]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform arithmetic and other operations on values, for GDB. |
1bac305b | 2 | |
42a4f53d | 3 | Copyright (C) 1986-2019 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "value.h" | |
22 | #include "symtab.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "expression.h" | |
25 | #include "target.h" | |
26 | #include "language.h" | |
70100014 | 27 | #include "target-float.h" |
04714b91 | 28 | #include "infcall.h" |
268a13a5 | 29 | #include "gdbsupport/byte-vector.h" |
0d12e84c | 30 | #include "gdbarch.h" |
c906108c SS |
31 | |
32 | /* Define whether or not the C operator '/' truncates towards zero for | |
581e13c1 | 33 | differently signed operands (truncation direction is undefined in C). */ |
c906108c SS |
34 | |
35 | #ifndef TRUNCATION_TOWARDS_ZERO | |
36 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
37 | #endif | |
38 | ||
ca439ad2 JI |
39 | /* Given a pointer, return the size of its target. |
40 | If the pointer type is void *, then return 1. | |
41 | If the target type is incomplete, then error out. | |
42 | This isn't a general purpose function, but just a | |
581e13c1 | 43 | helper for value_ptradd. */ |
ca439ad2 JI |
44 | |
45 | static LONGEST | |
46 | find_size_for_pointer_math (struct type *ptr_type) | |
47 | { | |
48 | LONGEST sz = -1; | |
49 | struct type *ptr_target; | |
50 | ||
89eef114 | 51 | gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR); |
ca439ad2 JI |
52 | ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); |
53 | ||
3ae385af | 54 | sz = type_length_units (ptr_target); |
ca439ad2 JI |
55 | if (sz == 0) |
56 | { | |
57 | if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) | |
58 | sz = 1; | |
59 | else | |
60 | { | |
0d5cff50 | 61 | const char *name; |
ca439ad2 JI |
62 | |
63 | name = TYPE_NAME (ptr_target); | |
ca439ad2 | 64 | if (name == NULL) |
8a3fe4f8 AC |
65 | error (_("Cannot perform pointer math on incomplete types, " |
66 | "try casting to a known type, or void *.")); | |
ca439ad2 | 67 | else |
8a3fe4f8 AC |
68 | error (_("Cannot perform pointer math on incomplete type \"%s\", " |
69 | "try casting to a known type, or void *."), name); | |
ca439ad2 JI |
70 | } |
71 | } | |
72 | return sz; | |
73 | } | |
74 | ||
89eef114 UW |
75 | /* Given a pointer ARG1 and an integral value ARG2, return the |
76 | result of C-style pointer arithmetic ARG1 + ARG2. */ | |
77 | ||
f23631e4 | 78 | struct value * |
2497b498 | 79 | value_ptradd (struct value *arg1, LONGEST arg2) |
c906108c | 80 | { |
89eef114 | 81 | struct type *valptrtype; |
ca439ad2 | 82 | LONGEST sz; |
8cf6f0b1 | 83 | struct value *result; |
c906108c | 84 | |
994b9211 | 85 | arg1 = coerce_array (arg1); |
89eef114 UW |
86 | valptrtype = check_typedef (value_type (arg1)); |
87 | sz = find_size_for_pointer_math (valptrtype); | |
c906108c | 88 | |
8cf6f0b1 TT |
89 | result = value_from_pointer (valptrtype, |
90 | value_as_address (arg1) + sz * arg2); | |
91 | if (VALUE_LVAL (result) != lval_internalvar) | |
92 | set_value_component_location (result, arg1); | |
93 | return result; | |
c906108c SS |
94 | } |
95 | ||
89eef114 UW |
96 | /* Given two compatible pointer values ARG1 and ARG2, return the |
97 | result of C-style pointer arithmetic ARG1 - ARG2. */ | |
98 | ||
99 | LONGEST | |
100 | value_ptrdiff (struct value *arg1, struct value *arg2) | |
c906108c SS |
101 | { |
102 | struct type *type1, *type2; | |
89eef114 UW |
103 | LONGEST sz; |
104 | ||
994b9211 AC |
105 | arg1 = coerce_array (arg1); |
106 | arg2 = coerce_array (arg2); | |
df407dfe AC |
107 | type1 = check_typedef (value_type (arg1)); |
108 | type2 = check_typedef (value_type (arg2)); | |
c906108c | 109 | |
89eef114 UW |
110 | gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR); |
111 | gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR); | |
ca439ad2 | 112 | |
89eef114 UW |
113 | if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) |
114 | != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
3e43a32a MS |
115 | error (_("First argument of `-' is a pointer and " |
116 | "second argument is neither\n" | |
117 | "an integer nor a pointer of the same type.")); | |
c906108c | 118 | |
3ae385af | 119 | sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1))); |
83b10087 CM |
120 | if (sz == 0) |
121 | { | |
122 | warning (_("Type size unknown, assuming 1. " | |
123 | "Try casting to a known type, or void *.")); | |
124 | sz = 1; | |
125 | } | |
126 | ||
89eef114 | 127 | return (value_as_long (arg1) - value_as_long (arg2)) / sz; |
c906108c SS |
128 | } |
129 | ||
130 | /* Return the value of ARRAY[IDX]. | |
afc05acb UW |
131 | |
132 | ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the | |
133 | current language supports C-style arrays, it may also be TYPE_CODE_PTR. | |
afc05acb | 134 | |
c906108c SS |
135 | See comments in value_coerce_array() for rationale for reason for |
136 | doing lower bounds adjustment here rather than there. | |
137 | FIXME: Perhaps we should validate that the index is valid and if | |
581e13c1 | 138 | verbosity is set, warn about invalid indices (but still use them). */ |
c906108c | 139 | |
f23631e4 | 140 | struct value * |
2497b498 | 141 | value_subscript (struct value *array, LONGEST index) |
c906108c | 142 | { |
c906108c SS |
143 | int c_style = current_language->c_style_arrays; |
144 | struct type *tarray; | |
145 | ||
994b9211 | 146 | array = coerce_ref (array); |
df407dfe | 147 | tarray = check_typedef (value_type (array)); |
c906108c SS |
148 | |
149 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
150 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
151 | { | |
152 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
153 | LONGEST lowerbound, upperbound; | |
c906108c | 154 | |
a109c7c1 | 155 | get_discrete_bounds (range_type, &lowerbound, &upperbound); |
c906108c | 156 | if (VALUE_LVAL (array) != lval_memory) |
2497b498 | 157 | return value_subscripted_rvalue (array, index, lowerbound); |
c906108c SS |
158 | |
159 | if (c_style == 0) | |
160 | { | |
c906108c | 161 | if (index >= lowerbound && index <= upperbound) |
2497b498 | 162 | return value_subscripted_rvalue (array, index, lowerbound); |
987504bb JJ |
163 | /* Emit warning unless we have an array of unknown size. |
164 | An array of unknown size has lowerbound 0 and upperbound -1. */ | |
165 | if (upperbound > -1) | |
8a3fe4f8 | 166 | warning (_("array or string index out of range")); |
c906108c SS |
167 | /* fall doing C stuff */ |
168 | c_style = 1; | |
169 | } | |
170 | ||
2497b498 | 171 | index -= lowerbound; |
c906108c SS |
172 | array = value_coerce_array (array); |
173 | } | |
174 | ||
c906108c | 175 | if (c_style) |
2497b498 | 176 | return value_ind (value_ptradd (array, index)); |
c906108c | 177 | else |
8a3fe4f8 | 178 | error (_("not an array or string")); |
c906108c SS |
179 | } |
180 | ||
181 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
182 | (eg, a vector register). This routine used to promote floats | |
183 | to doubles, but no longer does. */ | |
184 | ||
9eec4d1e | 185 | struct value * |
592f9d27 | 186 | value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound) |
c906108c | 187 | { |
df407dfe | 188 | struct type *array_type = check_typedef (value_type (array)); |
c906108c | 189 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); |
6b850546 DT |
190 | ULONGEST elt_size = type_length_units (elt_type); |
191 | ULONGEST elt_offs = elt_size * (index - lowerbound); | |
c906108c | 192 | |
5ff2bbae AB |
193 | if (index < lowerbound |
194 | || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type) | |
195 | && elt_offs >= type_length_units (array_type)) | |
196 | || (VALUE_LVAL (array) != lval_memory | |
197 | && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type))) | |
3f2f83dd KB |
198 | { |
199 | if (type_not_associated (array_type)) | |
200 | error (_("no such vector element (vector not associated)")); | |
201 | else if (type_not_allocated (array_type)) | |
202 | error (_("no such vector element (vector not allocated)")); | |
203 | else | |
204 | error (_("no such vector element")); | |
205 | } | |
c906108c | 206 | |
