]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform arithmetic and other operations on values, for GDB. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
9b254dd1 | 4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 |
d067a990 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "value.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "expression.h" | |
27 | #include "target.h" | |
28 | #include "language.h" | |
c906108c | 29 | #include "gdb_string.h" |
d16aafd8 | 30 | #include "doublest.h" |
4ef30785 | 31 | #include "dfp.h" |
c4093a6a | 32 | #include <math.h> |
04714b91 | 33 | #include "infcall.h" |
c906108c SS |
34 | |
35 | /* Define whether or not the C operator '/' truncates towards zero for | |
36 | differently signed operands (truncation direction is undefined in C). */ | |
37 | ||
38 | #ifndef TRUNCATION_TOWARDS_ZERO | |
39 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
40 | #endif | |
41 | ||
f23631e4 | 42 | static struct value *value_subscripted_rvalue (struct value *, struct value *, int); |
c906108c | 43 | |
a14ed312 | 44 | void _initialize_valarith (void); |
c906108c | 45 | \f |
c5aa993b | 46 | |
ca439ad2 JI |
47 | /* Given a pointer, return the size of its target. |
48 | If the pointer type is void *, then return 1. | |
49 | If the target type is incomplete, then error out. | |
50 | This isn't a general purpose function, but just a | |
51 | helper for value_sub & value_add. | |
52 | */ | |
53 | ||
54 | static LONGEST | |
55 | find_size_for_pointer_math (struct type *ptr_type) | |
56 | { | |
57 | LONGEST sz = -1; | |
58 | struct type *ptr_target; | |
59 | ||
60 | ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); | |
61 | ||
62 | sz = TYPE_LENGTH (ptr_target); | |
63 | if (sz == 0) | |
64 | { | |
65 | if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) | |
66 | sz = 1; | |
67 | else | |
68 | { | |
69 | char *name; | |
70 | ||
71 | name = TYPE_NAME (ptr_target); | |
72 | if (name == NULL) | |
73 | name = TYPE_TAG_NAME (ptr_target); | |
74 | if (name == NULL) | |
8a3fe4f8 AC |
75 | error (_("Cannot perform pointer math on incomplete types, " |
76 | "try casting to a known type, or void *.")); | |
ca439ad2 | 77 | else |
8a3fe4f8 AC |
78 | error (_("Cannot perform pointer math on incomplete type \"%s\", " |
79 | "try casting to a known type, or void *."), name); | |
ca439ad2 JI |
80 | } |
81 | } | |
82 | return sz; | |
83 | } | |
84 | ||
f23631e4 AC |
85 | struct value * |
86 | value_add (struct value *arg1, struct value *arg2) | |
c906108c | 87 | { |
f23631e4 AC |
88 | struct value *valint; |
89 | struct value *valptr; | |
ca439ad2 | 90 | LONGEST sz; |
c906108c SS |
91 | struct type *type1, *type2, *valptrtype; |
92 | ||
994b9211 AC |
93 | arg1 = coerce_array (arg1); |
94 | arg2 = coerce_array (arg2); | |
df407dfe AC |
95 | type1 = check_typedef (value_type (arg1)); |
96 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
97 | |
98 | if ((TYPE_CODE (type1) == TYPE_CODE_PTR | |
99 | || TYPE_CODE (type2) == TYPE_CODE_PTR) | |
100 | && | |
2de41bce | 101 | (is_integral_type (type1) || is_integral_type (type2))) |
c906108c SS |
102 | /* Exactly one argument is a pointer, and one is an integer. */ |
103 | { | |
f23631e4 | 104 | struct value *retval; |
c906108c SS |
105 | |
106 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
107 | { | |
108 | valptr = arg1; | |
109 | valint = arg2; | |
110 | valptrtype = type1; | |
111 | } | |
112 | else | |
113 | { | |
114 | valptr = arg2; | |
115 | valint = arg1; | |
116 | valptrtype = type2; | |
117 | } | |
ca439ad2 JI |
118 | |
119 | sz = find_size_for_pointer_math (valptrtype); | |
120 | ||
4478b372 | 121 | retval = value_from_pointer (valptrtype, |
1aa20aa8 | 122 | value_as_address (valptr) |
ca439ad2 | 123 | + (sz * value_as_long (valint))); |
c906108c SS |
124 | return retval; |
125 | } | |
126 | ||
127 | return value_binop (arg1, arg2, BINOP_ADD); | |
128 | } | |
129 | ||
f23631e4 AC |
130 | struct value * |
131 | value_sub (struct value *arg1, struct value *arg2) | |
c906108c SS |
132 | { |
133 | struct type *type1, *type2; | |
994b9211 AC |
134 | arg1 = coerce_array (arg1); |
135 | arg2 = coerce_array (arg2); | |
df407dfe AC |
136 | type1 = check_typedef (value_type (arg1)); |
137 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
138 | |
139 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
140 | { | |
2de41bce | 141 | if (is_integral_type (type2)) |
c906108c SS |
142 | { |
143 | /* pointer - integer. */ | |
ca439ad2 JI |
144 | LONGEST sz = find_size_for_pointer_math (type1); |
145 | ||
dbbd9c57 | 146 | return value_from_pointer (type1, |
1aa20aa8 | 147 | (value_as_address (arg1) |
4478b372 | 148 | - (sz * value_as_long (arg2)))); |
c906108c SS |
149 | } |
150 | else if (TYPE_CODE (type2) == TYPE_CODE_PTR | |
3dd3139b MS |
151 | && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) |
152 | == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
c906108c SS |
153 | { |
154 | /* pointer to <type x> - pointer to <type x>. */ | |
155 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
156 | return value_from_longest | |
c5aa993b | 157 | (builtin_type_long, /* FIXME -- should be ptrdiff_t */ |
c906108c SS |
158 | (value_as_long (arg1) - value_as_long (arg2)) / sz); |
159 | } | |
160 | else | |
161 | { | |
8a3fe4f8 | 162 | error (_("\ |
c906108c | 163 | First argument of `-' is a pointer and second argument is neither\n\ |
8a3fe4f8 | 164 | an integer nor a pointer of the same type.")); |
c906108c SS |
165 | } |
166 | } | |
167 | ||
168 | return value_binop (arg1, arg2, BINOP_SUB); | |
169 | } | |
170 | ||
171 | /* Return the value of ARRAY[IDX]. | |
172 | See comments in value_coerce_array() for rationale for reason for | |
173 | doing lower bounds adjustment here rather than there. | |
174 | FIXME: Perhaps we should validate that the index is valid and if | |
175 | verbosity is set, warn about invalid indices (but still use them). */ | |
176 | ||
f23631e4 AC |
177 | struct value * |
178 | value_subscript (struct value *array, struct value *idx) | |
c906108c | 179 | { |
f23631e4 | 180 | struct value *bound; |
c906108c SS |
181 | int c_style = current_language->c_style_arrays; |
182 | struct type *tarray; | |
183 | ||
994b9211 | 184 | array = coerce_ref (array); |
df407dfe | 185 | tarray = check_typedef (value_type (array)); |
c906108c SS |
186 | |
187 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
188 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
189 | { | |
190 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
191 | LONGEST lowerbound, upperbound; | |
192 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
193 | ||
194 | if (VALUE_LVAL (array) != lval_memory) | |
195 | return value_subscripted_rvalue (array, idx, lowerbound); | |
196 | ||
197 | if (c_style == 0) | |
198 | { | |
199 | LONGEST index = value_as_long (idx); | |
200 | if (index >= lowerbound && index <= upperbound) | |
201 | return value_subscripted_rvalue (array, idx, lowerbound); | |
987504bb JJ |
202 | /* Emit warning unless we have an array of unknown size. |
203 | An array of unknown size has lowerbound 0 and upperbound -1. */ | |
204 | if (upperbound > -1) | |
8a3fe4f8 | 205 | warning (_("array or string index out of range")); |
c906108c SS |
206 | /* fall doing C stuff */ |
207 | c_style = 1; | |
208 | } | |
209 | ||
210 | if (lowerbound != 0) | |
