]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
f23631e4 AC |
2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
3 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 | |
4 | Free Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "demangle.h" | |
32 | #include "language.h" | |
33 | #include "gdbcmd.h" | |
4e052eda | 34 | #include "regcache.h" |
015a42b4 | 35 | #include "cp-abi.h" |
c906108c SS |
36 | |
37 | #include <errno.h> | |
38 | #include "gdb_string.h" | |
4a1970e4 | 39 | #include "gdb_assert.h" |
c906108c | 40 | |
c906108c SS |
41 | /* Flag indicating HP compilers were used; needed to correctly handle some |
42 | value operations with HP aCC code/runtime. */ | |
43 | extern int hp_som_som_object_present; | |
44 | ||
070ad9f0 | 45 | extern int overload_debug; |
c906108c SS |
46 | /* Local functions. */ |
47 | ||
ad2f7632 DJ |
48 | static int typecmp (int staticp, int varargs, int nargs, |
49 | struct field t1[], struct value *t2[]); | |
c906108c | 50 | |
f23631e4 AC |
51 | static CORE_ADDR find_function_addr (struct value *, struct type **); |
52 | static struct value *value_arg_coerce (struct value *, struct type *, int); | |
c906108c SS |
53 | |
54 | ||
f23631e4 | 55 | static CORE_ADDR value_push (CORE_ADDR, struct value *); |
c906108c | 56 | |
f23631e4 | 57 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 58 | struct type *, int); |
c906108c | 59 | |
f23631e4 AC |
60 | static struct value *search_struct_method (char *, struct value **, |
61 | struct value **, | |
a14ed312 | 62 | int, int *, struct type *); |
c906108c | 63 | |
a14ed312 | 64 | static int check_field_in (struct type *, const char *); |
c906108c | 65 | |
a14ed312 | 66 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 67 | |
f23631e4 | 68 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 69 | |
f23631e4 | 70 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 71 | int offset, |
a14ed312 KB |
72 | struct type *type, int *num_fns, |
73 | struct type **basetype, | |
74 | int *boffset); | |
7a292a7a | 75 | |
a14ed312 | 76 | void _initialize_valops (void); |
c906108c | 77 | |
c906108c SS |
78 | /* Flag for whether we want to abandon failed expression evals by default. */ |
79 | ||
80 | #if 0 | |
81 | static int auto_abandon = 0; | |
82 | #endif | |
83 | ||
84 | int overload_resolution = 0; | |
242bfc55 FN |
85 | |
86 | /* This boolean tells what gdb should do if a signal is received while in | |
87 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
88 | and restore the context to what as it was before the call. | |
89 | The default is to stop in the frame where the signal was received. */ | |
90 | ||
91 | int unwind_on_signal_p = 0; | |
c5aa993b | 92 | \f |
c906108c SS |
93 | |
94 | ||
c906108c SS |
95 | /* Find the address of function name NAME in the inferior. */ |
96 | ||
f23631e4 | 97 | struct value * |
fba45db2 | 98 | find_function_in_inferior (char *name) |
c906108c SS |
99 | { |
100 | register struct symbol *sym; | |
101 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
102 | if (sym != NULL) | |
103 | { | |
104 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
105 | { | |
106 | error ("\"%s\" exists in this program but is not a function.", | |
107 | name); | |
108 | } | |
109 | return value_of_variable (sym, NULL); | |
110 | } | |
111 | else | |
112 | { | |
c5aa993b | 113 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
114 | if (msymbol != NULL) |
115 | { | |
116 | struct type *type; | |
4478b372 | 117 | CORE_ADDR maddr; |
c906108c SS |
118 | type = lookup_pointer_type (builtin_type_char); |
119 | type = lookup_function_type (type); | |
120 | type = lookup_pointer_type (type); | |
4478b372 JB |
121 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
122 | return value_from_pointer (type, maddr); | |
c906108c SS |
123 | } |
124 | else | |
125 | { | |
c5aa993b | 126 | if (!target_has_execution) |
c906108c | 127 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 128 | else |
c906108c SS |
129 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
130 | } | |
131 | } | |
132 | } | |
133 | ||
134 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
135 | and return a value that is a pointer to the allocated space. */ | |
136 | ||
f23631e4 | 137 | struct value * |
fba45db2 | 138 | value_allocate_space_in_inferior (int len) |
c906108c | 139 | { |
f23631e4 AC |
140 | struct value *blocklen; |
141 | struct value *val = find_function_in_inferior ("malloc"); | |
c906108c SS |
142 | |
143 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
144 | val = call_function_by_hand (val, 1, &blocklen); | |
145 | if (value_logical_not (val)) | |
146 | { | |
147 | if (!target_has_execution) | |
c5aa993b JM |
148 | error ("No memory available to program now: you need to start the target first"); |
149 | else | |
150 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
151 | } |
152 | return val; | |
153 | } | |
154 | ||
155 | static CORE_ADDR | |
fba45db2 | 156 | allocate_space_in_inferior (int len) |
c906108c SS |
157 | { |
158 | return value_as_long (value_allocate_space_in_inferior (len)); | |
159 | } | |
160 | ||
161 | /* Cast value ARG2 to type TYPE and return as a value. | |
162 | More general than a C cast: accepts any two types of the same length, | |
163 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
164 | /* In C++, casts may change pointer or object representations. */ | |
165 | ||
f23631e4 AC |
166 | struct value * |
167 | value_cast (struct type *type, struct value *arg2) | |
c906108c SS |
168 | { |
169 | register enum type_code code1; | |
170 | register enum type_code code2; | |
171 | register int scalar; | |
172 | struct type *type2; | |
173 | ||
174 | int convert_to_boolean = 0; | |
c5aa993b | 175 | |
c906108c SS |
176 | if (VALUE_TYPE (arg2) == type) |
177 | return arg2; | |
178 | ||
179 | CHECK_TYPEDEF (type); | |
180 | code1 = TYPE_CODE (type); | |
c5aa993b | 181 | COERCE_REF (arg2); |
c906108c SS |
182 | type2 = check_typedef (VALUE_TYPE (arg2)); |
183 | ||
184 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
185 | is treated like a cast to (TYPE [N])OBJECT, | |
186 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
187 | if (code1 == TYPE_CODE_ARRAY) | |
188 | { | |
189 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
190 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
191 | if (element_length > 0 | |
c5aa993b | 192 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
193 | { |
194 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
195 | int val_length = TYPE_LENGTH (type2); | |
196 | LONGEST low_bound, high_bound, new_length; | |
197 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
198 | low_bound = 0, high_bound = 0; | |
199 | new_length = val_length / element_length; | |
200 | if (val_length % element_length != 0) | |
c5aa993b | 201 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
202 | /* FIXME-type-allocation: need a way to free this type when we are |
203 | done with it. */ | |
204 | range_type = create_range_type ((struct type *) NULL, | |
205 | TYPE_TARGET_TYPE (range_type), | |
206 | low_bound, | |
207 | new_length + low_bound - 1); | |
208 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
209 | element_type, range_type); | |
210 | return arg2; | |
211 | } | |
212 | } | |
213 | ||
214 | if (current_language->c_style_arrays | |
215 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
216 | arg2 = value_coerce_array (arg2); | |
217 | ||
218 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
219 | arg2 = value_coerce_function (arg2); | |
220 | ||
221 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
222 | COERCE_VARYING_ARRAY (arg2, type2); | |
223 | code2 = TYPE_CODE (type2); | |
224 | ||
225 | if (code1 == TYPE_CODE_COMPLEX) | |
226 | return cast_into_complex (type, arg2); | |
227 | if (code1 == TYPE_CODE_BOOL) | |
228 | { | |
229 | code1 = TYPE_CODE_INT; | |
230 | convert_to_boolean = 1; | |
231 | } | |
232 | if (code1 == TYPE_CODE_CHAR) | |
233 | code1 = TYPE_CODE_INT; | |
234 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
235 | code2 = TYPE_CODE_INT; | |
236 | ||
237 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
238 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
239 | ||
c5aa993b | 240 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
241 | && code2 == TYPE_CODE_STRUCT |
242 | && TYPE_NAME (type) != 0) | |
243 | { | |
244 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
245 | type of the target as a superclass. If so, we'll need to |
246 | offset the object in addition to changing its type. */ | |
f23631e4 | 247 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
248 | arg2, 0, type2, 1); |
249 | if (v) | |
250 | { | |
251 | VALUE_TYPE (v) = type; | |
252 | return v; | |
253 | } | |
254 | } | |
255 | if (code1 == TYPE_CODE_FLT && scalar) | |
256 | return value_from_double (type, value_as_double (arg2)); | |
257 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
258 | || code1 == TYPE_CODE_RANGE) | |
259 | && (scalar || code2 == TYPE_CODE_PTR)) | |
260 | { | |
261 | LONGEST longest; | |
c5aa993b JM |
262 | |
263 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
264 | (code2 == TYPE_CODE_PTR)) | |
265 | { | |
266 | unsigned int *ptr; | |
f23631e4 | 267 | struct value *retvalp; |
c5aa993b JM |
268 | |
269 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
270 | { | |
271 | /* With HP aCC, pointers to data members have a bias */ | |
272 | case TYPE_CODE_MEMBER: | |
273 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 274 | /* force evaluation */ |
802db21b | 275 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
276 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
277 | return retvalp; | |
278 | ||
279 | /* While pointers to methods don't really point to a function */ | |
280 | case TYPE_CODE_METHOD: | |
281 | error ("Pointers to methods not supported with HP aCC"); | |
282 | ||
283 | default: | |
284 | break; /* fall out and go to normal handling */ | |
285 | } | |
286 | } | |
2bf1f4a1 JB |
287 | |
288 | /* When we cast pointers to integers, we mustn't use | |
289 | POINTER_TO_ADDRESS to find the address the pointer | |
290 | represents, as value_as_long would. GDB should evaluate | |
291 | expressions just as the compiler would --- and the compiler | |
292 | sees a cast as a simple reinterpretation of the pointer's | |
293 | bits. */ | |
294 | if (code2 == TYPE_CODE_PTR) | |
295 | longest = extract_unsigned_integer (VALUE_CONTENTS (arg2), | |
296 | TYPE_LENGTH (type2)); | |
297 | else | |
298 | longest = value_as_long (arg2); | |
802db21b | 299 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 300 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 301 | } |
802db21b | 302 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
303 | code2 == TYPE_CODE_ENUM || |
304 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 305 | { |
4603e466 DT |
306 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
307 | want the length of an address! -- we are really dealing with | |
308 | addresses (i.e., gdb representations) not pointers (i.e., | |
309 | target representations) here. | |
310 | ||
311 | This allows things like "print *(int *)0x01000234" to work | |
312 | without printing a misleading message -- which would | |
313 | otherwise occur when dealing with a target having two byte | |
314 | pointers and four byte addresses. */ | |
315 | ||
316 | int addr_bit = TARGET_ADDR_BIT; | |
317 | ||
634acd5f | 318 | LONGEST longest = value_as_long (arg2); |
4603e466 | 319 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 320 | { |
4603e466 DT |
321 | if (longest >= ((LONGEST) 1 << addr_bit) |
322 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
323 | warning ("value truncated"); |
324 | } | |
325 | return value_from_longest (type, longest); | |
326 | } | |
c906108c SS |
327 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
328 | { | |
329 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
330 | { | |
331 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
332 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 333 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
334 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
335 | && !value_logical_not (arg2)) | |
336 | { | |
f23631e4 | 337 | struct value *v; |
c906108c SS |
338 | |
339 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
340 | type of the target as a superclass. If so, we'll need to |
341 | offset the pointer rather than just change its type. */ | |
c906108c SS |
342 | if (TYPE_NAME (t1) != NULL) |
343 | { | |
344 | v = search_struct_field (type_name_no_tag (t1), | |
345 | value_ind (arg2), 0, t2, 1); | |
346 | if (v) | |
347 | { | |
348 | v = value_addr (v); | |
349 | VALUE_TYPE (v) = type; | |
350 | return v; | |
351 | } | |
352 | } | |
353 | ||
354 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
355 | type of the source as a superclass. If so, we'll need to |
356 | offset the pointer rather than just change its type. | |
357 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
358 | if (TYPE_NAME (t2) != NULL) |
359 | { | |
360 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 361 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
362 | if (v) |
363 | { | |
f23631e4 | 364 | struct value *v2 = value_ind (arg2); |
c906108c | 365 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) |
c5aa993b | 366 | + VALUE_OFFSET (v); |
070ad9f0 DB |
367 | |
368 | /* JYG: adjust the new pointer value and | |
369 | embedded offset. */ | |
370 | v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v); | |
371 | VALUE_EMBEDDED_OFFSET (v2) = 0; | |
372 | ||
c906108c SS |
373 | v2 = value_addr (v2); |
374 | VALUE_TYPE (v2) = type; | |
375 | return v2; | |
376 | } | |
377 | } | |
378 | } | |
379 | /* No superclass found, just fall through to change ptr type. */ | |
380 | } | |
381 | VALUE_TYPE (arg2) = type; | |
2b127877 | 382 | arg2 = value_change_enclosing_type (arg2, type); |
c5aa993b | 383 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ |
c906108c SS |
384 | return arg2; |
385 | } | |
386 | else if (chill_varying_type (type)) | |
387 | { | |
388 | struct type *range1, *range2, *eltype1, *eltype2; | |
f23631e4 | 389 | struct value *val; |
c906108c SS |
390 | int count1, count2; |
391 | LONGEST low_bound, high_bound; | |
392 | char *valaddr, *valaddr_data; | |
393 | /* For lint warning about eltype2 possibly uninitialized: */ | |
394 | eltype2 = NULL; | |
395 | if (code2 == TYPE_CODE_BITSTRING) | |
396 | error ("not implemented: converting bitstring to varying type"); | |
397 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
398 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
399 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
400 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 401 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
402 | error ("Invalid conversion to varying type"); |
403 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
404 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
405 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
406 | count1 = -1; | |
407 | else | |
408 | count1 = high_bound - low_bound + 1; | |
409 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 410 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
411 | else |
412 | count2 = high_bound - low_bound + 1; | |
413 | if (count2 > count1) | |
414 | error ("target varying type is too small"); | |
415 | val = allocate_value (type); | |
416 | valaddr = VALUE_CONTENTS_RAW (val); | |
417 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
418 | /* Set val's __var_length field to count2. */ | |
419 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
420 | count2); | |
421 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
422 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
423 | count2 * TYPE_LENGTH (eltype2)); | |
424 | /* Zero the rest of the __var_data field of val. */ | |
425 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
426 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
427 | return val; | |
428 | } | |
429 | else if (VALUE_LVAL (arg2) == lval_memory) | |
430 | { | |
431 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
432 | VALUE_BFD_SECTION (arg2)); | |
433 | } | |
434 | else if (code1 == TYPE_CODE_VOID) | |
435 | { | |
436 | return value_zero (builtin_type_void, not_lval); | |
437 | } | |
438 | else | |
439 | { | |
440 | error ("Invalid cast."); | |
441 | return 0; | |
442 | } | |
443 | } | |
444 | ||
445 | /* Create a value of type TYPE that is zero, and return it. */ | |
446 | ||
f23631e4 | 447 | struct value * |
fba45db2 | 448 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 449 | { |
f23631e4 | 450 | struct value *val = allocate_value (type); |
c906108c SS |
451 | |
452 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