8f07e298 BH |
207 | if (is_dynamic_type (elt_type)) |
208 | { | |
209 | CORE_ADDR address; | |
210 | ||
211 | address = value_address (array) + elt_offs; | |
212 | elt_type = resolve_dynamic_type (elt_type, NULL, address); | |
213 | } | |
214 | ||
3fff9862 | 215 | return value_from_component (array, elt_type, elt_offs); |
c906108c | 216 | } |
afc05acb | 217 | |
c906108c | 218 | \f |
13d6656b JB |
219 | /* Check to see if either argument is a structure, or a reference to |
220 | one. This is called so we know whether to go ahead with the normal | |
221 | binop or look for a user defined function instead. | |
c906108c SS |
222 | |
223 | For now, we do not overload the `=' operator. */ | |
224 | ||
225 | int | |
be636754 PA |
226 | binop_types_user_defined_p (enum exp_opcode op, |
227 | struct type *type1, struct type *type2) | |
c906108c | 228 | { |
c906108c SS |
229 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) |
230 | return 0; | |
13d6656b | 231 | |
be636754 | 232 | type1 = check_typedef (type1); |
aa006118 | 233 | if (TYPE_IS_REFERENCE (type1)) |
13d6656b JB |
234 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
235 | ||
4e32eda7 | 236 | type2 = check_typedef (type2); |
aa006118 | 237 | if (TYPE_IS_REFERENCE (type2)) |
13d6656b JB |
238 | type2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
239 | ||
c906108c | 240 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT |
13d6656b | 241 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT); |
c906108c SS |
242 | } |
243 | ||
be636754 PA |
244 | /* Check to see if either argument is a structure, or a reference to |
245 | one. This is called so we know whether to go ahead with the normal | |
246 | binop or look for a user defined function instead. | |
247 | ||
248 | For now, we do not overload the `=' operator. */ | |
249 | ||
250 | int | |
251 | binop_user_defined_p (enum exp_opcode op, | |
252 | struct value *arg1, struct value *arg2) | |
253 | { | |
254 | return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2)); | |
255 | } | |
256 | ||
c906108c SS |
257 | /* Check to see if argument is a structure. This is called so |
258 | we know whether to go ahead with the normal unop or look for a | |
259 | user defined function instead. | |
260 | ||
261 | For now, we do not overload the `&' operator. */ | |
262 | ||
c5aa993b | 263 | int |
f23631e4 | 264 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) |
c906108c SS |
265 | { |
266 | struct type *type1; | |
a109c7c1 | 267 | |
c906108c SS |
268 | if (op == UNOP_ADDR) |
269 | return 0; | |
df407dfe | 270 | type1 = check_typedef (value_type (arg1)); |
aa006118 | 271 | if (TYPE_IS_REFERENCE (type1)) |
eeaafae2 JK |
272 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
273 | return TYPE_CODE (type1) == TYPE_CODE_STRUCT; | |
c906108c SS |
274 | } |
275 | ||
4c3376c8 SW |
276 | /* Try to find an operator named OPERATOR which takes NARGS arguments |
277 | specified in ARGS. If the operator found is a static member operator | |
278 | *STATIC_MEMFUNP will be set to 1, and otherwise 0. | |
279 | The search if performed through find_overload_match which will handle | |
280 | member operators, non member operators, operators imported implicitly or | |
281 | explicitly, and perform correct overload resolution in all of the above | |
282 | situations or combinations thereof. */ | |
283 | ||
284 | static struct value * | |
6b1747cd | 285 | value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper, |
e66d4446 | 286 | int *static_memfuncp, enum noside noside) |
4c3376c8 SW |
287 | { |
288 | ||
289 | struct symbol *symp = NULL; | |
290 | struct value *valp = NULL; | |
4c3376c8 | 291 | |
6b1747cd | 292 | find_overload_match (args, oper, BOTH /* could be method */, |
28c64fc2 | 293 | &args[0] /* objp */, |
4c3376c8 | 294 | NULL /* pass NULL symbol since symbol is unknown */, |
e66d4446 | 295 | &valp, &symp, static_memfuncp, 0, noside); |
4c3376c8 SW |
296 | |
297 | if (valp) | |
298 | return valp; | |
299 | ||
300 | if (symp) | |
301 | { | |
302 | /* This is a non member function and does not | |
303 | expect a reference as its first argument | |
304 | rather the explicit structure. */ | |
305 | args[0] = value_ind (args[0]); | |
306 | return value_of_variable (symp, 0); | |
307 | } | |
308 | ||
fe978cb0 | 309 | error (_("Could not find %s."), oper); |
4c3376c8 SW |
310 | } |
311 | ||
312 | /* Lookup user defined operator NAME. Return a value representing the | |
313 | function, otherwise return NULL. */ | |
314 | ||
315 | static struct value * | |
6b1747cd PA |
316 | value_user_defined_op (struct value **argp, gdb::array_view<value *> args, |
317 | char *name, int *static_memfuncp, enum noside noside) | |
4c3376c8 SW |
318 | { |
319 | struct value *result = NULL; | |
320 | ||
321 | if (current_language->la_language == language_cplus) | |
e66d4446 | 322 | { |
6b1747cd | 323 | result = value_user_defined_cpp_op (args, name, static_memfuncp, |
e66d4446 SC |
324 | noside); |
325 | } | |
4c3376c8 | 326 | else |
6b1747cd PA |
327 | result = value_struct_elt (argp, args.data (), name, static_memfuncp, |
328 | "structure"); | |
4c3376c8 SW |
329 | |
330 | return result; | |
331 | } | |
332 | ||
c906108c SS |
333 | /* We know either arg1 or arg2 is a structure, so try to find the right |
334 | user defined function. Create an argument vector that calls | |
335 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
336 | binary operator which is legal for GNU C++). | |
337 | ||
338 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
339 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
340 | unused. */ | |
341 | ||
f23631e4 AC |
342 | struct value * |
343 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | |
fba45db2 | 344 | enum exp_opcode otherop, enum noside noside) |
c906108c | 345 | { |
c906108c SS |
346 | char *ptr; |
347 | char tstr[13]; | |
348 | int static_memfuncp; | |
349 | ||
994b9211 AC |
350 | arg1 = coerce_ref (arg1); |
351 | arg2 = coerce_ref (arg2); | |
c906108c SS |
352 | |
353 | /* now we know that what we have to do is construct our | |
354 | arg vector and find the right function to call it with. */ | |
355 | ||
df407dfe | 356 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 357 | error (_("Can't do that binary op on that type")); /* FIXME be explicit */ |
c906108c | 358 | |
6b1747cd PA |
359 | value *argvec_storage[3]; |
360 | gdb::array_view<value *> argvec = argvec_storage; | |
361 | ||
c906108c SS |
362 | argvec[1] = value_addr (arg1); |
363 | argvec[2] = arg2; | |
c906108c | 364 | |
581e13c1 | 365 | /* Make the right function name up. */ |
c5aa993b JM |
366 | strcpy (tstr, "operator__"); |
367 | ptr = tstr + 8; | |
c906108c SS |
368 | switch (op) |
369 | { | |
c5aa993b JM |
370 | case BINOP_ADD: |
371 | strcpy (ptr, "+"); | |
372 | break; | |
373 | case BINOP_SUB: | |
374 | strcpy (ptr, "-"); | |
375 | break; | |
376 | case BINOP_MUL: | |
377 | strcpy (ptr, "*"); | |
378 | break; | |
379 | case BINOP_DIV: | |
380 | strcpy (ptr, "/"); | |
381 | break; | |
382 | case BINOP_REM: | |
383 | strcpy (ptr, "%"); | |
384 | break; | |
385 | case BINOP_LSH: | |
386 | strcpy (ptr, "<<"); | |
387 | break; | |
388 | case BINOP_RSH: | |
389 | strcpy (ptr, ">>"); | |
390 | break; | |
391 | case BINOP_BITWISE_AND: | |
392 | strcpy (ptr, "&"); | |
393 | break; | |
394 | case BINOP_BITWISE_IOR: | |
395 | strcpy (ptr, "|"); | |
396 | break; | |
397 | case BINOP_BITWISE_XOR: | |
398 | strcpy (ptr, "^"); | |
399 | break; | |
400 | case BINOP_LOGICAL_AND: | |
401 | strcpy (ptr, "&&"); | |
402 | break; | |
403 | case BINOP_LOGICAL_OR: | |
404 | strcpy (ptr, "||"); | |
405 | break; | |
406 | case BINOP_MIN: | |
407 | strcpy (ptr, "<?"); | |
408 | break; | |
409 | case BINOP_MAX: | |
410 | strcpy (ptr, ">?"); | |
411 | break; | |
412 | case BINOP_ASSIGN: | |
413 | strcpy (ptr, "="); | |
414 | break; | |
415 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
416 | switch (otherop) |
417 | { | |
c5aa993b JM |
418 | case BINOP_ADD: |
419 | strcpy (ptr, "+="); | |
420 | break; | |
421 | case BINOP_SUB: | |
422 | strcpy (ptr, "-="); | |
423 | break; | |
424 | case BINOP_MUL: | |
