]>
Commit | Line | Data |
---|---|---|
1 | /* Perform arithmetic and other operations on values, for GDB. | |
2 | ||
3 | Copyright (C) 1986-2019 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "defs.h" | |
21 | #include "value.h" | |
22 | #include "symtab.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "expression.h" | |
25 | #include "target.h" | |
26 | #include "language.h" | |
27 | #include "target-float.h" | |
28 | #include "infcall.h" | |
29 | #include "gdbsupport/byte-vector.h" | |
30 | #include "gdbarch.h" | |
31 | ||
32 | /* Define whether or not the C operator '/' truncates towards zero for | |
33 | differently signed operands (truncation direction is undefined in C). */ | |
34 | ||
35 | #ifndef TRUNCATION_TOWARDS_ZERO | |
36 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
37 | #endif | |
38 | ||
39 | /* Given a pointer, return the size of its target. | |
40 | If the pointer type is void *, then return 1. | |
41 | If the target type is incomplete, then error out. | |
42 | This isn't a general purpose function, but just a | |
43 | helper for value_ptradd. */ | |
44 | ||
45 | static LONGEST | |
46 | find_size_for_pointer_math (struct type *ptr_type) | |
47 | { | |
48 | LONGEST sz = -1; | |
49 | struct type *ptr_target; | |
50 | ||
51 | gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR); | |
52 | ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); | |
53 | ||
54 | sz = type_length_units (ptr_target); | |
55 | if (sz == 0) | |
56 | { | |
57 | if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) | |
58 | sz = 1; | |
59 | else | |
60 | { | |
61 | const char *name; | |
62 | ||
63 | name = TYPE_NAME (ptr_target); | |
64 | if (name == NULL) | |
65 | error (_("Cannot perform pointer math on incomplete types, " | |
66 | "try casting to a known type, or void *.")); | |
67 | else | |
68 | error (_("Cannot perform pointer math on incomplete type \"%s\", " | |
69 | "try casting to a known type, or void *."), name); | |
70 | } | |
71 | } | |
72 | return sz; | |
73 | } | |
74 | ||
75 | /* Given a pointer ARG1 and an integral value ARG2, return the | |
76 | result of C-style pointer arithmetic ARG1 + ARG2. */ | |
77 | ||
78 | struct value * | |
79 | value_ptradd (struct value *arg1, LONGEST arg2) | |
80 | { | |
81 | struct type *valptrtype; | |
82 | LONGEST sz; | |
83 | struct value *result; | |
84 | ||
85 | arg1 = coerce_array (arg1); | |
86 | valptrtype = check_typedef (value_type (arg1)); | |
87 | sz = find_size_for_pointer_math (valptrtype); | |
88 | ||
89 | result = value_from_pointer (valptrtype, | |
90 | value_as_address (arg1) + sz * arg2); | |
91 | if (VALUE_LVAL (result) != lval_internalvar) | |
92 | set_value_component_location (result, arg1); | |
93 | return result; | |
94 | } | |
95 | ||
96 | /* Given two compatible pointer values ARG1 and ARG2, return the | |
97 | result of C-style pointer arithmetic ARG1 - ARG2. */ | |
98 | ||
99 | LONGEST | |
100 | value_ptrdiff (struct value *arg1, struct value *arg2) | |
101 | { | |
102 | struct type *type1, *type2; | |
103 | LONGEST sz; | |
104 | ||
105 | arg1 = coerce_array (arg1); | |
106 | arg2 = coerce_array (arg2); | |
107 | type1 = check_typedef (value_type (arg1)); | |
108 | type2 = check_typedef (value_type (arg2)); | |
109 | ||
110 | gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR); | |
111 | gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR); | |
112 | ||
113 | if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) | |
114 | != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
115 | error (_("First argument of `-' is a pointer and " | |
116 | "second argument is neither\n" | |
117 | "an integer nor a pointer of the same type.")); | |
118 | ||
119 | sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1))); | |
120 | if (sz == 0) | |
121 | { | |
122 | warning (_("Type size unknown, assuming 1. " | |
123 | "Try casting to a known type, or void *.")); | |
124 | sz = 1; | |
125 | } | |
126 | ||
127 | return (value_as_long (arg1) - value_as_long (arg2)) / sz; | |
128 | } | |
129 | ||
130 | /* Return the value of ARRAY[IDX]. | |
131 | ||
132 | ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the | |
133 | current language supports C-style arrays, it may also be TYPE_CODE_PTR. | |
134 | ||
135 | See comments in value_coerce_array() for rationale for reason for | |
136 | doing lower bounds adjustment here rather than there. | |
137 | FIXME: Perhaps we should validate that the index is valid and if | |
138 | verbosity is set, warn about invalid indices (but still use them). */ | |
139 | ||
140 | struct value * | |
141 | value_subscript (struct value *array, LONGEST index) | |
142 | { | |
143 | int c_style = current_language->c_style_arrays; | |
144 | struct type *tarray; | |
145 | ||
146 | array = coerce_ref (array); | |
147 | tarray = check_typedef (value_type (array)); | |
148 | ||
149 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
150 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
151 | { | |
152 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
153 | LONGEST lowerbound, upperbound; | |
154 | ||
155 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
156 | if (VALUE_LVAL (array) != lval_memory) | |
157 | return value_subscripted_rvalue (array, index, lowerbound); | |
158 | ||
159 | if (c_style == 0) | |
160 | { | |
161 | if (index >= lowerbound && index <= upperbound) | |
162 | return value_subscripted_rvalue (array, index, lowerbound); | |
163 | /* Emit warning unless we have an array of unknown size. | |
164 | An array of unknown size has lowerbound 0 and upperbound -1. */ | |
165 | if (upperbound > -1) | |
166 | warning (_("array or string index out of range")); | |
167 | /* fall doing C stuff */ | |
168 | c_style = 1; | |
169 | } | |
170 | ||
171 | index -= lowerbound; | |
172 | array = value_coerce_array (array); | |
173 | } | |
174 | ||
175 | if (c_style) | |
176 | return value_ind (value_ptradd (array, index)); | |
177 | else | |
178 | error (_("not an array or string")); | |
179 | } | |
180 | ||
181 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
182 | (eg, a vector register). This routine used to promote floats | |
183 | to doubles, but no longer does. */ | |
184 | ||
185 | struct value * | |
186 | value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound) | |
187 | { | |
188 | struct type *array_type = check_typedef (value_type (array)); | |
189 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); | |
190 | ULONGEST elt_size = type_length_units (elt_type); | |
191 | ULONGEST elt_offs = elt_size * (index - lowerbound); | |
192 | ||
193 | if (index < lowerbound | |
194 | || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type) | |
195 | && elt_offs >= type_length_units (array_type)) | |
196 | || (VALUE_LVAL (array) != lval_memory | |
197 | && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type))) | |
198 | { | |
199 | if (type_not_associated (array_type)) | |
200 | error (_("no such vector element (vector not associated)")); | |
201 | else if (type_not_allocated (array_type)) | |
202 | error (_("no such vector element (vector not allocated)")); | |
203 | else | |
204 | error (_("no such vector element")); | |
205 | } | |
