]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform non-arithmetic operations on values, for GDB. |
f23631e4 | 2 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
1e698235 | 3 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 |
f23631e4 | 4 | Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcore.h" | |
30 | #include "target.h" | |
31 | #include "demangle.h" | |
32 | #include "language.h" | |
33 | #include "gdbcmd.h" | |
4e052eda | 34 | #include "regcache.h" |
015a42b4 | 35 | #include "cp-abi.h" |
fe898f56 | 36 | #include "block.h" |
c906108c SS |
37 | |
38 | #include <errno.h> | |
39 | #include "gdb_string.h" | |
4a1970e4 | 40 | #include "gdb_assert.h" |
c906108c | 41 | |
c906108c SS |
42 | /* Flag indicating HP compilers were used; needed to correctly handle some |
43 | value operations with HP aCC code/runtime. */ | |
44 | extern int hp_som_som_object_present; | |
45 | ||
070ad9f0 | 46 | extern int overload_debug; |
c906108c SS |
47 | /* Local functions. */ |
48 | ||
ad2f7632 DJ |
49 | static int typecmp (int staticp, int varargs, int nargs, |
50 | struct field t1[], struct value *t2[]); | |
c906108c | 51 | |
389e51db | 52 | static CORE_ADDR find_function_addr (struct value *, struct type **); |
f23631e4 | 53 | static struct value *value_arg_coerce (struct value *, struct type *, int); |
c906108c | 54 | |
389e51db | 55 | |
f23631e4 | 56 | static CORE_ADDR value_push (CORE_ADDR, struct value *); |
c906108c | 57 | |
f23631e4 | 58 | static struct value *search_struct_field (char *, struct value *, int, |
a14ed312 | 59 | struct type *, int); |
c906108c | 60 | |
f23631e4 AC |
61 | static struct value *search_struct_method (char *, struct value **, |
62 | struct value **, | |
a14ed312 | 63 | int, int *, struct type *); |
c906108c | 64 | |
a14ed312 | 65 | static int check_field_in (struct type *, const char *); |
c906108c | 66 | |
a14ed312 | 67 | static CORE_ADDR allocate_space_in_inferior (int); |
c906108c | 68 | |
f23631e4 | 69 | static struct value *cast_into_complex (struct type *, struct value *); |
c906108c | 70 | |
f23631e4 | 71 | static struct fn_field *find_method_list (struct value ** argp, char *method, |
4a1970e4 | 72 | int offset, |
a14ed312 KB |
73 | struct type *type, int *num_fns, |
74 | struct type **basetype, | |
75 | int *boffset); | |
7a292a7a | 76 | |
a14ed312 | 77 | void _initialize_valops (void); |
c906108c | 78 | |
c906108c SS |
79 | /* Flag for whether we want to abandon failed expression evals by default. */ |
80 | ||
81 | #if 0 | |
82 | static int auto_abandon = 0; | |
83 | #endif | |
84 | ||
85 | int overload_resolution = 0; | |
242bfc55 FN |
86 | |
87 | /* This boolean tells what gdb should do if a signal is received while in | |
88 | a function called from gdb (call dummy). If set, gdb unwinds the stack | |
89 | and restore the context to what as it was before the call. | |
90 | The default is to stop in the frame where the signal was received. */ | |
91 | ||
92 | int unwind_on_signal_p = 0; | |
c906108c | 93 | |
1e698235 DJ |
94 | /* How you should pass arguments to a function depends on whether it |
95 | was defined in K&R style or prototype style. If you define a | |
96 | function using the K&R syntax that takes a `float' argument, then | |
97 | callers must pass that argument as a `double'. If you define the | |
98 | function using the prototype syntax, then you must pass the | |
99 | argument as a `float', with no promotion. | |
100 | ||
101 | Unfortunately, on certain older platforms, the debug info doesn't | |
102 | indicate reliably how each function was defined. A function type's | |
103 | TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was | |
104 | defined in prototype style. When calling a function whose | |
105 | TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide | |
106 | what to do. | |
107 | ||
108 | For modern targets, it is proper to assume that, if the prototype | |
109 | flag is clear, that can be trusted: `float' arguments should be | |
110 | promoted to `double'. For some older targets, if the prototype | |
111 | flag is clear, that doesn't tell us anything. The default is to | |
112 | trust the debug information; the user can override this behavior | |
113 | with "set coerce-float-to-double 0". */ | |
114 | ||
115 | static int coerce_float_to_double; | |
116 | \f | |
389e51db | 117 | |
c906108c SS |
118 | /* Find the address of function name NAME in the inferior. */ |
119 | ||
f23631e4 | 120 | struct value * |
3bada2a2 | 121 | find_function_in_inferior (const char *name) |
c906108c SS |
122 | { |
123 | register struct symbol *sym; | |
124 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
125 | if (sym != NULL) | |
126 | { | |
127 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
128 | { | |
129 | error ("\"%s\" exists in this program but is not a function.", | |
130 | name); | |
131 | } | |
132 | return value_of_variable (sym, NULL); | |
133 | } | |
134 | else | |
135 | { | |
c5aa993b | 136 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
137 | if (msymbol != NULL) |
138 | { | |
139 | struct type *type; | |
4478b372 | 140 | CORE_ADDR maddr; |
c906108c SS |
141 | type = lookup_pointer_type (builtin_type_char); |
142 | type = lookup_function_type (type); | |
143 | type = lookup_pointer_type (type); | |
4478b372 JB |
144 | maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
145 | return value_from_pointer (type, maddr); | |
c906108c SS |
146 | } |
147 | else | |
148 | { | |
c5aa993b | 149 | if (!target_has_execution) |
c906108c | 150 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 151 | else |
c906108c SS |
152 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
153 | } | |
154 | } | |
155 | } | |
156 | ||
157 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
158 | and return a value that is a pointer to the allocated space. */ | |
159 | ||
f23631e4 | 160 | struct value * |
fba45db2 | 161 | value_allocate_space_in_inferior (int len) |