425 | strcpy (ptr, "*="); | |
426 | break; | |
427 | case BINOP_DIV: | |
428 | strcpy (ptr, "/="); | |
429 | break; | |
430 | case BINOP_REM: | |
431 | strcpy (ptr, "%="); | |
432 | break; | |
433 | case BINOP_BITWISE_AND: | |
434 | strcpy (ptr, "&="); | |
435 | break; | |
436 | case BINOP_BITWISE_IOR: | |
437 | strcpy (ptr, "|="); | |
438 | break; | |
439 | case BINOP_BITWISE_XOR: | |
440 | strcpy (ptr, "^="); | |
441 | break; | |
442 | case BINOP_MOD: /* invalid */ | |
c906108c | 443 | default: |
8a3fe4f8 | 444 | error (_("Invalid binary operation specified.")); |
c906108c SS |
445 | } |
446 | break; | |
c5aa993b JM |
447 | case BINOP_SUBSCRIPT: |
448 | strcpy (ptr, "[]"); | |
449 | break; | |
450 | case BINOP_EQUAL: | |
451 | strcpy (ptr, "=="); | |
452 | break; | |
453 | case BINOP_NOTEQUAL: | |
454 | strcpy (ptr, "!="); | |
455 | break; | |
456 | case BINOP_LESS: | |
457 | strcpy (ptr, "<"); | |
458 | break; | |
459 | case BINOP_GTR: | |
460 | strcpy (ptr, ">"); | |
461 | break; | |
462 | case BINOP_GEQ: | |
463 | strcpy (ptr, ">="); | |
464 | break; | |
465 | case BINOP_LEQ: | |
466 | strcpy (ptr, "<="); | |
467 | break; | |
468 | case BINOP_MOD: /* invalid */ | |
c906108c | 469 | default: |
8a3fe4f8 | 470 | error (_("Invalid binary operation specified.")); |
c906108c SS |
471 | } |
472 | ||
6b1747cd PA |
473 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr, |
474 | &static_memfuncp, noside); | |
c5aa993b | 475 | |
c906108c SS |
476 | if (argvec[0]) |
477 | { | |
478 | if (static_memfuncp) | |
479 | { | |
480 | argvec[1] = argvec[0]; | |
6b1747cd | 481 | argvec = argvec.slice (1); |
c906108c | 482 | } |
2ce1cdbf DE |
483 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) |
484 | { | |
485 | /* Static xmethods are not supported yet. */ | |
486 | gdb_assert (static_memfuncp == 0); | |
487 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
488 | { | |
489 | struct type *return_type | |
6b1747cd | 490 | = result_type_of_xmethod (argvec[0], argvec.slice (1)); |
2ce1cdbf DE |
491 | |
492 | if (return_type == NULL) | |
493 | error (_("Xmethod is missing return type.")); | |
494 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
495 | } | |
6b1747cd | 496 | return call_xmethod (argvec[0], argvec.slice (1)); |
2ce1cdbf | 497 | } |
c906108c SS |
498 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
499 | { | |
500 | struct type *return_type; | |
a109c7c1 | 501 | |
c906108c | 502 | return_type |
df407dfe | 503 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
504 | return value_zero (return_type, VALUE_LVAL (arg1)); |
505 | } | |
e71585ff | 506 | return call_function_by_hand (argvec[0], NULL, |
6b1747cd | 507 | argvec.slice (1, 2 - static_memfuncp)); |
c906108c | 508 | } |
79afc5ef SW |
509 | throw_error (NOT_FOUND_ERROR, |
510 | _("member function %s not found"), tstr); | |
c906108c SS |
511 | } |
512 | ||
513 | /* We know that arg1 is a structure, so try to find a unary user | |
581e13c1 | 514 | defined operator that matches the operator in question. |
c906108c SS |
515 | Create an argument vector that calls arg1.operator @ (arg1) |
516 | and return that value (where '@' is (almost) any unary operator which | |
517 | is legal for GNU C++). */ | |
518 | ||
f23631e4 AC |
519 | struct value * |
520 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | |
c906108c | 521 | { |
50810684 | 522 | struct gdbarch *gdbarch = get_type_arch (value_type (arg1)); |
5799c0b9 | 523 | char *ptr; |
c906108c | 524 | char tstr[13], mangle_tstr[13]; |
491b8946 | 525 | int static_memfuncp, nargs; |
c906108c | 526 | |
994b9211 | 527 | arg1 = coerce_ref (arg1); |
c906108c SS |
528 | |
529 | /* now we know that what we have to do is construct our | |
530 | arg vector and find the right function to call it with. */ | |
531 | ||
df407dfe | 532 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 533 | error (_("Can't do that unary op on that type")); /* FIXME be explicit */ |
c906108c | 534 | |
6b1747cd PA |
535 | value *argvec_storage[3]; |
536 | gdb::array_view<value *> argvec = argvec_storage; | |
537 | ||
c906108c SS |
538 | argvec[1] = value_addr (arg1); |
539 | argvec[2] = 0; | |
540 | ||
491b8946 DJ |
541 | nargs = 1; |
542 | ||
581e13c1 | 543 | /* Make the right function name up. */ |
c5aa993b JM |
544 | strcpy (tstr, "operator__"); |
545 | ptr = tstr + 8; | |
546 | strcpy (mangle_tstr, "__"); | |
c906108c SS |
547 | switch (op) |
548 | { | |
c5aa993b JM |
549 | case UNOP_PREINCREMENT: |
550 | strcpy (ptr, "++"); | |
551 | break; | |
552 | case UNOP_PREDECREMENT: | |
491b8946 | 553 | strcpy (ptr, "--"); |
c5aa993b JM |
554 | break; |
555 | case UNOP_POSTINCREMENT: | |
556 | strcpy (ptr, "++"); | |
22601c15 | 557 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); |
491b8946 | 558 | nargs ++; |
c5aa993b JM |
559 | break; |
560 | case UNOP_POSTDECREMENT: | |
491b8946 | 561 | strcpy (ptr, "--"); |
22601c15 | 562 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); |
491b8946 | 563 | nargs ++; |
c5aa993b JM |
564 | break; |
565 | case UNOP_LOGICAL_NOT: | |
566 | strcpy (ptr, "!"); | |
567 | break; | |
568 | case UNOP_COMPLEMENT: | |
569 | strcpy (ptr, "~"); | |
570 | break; | |
571 | case UNOP_NEG: | |
572 | strcpy (ptr, "-"); | |
573 | break; | |
36e9969c NS |
574 | case UNOP_PLUS: |
575 | strcpy (ptr, "+"); | |
576 | break; | |
c5aa993b JM |
577 | case UNOP_IND: |
578 | strcpy (ptr, "*"); | |
579 | break; | |
79afc5ef SW |
580 | case STRUCTOP_PTR: |
581 | strcpy (ptr, "->"); | |
582 | break; | |
c906108c | 583 | default: |
8a3fe4f8 | 584 | error (_("Invalid unary operation specified.")); |
c906108c SS |
585 | } |
586 | ||
6b1747cd PA |
587 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr, |
588 | &static_memfuncp, noside); | |
c906108c SS |
589 | |
590 | if (argvec[0]) | |
591 | { | |
592 | if (static_memfuncp) | |
593 | { | |
594 | argvec[1] = argvec[0]; | |
6b1747cd | 595 | argvec = argvec.slice (1); |
c906108c | 596 | } |
2ce1cdbf DE |
597 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) |
598 | { | |
599 | /* Static xmethods are not supported yet. */ | |
600 | gdb_assert (static_memfuncp == 0); | |
601 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
602 | { | |
603 | struct type *return_type | |
6b1747cd | 604 | = result_type_of_xmethod (argvec[0], argvec[1]); |
2ce1cdbf DE |
605 | |
606 | if (return_type == NULL) | |
607 | error (_("Xmethod is missing return type.")); | |
608 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
609 | } | |
6b1747cd | 610 | return call_xmethod (argvec[0], argvec[1]); |
2ce1cdbf | 611 | } |
c906108c SS |
612 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
613 | { | |
614 | struct type *return_type; | |
a109c7c1 | 615 | |
c906108c | 616 | return_type |
df407dfe | 617 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
618 | return value_zero (return_type, VALUE_LVAL (arg1)); |
619 | } | |
e71585ff | 620 | return call_function_by_hand (argvec[0], NULL, |
6b1747cd | 621 | argvec.slice (1, nargs)); |
c906108c | 622 | } |
79afc5ef SW |
623 | throw_error (NOT_FOUND_ERROR, |
624 | _("member function %s not found"), tstr); | |
c906108c | 625 | } |
c906108c | 626 | \f |
c5aa993b | 627 | |
c906108c SS |
628 | /* Concatenate two values with the following conditions: |
629 | ||
c5aa993b JM |
630 | (1) Both values must be either bitstring values or character string |
631 | values and the resulting value consists of the concatenation of | |
632 | ARG1 followed by ARG2. | |
c906108c | 633 | |
c5aa993b | 634 | or |
c906108c | 635 | |
c5aa993b JM |
636 | One value must be an integer value and the other value must be |
637 | either a bitstring value or character string value, which is | |
638 | to be repeated by the number of times specified by the integer | |
639 | value. | |
c906108c SS |
640 | |
641 | ||
c5aa993b JM |
642 | (2) Boolean values are also allowed and are treated as bit string |
643 | values of length 1. | |
c906108c | 644 | |
c5aa993b | 645 | (3) Character values are also allowed and are treated as character |
581e13c1 | 646 | string values of length 1. */ |
c906108c | 647 | |
f23631e4 AC |
648 | struct value * |