206 | ||
207 | if (is_dynamic_type (elt_type)) | |
208 | { | |
209 | CORE_ADDR address; | |
210 | ||
211 | address = value_address (array) + elt_offs; | |
212 | elt_type = resolve_dynamic_type (elt_type, NULL, address); | |
213 | } | |
214 | ||
215 | return value_from_component (array, elt_type, elt_offs); | |
216 | } | |
217 | ||
218 | \f | |
219 | /* Check to see if either argument is a structure, or a reference to | |
220 | one. This is called so we know whether to go ahead with the normal | |
221 | binop or look for a user defined function instead. | |
222 | ||
223 | For now, we do not overload the `=' operator. */ | |
224 | ||
225 | int | |
226 | binop_types_user_defined_p (enum exp_opcode op, | |
227 | struct type *type1, struct type *type2) | |
228 | { | |
229 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
230 | return 0; | |
231 | ||
232 | type1 = check_typedef (type1); | |
233 | if (TYPE_IS_REFERENCE (type1)) | |
234 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); | |
235 | ||
236 | type2 = check_typedef (type2); | |
237 | if (TYPE_IS_REFERENCE (type2)) | |
238 | type2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
239 | ||
240 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT | |
241 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT); | |
242 | } | |
243 | ||
244 | /* Check to see if either argument is a structure, or a reference to | |
245 | one. This is called so we know whether to go ahead with the normal | |
246 | binop or look for a user defined function instead. | |
247 | ||
248 | For now, we do not overload the `=' operator. */ | |
249 | ||
250 | int | |
251 | binop_user_defined_p (enum exp_opcode op, | |
252 | struct value *arg1, struct value *arg2) | |
253 | { | |
254 | return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2)); | |
255 | } | |
256 | ||
257 | /* Check to see if argument is a structure. This is called so | |
258 | we know whether to go ahead with the normal unop or look for a | |
259 | user defined function instead. | |
260 | ||
261 | For now, we do not overload the `&' operator. */ | |
262 | ||
263 | int | |
264 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) | |
265 | { | |
266 | struct type *type1; | |
267 | ||
268 | if (op == UNOP_ADDR) | |
269 | return 0; | |
270 | type1 = check_typedef (value_type (arg1)); | |
271 | if (TYPE_IS_REFERENCE (type1)) | |
272 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); | |
273 | return TYPE_CODE (type1) == TYPE_CODE_STRUCT; | |
274 | } | |
275 | ||
276 | /* Try to find an operator named OPERATOR which takes NARGS arguments | |
277 | specified in ARGS. If the operator found is a static member operator | |
278 | *STATIC_MEMFUNP will be set to 1, and otherwise 0. | |
279 | The search if performed through find_overload_match which will handle | |
280 | member operators, non member operators, operators imported implicitly or | |
281 | explicitly, and perform correct overload resolution in all of the above | |
282 | situations or combinations thereof. */ | |
283 | ||
284 | static struct value * | |
285 | value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper, | |
286 | int *static_memfuncp, enum noside noside) | |
287 | { | |
288 | ||
289 | struct symbol *symp = NULL; | |
290 | struct value *valp = NULL; | |
291 | ||
292 | find_overload_match (args, oper, BOTH /* could be method */, | |
293 | &args[0] /* objp */, | |
294 | NULL /* pass NULL symbol since symbol is unknown */, | |
295 | &valp, &symp, static_memfuncp, 0, noside); | |
296 | ||
297 | if (valp) | |
298 | return valp; | |
299 | ||
300 | if (symp) | |
301 | { | |
302 | /* This is a non member function and does not | |
303 | expect a reference as its first argument | |
304 | rather the explicit structure. */ | |
305 | args[0] = value_ind (args[0]); | |
306 | return value_of_variable (symp, 0); | |
307 | } | |
308 | ||
309 | error (_("Could not find %s."), oper); | |
310 | } | |
311 | ||
312 | /* Lookup user defined operator NAME. Return a value representing the | |
313 | function, otherwise return NULL. */ | |
314 | ||
315 | static struct value * | |
316 | value_user_defined_op (struct value **argp, gdb::array_view<value *> args, | |
317 | char *name, int *static_memfuncp, enum noside noside) | |
318 | { | |
319 | struct value *result = NULL; | |
320 | ||
321 | if (current_language->la_language == language_cplus) | |
322 | { | |
323 | result = value_user_defined_cpp_op (args, name, static_memfuncp, | |
324 | noside); | |
325 | } | |
326 | else | |
327 | result = value_struct_elt (argp, args.data (), name, static_memfuncp, | |
328 | "structure"); | |
329 | ||
330 | return result; | |
331 | } | |
332 | ||
333 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
334 | user defined function. Create an argument vector that calls | |
335 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
336 | binary operator which is legal for GNU C++). | |
337 | ||
338 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
339 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
340 | unused. */ | |
341 | ||
342 | struct value * | |
343 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | |
344 | enum exp_opcode otherop, enum noside noside) | |
345 | { | |
346 | char *ptr; | |
347 | char tstr[13]; | |
348 | int static_memfuncp; | |
349 | ||
350 | arg1 = coerce_ref (arg1); | |
351 | arg2 = coerce_ref (arg2); | |
352 | ||
353 | /* now we know that what we have to do is construct our | |
354 | arg vector and find the right function to call it with. */ | |
355 | ||
356 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) | |
357 | error (_("Can't do that binary op on that type")); /* FIXME be explicit */ | |
358 | ||
359 | value *argvec_storage[3]; | |
360 | gdb::array_view<value *> argvec = argvec_storage; | |
361 | ||
362 | argvec[1] = value_addr (arg1); | |
363 | argvec[2] = arg2; | |
364 | ||
365 | /* Make the right function name up. */ | |
366 | strcpy (tstr, "operator__"); | |
367 | ptr = tstr + 8; | |
368 | switch (op) | |
369 | { | |
370 | case BINOP_ADD: | |
371 | strcpy (ptr, "+"); | |
372 | break; | |
373 | case BINOP_SUB: | |
374 | strcpy (ptr, "-"); | |
375 | break; | |
376 | case BINOP_MUL: | |
377 | strcpy (ptr, "*"); | |
378 | break; | |
379 | case BINOP_DIV: | |
380 | strcpy (ptr, "/"); | |
381 | break; | |
382 | case BINOP_REM: | |
383 | strcpy (ptr, "%"); | |
384 | break; | |
385 | case BINOP_LSH: | |
386 | strcpy (ptr, "<<"); | |
387 | break; | |
388 | case BINOP_RSH: | |
389 | strcpy (ptr, ">>"); | |
390 | break; | |
391 | case BINOP_BITWISE_AND: | |
392 | strcpy (ptr, "&"); | |
393 | break; | |
394 | case BINOP_BITWISE_IOR: | |
395 | strcpy (ptr, "|"); | |
396 | break; | |
397 | case BINOP_BITWISE_XOR: | |
398 | strcpy (ptr, "^"); | |
399 | break; | |
400 | case BINOP_LOGICAL_AND: | |
401 | strcpy (ptr, "&&"); | |
402 | break; | |
403 | case BINOP_LOGICAL_OR: | |
404 | strcpy (ptr, "||"); | |
405 | break; | |
406 | case BINOP_MIN: | |
407 | strcpy (ptr, "<?"); | |
408 | break; | |
409 | case BINOP_MAX: | |
410 | strcpy (ptr, ">?"); | |
411 | break; | |
412 | case BINOP_ASSIGN: | |
413 | strcpy (ptr, "="); | |
414 | break; | |
415 | case BINOP_ASSIGN_MODIFY: | |
416 | switch (otherop) | |