453 | VALUE_LVAL (val) = lv; | |
454 | ||
455 | return val; | |
456 | } | |
457 | ||
070ad9f0 | 458 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
459 | |
460 | Call value_at only if the data needs to be fetched immediately; | |
461 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
462 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
463 | the data and sets the lazy-evaluation-required flag. The lazy flag |
464 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
465 | the contents are actually required. | |
c906108c SS |
466 | |
467 | Note: value_at does *NOT* handle embedded offsets; perform such | |
468 | adjustments before or after calling it. */ | |
469 | ||
f23631e4 | 470 | struct value * |
fba45db2 | 471 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 472 | { |
f23631e4 | 473 | struct value *val; |
c906108c SS |
474 | |
475 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
476 | error ("Attempt to dereference a generic pointer."); | |
477 | ||
478 | val = allocate_value (type); | |
479 | ||
75af7f68 | 480 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
481 | |
482 | VALUE_LVAL (val) = lval_memory; | |
483 | VALUE_ADDRESS (val) = addr; | |
484 | VALUE_BFD_SECTION (val) = sect; | |
485 | ||
486 | return val; | |
487 | } | |
488 | ||
489 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
490 | ||
f23631e4 | 491 | struct value * |
fba45db2 | 492 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 493 | { |
f23631e4 | 494 | struct value *val; |
c906108c SS |
495 | |
496 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
497 | error ("Attempt to dereference a generic pointer."); | |
498 | ||
499 | val = allocate_value (type); | |
500 | ||
501 | VALUE_LVAL (val) = lval_memory; | |
502 | VALUE_ADDRESS (val) = addr; | |
503 | VALUE_LAZY (val) = 1; | |
504 | VALUE_BFD_SECTION (val) = sect; | |
505 | ||
506 | return val; | |
507 | } | |
508 | ||
070ad9f0 DB |
509 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
510 | if the current data for a variable needs to be loaded into | |
511 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
512 | clears the lazy flag to indicate that the data in the buffer is valid. |
513 | ||
514 | If the value is zero-length, we avoid calling read_memory, which would | |
515 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
516 | ||
517 | This function returns a value because it is used in the VALUE_CONTENTS | |
518 | macro as part of an expression, where a void would not work. The | |
519 | value is ignored. */ | |
520 | ||
521 | int | |
f23631e4 | 522 | value_fetch_lazy (struct value *val) |
c906108c SS |
523 | { |
524 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
525 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
526 | ||
c5aa993b | 527 | struct type *type = VALUE_TYPE (val); |
75af7f68 | 528 | if (length) |
d4b2399a | 529 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 530 | |
c906108c SS |
531 | VALUE_LAZY (val) = 0; |
532 | return 0; | |
533 | } | |
534 | ||
535 | ||
536 | /* Store the contents of FROMVAL into the location of TOVAL. | |
537 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
538 | ||
f23631e4 AC |
539 | struct value * |
540 | value_assign (struct value *toval, struct value *fromval) | |
c906108c SS |
541 | { |
542 | register struct type *type; | |
f23631e4 | 543 | struct value *val; |
e6cbd02a | 544 | char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
545 | int use_buffer = 0; |
546 | ||
547 | if (!toval->modifiable) | |
548 | error ("Left operand of assignment is not a modifiable lvalue."); | |
549 | ||
550 | COERCE_REF (toval); | |
551 | ||
552 | type = VALUE_TYPE (toval); | |
553 | if (VALUE_LVAL (toval) != lval_internalvar) | |
554 | fromval = value_cast (type, fromval); | |
555 | else | |
556 | COERCE_ARRAY (fromval); | |
557 | CHECK_TYPEDEF (type); | |
558 | ||
559 | /* If TOVAL is a special machine register requiring conversion | |
560 | of program values to a special raw format, | |
561 | convert FROMVAL's contents now, with result in `raw_buffer', | |
562 | and set USE_BUFFER to the number of bytes to write. */ | |
563 | ||
ac9a91a7 | 564 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
565 | { |
566 | int regno = VALUE_REGNO (toval); | |
13d01224 | 567 | if (CONVERT_REGISTER_P (regno)) |
c906108c SS |
568 | { |
569 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
13d01224 | 570 | VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer); |
c906108c SS |
571 | use_buffer = REGISTER_RAW_SIZE (regno); |
572 | } | |
573 | } | |
c906108c SS |
574 | |
575 | switch (VALUE_LVAL (toval)) | |
576 | { | |
577 | case lval_internalvar: | |
578 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
579 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
2b127877 | 580 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
581 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
582 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
583 | return val; | |
584 | ||
585 | case lval_internalvar_component: | |
586 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
587 | VALUE_OFFSET (toval), | |
588 | VALUE_BITPOS (toval), | |
589 | VALUE_BITSIZE (toval), | |
590 | fromval); | |
591 | break; | |
592 | ||
593 | case lval_memory: | |
594 | { | |
595 | char *dest_buffer; | |
c5aa993b JM |
596 | CORE_ADDR changed_addr; |
597 | int changed_len; | |
c906108c | 598 | |
c5aa993b JM |
599 | if (VALUE_BITSIZE (toval)) |
600 | { | |
c906108c SS |
601 | char buffer[sizeof (LONGEST)]; |
602 | /* We assume that the argument to read_memory is in units of | |
603 | host chars. FIXME: Is that correct? */ | |
604 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
605 | + VALUE_BITSIZE (toval) |
606 | + HOST_CHAR_BIT - 1) | |
607 | / HOST_CHAR_BIT; | |
c906108c SS |
608 | |
609 | if (changed_len > (int) sizeof (LONGEST)) | |
610 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
baa6f10b | 611 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c SS |
612 | |
613 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
614 | buffer, changed_len); | |
615 | modify_field (buffer, value_as_long (fromval), | |
616 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
617 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
618 | dest_buffer = buffer; | |
619 | } | |
620 | else if (use_buffer) | |
621 | { | |
622 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
623 | changed_len = use_buffer; | |
624 | dest_buffer = raw_buffer; | |
625 | } | |
626 | else | |
627 | { | |
628 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
629 | changed_len = TYPE_LENGTH (type); | |
630 | dest_buffer = VALUE_CONTENTS (fromval); | |
631 | } | |
632 | ||
633 | write_memory (changed_addr, dest_buffer, changed_len); | |
634 | if (memory_changed_hook) | |
635 | memory_changed_hook (changed_addr, changed_len); | |
636 | } | |
637 | break; | |
638 | ||
639 | case lval_register: | |
640 | if (VALUE_BITSIZE (toval)) | |
641 | { | |
642 | char buffer[sizeof (LONGEST)]; | |
802db21b | 643 | int len = |
8903de4f | 644 | REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval); |
c906108c SS |
645 | |
646 | if (len > (int) sizeof (LONGEST)) | |
647 | error ("Can't handle bitfields in registers larger than %d bits.", | |
baa6f10b | 648 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c SS |
649 | |
650 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
651 | > len * HOST_CHAR_BIT) | |
652 | /* Getting this right would involve being very careful about | |
653 | byte order. */ | |
c2d11a7d JM |
654 | error ("Can't assign to bitfields that cross register " |
655 | "boundaries."); | |
c906108c | 656 | |
c5aa993b JM |
657 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
658 | buffer, len); | |
659 | modify_field (buffer, value_as_long (fromval), | |
660 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
661 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
662 | buffer, len); | |
c906108c SS |
663 | } |
664 | else if (use_buffer) | |
665 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
666 | raw_buffer, use_buffer); | |
667 | else | |
c5aa993b | 668 | { |
c906108c SS |
669 | /* Do any conversion necessary when storing this type to more |
670 | than one register. */ | |
671 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
672 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 673 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
674 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
675 | raw_buffer, TYPE_LENGTH (type)); | |
676 | #else | |
677 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 678 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
679 | #endif |
680 | } | |
681 | /* Assigning to the stack pointer, frame pointer, and other | |
7b83ea04 AC |
682 | (architecture and calling convention specific) registers may |
683 | cause the frame cache to be out of date. We just do this | |
684 | on all assignments to registers for simplicity; I doubt the slowdown | |
685 | matters. */ | |
c906108c SS |
686 | reinit_frame_cache (); |
687 | break; | |
688 | ||
689 | case lval_reg_frame_relative: | |
690 | { | |
691 | /* value is stored in a series of registers in the frame | |
692 | specified by the structure. Copy that value out, modify | |
693 | it, and copy it back in. */ | |
694 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
695 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
696 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
697 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
698 | int amount_copied; | |
699 | ||
700 | /* Make the buffer large enough in all cases. */ | |
34c0bd93 | 701 | /* FIXME (alloca): Not safe for very large data types. */ |
c906108c SS |
702 | char *buffer = (char *) alloca (amount_to_copy |
703 | + sizeof (LONGEST) | |
704 | + MAX_REGISTER_RAW_SIZE); | |
705 | ||
706 | int regno; | |
707 | struct frame_info *frame; | |
708 | ||
709 | /* Figure out which frame this is in currently. */ | |
710 | for (frame = get_current_frame (); | |
711 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
712 | frame = get_prev_frame (frame)) | |
713 | ; | |
714 | ||
715 | if (!frame) | |
716 | error ("Value being assigned to is no longer active."); | |
717 | ||
718 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
719 | ||
720 | /* Copy it out. */ | |
721 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
722 | amount_copied = 0); | |
723 | amount_copied < amount_to_copy; | |
724 | amount_copied += reg_size, regno++) | |
725 | { | |
726 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
727 | (int *) NULL, (CORE_ADDR *) NULL, |
728 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
729 | } |
730 | ||
731 | /* Modify what needs to be modified. */ | |
732 | if (VALUE_BITSIZE (toval)) | |
733 | modify_field (buffer + byte_offset, | |
734 | value_as_long (fromval), | |
735 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
736 | else if (use_buffer) | |
737 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
738 | else | |
739 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
740 | TYPE_LENGTH (type)); | |
741 | ||
742 | /* Copy it back. */ | |
743 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
744 | amount_copied = 0); | |
745 | amount_copied < amount_to_copy; | |
746 | amount_copied += reg_size, regno++) | |
747 | { | |
748 | enum lval_type lval; | |
749 | CORE_ADDR addr; | |
750 | int optim; | |
751 | ||
752 | /* Just find out where to put it. */ | |
c5aa993b JM |
753 | get_saved_register ((char *) NULL, |
754 | &optim, &addr, frame, regno, &lval); | |
755 | ||
c906108c SS |
756 | if (optim) |
757 | error ("Attempt to assign to a value that was optimized out."); | |
758 | if (lval == lval_memory) | |
759 | write_memory (addr, buffer + amount_copied, reg_size); | |
760 | else if (lval == lval_register) | |
761 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
762 | else | |
763 | error ("Attempt to assign to an unmodifiable value."); | |
764 | } | |
765 | ||
766 | if (register_changed_hook) | |
767 | register_changed_hook (-1); | |
768 | } | |
769 | break; | |
c5aa993b | 770 | |
c906108c SS |
771 | |
772 | default: | |
773 | error ("Left operand of assignment is not an lvalue."); | |
774 | } | |
775 | ||
776 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
777 | If the field is signed, and is negative, then sign extend. */ | |
778 | if ((VALUE_BITSIZE (toval) > 0) | |
779 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
780 | { | |
781 | LONGEST fieldval = value_as_long (fromval); | |
782 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
783 | ||
784 | fieldval &= valmask; | |
785 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
786 | fieldval |= ~valmask; | |
787 | ||
788 | fromval = value_from_longest (type, fieldval); | |
789 | } | |
790 | ||
791 | val = value_copy (toval); | |
792 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
793 | TYPE_LENGTH (type)); | |
794 | VALUE_TYPE (val) = type; | |
2b127877 | 795 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
796 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
797 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 798 | |
c906108c SS |
799 | return val; |
800 | } | |
801 | ||
802 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
803 | ||
f23631e4 AC |
804 | struct value * |
805 | value_repeat (struct value *arg1, int count) | |
c906108c | 806 | { |
f23631e4 | 807 | struct value *val; |
c906108c SS |
808 | |
809 | if (VALUE_LVAL (arg1) != lval_memory) | |
810 | error ("Only values in memory can be extended with '@'."); | |
811 | if (count < 1) | |
812 | error ("Invalid number %d of repetitions.", count); | |
813 | ||
814 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
815 | ||
816 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
817 | VALUE_CONTENTS_ALL_RAW (val), | |
818 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
819 | VALUE_LVAL (val) = lval_memory; | |
820 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
821 | ||
822 | return val; | |
823 | } | |
824 | ||
f23631e4 | 825 | struct value * |
fba45db2 | 826 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 827 | { |
f23631e4 | 828 | struct value *val; |
c906108c SS |
829 | struct frame_info *frame = NULL; |
830 | ||
831 | if (!b) | |
832 | frame = NULL; /* Use selected frame. */ | |
833 | else if (symbol_read_needs_frame (var)) | |
834 | { | |
835 | frame = block_innermost_frame (b); | |
836 | if (!frame) | |
c5aa993b | 837 | { |
c906108c SS |
838 | if (BLOCK_FUNCTION (b) |
839 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
840 | error ("No frame is currently executing in block %s.", | |
841 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
842 | else | |
843 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 844 | } |
c906108c SS |
845 | } |
846 | ||
847 | val = read_var_value (var, frame); | |
848 | if (!val) | |
849 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
850 | ||
851 | return val; | |
852 | } | |
853 | ||
854 | /* Given a value which is an array, return a value which is a pointer to its | |
855 | first element, regardless of whether or not the array has a nonzero lower | |
856 | bound. | |
857 | ||
858 | FIXME: A previous comment here indicated that this routine should be | |
859 | substracting the array's lower bound. It's not clear to me that this | |
860 | is correct. Given an array subscripting operation, it would certainly | |
861 | work to do the adjustment here, essentially computing: | |
862 | ||
863 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
864 | ||
865 | However I believe a more appropriate and logical place to account for | |
866 | the lower bound is to do so in value_subscript, essentially computing: | |
867 | ||
868 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
869 | ||
870 | As further evidence consider what would happen with operations other | |
871 | than array subscripting, where the caller would get back a value that | |
872 | had an address somewhere before the actual first element of the array, | |
873 | and the information about the lower bound would be lost because of | |
874 | the coercion to pointer type. | |
c5aa993b | 875 | */ |
c906108c | 876 | |
f23631e4 AC |
877 | struct value * |
878 | value_coerce_array (struct value *arg1) | |
c906108c SS |
879 | { |
880 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
881 | ||
882 | if (VALUE_LVAL (arg1) != lval_memory) | |
883 | error ("Attempt to take address of value not located in memory."); | |
884 | ||
4478b372 JB |
885 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
886 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
887 | } |
888 | ||
889 | /* Given a value which is a function, return a value which is a pointer | |
890 | to it. */ | |
891 | ||
f23631e4 AC |
892 | struct value * |
893 | value_coerce_function (struct value *arg1) | |