c906108c | 162 | { |
f23631e4 | 163 | struct value *blocklen; |
5720643c | 164 | struct value *val = find_function_in_inferior (NAME_OF_MALLOC); |
c906108c SS |
165 | |
166 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
167 | val = call_function_by_hand (val, 1, &blocklen); | |
168 | if (value_logical_not (val)) | |
169 | { | |
170 | if (!target_has_execution) | |
c5aa993b JM |
171 | error ("No memory available to program now: you need to start the target first"); |
172 | else | |
173 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
174 | } |
175 | return val; | |
176 | } | |
177 | ||
178 | static CORE_ADDR | |
fba45db2 | 179 | allocate_space_in_inferior (int len) |
c906108c SS |
180 | { |
181 | return value_as_long (value_allocate_space_in_inferior (len)); | |
182 | } | |
183 | ||
184 | /* Cast value ARG2 to type TYPE and return as a value. | |
185 | More general than a C cast: accepts any two types of the same length, | |
186 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
187 | /* In C++, casts may change pointer or object representations. */ | |
188 | ||
f23631e4 AC |
189 | struct value * |
190 | value_cast (struct type *type, struct value *arg2) | |
c906108c SS |
191 | { |
192 | register enum type_code code1; | |
193 | register enum type_code code2; | |
194 | register int scalar; | |
195 | struct type *type2; | |
196 | ||
197 | int convert_to_boolean = 0; | |
c5aa993b | 198 | |
c906108c SS |
199 | if (VALUE_TYPE (arg2) == type) |
200 | return arg2; | |
201 | ||
202 | CHECK_TYPEDEF (type); | |
203 | code1 = TYPE_CODE (type); | |
c5aa993b | 204 | COERCE_REF (arg2); |
c906108c SS |
205 | type2 = check_typedef (VALUE_TYPE (arg2)); |
206 | ||
207 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
208 | is treated like a cast to (TYPE [N])OBJECT, | |
209 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
210 | if (code1 == TYPE_CODE_ARRAY) | |
211 | { | |
212 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
213 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
214 | if (element_length > 0 | |
c5aa993b | 215 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
216 | { |
217 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
218 | int val_length = TYPE_LENGTH (type2); | |
219 | LONGEST low_bound, high_bound, new_length; | |
220 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
221 | low_bound = 0, high_bound = 0; | |
222 | new_length = val_length / element_length; | |
223 | if (val_length % element_length != 0) | |
c5aa993b | 224 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
225 | /* FIXME-type-allocation: need a way to free this type when we are |
226 | done with it. */ | |
227 | range_type = create_range_type ((struct type *) NULL, | |
228 | TYPE_TARGET_TYPE (range_type), | |
229 | low_bound, | |
230 | new_length + low_bound - 1); | |
231 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
232 | element_type, range_type); | |
233 | return arg2; | |
234 | } | |
235 | } | |
236 | ||
237 | if (current_language->c_style_arrays | |
238 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
239 | arg2 = value_coerce_array (arg2); | |
240 | ||
241 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
242 | arg2 = value_coerce_function (arg2); | |
243 | ||
244 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
245 | COERCE_VARYING_ARRAY (arg2, type2); | |
246 | code2 = TYPE_CODE (type2); | |
247 | ||
248 | if (code1 == TYPE_CODE_COMPLEX) | |
249 | return cast_into_complex (type, arg2); | |
250 | if (code1 == TYPE_CODE_BOOL) | |
251 | { | |
252 | code1 = TYPE_CODE_INT; | |
253 | convert_to_boolean = 1; | |
254 | } | |
255 | if (code1 == TYPE_CODE_CHAR) | |
256 | code1 = TYPE_CODE_INT; | |
257 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
258 | code2 = TYPE_CODE_INT; | |
259 | ||
260 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
261 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
262 | ||
c5aa993b | 263 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
264 | && code2 == TYPE_CODE_STRUCT |
265 | && TYPE_NAME (type) != 0) | |
266 | { | |
267 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
268 | type of the target as a superclass. If so, we'll need to |
269 | offset the object in addition to changing its type. */ | |
f23631e4 | 270 | struct value *v = search_struct_field (type_name_no_tag (type), |
c906108c SS |
271 | arg2, 0, type2, 1); |
272 | if (v) | |
273 | { | |
274 | VALUE_TYPE (v) = type; | |
275 | return v; | |
276 | } | |
277 | } | |
278 | if (code1 == TYPE_CODE_FLT && scalar) | |
279 | return value_from_double (type, value_as_double (arg2)); | |
280 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
281 | || code1 == TYPE_CODE_RANGE) | |
282 | && (scalar || code2 == TYPE_CODE_PTR)) | |
283 | { | |
284 | LONGEST longest; | |
c5aa993b JM |
285 | |
286 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
287 | (code2 == TYPE_CODE_PTR)) | |
288 | { | |
289 | unsigned int *ptr; | |
f23631e4 | 290 | struct value *retvalp; |
c5aa993b JM |
291 | |
292 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
293 | { | |
294 | /* With HP aCC, pointers to data members have a bias */ | |
295 | case TYPE_CODE_MEMBER: | |
296 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
716c501e | 297 | /* force evaluation */ |
802db21b | 298 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); |
c5aa993b JM |
299 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ |
300 | return retvalp; | |
301 | ||
302 | /* While pointers to methods don't really point to a function */ | |
303 | case TYPE_CODE_METHOD: | |
304 | error ("Pointers to methods not supported with HP aCC"); | |
305 | ||
306 | default: | |
307 | break; /* fall out and go to normal handling */ | |
308 | } | |
309 | } | |
2bf1f4a1 JB |
310 | |
311 | /* When we cast pointers to integers, we mustn't use | |
312 | POINTER_TO_ADDRESS to find the address the pointer | |