417 | { | |
418 | case BINOP_ADD: | |
419 | strcpy (ptr, "+="); | |
420 | break; | |
421 | case BINOP_SUB: | |
422 | strcpy (ptr, "-="); | |
423 | break; | |
424 | case BINOP_MUL: | |
425 | strcpy (ptr, "*="); | |
426 | break; | |
427 | case BINOP_DIV: | |
428 | strcpy (ptr, "/="); | |
429 | break; | |
430 | case BINOP_REM: | |
431 | strcpy (ptr, "%="); | |
432 | break; | |
433 | case BINOP_BITWISE_AND: | |
434 | strcpy (ptr, "&="); | |
435 | break; | |
436 | case BINOP_BITWISE_IOR: | |
437 | strcpy (ptr, "|="); | |
438 | break; | |
439 | case BINOP_BITWISE_XOR: | |
440 | strcpy (ptr, "^="); | |
441 | break; | |
442 | case BINOP_MOD: /* invalid */ | |
443 | default: | |
444 | error (_("Invalid binary operation specified.")); | |
445 | } | |
446 | break; | |
447 | case BINOP_SUBSCRIPT: | |
448 | strcpy (ptr, "[]"); | |
449 | break; | |
450 | case BINOP_EQUAL: | |
451 | strcpy (ptr, "=="); | |
452 | break; | |
453 | case BINOP_NOTEQUAL: | |
454 | strcpy (ptr, "!="); | |
455 | break; | |
456 | case BINOP_LESS: | |
457 | strcpy (ptr, "<"); | |
458 | break; | |
459 | case BINOP_GTR: | |
460 | strcpy (ptr, ">"); | |
461 | break; | |
462 | case BINOP_GEQ: | |
463 | strcpy (ptr, ">="); | |
464 | break; | |
465 | case BINOP_LEQ: | |
466 | strcpy (ptr, "<="); | |
467 | break; | |
468 | case BINOP_MOD: /* invalid */ | |
469 | default: | |
470 | error (_("Invalid binary operation specified.")); | |
471 | } | |
472 | ||
473 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr, | |
474 | &static_memfuncp, noside); | |
475 | ||
476 | if (argvec[0]) | |
477 | { | |
478 | if (static_memfuncp) | |
479 | { | |
480 | argvec[1] = argvec[0]; | |
481 | argvec = argvec.slice (1); | |
482 | } | |
483 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) | |
484 | { | |
485 | /* Static xmethods are not supported yet. */ | |
486 | gdb_assert (static_memfuncp == 0); | |
487 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
488 | { | |
489 | struct type *return_type | |
490 | = result_type_of_xmethod (argvec[0], argvec.slice (1)); | |
491 | ||
492 | if (return_type == NULL) | |
493 | error (_("Xmethod is missing return type.")); | |
494 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
495 | } | |
496 | return call_xmethod (argvec[0], argvec.slice (1)); | |
497 | } | |
498 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
499 | { | |
500 | struct type *return_type; | |
501 | ||
502 | return_type | |
503 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); | |
504 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
505 | } | |
506 | return call_function_by_hand (argvec[0], NULL, | |
507 | argvec.slice (1, 2 - static_memfuncp)); | |
508 | } | |
509 | throw_error (NOT_FOUND_ERROR, | |
510 | _("member function %s not found"), tstr); | |
511 | } | |
512 | ||
513 | /* We know that arg1 is a structure, so try to find a unary user | |
514 | defined operator that matches the operator in question. | |
515 | Create an argument vector that calls arg1.operator @ (arg1) | |
516 | and return that value (where '@' is (almost) any unary operator which | |
517 | is legal for GNU C++). */ | |
518 | ||
519 | struct value * | |
520 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | |
521 | { | |
522 | struct gdbarch *gdbarch = get_type_arch (value_type (arg1)); | |
523 | char *ptr; | |
524 | char tstr[13], mangle_tstr[13]; | |
525 | int static_memfuncp, nargs; | |
526 | ||
527 | arg1 = coerce_ref (arg1); | |
528 | ||
529 | /* now we know that what we have to do is construct our | |
530 | arg vector and find the right function to call it with. */ | |
531 | ||
532 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) | |
533 | error (_("Can't do that unary op on that type")); /* FIXME be explicit */ | |
534 | ||
535 | value *argvec_storage[3]; | |
536 | gdb::array_view<value *> argvec = argvec_storage; | |
537 | ||
538 | argvec[1] = value_addr (arg1); | |
539 | argvec[2] = 0; | |
540 | ||
541 | nargs = 1; | |
542 | ||
543 | /* Make the right function name up. */ | |
544 | strcpy (tstr, "operator__"); | |
545 | ptr = tstr + 8; | |
546 | strcpy (mangle_tstr, "__"); | |
547 | switch (op) | |
548 | { | |
549 | case UNOP_PREINCREMENT: | |
550 | strcpy (ptr, "++"); | |
551 | break; | |
552 | case UNOP_PREDECREMENT: | |
553 | strcpy (ptr, "--"); | |
554 | break; | |
555 | case UNOP_POSTINCREMENT: | |
556 | strcpy (ptr, "++"); | |
557 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); | |
558 | nargs ++; | |
559 | break; | |
560 | case UNOP_POSTDECREMENT: | |
561 | strcpy (ptr, "--"); | |
562 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); | |
563 | nargs ++; | |
564 | break; | |
565 | case UNOP_LOGICAL_NOT: | |
566 | strcpy (ptr, "!"); | |
567 | break; | |
568 | case UNOP_COMPLEMENT: | |
569 | strcpy (ptr, "~"); | |
570 | break; | |
571 | case UNOP_NEG: | |
572 | strcpy (ptr, "-"); | |
573 | break; | |
574 | case UNOP_PLUS: | |
575 | strcpy (ptr, "+"); | |
576 | break; | |
577 | case UNOP_IND: | |
578 | strcpy (ptr, "*"); | |
579 | break; | |
580 | case STRUCTOP_PTR: | |
581 | strcpy (ptr, "->"); | |
582 | break; | |
583 | default: | |
584 | error (_("Invalid unary operation specified.")); | |
585 | } | |
586 | ||
587 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr, | |
588 | &static_memfuncp, noside); | |
589 | ||
590 | if (argvec[0]) | |
591 | { | |
592 | if (static_memfuncp) | |
593 | { | |
594 | argvec[1] = argvec[0]; | |
595 | argvec = argvec.slice (1); | |
596 | } | |
597 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) | |
598 | { | |
599 | /* Static xmethods are not supported yet. */ | |
600 | gdb_assert (static_memfuncp == 0); | |
601 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
602 | { | |
603 | struct type *return_type | |
604 | = result_type_of_xmethod (argvec[0], argvec[1]); | |
605 | ||
606 | if (return_type == NULL) | |
607 | error (_("Xmethod is missing return type.")); | |
608 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
609 | } | |
610 | return call_xmethod (argvec[0], argvec[1]); | |
611 | } | |
612 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
613 | { | |
614 | struct type *return_type; | |
615 | ||
616 | return_type | |
617 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); | |
618 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
619 | } | |
620 | return call_function_by_hand (argvec[0], NULL, | |
621 | argvec.slice (1, nargs)); | |
622 | } | |
623 | throw_error (NOT_FOUND_ERROR, | |
624 | _("member function %s not found"), tstr); | |
625 | } | |
626 | \f | |
627 | ||
628 | /* Concatenate two values with the following conditions: | |
629 | ||
630 | (1) Both values must be either bitstring values or character string | |
631 | values and the resulting value consists of the concatenation of | |
632 | ARG1 followed by ARG2. | |
633 | ||
634 | or | |
635 | ||
636 | One value must be an integer value and the other value must be | |
637 | either a bitstring value or character string value, which is | |
638 | to be repeated by the number of times specified by the integer | |
639 | value. | |
640 | ||
641 | ||
642 | (2) Boolean values are also allowed and are treated as bit string | |
643 | values of length 1. | |
644 | ||