211 | { | |
212 | bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); | |
213 | idx = value_sub (idx, bound); | |
214 | } | |
215 | ||
216 | array = value_coerce_array (array); | |
217 | } | |
218 | ||
219 | if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) | |
220 | { | |
221 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
222 | LONGEST index = value_as_long (idx); | |
f23631e4 | 223 | struct value *v; |
c906108c SS |
224 | int offset, byte, bit_index; |
225 | LONGEST lowerbound, upperbound; | |
226 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
227 | if (index < lowerbound || index > upperbound) | |
8a3fe4f8 | 228 | error (_("bitstring index out of range")); |
c906108c SS |
229 | index -= lowerbound; |
230 | offset = index / TARGET_CHAR_BIT; | |
0fd88904 | 231 | byte = *((char *) value_contents (array) + offset); |
c906108c | 232 | bit_index = index % TARGET_CHAR_BIT; |
32c9a795 MD |
233 | byte >>= (gdbarch_bits_big_endian (current_gdbarch) ? |
234 | TARGET_CHAR_BIT - 1 - bit_index : bit_index); | |
c906108c | 235 | v = value_from_longest (LA_BOOL_TYPE, byte & 1); |
9bbda503 AC |
236 | set_value_bitpos (v, bit_index); |
237 | set_value_bitsize (v, 1); | |
c906108c SS |
238 | VALUE_LVAL (v) = VALUE_LVAL (array); |
239 | if (VALUE_LVAL (array) == lval_internalvar) | |
240 | VALUE_LVAL (v) = lval_internalvar_component; | |
241 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
65d3800a | 242 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array); |
f5cf64a7 | 243 | set_value_offset (v, offset + value_offset (array)); |
c906108c SS |
244 | return v; |
245 | } | |
246 | ||
247 | if (c_style) | |
248 | return value_ind (value_add (array, idx)); | |
249 | else | |
8a3fe4f8 | 250 | error (_("not an array or string")); |
c906108c SS |
251 | } |
252 | ||
253 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
254 | (eg, a vector register). This routine used to promote floats | |
255 | to doubles, but no longer does. */ | |
256 | ||
f23631e4 AC |
257 | static struct value * |
258 | value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound) | |
c906108c | 259 | { |
df407dfe | 260 | struct type *array_type = check_typedef (value_type (array)); |
c906108c SS |
261 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); |
262 | unsigned int elt_size = TYPE_LENGTH (elt_type); | |
263 | LONGEST index = value_as_long (idx); | |
264 | unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); | |
f23631e4 | 265 | struct value *v; |
c906108c SS |
266 | |
267 | if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) | |
8a3fe4f8 | 268 | error (_("no such vector element")); |
c906108c SS |
269 | |
270 | v = allocate_value (elt_type); | |
d69fe07e | 271 | if (value_lazy (array)) |
dfa52d88 | 272 | set_value_lazy (v, 1); |
c906108c | 273 | else |
0fd88904 AC |
274 | memcpy (value_contents_writeable (v), |
275 | value_contents (array) + elt_offs, elt_size); | |
c906108c SS |
276 | |
277 | if (VALUE_LVAL (array) == lval_internalvar) | |
278 | VALUE_LVAL (v) = lval_internalvar_component; | |
279 | else | |
280 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
281 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
9ee8fc9d | 282 | VALUE_REGNUM (v) = VALUE_REGNUM (array); |
65d3800a | 283 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array); |
f5cf64a7 | 284 | set_value_offset (v, value_offset (array) + elt_offs); |
c906108c SS |
285 | return v; |
286 | } | |
287 | \f | |
13d6656b JB |
288 | /* Check to see if either argument is a structure, or a reference to |
289 | one. This is called so we know whether to go ahead with the normal | |
290 | binop or look for a user defined function instead. | |
c906108c SS |
291 | |
292 | For now, we do not overload the `=' operator. */ | |
293 | ||
294 | int | |
f23631e4 | 295 | binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2) |
c906108c SS |
296 | { |
297 | struct type *type1, *type2; | |
298 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
299 | return 0; | |
13d6656b | 300 | |
df407dfe | 301 | type1 = check_typedef (value_type (arg1)); |
13d6656b JB |
302 | if (TYPE_CODE (type1) == TYPE_CODE_REF) |
303 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); | |
304 | ||
df407dfe | 305 | type2 = check_typedef (value_type (arg2)); |
13d6656b JB |
306 | if (TYPE_CODE (type2) == TYPE_CODE_REF) |
307 | type2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
308 | ||
c906108c | 309 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT |
13d6656b | 310 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT); |
c906108c SS |
311 | } |
312 | ||
313 | /* Check to see if argument is a structure. This is called so | |
314 | we know whether to go ahead with the normal unop or look for a | |
315 | user defined function instead. | |
316 | ||
317 | For now, we do not overload the `&' operator. */ | |
318 | ||
c5aa993b | 319 | int |
f23631e4 | 320 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) |
c906108c SS |
321 | { |
322 | struct type *type1; | |
323 | if (op == UNOP_ADDR) | |
324 | return 0; | |
df407dfe | 325 | type1 = check_typedef (value_type (arg1)); |
c906108c SS |
326 | for (;;) |
327 | { | |
328 | if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) | |
329 | return 1; | |
330 | else if (TYPE_CODE (type1) == TYPE_CODE_REF) | |
331 | type1 = TYPE_TARGET_TYPE (type1); | |
332 | else | |
333 | return 0; | |
334 | } | |
335 | } | |
336 | ||
337 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
338 | user defined function. Create an argument vector that calls | |
339 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
340 | binary operator which is legal for GNU C++). | |
341 | ||
342 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
343 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
344 | unused. */ | |
345 | ||
f23631e4 AC |
346 | struct value * |
347 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | |
fba45db2 | 348 | enum exp_opcode otherop, enum noside noside) |
c906108c | 349 | { |
f23631e4 | 350 | struct value **argvec; |
c906108c SS |
351 | char *ptr; |
352 | char tstr[13]; | |
353 | int static_memfuncp; | |
354 | ||
994b9211 AC |
355 | arg1 = coerce_ref (arg1); |
356 | arg2 = coerce_ref (arg2); | |
357 | arg1 = coerce_enum (arg1); | |
358 | arg2 = coerce_enum (arg2); | |
c906108c SS |
359 | |
360 | /* now we know that what we have to do is construct our | |
361 | arg vector and find the right function to call it with. */ | |
362 | ||
df407dfe | 363 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 364 | error (_("Can't do that binary op on that type")); /* FIXME be explicit */ |
c906108c | 365 | |
f23631e4 | 366 | argvec = (struct value **) alloca (sizeof (struct value *) * 4); |
c906108c SS |
367 | argvec[1] = value_addr (arg1); |
368 | argvec[2] = arg2; | |
369 | argvec[3] = 0; | |
370 | ||
c5aa993b JM |
371 | /* make the right function name up */ |
372 | strcpy (tstr, "operator__"); | |
373 | ptr = tstr + 8; | |
c906108c SS |
374 | switch (op) |
375 | { | |
c5aa993b JM |
376 | case BINOP_ADD: |
377 | strcpy (ptr, "+"); | |
378 | break; | |
379 | case BINOP_SUB: | |
380 | strcpy (ptr, "-"); | |
381 | break; | |
382 | case BINOP_MUL: | |
383 | strcpy (ptr, "*"); | |
384 | break; | |
385 | case BINOP_DIV: | |
386 | strcpy (ptr, "/"); | |
387 | break; | |
388 | case BINOP_REM: | |
389 | strcpy (ptr, "%"); | |