313 | represents, as value_as_long would. GDB should evaluate | |
314 | expressions just as the compiler would --- and the compiler | |
315 | sees a cast as a simple reinterpretation of the pointer's | |
316 | bits. */ | |
317 | if (code2 == TYPE_CODE_PTR) | |
318 | longest = extract_unsigned_integer (VALUE_CONTENTS (arg2), | |
319 | TYPE_LENGTH (type2)); | |
320 | else | |
321 | longest = value_as_long (arg2); | |
802db21b | 322 | return value_from_longest (type, convert_to_boolean ? |
716c501e | 323 | (LONGEST) (longest ? 1 : 0) : longest); |
c906108c | 324 | } |
802db21b | 325 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || |
23e04971 MS |
326 | code2 == TYPE_CODE_ENUM || |
327 | code2 == TYPE_CODE_RANGE)) | |
634acd5f | 328 | { |
4603e466 DT |
329 | /* TYPE_LENGTH (type) is the length of a pointer, but we really |
330 | want the length of an address! -- we are really dealing with | |
331 | addresses (i.e., gdb representations) not pointers (i.e., | |
332 | target representations) here. | |
333 | ||
334 | This allows things like "print *(int *)0x01000234" to work | |
335 | without printing a misleading message -- which would | |
336 | otherwise occur when dealing with a target having two byte | |
337 | pointers and four byte addresses. */ | |
338 | ||
339 | int addr_bit = TARGET_ADDR_BIT; | |
340 | ||
634acd5f | 341 | LONGEST longest = value_as_long (arg2); |
4603e466 | 342 | if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
634acd5f | 343 | { |
4603e466 DT |
344 | if (longest >= ((LONGEST) 1 << addr_bit) |
345 | || longest <= -((LONGEST) 1 << addr_bit)) | |
634acd5f AC |
346 | warning ("value truncated"); |
347 | } | |
348 | return value_from_longest (type, longest); | |
349 | } | |
c906108c SS |
350 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
351 | { | |
352 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
353 | { | |
354 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
355 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 356 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
357 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
358 | && !value_logical_not (arg2)) | |
359 | { | |
f23631e4 | 360 | struct value *v; |
c906108c SS |
361 | |
362 | /* Look in the type of the source to see if it contains the | |
7b83ea04 AC |
363 | type of the target as a superclass. If so, we'll need to |
364 | offset the pointer rather than just change its type. */ | |
c906108c SS |
365 | if (TYPE_NAME (t1) != NULL) |
366 | { | |
367 | v = search_struct_field (type_name_no_tag (t1), | |
368 | value_ind (arg2), 0, t2, 1); | |
369 | if (v) | |
370 | { | |
371 | v = value_addr (v); | |
372 | VALUE_TYPE (v) = type; | |
373 | return v; | |
374 | } | |
375 | } | |
376 | ||
377 | /* Look in the type of the target to see if it contains the | |
7b83ea04 AC |
378 | type of the source as a superclass. If so, we'll need to |
379 | offset the pointer rather than just change its type. | |
380 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
381 | if (TYPE_NAME (t2) != NULL) |
382 | { | |
383 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 384 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
385 | if (v) |
386 | { | |
d174216d JB |
387 | CORE_ADDR addr2 = value_as_address (arg2); |
388 | addr2 -= (VALUE_ADDRESS (v) | |
389 | + VALUE_OFFSET (v) | |
390 | + VALUE_EMBEDDED_OFFSET (v)); | |
391 | return value_from_pointer (type, addr2); | |
c906108c SS |
392 | } |
393 | } | |
394 | } | |
395 | /* No superclass found, just fall through to change ptr type. */ | |
396 | } | |
397 | VALUE_TYPE (arg2) = type; | |
2b127877 | 398 | arg2 = value_change_enclosing_type (arg2, type); |
c5aa993b | 399 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ |
c906108c SS |
400 | return arg2; |
401 | } | |
c906108c SS |
402 | else if (VALUE_LVAL (arg2) == lval_memory) |
403 | { | |
404 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
405 | VALUE_BFD_SECTION (arg2)); | |
406 | } | |
407 | else if (code1 == TYPE_CODE_VOID) | |
408 | { | |
409 | return value_zero (builtin_type_void, not_lval); | |
410 | } | |
411 | else | |
412 | { | |
413 | error ("Invalid cast."); | |
414 | return 0; | |
415 | } | |
416 | } | |
417 | ||
418 | /* Create a value of type TYPE that is zero, and return it. */ | |
419 | ||
f23631e4 | 420 | struct value * |
fba45db2 | 421 | value_zero (struct type *type, enum lval_type lv) |
c906108c | 422 | { |
f23631e4 | 423 | struct value *val = allocate_value (type); |
c906108c SS |
424 | |
425 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
426 | VALUE_LVAL (val) = lv; | |
427 | ||
428 | return val; | |
429 | } | |
430 | ||
070ad9f0 | 431 | /* Return a value with type TYPE located at ADDR. |
c906108c SS |
432 | |
433 | Call value_at only if the data needs to be fetched immediately; | |
434 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
435 | value_at_lazy instead. value_at_lazy simply records the address of | |
070ad9f0 DB |
436 | the data and sets the lazy-evaluation-required flag. The lazy flag |
437 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
438 | the contents are actually required. | |
c906108c SS |
439 | |
440 | Note: value_at does *NOT* handle embedded offsets; perform such | |
441 | adjustments before or after calling it. */ | |
442 | ||
f23631e4 | 443 | struct value * |
fba45db2 | 444 | value_at (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 445 | { |
f23631e4 | 446 | struct value *val; |
c906108c SS |
447 | |
448 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
449 | error ("Attempt to dereference a generic pointer."); | |
450 | ||
451 | val = allocate_value (type); | |
452 | ||
75af7f68 | 453 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type)); |
c906108c SS |
454 | |
455 | VALUE_LVAL (val) = lval_memory; | |
456 | VALUE_ADDRESS (val) = addr; | |
457 | VALUE_BFD_SECTION (val) = sect; | |
458 | ||
459 | return val; | |
460 | } | |
461 | ||