645 | (3) Character values are also allowed and are treated as character | |
646 | string values of length 1. */ | |
647 | ||
648 | struct value * | |
649 | value_concat (struct value *arg1, struct value *arg2) | |
650 | { | |
651 | struct value *inval1; | |
652 | struct value *inval2; | |
653 | struct value *outval = NULL; | |
654 | int inval1len, inval2len; | |
655 | int count, idx; | |
656 | char inchar; | |
657 | struct type *type1 = check_typedef (value_type (arg1)); | |
658 | struct type *type2 = check_typedef (value_type (arg2)); | |
659 | struct type *char_type; | |
660 | ||
661 | /* First figure out if we are dealing with two values to be concatenated | |
662 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
663 | first of two concatenated values, or the repeat count. INVAL2 is set | |
664 | to the second of the two concatenated values or the value to be | |
665 | repeated. */ | |
666 | ||
667 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
668 | { | |
669 | struct type *tmp = type1; | |
670 | ||
671 | type1 = tmp; | |
672 | tmp = type2; | |
673 | inval1 = arg2; | |
674 | inval2 = arg1; | |
675 | } | |
676 | else | |
677 | { | |
678 | inval1 = arg1; | |
679 | inval2 = arg2; | |
680 | } | |
681 | ||
682 | /* Now process the input values. */ | |
683 | ||
684 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
685 | { | |
686 | /* We have a repeat count. Validate the second value and then | |
687 | construct a value repeated that many times. */ | |
688 | if (TYPE_CODE (type2) == TYPE_CODE_STRING | |
689 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
690 | { | |
691 | count = longest_to_int (value_as_long (inval1)); | |
692 | inval2len = TYPE_LENGTH (type2); | |
693 | std::vector<char> ptr (count * inval2len); | |
694 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
695 | { | |
696 | char_type = type2; | |
697 | ||
698 | inchar = (char) unpack_long (type2, | |
699 | value_contents (inval2)); | |
700 | for (idx = 0; idx < count; idx++) | |
701 | { | |
702 | ptr[idx] = inchar; | |
703 | } | |
704 | } | |
705 | else | |
706 | { | |
707 | char_type = TYPE_TARGET_TYPE (type2); | |
708 | ||
709 | for (idx = 0; idx < count; idx++) | |
710 | { | |
711 | memcpy (&ptr[idx * inval2len], value_contents (inval2), | |
712 | inval2len); | |
713 | } | |
714 | } | |
715 | outval = value_string (ptr.data (), count * inval2len, char_type); | |
716 | } | |
717 | else if (TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
718 | { | |
719 | error (_("unimplemented support for boolean repeats")); | |
720 | } | |
721 | else | |
722 | { | |
723 | error (_("can't repeat values of that type")); | |
724 | } | |
725 | } | |
726 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
727 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
728 | { | |
729 | /* We have two character strings to concatenate. */ | |
730 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
731 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
732 | { | |
733 | error (_("Strings can only be concatenated with other strings.")); | |
734 | } | |
735 | inval1len = TYPE_LENGTH (type1); | |
736 | inval2len = TYPE_LENGTH (type2); | |
737 | std::vector<char> ptr (inval1len + inval2len); | |
738 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
739 | { | |
740 | char_type = type1; | |
741 | ||
742 | ptr[0] = (char) unpack_long (type1, value_contents (inval1)); | |
743 | } | |
744 | else | |
745 | { | |
746 | char_type = TYPE_TARGET_TYPE (type1); | |
747 | ||
748 | memcpy (ptr.data (), value_contents (inval1), inval1len); | |
749 | } | |
750 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
751 | { | |
752 | ptr[inval1len] = | |
753 | (char) unpack_long (type2, value_contents (inval2)); | |
754 | } | |
755 | else | |
756 | { | |
757 | memcpy (&ptr[inval1len], value_contents (inval2), inval2len); | |
758 | } | |
759 | outval = value_string (ptr.data (), inval1len + inval2len, char_type); | |
760 | } | |
761 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
762 | { | |
763 | /* We have two bitstrings to concatenate. */ | |
764 | if (TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
765 | { | |
766 | error (_("Booleans can only be concatenated " | |
767 | "with other bitstrings or booleans.")); | |
768 | } | |
769 | error (_("unimplemented support for boolean concatenation.")); | |
770 | } | |
771 | else | |
772 | { | |
773 | /* We don't know how to concatenate these operands. */ | |
774 | error (_("illegal operands for concatenation.")); | |
775 | } | |
776 | return (outval); | |
777 | } | |
778 | \f | |
779 | /* Integer exponentiation: V1**V2, where both arguments are | |
780 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
781 | ||
782 | static LONGEST | |
783 | integer_pow (LONGEST v1, LONGEST v2) | |
784 | { | |
785 | if (v2 < 0) | |
786 | { | |
787 | if (v1 == 0) | |
788 | error (_("Attempt to raise 0 to negative power.")); | |
789 | else | |
790 | return 0; | |
791 | } | |
792 | else | |
793 | { | |
794 | /* The Russian Peasant's Algorithm. */ | |
795 | LONGEST v; | |
796 | ||
797 | v = 1; | |
798 | for (;;) | |
799 | { | |
800 | if (v2 & 1L) | |
801 | v *= v1; | |
802 | v2 >>= 1; | |
803 | if (v2 == 0) | |
804 | return v; | |
805 | v1 *= v1; | |
806 | } | |
807 | } | |
808 | } | |
809 | ||
810 | /* Integer exponentiation: V1**V2, where both arguments are | |
811 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
812 | ||
813 | static ULONGEST | |
814 | uinteger_pow (ULONGEST v1, LONGEST v2) | |
815 | { | |
816 | if (v2 < 0) | |
817 | { | |
818 | if (v1 == 0) | |
819 | error (_("Attempt to raise 0 to negative power.")); | |
820 | else | |
821 | return 0; | |
822 | } | |
823 | else | |
824 | { | |
825 | /* The Russian Peasant's Algorithm. */ | |
826 | ULONGEST v; | |
827 | ||
828 | v = 1; | |
829 | for (;;) | |
830 | { | |
831 | if (v2 & 1L) | |
832 | v *= v1; | |
833 | v2 >>= 1; | |
834 | if (v2 == 0) | |
835 | return v; | |
836 | v1 *= v1; | |
837 | } | |
838 | } | |
839 | } | |
840 | ||
841 | /* Obtain argument values for binary operation, converting from | |
842 | other types if one of them is not floating point. */ | |
843 | static void | |
844 | value_args_as_target_float (struct value *arg1, struct value *arg2, | |
845 | gdb_byte *x, struct type **eff_type_x, | |
846 | gdb_byte *y, struct type **eff_type_y) | |
847 | { | |
848 | struct type *type1, *type2; | |
849 | ||
850 | type1 = check_typedef (value_type (arg1)); | |
851 | type2 = check_typedef (value_type (arg2)); | |
852 | ||
853 | /* At least one of the arguments must be of floating-point type. */ | |
854 | gdb_assert (is_floating_type (type1) || is_floating_type (type2)); | |
855 | ||
856 | if (is_floating_type (type1) && is_floating_type (type2) | |
857 | && TYPE_CODE (type1) != TYPE_CODE (type2)) | |
858 | /* The DFP extension to the C language does not allow mixing of | |
859 | * decimal float types with other float types in expressions | |
860 | * (see WDTR 24732, page 12). */ | |
861 | error (_("Mixing decimal floating types with " | |
862 | "other floating types is not allowed.")); | |
863 | ||
864 | /* Obtain value of arg1, converting from other types if necessary. */ | |
865 | ||
866 | if (is_floating_type (type1)) | |