390 | break; | |
391 | case BINOP_LSH: | |
392 | strcpy (ptr, "<<"); | |
393 | break; | |
394 | case BINOP_RSH: | |
395 | strcpy (ptr, ">>"); | |
396 | break; | |
397 | case BINOP_BITWISE_AND: | |
398 | strcpy (ptr, "&"); | |
399 | break; | |
400 | case BINOP_BITWISE_IOR: | |
401 | strcpy (ptr, "|"); | |
402 | break; | |
403 | case BINOP_BITWISE_XOR: | |
404 | strcpy (ptr, "^"); | |
405 | break; | |
406 | case BINOP_LOGICAL_AND: | |
407 | strcpy (ptr, "&&"); | |
408 | break; | |
409 | case BINOP_LOGICAL_OR: | |
410 | strcpy (ptr, "||"); | |
411 | break; | |
412 | case BINOP_MIN: | |
413 | strcpy (ptr, "<?"); | |
414 | break; | |
415 | case BINOP_MAX: | |
416 | strcpy (ptr, ">?"); | |
417 | break; | |
418 | case BINOP_ASSIGN: | |
419 | strcpy (ptr, "="); | |
420 | break; | |
421 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
422 | switch (otherop) |
423 | { | |
c5aa993b JM |
424 | case BINOP_ADD: |
425 | strcpy (ptr, "+="); | |
426 | break; | |
427 | case BINOP_SUB: | |
428 | strcpy (ptr, "-="); | |
429 | break; | |
430 | case BINOP_MUL: | |
431 | strcpy (ptr, "*="); | |
432 | break; | |
433 | case BINOP_DIV: | |
434 | strcpy (ptr, "/="); | |
435 | break; | |
436 | case BINOP_REM: | |
437 | strcpy (ptr, "%="); | |
438 | break; | |
439 | case BINOP_BITWISE_AND: | |
440 | strcpy (ptr, "&="); | |
441 | break; | |
442 | case BINOP_BITWISE_IOR: | |
443 | strcpy (ptr, "|="); | |
444 | break; | |
445 | case BINOP_BITWISE_XOR: | |
446 | strcpy (ptr, "^="); | |
447 | break; | |
448 | case BINOP_MOD: /* invalid */ | |
c906108c | 449 | default: |
8a3fe4f8 | 450 | error (_("Invalid binary operation specified.")); |
c906108c SS |
451 | } |
452 | break; | |
c5aa993b JM |
453 | case BINOP_SUBSCRIPT: |
454 | strcpy (ptr, "[]"); | |
455 | break; | |
456 | case BINOP_EQUAL: | |
457 | strcpy (ptr, "=="); | |
458 | break; | |
459 | case BINOP_NOTEQUAL: | |
460 | strcpy (ptr, "!="); | |
461 | break; | |
462 | case BINOP_LESS: | |
463 | strcpy (ptr, "<"); | |
464 | break; | |
465 | case BINOP_GTR: | |
466 | strcpy (ptr, ">"); | |
467 | break; | |
468 | case BINOP_GEQ: | |
469 | strcpy (ptr, ">="); | |
470 | break; | |
471 | case BINOP_LEQ: | |
472 | strcpy (ptr, "<="); | |
473 | break; | |
474 | case BINOP_MOD: /* invalid */ | |
c906108c | 475 | default: |
8a3fe4f8 | 476 | error (_("Invalid binary operation specified.")); |
c906108c SS |
477 | } |
478 | ||
c5aa993b JM |
479 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
480 | ||
c906108c SS |
481 | if (argvec[0]) |
482 | { | |
483 | if (static_memfuncp) | |
484 | { | |
485 | argvec[1] = argvec[0]; | |
486 | argvec++; | |
487 | } | |
488 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
489 | { | |
490 | struct type *return_type; | |
491 | return_type | |
df407dfe | 492 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
493 | return value_zero (return_type, VALUE_LVAL (arg1)); |
494 | } | |
495 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
496 | } | |
8a3fe4f8 | 497 | error (_("member function %s not found"), tstr); |
c906108c SS |
498 | #ifdef lint |
499 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
500 | #endif | |
501 | } | |
502 | ||
503 | /* We know that arg1 is a structure, so try to find a unary user | |
504 | defined operator that matches the operator in question. | |
505 | Create an argument vector that calls arg1.operator @ (arg1) | |
506 | and return that value (where '@' is (almost) any unary operator which | |
507 | is legal for GNU C++). */ | |
508 | ||
f23631e4 AC |
509 | struct value * |
510 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | |
c906108c | 511 | { |
f23631e4 | 512 | struct value **argvec; |
c906108c SS |
513 | char *ptr, *mangle_ptr; |
514 | char tstr[13], mangle_tstr[13]; | |
491b8946 | 515 | int static_memfuncp, nargs; |
c906108c | 516 | |
994b9211 AC |
517 | arg1 = coerce_ref (arg1); |
518 | arg1 = coerce_enum (arg1); | |
c906108c SS |
519 | |
520 | /* now we know that what we have to do is construct our | |
521 | arg vector and find the right function to call it with. */ | |
522 | ||
df407dfe | 523 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 524 | error (_("Can't do that unary op on that type")); /* FIXME be explicit */ |
c906108c | 525 | |
491b8946 | 526 | argvec = (struct value **) alloca (sizeof (struct value *) * 4); |
c906108c SS |
527 | argvec[1] = value_addr (arg1); |
528 | argvec[2] = 0; | |
529 | ||
491b8946 DJ |
530 | nargs = 1; |
531 | ||
c5aa993b JM |
532 | /* make the right function name up */ |
533 | strcpy (tstr, "operator__"); | |
534 | ptr = tstr + 8; | |
535 | strcpy (mangle_tstr, "__"); | |
536 | mangle_ptr = mangle_tstr + 2; | |
c906108c SS |
537 | switch (op) |
538 | { | |
c5aa993b JM |
539 | case UNOP_PREINCREMENT: |
540 | strcpy (ptr, "++"); | |
541 | break; | |
542 | case UNOP_PREDECREMENT: | |
491b8946 | 543 | strcpy (ptr, "--"); |
c5aa993b JM |
544 | break; |
545 | case UNOP_POSTINCREMENT: | |
546 | strcpy (ptr, "++"); | |
491b8946 DJ |
547 | argvec[2] = value_from_longest (builtin_type_int, 0); |
548 | argvec[3] = 0; | |
549 | nargs ++; | |
c5aa993b JM |
550 | break; |
551 | case UNOP_POSTDECREMENT: | |
491b8946 DJ |
552 | strcpy (ptr, "--"); |
553 | argvec[2] = value_from_longest (builtin_type_int, 0); | |
554 | argvec[3] = 0; | |
555 | nargs ++; | |
c5aa993b JM |
556 | break; |
557 | case UNOP_LOGICAL_NOT: | |
558 | strcpy (ptr, "!"); | |
559 | break; | |
560 | case UNOP_COMPLEMENT: | |
561 | strcpy (ptr, "~"); | |
562 | break; | |
563 | case UNOP_NEG: | |
564 | strcpy (ptr, "-"); | |
565 | break; | |
36e9969c NS |
566 | case UNOP_PLUS: |
567 | strcpy (ptr, "+"); | |
568 | break; | |
c5aa993b JM |
569 | case UNOP_IND: |
570 | strcpy (ptr, "*"); | |
571 | break; | |
c906108c | 572 | default: |
8a3fe4f8 | 573 | error (_("Invalid unary operation specified.")); |
c906108c SS |
574 | } |
575 | ||
c5aa993b | 576 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
c906108c SS |
577 | |
578 | if (argvec[0]) | |
579 | { | |
580 | if (static_memfuncp) | |
581 | { | |
582 | argvec[1] = argvec[0]; | |
491b8946 | 583 | nargs --; |
c906108c SS |
584 | argvec++; |
585 | } | |
586 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
587 | { | |
588 | struct type *return_type; | |
589 | return_type | |
df407dfe | 590 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
591 | return value_zero (return_type, VALUE_LVAL (arg1)); |
592 | } | |
491b8946 | 593 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c906108c | 594 | } |
8a3fe4f8 | 595 | error (_("member function %s not found"), tstr); |
c5aa993b | 596 | return 0; /* For lint -- never reached */ |
c906108c | 597 | } |
c906108c | 598 | \f |
c5aa993b | 599 | |
c906108c SS |
600 | /* Concatenate two values with the following conditions: |
601 | ||
c5aa993b JM |
602 | (1) Both values must be either bitstring values or character string |
603 | values and the resulting value consists of the concatenation of | |
604 | ARG1 followed by ARG2. | |
c906108c | 605 | |
c5aa993b | 606 | or |
c906108c | 607 | |
c5aa993b JM |
608 | One value must be an integer value and the other value must be |
609 | either a bitstring value or character string value, which is | |
610 | to be repeated by the number of times specified by the integer | |
611 | value. | |
c906108c SS |
612 | |
613 | ||
c5aa993b JM |
614 | (2) Boolean values are also allowed and are treated as bit string |