462 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
463 | ||
f23631e4 | 464 | struct value * |
fba45db2 | 465 | value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect) |
c906108c | 466 | { |
f23631e4 | 467 | struct value *val; |
c906108c SS |
468 | |
469 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
470 | error ("Attempt to dereference a generic pointer."); | |
471 | ||
472 | val = allocate_value (type); | |
473 | ||
474 | VALUE_LVAL (val) = lval_memory; | |
475 | VALUE_ADDRESS (val) = addr; | |
476 | VALUE_LAZY (val) = 1; | |
477 | VALUE_BFD_SECTION (val) = sect; | |
478 | ||
479 | return val; | |
480 | } | |
481 | ||
070ad9f0 DB |
482 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, |
483 | if the current data for a variable needs to be loaded into | |
484 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
c906108c SS |
485 | clears the lazy flag to indicate that the data in the buffer is valid. |
486 | ||
487 | If the value is zero-length, we avoid calling read_memory, which would | |
488 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
489 | ||
490 | This function returns a value because it is used in the VALUE_CONTENTS | |
491 | macro as part of an expression, where a void would not work. The | |
492 | value is ignored. */ | |
493 | ||
494 | int | |
f23631e4 | 495 | value_fetch_lazy (struct value *val) |
c906108c SS |
496 | { |
497 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
498 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
499 | ||
c5aa993b | 500 | struct type *type = VALUE_TYPE (val); |
75af7f68 | 501 | if (length) |
d4b2399a | 502 | read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length); |
802db21b | 503 | |
c906108c SS |
504 | VALUE_LAZY (val) = 0; |
505 | return 0; | |
506 | } | |
507 | ||
508 | ||
509 | /* Store the contents of FROMVAL into the location of TOVAL. | |
510 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
511 | ||
f23631e4 AC |
512 | struct value * |
513 | value_assign (struct value *toval, struct value *fromval) | |
c906108c SS |
514 | { |
515 | register struct type *type; | |
f23631e4 | 516 | struct value *val; |
e6cbd02a | 517 | char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); |
c906108c | 518 | int use_buffer = 0; |
cb741690 | 519 | struct frame_id old_frame; |
c906108c SS |
520 | |
521 | if (!toval->modifiable) | |
522 | error ("Left operand of assignment is not a modifiable lvalue."); | |
523 | ||
524 | COERCE_REF (toval); | |
525 | ||
526 | type = VALUE_TYPE (toval); | |
527 | if (VALUE_LVAL (toval) != lval_internalvar) | |
528 | fromval = value_cast (type, fromval); | |
529 | else | |
530 | COERCE_ARRAY (fromval); | |
531 | CHECK_TYPEDEF (type); | |
532 | ||
533 | /* If TOVAL is a special machine register requiring conversion | |
534 | of program values to a special raw format, | |
535 | convert FROMVAL's contents now, with result in `raw_buffer', | |
536 | and set USE_BUFFER to the number of bytes to write. */ | |
537 | ||
ac9a91a7 | 538 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
539 | { |
540 | int regno = VALUE_REGNO (toval); | |
13d01224 | 541 | if (CONVERT_REGISTER_P (regno)) |
c906108c SS |
542 | { |
543 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
13d01224 | 544 | VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer); |
c906108c SS |
545 | use_buffer = REGISTER_RAW_SIZE (regno); |
546 | } | |
547 | } | |
c906108c | 548 | |
cb741690 DJ |
549 | /* Since modifying a register can trash the frame chain, and modifying memory |
550 | can trash the frame cache, we save the old frame and then restore the new | |
551 | frame afterwards. */ | |
552 | old_frame = get_frame_id (deprecated_selected_frame); | |
553 | ||
c906108c SS |
554 | switch (VALUE_LVAL (toval)) |
555 | { | |
556 | case lval_internalvar: | |
557 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
558 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
2b127877 | 559 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
560 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
561 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
562 | return val; | |
563 | ||
564 | case lval_internalvar_component: | |
565 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
566 | VALUE_OFFSET (toval), | |
567 | VALUE_BITPOS (toval), | |
568 | VALUE_BITSIZE (toval), | |
569 | fromval); | |
570 | break; | |
571 | ||
572 | case lval_memory: | |
573 | { | |
574 | char *dest_buffer; | |
c5aa993b JM |
575 | CORE_ADDR changed_addr; |
576 | int changed_len; | |
c906108c | 577 | |
c5aa993b JM |
578 | if (VALUE_BITSIZE (toval)) |
579 | { | |
c906108c SS |
580 | char buffer[sizeof (LONGEST)]; |
581 | /* We assume that the argument to read_memory is in units of | |
582 | host chars. FIXME: Is that correct? */ | |
583 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
584 | + VALUE_BITSIZE (toval) |
585 | + HOST_CHAR_BIT - 1) | |
586 | / HOST_CHAR_BIT; | |
c906108c SS |
587 | |
588 | if (changed_len > (int) sizeof (LONGEST)) | |
589 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
baa6f10b | 590 | (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
c906108c SS |
591 | |
592 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
593 | buffer, changed_len); | |
594 | modify_field (buffer, value_as_long (fromval), | |
595 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
596 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
597 | dest_buffer = buffer; | |
598 | } | |
599 | else if (use_buffer) | |
600 | { | |
601 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
602 | changed_len = use_buffer; | |
603 | dest_buffer = raw_buffer; | |
604 | } | |
605 | else | |
606 | { | |
607 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
608 | changed_len = TYPE_LENGTH (type); | |
609 | dest_buffer = VALUE_CONTENTS (fromval); | |
610 | } | |
611 | ||
612 | write_memory (changed_addr, dest_buffer, changed_len); | |
613 | if (memory_changed_hook) | |