867 | { | |
868 | *eff_type_x = type1; | |
869 | memcpy (x, value_contents (arg1), TYPE_LENGTH (type1)); | |
870 | } | |
871 | else if (is_integral_type (type1)) | |
872 | { | |
873 | *eff_type_x = type2; | |
874 | if (TYPE_UNSIGNED (type1)) | |
875 | target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1)); | |
876 | else | |
877 | target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); | |
878 | } | |
879 | else | |
880 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
881 | TYPE_NAME (type2)); | |
882 | ||
883 | /* Obtain value of arg2, converting from other types if necessary. */ | |
884 | ||
885 | if (is_floating_type (type2)) | |
886 | { | |
887 | *eff_type_y = type2; | |
888 | memcpy (y, value_contents (arg2), TYPE_LENGTH (type2)); | |
889 | } | |
890 | else if (is_integral_type (type2)) | |
891 | { | |
892 | *eff_type_y = type1; | |
893 | if (TYPE_UNSIGNED (type2)) | |
894 | target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2)); | |
895 | else | |
896 | target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); | |
897 | } | |
898 | else | |
899 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
900 | TYPE_NAME (type2)); | |
901 | } | |
902 | ||
903 | /* Perform a binary operation on two operands which have reasonable | |
904 | representations as integers or floats. This includes booleans, | |
905 | characters, integers, or floats. | |
906 | Does not support addition and subtraction on pointers; | |
907 | use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */ | |
908 | ||
909 | static struct value * | |
910 | scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
911 | { | |
912 | struct value *val; | |
913 | struct type *type1, *type2, *result_type; | |
914 | ||
915 | arg1 = coerce_ref (arg1); | |
916 | arg2 = coerce_ref (arg2); | |
917 | ||
918 | type1 = check_typedef (value_type (arg1)); | |
919 | type2 = check_typedef (value_type (arg2)); | |
920 | ||
921 | if ((!is_floating_value (arg1) && !is_integral_type (type1)) | |
922 | || (!is_floating_value (arg2) && !is_integral_type (type2))) | |
923 | error (_("Argument to arithmetic operation not a number or boolean.")); | |
924 | ||
925 | if (is_floating_type (type1) || is_floating_type (type2)) | |
926 | { | |
927 | /* If only one type is floating-point, use its type. | |
928 | Otherwise use the bigger type. */ | |
929 | if (!is_floating_type (type1)) | |
930 | result_type = type2; | |
931 | else if (!is_floating_type (type2)) | |
932 | result_type = type1; | |
933 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
934 | result_type = type2; | |
935 | else | |
936 | result_type = type1; | |
937 | ||
938 | val = allocate_value (result_type); | |
939 | ||
940 | struct type *eff_type_v1, *eff_type_v2; | |
941 | gdb::byte_vector v1, v2; | |
942 | v1.resize (TYPE_LENGTH (result_type)); | |
943 | v2.resize (TYPE_LENGTH (result_type)); | |
944 | ||
945 | value_args_as_target_float (arg1, arg2, | |
946 | v1.data (), &eff_type_v1, | |
947 | v2.data (), &eff_type_v2); | |
948 | target_float_binop (op, v1.data (), eff_type_v1, | |
949 | v2.data (), eff_type_v2, | |
950 | value_contents_raw (val), result_type); | |
951 | } | |
952 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
953 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
954 | { | |
955 | LONGEST v1, v2, v = 0; | |
956 | ||
957 | v1 = value_as_long (arg1); | |
958 | v2 = value_as_long (arg2); | |
959 | ||
960 | switch (op) | |
961 | { | |
962 | case BINOP_BITWISE_AND: | |
963 | v = v1 & v2; | |
964 | break; | |
965 | ||
966 | case BINOP_BITWISE_IOR: | |
967 | v = v1 | v2; | |
968 | break; | |
969 | ||
970 | case BINOP_BITWISE_XOR: | |
971 | v = v1 ^ v2; | |
972 | break; | |
973 | ||
974 | case BINOP_EQUAL: | |
975 | v = v1 == v2; | |
976 | break; | |
977 | ||
978 | case BINOP_NOTEQUAL: | |
979 | v = v1 != v2; | |
980 | break; | |
981 | ||
982 | default: | |
983 | error (_("Invalid operation on booleans.")); | |
984 | } | |
985 | ||
986 | result_type = type1; | |
987 | ||
988 | val = allocate_value (result_type); | |
989 | store_signed_integer (value_contents_raw (val), | |
990 | TYPE_LENGTH (result_type), | |
991 | gdbarch_byte_order (get_type_arch (result_type)), | |
992 | v); | |
993 | } | |
994 | else | |
995 | /* Integral operations here. */ | |
996 | { | |
997 | /* Determine type length of the result, and if the operation should | |
998 | be done unsigned. For exponentiation and shift operators, | |
999 | use the length and type of the left operand. Otherwise, | |
1000 | use the signedness of the operand with the greater length. | |
1001 | If both operands are of equal length, use unsigned operation | |
1002 | if one of the operands is unsigned. */ | |
1003 | if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) | |
1004 | result_type = type1; | |
1005 | else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) | |
1006 | result_type = type1; | |
1007 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
1008 | result_type = type2; | |
1009 | else if (TYPE_UNSIGNED (type1)) | |
1010 | result_type = type1; | |
1011 | else if (TYPE_UNSIGNED (type2)) | |
1012 | result_type = type2; | |
1013 | else | |
1014 | result_type = type1; | |
1015 | ||
1016 | if (TYPE_UNSIGNED (result_type)) | |
1017 | { | |
1018 | LONGEST v2_signed = value_as_long (arg2); | |
1019 | ULONGEST v1, v2, v = 0; | |
1020 | ||
1021 | v1 = (ULONGEST) value_as_long (arg1); | |
1022 | v2 = (ULONGEST) v2_signed; | |
1023 | ||
1024 | switch (op) | |
1025 | { | |
1026 | case BINOP_ADD: | |
1027 | v = v1 + v2; | |
1028 | break; | |
1029 | ||
1030 | case BINOP_SUB: | |
1031 | v = v1 - v2; | |
1032 | break; | |
1033 | ||
1034 | case BINOP_MUL: | |
1035 | v = v1 * v2; | |
1036 | break; | |
1037 | ||
1038 | case BINOP_DIV: | |
1039 | case BINOP_INTDIV: | |
1040 | if (v2 != 0) | |
1041 | v = v1 / v2; | |
1042 | else | |
1043 | error (_("Division by zero")); | |
1044 | break; | |
1045 | ||
1046 | case BINOP_EXP: | |
1047 | v = uinteger_pow (v1, v2_signed); | |
1048 | break; | |
1049 | ||
1050 | case BINOP_REM: | |
1051 | if (v2 != 0) | |
1052 | v = v1 % v2; | |
1053 | else | |
1054 | error (_("Division by zero")); | |
1055 | break; | |
1056 | ||
1057 | case BINOP_MOD: | |
1058 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1059 | v1 mod 0 has a defined value, v1. */ | |
1060 | if (v2 == 0) | |
1061 | { | |
1062 | v = v1; | |
1063 | } | |
1064 | else | |
1065 | { | |
1066 | v = v1 / v2; | |
1067 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ | |
1068 | v = v1 - (v2 * v); | |
1069 | } | |
1070 | break; | |
1071 | ||
1072 | case BINOP_LSH: | |
1073 | v = v1 << v2; | |
1074 | break; | |
1075 | ||
1076 | case BINOP_RSH: | |
1077 | v = v1 >> v2; | |
1078 | break; | |
1079 | ||
1080 | case BINOP_BITWISE_AND: | |
1081 | v = v1 & v2; | |
1082 | break; | |
1083 | ||
1084 | case BINOP_BITWISE_IOR: | |
1085 | v = v1 | v2; | |
1086 | break; | |
1087 | ||
1088 | case BINOP_BITWISE_XOR: | |
1089 | v = v1 ^ v2; | |
1090 | break; | |
1091 | ||
1092 | case BINOP_LOGICAL_AND: | |
1093 | v = v1 && v2; | |
1094 | break; | |
1095 | ||
1096 | case BINOP_LOGICAL_OR: | |
1097 | v = v1 || v2; | |
1098 | break; | |
1099 | ||
1100 | case BINOP_MIN: | |