c906108c | 894 | { |
f23631e4 | 895 | struct value *retval; |
c906108c SS |
896 | |
897 | if (VALUE_LVAL (arg1) != lval_memory) | |
898 | error ("Attempt to take address of value not located in memory."); | |
899 | ||
4478b372 JB |
900 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
901 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
902 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
903 | return retval; | |
c5aa993b | 904 | } |
c906108c SS |
905 | |
906 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
907 | ||
f23631e4 AC |
908 | struct value * |
909 | value_addr (struct value *arg1) | |
c906108c | 910 | { |
f23631e4 | 911 | struct value *arg2; |
c906108c SS |
912 | |
913 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
914 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
915 | { | |
916 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
917 | We keep the same location information, which is efficient, |
918 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
919 | arg2 = value_copy (arg1); |
920 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
921 | return arg2; | |
922 | } | |
923 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
924 | return value_coerce_function (arg1); | |
925 | ||
926 | if (VALUE_LVAL (arg1) != lval_memory) | |
927 | error ("Attempt to take address of value not located in memory."); | |
928 | ||
c5aa993b | 929 | /* Get target memory address */ |
4478b372 JB |
930 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
931 | (VALUE_ADDRESS (arg1) | |
932 | + VALUE_OFFSET (arg1) | |
933 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
934 | |
935 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 936 | full derived object's type ... */ |
2b127877 | 937 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1))); |
c5aa993b JM |
938 | /* ... and also the relative position of the subobject in the full object */ |
939 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
940 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
941 | return arg2; | |
942 | } | |
943 | ||
944 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
945 | ||
f23631e4 AC |
946 | struct value * |
947 | value_ind (struct value *arg1) | |
c906108c SS |
948 | { |
949 | struct type *base_type; | |
f23631e4 | 950 | struct value *arg2; |
c906108c SS |
951 | |
952 | COERCE_ARRAY (arg1); | |
953 | ||
954 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
955 | ||
956 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
957 | error ("not implemented: member types in value_ind"); | |
958 | ||
959 | /* Allow * on an integer so we can cast it to whatever we want. | |
960 | This returns an int, which seems like the most C-like thing | |
961 | to do. "long long" variables are rare enough that | |
962 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
963 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 DH |
964 | return value_at_lazy (builtin_type_int, |
965 | (CORE_ADDR) value_as_long (arg1), | |
966 | VALUE_BFD_SECTION (arg1)); | |
c906108c SS |
967 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
968 | { | |
969 | struct type *enc_type; | |
970 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 971 | /* Get the real type of the enclosing object */ |
c906108c SS |
972 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
973 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
974 | /* Retrieve the enclosing object pointed to */ |
975 | arg2 = value_at_lazy (enc_type, | |
1aa20aa8 | 976 | value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1), |
c5aa993b JM |
977 | VALUE_BFD_SECTION (arg1)); |
978 | /* Re-adjust type */ | |
c906108c SS |
979 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
980 | /* Add embedding info */ | |
2b127877 | 981 | arg2 = value_change_enclosing_type (arg2, enc_type); |
c906108c SS |
982 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); |
983 | ||
984 | /* We may be pointing to an object of some derived type */ | |
985 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
986 | return arg2; | |
987 | } | |
988 | ||
989 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 990 | return 0; /* For lint -- never reached */ |
c906108c SS |
991 | } |
992 | \f | |
993 | /* Pushing small parts of stack frames. */ | |
994 | ||
995 | /* Push one word (the size of object that a register holds). */ | |
996 | ||
997 | CORE_ADDR | |
fba45db2 | 998 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c SS |
999 | { |
1000 | register int len = REGISTER_SIZE; | |
e6cbd02a | 1001 | char *buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
1002 | |
1003 | store_unsigned_integer (buffer, len, word); | |
1004 | if (INNER_THAN (1, 2)) | |
1005 | { | |
1006 | /* stack grows downward */ | |
1007 | sp -= len; | |
1008 | write_memory (sp, buffer, len); | |
1009 | } | |
1010 | else | |
1011 | { | |
1012 | /* stack grows upward */ | |
1013 | write_memory (sp, buffer, len); | |
1014 | sp += len; | |
1015 | } | |
1016 | ||
1017 | return sp; | |
1018 | } | |
1019 | ||
1020 | /* Push LEN bytes with data at BUFFER. */ | |
1021 | ||
1022 | CORE_ADDR | |
fba45db2 | 1023 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
1024 | { |
1025 | if (INNER_THAN (1, 2)) | |
1026 | { | |
1027 | /* stack grows downward */ | |
1028 | sp -= len; | |
1029 | write_memory (sp, buffer, len); | |
1030 | } | |
1031 | else | |
1032 | { | |
1033 | /* stack grows upward */ | |
1034 | write_memory (sp, buffer, len); | |
1035 | sp += len; | |
1036 | } | |
1037 | ||
1038 | return sp; | |
1039 | } | |
1040 | ||
2df3850c JM |
1041 | #ifndef PARM_BOUNDARY |
1042 | #define PARM_BOUNDARY (0) | |
1043 | #endif | |
1044 | ||
1045 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1046 | it to be an argument to a function. */ | |
c906108c | 1047 | |
c906108c | 1048 | static CORE_ADDR |
f23631e4 | 1049 | value_push (register CORE_ADDR sp, struct value *arg) |
c906108c SS |
1050 | { |
1051 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1052 | register int container_len = len; |
2df3850c JM |
1053 | register int offset; |
1054 | ||
1055 | /* How big is the container we're going to put this value in? */ | |
1056 | if (PARM_BOUNDARY) | |
1057 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1058 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1059 | ||
1060 | /* Are we going to put it at the high or low end of the container? */ | |
d7449b42 | 1061 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
2df3850c JM |
1062 | offset = container_len - len; |
1063 | else | |
1064 | offset = 0; | |
c906108c SS |
1065 | |
1066 | if (INNER_THAN (1, 2)) | |
1067 | { | |
1068 | /* stack grows downward */ | |
2df3850c JM |
1069 | sp -= container_len; |
1070 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1071 | } |
1072 | else | |
1073 | { | |
1074 | /* stack grows upward */ | |
2df3850c JM |
1075 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1076 | sp += container_len; | |
c906108c SS |
1077 | } |
1078 | ||
1079 | return sp; | |
1080 | } | |
1081 | ||
392a587b | 1082 | CORE_ADDR |
f23631e4 | 1083 | default_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1084 | int struct_return, CORE_ADDR struct_addr) |
392a587b JM |
1085 | { |
1086 | /* ASSERT ( !struct_return); */ | |
1087 | int i; | |
1088 | for (i = nargs - 1; i >= 0; i--) | |
1089 | sp = value_push (sp, args[i]); | |
1090 | return sp; | |
1091 | } | |
1092 | ||
c906108c | 1093 | |
641225a4 JB |
1094 | /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method. |
1095 | ||
1096 | How you should pass arguments to a function depends on whether it | |
1097 | was defined in K&R style or prototype style. If you define a | |
1098 | function using the K&R syntax that takes a `float' argument, then | |
1099 | callers must pass that argument as a `double'. If you define the | |
1100 | function using the prototype syntax, then you must pass the | |
1101 | argument as a `float', with no promotion. | |
1102 | ||
1103 | Unfortunately, on certain older platforms, the debug info doesn't | |
1104 | indicate reliably how each function was defined. A function type's | |
1105 | TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was | |
1106 | defined in prototype style. When calling a function whose | |
1107 | TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the | |
1108 | COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do. | |
1109 | ||
1110 | For modern targets, it is proper to assume that, if the prototype | |
1111 | flag is clear, that can be trusted: `float' arguments should be | |
1112 | promoted to `double'. You should register the function | |
1113 | `standard_coerce_float_to_double' to get this behavior. | |
1114 | ||
1115 | For some older targets, if the prototype flag is clear, that | |
1116 | doesn't tell us anything. So we guess that, if we don't have a | |
1117 | type for the formal parameter (i.e., the first argument to | |
1118 | COERCE_FLOAT_TO_DOUBLE is null), then we should promote it; | |
1119 | otherwise, we should leave it alone. The function | |
1120 | `default_coerce_float_to_double' provides this behavior; it is the | |
1121 | default value, for compatibility with older configurations. */ | |
b9a8e3bf JB |
1122 | int |
1123 | default_coerce_float_to_double (struct type *formal, struct type *actual) | |
1124 | { | |
1125 | return formal == NULL; | |
1126 | } | |
1127 | ||
1128 | ||
b9a8e3bf JB |
1129 | int |
1130 | standard_coerce_float_to_double (struct type *formal, struct type *actual) | |
1131 | { | |
1132 | return 1; | |
1133 | } | |
1134 | ||
1135 | ||
c906108c SS |
1136 | /* Perform the standard coercions that are specified |
1137 | for arguments to be passed to C functions. | |
1138 | ||
1139 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1140 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1141 | ||
f23631e4 | 1142 | static struct value * |
290b2c7a MK |
1143 | value_arg_coerce (struct value *arg, struct type *param_type, |
1144 | int is_prototyped) | |
c906108c SS |
1145 | { |
1146 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1147 | register struct type *type | |
290b2c7a | 1148 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1149 | |
1150 | switch (TYPE_CODE (type)) | |
1151 | { | |
1152 | case TYPE_CODE_REF: | |
491b8946 DJ |
1153 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF |
1154 | && TYPE_CODE (arg_type) != TYPE_CODE_PTR) | |
c906108c SS |
1155 | { |
1156 | arg = value_addr (arg); | |
1157 | VALUE_TYPE (arg) = param_type; | |
1158 | return arg; | |
1159 | } | |
1160 | break; | |
1161 | case TYPE_CODE_INT: | |
1162 | case TYPE_CODE_CHAR: | |
1163 | case TYPE_CODE_BOOL: | |
1164 | case TYPE_CODE_ENUM: | |
1165 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1166 | if (!is_prototyped) | |
1167 | { | |
1168 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1169 | type = builtin_type_int; | |
1170 | } | |
1171 | /* Currently all target ABIs require at least the width of an integer | |
7b83ea04 AC |
1172 | type for an argument. We may have to conditionalize the following |
1173 | type coercion for future targets. */ | |
c906108c SS |
1174 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1175 | type = builtin_type_int; | |
1176 | break; | |
1177 | case TYPE_CODE_FLT: | |
1178 | /* FIXME: We should always convert floats to doubles in the | |
7b83ea04 AC |
1179 | non-prototyped case. As many debugging formats include |
1180 | no information about prototyping, we have to live with | |
1181 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
b9a8e3bf | 1182 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type)) |
c906108c SS |
1183 | { |
1184 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1185 | type = builtin_type_double; | |
1186 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1187 | type = builtin_type_long_double; | |
1188 | } | |
1189 | break; | |
1190 | case TYPE_CODE_FUNC: | |
1191 | type = lookup_pointer_type (type); | |
1192 | break; | |
1193 | case TYPE_CODE_ARRAY: | |
a3162708 EZ |
1194 | /* Arrays are coerced to pointers to their first element, unless |
1195 | they are vectors, in which case we want to leave them alone, | |
1196 | because they are passed by value. */ | |
c906108c | 1197 | if (current_language->c_style_arrays) |
a3162708 EZ |
1198 | if (!TYPE_VECTOR (type)) |
1199 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
c906108c SS |
1200 | break; |
1201 | case TYPE_CODE_UNDEF: | |
1202 | case TYPE_CODE_PTR: | |
1203 | case TYPE_CODE_STRUCT: | |
1204 | case TYPE_CODE_UNION: | |
1205 | case TYPE_CODE_VOID: | |
1206 | case TYPE_CODE_SET: | |
1207 | case TYPE_CODE_RANGE: | |
1208 | case TYPE_CODE_STRING: | |
1209 | case TYPE_CODE_BITSTRING: | |
1210 | case TYPE_CODE_ERROR: | |
1211 | case TYPE_CODE_MEMBER: | |
1212 | case TYPE_CODE_METHOD: | |
1213 | case TYPE_CODE_COMPLEX: | |
1214 | default: | |
1215 | break; | |
1216 | } | |
1217 | ||
1218 | return value_cast (type, arg); | |
1219 | } | |
1220 | ||
070ad9f0 | 1221 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1222 | Calls error() if the function is not valid for calling. */ |
1223 | ||
1224 | static CORE_ADDR | |
f23631e4 | 1225 | find_function_addr (struct value *function, struct type **retval_type) |
c906108c SS |
1226 | { |
1227 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1228 | register enum type_code code = TYPE_CODE (ftype); | |
1229 | struct type *value_type; | |
1230 | CORE_ADDR funaddr; | |
1231 | ||
1232 | /* If it's a member function, just look at the function | |
1233 | part of it. */ | |
1234 | ||
1235 | /* Determine address to call. */ | |
1236 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1237 | { | |
1238 | funaddr = VALUE_ADDRESS (function); | |
1239 | value_type = TYPE_TARGET_TYPE (ftype); | |
1240 | } | |
1241 | else if (code == TYPE_CODE_PTR) | |
1242 | { | |
1aa20aa8 | 1243 | funaddr = value_as_address (function); |
c906108c SS |
1244 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); |
1245 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1246 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1247 | { | |
c906108c | 1248 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); |
c906108c SS |
1249 | value_type = TYPE_TARGET_TYPE (ftype); |
1250 | } | |
1251 | else | |
1252 | value_type = builtin_type_int; | |
1253 | } | |
1254 | else if (code == TYPE_CODE_INT) | |
1255 | { | |
1256 | /* Handle the case of functions lacking debugging info. | |
7b83ea04 | 1257 | Their values are characters since their addresses are char */ |
c906108c | 1258 | if (TYPE_LENGTH (ftype) == 1) |
1aa20aa8 | 1259 | funaddr = value_as_address (value_addr (function)); |
c906108c SS |
1260 | else |
1261 | /* Handle integer used as address of a function. */ | |
1262 | funaddr = (CORE_ADDR) value_as_long (function); | |
1263 | ||
1264 | value_type = builtin_type_int; | |
1265 | } | |
1266 | else | |
1267 | error ("Invalid data type for function to be called."); | |
1268 | ||
1269 | *retval_type = value_type; | |
1270 | return funaddr; | |
1271 | } | |
1272 | ||
1273 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1274 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1275 | frame which looks just like a real frame is so that if you call a | |
1276 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1277 | will look right. Whether the backtrace needs to actually show the | |
1278 | stack at the time the inferior function was called is debatable, but | |
1279 | it certainly needs to not display garbage. So if you are contemplating | |
1280 | making dummy frames be different from normal frames, consider that. */ | |
1281 | ||
1282 | /* Perform a function call in the inferior. | |
1283 | ARGS is a vector of values of arguments (NARGS of them). | |
1284 | FUNCTION is a value, the function to be called. | |
1285 | Returns a value representing what the function returned. | |
1286 | May fail to return, if a breakpoint or signal is hit | |
1287 | during the execution of the function. | |
1288 | ||
1289 | ARGS is modified to contain coerced values. */ | |
1290 | ||
f23631e4 AC |
1291 | static struct value * |
1292 | hand_function_call (struct value *function, int nargs, struct value **args) | |
c906108c SS |
1293 | { |
1294 | register CORE_ADDR sp; | |
1295 | register int i; | |
da59e081 | 1296 | int rc; |
c906108c SS |
1297 | CORE_ADDR start_sp; |
1298 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1299 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1300 | and remove any extra bytes which might exist because ULONGEST is | |
070ad9f0 | 1301 | bigger than REGISTER_SIZE. |
c906108c SS |
1302 | |
1303 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1304 | sequence of instructions. But CISC machines will have |
1305 | to pack the instructions into REGISTER_SIZE units (and | |