649 | value_concat (struct value *arg1, struct value *arg2) | |
c906108c | 650 | { |
f23631e4 AC |
651 | struct value *inval1; |
652 | struct value *inval2; | |
653 | struct value *outval = NULL; | |
c906108c SS |
654 | int inval1len, inval2len; |
655 | int count, idx; | |
c906108c | 656 | char inchar; |
df407dfe AC |
657 | struct type *type1 = check_typedef (value_type (arg1)); |
658 | struct type *type2 = check_typedef (value_type (arg2)); | |
3b7538c0 | 659 | struct type *char_type; |
c906108c | 660 | |
c906108c SS |
661 | /* First figure out if we are dealing with two values to be concatenated |
662 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
663 | first of two concatenated values, or the repeat count. INVAL2 is set | |
664 | to the second of the two concatenated values or the value to be | |
581e13c1 | 665 | repeated. */ |
c906108c SS |
666 | |
667 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
668 | { | |
669 | struct type *tmp = type1; | |
a109c7c1 | 670 | |
c906108c SS |
671 | type1 = tmp; |
672 | tmp = type2; | |
673 | inval1 = arg2; | |
674 | inval2 = arg1; | |
675 | } | |
676 | else | |
677 | { | |
678 | inval1 = arg1; | |
679 | inval2 = arg2; | |
680 | } | |
681 | ||
581e13c1 | 682 | /* Now process the input values. */ |
c906108c SS |
683 | |
684 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
685 | { | |
686 | /* We have a repeat count. Validate the second value and then | |
581e13c1 | 687 | construct a value repeated that many times. */ |
c906108c SS |
688 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
689 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
690 | { | |
691 | count = longest_to_int (value_as_long (inval1)); | |
692 | inval2len = TYPE_LENGTH (type2); | |
26fcd5d7 | 693 | std::vector<char> ptr (count * inval2len); |
c906108c SS |
694 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) |
695 | { | |
3b7538c0 | 696 | char_type = type2; |
a109c7c1 | 697 | |
c906108c | 698 | inchar = (char) unpack_long (type2, |
0fd88904 | 699 | value_contents (inval2)); |
c906108c SS |
700 | for (idx = 0; idx < count; idx++) |
701 | { | |
26fcd5d7 | 702 | ptr[idx] = inchar; |
c906108c SS |
703 | } |
704 | } | |
705 | else | |
706 | { | |
3b7538c0 | 707 | char_type = TYPE_TARGET_TYPE (type2); |
a109c7c1 | 708 | |
c906108c SS |
709 | for (idx = 0; idx < count; idx++) |
710 | { | |
26fcd5d7 | 711 | memcpy (&ptr[idx * inval2len], value_contents (inval2), |
c906108c SS |
712 | inval2len); |
713 | } | |
714 | } | |
26fcd5d7 | 715 | outval = value_string (ptr.data (), count * inval2len, char_type); |
c906108c | 716 | } |
6b1755ce | 717 | else if (TYPE_CODE (type2) == TYPE_CODE_BOOL) |
c906108c | 718 | { |
6b1755ce | 719 | error (_("unimplemented support for boolean repeats")); |
c906108c SS |
720 | } |
721 | else | |
722 | { | |
8a3fe4f8 | 723 | error (_("can't repeat values of that type")); |
c906108c SS |
724 | } |
725 | } | |
726 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 727 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c | 728 | { |
581e13c1 | 729 | /* We have two character strings to concatenate. */ |
c906108c SS |
730 | if (TYPE_CODE (type2) != TYPE_CODE_STRING |
731 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
732 | { | |
8a3fe4f8 | 733 | error (_("Strings can only be concatenated with other strings.")); |
c906108c SS |
734 | } |
735 | inval1len = TYPE_LENGTH (type1); | |
736 | inval2len = TYPE_LENGTH (type2); | |
26fcd5d7 | 737 | std::vector<char> ptr (inval1len + inval2len); |
c906108c SS |
738 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) |
739 | { | |
3b7538c0 | 740 | char_type = type1; |
a109c7c1 | 741 | |
26fcd5d7 | 742 | ptr[0] = (char) unpack_long (type1, value_contents (inval1)); |
c906108c SS |
743 | } |
744 | else | |
745 | { | |
3b7538c0 | 746 | char_type = TYPE_TARGET_TYPE (type1); |
a109c7c1 | 747 | |
26fcd5d7 | 748 | memcpy (ptr.data (), value_contents (inval1), inval1len); |
c906108c SS |
749 | } |
750 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
751 | { | |
26fcd5d7 | 752 | ptr[inval1len] = |
0fd88904 | 753 | (char) unpack_long (type2, value_contents (inval2)); |
c906108c SS |
754 | } |
755 | else | |
756 | { | |
26fcd5d7 | 757 | memcpy (&ptr[inval1len], value_contents (inval2), inval2len); |
c906108c | 758 | } |
26fcd5d7 | 759 | outval = value_string (ptr.data (), inval1len + inval2len, char_type); |
c906108c | 760 | } |
6b1755ce | 761 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL) |
c906108c | 762 | { |
581e13c1 | 763 | /* We have two bitstrings to concatenate. */ |
6b1755ce | 764 | if (TYPE_CODE (type2) != TYPE_CODE_BOOL) |
c906108c | 765 | { |
6b1755ce | 766 | error (_("Booleans can only be concatenated " |
3e43a32a | 767 | "with other bitstrings or booleans.")); |
c906108c | 768 | } |
6b1755ce | 769 | error (_("unimplemented support for boolean concatenation.")); |
c5aa993b | 770 | } |
c906108c SS |
771 | else |
772 | { | |
581e13c1 | 773 | /* We don't know how to concatenate these operands. */ |
8a3fe4f8 | 774 | error (_("illegal operands for concatenation.")); |
c906108c SS |
775 | } |
776 | return (outval); | |
777 | } | |
c906108c | 778 | \f |
d118ef87 PH |
779 | /* Integer exponentiation: V1**V2, where both arguments are |
780 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
581e13c1 | 781 | |
d118ef87 PH |
782 | static LONGEST |
783 | integer_pow (LONGEST v1, LONGEST v2) | |
784 | { | |
785 | if (v2 < 0) | |
786 | { | |
787 | if (v1 == 0) | |
788 | error (_("Attempt to raise 0 to negative power.")); | |
789 | else | |
790 | return 0; | |
791 | } | |
792 | else | |
793 | { | |
581e13c1 | 794 | /* The Russian Peasant's Algorithm. */ |
d118ef87 PH |
795 | LONGEST v; |
796 | ||
797 | v = 1; | |
798 | for (;;) | |
799 | { | |
800 | if (v2 & 1L) | |
801 | v *= v1; | |
802 | v2 >>= 1; | |
803 | if (v2 == 0) | |
804 | return v; | |
805 | v1 *= v1; | |
806 | } | |
807 | } | |
808 | } | |
809 | ||
810 | /* Integer exponentiation: V1**V2, where both arguments are | |
811 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
581e13c1 | 812 | |
d118ef87 PH |
813 | static ULONGEST |
814 | uinteger_pow (ULONGEST v1, LONGEST v2) | |
815 | { | |
816 | if (v2 < 0) | |
817 | { | |
818 | if (v1 == 0) | |
819 | error (_("Attempt to raise 0 to negative power.")); | |
820 | else | |
821 | return 0; | |
822 | } | |
823 | else | |
824 | { | |
581e13c1 | 825 | /* The Russian Peasant's Algorithm. */ |
d118ef87 PH |
826 | ULONGEST v; |
827 | ||
828 | v = 1; | |
829 | for (;;) | |
830 | { | |
831 | if (v2 & 1L) | |
832 | v *= v1; | |
833 | v2 >>= 1; | |
834 | if (v2 == 0) | |
835 | return v; | |
836 | v1 *= v1; | |
837 | } | |
838 | } | |
839 | } | |
840 | ||
66c02b9e UW |
841 | /* Obtain argument values for binary operation, converting from |
842 | other types if one of them is not floating point. */ | |
4ef30785 | 843 | static void |
66c02b9e UW |
844 | value_args_as_target_float (struct value *arg1, struct value *arg2, |
845 | gdb_byte *x, struct type **eff_type_x, | |
846 | gdb_byte *y, struct type **eff_type_y) | |
4ef30785 TJB |
847 | { |
848 | struct type *type1, *type2; | |
849 | ||
850 | type1 = check_typedef (value_type (arg1)); | |
851 | type2 = check_typedef (value_type (arg2)); | |
852 | ||
66c02b9e UW |
853 | /* At least one of the arguments must be of floating-point type. */ |
854 | gdb_assert (is_floating_type (type1) || is_floating_type (type2)); | |
4ef30785 | 855 | |
66c02b9e UW |
856 | if (is_floating_type (type1) && is_floating_type (type2) |
857 | && TYPE_CODE (type1) != TYPE_CODE (type2)) | |
4ef30785 TJB |
858 | /* The DFP extension to the C language does not allow mixing of |
859 | * decimal float types with other float types in expressions | |
860 | * (see WDTR 24732, page 12). */ | |
3e43a32a MS |
861 | error (_("Mixing decimal floating types with " |
862 | "other floating types is not allowed.")); | |
4ef30785 | 863 | |
66c02b9e | 864 | /* Obtain value of arg1, converting from other types if necessary. */ |
4ef30785 | 865 | |
66c02b9e | 866 | if (is_floating_type (type1)) |
4ef30785 | 867 | { |
66c02b9e UW |
868 | *eff_type_x = type1; |