1101 | v = v1 < v2 ? v1 : v2; | |
1102 | break; | |
1103 | ||
1104 | case BINOP_MAX: | |
1105 | v = v1 > v2 ? v1 : v2; | |
1106 | break; | |
1107 | ||
1108 | case BINOP_EQUAL: | |
1109 | v = v1 == v2; | |
1110 | break; | |
1111 | ||
1112 | case BINOP_NOTEQUAL: | |
1113 | v = v1 != v2; | |
1114 | break; | |
1115 | ||
1116 | case BINOP_LESS: | |
1117 | v = v1 < v2; | |
1118 | break; | |
1119 | ||
1120 | case BINOP_GTR: | |
1121 | v = v1 > v2; | |
1122 | break; | |
1123 | ||
1124 | case BINOP_LEQ: | |
1125 | v = v1 <= v2; | |
1126 | break; | |
1127 | ||
1128 | case BINOP_GEQ: | |
1129 | v = v1 >= v2; | |
1130 | break; | |
1131 | ||
1132 | default: | |
1133 | error (_("Invalid binary operation on numbers.")); | |
1134 | } | |
1135 | ||
1136 | val = allocate_value (result_type); | |
1137 | store_unsigned_integer (value_contents_raw (val), | |
1138 | TYPE_LENGTH (value_type (val)), | |
1139 | gdbarch_byte_order | |
1140 | (get_type_arch (result_type)), | |
1141 | v); | |
1142 | } | |
1143 | else | |
1144 | { | |
1145 | LONGEST v1, v2, v = 0; | |
1146 | ||
1147 | v1 = value_as_long (arg1); | |
1148 | v2 = value_as_long (arg2); | |
1149 | ||
1150 | switch (op) | |
1151 | { | |
1152 | case BINOP_ADD: | |
1153 | v = v1 + v2; | |
1154 | break; | |
1155 | ||
1156 | case BINOP_SUB: | |
1157 | v = v1 - v2; | |
1158 | break; | |
1159 | ||
1160 | case BINOP_MUL: | |
1161 | v = v1 * v2; | |
1162 | break; | |
1163 | ||
1164 | case BINOP_DIV: | |
1165 | case BINOP_INTDIV: | |
1166 | if (v2 != 0) | |
1167 | v = v1 / v2; | |
1168 | else | |
1169 | error (_("Division by zero")); | |
1170 | break; | |
1171 | ||
1172 | case BINOP_EXP: | |
1173 | v = integer_pow (v1, v2); | |
1174 | break; | |
1175 | ||
1176 | case BINOP_REM: | |
1177 | if (v2 != 0) | |
1178 | v = v1 % v2; | |
1179 | else | |
1180 | error (_("Division by zero")); | |
1181 | break; | |
1182 | ||
1183 | case BINOP_MOD: | |
1184 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1185 | X mod 0 has a defined value, X. */ | |
1186 | if (v2 == 0) | |
1187 | { | |
1188 | v = v1; | |
1189 | } | |
1190 | else | |
1191 | { | |
1192 | v = v1 / v2; | |
1193 | /* Compute floor. */ | |
1194 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
1195 | { | |
1196 | v--; | |
1197 | } | |
1198 | v = v1 - (v2 * v); | |
1199 | } | |
1200 | break; | |
1201 | ||
1202 | case BINOP_LSH: | |
1203 | v = v1 << v2; | |
1204 | break; | |
1205 | ||
1206 | case BINOP_RSH: | |
1207 | v = v1 >> v2; | |
1208 | break; | |
1209 | ||
1210 | case BINOP_BITWISE_AND: | |
1211 | v = v1 & v2; | |
1212 | break; | |
1213 | ||
1214 | case BINOP_BITWISE_IOR: | |
1215 | v = v1 | v2; | |
1216 | break; | |
1217 | ||
1218 | case BINOP_BITWISE_XOR: | |
1219 | v = v1 ^ v2; | |
1220 | break; | |
1221 | ||
1222 | case BINOP_LOGICAL_AND: | |
1223 | v = v1 && v2; | |
1224 | break; | |
1225 | ||
1226 | case BINOP_LOGICAL_OR: | |
1227 | v = v1 || v2; | |
1228 | break; | |
1229 | ||
1230 | case BINOP_MIN: | |
1231 | v = v1 < v2 ? v1 : v2; | |
1232 | break; | |
1233 | ||
1234 | case BINOP_MAX: | |
1235 | v = v1 > v2 ? v1 : v2; | |
1236 | break; | |
1237 | ||
1238 | case BINOP_EQUAL: | |
1239 | v = v1 == v2; | |
1240 | break; | |
1241 | ||
1242 | case BINOP_NOTEQUAL: | |
1243 | v = v1 != v2; | |
1244 | break; | |
1245 | ||
1246 | case BINOP_LESS: | |
1247 | v = v1 < v2; | |
1248 | break; | |
1249 | ||
1250 | case BINOP_GTR: | |
1251 | v = v1 > v2; | |
1252 | break; | |
1253 | ||
1254 | case BINOP_LEQ: | |
1255 | v = v1 <= v2; | |
1256 | break; | |
1257 | ||
1258 | case BINOP_GEQ: | |
1259 | v = v1 >= v2; | |
1260 | break; | |
1261 | ||
1262 | default: | |
1263 | error (_("Invalid binary operation on numbers.")); | |
1264 | } | |
1265 | ||
1266 | val = allocate_value (result_type); | |
1267 | store_signed_integer (value_contents_raw (val), | |
1268 | TYPE_LENGTH (value_type (val)), | |
1269 | gdbarch_byte_order | |
1270 | (get_type_arch (result_type)), | |
1271 | v); | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | return val; | |
1276 | } | |
1277 | ||
1278 | /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by | |
1279 | replicating SCALAR_VALUE for each element of the vector. Only scalar | |
1280 | types that can be cast to the type of one element of the vector are | |
1281 | acceptable. The newly created vector value is returned upon success, | |
1282 | otherwise an error is thrown. */ | |
1283 | ||
1284 | struct value * | |
1285 | value_vector_widen (struct value *scalar_value, struct type *vector_type) | |
1286 | { | |
1287 | /* Widen the scalar to a vector. */ | |
1288 | struct type *eltype, *scalar_type; | |
1289 | struct value *val, *elval; | |
1290 | LONGEST low_bound, high_bound; | |
1291 | int i; | |
1292 | ||
1293 | vector_type = check_typedef (vector_type); | |
1294 | ||
1295 | gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY | |
1296 | && TYPE_VECTOR (vector_type)); | |
1297 | ||
1298 | if (!get_array_bounds (vector_type, &low_bound, &high_bound)) | |
1299 | error (_("Could not determine the vector bounds")); | |
1300 | ||
1301 | eltype = check_typedef (TYPE_TARGET_TYPE (vector_type)); | |
1302 | elval = value_cast (eltype, scalar_value); | |
1303 | ||
1304 | scalar_type = check_typedef (value_type (scalar_value)); | |
1305 | ||
1306 | /* If we reduced the length of the scalar then check we didn't loose any | |
1307 | important bits. */ | |
1308 | if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type) | |
1309 | && !value_equal (elval, scalar_value)) | |
1310 | error (_("conversion of scalar to vector involves truncation")); | |
1311 | ||
1312 | val = allocate_value (vector_type); | |
1313 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
1314 | /* Duplicate the contents of elval into the destination vector. */ | |
1315 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
1316 | value_contents_all (elval), TYPE_LENGTH (eltype)); | |
1317 | ||
1318 | return val; | |
1319 | } | |
1320 | ||
1321 | /* Performs a binary operation on two vector operands by calling scalar_binop | |
1322 | for each pair of vector components. */ | |
1323 | ||
1324 | static struct value * | |
1325 | vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) | |
1326 | { | |
1327 | struct value *val, *tmp, *mark; | |
1328 | struct type *type1, *type2, *eltype1, *eltype2; | |
1329 | int t1_is_vec, t2_is_vec, elsize, i; | |
1330 | LONGEST low_bound1, high_bound1, low_bound2, high_bound2; | |
1331 | ||
1332 | type1 = check_typedef (value_type (val1)); | |
1333 | type2 = check_typedef (value_type (val2)); | |
1334 | ||
1335 | t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY | |
1336 | && TYPE_VECTOR (type1)) ? 1 : 0; | |
1337 | t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1338 | && TYPE_VECTOR (type2)) ? 1 : 0; | |
1339 | ||
1340 | if (!t1_is_vec || !t2_is_vec) | |
1341 | error (_("Vector operations are only supported among vectors")); | |
1342 | ||
1343 | if (!get_array_bounds (type1, &low_bound1, &high_bound1) | |
1344 | || !get_array_bounds (type2, &low_bound2, &high_bound2)) | |
1345 | error (_("Could not determine the vector bounds")); | |
1346 | ||
1347 | eltype1 = check_typedef (TYPE_TARGET_TYPE (type1)); | |
1348 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