1306 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1307 | REGISTER_SIZE). | |
7a292a7a SS |
1308 | |
1309 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1310 | target byte order. */ |
c906108c | 1311 | |
7a292a7a SS |
1312 | static ULONGEST *dummy; |
1313 | int sizeof_dummy1; | |
1314 | char *dummy1; | |
c906108c SS |
1315 | CORE_ADDR old_sp; |
1316 | struct type *value_type; | |
1317 | unsigned char struct_return; | |
1318 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1319 | struct inferior_status *inf_status; |
c906108c SS |
1320 | struct cleanup *old_chain; |
1321 | CORE_ADDR funaddr; | |
c5aa993b | 1322 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1323 | CORE_ADDR real_pc; |
1324 | struct type *param_type = NULL; | |
1325 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
76b2e19d | 1326 | int n_method_args = 0; |
c906108c | 1327 | |
7a292a7a SS |
1328 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1329 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1330 | dummy1 = alloca (sizeof_dummy1); | |
1331 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1332 | ||
c906108c | 1333 | if (!target_has_execution) |
c5aa993b | 1334 | noprocess (); |
c906108c | 1335 | |
7a292a7a | 1336 | inf_status = save_inferior_status (1); |
74b7792f | 1337 | old_chain = make_cleanup_restore_inferior_status (inf_status); |
c906108c SS |
1338 | |
1339 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1340 | (and POP_FRAME for restoring them). (At least on most machines) | |
1341 | they are saved on the stack in the inferior. */ | |
1342 | PUSH_DUMMY_FRAME; | |
1343 | ||
1344 | old_sp = sp = read_sp (); | |
1345 | ||
1346 | if (INNER_THAN (1, 2)) | |
1347 | { | |
1348 | /* Stack grows down */ | |
7a292a7a | 1349 | sp -= sizeof_dummy1; |
c906108c SS |
1350 | start_sp = sp; |
1351 | } | |
1352 | else | |
1353 | { | |
1354 | /* Stack grows up */ | |
1355 | start_sp = sp; | |
7a292a7a | 1356 | sp += sizeof_dummy1; |
c906108c SS |
1357 | } |
1358 | ||
1359 | funaddr = find_function_addr (function, &value_type); | |
1360 | CHECK_TYPEDEF (value_type); | |
1361 | ||
1362 | { | |
1363 | struct block *b = block_for_pc (funaddr); | |
1364 | /* If compiled without -g, assume GCC 2. */ | |
1365 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1366 | } | |
1367 | ||
1368 | /* Are we returning a value using a structure return or a normal | |
1369 | value return? */ | |
1370 | ||
1371 | struct_return = using_struct_return (function, funaddr, value_type, | |
1372 | using_gcc); | |
1373 | ||
1374 | /* Create a call sequence customized for this function | |
1375 | and the number of arguments for it. */ | |
7a292a7a | 1376 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1377 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1378 | REGISTER_SIZE, | |
c5aa993b | 1379 | (ULONGEST) dummy[i]); |
c906108c SS |
1380 | |
1381 | #ifdef GDB_TARGET_IS_HPPA | |
1382 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1383 | value_type, using_gcc); | |
1384 | #else | |
1385 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1386 | value_type, using_gcc); | |
1387 | real_pc = start_sp; | |
1388 | #endif | |
1389 | ||
7a292a7a SS |
1390 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1391 | { | |
c5aa993b | 1392 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
6096c27a AC |
1393 | if (USE_GENERIC_DUMMY_FRAMES) |
1394 | generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1); | |
7a292a7a | 1395 | } |
c906108c | 1396 | |
7a292a7a SS |
1397 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1398 | { | |
1399 | /* Convex Unix prohibits executing in the stack segment. */ | |
1400 | /* Hope there is empty room at the top of the text segment. */ | |
1401 | extern CORE_ADDR text_end; | |
392a587b | 1402 | static int checked = 0; |
7a292a7a SS |
1403 | if (!checked) |
1404 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1405 | if (read_memory_integer (start_sp, 1) != 0) | |
1406 | error ("text segment full -- no place to put call"); | |
1407 | checked = 1; | |
1408 | sp = old_sp; | |
1409 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1410 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
6096c27a AC |
1411 | if (USE_GENERIC_DUMMY_FRAMES) |
1412 | generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1); | |
7a292a7a | 1413 | } |
c5aa993b | 1414 | |
7a292a7a SS |
1415 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1416 | { | |
1417 | extern CORE_ADDR text_end; | |
1418 | int errcode; | |
1419 | sp = old_sp; | |
1420 | real_pc = text_end; | |
c5aa993b | 1421 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1422 | if (errcode != 0) |
1423 | error ("Cannot write text segment -- call_function failed"); | |
6096c27a AC |
1424 | if (USE_GENERIC_DUMMY_FRAMES) |
1425 | generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1); | |
7a292a7a | 1426 | } |
c906108c | 1427 | |
7a292a7a SS |
1428 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1429 | { | |
1430 | real_pc = funaddr; | |
6096c27a AC |
1431 | if (USE_GENERIC_DUMMY_FRAMES) |
1432 | /* NOTE: cagney/2002-04-13: The entry point is going to be | |
1433 | modified with a single breakpoint. */ | |
1434 | generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (), | |
1435 | CALL_DUMMY_ADDRESS () + 1); | |
7a292a7a | 1436 | } |
c906108c SS |
1437 | |
1438 | #ifdef lint | |
c5aa993b | 1439 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1440 | #endif |
1441 | ||
ad2f7632 | 1442 | if (nargs < TYPE_NFIELDS (ftype)) |
c906108c SS |
1443 | error ("too few arguments in function call"); |
1444 | ||
1445 | for (i = nargs - 1; i >= 0; i--) | |
1446 | { | |
ad2f7632 | 1447 | int prototyped; |
76b2e19d | 1448 | |
ad2f7632 DJ |
1449 | /* FIXME drow/2002-05-31: Should just always mark methods as |
1450 | prototyped. Can we respect TYPE_VARARGS? Probably not. */ | |
1451 | if (TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1452 | prototyped = 1; | |
1453 | else | |
1454 | prototyped = TYPE_PROTOTYPED (ftype); | |
c906108c | 1455 | |
ad2f7632 DJ |
1456 | if (i < TYPE_NFIELDS (ftype)) |
1457 | args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i), | |
1458 | prototyped); | |
c5aa993b | 1459 | else |
ad2f7632 | 1460 | args[i] = value_arg_coerce (args[i], NULL, 0); |
c906108c | 1461 | |
070ad9f0 DB |
1462 | /*elz: this code is to handle the case in which the function to be called |
1463 | has a pointer to function as parameter and the corresponding actual argument | |
7b83ea04 AC |
1464 | is the address of a function and not a pointer to function variable. |
1465 | In aCC compiled code, the calls through pointers to functions (in the body | |
1466 | of the function called by hand) are made via $$dyncall_external which | |
070ad9f0 DB |
1467 | requires some registers setting, this is taken care of if we call |
1468 | via a function pointer variable, but not via a function address. | |
7b83ea04 | 1469 | In cc this is not a problem. */ |
c906108c SS |
1470 | |
1471 | if (using_gcc == 0) | |
ad2f7632 | 1472 | if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD) |
c5aa993b | 1473 | /* if this parameter is a pointer to function */ |
c906108c | 1474 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
0004e5a2 | 1475 | if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC) |
070ad9f0 | 1476 | /* elz: FIXME here should go the test about the compiler used |
7b83ea04 | 1477 | to compile the target. We want to issue the error |
070ad9f0 DB |
1478 | message only if the compiler used was HP's aCC. |
1479 | If we used HP's cc, then there is no problem and no need | |
7b83ea04 | 1480 | to return at this point */ |
c5aa993b | 1481 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1482 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1483 | pointer to function or just a function */ |
c906108c SS |
1484 | if (args[i]->lval == not_lval) |
1485 | { | |
1486 | char *arg_name; | |
c5aa993b JM |
1487 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1488 | error ("\ | |
c906108c SS |
1489 | You cannot use function <%s> as argument. \n\ |
1490 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1491 | } |
c906108c SS |
1492 | } |
1493 | ||
d03e67c9 AC |
1494 | if (REG_STRUCT_HAS_ADDR_P ()) |
1495 | { | |
1496 | /* This is a machine like the sparc, where we may need to pass a | |
1497 | pointer to the structure, not the structure itself. */ | |
1498 | for (i = nargs - 1; i >= 0; i--) | |
1499 | { | |
1500 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1501 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1502 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1503 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1504 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1505 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1506 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1507 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1508 | && TYPE_LENGTH (arg_type) > 8) | |
1509 | ) | |
1510 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
1511 | { | |
1512 | CORE_ADDR addr; | |
1513 | int len; /* = TYPE_LENGTH (arg_type); */ | |
1514 | int aligned_len; | |
1515 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1516 | len = TYPE_LENGTH (arg_type); | |
1517 | ||
1518 | if (STACK_ALIGN_P ()) | |
1519 | /* MVS 11/22/96: I think at least some of this | |
1520 | stack_align code is really broken. Better to let | |
1521 | PUSH_ARGUMENTS adjust the stack in a target-defined | |
1522 | manner. */ | |
1523 | aligned_len = STACK_ALIGN (len); | |
1524 | else | |
1525 | aligned_len = len; | |
1526 | if (INNER_THAN (1, 2)) | |
1527 | { | |
1528 | /* stack grows downward */ | |
1529 | sp -= aligned_len; | |
0b3f98d3 AC |
1530 | /* ... so the address of the thing we push is the |
1531 | stack pointer after we push it. */ | |
1532 | addr = sp; | |
d03e67c9 AC |
1533 | } |
1534 | else | |
1535 | { | |
1536 | /* The stack grows up, so the address of the thing | |
1537 | we push is the stack pointer before we push it. */ | |
1538 | addr = sp; | |
d03e67c9 AC |
1539 | sp += aligned_len; |
1540 | } | |
0b3f98d3 AC |
1541 | /* Push the structure. */ |
1542 | write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len); | |
d03e67c9 AC |
1543 | /* The value we're going to pass is the address of the |
1544 | thing we just pushed. */ | |
1545 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1546 | (LONGEST) addr); */ | |
1547 | args[i] = value_from_pointer (lookup_pointer_type (arg_type), | |
1548 | addr); | |
1549 | } | |
1550 | } | |
1551 | } | |
1552 | ||
c906108c SS |
1553 | |
1554 | /* Reserve space for the return structure to be written on the | |
1555 | stack, if necessary */ | |
1556 | ||
1557 | if (struct_return) | |
1558 | { | |
1559 | int len = TYPE_LENGTH (value_type); | |
2ada493a AC |
1560 | if (STACK_ALIGN_P ()) |
1561 | /* MVS 11/22/96: I think at least some of this stack_align | |
1562 | code is really broken. Better to let PUSH_ARGUMENTS adjust | |
1563 | the stack in a target-defined manner. */ | |
1564 | len = STACK_ALIGN (len); | |
c906108c SS |
1565 | if (INNER_THAN (1, 2)) |
1566 | { | |
1567 | /* stack grows downward */ | |
1568 | sp -= len; | |
1569 | struct_addr = sp; | |
1570 | } | |
1571 | else | |
1572 | { | |
1573 | /* stack grows upward */ | |
1574 | struct_addr = sp; | |
1575 | sp += len; | |
1576 | } | |
1577 | } | |
1578 | ||
0a49d05e AC |
1579 | /* elz: on HPPA no need for this extra alignment, maybe it is needed |
1580 | on other architectures. This is because all the alignment is | |
1581 | taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and | |
1582 | in hppa_push_arguments */ | |
1583 | if (EXTRA_STACK_ALIGNMENT_NEEDED) | |
c906108c | 1584 | { |
0a49d05e AC |
1585 | /* MVS 11/22/96: I think at least some of this stack_align code |
1586 | is really broken. Better to let PUSH_ARGUMENTS adjust the | |
1587 | stack in a target-defined manner. */ | |
1588 | if (STACK_ALIGN_P () && INNER_THAN (1, 2)) | |
1589 | { | |
1590 | /* If stack grows down, we must leave a hole at the top. */ | |
1591 | int len = 0; | |
1592 | ||
1593 | for (i = nargs - 1; i >= 0; i--) | |
1594 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
1595 | if (CALL_DUMMY_STACK_ADJUST_P) | |
1596 | len += CALL_DUMMY_STACK_ADJUST; | |
1597 | sp -= STACK_ALIGN (len) - len; | |
1598 | } | |
c906108c | 1599 | } |
c906108c | 1600 | |
392a587b | 1601 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c | 1602 | |
69a0d5f4 AC |
1603 | if (PUSH_RETURN_ADDRESS_P ()) |
1604 | /* for targets that use no CALL_DUMMY */ | |
1605 | /* There are a number of targets now which actually don't write | |
1606 | any CALL_DUMMY instructions into the target, but instead just | |
1607 | save the machine state, push the arguments, and jump directly | |
1608 | to the callee function. Since this doesn't actually involve | |
1609 | executing a JSR/BSR instruction, the return address must be set | |
1610 | up by hand, either by pushing onto the stack or copying into a | |
1611 | return-address register as appropriate. Formerly this has been | |
1612 | done in PUSH_ARGUMENTS, but that's overloading its | |
1613 | functionality a bit, so I'm making it explicit to do it here. */ | |
1614 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); | |
c906108c | 1615 | |
2ada493a | 1616 | if (STACK_ALIGN_P () && !INNER_THAN (1, 2)) |
c906108c SS |
1617 | { |
1618 | /* If stack grows up, we must leave a hole at the bottom, note | |
7b83ea04 | 1619 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1620 | if (CALL_DUMMY_STACK_ADJUST_P) |
1621 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1622 | sp = STACK_ALIGN (sp); |
1623 | } | |
c906108c SS |
1624 | |
1625 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1626 | anything here! */ | |
1627 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1628 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1629 | a target-defined manner. */ | |
7a292a7a SS |
1630 | if (CALL_DUMMY_STACK_ADJUST_P) |
1631 | if (INNER_THAN (1, 2)) | |
1632 | { | |
1633 | /* stack grows downward */ | |
1634 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1635 | } | |
c906108c SS |
1636 | |
1637 | /* Store the address at which the structure is supposed to be | |
1638 | written. Note that this (and the code which reserved the space | |
1639 | above) assumes that gcc was used to compile this function. Since | |
1640 | it doesn't cost us anything but space and if the function is pcc | |
1641 | it will ignore this value, we will make that assumption. | |
1642 | ||
070ad9f0 | 1643 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1644 | convention like gcc's. */ |
1645 | ||
1646 | if (struct_return) | |
1647 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1648 | ||
1649 | /* Write the stack pointer. This is here because the statements above | |
1650 | might fool with it. On SPARC, this write also stores the register | |
1651 | window into the right place in the new stack frame, which otherwise | |
1652 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1653 | write_sp (sp); | |
1654 | ||
d1e3cf49 AC |
1655 | if (SAVE_DUMMY_FRAME_TOS_P ()) |
1656 | SAVE_DUMMY_FRAME_TOS (sp); | |
43ff13b4 | 1657 | |
c906108c | 1658 | { |
e6cbd02a | 1659 | char *retbuf = (char*) alloca (REGISTER_BYTES); |
c906108c SS |
1660 | char *name; |
1661 | struct symbol *symbol; | |
1662 | ||
1663 | name = NULL; | |
1664 | symbol = find_pc_function (funaddr); | |
1665 | if (symbol) | |
1666 | { | |
1667 | name = SYMBOL_SOURCE_NAME (symbol); | |
1668 | } | |
1669 | else | |
1670 | { | |
1671 | /* Try the minimal symbols. */ | |
1672 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1673 | ||
1674 | if (msymbol) | |
1675 | { | |
1676 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1677 | } | |
1678 | } | |
1679 | if (name == NULL) | |
1680 | { | |
1681 | char format[80]; | |
1682 | sprintf (format, "at %s", local_hex_format ()); | |
1683 | name = alloca (80); | |
1684 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1685 | sprintf (name, format, (unsigned long) funaddr); | |
1686 | } | |
1687 | ||
1688 | /* Execute the stack dummy routine, calling FUNCTION. | |
1689 | When it is done, discard the empty frame | |
1690 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1691 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1692 | ||
1693 | if (rc == 1) | |
1694 | { | |
1695 | /* We stopped inside the FUNCTION because of a random signal. | |
1696 | Further execution of the FUNCTION is not allowed. */ | |
1697 | ||
7b83ea04 | 1698 | if (unwind_on_signal_p) |
242bfc55 FN |
1699 | { |
1700 | /* The user wants the context restored. */ | |
da59e081 | 1701 | |
7b83ea04 AC |
1702 | /* We must get back to the frame we were before the dummy call. */ |
1703 | POP_FRAME; | |
242bfc55 FN |
1704 | |
1705 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1706 | a C++ name with arguments and stuff. */ | |