615 | values of length 1. | |
c906108c | 616 | |
c5aa993b JM |
617 | (3) Character values are also allowed and are treated as character |
618 | string values of length 1. | |
619 | */ | |
c906108c | 620 | |
f23631e4 AC |
621 | struct value * |
622 | value_concat (struct value *arg1, struct value *arg2) | |
c906108c | 623 | { |
f23631e4 AC |
624 | struct value *inval1; |
625 | struct value *inval2; | |
626 | struct value *outval = NULL; | |
c906108c SS |
627 | int inval1len, inval2len; |
628 | int count, idx; | |
629 | char *ptr; | |
630 | char inchar; | |
df407dfe AC |
631 | struct type *type1 = check_typedef (value_type (arg1)); |
632 | struct type *type2 = check_typedef (value_type (arg2)); | |
c906108c | 633 | |
c906108c SS |
634 | /* First figure out if we are dealing with two values to be concatenated |
635 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
636 | first of two concatenated values, or the repeat count. INVAL2 is set | |
637 | to the second of the two concatenated values or the value to be | |
638 | repeated. */ | |
639 | ||
640 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
641 | { | |
642 | struct type *tmp = type1; | |
643 | type1 = tmp; | |
644 | tmp = type2; | |
645 | inval1 = arg2; | |
646 | inval2 = arg1; | |
647 | } | |
648 | else | |
649 | { | |
650 | inval1 = arg1; | |
651 | inval2 = arg2; | |
652 | } | |
653 | ||
654 | /* Now process the input values. */ | |
655 | ||
656 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
657 | { | |
658 | /* We have a repeat count. Validate the second value and then | |
c5aa993b | 659 | construct a value repeated that many times. */ |
c906108c SS |
660 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
661 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
662 | { | |
663 | count = longest_to_int (value_as_long (inval1)); | |
664 | inval2len = TYPE_LENGTH (type2); | |
665 | ptr = (char *) alloca (count * inval2len); | |
666 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
667 | { | |
668 | inchar = (char) unpack_long (type2, | |
0fd88904 | 669 | value_contents (inval2)); |
c906108c SS |
670 | for (idx = 0; idx < count; idx++) |
671 | { | |
672 | *(ptr + idx) = inchar; | |
673 | } | |
674 | } | |
675 | else | |
676 | { | |
677 | for (idx = 0; idx < count; idx++) | |
678 | { | |
0fd88904 | 679 | memcpy (ptr + (idx * inval2len), value_contents (inval2), |
c906108c SS |
680 | inval2len); |
681 | } | |
682 | } | |
683 | outval = value_string (ptr, count * inval2len); | |
684 | } | |
685 | else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING | |
686 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
687 | { | |
8a3fe4f8 | 688 | error (_("unimplemented support for bitstring/boolean repeats")); |
c906108c SS |
689 | } |
690 | else | |
691 | { | |
8a3fe4f8 | 692 | error (_("can't repeat values of that type")); |
c906108c SS |
693 | } |
694 | } | |
695 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 696 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c SS |
697 | { |
698 | /* We have two character strings to concatenate. */ | |
699 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
700 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
701 | { | |
8a3fe4f8 | 702 | error (_("Strings can only be concatenated with other strings.")); |
c906108c SS |
703 | } |
704 | inval1len = TYPE_LENGTH (type1); | |
705 | inval2len = TYPE_LENGTH (type2); | |
706 | ptr = (char *) alloca (inval1len + inval2len); | |
707 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
708 | { | |
0fd88904 | 709 | *ptr = (char) unpack_long (type1, value_contents (inval1)); |
c906108c SS |
710 | } |
711 | else | |
712 | { | |
0fd88904 | 713 | memcpy (ptr, value_contents (inval1), inval1len); |
c906108c SS |
714 | } |
715 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
716 | { | |
c5aa993b | 717 | *(ptr + inval1len) = |
0fd88904 | 718 | (char) unpack_long (type2, value_contents (inval2)); |
c906108c SS |
719 | } |
720 | else | |
721 | { | |
0fd88904 | 722 | memcpy (ptr + inval1len, value_contents (inval2), inval2len); |
c906108c SS |
723 | } |
724 | outval = value_string (ptr, inval1len + inval2len); | |
725 | } | |
726 | else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING | |
727 | || TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
728 | { | |
729 | /* We have two bitstrings to concatenate. */ | |
730 | if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING | |
731 | && TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
732 | { | |
8a3fe4f8 | 733 | error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.")); |
c906108c | 734 | } |
8a3fe4f8 | 735 | error (_("unimplemented support for bitstring/boolean concatenation.")); |
c5aa993b | 736 | } |
c906108c SS |
737 | else |
738 | { | |
739 | /* We don't know how to concatenate these operands. */ | |
8a3fe4f8 | 740 | error (_("illegal operands for concatenation.")); |
c906108c SS |
741 | } |
742 | return (outval); | |
743 | } | |
c906108c SS |
744 | \f |
745 | ||
4ef30785 TJB |
746 | /* Obtain decimal value of arguments for binary operation, converting from |
747 | other types if one of them is not decimal floating point. */ | |
748 | static void | |
749 | value_args_as_decimal (struct value *arg1, struct value *arg2, | |
750 | gdb_byte *x, int *len_x, gdb_byte *y, int *len_y) | |
751 | { | |
752 | struct type *type1, *type2; | |
753 | ||
754 | type1 = check_typedef (value_type (arg1)); | |
755 | type2 = check_typedef (value_type (arg2)); | |
756 | ||
757 | /* At least one of the arguments must be of decimal float type. */ | |
758 | gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT | |
759 | || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT); | |
760 | ||
761 | if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
762 | || TYPE_CODE (type2) == TYPE_CODE_FLT) | |
763 | /* The DFP extension to the C language does not allow mixing of | |
764 | * decimal float types with other float types in expressions | |
765 | * (see WDTR 24732, page 12). */ | |
766 | error (_("Mixing decimal floating types with other floating types is not allowed.")); | |
767 | ||
768 | /* Obtain decimal value of arg1, converting from other types | |
769 | if necessary. */ | |
770 | ||
771 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) | |
772 | { | |
773 | *len_x = TYPE_LENGTH (type1); | |
774 | memcpy (x, value_contents (arg1), *len_x); | |
775 | } | |
776 | else if (is_integral_type (type1)) | |
777 | { | |
778 | *len_x = TYPE_LENGTH (type2); | |
779 | decimal_from_integral (arg1, x, *len_x); | |
780 | } | |
781 | else | |
782 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
783 | TYPE_NAME (type2)); | |
784 | ||
785 | /* Obtain decimal value of arg2, converting from other types | |
786 | if necessary. */ | |
787 | ||
788 | if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) | |
789 | { | |
790 | *len_y = TYPE_LENGTH (type2); | |
791 | memcpy (y, value_contents (arg2), *len_y); | |
792 | } | |
793 | else if (is_integral_type (type2)) | |
794 | { | |
795 | *len_y = TYPE_LENGTH (type1); | |
796 | decimal_from_integral (arg2, y, *len_y); | |
797 | } | |
798 | else | |
799 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
800 | TYPE_NAME (type2)); | |
801 | } | |
c5aa993b | 802 | |
c906108c SS |
803 | /* Perform a binary operation on two operands which have reasonable |
