf_howto_table[fix->src_type].partial_inplace) | |
9430 | { | |
9431 | bfd_vma inplace_val; | |
9432 | BFD_ASSERT (fix->src_offset | |
9433 | < bfd_get_section_limit (input_bfd, input_section)); | |
9434 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
9435 | fixup_diff += inplace_val; | |
9436 | } | |
9437 | ||
e0001a05 NC |
9438 | *relocationp = (sec->output_section->vma |
9439 | + sec->output_offset | |
43cd72b9 | 9440 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
9441 | } |
9442 | ||
9443 | \f | |
9444 | /* Miscellaneous utility functions.... */ | |
9445 | ||
9446 | static asection * | |
f0e6fdb2 | 9447 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 9448 | { |
f0e6fdb2 BW |
9449 | struct elf_xtensa_link_hash_table *htab; |
9450 | bfd *dynobj; | |
e0001a05 NC |
9451 | char plt_name[10]; |
9452 | ||
9453 | if (chunk == 0) | |
f0e6fdb2 BW |
9454 | { |
9455 | htab = elf_xtensa_hash_table (info); | |
9456 | return htab->splt; | |
9457 | } | |
e0001a05 | 9458 | |
f0e6fdb2 | 9459 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
9460 | sprintf (plt_name, ".plt.%u", chunk); |
9461 | return bfd_get_section_by_name (dynobj, plt_name); | |
9462 | } | |
9463 | ||
9464 | ||
9465 | static asection * | |
f0e6fdb2 | 9466 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 9467 | { |
f0e6fdb2 BW |
9468 | struct elf_xtensa_link_hash_table *htab; |
9469 | bfd *dynobj; | |
e0001a05 NC |
9470 | char got_name[14]; |
9471 | ||
9472 | if (chunk == 0) | |
f0e6fdb2 BW |
9473 | { |
9474 | htab = elf_xtensa_hash_table (info); | |
9475 | return htab->sgotplt; | |
9476 | } | |
e0001a05 | 9477 | |
f0e6fdb2 | 9478 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
9479 | sprintf (got_name, ".got.plt.%u", chunk); |
9480 | return bfd_get_section_by_name (dynobj, got_name); | |
9481 | } | |
9482 | ||
9483 | ||
9484 | /* Get the input section for a given symbol index. | |
9485 | If the symbol is: | |
9486 | . a section symbol, return the section; | |
9487 | . a common symbol, return the common section; | |
9488 | . an undefined symbol, return the undefined section; | |
9489 | . an indirect symbol, follow the links; | |
9490 | . an absolute value, return the absolute section. */ | |
9491 | ||
9492 | static asection * | |
7fa3d080 | 9493 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9494 | { |
9495 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9496 | asection *target_sec = NULL; | |
43cd72b9 | 9497 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9498 | { |
9499 | Elf_Internal_Sym *isymbuf; | |
9500 | unsigned int section_index; | |
9501 | ||
9502 | isymbuf = retrieve_local_syms (abfd); | |
9503 | section_index = isymbuf[r_symndx].st_shndx; | |
9504 | ||
9505 | if (section_index == SHN_UNDEF) | |
9506 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
9507 | else if (section_index == SHN_ABS) |
9508 | target_sec = bfd_abs_section_ptr; | |
9509 | else if (section_index == SHN_COMMON) | |
9510 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 9511 | else |
cb33740c | 9512 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
9513 | } |
9514 | else | |
9515 | { | |
9516 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9517 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
9518 | ||
9519 | while (h->root.type == bfd_link_hash_indirect | |
9520 | || h->root.type == bfd_link_hash_warning) | |
9521 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9522 | ||
9523 | switch (h->root.type) | |
9524 | { | |
9525 | case bfd_link_hash_defined: | |
9526 | case bfd_link_hash_defweak: | |
9527 | target_sec = h->root.u.def.section; | |
9528 | break; | |
9529 | case bfd_link_hash_common: | |
9530 | target_sec = bfd_com_section_ptr; | |
9531 | break; | |
9532 | case bfd_link_hash_undefined: | |
9533 | case bfd_link_hash_undefweak: | |
9534 | target_sec = bfd_und_section_ptr; | |
9535 | break; | |
9536 | default: /* New indirect warning. */ | |
9537 | target_sec = bfd_und_section_ptr; | |
9538 | break; | |
9539 | } | |
9540 | } | |
9541 | return target_sec; | |
9542 | } | |
9543 | ||
9544 | ||
9545 | static struct elf_link_hash_entry * | |
7fa3d080 | 9546 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9547 | { |
9548 | unsigned long indx; | |
9549 | struct elf_link_hash_entry *h; | |