1707 | error ("\ | |
1708 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1709 | GDB has restored the context to what it was before the call.\n\ | |
1710 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1711 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1712 | name); |
1713 | } | |
1714 | else | |
1715 | { | |
1716 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1717 | ||
1718 | /* If we did the cleanups, we would print a spurious error | |
1719 | message (Unable to restore previously selected frame), | |
1720 | would write the registers from the inf_status (which is | |
1721 | wrong), and would do other wrong things. */ | |
1722 | discard_cleanups (old_chain); | |
1723 | discard_inferior_status (inf_status); | |
1724 | ||
1725 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1726 | a C++ name with arguments and stuff. */ | |
1727 | error ("\ | |
1728 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1729 | GDB remains in the frame where the signal was received.\n\ | |
1730 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1731 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1732 | name); | |
1733 | } | |
da59e081 JM |
1734 | } |
1735 | ||
1736 | if (rc == 2) | |
c906108c | 1737 | { |
da59e081 | 1738 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1739 | |
7a292a7a SS |
1740 | /* If we did the cleanups, we would print a spurious error |
1741 | message (Unable to restore previously selected frame), | |
1742 | would write the registers from the inf_status (which is | |
1743 | wrong), and would do other wrong things. */ | |
c906108c | 1744 | discard_cleanups (old_chain); |
7a292a7a | 1745 | discard_inferior_status (inf_status); |
c906108c SS |
1746 | |
1747 | /* The following error message used to say "The expression | |
1748 | which contained the function call has been discarded." It | |
1749 | is a hard concept to explain in a few words. Ideally, GDB | |
1750 | would be able to resume evaluation of the expression when | |
1751 | the function finally is done executing. Perhaps someday | |
1752 | this will be implemented (it would not be easy). */ | |
1753 | ||
1754 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1755 | a C++ name with arguments and stuff. */ | |
1756 | error ("\ | |
1757 | The program being debugged stopped while in a function called from GDB.\n\ | |
1758 | When the function (%s) is done executing, GDB will silently\n\ | |
1759 | stop (instead of continuing to evaluate the expression containing\n\ | |
1760 | the function call).", name); | |
1761 | } | |
1762 | ||
da59e081 | 1763 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1764 | do_cleanups (old_chain); |
1765 | ||
1766 | /* Figure out the value returned by the function. */ | |
1767 | /* elz: I defined this new macro for the hppa architecture only. | |
1768 | this gives us a way to get the value returned by the function from the stack, | |
1769 | at the same address we told the function to put it. | |
1770 | We cannot assume on the pa that r28 still contains the address of the returned | |
1771 | structure. Usually this will be overwritten by the callee. | |
1772 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1773 | */ |
c906108c SS |
1774 | |
1775 | #ifdef VALUE_RETURNED_FROM_STACK | |
1776 | if (struct_return) | |
f23631e4 | 1777 | return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); |
c906108c SS |
1778 | #endif |
1779 | ||
1780 | return value_being_returned (value_type, retbuf, struct_return); | |
1781 | } | |
1782 | } | |
7a292a7a | 1783 | |
f23631e4 AC |
1784 | struct value * |
1785 | call_function_by_hand (struct value *function, int nargs, struct value **args) | |
c906108c | 1786 | { |
7a292a7a SS |
1787 | if (CALL_DUMMY_P) |
1788 | { | |
1789 | return hand_function_call (function, nargs, args); | |
1790 | } | |
1791 | else | |
1792 | { | |
1793 | error ("Cannot invoke functions on this machine."); | |
1794 | } | |
c906108c | 1795 | } |
c5aa993b | 1796 | \f |
7a292a7a | 1797 | |
c906108c | 1798 | |
c906108c SS |
1799 | /* Create a value for an array by allocating space in the inferior, copying |
1800 | the data into that space, and then setting up an array value. | |
1801 | ||
1802 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1803 | populated from the values passed in ELEMVEC. | |
1804 | ||
1805 | The element type of the array is inherited from the type of the | |
1806 | first element, and all elements must have the same size (though we | |
1807 | don't currently enforce any restriction on their types). */ | |
1808 | ||
f23631e4 AC |
1809 | struct value * |
1810 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1811 | { |
1812 | int nelem; | |
1813 | int idx; | |
1814 | unsigned int typelength; | |
f23631e4 | 1815 | struct value *val; |
c906108c SS |
1816 | struct type *rangetype; |
1817 | struct type *arraytype; | |
1818 | CORE_ADDR addr; | |
1819 | ||
1820 | /* Validate that the bounds are reasonable and that each of the elements | |
1821 | have the same size. */ | |
1822 | ||
1823 | nelem = highbound - lowbound + 1; | |
1824 | if (nelem <= 0) | |
1825 | { | |
1826 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1827 | } | |
1828 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1829 | for (idx = 1; idx < nelem; idx++) | |
1830 | { | |
1831 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1832 | { | |
1833 | error ("array elements must all be the same size"); | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1838 | lowbound, highbound); | |
c5aa993b JM |
1839 | arraytype = create_array_type ((struct type *) NULL, |
1840 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1841 | |
1842 | if (!current_language->c_style_arrays) | |
1843 | { | |
1844 | val = allocate_value (arraytype); | |
1845 | for (idx = 0; idx < nelem; idx++) | |
1846 | { | |
1847 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1848 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1849 | typelength); | |
1850 | } | |
1851 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1852 | return val; | |
1853 | } | |
1854 | ||
1855 | /* Allocate space to store the array in the inferior, and then initialize | |
1856 | it by copying in each element. FIXME: Is it worth it to create a | |
1857 | local buffer in which to collect each value and then write all the | |
1858 | bytes in one operation? */ | |
1859 | ||
1860 | addr = allocate_space_in_inferior (nelem * typelength); | |
1861 | for (idx = 0; idx < nelem; idx++) | |
1862 | { | |
1863 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1864 | typelength); | |
1865 | } | |
1866 | ||
1867 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1868 | ||
1869 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1870 | return (val); | |
1871 | } | |
1872 | ||
1873 | /* Create a value for a string constant by allocating space in the inferior, | |
1874 | copying the data into that space, and returning the address with type | |
1875 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1876 | of characters. | |
1877 | Note that string types are like array of char types with a lower bound of | |
1878 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1879 | embedded null bytes. */ | |
1880 | ||
f23631e4 | 1881 | struct value * |
fba45db2 | 1882 | value_string (char *ptr, int len) |
c906108c | 1883 | { |
f23631e4 | 1884 | struct value *val; |
c906108c SS |
1885 | int lowbound = current_language->string_lower_bound; |
1886 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1887 | builtin_type_int, | |
1888 | lowbound, len + lowbound - 1); | |
1889 | struct type *stringtype | |
c5aa993b | 1890 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1891 | CORE_ADDR addr; |
1892 | ||
1893 | if (current_language->c_style_arrays == 0) | |
1894 | { | |
1895 | val = allocate_value (stringtype); | |
1896 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1897 | return val; | |
1898 | } | |
1899 | ||
1900 | ||
1901 | /* Allocate space to store the string in the inferior, and then | |
1902 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1903 | ||
1904 | addr = allocate_space_in_inferior (len); | |
1905 | write_memory (addr, ptr, len); | |
1906 | ||
1907 | val = value_at_lazy (stringtype, addr, NULL); | |
1908 | return (val); | |
1909 | } | |
1910 | ||
f23631e4 | 1911 | struct value * |
fba45db2 | 1912 | value_bitstring (char *ptr, int len) |
c906108c | 1913 | { |
f23631e4 | 1914 | struct value *val; |
c906108c SS |
1915 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1916 | 0, len - 1); | |
c5aa993b | 1917 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1918 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1919 | val = allocate_value (type); | |
1920 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1921 | return val; | |
1922 | } | |
1923 | \f | |
1924 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1925 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1926 | vector. If some arguments need coercion of some sort, then the coerced | |
1927 | values are written into T2. Return value is 0 if the arguments could be | |
1928 | matched, or the position at which they differ if not. | |
c906108c SS |
1929 | |
1930 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1931 | static member function. T2 will still include the ``this'' pointer, |
1932 | but it will be skipped. | |
c906108c SS |
1933 | |
1934 | For non-static member functions, we ignore the first argument, | |
1935 | which is the type of the instance variable. This is because we want | |
1936 | to handle calls with objects from derived classes. This is not | |
1937 | entirely correct: we should actually check to make sure that a | |
1938 | requested operation is type secure, shouldn't we? FIXME. */ | |
1939 | ||
1940 | static int | |
ad2f7632 DJ |
1941 | typecmp (int staticp, int varargs, int nargs, |
1942 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1943 | { |
1944 | int i; | |
1945 | ||
1946 | if (t2 == 0) | |
ad2f7632 DJ |
1947 | internal_error (__FILE__, __LINE__, "typecmp: no argument list"); |
1948 | ||
4a1970e4 DJ |
1949 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1950 | if (staticp) | |
ad2f7632 DJ |
1951 | t2 ++; |
1952 | ||
1953 | for (i = 0; | |
1954 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1955 | i++) | |
c906108c | 1956 | { |
c5aa993b | 1957 | struct type *tt1, *tt2; |
ad2f7632 | 1958 | |
c5aa993b JM |
1959 | if (!t2[i]) |
1960 | return i + 1; | |
ad2f7632 DJ |
1961 | |
1962 | tt1 = check_typedef (t1[i].type); | |
c5aa993b | 1963 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
ad2f7632 | 1964 | |
c906108c | 1965 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1966 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1967 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1968 | { | |
1969 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1970 | t2[i] = value_coerce_array (t2[i]); | |
1971 | else | |
1972 | t2[i] = value_addr (t2[i]); | |
1973 | continue; | |
1974 | } | |
1975 | ||
802db21b DB |
1976 | /* djb - 20000715 - Until the new type structure is in the |
1977 | place, and we can attempt things like implicit conversions, | |
1978 | we need to do this so you can take something like a map<const | |
1979 | char *>, and properly access map["hello"], because the | |
1980 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 1981 | and the argument will be a pointer to a char. */ |
802db21b DB |
1982 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
1983 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
1984 | { | |
1985 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
1986 | } | |
1987 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
1988 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
1989 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 1990 | { |
802db21b | 1991 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 1992 | } |
c5aa993b JM |
1993 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1994 | continue; | |
c906108c SS |
1995 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1996 | ||
1997 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
1998 | of the ARM), but as a quick kludge, just check for the same type |
1999 | code. */ | |
ad2f7632 | 2000 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 2001 | return i + 1; |
c906108c | 2002 | } |
ad2f7632 | 2003 | if (varargs || t2[i] == NULL) |
c5aa993b | 2004 | return 0; |
ad2f7632 | 2005 | return i + 1; |
c906108c SS |
2006 | } |
2007 | ||
2008 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2009 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2010 | and search in it assuming it has (class) type TYPE. | |
2011 | If found, return value, else return NULL. | |
2012 | ||
2013 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2014 | look for a baseclass named NAME. */ | |
2015 | ||
f23631e4 AC |
2016 | static struct value * |
2017 | search_struct_field (char *name, struct value *arg1, int offset, | |
fba45db2 | 2018 | register struct type *type, int looking_for_baseclass) |
c906108c SS |
2019 | { |
2020 | int i; | |
2021 | int nbases = TYPE_N_BASECLASSES (type); | |
2022 | ||
2023 | CHECK_TYPEDEF (type); | |
2024 | ||
c5aa993b | 2025 | if (!looking_for_baseclass) |
c906108c SS |
2026 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2027 | { | |
2028 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2029 | ||
db577aea | 2030 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 2031 | { |
f23631e4 | 2032 | struct value *v; |
c906108c SS |
2033 | if (TYPE_FIELD_STATIC (type, i)) |
2034 | v = value_static_field (type, i); | |
2035 | else | |
2036 | v = value_primitive_field (arg1, offset, i, type); | |
2037 | if (v == 0) | |
c5aa993b | 2038 | error ("there is no field named %s", name); |
c906108c SS |
2039 | return v; |
2040 | } | |
2041 | ||
2042 | if (t_field_name | |
2043 | && (t_field_name[0] == '\0' | |
2044 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2045 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2046 | { |
2047 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2048 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2049 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2050 | { | |
2051 | /* Look for a match through the fields of an anonymous union, | |
2052 | or anonymous struct. C++ provides anonymous unions. | |
2053 | ||
2054 | In the GNU Chill implementation of variant record types, | |
2055 | each <alternative field> has an (anonymous) union type, | |
2056 | each member of the union represents a <variant alternative>. | |
2057 | Each <variant alternative> is represented as a struct, | |
2058 | with a member for each <variant field>. */ | |
c5aa993b | 2059 | |
f23631e4 | 2060 | struct value *v; |
c906108c SS |
2061 | int new_offset = offset; |
2062 | ||
2063 | /* This is pretty gross. In G++, the offset in an anonymous | |
2064 | union is relative to the beginning of the enclosing struct. | |
2065 | In the GNU Chill implementation of variant records, | |
2066 | the bitpos is zero in an anonymous union field, so we | |
2067 | have to add the offset of the union here. */ | |
2068 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2069 | || (TYPE_NFIELDS (field_type) > 0 | |
2070 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2071 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2072 | ||
2073 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2074 | looking_for_baseclass); | |
2075 | if (v) | |
2076 | return v; | |
2077 | } | |
2078 | } | |
2079 | } | |
2080 | ||
c5aa993b | 2081 | for (i = 0; i < nbases; i++) |
c906108c | 2082 | { |
f23631e4 | 2083 | struct value *v; |
c906108c SS |
2084 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
2085 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
2086 | hit them. But it could happen that the base part's member name |
2087 | is not yet filled in. */ | |
c906108c SS |
2088 | int found_baseclass = (looking_for_baseclass |
2089 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 2090 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
2091 | |
2092 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2093 | { | |
2094 | int boffset; | |
f23631e4 | 2095 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
2096 | |
2097 | boffset = baseclass_offset (type, i, | |
2098 | VALUE_CONTENTS (arg1) + offset, | |
2099 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2100 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2101 | if (boffset == -1) |
2102 | error ("virtual baseclass botch"); | |
2103 | ||
2104 | /* The virtual base class pointer might have been clobbered by the | |
2105 | user program. Make sure that it still points to a valid memory | |
2106 | location. */ | |
2107 | ||
2108 | boffset += offset; | |
2109 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2110 | { | |