804 | representations as integers or floats. This includes booleans, | |
805 | characters, integers, or floats. | |
806 | Does not support addition and subtraction on pointers; | |
807 | use value_add or value_sub if you want to handle those possibilities. */ | |
808 | ||
f23631e4 AC |
809 | struct value * |
810 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
c906108c | 811 | { |
f23631e4 | 812 | struct value *val; |
c906108c SS |
813 | struct type *type1, *type2; |
814 | ||
994b9211 AC |
815 | arg1 = coerce_ref (arg1); |
816 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
817 | type1 = check_typedef (value_type (arg1)); |
818 | type2 = check_typedef (value_type (arg2)); | |
c906108c | 819 | |
4ef30785 TJB |
820 | if ((TYPE_CODE (type1) != TYPE_CODE_FLT |
821 | && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT && !is_integral_type (type1)) | |
c906108c | 822 | || |
4ef30785 TJB |
823 | (TYPE_CODE (type2) != TYPE_CODE_FLT |
824 | && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT && !is_integral_type (type2))) | |
8a3fe4f8 | 825 | error (_("Argument to arithmetic operation not a number or boolean.")); |
c906108c | 826 | |
4ef30785 | 827 | if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT |
c906108c | 828 | || |
4ef30785 TJB |
829 | TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) |
830 | { | |
831 | struct type *v_type; | |
832 | int len_v1, len_v2, len_v; | |
833 | gdb_byte v1[16], v2[16]; | |
834 | gdb_byte v[16]; | |
835 | ||
836 | value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); | |
837 | ||
838 | switch (op) | |
839 | { | |
840 | case BINOP_ADD: | |
841 | case BINOP_SUB: | |
842 | case BINOP_MUL: | |
843 | case BINOP_DIV: | |
844 | case BINOP_EXP: | |
845 | decimal_binop (op, v1, len_v1, v2, len_v2, v, &len_v); | |
846 | break; | |
847 | ||
848 | default: | |
849 | error (_("Operation not valid for decimal floating point number.")); | |
850 | } | |
851 | ||
852 | if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT) | |
853 | /* If arg1 is not a decimal float, the type of the result is the type | |
854 | of the decimal float argument, arg2. */ | |
855 | v_type = type2; | |
856 | else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT) | |
857 | /* Same logic, for the case where arg2 is not a decimal float. */ | |
858 | v_type = type1; | |
859 | else | |
860 | /* len_v is equal either to len_v1 or to len_v2. the type of the | |
861 | result is the type of the argument with the same length as v. */ | |
862 | v_type = (len_v == len_v1)? type1 : type2; | |
863 | ||
864 | val = value_from_decfloat (v_type, v); | |
865 | } | |
866 | else if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
867 | || | |
868 | TYPE_CODE (type2) == TYPE_CODE_FLT) | |
c906108c SS |
869 | { |
870 | /* FIXME-if-picky-about-floating-accuracy: Should be doing this | |
c5aa993b JM |
871 | in target format. real.c in GCC probably has the necessary |
872 | code. */ | |
c4093a6a | 873 | DOUBLEST v1, v2, v = 0; |
c906108c SS |
874 | v1 = value_as_double (arg1); |
875 | v2 = value_as_double (arg2); | |
876 | switch (op) | |
877 | { | |
878 | case BINOP_ADD: | |
879 | v = v1 + v2; | |
880 | break; | |
881 | ||
882 | case BINOP_SUB: | |
883 | v = v1 - v2; | |
884 | break; | |
885 | ||
886 | case BINOP_MUL: | |
887 | v = v1 * v2; | |
888 | break; | |
889 | ||
890 | case BINOP_DIV: | |
891 | v = v1 / v2; | |
892 | break; | |
893 | ||
bd49c137 WZ |
894 | case BINOP_EXP: |
895 | errno = 0; | |
896 | v = pow (v1, v2); | |
897 | if (errno) | |
898 | error (_("Cannot perform exponentiation: %s"), safe_strerror (errno)); | |
899 | break; | |
c4093a6a | 900 | |
c906108c | 901 | default: |
8a3fe4f8 | 902 | error (_("Integer-only operation on floating point number.")); |
c906108c SS |
903 | } |
904 | ||
905 | /* If either arg was long double, make sure that value is also long | |
c5aa993b | 906 | double. */ |
c906108c | 907 | |
ea06eb3d UW |
908 | if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (current_gdbarch) |
909 | || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (current_gdbarch)) | |
c906108c SS |
910 | val = allocate_value (builtin_type_long_double); |
911 | else | |
912 | val = allocate_value (builtin_type_double); | |
913 | ||
990a07ab | 914 | store_typed_floating (value_contents_raw (val), value_type (val), v); |
c906108c SS |
915 | } |
916 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
917 | && | |
918 | TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 919 | { |
c4093a6a | 920 | LONGEST v1, v2, v = 0; |
c5aa993b JM |
921 | v1 = value_as_long (arg1); |
922 | v2 = value_as_long (arg2); | |
923 | ||
924 | switch (op) | |
925 | { | |
926 | case BINOP_BITWISE_AND: | |
927 | v = v1 & v2; | |
928 | break; | |
929 | ||
930 | case BINOP_BITWISE_IOR: | |
931 | v = v1 | v2; | |
932 | break; | |
933 | ||
934 | case BINOP_BITWISE_XOR: | |
935 | v = v1 ^ v2; | |
c4093a6a JM |
936 | break; |
937 | ||
938 | case BINOP_EQUAL: | |
939 | v = v1 == v2; | |
940 | break; | |
941 | ||
942 | case BINOP_NOTEQUAL: | |
943 | v = v1 != v2; | |
c5aa993b JM |
944 | break; |
945 | ||
946 | default: | |
8a3fe4f8 | 947 | error (_("Invalid operation on booleans.")); |
c5aa993b JM |
948 | } |
949 | ||
950 | val = allocate_value (type1); | |
990a07ab | 951 | store_signed_integer (value_contents_raw (val), |
c5aa993b JM |
952 | TYPE_LENGTH (type1), |
953 | v); | |
954 | } | |
c906108c SS |
955 | else |
956 | /* Integral operations here. */ | |
957 | /* FIXME: Also mixed integral/booleans, with result an integer. */ | |
958 | /* FIXME: This implements ANSI C rules (also correct for C++). | |
1b831c93 | 959 | What about FORTRAN and (the deleted) chill ? */ |
c906108c SS |
960 | { |
961 | unsigned int promoted_len1 = TYPE_LENGTH (type1); | |
962 | unsigned int promoted_len2 = TYPE_LENGTH (type2); | |
963 | int is_unsigned1 = TYPE_UNSIGNED (type1); | |
964 | int is_unsigned2 = TYPE_UNSIGNED (type2); | |
965 | unsigned int result_len; | |
966 | int unsigned_operation; | |
967 | ||
968 | /* Determine type length and signedness after promotion for | |
c5aa993b | 969 | both operands. */ |
c906108c SS |
970 | if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) |
971 | { | |
972 | is_unsigned1 = 0; | |
973 | promoted_len1 = TYPE_LENGTH (builtin_type_int); | |
974 | } | |
975 | if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) | |
976 | { | |
977 | is_unsigned2 = 0; | |
978 | promoted_len2 = TYPE_LENGTH (builtin_type_int); | |
979 | } | |
980 | ||
981 | /* Determine type length of the result, and if the operation should | |
c5aa993b JM |
982 | be done unsigned. |
983 | Use the signedness of the operand with the greater length. | |
984 | If both operands are of equal length, use unsigned operation | |
985 | if one of the operands is unsigned. */ | |
0d059fca AS |
986 | if (op == BINOP_RSH || op == BINOP_LSH) |
987 | { | |
988 | /* In case of the shift operators the type of the result only | |
989 | depends on the type of the left operand. */ | |
990 | unsigned_operation = is_unsigned1; | |
991 | result_len = promoted_len1; | |
992 | } | |
993 | else if (promoted_len1 > promoted_len2) | |
c906108c SS |
994 | { |
995 | unsigned_operation = is_unsigned1; | |
996 | result_len = promoted_len1; | |
997 | } | |
998 | else if (promoted_len2 > promoted_len1) | |
999 | { | |
1000 | unsigned_operation = is_unsigned2; | |