1349 | elsize = TYPE_LENGTH (eltype1); | |
1350 | ||
1351 | if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2) | |
1352 | || elsize != TYPE_LENGTH (eltype2) | |
1353 | || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2) | |
1354 | || low_bound1 != low_bound2 || high_bound1 != high_bound2) | |
1355 | error (_("Cannot perform operation on vectors with different types")); | |
1356 | ||
1357 | val = allocate_value (type1); | |
1358 | mark = value_mark (); | |
1359 | for (i = 0; i < high_bound1 - low_bound1 + 1; i++) | |
1360 | { | |
1361 | tmp = value_binop (value_subscript (val1, i), | |
1362 | value_subscript (val2, i), op); | |
1363 | memcpy (value_contents_writeable (val) + i * elsize, | |
1364 | value_contents_all (tmp), | |
1365 | elsize); | |
1366 | } | |
1367 | value_free_to_mark (mark); | |
1368 | ||
1369 | return val; | |
1370 | } | |
1371 | ||
1372 | /* Perform a binary operation on two operands. */ | |
1373 | ||
1374 | struct value * | |
1375 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
1376 | { | |
1377 | struct value *val; | |
1378 | struct type *type1 = check_typedef (value_type (arg1)); | |
1379 | struct type *type2 = check_typedef (value_type (arg2)); | |
1380 | int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY | |
1381 | && TYPE_VECTOR (type1)); | |
1382 | int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1383 | && TYPE_VECTOR (type2)); | |
1384 | ||
1385 | if (!t1_is_vec && !t2_is_vec) | |
1386 | val = scalar_binop (arg1, arg2, op); | |
1387 | else if (t1_is_vec && t2_is_vec) | |
1388 | val = vector_binop (arg1, arg2, op); | |
1389 | else | |
1390 | { | |
1391 | /* Widen the scalar operand to a vector. */ | |
1392 | struct value **v = t1_is_vec ? &arg2 : &arg1; | |
1393 | struct type *t = t1_is_vec ? type2 : type1; | |
1394 | ||
1395 | if (TYPE_CODE (t) != TYPE_CODE_FLT | |
1396 | && TYPE_CODE (t) != TYPE_CODE_DECFLOAT | |
1397 | && !is_integral_type (t)) | |
1398 | error (_("Argument to operation not a number or boolean.")); | |
1399 | ||
1400 | /* Replicate the scalar value to make a vector value. */ | |
1401 | *v = value_vector_widen (*v, t1_is_vec ? type1 : type2); | |
1402 | ||
1403 | val = vector_binop (arg1, arg2, op); | |
1404 | } | |
1405 | ||
1406 | return val; | |
1407 | } | |
1408 | \f | |
1409 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1410 | ||
1411 | int | |
1412 | value_logical_not (struct value *arg1) | |
1413 | { | |
1414 | int len; | |
1415 | const gdb_byte *p; | |
1416 | struct type *type1; | |
1417 | ||
1418 | arg1 = coerce_array (arg1); | |
1419 | type1 = check_typedef (value_type (arg1)); | |
1420 | ||
1421 | if (is_floating_value (arg1)) | |
1422 | return target_float_is_zero (value_contents (arg1), type1); | |
1423 | ||
1424 | len = TYPE_LENGTH (type1); | |
1425 | p = value_contents (arg1); | |
1426 | ||
1427 | while (--len >= 0) | |
1428 | { | |
1429 | if (*p++) | |
1430 | break; | |
1431 | } | |
1432 | ||
1433 | return len < 0; | |
1434 | } | |
1435 | ||
1436 | /* Perform a comparison on two string values (whose content are not | |
1437 | necessarily null terminated) based on their length. */ | |
1438 | ||
1439 | static int | |
1440 | value_strcmp (struct value *arg1, struct value *arg2) | |
1441 | { | |
1442 | int len1 = TYPE_LENGTH (value_type (arg1)); | |
1443 | int len2 = TYPE_LENGTH (value_type (arg2)); | |
1444 | const gdb_byte *s1 = value_contents (arg1); | |
1445 | const gdb_byte *s2 = value_contents (arg2); | |
1446 | int i, len = len1 < len2 ? len1 : len2; | |
1447 | ||
1448 | for (i = 0; i < len; i++) | |
1449 | { | |
1450 | if (s1[i] < s2[i]) | |
1451 | return -1; | |
1452 | else if (s1[i] > s2[i]) | |
1453 | return 1; | |
1454 | else | |
1455 | continue; | |
1456 | } | |
1457 | ||
1458 | if (len1 < len2) | |
1459 | return -1; | |
1460 | else if (len1 > len2) | |
1461 | return 1; | |
1462 | else | |
1463 | return 0; | |
1464 | } | |
1465 | ||
1466 | /* Simulate the C operator == by returning a 1 | |
1467 | iff ARG1 and ARG2 have equal contents. */ | |
1468 | ||
1469 | int | |
1470 | value_equal (struct value *arg1, struct value *arg2) | |
1471 | { | |
1472 | int len; | |
1473 | const gdb_byte *p1; | |
1474 | const gdb_byte *p2; | |
1475 | struct type *type1, *type2; | |
1476 | enum type_code code1; | |
1477 | enum type_code code2; | |
1478 | int is_int1, is_int2; | |
1479 | ||
1480 | arg1 = coerce_array (arg1); | |
1481 | arg2 = coerce_array (arg2); | |
1482 | ||
1483 | type1 = check_typedef (value_type (arg1)); | |
1484 | type2 = check_typedef (value_type (arg2)); | |
1485 | code1 = TYPE_CODE (type1); | |
1486 | code2 = TYPE_CODE (type2); | |
1487 | is_int1 = is_integral_type (type1); | |
1488 | is_int2 = is_integral_type (type2); | |
1489 | ||
1490 | if (is_int1 && is_int2) | |
1491 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1492 | BINOP_EQUAL))); | |
1493 | else if ((is_floating_value (arg1) || is_int1) | |
1494 | && (is_floating_value (arg2) || is_int2)) | |
1495 | { | |
1496 | struct type *eff_type_v1, *eff_type_v2; | |
1497 | gdb::byte_vector v1, v2; | |
1498 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1499 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1500 | ||
1501 | value_args_as_target_float (arg1, arg2, | |
1502 | v1.data (), &eff_type_v1, | |
1503 | v2.data (), &eff_type_v2); | |
1504 | ||
1505 | return target_float_compare (v1.data (), eff_type_v1, | |
1506 | v2.data (), eff_type_v2) == 0; | |
1507 | } | |
1508 | ||
1509 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1510 | is bigger. */ | |
1511 | else if (code1 == TYPE_CODE_PTR && is_int2) | |
1512 | return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); | |
1513 | else if (code2 == TYPE_CODE_PTR && is_int1) | |
1514 | return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); | |
1515 | ||
1516 | else if (code1 == code2 | |
1517 | && ((len = (int) TYPE_LENGTH (type1)) | |
1518 | == (int) TYPE_LENGTH (type2))) | |
1519 | { | |
1520 | p1 = value_contents (arg1); | |
1521 | p2 = value_contents (arg2); | |
1522 | while (--len >= 0) | |
1523 | { | |
1524 | if (*p1++ != *p2++) | |
1525 | break; | |
1526 | } | |
1527 | return len < 0; | |
1528 | } | |
1529 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) | |
1530 | { | |
1531 | return value_strcmp (arg1, arg2) == 0; | |
1532 | } | |
1533 | else | |
1534 | error (_("Invalid type combination in equality test.")); | |
1535 | } | |
1536 | ||
1537 | /* Compare values based on their raw contents. Useful for arrays since | |
1538 | value_equal coerces them to pointers, thus comparing just the address | |
1539 | of the array instead of its contents. */ | |
1540 | ||
1541 | int | |
1542 | value_equal_contents (struct value *arg1, struct value *arg2) | |
1543 | { | |
1544 | struct type *type1, *type2; | |
1545 | ||
1546 | type1 = check_typedef (value_type (arg1)); | |
1547 | type2 = check_typedef (value_type (arg2)); | |
1548 | ||
1549 | return (TYPE_CODE (type1) == TYPE_CODE (type2) | |
1550 | && TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
1551 | && memcmp (value_contents (arg1), value_contents (arg2), | |
1552 | TYPE_LENGTH (type1)) == 0); | |
1553 | } | |
1554 | ||
1555 | /* Simulate the C operator < by returning 1 | |