869 | memcpy (x, value_contents (arg1), TYPE_LENGTH (type1)); | |
4ef30785 TJB |
870 | } |
871 | else if (is_integral_type (type1)) | |
872 | { | |
66c02b9e | 873 | *eff_type_x = type2; |
3b4b2f16 | 874 | if (TYPE_UNSIGNED (type1)) |
66c02b9e | 875 | target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1)); |
3b4b2f16 | 876 | else |
66c02b9e | 877 | target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); |
4ef30785 TJB |
878 | } |
879 | else | |
880 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
881 | TYPE_NAME (type2)); | |
882 | ||
66c02b9e | 883 | /* Obtain value of arg2, converting from other types if necessary. */ |
4ef30785 | 884 | |
66c02b9e | 885 | if (is_floating_type (type2)) |
4ef30785 | 886 | { |
66c02b9e UW |
887 | *eff_type_y = type2; |
888 | memcpy (y, value_contents (arg2), TYPE_LENGTH (type2)); | |
4ef30785 TJB |
889 | } |
890 | else if (is_integral_type (type2)) | |
891 | { | |
66c02b9e | 892 | *eff_type_y = type1; |
3b4b2f16 | 893 | if (TYPE_UNSIGNED (type2)) |
66c02b9e | 894 | target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2)); |
3b4b2f16 | 895 | else |
66c02b9e | 896 | target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); |
4ef30785 TJB |
897 | } |
898 | else | |
899 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
900 | TYPE_NAME (type2)); | |
901 | } | |
c5aa993b | 902 | |
c906108c SS |
903 | /* Perform a binary operation on two operands which have reasonable |
904 | representations as integers or floats. This includes booleans, | |
905 | characters, integers, or floats. | |
906 | Does not support addition and subtraction on pointers; | |
89eef114 | 907 | use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */ |
c906108c | 908 | |
7346b668 KW |
909 | static struct value * |
910 | scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
c906108c | 911 | { |
f23631e4 | 912 | struct value *val; |
4066e646 UW |
913 | struct type *type1, *type2, *result_type; |
914 | ||
994b9211 AC |
915 | arg1 = coerce_ref (arg1); |
916 | arg2 = coerce_ref (arg2); | |
c906108c | 917 | |
4066e646 UW |
918 | type1 = check_typedef (value_type (arg1)); |
919 | type2 = check_typedef (value_type (arg2)); | |
920 | ||
66c02b9e UW |
921 | if ((!is_floating_value (arg1) && !is_integral_type (type1)) |
922 | || (!is_floating_value (arg2) && !is_integral_type (type2))) | |
4066e646 | 923 | error (_("Argument to arithmetic operation not a number or boolean.")); |
c906108c | 924 | |
66c02b9e | 925 | if (is_floating_type (type1) || is_floating_type (type2)) |
4ef30785 | 926 | { |
66c02b9e | 927 | /* If only one type is floating-point, use its type. |
289bd67a | 928 | Otherwise use the bigger type. */ |
66c02b9e | 929 | if (!is_floating_type (type1)) |
289bd67a | 930 | result_type = type2; |
66c02b9e | 931 | else if (!is_floating_type (type2)) |
4066e646 UW |
932 | result_type = type1; |
933 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
934 | result_type = type2; | |
935 | else | |
936 | result_type = type1; | |
937 | ||
301f0ecf | 938 | val = allocate_value (result_type); |
66c02b9e UW |
939 | |
940 | struct type *eff_type_v1, *eff_type_v2; | |
941 | gdb::byte_vector v1, v2; | |
942 | v1.resize (TYPE_LENGTH (result_type)); | |
943 | v2.resize (TYPE_LENGTH (result_type)); | |
944 | ||
945 | value_args_as_target_float (arg1, arg2, | |
946 | v1.data (), &eff_type_v1, | |
947 | v2.data (), &eff_type_v2); | |
948 | target_float_binop (op, v1.data (), eff_type_v1, | |
949 | v2.data (), eff_type_v2, | |
950 | value_contents_raw (val), result_type); | |
c906108c | 951 | } |
4066e646 UW |
952 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL |
953 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 954 | { |
c4093a6a | 955 | LONGEST v1, v2, v = 0; |
a109c7c1 | 956 | |
c5aa993b JM |
957 | v1 = value_as_long (arg1); |
958 | v2 = value_as_long (arg2); | |
959 | ||
960 | switch (op) | |
961 | { | |
962 | case BINOP_BITWISE_AND: | |
963 | v = v1 & v2; | |
964 | break; | |
965 | ||
966 | case BINOP_BITWISE_IOR: | |
967 | v = v1 | v2; | |
968 | break; | |
969 | ||
970 | case BINOP_BITWISE_XOR: | |
971 | v = v1 ^ v2; | |
c4093a6a JM |
972 | break; |
973 | ||
974 | case BINOP_EQUAL: | |
975 | v = v1 == v2; | |
976 | break; | |
977 | ||
978 | case BINOP_NOTEQUAL: | |
979 | v = v1 != v2; | |
c5aa993b JM |
980 | break; |
981 | ||
982 | default: | |
8a3fe4f8 | 983 | error (_("Invalid operation on booleans.")); |
c5aa993b JM |
984 | } |
985 | ||
4066e646 UW |
986 | result_type = type1; |
987 | ||
301f0ecf | 988 | val = allocate_value (result_type); |
990a07ab | 989 | store_signed_integer (value_contents_raw (val), |
301f0ecf | 990 | TYPE_LENGTH (result_type), |
e17a4113 | 991 | gdbarch_byte_order (get_type_arch (result_type)), |
c5aa993b JM |
992 | v); |
993 | } | |
c906108c SS |
994 | else |
995 | /* Integral operations here. */ | |
c906108c | 996 | { |
4066e646 UW |
997 | /* Determine type length of the result, and if the operation should |
998 | be done unsigned. For exponentiation and shift operators, | |
999 | use the length and type of the left operand. Otherwise, | |
1000 | use the signedness of the operand with the greater length. | |
1001 | If both operands are of equal length, use unsigned operation | |
1002 | if one of the operands is unsigned. */ | |
1003 | if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) | |
1004 | result_type = type1; | |
1005 | else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) | |
1006 | result_type = type1; | |
1007 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
1008 | result_type = type2; | |
1009 | else if (TYPE_UNSIGNED (type1)) | |
1010 | result_type = type1; | |
1011 | else if (TYPE_UNSIGNED (type2)) | |
1012 | result_type = type2; | |
1013 | else | |
1014 | result_type = type1; | |
c906108c | 1015 | |
4066e646 | 1016 | if (TYPE_UNSIGNED (result_type)) |
c906108c | 1017 | { |
d118ef87 | 1018 | LONGEST v2_signed = value_as_long (arg2); |
c4093a6a | 1019 | ULONGEST v1, v2, v = 0; |
a109c7c1 | 1020 | |
c906108c | 1021 | v1 = (ULONGEST) value_as_long (arg1); |
d118ef87 | 1022 | v2 = (ULONGEST) v2_signed; |
c906108c | 1023 | |
c906108c SS |
1024 | switch (op) |
1025 | { | |
1026 | case BINOP_ADD: | |
1027 | v = v1 + v2; | |
1028 | break; | |
c5aa993b | 1029 | |
c906108c SS |
1030 | case BINOP_SUB: |
1031 | v = v1 - v2; | |
1032 | break; | |
c5aa993b | 1033 | |
c906108c SS |
1034 | case BINOP_MUL: |
1035 | v = v1 * v2; | |
1036 | break; | |
c5aa993b | 1037 | |
c906108c | 1038 | case BINOP_DIV: |
ef80d18e | 1039 | case BINOP_INTDIV: |
c3940723 PM |
1040 | if (v2 != 0) |
1041 | v = v1 / v2; | |
1042 | else | |
1043 | error (_("Division by zero")); | |
c906108c | 1044 | break; |
c5aa993b | 1045 | |
bd49c137 | 1046 | case BINOP_EXP: |
d118ef87 | 1047 | v = uinteger_pow (v1, v2_signed); |
bd49c137 | 1048 | break; |
c4093a6a | 1049 | |
c906108c | 1050 | case BINOP_REM: |
f8597ac3 DE |
1051 | if (v2 != 0) |
1052 | v = v1 % v2; | |
1053 | else | |
1054 | error (_("Division by zero")); | |
c906108c | 1055 | break; |
c5aa993b | 1056 | |
c906108c SS |
1057 | case BINOP_MOD: |
1058 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
581e13c1 | 1059 | v1 mod 0 has a defined value, v1. */ |
c906108c SS |
1060 | if (v2 == 0) |
1061 | { | |
1062 | v = v1; | |
1063 | } | |
1064 | else | |
1065 | { | |
c5aa993b | 1066 | v = v1 / v2; |
581e13c1 | 1067 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
c906108c SS |
1068 | v = v1 - (v2 * v); |
1069 | } | |
1070 | break; | |
c5aa993b | 1071 | |
c906108c SS |
1072 | case BINOP_LSH: |
1073 | v = v1 << v2; | |
1074 | break; | |
c5aa993b | 1075 | |
c906108c SS |
1076 | case BINOP_RSH: |
1077 | v = v1 >> v2; | |
1078 | break; | |
c5aa993b | 1079 | |
c906108c SS |
1080 | case BINOP_BITWISE_AND: |
1081 | v = v1 & v2; | |
1082 | break; | |
c5aa993b | 1083 | |
c906108c SS |
1084 | case BINOP_BITWISE_IOR: |
1085 | v = v1 | v2; | |
1086 | break; | |
c5aa993b | 1087 | |
c906108c SS |
1088 | case BINOP_BITWISE_XOR: |
1089 | v = v1 ^ v2; | |
1090 | break; | |
c5aa993b | 1091 | |
c906108c SS |
1092 | case BINOP_LOGICAL_AND: |
1093 | v = v1 && v2; | |
1094 | break; | |
c5aa993b | 1095 | |
c906108c SS |