614 | memory_changed_hook (changed_addr, changed_len); | |
e23792cc | 615 | target_changed_event (); |
c906108c SS |
616 | } |
617 | break; | |
618 | ||
c906108c | 619 | case lval_reg_frame_relative: |
492254e9 | 620 | case lval_register: |
c906108c SS |
621 | { |
622 | /* value is stored in a series of registers in the frame | |
623 | specified by the structure. Copy that value out, modify | |
624 | it, and copy it back in. */ | |
c906108c | 625 | int amount_copied; |
492254e9 AC |
626 | int amount_to_copy; |
627 | char *buffer; | |
628 | int value_reg; | |
629 | int reg_offset; | |
630 | int byte_offset; | |
c906108c SS |
631 | int regno; |
632 | struct frame_info *frame; | |
633 | ||
634 | /* Figure out which frame this is in currently. */ | |
492254e9 AC |
635 | if (VALUE_LVAL (toval) == lval_register) |
636 | { | |
637 | frame = get_current_frame (); | |
638 | value_reg = VALUE_REGNO (toval); | |
639 | } | |
640 | else | |
641 | { | |
642 | for (frame = get_current_frame (); | |
c193f6ac | 643 | frame && get_frame_base (frame) != VALUE_FRAME (toval); |
492254e9 AC |
644 | frame = get_prev_frame (frame)) |
645 | ; | |
646 | value_reg = VALUE_FRAME_REGNUM (toval); | |
647 | } | |
c906108c SS |
648 | |
649 | if (!frame) | |
650 | error ("Value being assigned to is no longer active."); | |
651 | ||
492254e9 AC |
652 | /* Locate the first register that falls in the value that |
653 | needs to be transfered. Compute the offset of the value in | |
654 | that register. */ | |
655 | { | |
656 | int offset; | |
657 | for (reg_offset = value_reg, offset = 0; | |
658 | offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval); | |
659 | reg_offset++); | |
660 | byte_offset = VALUE_OFFSET (toval) - offset; | |
661 | } | |
662 | ||
663 | /* Compute the number of register aligned values that need to | |
664 | be copied. */ | |
665 | if (VALUE_BITSIZE (toval)) | |
666 | amount_to_copy = byte_offset + 1; | |
667 | else | |
668 | amount_to_copy = byte_offset + TYPE_LENGTH (type); | |
669 | ||
670 | /* And a bounce buffer. Be slightly over generous. */ | |
671 | buffer = (char *) alloca (amount_to_copy | |
672 | + MAX_REGISTER_RAW_SIZE); | |
c906108c | 673 | |
492254e9 AC |
674 | /* Copy it in. */ |
675 | for (regno = reg_offset, amount_copied = 0; | |
c906108c | 676 | amount_copied < amount_to_copy; |
492254e9 | 677 | amount_copied += REGISTER_RAW_SIZE (regno), regno++) |
c906108c | 678 | { |
492254e9 | 679 | frame_register_read (frame, regno, buffer + amount_copied); |
c906108c | 680 | } |
492254e9 | 681 | |
c906108c SS |
682 | /* Modify what needs to be modified. */ |
683 | if (VALUE_BITSIZE (toval)) | |
492254e9 AC |
684 | { |
685 | modify_field (buffer + byte_offset, | |
686 | value_as_long (fromval), | |
687 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
688 | } | |
c906108c | 689 | else if (use_buffer) |
492254e9 AC |
690 | { |
691 | memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer); | |
692 | } | |
c906108c | 693 | else |
492254e9 AC |
694 | { |
695 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
696 | TYPE_LENGTH (type)); | |
697 | /* Do any conversion necessary when storing this type to | |
698 | more than one register. */ | |
699 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
700 | REGISTER_CONVERT_FROM_TYPE (value_reg, type, | |
701 | (buffer + byte_offset)); | |
702 | #endif | |
703 | } | |
c906108c | 704 | |
492254e9 AC |
705 | /* Copy it out. */ |
706 | for (regno = reg_offset, amount_copied = 0; | |
c906108c | 707 | amount_copied < amount_to_copy; |
492254e9 | 708 | amount_copied += REGISTER_RAW_SIZE (regno), regno++) |
c906108c SS |
709 | { |
710 | enum lval_type lval; | |
711 | CORE_ADDR addr; | |
712 | int optim; | |
492254e9 AC |
713 | int realnum; |
714 | ||
c906108c | 715 | /* Just find out where to put it. */ |
492254e9 AC |
716 | frame_register (frame, regno, &optim, &lval, &addr, &realnum, |
717 | NULL); | |
718 | ||
c906108c SS |
719 | if (optim) |
720 | error ("Attempt to assign to a value that was optimized out."); | |
721 | if (lval == lval_memory) | |
492254e9 AC |
722 | write_memory (addr, buffer + amount_copied, |
723 | REGISTER_RAW_SIZE (regno)); | |
c906108c | 724 | else if (lval == lval_register) |
492254e9 AC |
725 | regcache_cooked_write (current_regcache, realnum, |
726 | (buffer + amount_copied)); | |
c906108c SS |
727 | else |
728 | error ("Attempt to assign to an unmodifiable value."); | |
729 | } | |
730 | ||
731 | if (register_changed_hook) | |
732 | register_changed_hook (-1); | |
e23792cc | 733 | target_changed_event (); |
492254e9 | 734 | |
c906108c SS |
735 | } |
736 | break; | |
492254e9 AC |
737 | |
738 | ||
c906108c SS |
739 | default: |
740 | error ("Left operand of assignment is not an lvalue."); | |
741 | } | |
742 | ||
cb741690 DJ |
743 | /* Assigning to the stack pointer, frame pointer, and other |
744 | (architecture and calling convention specific) registers may | |
745 | cause the frame cache to be out of date. Assigning to memory | |
746 | also can. We just do this on all assignments to registers or | |
747 | memory, for simplicity's sake; I doubt the slowdown matters. */ | |
748 | switch (VALUE_LVAL (toval)) | |
749 | { | |
750 | case lval_memory: | |
751 | case lval_register: | |
752 | case lval_reg_frame_relative: | |
753 | ||
754 | reinit_frame_cache (); | |
755 | ||
756 | /* Having destoroyed the frame cache, restore the selected frame. */ | |
757 | ||
758 | /* FIXME: cagney/2002-11-02: There has to be a better way of | |
759 | doing this. Instead of constantly saving/restoring the | |
760 | frame. Why not create a get_selected_frame() function that, | |
761 | having saved the selected frame's ID can automatically | |
762 | re-find the previously selected frame automatically. */ | |
763 | ||
764 | { | |
765 | struct frame_info *fi = frame_find_by_id (old_frame); | |
766 | if (fi != NULL) | |
767 | select_frame (fi); | |