1556 | iff ARG1's contents are less than ARG2's. */ | |
1557 | ||
1558 | int | |
1559 | value_less (struct value *arg1, struct value *arg2) | |
1560 | { | |
1561 | enum type_code code1; | |
1562 | enum type_code code2; | |
1563 | struct type *type1, *type2; | |
1564 | int is_int1, is_int2; | |
1565 | ||
1566 | arg1 = coerce_array (arg1); | |
1567 | arg2 = coerce_array (arg2); | |
1568 | ||
1569 | type1 = check_typedef (value_type (arg1)); | |
1570 | type2 = check_typedef (value_type (arg2)); | |
1571 | code1 = TYPE_CODE (type1); | |
1572 | code2 = TYPE_CODE (type2); | |
1573 | is_int1 = is_integral_type (type1); | |
1574 | is_int2 = is_integral_type (type2); | |
1575 | ||
1576 | if (is_int1 && is_int2) | |
1577 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1578 | BINOP_LESS))); | |
1579 | else if ((is_floating_value (arg1) || is_int1) | |
1580 | && (is_floating_value (arg2) || is_int2)) | |
1581 | { | |
1582 | struct type *eff_type_v1, *eff_type_v2; | |
1583 | gdb::byte_vector v1, v2; | |
1584 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1585 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1586 | ||
1587 | value_args_as_target_float (arg1, arg2, | |
1588 | v1.data (), &eff_type_v1, | |
1589 | v2.data (), &eff_type_v2); | |
1590 | ||
1591 | return target_float_compare (v1.data (), eff_type_v1, | |
1592 | v2.data (), eff_type_v2) == -1; | |
1593 | } | |
1594 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
1595 | return value_as_address (arg1) < value_as_address (arg2); | |
1596 | ||
1597 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1598 | is bigger. */ | |
1599 | else if (code1 == TYPE_CODE_PTR && is_int2) | |
1600 | return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); | |
1601 | else if (code2 == TYPE_CODE_PTR && is_int1) | |
1602 | return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); | |
1603 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) | |
1604 | return value_strcmp (arg1, arg2) < 0; | |
1605 | else | |
1606 | { | |
1607 | error (_("Invalid type combination in ordering comparison.")); | |
1608 | return 0; | |
1609 | } | |
1610 | } | |
1611 | \f | |
1612 | /* The unary operators +, - and ~. They free the argument ARG1. */ | |
1613 | ||
1614 | struct value * | |
1615 | value_pos (struct value *arg1) | |
1616 | { | |
1617 | struct type *type; | |
1618 | ||
1619 | arg1 = coerce_ref (arg1); | |
1620 | type = check_typedef (value_type (arg1)); | |
1621 | ||
1622 | if (is_integral_type (type) || is_floating_value (arg1) | |
1623 | || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) | |
1624 | return value_from_contents (type, value_contents (arg1)); | |
1625 | else | |
1626 | error (_("Argument to positive operation not a number.")); | |
1627 | } | |
1628 | ||
1629 | struct value * | |
1630 | value_neg (struct value *arg1) | |
1631 | { | |
1632 | struct type *type; | |
1633 | ||
1634 | arg1 = coerce_ref (arg1); | |
1635 | type = check_typedef (value_type (arg1)); | |
1636 | ||
1637 | if (is_integral_type (type) || is_floating_type (type)) | |
1638 | return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); | |
1639 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) | |
1640 | { | |
1641 | struct value *tmp, *val = allocate_value (type); | |
1642 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
1643 | int i; | |
1644 | LONGEST low_bound, high_bound; | |
1645 | ||
1646 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
1647 | error (_("Could not determine the vector bounds")); | |
1648 | ||
1649 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
1650 | { | |
1651 | tmp = value_neg (value_subscript (arg1, i)); | |
1652 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1653 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1654 | } | |
1655 | return val; | |
1656 | } | |
1657 | else | |
1658 | error (_("Argument to negate operation not a number.")); | |
1659 | } | |
1660 | ||
1661 | struct value * | |
1662 | value_complement (struct value *arg1) | |
1663 | { | |
1664 | struct type *type; | |
1665 | struct value *val; | |
1666 | ||
1667 | arg1 = coerce_ref (arg1); | |
1668 | type = check_typedef (value_type (arg1)); | |
1669 | ||
1670 | if (is_integral_type (type)) | |
1671 | val = value_from_longest (type, ~value_as_long (arg1)); | |
1672 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) | |
1673 | { | |
1674 | struct value *tmp; | |
1675 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
1676 | int i; | |
1677 | LONGEST low_bound, high_bound; | |
1678 | ||
1679 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
1680 | error (_("Could not determine the vector bounds")); | |
1681 | ||
1682 | val = allocate_value (type); | |
1683 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
1684 | { | |
1685 | tmp = value_complement (value_subscript (arg1, i)); | |
1686 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1687 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1688 | } | |
1689 | } | |
1690 | else | |
1691 | error (_("Argument to complement operation not an integer, boolean.")); | |
1692 | ||
1693 | return val; | |
1694 | } | |
1695 | \f | |
1696 | /* The INDEX'th bit of SET value whose value_type is TYPE, | |
1697 | and whose value_contents is valaddr. | |
1698 | Return -1 if out of range, -2 other error. */ | |
1699 | ||
1700 | int | |
1701 | value_bit_index (struct type *type, const gdb_byte *valaddr, int index) | |
1702 | { | |
1703 | struct gdbarch *gdbarch = get_type_arch (type); | |
1704 | LONGEST low_bound, high_bound; | |
1705 | LONGEST word; | |
1706 | unsigned rel_index; | |
1707 | struct type *range = TYPE_INDEX_TYPE (type); | |
1708 | ||
1709 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1710 | return -2; | |
1711 | if (index < low_bound || index > high_bound) | |
1712 | return -1; | |
1713 | rel_index = index - low_bound; | |
1714 | word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, | |
1715 | gdbarch_byte_order (gdbarch)); | |
1716 | rel_index %= TARGET_CHAR_BIT; | |
1717 | if (gdbarch_bits_big_endian (gdbarch)) | |
1718 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; | |
1719 | return (word >> rel_index) & 1; | |
1720 | } | |
1721 | ||
1722 | int | |
1723 | value_in (struct value *element, struct value *set) | |
1724 | { | |
1725 | int member; | |
1726 | struct type *settype = check_typedef (value_type (set)); | |
1727 | struct type *eltype = check_typedef (value_type (element)); | |
1728 | ||
1729 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) | |
1730 | eltype = TYPE_TARGET_TYPE (eltype); | |
1731 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
1732 | error (_("Second argument of 'IN' has wrong type")); | |
1733 | if (TYPE_CODE (eltype) != TYPE_CODE_INT | |
1734 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1735 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1736 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
1737 | error (_("First argument of 'IN' has wrong type")); | |
1738 | member = value_bit_index (settype, value_contents (set), | |
1739 | value_as_long (element)); | |
1740 | if (member < 0) | |
1741 | error (_("First argument of 'IN' not in range")); | |
1742 | return member; | |
1743 | } |