1001 | result_len = promoted_len2; | |
1002 | } | |
1003 | else | |
1004 | { | |
1005 | unsigned_operation = is_unsigned1 || is_unsigned2; | |
1006 | result_len = promoted_len1; | |
1007 | } | |
1008 | ||
1009 | if (unsigned_operation) | |
1010 | { | |
c4093a6a | 1011 | ULONGEST v1, v2, v = 0; |
c906108c SS |
1012 | v1 = (ULONGEST) value_as_long (arg1); |
1013 | v2 = (ULONGEST) value_as_long (arg2); | |
1014 | ||
1015 | /* Truncate values to the type length of the result. */ | |
1016 | if (result_len < sizeof (ULONGEST)) | |
1017 | { | |
1018 | v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
1019 | v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
1020 | } | |
c5aa993b | 1021 | |
c906108c SS |
1022 | switch (op) |
1023 | { | |
1024 | case BINOP_ADD: | |
1025 | v = v1 + v2; | |
1026 | break; | |
c5aa993b | 1027 | |
c906108c SS |
1028 | case BINOP_SUB: |
1029 | v = v1 - v2; | |
1030 | break; | |
c5aa993b | 1031 | |
c906108c SS |
1032 | case BINOP_MUL: |
1033 | v = v1 * v2; | |
1034 | break; | |
c5aa993b | 1035 | |
c906108c | 1036 | case BINOP_DIV: |
ef80d18e | 1037 | case BINOP_INTDIV: |
c3940723 PM |
1038 | if (v2 != 0) |
1039 | v = v1 / v2; | |
1040 | else | |
1041 | error (_("Division by zero")); | |
c906108c | 1042 | break; |
c5aa993b | 1043 | |
bd49c137 WZ |
1044 | case BINOP_EXP: |
1045 | errno = 0; | |
1046 | v = pow (v1, v2); | |
1047 | if (errno) | |
1048 | error (_("Cannot perform exponentiation: %s"), safe_strerror (errno)); | |
1049 | break; | |
c4093a6a | 1050 | |
c906108c SS |
1051 | case BINOP_REM: |
1052 | v = v1 % v2; | |
1053 | break; | |
c5aa993b | 1054 | |
c906108c SS |
1055 | case BINOP_MOD: |
1056 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1057 | v1 mod 0 has a defined value, v1. */ | |
c906108c SS |
1058 | if (v2 == 0) |
1059 | { | |
1060 | v = v1; | |
1061 | } | |
1062 | else | |
1063 | { | |
c5aa993b | 1064 | v = v1 / v2; |
c906108c SS |
1065 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
1066 | v = v1 - (v2 * v); | |
1067 | } | |
1068 | break; | |
c5aa993b | 1069 | |
c906108c SS |
1070 | case BINOP_LSH: |
1071 | v = v1 << v2; | |
1072 | break; | |
c5aa993b | 1073 | |
c906108c SS |
1074 | case BINOP_RSH: |
1075 | v = v1 >> v2; | |
1076 | break; | |
c5aa993b | 1077 | |
c906108c SS |
1078 | case BINOP_BITWISE_AND: |
1079 | v = v1 & v2; | |
1080 | break; | |
c5aa993b | 1081 | |
c906108c SS |
1082 | case BINOP_BITWISE_IOR: |
1083 | v = v1 | v2; | |
1084 | break; | |
c5aa993b | 1085 | |
c906108c SS |
1086 | case BINOP_BITWISE_XOR: |
1087 | v = v1 ^ v2; | |
1088 | break; | |
c5aa993b | 1089 | |
c906108c SS |
1090 | case BINOP_LOGICAL_AND: |
1091 | v = v1 && v2; | |
1092 | break; | |
c5aa993b | 1093 | |
c906108c SS |
1094 | case BINOP_LOGICAL_OR: |
1095 | v = v1 || v2; | |
1096 | break; | |
c5aa993b | 1097 | |
c906108c SS |
1098 | case BINOP_MIN: |
1099 | v = v1 < v2 ? v1 : v2; | |
1100 | break; | |
c5aa993b | 1101 | |
c906108c SS |
1102 | case BINOP_MAX: |
1103 | v = v1 > v2 ? v1 : v2; | |
1104 | break; | |
1105 | ||
1106 | case BINOP_EQUAL: | |
1107 | v = v1 == v2; | |
1108 | break; | |
1109 | ||
c4093a6a JM |
1110 | case BINOP_NOTEQUAL: |
1111 | v = v1 != v2; | |
1112 | break; | |
1113 | ||
c906108c SS |
1114 | case BINOP_LESS: |
1115 | v = v1 < v2; | |
1116 | break; | |
c5aa993b | 1117 | |
c906108c | 1118 | default: |
8a3fe4f8 | 1119 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1120 | } |
1121 | ||
1122 | /* This is a kludge to get around the fact that we don't | |
1123 | know how to determine the result type from the types of | |
1124 | the operands. (I'm not really sure how much we feel the | |
1125 | need to duplicate the exact rules of the current | |
1126 | language. They can get really hairy. But not to do so | |
1127 | makes it hard to document just what we *do* do). */ | |
1128 | ||
1129 | /* Can't just call init_type because we wouldn't know what | |
1130 | name to give the type. */ | |
1131 | val = allocate_value | |
9a76efb6 | 1132 | (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT |
c906108c SS |
1133 | ? builtin_type_unsigned_long_long |
1134 | : builtin_type_unsigned_long); | |
990a07ab | 1135 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 1136 | TYPE_LENGTH (value_type (val)), |
c906108c SS |
1137 | v); |
1138 | } | |
1139 | else | |
1140 | { | |
c4093a6a | 1141 | LONGEST v1, v2, v = 0; |
c906108c SS |
1142 | v1 = value_as_long (arg1); |
1143 | v2 = value_as_long (arg2); | |
c5aa993b | 1144 | |
c906108c SS |
1145 | switch (op) |
1146 | { | |
1147 | case BINOP_ADD: | |
1148 | v = v1 + v2; | |
1149 | break; | |
c5aa993b | 1150 | |
c906108c SS |
1151 | case BINOP_SUB: |
1152 | v = v1 - v2; | |
1153 | break; | |
c5aa993b | 1154 | |
c906108c SS |
1155 | case BINOP_MUL: |
1156 | v = v1 * v2; | |
1157 | break; | |
c5aa993b | 1158 | |
c906108c | 1159 | case BINOP_DIV: |
ef80d18e | 1160 | case BINOP_INTDIV: |
399cfac6 DL |
1161 | if (v2 != 0) |
1162 | v = v1 / v2; | |
1163 | else | |
8a3fe4f8 | 1164 | error (_("Division by zero")); |
c4093a6a JM |
1165 | break; |
1166 | ||
bd49c137 WZ |
1167 | case BINOP_EXP: |
1168 | errno = 0; | |
1169 | v = pow (v1, v2); | |
1170 | if (errno) | |
1171 | error (_("Cannot perform exponentiation: %s"), safe_strerror (errno)); | |
c906108c | 1172 | break; |
c5aa993b | 1173 | |
c906108c | 1174 | case BINOP_REM: |
399cfac6 DL |
1175 | if (v2 != 0) |
1176 | v = v1 % v2; | |
1177 | else | |
8a3fe4f8 | 1178 | error (_("Division by zero")); |
c906108c | 1179 | break; |
c5aa993b | 1180 | |
c906108c SS |
1181 | case BINOP_MOD: |
1182 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1183 | X mod 0 has a defined value, X. */ | |
c906108c SS |
1184 | if (v2 == 0) |
1185 | { | |
1186 | v = v1; | |
1187 | } | |
1188 | else | |
1189 | { | |
c5aa993b | 1190 | v = v1 / v2; |
c906108c SS |
1191 | /* Compute floor. */ |
1192 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
1193 | { | |
1194 | v--; | |
1195 | } | |
1196 | v = v1 - (v2 * v); | |
1197 | } | |
1198 | break; | |
c5aa993b | 1199 | |
c906108c SS |
1200 | case BINOP_LSH: |
1201 | v = v1 << v2; | |
1202 | break; | |
c5aa993b | 1203 | |
c906108c SS |
1204 | case BINOP_RSH: |
1205 | v = v1 >> v2; | |
1206 | break; | |
c5aa993b | 1207 | |
c906108c SS |
1208 | case BINOP_BITWISE_AND: |
1209 | v = v1 & v2; | |
1210 | break; | |
c5aa993b | 1211 | |
c906108c SS |
1212 | case BINOP_BITWISE_IOR: |
1213 | v = v1 | v2; | |
1214 | break; | |
c5aa993b | 1215 | |
c906108c SS |
1216 | case BINOP_BITWISE_XOR: |
1217 | v = v1 ^ v2; | |
1218 | break; | |
c5aa993b | 1219 | |
c906108c SS |
1220 | case BINOP_LOGICAL_AND: |
1221 | v = v1 && v2; | |
1222 | break; | |
c5aa993b | 1223 | |
c906108c SS |
1224 | case BINOP_LOGICAL_OR: |
1225 | v = v1 || v2; | |
1226 | break; | |
c5aa993b | 1227 | |
c906108c SS |
1228 | case BINOP_MIN: |
1229 | v = v1 < v2 ? v1 : v2; | |
1230 | break; | |
c5aa993b | 1231 | |
c906108c SS |
1232 | case BINOP_MAX: |
1233 | v = v1 > v2 ? v1 : v2; | |
1234 | break; | |
1235 | ||
1236 | case BINOP_EQUAL: | |
1237 | v = v1 == v2; | |
1238 | break; | |
1239 | ||
1240 | case BINOP_LESS: | |
1241 | v = v1 < v2; | |
1242 | break; | |
c5aa993b | 1243 | |
c906108c | 1244 | default: |
8a3fe4f8 | 1245 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1246 | } |
1247 | ||
1248 | /* This is a kludge to get around the fact that we don't | |