768 | } | |
769 | ||
770 | break; | |
771 | default: | |
772 | break; | |
773 | } | |
774 | ||
c906108c SS |
775 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
776 | If the field is signed, and is negative, then sign extend. */ | |
777 | if ((VALUE_BITSIZE (toval) > 0) | |
778 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
779 | { | |
780 | LONGEST fieldval = value_as_long (fromval); | |
781 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
782 | ||
783 | fieldval &= valmask; | |
784 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
785 | fieldval |= ~valmask; | |
786 | ||
787 | fromval = value_from_longest (type, fieldval); | |
788 | } | |
789 | ||
790 | val = value_copy (toval); | |
791 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
792 | TYPE_LENGTH (type)); | |
793 | VALUE_TYPE (val) = type; | |
2b127877 | 794 | val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval)); |
c906108c SS |
795 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); |
796 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 797 | |
c906108c SS |
798 | return val; |
799 | } | |
800 | ||
801 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
802 | ||
f23631e4 AC |
803 | struct value * |
804 | value_repeat (struct value *arg1, int count) | |
c906108c | 805 | { |
f23631e4 | 806 | struct value *val; |
c906108c SS |
807 | |
808 | if (VALUE_LVAL (arg1) != lval_memory) | |
809 | error ("Only values in memory can be extended with '@'."); | |
810 | if (count < 1) | |
811 | error ("Invalid number %d of repetitions.", count); | |
812 | ||
813 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
814 | ||
815 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
816 | VALUE_CONTENTS_ALL_RAW (val), | |
817 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
818 | VALUE_LVAL (val) = lval_memory; | |
819 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
820 | ||
821 | return val; | |
822 | } | |
823 | ||
f23631e4 | 824 | struct value * |
fba45db2 | 825 | value_of_variable (struct symbol *var, struct block *b) |
c906108c | 826 | { |
f23631e4 | 827 | struct value *val; |
c906108c SS |
828 | struct frame_info *frame = NULL; |
829 | ||
830 | if (!b) | |
831 | frame = NULL; /* Use selected frame. */ | |
832 | else if (symbol_read_needs_frame (var)) | |
833 | { | |
834 | frame = block_innermost_frame (b); | |
835 | if (!frame) | |
c5aa993b | 836 | { |
c906108c | 837 | if (BLOCK_FUNCTION (b) |
de5ad195 | 838 | && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
c906108c | 839 | error ("No frame is currently executing in block %s.", |
de5ad195 | 840 | SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
c906108c SS |
841 | else |
842 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 843 | } |
c906108c SS |
844 | } |
845 | ||
846 | val = read_var_value (var, frame); | |
847 | if (!val) | |
de5ad195 | 848 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var)); |
c906108c SS |
849 | |
850 | return val; | |
851 | } | |
852 | ||
853 | /* Given a value which is an array, return a value which is a pointer to its | |
854 | first element, regardless of whether or not the array has a nonzero lower | |
855 | bound. | |
856 | ||
857 | FIXME: A previous comment here indicated that this routine should be | |
858 | substracting the array's lower bound. It's not clear to me that this | |
859 | is correct. Given an array subscripting operation, it would certainly | |
860 | work to do the adjustment here, essentially computing: | |
861 | ||
862 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
863 | ||
864 | However I believe a more appropriate and logical place to account for | |
865 | the lower bound is to do so in value_subscript, essentially computing: | |
866 | ||
867 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
868 | ||
869 | As further evidence consider what would happen with operations other | |
870 | than array subscripting, where the caller would get back a value that | |
871 | had an address somewhere before the actual first element of the array, | |
872 | and the information about the lower bound would be lost because of | |
873 | the coercion to pointer type. | |
c5aa993b | 874 | */ |
c906108c | 875 | |
f23631e4 AC |
876 | struct value * |
877 | value_coerce_array (struct value *arg1) | |
c906108c SS |
878 | { |
879 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
880 | ||
881 | if (VALUE_LVAL (arg1) != lval_memory) | |
882 | error ("Attempt to take address of value not located in memory."); | |
883 | ||
4478b372 JB |
884 | return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
885 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
886 | } |
887 | ||
888 | /* Given a value which is a function, return a value which is a pointer | |
889 | to it. */ | |
890 | ||
f23631e4 AC |
891 | struct value * |
892 | value_coerce_function (struct value *arg1) | |
c906108c | 893 | { |
f23631e4 | 894 | struct value *retval; |
c906108c SS |
895 | |
896 | if (VALUE_LVAL (arg1) != lval_memory) | |
897 | error ("Attempt to take address of value not located in memory."); | |
898 | ||
4478b372 JB |
899 | retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
900 | (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); | |
c906108c SS |
901 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
902 | return retval; | |
c5aa993b | 903 | } |
c906108c SS |
904 | |
905 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
906 | ||
f23631e4 AC |
907 | struct value * |
908 | value_addr (struct value *arg1) | |
c906108c | 909 | { |
f23631e4 | 910 | struct value *arg2; |
c906108c SS |
911 | |
912 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
913 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
914 | { | |
915 | /* Copy the value, but change the type from (T&) to (T*). | |
7b83ea04 AC |
916 | We keep the same location information, which is efficient, |
917 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