9550 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9551 | ||
9552 | if (r_symndx < symtab_hdr->sh_info) | |
9553 | return NULL; | |
43cd72b9 | 9554 | |
e0001a05 NC |
9555 | indx = r_symndx - symtab_hdr->sh_info; |
9556 | h = elf_sym_hashes (abfd)[indx]; | |
9557 | while (h->root.type == bfd_link_hash_indirect | |
9558 | || h->root.type == bfd_link_hash_warning) | |
9559 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9560 | return h; | |
9561 | } | |
9562 | ||
9563 | ||
9564 | /* Get the section-relative offset for a symbol number. */ | |
9565 | ||
9566 | static bfd_vma | |
7fa3d080 | 9567 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9568 | { |
9569 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9570 | bfd_vma offset = 0; | |
9571 | ||
43cd72b9 | 9572 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9573 | { |
9574 | Elf_Internal_Sym *isymbuf; | |
9575 | isymbuf = retrieve_local_syms (abfd); | |
9576 | offset = isymbuf[r_symndx].st_value; | |
9577 | } | |
9578 | else | |
9579 | { | |
9580 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9581 | struct elf_link_hash_entry *h = | |
9582 | elf_sym_hashes (abfd)[indx]; | |
9583 | ||
9584 | while (h->root.type == bfd_link_hash_indirect | |
9585 | || h->root.type == bfd_link_hash_warning) | |
9586 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9587 | if (h->root.type == bfd_link_hash_defined | |
9588 | || h->root.type == bfd_link_hash_defweak) | |
9589 | offset = h->root.u.def.value; | |
9590 | } | |
9591 | return offset; | |
9592 | } | |
9593 | ||
9594 | ||
9595 | static bfd_boolean | |
7fa3d080 | 9596 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
9597 | { |
9598 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
9599 | struct elf_link_hash_entry *h; | |
9600 | ||
9601 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
9602 | if (h && h->root.type == bfd_link_hash_defweak) | |
9603 | return TRUE; | |
9604 | return FALSE; | |
9605 | } | |
9606 | ||
9607 | ||
9608 | static bfd_boolean | |
7fa3d080 BW |
9609 | pcrel_reloc_fits (xtensa_opcode opc, |
9610 | int opnd, | |
9611 | bfd_vma self_address, | |
9612 | bfd_vma dest_address) | |
e0001a05 | 9613 | { |
43cd72b9 BW |
9614 | xtensa_isa isa = xtensa_default_isa; |
9615 | uint32 valp = dest_address; | |
9616 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
9617 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
9618 | return FALSE; | |
9619 | return TRUE; | |
e0001a05 NC |
9620 | } |
9621 | ||
9622 | ||
9623 | static bfd_boolean | |
7fa3d080 | 9624 | xtensa_is_property_section (asection *sec) |
e0001a05 | 9625 | { |
1d25768e BW |
9626 | if (xtensa_is_insntable_section (sec) |
9627 | || xtensa_is_littable_section (sec) | |
9628 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 9629 | return TRUE; |
e901de89 | 9630 | |
1d25768e BW |
9631 | return FALSE; |
9632 | } | |
9633 | ||
9634 | ||
9635 | static bfd_boolean | |
9636 | xtensa_is_insntable_section (asection *sec) | |
9637 | { | |
9638 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
9639 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
9640 | return TRUE; |
9641 | ||
e901de89 BW |
9642 | return FALSE; |
9643 | } | |
9644 | ||
9645 | ||
9646 | static bfd_boolean | |
7fa3d080 | 9647 | xtensa_is_littable_section (asection *sec) |
e901de89 | 9648 | { |
1d25768e BW |
9649 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
9650 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 9651 | return TRUE; |
e901de89 | 9652 | |
1d25768e BW |
9653 | return FALSE; |
9654 | } | |
9655 | ||
9656 | ||
9657 | static bfd_boolean | |
9658 | xtensa_is_proptable_section (asection *sec) | |
9659 | { | |
9660 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
9661 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 9662 | return TRUE; |
e0001a05 | 9663 | |
e901de89 | 9664 | return FALSE; |
e0001a05 NC |
9665 | } |
9666 | ||
9667 | ||
43cd72b9 | 9668 | static int |
7fa3d080 | 9669 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 9670 | { |
43cd72b9 BW |
9671 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
9672 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9673 | ||
9674 | if (a->r_offset != b->r_offset) | |
9675 | return (a->r_offset - b->r_offset); | |
9676 | ||