1249 | know how to determine the result type from the types of | |
1250 | the operands. (I'm not really sure how much we feel the | |
1251 | need to duplicate the exact rules of the current | |
1252 | language. They can get really hairy. But not to do so | |
1253 | makes it hard to document just what we *do* do). */ | |
1254 | ||
1255 | /* Can't just call init_type because we wouldn't know what | |
1256 | name to give the type. */ | |
1257 | val = allocate_value | |
9a76efb6 | 1258 | (result_len > gdbarch_long_bit (current_gdbarch) / HOST_CHAR_BIT |
c906108c SS |
1259 | ? builtin_type_long_long |
1260 | : builtin_type_long); | |
990a07ab | 1261 | store_signed_integer (value_contents_raw (val), |
df407dfe | 1262 | TYPE_LENGTH (value_type (val)), |
c906108c SS |
1263 | v); |
1264 | } | |
1265 | } | |
1266 | ||
1267 | return val; | |
1268 | } | |
1269 | \f | |
1270 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1271 | ||
1272 | int | |
f23631e4 | 1273 | value_logical_not (struct value *arg1) |
c906108c | 1274 | { |
52f0bd74 | 1275 | int len; |
fc1a4b47 | 1276 | const gdb_byte *p; |
c906108c SS |
1277 | struct type *type1; |
1278 | ||
994b9211 | 1279 | arg1 = coerce_number (arg1); |
df407dfe | 1280 | type1 = check_typedef (value_type (arg1)); |
c906108c SS |
1281 | |
1282 | if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
1283 | return 0 == value_as_double (arg1); | |
4ef30785 TJB |
1284 | else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) |
1285 | return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1)); | |
c906108c SS |
1286 | |
1287 | len = TYPE_LENGTH (type1); | |
0fd88904 | 1288 | p = value_contents (arg1); |
c906108c SS |
1289 | |
1290 | while (--len >= 0) | |
1291 | { | |
1292 | if (*p++) | |
1293 | break; | |
1294 | } | |
1295 | ||
1296 | return len < 0; | |
1297 | } | |
1298 | ||
c4093a6a JM |
1299 | /* Perform a comparison on two string values (whose content are not |
1300 | necessarily null terminated) based on their length */ | |
1301 | ||
1302 | static int | |
f23631e4 | 1303 | value_strcmp (struct value *arg1, struct value *arg2) |
c4093a6a | 1304 | { |
df407dfe AC |
1305 | int len1 = TYPE_LENGTH (value_type (arg1)); |
1306 | int len2 = TYPE_LENGTH (value_type (arg2)); | |
fc1a4b47 AC |
1307 | const gdb_byte *s1 = value_contents (arg1); |
1308 | const gdb_byte *s2 = value_contents (arg2); | |
c4093a6a JM |
1309 | int i, len = len1 < len2 ? len1 : len2; |
1310 | ||
1311 | for (i = 0; i < len; i++) | |
1312 | { | |
1313 | if (s1[i] < s2[i]) | |
1314 | return -1; | |
1315 | else if (s1[i] > s2[i]) | |
1316 | return 1; | |
1317 | else | |
1318 | continue; | |
1319 | } | |
1320 | ||
1321 | if (len1 < len2) | |
1322 | return -1; | |
1323 | else if (len1 > len2) | |
1324 | return 1; | |
1325 | else | |
1326 | return 0; | |
1327 | } | |
1328 | ||
c906108c SS |
1329 | /* Simulate the C operator == by returning a 1 |
1330 | iff ARG1 and ARG2 have equal contents. */ | |
1331 | ||
1332 | int | |
f23631e4 | 1333 | value_equal (struct value *arg1, struct value *arg2) |
c906108c | 1334 | { |
52f0bd74 | 1335 | int len; |
fc1a4b47 AC |
1336 | const gdb_byte *p1; |
1337 | const gdb_byte *p2; | |
c906108c SS |
1338 | struct type *type1, *type2; |
1339 | enum type_code code1; | |
1340 | enum type_code code2; | |
2de41bce | 1341 | int is_int1, is_int2; |
c906108c | 1342 | |
994b9211 AC |
1343 | arg1 = coerce_array (arg1); |
1344 | arg2 = coerce_array (arg2); | |
c906108c | 1345 | |
df407dfe AC |
1346 | type1 = check_typedef (value_type (arg1)); |
1347 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1348 | code1 = TYPE_CODE (type1); |
1349 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1350 | is_int1 = is_integral_type (type1); |
1351 | is_int2 = is_integral_type (type2); | |
c906108c | 1352 | |
2de41bce | 1353 | if (is_int1 && is_int2) |
c906108c SS |
1354 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1355 | BINOP_EQUAL))); | |
2de41bce PH |
1356 | else if ((code1 == TYPE_CODE_FLT || is_int1) |
1357 | && (code2 == TYPE_CODE_FLT || is_int2)) | |
d067a990 MK |
1358 | { |
1359 | /* NOTE: kettenis/20050816: Avoid compiler bug on systems where | |
1360 | `long double' values are returned in static storage (m68k). */ | |
1361 | DOUBLEST d = value_as_double (arg1); | |
1362 | return d == value_as_double (arg2); | |
1363 | } | |
4ef30785 TJB |
1364 | else if ((code1 == TYPE_CODE_DECFLOAT || is_int1) |
1365 | && (code2 == TYPE_CODE_DECFLOAT || is_int2)) | |
1366 | { | |
1367 | gdb_byte v1[16], v2[16]; | |
1368 | int len_v1, len_v2; | |
1369 | ||
1370 | value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); | |
1371 | ||
1372 | return decimal_compare (v1, len_v1, v2, len_v2) == 0; | |
1373 | } | |
c906108c SS |
1374 | |
1375 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1376 | is bigger. */ | |
2de41bce | 1377 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1378 | return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1379 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1380 | return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); |
c906108c SS |
1381 | |
1382 | else if (code1 == code2 | |
1383 | && ((len = (int) TYPE_LENGTH (type1)) | |
1384 | == (int) TYPE_LENGTH (type2))) | |
1385 | { | |
0fd88904 AC |
1386 | p1 = value_contents (arg1); |
1387 | p2 = value_contents (arg2); | |
c906108c SS |
1388 | while (--len >= 0) |
1389 | { | |
1390 | if (*p1++ != *p2++) | |
1391 | break; | |
1392 | } | |
1393 | return len < 0; | |
1394 | } | |
c4093a6a JM |
1395 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1396 | { | |
1397 | return value_strcmp (arg1, arg2) == 0; | |
1398 | } | |
c906108c SS |
1399 | else |
1400 | { | |
8a3fe4f8 | 1401 | error (_("Invalid type combination in equality test.")); |
c5aa993b | 1402 | return 0; /* For lint -- never reached */ |
c906108c SS |
1403 | } |
1404 | } | |
1405 | ||
1406 | /* Simulate the C operator < by returning 1 | |
1407 | iff ARG1's contents are less than ARG2's. */ | |
1408 | ||
1409 | int | |
f23631e4 | 1410 | value_less (struct value *arg1, struct value *arg2) |
c906108c | 1411 | { |
52f0bd74 AC |
1412 | enum type_code code1; |
1413 | enum type_code code2; | |
c906108c | 1414 | struct type *type1, *type2; |
2de41bce | 1415 | int is_int1, is_int2; |
c906108c | 1416 | |
994b9211 AC |
1417 | arg1 = coerce_array (arg1); |
1418 | arg2 = coerce_array (arg2); | |
c906108c | 1419 | |
df407dfe AC |
1420 | type1 = check_typedef (value_type (arg1)); |
1421 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1422 | code1 = TYPE_CODE (type1); |
1423 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1424 | is_int1 = is_integral_type (type1); |
1425 | is_int2 = is_integral_type (type2); | |
c906108c | 1426 | |
2de41bce | 1427 | if (is_int1 && is_int2) |
c906108c SS |
1428 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1429 | BINOP_LESS))); | |
2de41bce PH |
1430 | else if ((code1 == TYPE_CODE_FLT || is_int1) |
1431 | && (code2 == TYPE_CODE_FLT || is_int2)) | |
d067a990 MK |
1432 | { |
1433 | /* NOTE: kettenis/20050816: Avoid compiler bug on systems where | |
1434 | `long double' values are returned in static storage (m68k). */ | |
1435 | DOUBLEST d = value_as_double (arg1); | |
1436 | return d < value_as_double (arg2); | |
1437 | } | |
4ef30785 TJB |
1438 | else if ((code1 == TYPE_CODE_DECFLOAT || is_int1) |
1439 | && (code2 == TYPE_CODE_DECFLOAT || is_int2)) | |