2111 | CORE_ADDR base_addr; | |
c5aa993b | 2112 | |
c906108c SS |
2113 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2114 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2115 | TYPE_LENGTH (basetype)) != 0) | |
2116 | error ("virtual baseclass botch"); | |
2117 | VALUE_LVAL (v2) = lval_memory; | |
2118 | VALUE_ADDRESS (v2) = base_addr; | |
2119 | } | |
2120 | else | |
2121 | { | |
2122 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2123 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2124 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2125 | if (VALUE_LAZY (arg1)) | |
2126 | VALUE_LAZY (v2) = 1; | |
2127 | else | |
2128 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2129 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2130 | TYPE_LENGTH (basetype)); | |
2131 | } | |
2132 | ||
2133 | if (found_baseclass) | |
2134 | return v2; | |
2135 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2136 | looking_for_baseclass); | |
2137 | } | |
2138 | else if (found_baseclass) | |
2139 | v = value_primitive_field (arg1, offset, i, type); | |
2140 | else | |
2141 | v = search_struct_field (name, arg1, | |
c5aa993b | 2142 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2143 | basetype, looking_for_baseclass); |
c5aa993b JM |
2144 | if (v) |
2145 | return v; | |
c906108c SS |
2146 | } |
2147 | return NULL; | |
2148 | } | |
2149 | ||
2150 | ||
2151 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2152 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2153 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2154 | * looking (in case VALADDR is the contents of an enclosing object). | |
2155 | * | |
2156 | * This routine recurses on the primary base of the derived class because | |
2157 | * the virtual base entries of the primary base appear before the other | |
2158 | * virtual base entries. | |
2159 | * | |
2160 | * If the virtual base is not found, a negative integer is returned. | |
2161 | * The magnitude of the negative integer is the number of entries in | |
2162 | * the virtual table to skip over (entries corresponding to various | |
2163 | * ancestral classes in the chain of primary bases). | |
2164 | * | |
2165 | * Important: This assumes the HP / Taligent C++ runtime | |
2166 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2167 | * conventions. */ | |
2168 | ||
2169 | void | |
fba45db2 KB |
2170 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
2171 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 2172 | { |
c5aa993b JM |
2173 | int boffset; /* offset of virtual base */ |
2174 | int index; /* displacement to use in virtual table */ | |
c906108c | 2175 | int skip; |
c5aa993b | 2176 | |
f23631e4 | 2177 | struct value *vp; |
c5aa993b JM |
2178 | CORE_ADDR vtbl; /* the virtual table pointer */ |
2179 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2180 | |
2181 | /* Look for the virtual base recursively in the primary base, first. | |
2182 | * This is because the derived class object and its primary base | |
2183 | * subobject share the primary virtual table. */ | |
c5aa993b | 2184 | |
c906108c | 2185 | boffset = 0; |
c5aa993b | 2186 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2187 | if (pbc) |
2188 | { | |
2189 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2190 | if (skip < 0) | |
c5aa993b JM |
2191 | { |
2192 | *boffset_p = boffset; | |
2193 | *skip_p = -1; | |
2194 | return; | |
2195 | } | |
c906108c SS |
2196 | } |
2197 | else | |
2198 | skip = 0; | |
2199 | ||
2200 | ||
2201 | /* Find the index of the virtual base according to HP/Taligent | |
2202 | runtime spec. (Depth-first, left-to-right.) */ | |
2203 | index = virtual_base_index_skip_primaries (basetype, type); | |
2204 | ||
c5aa993b JM |
2205 | if (index < 0) |
2206 | { | |
2207 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2208 | *boffset_p = 0; | |
2209 | return; | |
2210 | } | |
c906108c | 2211 | |
c5aa993b | 2212 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2213 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2214 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2215 | |
c5aa993b | 2216 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2217 | if (vtbl == 0) |
2218 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2219 | ||
2220 | ||
2221 | /* Find virtual base's offset -- jump over entries for primary base | |
2222 | * ancestors, then use the index computed above. But also adjust by | |
2223 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2224 | * virtual base entries. Offset is negative -- virtual base entries | |
2225 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2226 | |
070ad9f0 | 2227 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2228 | & use long type */ |
c906108c SS |
2229 | |
2230 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2231 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2232 | boffset = value_as_long (vp); |
2233 | *skip_p = -1; | |
2234 | *boffset_p = boffset; | |
2235 | return; | |
2236 | } | |
2237 | ||
2238 | ||
2239 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2240 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2241 | and search in it assuming it has (class) type TYPE. | |
2242 | If found, return value, else if name matched and args not return (value)-1, | |
2243 | else return NULL. */ | |
2244 | ||
f23631e4 AC |
2245 | static struct value * |
2246 | search_struct_method (char *name, struct value **arg1p, | |
2247 | struct value **args, int offset, | |
fba45db2 | 2248 | int *static_memfuncp, register struct type *type) |
c906108c SS |
2249 | { |
2250 | int i; | |
f23631e4 | 2251 | struct value *v; |
c906108c SS |
2252 | int name_matched = 0; |
2253 | char dem_opname[64]; | |
2254 | ||
2255 | CHECK_TYPEDEF (type); | |
2256 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2257 | { | |
2258 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2259 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2260 | if (strncmp (t_field_name, "__", 2) == 0 || |
2261 | strncmp (t_field_name, "op", 2) == 0 || | |
2262 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2263 | { |
c5aa993b JM |
2264 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2265 | t_field_name = dem_opname; | |
2266 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2267 | t_field_name = dem_opname; |
c906108c | 2268 | } |
db577aea | 2269 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2270 | { |
2271 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2272 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2273 | name_matched = 1; |
c906108c SS |
2274 | |
2275 | if (j > 0 && args == 0) | |
2276 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
acf5ed49 | 2277 | else if (j == 0 && args == 0) |
c906108c SS |
2278 | { |
2279 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2280 | check_stub_method (type, i, j); | |
acf5ed49 DJ |
2281 | v = value_fn_field (arg1p, f, j, type, offset); |
2282 | if (v != NULL) | |
2283 | return v; | |
c906108c | 2284 | } |
acf5ed49 DJ |
2285 | else |
2286 | while (j >= 0) | |
2287 | { | |
2288 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2289 | check_stub_method (type, i, j); | |
2290 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
ad2f7632 DJ |
2291 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2292 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2293 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2294 | { | |
2295 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2296 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2297 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2298 | *static_memfuncp = 1; | |
2299 | v = value_fn_field (arg1p, f, j, type, offset); | |
2300 | if (v != NULL) | |
2301 | return v; | |
2302 | } | |
2303 | j--; | |
2304 | } | |
c906108c SS |
2305 | } |
2306 | } | |
2307 | ||
2308 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2309 | { | |
2310 | int base_offset; | |
2311 | ||
2312 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2313 | { | |
c5aa993b JM |
2314 | if (TYPE_HAS_VTABLE (type)) |
2315 | { | |
2316 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 2317 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2318 | int skip; |
2319 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2320 | VALUE_CONTENTS_ALL (*arg1p), | |
2321 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2322 | &base_offset, &skip); | |
2323 | if (skip >= 0) | |
2324 | error ("Virtual base class offset not found in vtable"); | |
2325 | } | |
2326 | else | |
2327 | { | |
2328 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2329 | char *base_valaddr; | |
2330 | ||
2331 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
2332 | user program. Make sure that it still points to a valid memory |
2333 | location. */ | |
c5aa993b JM |
2334 | |
2335 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2336 | { | |
2337 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2338 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2339 | + VALUE_OFFSET (*arg1p) + offset, | |
2340 | base_valaddr, | |
2341 | TYPE_LENGTH (baseclass)) != 0) | |
2342 | error ("virtual baseclass botch"); | |
2343 | } | |
2344 | else | |
2345 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2346 | ||
2347 | base_offset = | |
2348 | baseclass_offset (type, i, base_valaddr, | |
2349 | VALUE_ADDRESS (*arg1p) | |
2350 | + VALUE_OFFSET (*arg1p) + offset); | |
2351 | if (base_offset == -1) | |
2352 | error ("virtual baseclass botch"); | |
2353 | } | |
2354 | } | |
c906108c SS |
2355 | else |
2356 | { | |
2357 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2358 | } |
c906108c SS |
2359 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2360 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2361 | if (v == (struct value *) - 1) |
c906108c SS |
2362 | { |
2363 | name_matched = 1; | |
2364 | } | |
2365 | else if (v) | |
2366 | { | |
2367 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2368 | /* *arg1p = arg1_tmp; */ |
c906108c | 2369 | return v; |
c5aa993b | 2370 | } |
c906108c | 2371 | } |
c5aa993b | 2372 | if (name_matched) |
f23631e4 | 2373 | return (struct value *) - 1; |
c5aa993b JM |
2374 | else |
2375 | return NULL; | |
c906108c SS |
2376 | } |
2377 | ||
2378 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2379 | extract the component named NAME from the ultimate target structure/union | |
2380 | and return it as a value with its appropriate type. | |
2381 | ERR is used in the error message if *ARGP's type is wrong. | |
2382 | ||
2383 | C++: ARGS is a list of argument types to aid in the selection of | |
2384 | an appropriate method. Also, handle derived types. | |
2385 | ||
2386 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2387 | where the truthvalue of whether the function that was resolved was | |
2388 | a static member function or not is stored. | |
2389 | ||
2390 | ERR is an error message to be printed in case the field is not found. */ | |
2391 | ||
f23631e4 AC |
2392 | struct value * |
2393 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 2394 | char *name, int *static_memfuncp, char *err) |
c906108c SS |
2395 | { |
2396 | register struct type *t; | |
f23631e4 | 2397 | struct value *v; |
c906108c SS |
2398 | |
2399 | COERCE_ARRAY (*argp); | |
2400 | ||
2401 | t = check_typedef (VALUE_TYPE (*argp)); | |
2402 | ||
2403 | /* Follow pointers until we get to a non-pointer. */ | |
2404 | ||
2405 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2406 | { | |
2407 | *argp = value_ind (*argp); | |
2408 | /* Don't coerce fn pointer to fn and then back again! */ | |
2409 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2410 | COERCE_ARRAY (*argp); | |
2411 | t = check_typedef (VALUE_TYPE (*argp)); | |
2412 | } | |
2413 | ||
2414 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2415 | error ("not implemented: member type in value_struct_elt"); | |
2416 | ||
c5aa993b | 2417 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2418 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2419 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2420 | ||
2421 | /* Assume it's not, unless we see that it is. */ | |
2422 | if (static_memfuncp) | |
c5aa993b | 2423 | *static_memfuncp = 0; |
c906108c SS |
2424 | |
2425 | if (!args) | |
2426 | { | |
2427 | /* if there are no arguments ...do this... */ | |
2428 | ||
2429 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 2430 | is less work to be done. */ |
c906108c SS |
2431 | v = search_struct_field (name, *argp, 0, t, 0); |
2432 | if (v) | |
2433 | return v; | |
2434 | ||
2435 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2436 | return it as a pointer to a method. */ |
c906108c SS |
2437 | |
2438 | if (destructor_name_p (name, t)) | |
2439 | error ("Cannot get value of destructor"); | |
2440 | ||
2441 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2442 | ||
f23631e4 | 2443 | if (v == (struct value *) - 1) |
c906108c SS |
2444 | error ("Cannot take address of a method"); |
2445 | else if (v == 0) | |
2446 | { | |
2447 | if (TYPE_NFN_FIELDS (t)) | |
2448 | error ("There is no member or method named %s.", name); | |
2449 | else | |
2450 | error ("There is no member named %s.", name); | |
2451 | } | |
2452 | return v; | |
2453 | } | |
2454 | ||
2455 | if (destructor_name_p (name, t)) | |
2456 | { | |
2457 | if (!args[1]) | |
2458 | { | |
2459 | /* Destructors are a special case. */ | |
2460 | int m_index, f_index; | |
2461 | ||
2462 | v = NULL; | |
2463 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2464 | { | |
2465 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2466 | f_index, NULL, 0); | |
2467 | } | |
2468 | if (v == NULL) | |
2469 | error ("could not find destructor function named %s.", name); | |
2470 | else | |
2471 | return v; | |
2472 | } | |
2473 | else | |
2474 | { | |
2475 | error ("destructor should not have any argument"); | |
2476 | } | |
2477 | } | |
2478 | else | |
2479 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 2480 | |
f23631e4 | 2481 | if (v == (struct value *) - 1) |
c906108c | 2482 | { |
7168a814 | 2483 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
2484 | } |
2485 | else if (v == 0) | |
2486 | { | |
2487 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
2488 | hand it back. If it's not callable (i.e., a pointer to function), |
2489 | gdb should give an error. */ | |
c906108c SS |
2490 | v = search_struct_field (name, *argp, 0, t, 0); |
2491 | } | |
2492 | ||
2493 | if (!v) | |
2494 | error ("Structure has no component named %s.", name); | |
2495 | return v; | |
2496 | } | |
2497 | ||
2498 | /* Search through the methods of an object (and its bases) | |
2499 | * to find a specified method. Return the pointer to the | |
2500 | * fn_field list of overloaded instances. | |
2501 | * Helper function for value_find_oload_list. | |
2502 | * ARGP is a pointer to a pointer to a value (the object) | |
2503 | * METHOD is a string containing the method name | |
2504 | * OFFSET is the offset within the value | |
2505 | * STATIC_MEMFUNCP is set if the method is static | |
2506 | * TYPE is the assumed type of the object | |
2507 | * NUM_FNS is the number of overloaded instances | |
2508 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2509 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2510 | ||
7a292a7a | 2511 | static struct fn_field * |
f23631e4 | 2512 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 2513 | struct type *type, int *num_fns, |
fba45db2 | 2514 | struct type **basetype, int *boffset) |
c906108c SS |
2515 | { |
2516 | int i; | |
c5aa993b | 2517 | struct fn_field *f; |
c906108c SS |
2518 | CHECK_TYPEDEF (type); |
2519 | ||
2520 | *num_fns = 0; | |
2521 | ||
c5aa993b JM |
2522 | /* First check in object itself */ |
2523 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2524 | { |
2525 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2526 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2527 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2528 | { |
4a1970e4 DJ |
2529 | /* Resolve any stub methods. */ |
2530 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2531 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
2532 | int j; | |
2533 | ||
2534 | *num_fns = len; | |
c5aa993b JM |
2535 | *basetype = type; |
2536 | *boffset = offset; | |
4a1970e4 DJ |
2537 | |
2538 | for (j = 0; j < len; j++) | |
2539 | { | |
2540 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2541 | check_stub_method (type, i, j); | |
2542 | } | |
2543 | ||
2544 | return f; | |
c5aa993b JM |
2545 | } |
2546 | } | |
2547 | ||
c906108c SS |
2548 | /* Not found in object, check in base subobjects */ |
2549 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2550 | { | |
2551 | int base_offset; | |
2552 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2553 | { | |
c5aa993b JM |