9677 | /* We don't need to sort on these criteria for correctness, | |
9678 | but enforcing a more strict ordering prevents unstable qsort | |
9679 | from behaving differently with different implementations. | |
9680 | Without the code below we get correct but different results | |
9681 | on Solaris 2.7 and 2.8. We would like to always produce the | |
9682 | same results no matter the host. */ | |
9683 | ||
9684 | if (a->r_info != b->r_info) | |
9685 | return (a->r_info - b->r_info); | |
9686 | ||
9687 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
9688 | } |
9689 | ||
9690 | ||
9691 | static int | |
7fa3d080 | 9692 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
9693 | { |
9694 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
9695 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9696 | ||
43cd72b9 BW |
9697 | /* Check if one entry overlaps with the other; this shouldn't happen |
9698 | except when searching for a match. */ | |
e0001a05 NC |
9699 | return (a->r_offset - b->r_offset); |
9700 | } | |
9701 | ||
9702 | ||
74869ac7 BW |
9703 | /* Predicate function used to look up a section in a particular group. */ |
9704 | ||
9705 | static bfd_boolean | |
9706 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
9707 | { | |
9708 | const char *gname = inf; | |
9709 | const char *group_name = elf_group_name (sec); | |
9710 | ||
9711 | return (group_name == gname | |
9712 | || (group_name != NULL | |
9713 | && gname != NULL | |
9714 | && strcmp (group_name, gname) == 0)); | |
9715 | } | |
9716 | ||
9717 | ||
1d25768e BW |
9718 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
9719 | ||
51c8ebc1 BW |
9720 | static char * |
9721 | xtensa_property_section_name (asection *sec, const char *base_name) | |
e0001a05 | 9722 | { |
74869ac7 BW |
9723 | const char *suffix, *group_name; |
9724 | char *prop_sec_name; | |
74869ac7 BW |
9725 | |
9726 | group_name = elf_group_name (sec); | |
9727 | if (group_name) | |
9728 | { | |
9729 | suffix = strrchr (sec->name, '.'); | |
9730 | if (suffix == sec->name) | |
9731 | suffix = 0; | |
9732 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
9733 | + (suffix ? strlen (suffix) : 0)); | |
9734 | strcpy (prop_sec_name, base_name); | |
9735 | if (suffix) | |
9736 | strcat (prop_sec_name, suffix); | |
9737 | } | |
9738 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 9739 | { |
43cd72b9 | 9740 | char *linkonce_kind = 0; |
b614a702 BW |
9741 | |
9742 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
7db48a12 | 9743 | linkonce_kind = "x."; |
b614a702 | 9744 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 9745 | linkonce_kind = "p."; |
43cd72b9 BW |
9746 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
9747 | linkonce_kind = "prop."; | |
e0001a05 | 9748 | else |
b614a702 BW |
9749 | abort (); |
9750 | ||
43cd72b9 BW |
9751 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
9752 | + strlen (linkonce_kind) + 1); | |
b614a702 | 9753 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 9754 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
9755 | |
9756 | suffix = sec->name + linkonce_len; | |
096c35a7 | 9757 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 9758 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 9759 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
9760 | suffix += 2; |
9761 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
9762 | } |
9763 | else | |
9764 | prop_sec_name = strdup (base_name); | |
9765 | ||
51c8ebc1 BW |
9766 | return prop_sec_name; |
9767 | } | |
9768 | ||
9769 | ||
9770 | static asection * | |
9771 | xtensa_get_property_section (asection *sec, const char *base_name) | |
9772 | { | |
9773 | char *prop_sec_name; | |
9774 | asection *prop_sec; | |
9775 | ||
9776 | prop_sec_name = xtensa_property_section_name (sec, base_name); | |
9777 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
9778 | match_section_group, | |
9779 | (void *) elf_group_name (sec)); | |
9780 | free (prop_sec_name); | |
9781 | return prop_sec; | |
9782 | } | |
9783 | ||
9784 | ||
9785 | asection * | |
9786 | xtensa_make_property_section (asection *sec, const char *base_name) | |
9787 | { | |
9788 | char *prop_sec_name; | |
9789 | asection *prop_sec; | |
9790 | ||
74869ac7 | 9791 | /* Check if the section already exists. */ |