1096 | case BINOP_LOGICAL_OR: |
1097 | v = v1 || v2; | |
1098 | break; | |
c5aa993b | 1099 | |
c906108c SS |
1100 | case BINOP_MIN: |
1101 | v = v1 < v2 ? v1 : v2; | |
1102 | break; | |
c5aa993b | 1103 | |
c906108c SS |
1104 | case BINOP_MAX: |
1105 | v = v1 > v2 ? v1 : v2; | |
1106 | break; | |
1107 | ||
1108 | case BINOP_EQUAL: | |
1109 | v = v1 == v2; | |
1110 | break; | |
1111 | ||
c4093a6a JM |
1112 | case BINOP_NOTEQUAL: |
1113 | v = v1 != v2; | |
1114 | break; | |
1115 | ||
c906108c SS |
1116 | case BINOP_LESS: |
1117 | v = v1 < v2; | |
1118 | break; | |
c5aa993b | 1119 | |
b966cb8a TT |
1120 | case BINOP_GTR: |
1121 | v = v1 > v2; | |
1122 | break; | |
1123 | ||
1124 | case BINOP_LEQ: | |
1125 | v = v1 <= v2; | |
1126 | break; | |
1127 | ||
1128 | case BINOP_GEQ: | |
1129 | v = v1 >= v2; | |
1130 | break; | |
1131 | ||
c906108c | 1132 | default: |
8a3fe4f8 | 1133 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1134 | } |
1135 | ||
301f0ecf | 1136 | val = allocate_value (result_type); |
990a07ab | 1137 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 1138 | TYPE_LENGTH (value_type (val)), |
e17a4113 UW |
1139 | gdbarch_byte_order |
1140 | (get_type_arch (result_type)), | |
c906108c SS |
1141 | v); |
1142 | } | |
1143 | else | |
1144 | { | |
c4093a6a | 1145 | LONGEST v1, v2, v = 0; |
a109c7c1 | 1146 | |
c906108c SS |
1147 | v1 = value_as_long (arg1); |
1148 | v2 = value_as_long (arg2); | |
c5aa993b | 1149 | |
c906108c SS |
1150 | switch (op) |
1151 | { | |
1152 | case BINOP_ADD: | |
1153 | v = v1 + v2; | |
1154 | break; | |
c5aa993b | 1155 | |
c906108c SS |
1156 | case BINOP_SUB: |
1157 | v = v1 - v2; | |
1158 | break; | |
c5aa993b | 1159 | |
c906108c SS |
1160 | case BINOP_MUL: |
1161 | v = v1 * v2; | |
1162 | break; | |
c5aa993b | 1163 | |
c906108c | 1164 | case BINOP_DIV: |
ef80d18e | 1165 | case BINOP_INTDIV: |
399cfac6 DL |
1166 | if (v2 != 0) |
1167 | v = v1 / v2; | |
1168 | else | |
8a3fe4f8 | 1169 | error (_("Division by zero")); |
c4093a6a JM |
1170 | break; |
1171 | ||
bd49c137 | 1172 | case BINOP_EXP: |
d118ef87 | 1173 | v = integer_pow (v1, v2); |
c906108c | 1174 | break; |
c5aa993b | 1175 | |
c906108c | 1176 | case BINOP_REM: |
399cfac6 DL |
1177 | if (v2 != 0) |
1178 | v = v1 % v2; | |
1179 | else | |
8a3fe4f8 | 1180 | error (_("Division by zero")); |
c906108c | 1181 | break; |
c5aa993b | 1182 | |
c906108c SS |
1183 | case BINOP_MOD: |
1184 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
581e13c1 | 1185 | X mod 0 has a defined value, X. */ |
c906108c SS |
1186 | if (v2 == 0) |
1187 | { | |
1188 | v = v1; | |
1189 | } | |
1190 | else | |
1191 | { | |
c5aa993b | 1192 | v = v1 / v2; |
581e13c1 | 1193 | /* Compute floor. */ |
c906108c SS |
1194 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) |
1195 | { | |
1196 | v--; | |
1197 | } | |
1198 | v = v1 - (v2 * v); | |
1199 | } | |
1200 | break; | |
c5aa993b | 1201 | |
c906108c SS |
1202 | case BINOP_LSH: |
1203 | v = v1 << v2; | |
1204 | break; | |
c5aa993b | 1205 | |
c906108c SS |
1206 | case BINOP_RSH: |
1207 | v = v1 >> v2; | |
1208 | break; | |
c5aa993b | 1209 | |
c906108c SS |
1210 | case BINOP_BITWISE_AND: |
1211 | v = v1 & v2; | |
1212 | break; | |
c5aa993b | 1213 | |
c906108c SS |
1214 | case BINOP_BITWISE_IOR: |
1215 | v = v1 | v2; | |
1216 | break; | |
c5aa993b | 1217 | |
c906108c SS |
1218 | case BINOP_BITWISE_XOR: |
1219 | v = v1 ^ v2; | |
1220 | break; | |
c5aa993b | 1221 | |
c906108c SS |
1222 | case BINOP_LOGICAL_AND: |
1223 | v = v1 && v2; | |
1224 | break; | |
c5aa993b | 1225 | |
c906108c SS |
1226 | case BINOP_LOGICAL_OR: |
1227 | v = v1 || v2; | |
1228 | break; | |
c5aa993b | 1229 | |
c906108c SS |
1230 | case BINOP_MIN: |
1231 | v = v1 < v2 ? v1 : v2; | |
1232 | break; | |
c5aa993b | 1233 | |
c906108c SS |
1234 | case BINOP_MAX: |
1235 | v = v1 > v2 ? v1 : v2; | |
1236 | break; | |
1237 | ||
1238 | case BINOP_EQUAL: | |
1239 | v = v1 == v2; | |
1240 | break; | |
1241 | ||
b966cb8a TT |
1242 | case BINOP_NOTEQUAL: |
1243 | v = v1 != v2; | |
1244 | break; | |
1245 | ||
c906108c SS |
1246 | case BINOP_LESS: |
1247 | v = v1 < v2; | |
1248 | break; | |
c5aa993b | 1249 | |
b966cb8a TT |
1250 | case BINOP_GTR: |
1251 | v = v1 > v2; | |
1252 | break; | |
1253 | ||
1254 | case BINOP_LEQ: | |
1255 | v = v1 <= v2; | |
1256 | break; | |
1257 | ||
1258 | case BINOP_GEQ: | |
1259 | v = v1 >= v2; | |
1260 | break; | |
1261 | ||
c906108c | 1262 | default: |
8a3fe4f8 | 1263 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1264 | } |
1265 | ||
301f0ecf | 1266 | val = allocate_value (result_type); |
990a07ab | 1267 | store_signed_integer (value_contents_raw (val), |
df407dfe | 1268 | TYPE_LENGTH (value_type (val)), |
e17a4113 UW |
1269 | gdbarch_byte_order |
1270 | (get_type_arch (result_type)), | |
c906108c SS |
1271 | v); |
1272 | } | |
1273 | } | |
1274 | ||
1275 | return val; | |
1276 | } | |
7346b668 | 1277 | |
8954db33 AB |
1278 | /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by |
1279 | replicating SCALAR_VALUE for each element of the vector. Only scalar | |
1280 | types that can be cast to the type of one element of the vector are | |
1281 | acceptable. The newly created vector value is returned upon success, | |
1282 | otherwise an error is thrown. */ | |
1283 | ||
1284 | struct value * | |
1285 | value_vector_widen (struct value *scalar_value, struct type *vector_type) | |
1286 | { | |
1287 | /* Widen the scalar to a vector. */ | |
1288 | struct type *eltype, *scalar_type; | |
1289 | struct value *val, *elval; | |
1290 | LONGEST low_bound, high_bound; | |
1291 | int i; | |
1292 | ||
f168693b | 1293 | vector_type = check_typedef (vector_type); |
8954db33 AB |
1294 | |
1295 | gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY | |
1296 | && TYPE_VECTOR (vector_type)); | |
1297 | ||
1298 | if (!get_array_bounds (vector_type, &low_bound, &high_bound)) | |
1299 | error (_("Could not determine the vector bounds")); | |
1300 | ||
1301 | eltype = check_typedef (TYPE_TARGET_TYPE (vector_type)); | |
1302 | elval = value_cast (eltype, scalar_value); | |
1303 | ||
1304 | scalar_type = check_typedef (value_type (scalar_value)); | |
1305 | ||
1306 | /* If we reduced the length of the scalar then check we didn't loose any | |
1307 | important bits. */ | |
1308 | if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type) | |
1309 | && !value_equal (elval, scalar_value)) | |
1310 | error (_("conversion of scalar to vector involves truncation")); | |
1311 | ||
1312 | val = allocate_value (vector_type); | |
1313 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
1314 | /* Duplicate the contents of elval into the destination vector. */ | |
1315 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
1316 | value_contents_all (elval), TYPE_LENGTH (eltype)); | |
1317 | ||
1318 | return val; | |
1319 | } | |
1320 | ||
7346b668 KW |
1321 | /* Performs a binary operation on two vector operands by calling scalar_binop |
1322 | for each pair of vector components. */ | |
1323 | ||
1324 | static struct value * | |
1325 | vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) | |
1326 | { | |
1327 | struct value *val, *tmp, *mark; | |
22e048c9 | 1328 | struct type *type1, *type2, *eltype1, *eltype2; |
dbc98a8b KW |
1329 | int t1_is_vec, t2_is_vec, elsize, i; |
1330 | LONGEST low_bound1, high_bound1, low_bound2, high_bound2; | |
7346b668 KW |
1331 | |
1332 | type1 = check_typedef (value_type (val1)); | |
1333 | type2 = check_typedef (value_type (val2)); | |
1334 | ||
1335 | t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY | |
1336 | && TYPE_VECTOR (type1)) ? 1 : 0; | |
1337 | t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1338 | && TYPE_VECTOR (type2)) ? 1 : 0; | |
1339 | ||
1340 | if (!t1_is_vec || !t2_is_vec) | |
1341 | error (_("Vector operations are only supported among vectors")); | |
1342 | ||
dbc98a8b KW |
1343 | if (!get_array_bounds (type1, &low_bound1, &high_bound1) |
1344 | || !get_array_bounds (type2, &low_bound2, &high_bound2)) | |
1345 | error (_("Could not determine the vector bounds")); | |
1346 | ||
7346b668 KW |
1347 | eltype1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