2554 | if (TYPE_HAS_VTABLE (type)) |
2555 | { | |
2556 | /* HP aCC compiled type, search for virtual base offset | |
2557 | * according to HP/Taligent runtime spec. */ | |
2558 | int skip; | |
2559 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2560 | VALUE_CONTENTS_ALL (*argp), | |
2561 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2562 | &base_offset, &skip); | |
2563 | if (skip >= 0) | |
2564 | error ("Virtual base class offset not found in vtable"); | |
2565 | } | |
2566 | else | |
2567 | { | |
2568 | /* probably g++ runtime model */ | |
2569 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2570 | base_offset = | |
2571 | baseclass_offset (type, i, | |
2572 | VALUE_CONTENTS (*argp) + base_offset, | |
2573 | VALUE_ADDRESS (*argp) + base_offset); | |
2574 | if (base_offset == -1) | |
2575 | error ("virtual baseclass botch"); | |
2576 | } | |
2577 | } | |
2578 | else | |
2579 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2580 | { |
2581 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2582 | } |
c906108c | 2583 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
2584 | TYPE_BASECLASS (type, i), num_fns, basetype, |
2585 | boffset); | |
c906108c | 2586 | if (f) |
c5aa993b | 2587 | return f; |
c906108c | 2588 | } |
c5aa993b | 2589 | return NULL; |
c906108c SS |
2590 | } |
2591 | ||
2592 | /* Return the list of overloaded methods of a specified name. | |
2593 | * ARGP is a pointer to a pointer to a value (the object) | |
2594 | * METHOD is the method name | |
2595 | * OFFSET is the offset within the value contents | |
2596 | * STATIC_MEMFUNCP is set if the method is static | |
2597 | * NUM_FNS is the number of overloaded instances | |
2598 | * BASETYPE is set to the type of the base subobject that defines the method | |
2599 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2600 | ||
2601 | struct fn_field * | |
f23631e4 | 2602 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
2603 | int *num_fns, struct type **basetype, |
2604 | int *boffset) | |
c906108c | 2605 | { |
c5aa993b | 2606 | struct type *t; |
c906108c SS |
2607 | |
2608 | t = check_typedef (VALUE_TYPE (*argp)); | |
2609 | ||
c5aa993b | 2610 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2611 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2612 | { | |
2613 | *argp = value_ind (*argp); | |
2614 | /* Don't coerce fn pointer to fn and then back again! */ | |
2615 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2616 | COERCE_ARRAY (*argp); | |
2617 | t = check_typedef (VALUE_TYPE (*argp)); | |
2618 | } | |
c5aa993b | 2619 | |
c906108c SS |
2620 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2621 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2622 | |
2623 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2624 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2625 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2626 | |
4a1970e4 | 2627 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
2628 | } |
2629 | ||
2630 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2631 | entry for "this" in the case of C++ methods), the number of | |
2632 | arguments NARGS, the NAME of a function whether it's a method or | |
2633 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2634 | overload resolution rules in ANSI C++, find the best function that | |
2635 | matches on the argument types according to the overload resolution | |
2636 | rules. | |
2637 | ||
2638 | In the case of class methods, the parameter OBJ is an object value | |
2639 | in which to search for overloaded methods. | |
2640 | ||
2641 | In the case of non-method functions, the parameter FSYM is a symbol | |
2642 | corresponding to one of the overloaded functions. | |
2643 | ||
2644 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2645 | non-standard coercions, 100 -> incompatible. | |
2646 | ||
2647 | If a method is being searched for, VALP will hold the value. | |
2648 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2649 | ||
2650 | If a method is being searched for, and it is a static method, | |
2651 | then STATICP will point to a non-zero value. | |
2652 | ||
2653 | Note: This function does *not* check the value of | |
2654 | overload_resolution. Caller must check it to see whether overload | |
2655 | resolution is permitted. | |
c5aa993b | 2656 | */ |
c906108c SS |
2657 | |
2658 | int | |
fba45db2 | 2659 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 2660 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 2661 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c SS |
2662 | { |
2663 | int nparms; | |
c5aa993b | 2664 | struct type **parm_types; |
c906108c | 2665 | int champ_nparms = 0; |
7f8c9282 | 2666 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b JM |
2667 | |
2668 | short oload_champ = -1; /* Index of best overloaded function */ | |
2669 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2670 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2671 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2672 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2673 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2674 | ||
2675 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2676 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2677 | ||
f23631e4 | 2678 | struct value *temp = obj; |
c5aa993b JM |
2679 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2680 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2681 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2682 | struct type *basetype = NULL; | |
c906108c SS |
2683 | int boffset; |
2684 | register int jj; | |
2685 | register int ix; | |
4a1970e4 | 2686 | int static_offset; |
c906108c | 2687 | |
c5aa993b JM |
2688 | char *obj_type_name = NULL; |
2689 | char *func_name = NULL; | |
c906108c SS |
2690 | |
2691 | /* Get the list of overloaded methods or functions */ | |
2692 | if (method) | |
2693 | { | |
2694 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
2695 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 2696 | value rather than the object itself, so try again */ |
c906108c | 2697 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2698 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2699 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2700 | |
2701 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2702 | &num_fns, |
2703 | &basetype, &boffset); | |
c906108c | 2704 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2705 | error ("Couldn't find method %s%s%s", |
2706 | obj_type_name, | |
2707 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2708 | name); | |
4a1970e4 DJ |
2709 | /* If we are dealing with stub method types, they should have |
2710 | been resolved by find_method_list via value_find_oload_method_list | |
2711 | above. */ | |
2712 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
c906108c SS |
2713 | } |
2714 | else | |
2715 | { | |
2716 | int i = -1; | |
2717 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2718 | ||
917317f4 | 2719 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 2720 | Just return the same symbol. */ |
917317f4 | 2721 | if (!func_name) |
7b83ea04 | 2722 | { |
917317f4 | 2723 | *symp = fsym; |
7b83ea04 AC |
2724 | return 0; |
2725 | } | |
917317f4 | 2726 | |
c906108c SS |
2727 | oload_syms = make_symbol_overload_list (fsym); |
2728 | while (oload_syms[++i]) | |
c5aa993b | 2729 | num_fns++; |
c906108c | 2730 | if (!num_fns) |
c5aa993b | 2731 | error ("Couldn't find function %s", func_name); |
c906108c | 2732 | } |
c5aa993b | 2733 | |
c906108c SS |
2734 | oload_champ_bv = NULL; |
2735 | ||
c5aa993b | 2736 | /* Consider each candidate in turn */ |
c906108c SS |
2737 | for (ix = 0; ix < num_fns; ix++) |
2738 | { | |
4a1970e4 | 2739 | static_offset = 0; |
db577aea AC |
2740 | if (method) |
2741 | { | |
4a1970e4 DJ |
2742 | if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix)) |
2743 | static_offset = 1; | |
ad2f7632 | 2744 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2745 | } |
2746 | else | |
2747 | { | |
2748 | /* If it's not a method, this is the proper place */ | |
2749 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2750 | } | |
c906108c | 2751 | |
c5aa993b | 2752 | /* Prepare array of parameter types */ |
c906108c SS |
2753 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2754 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2755 | parm_types[jj] = (method |
ad2f7632 | 2756 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2757 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2758 | |
4a1970e4 DJ |
2759 | /* Compare parameter types to supplied argument types. Skip THIS for |
2760 | static methods. */ | |
2761 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2762 | nargs - static_offset); | |
c5aa993b | 2763 | |
c906108c | 2764 | if (!oload_champ_bv) |
c5aa993b JM |
2765 | { |
2766 | oload_champ_bv = bv; | |
2767 | oload_champ = 0; | |
2768 | champ_nparms = nparms; | |
2769 | } | |
c906108c | 2770 | else |
c5aa993b JM |
2771 | /* See whether current candidate is better or worse than previous best */ |
2772 | switch (compare_badness (bv, oload_champ_bv)) | |
2773 | { | |
2774 | case 0: | |
2775 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2776 | oload_ambig_champ = ix; | |
2777 | break; | |
2778 | case 1: | |
2779 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2780 | oload_ambig_champ = ix; | |
2781 | break; | |
2782 | case 2: | |
2783 | oload_champ_bv = bv; /* new champion, record details */ | |
2784 | oload_ambiguous = 0; | |
2785 | oload_champ = ix; | |
2786 | oload_ambig_champ = -1; | |
2787 | champ_nparms = nparms; | |
2788 | break; | |
2789 | case 3: | |
2790 | default: | |
2791 | break; | |
2792 | } | |
b8c9b27d | 2793 | xfree (parm_types); |
6b1ba9a0 ND |
2794 | if (overload_debug) |
2795 | { | |
2796 | if (method) | |
2797 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2798 | else | |
2799 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2800 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2801 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2802 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2803 | } | |
c5aa993b | 2804 | } /* end loop over all candidates */ |
db577aea AC |
2805 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2806 | if they have the exact same goodness. This is because there is no | |
2807 | way to differentiate based on return type, which we need to in | |
2808 | cases like overloads of .begin() <It's both const and non-const> */ | |
2809 | #if 0 | |
c906108c SS |
2810 | if (oload_ambiguous) |
2811 | { | |
2812 | if (method) | |
c5aa993b JM |
2813 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2814 | obj_type_name, | |
2815 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2816 | name); | |
c906108c | 2817 | else |
c5aa993b JM |
2818 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2819 | func_name); | |
c906108c | 2820 | } |
db577aea | 2821 | #endif |
c906108c | 2822 | |
4a1970e4 DJ |
2823 | /* Check how bad the best match is. */ |
2824 | static_offset = 0; | |
2825 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) | |
2826 | static_offset = 1; | |
2827 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
c906108c | 2828 | { |
6b1ba9a0 ND |
2829 | if (oload_champ_bv->rank[ix] >= 100) |
2830 | oload_incompatible = 1; /* truly mismatched types */ | |
2831 | ||
2832 | else if (oload_champ_bv->rank[ix] >= 10) | |
2833 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
c906108c SS |
2834 | } |
2835 | if (oload_incompatible) | |
2836 | { | |
2837 | if (method) | |
c5aa993b JM |
2838 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2839 | obj_type_name, | |
2840 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2841 | name); | |
c906108c | 2842 | else |
c5aa993b JM |
2843 | error ("Cannot resolve function %s to any overloaded instance", |
2844 | func_name); | |
c906108c SS |
2845 | } |
2846 | else if (oload_non_standard) | |
2847 | { | |
2848 | if (method) | |
c5aa993b JM |
2849 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2850 | obj_type_name, | |
2851 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2852 | name); | |
c906108c | 2853 | else |
c5aa993b JM |
2854 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2855 | func_name); | |
c906108c SS |
2856 | } |
2857 | ||
2858 | if (method) | |
2859 | { | |
4a1970e4 DJ |
2860 | if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) |
2861 | *staticp = 1; | |
2862 | else if (staticp) | |
2863 | *staticp = 0; | |
c906108c | 2864 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) |
c5aa993b | 2865 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2866 | else |
c5aa993b | 2867 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2868 | } |
2869 | else | |
2870 | { | |
2871 | *symp = oload_syms[oload_champ]; | |
b8c9b27d | 2872 | xfree (func_name); |
c906108c SS |
2873 | } |
2874 | ||
7f8c9282 DJ |
2875 | if (objp) |
2876 | { | |
2877 | if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR | |
2878 | && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR) | |
2879 | { | |
2880 | temp = value_addr (temp); | |
2881 | } | |
2882 | *objp = temp; | |
2883 | } | |
c906108c SS |
2884 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); |
2885 | } | |
2886 | ||
2887 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2888 | of type TYPE. If TYPE does not have a destructor, or | |
2889 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2890 | int | |
fba45db2 | 2891 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2892 | { |
2893 | /* destructors are a special case. */ | |
2894 | ||
2895 | if (name[0] == '~') | |
2896 | { | |
2897 | char *dname = type_name_no_tag (type); | |
2898 | char *cp = strchr (dname, '<'); | |
2899 | unsigned int len; | |
2900 | ||
2901 | /* Do not compare the template part for template classes. */ | |
2902 | if (cp == NULL) | |
2903 | len = strlen (dname); | |
2904 | else | |
2905 | len = cp - dname; | |
2906 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2907 | error ("name of destructor must equal name of class"); | |
2908 | else | |
2909 | return 1; | |
2910 | } | |
2911 | return 0; | |
2912 | } | |
2913 | ||
2914 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2915 | return 1 if the component named NAME from the ultimate | |
2916 | target structure/union is defined, otherwise, return 0. */ | |
2917 | ||
2918 | static int | |
fba45db2 | 2919 | check_field_in (register struct type *type, const char *name) |
c906108c SS |
2920 | { |
2921 | register int i; | |
2922 | ||
2923 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2924 | { | |
2925 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2926 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2927 | return 1; |
2928 | } | |
2929 | ||
2930 | /* C++: If it was not found as a data field, then try to | |
2931 | return it as a pointer to a method. */ | |
2932 | ||
2933 | /* Destructors are a special case. */ | |
2934 | if (destructor_name_p (name, type)) | |
2935 | { | |
2936 | int m_index, f_index; | |
2937 | ||
2938 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2939 | } | |
2940 | ||
2941 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2942 | { | |
db577aea | 2943 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2944 | return 1; |
2945 | } | |
2946 | ||
2947 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2948 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2949 | return 1; | |
c5aa993b | 2950 | |
c906108c SS |
2951 | return 0; |
2952 | } | |
2953 | ||
2954 | ||
2955 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2956 | return 1 if the component named NAME from the ultimate | |
2957 | target structure/union is defined, otherwise, return 0. */ | |
2958 | ||
2959 | int | |
f23631e4 | 2960 | check_field (struct value *arg1, const char *name) |
c906108c SS |
2961 | { |
2962 | register struct type *t; | |
2963 | ||
2964 | COERCE_ARRAY (arg1); | |
2965 | ||
2966 | t = VALUE_TYPE (arg1); | |
2967 | ||
2968 | /* Follow pointers until we get to a non-pointer. */ | |
2969 | ||
2970 | for (;;) | |
2971 | { | |
2972 | CHECK_TYPEDEF (t); | |
2973 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2974 | break; | |
2975 | t = TYPE_TARGET_TYPE (t); | |
2976 | } | |
2977 | ||
2978 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2979 | error ("not implemented: member type in check_field"); | |
2980 | ||
c5aa993b | 2981 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2982 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2983 | error ("Internal error: `this' is not an aggregate"); | |
2984 | ||
2985 | return check_field_in (t, name); | |
2986 | } | |
2987 | ||
2988 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2989 | return the address of this member as a "pointer to member" | |
2990 | type. If INTYPE is non-null, then it will be the type | |