51c8ebc1 | 9792 | prop_sec_name = xtensa_property_section_name (sec, base_name); |
74869ac7 BW |
9793 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
9794 | match_section_group, | |
51c8ebc1 | 9795 | (void *) elf_group_name (sec)); |
74869ac7 BW |
9796 | /* If not, create it. */ |
9797 | if (! prop_sec) | |
9798 | { | |
9799 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
9800 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
9801 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
9802 | ||
9803 | prop_sec = bfd_make_section_anyway_with_flags | |
9804 | (sec->owner, strdup (prop_sec_name), flags); | |
9805 | if (! prop_sec) | |
9806 | return 0; | |
b614a702 | 9807 | |
51c8ebc1 | 9808 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
9809 | } |
9810 | ||
74869ac7 BW |
9811 | free (prop_sec_name); |
9812 | return prop_sec; | |
e0001a05 NC |
9813 | } |
9814 | ||
43cd72b9 BW |
9815 | |
9816 | flagword | |
7fa3d080 | 9817 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 9818 | { |
1d25768e | 9819 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 9820 | return (XTENSA_PROP_INSN |
99ded152 | 9821 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
9822 | | XTENSA_PROP_INSN_NO_REORDER); |
9823 | ||
9824 | if (xtensa_is_littable_section (sec)) | |
9825 | return (XTENSA_PROP_LITERAL | |
99ded152 | 9826 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
9827 | | XTENSA_PROP_INSN_NO_REORDER); |
9828 | ||
9829 | return 0; | |
9830 | } | |
9831 | ||
e0001a05 NC |
9832 | \f |
9833 | /* Other functions called directly by the linker. */ | |
9834 | ||
9835 | bfd_boolean | |
7fa3d080 BW |
9836 | xtensa_callback_required_dependence (bfd *abfd, |
9837 | asection *sec, | |
9838 | struct bfd_link_info *link_info, | |
9839 | deps_callback_t callback, | |
9840 | void *closure) | |
e0001a05 NC |
9841 | { |
9842 | Elf_Internal_Rela *internal_relocs; | |
9843 | bfd_byte *contents; | |
9844 | unsigned i; | |
9845 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
9846 | bfd_size_type sec_size; |
9847 | ||
9848 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
9849 | |
9850 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
9851 | instructions that reference the corresponding ".got.plt*" sections. */ | |
9852 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 9853 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
9854 | { |
9855 | asection *sgotplt; | |
9856 | ||
9857 | /* Find the corresponding ".got.plt*" section. */ | |
9858 | if (sec->name[4] == '\0') | |
9859 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
9860 | else | |
9861 | { | |
9862 | char got_name[14]; | |
9863 | int chunk = 0; | |
9864 | ||
9865 | BFD_ASSERT (sec->name[4] == '.'); | |
9866 | chunk = strtol (&sec->name[5], NULL, 10); | |
9867 | ||
9868 | sprintf (got_name, ".got.plt.%u", chunk); | |
9869 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
9870 | } | |
9871 | BFD_ASSERT (sgotplt); | |
9872 | ||
9873 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
9874 | section referencing a literal at the very beginning of | |
9875 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 9876 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
9877 | } |
9878 | ||
13161072 BW |
9879 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
9880 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
9881 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
9882 | return ok; | |
9883 | ||
e0001a05 NC |
9884 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
9885 | link_info->keep_memory); | |
9886 | if (internal_relocs == NULL | |
43cd72b9 | 9887 | || sec->reloc_count == 0) |
e0001a05 NC |
9888 | return ok; |
9889 | ||
9890 | /* Cache the contents for the duration of this scan. */ | |
9891 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9892 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9893 | { |
9894 | ok = FALSE; | |
9895 | goto error_return; | |
9896 | } | |
9897 | ||
43cd72b9 BW |
9898 | if (!xtensa_default_isa) |
9899 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 9900 | |
43cd72b9 | 9901 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9902 | { |
9903 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 9904 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
9905 | { |
9906 | r_reloc l32r_rel; | |