1348 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
dbc98a8b | 1349 | elsize = TYPE_LENGTH (eltype1); |
7346b668 KW |
1350 | |
1351 | if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2) | |
dbc98a8b KW |
1352 | || elsize != TYPE_LENGTH (eltype2) |
1353 | || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2) | |
1354 | || low_bound1 != low_bound2 || high_bound1 != high_bound2) | |
7346b668 KW |
1355 | error (_("Cannot perform operation on vectors with different types")); |
1356 | ||
7346b668 KW |
1357 | val = allocate_value (type1); |
1358 | mark = value_mark (); | |
dbc98a8b | 1359 | for (i = 0; i < high_bound1 - low_bound1 + 1; i++) |
7346b668 KW |
1360 | { |
1361 | tmp = value_binop (value_subscript (val1, i), | |
1362 | value_subscript (val2, i), op); | |
1363 | memcpy (value_contents_writeable (val) + i * elsize, | |
1364 | value_contents_all (tmp), | |
1365 | elsize); | |
1366 | } | |
1367 | value_free_to_mark (mark); | |
1368 | ||
1369 | return val; | |
1370 | } | |
1371 | ||
1372 | /* Perform a binary operation on two operands. */ | |
1373 | ||
1374 | struct value * | |
1375 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
1376 | { | |
3bdf2bbd | 1377 | struct value *val; |
7346b668 KW |
1378 | struct type *type1 = check_typedef (value_type (arg1)); |
1379 | struct type *type2 = check_typedef (value_type (arg2)); | |
3bdf2bbd KW |
1380 | int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY |
1381 | && TYPE_VECTOR (type1)); | |
1382 | int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1383 | && TYPE_VECTOR (type2)); | |
1384 | ||
1385 | if (!t1_is_vec && !t2_is_vec) | |
1386 | val = scalar_binop (arg1, arg2, op); | |
1387 | else if (t1_is_vec && t2_is_vec) | |
1388 | val = vector_binop (arg1, arg2, op); | |
7346b668 | 1389 | else |
3bdf2bbd KW |
1390 | { |
1391 | /* Widen the scalar operand to a vector. */ | |
1392 | struct value **v = t1_is_vec ? &arg2 : &arg1; | |
1393 | struct type *t = t1_is_vec ? type2 : type1; | |
1394 | ||
1395 | if (TYPE_CODE (t) != TYPE_CODE_FLT | |
1396 | && TYPE_CODE (t) != TYPE_CODE_DECFLOAT | |
1397 | && !is_integral_type (t)) | |
1398 | error (_("Argument to operation not a number or boolean.")); | |
1399 | ||
8954db33 AB |
1400 | /* Replicate the scalar value to make a vector value. */ |
1401 | *v = value_vector_widen (*v, t1_is_vec ? type1 : type2); | |
1402 | ||
3bdf2bbd KW |
1403 | val = vector_binop (arg1, arg2, op); |
1404 | } | |
1405 | ||
1406 | return val; | |
7346b668 | 1407 | } |
c906108c SS |
1408 | \f |
1409 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1410 | ||
1411 | int | |
f23631e4 | 1412 | value_logical_not (struct value *arg1) |
c906108c | 1413 | { |
52f0bd74 | 1414 | int len; |
fc1a4b47 | 1415 | const gdb_byte *p; |
c906108c SS |
1416 | struct type *type1; |
1417 | ||
0ab7ba45 | 1418 | arg1 = coerce_array (arg1); |
df407dfe | 1419 | type1 = check_typedef (value_type (arg1)); |
c906108c | 1420 | |
70100014 UW |
1421 | if (is_floating_value (arg1)) |
1422 | return target_float_is_zero (value_contents (arg1), type1); | |
c906108c SS |
1423 | |
1424 | len = TYPE_LENGTH (type1); | |
0fd88904 | 1425 | p = value_contents (arg1); |
c906108c SS |
1426 | |
1427 | while (--len >= 0) | |
1428 | { | |
1429 | if (*p++) | |
1430 | break; | |
1431 | } | |
1432 | ||
1433 | return len < 0; | |
1434 | } | |
1435 | ||
c4093a6a | 1436 | /* Perform a comparison on two string values (whose content are not |
581e13c1 | 1437 | necessarily null terminated) based on their length. */ |
c4093a6a JM |
1438 | |
1439 | static int | |
f23631e4 | 1440 | value_strcmp (struct value *arg1, struct value *arg2) |
c4093a6a | 1441 | { |
df407dfe AC |
1442 | int len1 = TYPE_LENGTH (value_type (arg1)); |
1443 | int len2 = TYPE_LENGTH (value_type (arg2)); | |
fc1a4b47 AC |
1444 | const gdb_byte *s1 = value_contents (arg1); |
1445 | const gdb_byte *s2 = value_contents (arg2); | |
c4093a6a JM |
1446 | int i, len = len1 < len2 ? len1 : len2; |
1447 | ||
1448 | for (i = 0; i < len; i++) | |
1449 | { | |
1450 | if (s1[i] < s2[i]) | |
1451 | return -1; | |
1452 | else if (s1[i] > s2[i]) | |
1453 | return 1; | |
1454 | else | |
1455 | continue; | |
1456 | } | |
1457 | ||
1458 | if (len1 < len2) | |
1459 | return -1; | |
1460 | else if (len1 > len2) | |
1461 | return 1; | |
1462 | else | |
1463 | return 0; | |
1464 | } | |
1465 | ||
c906108c SS |
1466 | /* Simulate the C operator == by returning a 1 |
1467 | iff ARG1 and ARG2 have equal contents. */ | |
1468 | ||
1469 | int | |
f23631e4 | 1470 | value_equal (struct value *arg1, struct value *arg2) |
c906108c | 1471 | { |
52f0bd74 | 1472 | int len; |
fc1a4b47 AC |
1473 | const gdb_byte *p1; |
1474 | const gdb_byte *p2; | |
c906108c SS |
1475 | struct type *type1, *type2; |
1476 | enum type_code code1; | |
1477 | enum type_code code2; | |
2de41bce | 1478 | int is_int1, is_int2; |
c906108c | 1479 | |
994b9211 AC |
1480 | arg1 = coerce_array (arg1); |
1481 | arg2 = coerce_array (arg2); | |
c906108c | 1482 | |
df407dfe AC |
1483 | type1 = check_typedef (value_type (arg1)); |
1484 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1485 | code1 = TYPE_CODE (type1); |
1486 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1487 | is_int1 = is_integral_type (type1); |
1488 | is_int2 = is_integral_type (type2); | |
c906108c | 1489 | |
2de41bce | 1490 | if (is_int1 && is_int2) |
c906108c SS |
1491 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1492 | BINOP_EQUAL))); | |
66c02b9e UW |
1493 | else if ((is_floating_value (arg1) || is_int1) |
1494 | && (is_floating_value (arg2) || is_int2)) | |
4ef30785 | 1495 | { |
66c02b9e UW |
1496 | struct type *eff_type_v1, *eff_type_v2; |
1497 | gdb::byte_vector v1, v2; | |
1498 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1499 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
4ef30785 | 1500 | |
66c02b9e UW |
1501 | value_args_as_target_float (arg1, arg2, |
1502 | v1.data (), &eff_type_v1, | |
1503 | v2.data (), &eff_type_v2); | |
4ef30785 | 1504 | |
66c02b9e UW |
1505 | return target_float_compare (v1.data (), eff_type_v1, |
1506 | v2.data (), eff_type_v2) == 0; | |
4ef30785 | 1507 | } |
c906108c SS |
1508 | |
1509 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1510 | is bigger. */ | |
2de41bce | 1511 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1512 | return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1513 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1514 | return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); |
c906108c SS |
1515 | |
1516 | else if (code1 == code2 | |
1517 | && ((len = (int) TYPE_LENGTH (type1)) | |
1518 | == (int) TYPE_LENGTH (type2))) | |
1519 | { | |
0fd88904 AC |
1520 | p1 = value_contents (arg1); |
1521 | p2 = value_contents (arg2); | |
c906108c SS |
1522 | while (--len >= 0) |
1523 | { | |
1524 | if (*p1++ != *p2++) | |
1525 | break; | |
1526 | } | |
1527 | return len < 0; | |
1528 | } | |
c4093a6a JM |
1529 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1530 | { | |
1531 | return value_strcmp (arg1, arg2) == 0; | |
1532 | } | |
c906108c | 1533 | else |
dba7455e | 1534 | error (_("Invalid type combination in equality test.")); |
c906108c SS |
1535 | } |
1536 | ||
218d2fc6 TJB |
1537 | /* Compare values based on their raw contents. Useful for arrays since |
1538 | value_equal coerces them to pointers, thus comparing just the address | |
1539 | of the array instead of its contents. */ | |
1540 | ||
1541 | int | |
1542 | value_equal_contents (struct value *arg1, struct value *arg2) | |
1543 | { | |
1544 | struct type *type1, *type2; | |
1545 | ||
1546 | type1 = check_typedef (value_type (arg1)); | |
1547 | type2 = check_typedef (value_type (arg2)); | |
1548 | ||
1549 | return (TYPE_CODE (type1) == TYPE_CODE (type2) | |
1550 | && TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
1551 | && memcmp (value_contents (arg1), value_contents (arg2), | |
1552 | TYPE_LENGTH (type1)) == 0); | |
1553 | } | |
1554 | ||
c906108c SS |
1555 | /* Simulate the C operator < by returning 1 |
1556 | iff ARG1's contents are less than ARG2's. */ | |
1557 | ||
1558 | int | |