1440 | { | |
1441 | gdb_byte v1[16], v2[16]; | |
1442 | int len_v1, len_v2; | |
1443 | ||
1444 | value_args_as_decimal (arg1, arg2, v1, &len_v1, v2, &len_v2); | |
1445 | ||
1446 | return decimal_compare (v1, len_v1, v2, len_v2) == -1; | |
1447 | } | |
c906108c | 1448 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) |
1aa20aa8 | 1449 | return value_as_address (arg1) < value_as_address (arg2); |
c906108c SS |
1450 | |
1451 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1452 | is bigger. */ | |
2de41bce | 1453 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1454 | return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1455 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1456 | return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); |
c4093a6a JM |
1457 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1458 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1459 | else |
1460 | { | |
8a3fe4f8 | 1461 | error (_("Invalid type combination in ordering comparison.")); |
c906108c SS |
1462 | return 0; |
1463 | } | |
1464 | } | |
1465 | \f | |
36e9969c NS |
1466 | /* The unary operators +, - and ~. They free the argument ARG1. */ |
1467 | ||
1468 | struct value * | |
1469 | value_pos (struct value *arg1) | |
1470 | { | |
1471 | struct type *type; | |
1472 | ||
1473 | arg1 = coerce_ref (arg1); | |
1474 | ||
1475 | type = check_typedef (value_type (arg1)); | |
1476 | ||
1477 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1478 | return value_from_double (type, value_as_double (arg1)); | |
4ef30785 TJB |
1479 | else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT) |
1480 | return value_from_decfloat (type, value_contents (arg1)); | |
36e9969c NS |
1481 | else if (is_integral_type (type)) |
1482 | { | |
1483 | /* Perform integral promotion for ANSI C/C++. FIXME: What about | |
1484 | FORTRAN and (the deleted) chill ? */ | |
1485 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1486 | type = builtin_type_int; | |
1487 | ||
1488 | return value_from_longest (type, value_as_long (arg1)); | |
1489 | } | |
1490 | else | |
1491 | { | |
1492 | error ("Argument to positive operation not a number."); | |
1493 | return 0; /* For lint -- never reached */ | |
1494 | } | |
1495 | } | |
c906108c | 1496 | |
f23631e4 AC |
1497 | struct value * |
1498 | value_neg (struct value *arg1) | |
c906108c | 1499 | { |
52f0bd74 | 1500 | struct type *type; |
df407dfe | 1501 | struct type *result_type = value_type (arg1); |
c906108c | 1502 | |
994b9211 | 1503 | arg1 = coerce_ref (arg1); |
c906108c | 1504 | |
df407dfe | 1505 | type = check_typedef (value_type (arg1)); |
c906108c | 1506 | |
27bc4d80 TJB |
1507 | if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT) |
1508 | { | |
1509 | struct value *val = allocate_value (result_type); | |
1510 | int len = TYPE_LENGTH (type); | |
1511 | gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */ | |
1512 | ||
4ef30785 | 1513 | memcpy (decbytes, value_contents (arg1), len); |
27bc4d80 TJB |
1514 | |
1515 | if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE) | |
1516 | decbytes[len-1] = decbytes[len - 1] | 0x80; | |
1517 | else | |
1518 | decbytes[0] = decbytes[0] | 0x80; | |
1519 | ||
1520 | memcpy (value_contents_raw (val), decbytes, len); | |
1521 | return val; | |
1522 | } | |
1523 | ||
c906108c | 1524 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
c5aa993b | 1525 | return value_from_double (result_type, -value_as_double (arg1)); |
2de41bce | 1526 | else if (is_integral_type (type)) |
c906108c | 1527 | { |
db034ac5 | 1528 | /* Perform integral promotion for ANSI C/C++. FIXME: What about |
1b831c93 | 1529 | FORTRAN and (the deleted) chill ? */ |
c906108c SS |
1530 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1531 | result_type = builtin_type_int; | |
1532 | ||
c5aa993b JM |
1533 | return value_from_longest (result_type, -value_as_long (arg1)); |
1534 | } | |
1535 | else | |
1536 | { | |
8a3fe4f8 | 1537 | error (_("Argument to negate operation not a number.")); |
c5aa993b | 1538 | return 0; /* For lint -- never reached */ |
c906108c | 1539 | } |
c906108c SS |
1540 | } |
1541 | ||
f23631e4 AC |
1542 | struct value * |
1543 | value_complement (struct value *arg1) | |
c906108c | 1544 | { |
52f0bd74 | 1545 | struct type *type; |
df407dfe | 1546 | struct type *result_type = value_type (arg1); |
c906108c | 1547 | |
994b9211 | 1548 | arg1 = coerce_ref (arg1); |
c906108c | 1549 | |
df407dfe | 1550 | type = check_typedef (value_type (arg1)); |
c906108c | 1551 | |
2de41bce | 1552 | if (!is_integral_type (type)) |
8a3fe4f8 | 1553 | error (_("Argument to complement operation not an integer or boolean.")); |
c906108c SS |
1554 | |
1555 | /* Perform integral promotion for ANSI C/C++. | |
1556 | FIXME: What about FORTRAN ? */ | |
1557 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1558 | result_type = builtin_type_int; | |
1559 | ||
c5aa993b | 1560 | return value_from_longest (result_type, ~value_as_long (arg1)); |
c906108c SS |
1561 | } |
1562 | \f | |
df407dfe | 1563 | /* The INDEX'th bit of SET value whose value_type is TYPE, |
0fd88904 | 1564 | and whose value_contents is valaddr. |
c906108c SS |
1565 | Return -1 if out of range, -2 other error. */ |
1566 | ||
1567 | int | |
fc1a4b47 | 1568 | value_bit_index (struct type *type, const gdb_byte *valaddr, int index) |
c906108c SS |
1569 | { |
1570 | LONGEST low_bound, high_bound; | |
1571 | LONGEST word; | |
1572 | unsigned rel_index; | |
1573 | struct type *range = TYPE_FIELD_TYPE (type, 0); | |
1574 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1575 | return -2; | |
1576 | if (index < low_bound || index > high_bound) | |
1577 | return -1; | |
1578 | rel_index = index - low_bound; | |
1579 | word = unpack_long (builtin_type_unsigned_char, | |
1580 | valaddr + (rel_index / TARGET_CHAR_BIT)); | |
1581 | rel_index %= TARGET_CHAR_BIT; | |
32c9a795 | 1582 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1583 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; |
1584 | return (word >> rel_index) & 1; | |
1585 | } | |
1586 | ||
f23631e4 AC |
1587 | struct value * |
1588 | value_in (struct value *element, struct value *set) | |
c906108c SS |
1589 | { |
1590 | int member; | |
df407dfe AC |
1591 | struct type *settype = check_typedef (value_type (set)); |
1592 | struct type *eltype = check_typedef (value_type (element)); | |
c906108c SS |
1593 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) |
1594 | eltype = TYPE_TARGET_TYPE (eltype); | |
1595 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
8a3fe4f8 | 1596 | error (_("Second argument of 'IN' has wrong type")); |
c906108c SS |
1597 | if (TYPE_CODE (eltype) != TYPE_CODE_INT |
1598 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1599 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1600 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
8a3fe4f8 | 1601 | error (_("First argument of 'IN' has wrong type")); |
0fd88904 | 1602 | member = value_bit_index (settype, value_contents (set), |
c906108c SS |
1603 | value_as_long (element)); |
1604 | if (member < 0) | |
8a3fe4f8 | 1605 | error (_("First argument of 'IN' not in range")); |
c906108c SS |
1606 | return value_from_longest (LA_BOOL_TYPE, member); |
1607 | } | |
1608 | ||
1609 | void | |
fba45db2 | 1610 | _initialize_valarith (void) |
c906108c SS |
1611 | { |
1612 | } |