9907 | asection *target_sec; | |
9908 | bfd_vma target_offset; | |
43cd72b9 BW |
9909 | |
9910 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
9911 | target_sec = NULL; |
9912 | target_offset = 0; | |
9913 | /* L32Rs must be local to the input file. */ | |
9914 | if (r_reloc_is_defined (&l32r_rel)) | |
9915 | { | |
9916 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 9917 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
9918 | } |
9919 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
9920 | closure); | |
9921 | } | |
9922 | } | |
9923 | ||
9924 | error_return: | |
9925 | release_internal_relocs (sec, internal_relocs); | |
9926 | release_contents (sec, contents); | |
9927 | return ok; | |
9928 | } | |
9929 | ||
2f89ff8d L |
9930 | /* The default literal sections should always be marked as "code" (i.e., |
9931 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
9932 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 9933 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 9934 | { |
0112cd26 NC |
9935 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
9936 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
9937 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 9938 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 9939 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 9940 | }; |
e0001a05 NC |
9941 | \f |
9942 | #ifndef ELF_ARCH | |
9943 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
9944 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
9945 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
9946 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
9947 | #define ELF_ARCH bfd_arch_xtensa | |
9948 | ||
4af0a1d8 BW |
9949 | #define ELF_MACHINE_CODE EM_XTENSA |
9950 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
9951 | |
9952 | #if XCHAL_HAVE_MMU | |
9953 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
9954 | #else /* !XCHAL_HAVE_MMU */ | |
9955 | #define ELF_MAXPAGESIZE 1 | |
9956 | #endif /* !XCHAL_HAVE_MMU */ | |
9957 | #endif /* ELF_ARCH */ | |
9958 | ||
9959 | #define elf_backend_can_gc_sections 1 | |
9960 | #define elf_backend_can_refcount 1 | |
9961 | #define elf_backend_plt_readonly 1 | |
9962 | #define elf_backend_got_header_size 4 | |
9963 | #define elf_backend_want_dynbss 0 | |
9964 | #define elf_backend_want_got_plt 1 | |
9965 | ||
9966 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
9967 | ||
e0001a05 NC |
9968 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
9969 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
9970 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
9971 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
9972 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
9973 | #define bfd_elf32_bfd_reloc_name_lookup \ |
9974 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 9975 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 9976 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
9977 | |
9978 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
9979 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
9980 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
9981 | #define elf_backend_discard_info elf_xtensa_discard_info | |
9982 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
9983 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
9984 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
9985 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
9986 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
9987 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
9988 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
9989 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 9990 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
9991 | #define elf_backend_object_p elf_xtensa_object_p |
9992 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
9993 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
9994 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
74541ad4 AM |
9995 | #define elf_backend_omit_section_dynsym \ |
9996 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 9997 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 9998 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
e0001a05 NC |
9999 | |
10000 | #include "elf32-target.h" |