f23631e4 | 1559 | value_less (struct value *arg1, struct value *arg2) |
c906108c | 1560 | { |
52f0bd74 AC |
1561 | enum type_code code1; |
1562 | enum type_code code2; | |
c906108c | 1563 | struct type *type1, *type2; |
2de41bce | 1564 | int is_int1, is_int2; |
c906108c | 1565 | |
994b9211 AC |
1566 | arg1 = coerce_array (arg1); |
1567 | arg2 = coerce_array (arg2); | |
c906108c | 1568 | |
df407dfe AC |
1569 | type1 = check_typedef (value_type (arg1)); |
1570 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1571 | code1 = TYPE_CODE (type1); |
1572 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1573 | is_int1 = is_integral_type (type1); |
1574 | is_int2 = is_integral_type (type2); | |
c906108c | 1575 | |
2de41bce | 1576 | if (is_int1 && is_int2) |
c906108c SS |
1577 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1578 | BINOP_LESS))); | |
66c02b9e UW |
1579 | else if ((is_floating_value (arg1) || is_int1) |
1580 | && (is_floating_value (arg2) || is_int2)) | |
d067a990 | 1581 | { |
66c02b9e UW |
1582 | struct type *eff_type_v1, *eff_type_v2; |
1583 | gdb::byte_vector v1, v2; | |
1584 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1585 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
a109c7c1 | 1586 | |
66c02b9e UW |
1587 | value_args_as_target_float (arg1, arg2, |
1588 | v1.data (), &eff_type_v1, | |
1589 | v2.data (), &eff_type_v2); | |
4ef30785 | 1590 | |
66c02b9e UW |
1591 | return target_float_compare (v1.data (), eff_type_v1, |
1592 | v2.data (), eff_type_v2) == -1; | |
4ef30785 | 1593 | } |
c906108c | 1594 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) |
1aa20aa8 | 1595 | return value_as_address (arg1) < value_as_address (arg2); |
c906108c SS |
1596 | |
1597 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1598 | is bigger. */ | |
2de41bce | 1599 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1600 | return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1601 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1602 | return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); |
c4093a6a JM |
1603 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1604 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1605 | else |
1606 | { | |
8a3fe4f8 | 1607 | error (_("Invalid type combination in ordering comparison.")); |
c906108c SS |
1608 | return 0; |
1609 | } | |
1610 | } | |
1611 | \f | |
36e9969c NS |
1612 | /* The unary operators +, - and ~. They free the argument ARG1. */ |
1613 | ||
1614 | struct value * | |
1615 | value_pos (struct value *arg1) | |
1616 | { | |
1617 | struct type *type; | |
4066e646 | 1618 | |
36e9969c | 1619 | arg1 = coerce_ref (arg1); |
36e9969c NS |
1620 | type = check_typedef (value_type (arg1)); |
1621 | ||
66c02b9e UW |
1622 | if (is_integral_type (type) || is_floating_value (arg1) |
1623 | || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) | |
1624 | return value_from_contents (type, value_contents (arg1)); | |
36e9969c | 1625 | else |
dba7455e | 1626 | error (_("Argument to positive operation not a number.")); |
36e9969c | 1627 | } |
c906108c | 1628 | |
f23631e4 AC |
1629 | struct value * |
1630 | value_neg (struct value *arg1) | |
c906108c | 1631 | { |
52f0bd74 | 1632 | struct type *type; |
4066e646 | 1633 | |
994b9211 | 1634 | arg1 = coerce_ref (arg1); |
df407dfe | 1635 | type = check_typedef (value_type (arg1)); |
c906108c | 1636 | |
66c02b9e UW |
1637 | if (is_integral_type (type) || is_floating_type (type)) |
1638 | return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); | |
120bd360 KW |
1639 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) |
1640 | { | |
1641 | struct value *tmp, *val = allocate_value (type); | |
1642 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
cfa6f054 KW |
1643 | int i; |
1644 | LONGEST low_bound, high_bound; | |
120bd360 | 1645 | |
cfa6f054 KW |
1646 | if (!get_array_bounds (type, &low_bound, &high_bound)) |
1647 | error (_("Could not determine the vector bounds")); | |
1648 | ||
1649 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
120bd360 KW |
1650 | { |
1651 | tmp = value_neg (value_subscript (arg1, i)); | |
1652 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1653 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1654 | } | |
1655 | return val; | |
1656 | } | |
c5aa993b | 1657 | else |
dba7455e | 1658 | error (_("Argument to negate operation not a number.")); |
c906108c SS |
1659 | } |
1660 | ||
f23631e4 AC |
1661 | struct value * |
1662 | value_complement (struct value *arg1) | |
c906108c | 1663 | { |
52f0bd74 | 1664 | struct type *type; |
120bd360 | 1665 | struct value *val; |
4066e646 | 1666 | |
994b9211 | 1667 | arg1 = coerce_ref (arg1); |
df407dfe | 1668 | type = check_typedef (value_type (arg1)); |
c906108c | 1669 | |
120bd360 KW |
1670 | if (is_integral_type (type)) |
1671 | val = value_from_longest (type, ~value_as_long (arg1)); | |
1672 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) | |
1673 | { | |
1674 | struct value *tmp; | |
1675 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
cfa6f054 KW |
1676 | int i; |
1677 | LONGEST low_bound, high_bound; | |
1678 | ||
1679 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
1680 | error (_("Could not determine the vector bounds")); | |
120bd360 KW |
1681 | |
1682 | val = allocate_value (type); | |
cfa6f054 | 1683 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 KW |
1684 | { |
1685 | tmp = value_complement (value_subscript (arg1, i)); | |
1686 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1687 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1688 | } | |
1689 | } | |
1690 | else | |
1691 | error (_("Argument to complement operation not an integer, boolean.")); | |
c906108c | 1692 | |
120bd360 | 1693 | return val; |
c906108c SS |
1694 | } |
1695 | \f | |
df407dfe | 1696 | /* The INDEX'th bit of SET value whose value_type is TYPE, |
0fd88904 | 1697 | and whose value_contents is valaddr. |
581e13c1 | 1698 | Return -1 if out of range, -2 other error. */ |
c906108c SS |
1699 | |
1700 | int | |
fc1a4b47 | 1701 | value_bit_index (struct type *type, const gdb_byte *valaddr, int index) |
c906108c | 1702 | { |
50810684 | 1703 | struct gdbarch *gdbarch = get_type_arch (type); |
c906108c SS |
1704 | LONGEST low_bound, high_bound; |
1705 | LONGEST word; | |
1706 | unsigned rel_index; | |
262452ec | 1707 | struct type *range = TYPE_INDEX_TYPE (type); |
a109c7c1 | 1708 | |
c906108c SS |
1709 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) |
1710 | return -2; | |
1711 | if (index < low_bound || index > high_bound) | |
1712 | return -1; | |
1713 | rel_index = index - low_bound; | |
e17a4113 UW |
1714 | word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, |
1715 | gdbarch_byte_order (gdbarch)); | |
c906108c | 1716 | rel_index %= TARGET_CHAR_BIT; |
50810684 | 1717 | if (gdbarch_bits_big_endian (gdbarch)) |
c906108c SS |
1718 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; |
1719 | return (word >> rel_index) & 1; | |
1720 | } | |
1721 | ||
fbb06eb1 | 1722 | int |
f23631e4 | 1723 | value_in (struct value *element, struct value *set) |
c906108c SS |
1724 | { |
1725 | int member; | |
df407dfe AC |
1726 | struct type *settype = check_typedef (value_type (set)); |
1727 | struct type *eltype = check_typedef (value_type (element)); | |
a109c7c1 | 1728 | |
c906108c SS |
1729 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) |
1730 | eltype = TYPE_TARGET_TYPE (eltype); | |
1731 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
8a3fe4f8 | 1732 | error (_("Second argument of 'IN' has wrong type")); |
c906108c SS |
1733 | if (TYPE_CODE (eltype) != TYPE_CODE_INT |
1734 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1735 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1736 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
8a3fe4f8 | 1737 | error (_("First argument of 'IN' has wrong type")); |
0fd88904 | 1738 | member = value_bit_index (settype, value_contents (set), |
c906108c SS |
1739 | value_as_long (element)); |
1740 | if (member < 0) | |
8a3fe4f8 | 1741 | error (_("First argument of 'IN' not in range")); |
fbb06eb1 | 1742 | return member; |
c906108c | 1743 | } |