2991 | of the member we are looking for. This will help us resolve | |
2992 | "pointers to member functions". This function is used | |
2993 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2994 | ||
f23631e4 | 2995 | struct value * |
fba45db2 KB |
2996 | value_struct_elt_for_reference (struct type *domain, int offset, |
2997 | struct type *curtype, char *name, | |
2998 | struct type *intype) | |
c906108c SS |
2999 | { |
3000 | register struct type *t = curtype; | |
3001 | register int i; | |
f23631e4 | 3002 | struct value *v; |
c906108c | 3003 | |
c5aa993b | 3004 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3005 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3006 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
3007 | ||
3008 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3009 | { | |
3010 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3011 | |
c906108c SS |
3012 | if (t_field_name && STREQ (t_field_name, name)) |
3013 | { | |
3014 | if (TYPE_FIELD_STATIC (t, i)) | |
3015 | { | |
3016 | v = value_static_field (t, i); | |
3017 | if (v == NULL) | |
3018 | error ("Internal error: could not find static variable %s", | |
3019 | name); | |
3020 | return v; | |
3021 | } | |
3022 | if (TYPE_FIELD_PACKED (t, i)) | |
3023 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3024 | |
c906108c SS |
3025 | return value_from_longest |
3026 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3027 | domain)), | |
3028 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3029 | } | |
3030 | } | |
3031 | ||
3032 | /* C++: If it was not found as a data field, then try to | |
3033 | return it as a pointer to a method. */ | |
3034 | ||
3035 | /* Destructors are a special case. */ | |
3036 | if (destructor_name_p (name, t)) | |
3037 | { | |
3038 | error ("member pointers to destructors not implemented yet"); | |
3039 | } | |
3040 | ||
3041 | /* Perform all necessary dereferencing. */ | |
3042 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3043 | intype = TYPE_TARGET_TYPE (intype); | |
3044 | ||
3045 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3046 | { | |
3047 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3048 | char dem_opname[64]; | |
3049 | ||
c5aa993b JM |
3050 | if (strncmp (t_field_name, "__", 2) == 0 || |
3051 | strncmp (t_field_name, "op", 2) == 0 || | |
3052 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3053 | { |
c5aa993b JM |
3054 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3055 | t_field_name = dem_opname; | |
3056 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3057 | t_field_name = dem_opname; |
c906108c SS |
3058 | } |
3059 | if (t_field_name && STREQ (t_field_name, name)) | |
3060 | { | |
3061 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3062 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3063 | |
c906108c SS |
3064 | if (intype == 0 && j > 1) |
3065 | error ("non-unique member `%s' requires type instantiation", name); | |
3066 | if (intype) | |
3067 | { | |
3068 | while (j--) | |
3069 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3070 | break; | |
3071 | if (j < 0) | |
3072 | error ("no member function matches that type instantiation"); | |
3073 | } | |
3074 | else | |
3075 | j = 0; | |
c5aa993b | 3076 | |
c906108c SS |
3077 | if (TYPE_FN_FIELD_STUB (f, j)) |
3078 | check_stub_method (t, i, j); | |
3079 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3080 | { | |
3081 | return value_from_longest | |
3082 | (lookup_reference_type | |
3083 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3084 | domain)), | |
3085 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3086 | } | |
3087 | else | |
3088 | { | |
3089 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3090 | 0, VAR_NAMESPACE, 0, NULL); | |
3091 | if (s == NULL) | |
3092 | { | |
3093 | v = 0; | |
3094 | } | |
3095 | else | |
3096 | { | |
3097 | v = read_var_value (s, 0); | |
3098 | #if 0 | |
3099 | VALUE_TYPE (v) = lookup_reference_type | |
3100 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3101 | domain)); | |
3102 | #endif | |
3103 | } | |
3104 | return v; | |
3105 | } | |
3106 | } | |
3107 | } | |
3108 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3109 | { | |
f23631e4 | 3110 | struct value *v; |
c906108c SS |
3111 | int base_offset; |
3112 | ||
3113 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3114 | base_offset = 0; | |
3115 | else | |
3116 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3117 | v = value_struct_elt_for_reference (domain, | |
3118 | offset + base_offset, | |
3119 | TYPE_BASECLASS (t, i), | |
3120 | name, | |
3121 | intype); | |
3122 | if (v) | |
3123 | return v; | |
3124 | } | |
3125 | return 0; | |
3126 | } | |
3127 | ||
3128 | ||
c906108c SS |
3129 | /* Given a pointer value V, find the real (RTTI) type |
3130 | of the object it points to. | |
3131 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3132 | and refer to the values computed for the object pointed to. */ | |
3133 | ||
3134 | struct type * | |
f23631e4 | 3135 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 3136 | { |
f23631e4 | 3137 | struct value *target; |
c906108c SS |
3138 | |
3139 | target = value_ind (v); | |
3140 | ||
3141 | return value_rtti_type (target, full, top, using_enc); | |
3142 | } | |
3143 | ||
3144 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3145 | if that is different from the enclosing type, create a new value | |
3146 | using the real run-time type as the enclosing type (and of the same | |
3147 | type as ARGP) and return it, with the embedded offset adjusted to | |
3148 | be the correct offset to the enclosed object | |
3149 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3150 | parameters, computed by value_rtti_type(). If these are available, | |
3151 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3152 | (Pass RTYPE == NULL if they're not available */ | |
3153 | ||
f23631e4 AC |
3154 | struct value * |
3155 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 3156 | int xusing_enc) |
c906108c | 3157 | { |
c5aa993b | 3158 | struct type *real_type; |
c906108c SS |
3159 | int full = 0; |
3160 | int top = -1; | |
3161 | int using_enc = 0; | |
f23631e4 | 3162 | struct value *new_val; |
c906108c SS |
3163 | |
3164 | if (rtype) | |
3165 | { | |
3166 | real_type = rtype; | |
3167 | full = xfull; | |
3168 | top = xtop; | |
3169 | using_enc = xusing_enc; | |
3170 | } | |
3171 | else | |
3172 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3173 | ||
3174 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3175 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3176 | return argp; | |
3177 | ||
3178 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3179 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3180 | if (full) |
3181 | { | |
2b127877 | 3182 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
3183 | return argp; |
3184 | } | |
3185 | ||
3186 | /* Check if object is in memory */ | |
3187 | if (VALUE_LVAL (argp) != lval_memory) | |
3188 | { | |
3189 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3190 | |
c906108c SS |
3191 | return argp; |
3192 | } | |
c5aa993b | 3193 | |
c906108c SS |
3194 | /* All other cases -- retrieve the complete object */ |
3195 | /* Go back by the computed top_offset from the beginning of the object, | |
3196 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3197 | used for its computation. */ | |
3198 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3199 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3200 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3201 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3202 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3203 | return new_val; | |
3204 | } | |
3205 | ||
3206 | ||
3207 | ||
3208 | ||
3209 | /* C++: return the value of the class instance variable, if one exists. | |
3210 | Flag COMPLAIN signals an error if the request is made in an | |
3211 | inappropriate context. */ | |
3212 | ||
f23631e4 | 3213 | struct value * |
fba45db2 | 3214 | value_of_this (int complain) |
c906108c SS |
3215 | { |
3216 | struct symbol *func, *sym; | |
3217 | struct block *b; | |
3218 | int i; | |
3219 | static const char funny_this[] = "this"; | |
f23631e4 | 3220 | struct value *this; |
c906108c SS |
3221 | |
3222 | if (selected_frame == 0) | |
3223 | { | |
3224 | if (complain) | |
c5aa993b JM |
3225 | error ("no frame selected"); |
3226 | else | |
3227 | return 0; | |
c906108c SS |
3228 | } |
3229 | ||
3230 | func = get_frame_function (selected_frame); | |
3231 | if (!func) | |
3232 | { | |
3233 | if (complain) | |
3234 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3235 | else |
3236 | return 0; | |
c906108c SS |
3237 | } |
3238 | ||
3239 | b = SYMBOL_BLOCK_VALUE (func); | |
3240 | i = BLOCK_NSYMS (b); | |
3241 | if (i <= 0) | |
3242 | { | |
3243 | if (complain) | |
c5aa993b JM |
3244 | error ("no args, no `this'"); |
3245 | else | |
3246 | return 0; | |
c906108c SS |
3247 | } |
3248 | ||
3249 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3250 | symbol instead of the LOC_ARG one (if both exist). */ | |
3121eff0 | 3251 | sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE); |
c906108c SS |
3252 | if (sym == NULL) |
3253 | { | |
3254 | if (complain) | |
3255 | error ("current stack frame not in method"); | |
3256 | else | |
3257 | return NULL; | |
3258 | } | |
3259 | ||
3260 | this = read_var_value (sym, selected_frame); | |
3261 | if (this == 0 && complain) | |
3262 | error ("`this' argument at unknown address"); | |
3263 | return this; | |
3264 | } | |
3265 | ||
3266 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3267 | long, starting at LOWBOUND. The result has the same lower bound as | |
3268 | the original ARRAY. */ | |
3269 | ||
f23631e4 AC |
3270 | struct value * |
3271 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3272 | { |
3273 | struct type *slice_range_type, *slice_type, *range_type; | |
3274 | LONGEST lowerbound, upperbound, offset; | |
f23631e4 | 3275 | struct value *slice; |
c906108c SS |
3276 | struct type *array_type; |
3277 | array_type = check_typedef (VALUE_TYPE (array)); | |
3278 | COERCE_VARYING_ARRAY (array, array_type); | |
3279 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3280 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3281 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3282 | error ("cannot take slice of non-array"); | |
3283 | range_type = TYPE_INDEX_TYPE (array_type); | |
3284 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3285 | error ("slice from bad array or bitstring"); | |
3286 | if (lowbound < lowerbound || length < 0 | |
3287 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3288 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3289 | || (current_language->la_language == language_chill |
3290 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3291 | error ("slice out of range"); | |
3292 | /* FIXME-type-allocation: need a way to free this type when we are | |
3293 | done with it. */ | |
c5aa993b | 3294 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3295 | TYPE_TARGET_TYPE (range_type), |
3296 | lowbound, lowbound + length - 1); | |
3297 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3298 | { | |
3299 | int i; | |
c5aa993b | 3300 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3301 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3302 | slice = value_zero (slice_type, not_lval); | |
3303 | for (i = 0; i < length; i++) | |
3304 | { | |
3305 | int element = value_bit_index (array_type, | |
3306 | VALUE_CONTENTS (array), | |
3307 | lowbound + i); | |
3308 | if (element < 0) | |
3309 | error ("internal error accessing bitstring"); | |
3310 | else if (element > 0) | |
3311 | { | |
3312 | int j = i % TARGET_CHAR_BIT; | |
3313 | if (BITS_BIG_ENDIAN) | |
3314 | j = TARGET_CHAR_BIT - 1 - j; | |
3315 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3316 | } | |
3317 | } | |
3318 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
3319 | can be used on the LHS, but that may require extensions to |
3320 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3321 | } |
3322 | else | |
3323 | { | |
3324 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3325 | offset | |
3326 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3327 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3328 | slice_range_type); |
3329 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3330 | slice = allocate_value (slice_type); | |
3331 | if (VALUE_LAZY (array)) | |
3332 | VALUE_LAZY (slice) = 1; | |
3333 | else | |
3334 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3335 | TYPE_LENGTH (slice_type)); | |
3336 | if (VALUE_LVAL (array) == lval_internalvar) | |
3337 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3338 | else | |
3339 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3340 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3341 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3342 | } | |
3343 | return slice; | |
3344 | } | |
3345 | ||
3346 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3347 | value as a fixed-length array. */ | |
3348 | ||
f23631e4 AC |
3349 | struct value * |
3350 | varying_to_slice (struct value *varray) | |
c906108c SS |
3351 | { |
3352 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3353 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3354 | VALUE_CONTENTS (varray) | |
3355 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3356 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3357 | } | |
3358 | ||
070ad9f0 DB |
3359 | /* Create a value for a FORTRAN complex number. Currently most of |
3360 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3361 | composed of 2 doubles. This really should be a smarter routine | |
3362 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3363 | doubles. FIXME: fmb */ |
c906108c | 3364 | |
f23631e4 AC |
3365 | struct value * |
3366 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 3367 | { |
f23631e4 | 3368 | struct value *val; |
c906108c SS |
3369 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3370 | ||
3371 | val = allocate_value (type); | |
3372 | arg1 = value_cast (real_type, arg1); | |
3373 | arg2 = value_cast (real_type, arg2); | |
3374 | ||
3375 | memcpy (VALUE_CONTENTS_RAW (val), | |
3376 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3377 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3378 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3379 | return val; | |
3380 | } | |
3381 | ||
3382 | /* Cast a value into the appropriate complex data type. */ | |
3383 | ||
f23631e4 AC |
3384 | static struct value * |
3385 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3386 | { |
3387 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3388 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3389 | { | |
3390 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
f23631e4 AC |
3391 | struct value *re_val = allocate_value (val_real_type); |
3392 | struct value *im_val = allocate_value (val_real_type); | |
c906108c SS |
3393 | |
3394 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3395 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3396 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3397 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3398 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3399 | |
3400 | return value_literal_complex (re_val, im_val, type); | |
3401 | } | |
3402 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3403 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3404 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3405 | else | |
3406 | error ("cannot cast non-number to complex"); | |
3407 | } | |
3408 | ||
3409 | void | |
fba45db2 | 3410 | _initialize_valops (void) |
c906108c SS |
3411 | { |
3412 | #if 0 | |
3413 | add_show_from_set | |
c5aa993b | 3414 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3415 | "Set automatic abandonment of expressions upon failure.", |
3416 | &setlist), | |
3417 | &showlist); | |
3418 | #endif | |
3419 | ||
3420 | add_show_from_set | |
c5aa993b | 3421 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3422 | "Set overload resolution in evaluating C++ functions.", |
3423 | &setlist), | |
3424 | &showlist); | |
3425 | overload_resolution = 1; | |
3426 | ||
242bfc55 FN |
3427 | add_show_from_set ( |
3428 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3429 | (char *) &unwind_on_signal_p, | |
3430 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3431 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3432 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3433 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3434 | The default is to stop in the frame where the signal was received.", &setlist), | |
3435 | &showlist); | |
c906108c | 3436 | } |