918 | arg2 = value_copy (arg1); |
919 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
920 | return arg2; | |
921 | } | |
922 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
923 | return value_coerce_function (arg1); | |
924 | ||
925 | if (VALUE_LVAL (arg1) != lval_memory) | |
926 | error ("Attempt to take address of value not located in memory."); | |
927 | ||
c5aa993b | 928 | /* Get target memory address */ |
4478b372 JB |
929 | arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)), |
930 | (VALUE_ADDRESS (arg1) | |
931 | + VALUE_OFFSET (arg1) | |
932 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
933 | |
934 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 935 | full derived object's type ... */ |
2b127877 | 936 | arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1))); |
c5aa993b JM |
937 | /* ... and also the relative position of the subobject in the full object */ |
938 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
939 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
940 | return arg2; | |
941 | } | |
942 | ||
943 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
944 | ||
f23631e4 AC |
945 | struct value * |
946 | value_ind (struct value *arg1) | |
c906108c SS |
947 | { |
948 | struct type *base_type; | |
f23631e4 | 949 | struct value *arg2; |
c906108c SS |
950 | |
951 | COERCE_ARRAY (arg1); | |
952 | ||
953 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
954 | ||
955 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
956 | error ("not implemented: member types in value_ind"); | |
957 | ||
958 | /* Allow * on an integer so we can cast it to whatever we want. | |
959 | This returns an int, which seems like the most C-like thing | |
960 | to do. "long long" variables are rare enough that | |
961 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
962 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
56468235 DH |
963 | return value_at_lazy (builtin_type_int, |
964 | (CORE_ADDR) value_as_long (arg1), | |
965 | VALUE_BFD_SECTION (arg1)); | |
c906108c SS |
966 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
967 | { | |
968 | struct type *enc_type; | |
969 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 970 | /* Get the real type of the enclosing object */ |
c906108c SS |
971 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
972 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
973 | /* Retrieve the enclosing object pointed to */ |
974 | arg2 = value_at_lazy (enc_type, | |
1aa20aa8 | 975 | value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1), |
c5aa993b JM |
976 | VALUE_BFD_SECTION (arg1)); |
977 | /* Re-adjust type */ | |
c906108c SS |
978 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
979 | /* Add embedding info */ | |
2b127877 | 980 | arg2 = value_change_enclosing_type (arg2, enc_type); |
c906108c SS |
981 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); |
982 | ||
983 | /* We may be pointing to an object of some derived type */ | |
984 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
985 | return arg2; | |
986 | } | |
987 | ||
988 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 989 | return 0; /* For lint -- never reached */ |
c906108c SS |
990 | } |
991 | \f | |
992 | /* Pushing small parts of stack frames. */ | |
993 | ||
994 | /* Push one word (the size of object that a register holds). */ | |
995 | ||
996 | CORE_ADDR | |
fba45db2 | 997 | push_word (CORE_ADDR sp, ULONGEST word) |
c906108c SS |
998 | { |
999 | register int len = REGISTER_SIZE; | |
e6cbd02a | 1000 | char *buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
1001 | |
1002 | store_unsigned_integer (buffer, len, word); | |
1003 | if (INNER_THAN (1, 2)) | |
1004 | { | |
1005 | /* stack grows downward */ | |
1006 | sp -= len; | |
1007 | write_memory (sp, buffer, len); | |
1008 | } | |
1009 | else | |
1010 | { | |
1011 | /* stack grows upward */ | |
1012 | write_memory (sp, buffer, len); | |
1013 | sp += len; | |
1014 | } | |
1015 | ||
1016 | return sp; | |
1017 | } | |
1018 | ||
1019 | /* Push LEN bytes with data at BUFFER. */ | |
1020 | ||
1021 | CORE_ADDR | |
fba45db2 | 1022 | push_bytes (CORE_ADDR sp, char *buffer, int len) |
c906108c SS |
1023 | { |
1024 | if (INNER_THAN (1, 2)) | |
1025 | { | |
1026 | /* stack grows downward */ | |
1027 | sp -= len; | |
1028 | write_memory (sp, buffer, len); | |
1029 | } | |
1030 | else | |
1031 | { | |
1032 | /* stack grows upward */ | |
1033 | write_memory (sp, buffer, len); | |
1034 | sp += len; | |
1035 | } | |
1036 | ||
1037 | return sp; | |
1038 | } | |
1039 | ||
2df3850c JM |
1040 | #ifndef PARM_BOUNDARY |
1041 | #define PARM_BOUNDARY (0) | |
1042 | #endif | |
1043 | ||
1044 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1045 | it to be an argument to a function. */ | |
c906108c | 1046 | |
c906108c | 1047 | static CORE_ADDR |
f23631e4 | 1048 | value_push (register CORE_ADDR sp, struct value *arg) |
c906108c SS |
1049 | { |
1050 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1051 | register int container_len = len; |
2df3850c JM |
1052 | register int offset; |
1053 | ||
1054 | /* How big is the container we're going to put this value in? */ | |
1055 | if (PARM_BOUNDARY) | |
1056 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1057 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1058 | ||
1059 | /* Are we going to put it at the high or low end of the container? */ | |
d7449b42 | 1060 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
2df3850c JM |
1061 | offset = container_len - len; |
1062 | else | |
1063 | offset = 0; | |
c906108c SS |
1064 | |
1065 | if (INNER_THAN (1, 2)) | |
1066 | { | |
1067 | /* stack grows downward */ | |
2df3850c JM |
1068 | sp -= container_len; |
1069 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1070 | } |
1071 | else | |
1072 | { | |
1073 | /* stack grows upward */ | |
2df3850c JM |
1074 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1075 | sp += container_len; | |
c906108c SS |
1076 | } |
1077 | ||
1078 | return sp; | |
1079 | } | |
1080 | ||
392a587b | 1081 | CORE_ADDR |
f23631e4 | 1082 | default_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1083 | int struct_return, CORE_ADDR struct_addr) |
392a587b JM |
1084 | { |
1085 | /* ASSERT ( !struct_return); */ | |
1086 | int i; | |
1087 | for (i = nargs - 1; i >= 0; i--) | |
1088 | sp = value_push (sp, args[i]); | |
1089 | return sp; | |
1090 | } | |
1091 | ||
c906108c SS |
1092 | /* Perform the standard coercions that are specified |
1093 | for arguments to be passed to C functions. | |
1094 | ||
1095 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1096 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1097 | ||
f23631e4 | 1098 | static struct value * |
290b2c7a MK |
1099 | value_arg_coerce (struct value *arg, struct type *param_type, |
1100 | int is_prototyped) | |
c906108c SS |
1101 | { |
1102 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1103 | register struct type *type | |
290b2c7a | 1104 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1105 | |
1106 | switch (TYPE_CODE (type)) | |
1107 | { | |
1108 | case TYPE_CODE_REF: | |
491b8946 DJ |
1109 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF |
1110 | && TYPE_CODE (arg_type) != TYPE_CODE_PTR) | |
c906108c SS |
1111 | { |
1112 | arg = value_addr (arg); | |
1113 | VALUE_TYPE (arg) = param_type; | |
1114 | return arg; | |
1115 | } | |
1116 | break; | |
1117 | case TYPE_CODE_INT: | |
1118 | case TYPE_CODE_CHAR: | |
1119 | case TYPE_CODE_BOOL: | |
1120 | case TYPE_CODE_ENUM: | |
1121 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1122 | if (!is_prototyped) | |
1123 | { | |
1124 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1125 | type = builtin_type_int; | |
1126 | } | |
1127 | /* Currently all target ABIs require at least the width of an integer | |
7b83ea04 AC |
1128 | type for an argument. We may have to conditionalize the following |
1129 | type coercion for future targets. */ | |
c906108c SS |
1130 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1131 | type = builtin_type_int; | |
1132 | break; | |
1133 | case TYPE_CODE_FLT: | |
1e698235 | 1134 | if (!is_prototyped && coerce_float_to_double) |
c906108c SS |
1135 | { |
1136 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1137 | type = builtin_type_double; | |
1138 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1139 | type = builtin_type_long_double; | |
1140 | } | |
1141 | break; | |
1142 | case TYPE_CODE_FUNC: | |
1143 | type = lookup_pointer_type (type); | |
1144 | break; | |
1145 | case TYPE_CODE_ARRAY: | |
a3162708 EZ |
1146 | /* Arrays are coerced to pointers to their first element, unless |
1147 | they are vectors, in which case we want to leave them alone, | |
1148 | because they are passed by value. */ | |
c906108c | 1149 | if (current_language->c_style_arrays) |
a3162708 EZ |
1150 | if (!TYPE_VECTOR (type)) |
1151 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
c906108c SS |
1152 | break; |
1153 | case TYPE_CODE_UNDEF: | |
1154 | case TYPE_CODE_PTR: | |
1155 | case TYPE_CODE_STRUCT: | |
1156 | case TYPE_CODE_UNION: | |
1157 | case TYPE_CODE_VOID: | |
1158 | case TYPE_CODE_SET: | |
1159 | case TYPE_CODE_RANGE: | |
1160 | case TYPE_CODE_STRING: | |
1161 | case TYPE_CODE_BITSTRING: | |
1162 | case TYPE_CODE_ERROR: | |
1163 | case TYPE_CODE_MEMBER: | |
1164 | case TYPE_CODE_METHOD: | |
1165 | case TYPE_CODE_COMPLEX: | |
1166 | default: | |
1167 | break; | |
1168 | } | |
1169 | ||
1170 | return value_cast (type, arg); | |
1171 | } | |
1172 | ||
070ad9f0 | 1173 | /* Determine a function's address and its return type from its value. |
c906108c SS |
1174 | Calls error() if the function is not valid for calling. */ |
1175 | ||
389e51db | 1176 | static CORE_ADDR |
f23631e4 | 1177 | find_function_addr (struct value *function, struct type **retval_type) |
c906108c SS |
1178 | { |
1179 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1180 | register enum type_code code = TYPE_CODE (ftype); | |
1181 | struct type *value_type; | |
1182 | CORE_ADDR funaddr; | |
1183 | ||
1184 | /* If it's a member function, just look at the function | |
1185 | part of it. */ | |
1186 | ||
1187 | /* Determine address to call. */ | |
1188 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1189 | { | |
1190 | funaddr = VALUE_ADDRESS (function); | |
1191 | value_type = TYPE_TARGET_TYPE (ftype); | |
1192 | } | |
1193 | else if (code == TYPE_CODE_PTR) | |
1194 | { | |
1aa20aa8 | 1195 | funaddr = value_as_address (function); |
c906108c SS |
1196 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); |
1197 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1198 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1199 | { | |
c906108c | 1200 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); |
c906108c SS |
1201 | value_type = TYPE_TARGET_TYPE (ftype); |
1202 | } | |
1203 | else | |
1204 | value_type = builtin_type_int; | |
1205 | } | |
1206 | else if (code == TYPE_CODE_INT) | |
1207 | { | |
1208 | /* Handle the case of functions lacking debugging info. | |
7b83ea04 | 1209 | Their values are characters since their addresses are char */ |
c906108c | 1210 | if (TYPE_LENGTH (ftype) == 1) |
1aa20aa8 | 1211 | funaddr = value_as_address (value_addr (function)); |
c906108c SS |
1212 | else |
1213 | /* Handle integer used as address of a function. */ | |
1214 | funaddr = (CORE_ADDR) value_as_long (function); | |
1215 | ||
1216 | value_type = builtin_type_int; | |
1217 | } | |
1218 | else | |
1219 | error ("Invalid data type for function to be called."); | |
1220 | ||
1221 | *retval_type = value_type; | |
1222 | return funaddr; | |
1223 | } | |
1224 | ||
1225 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1226 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1227 | frame which looks just like a real frame is so that if you call a | |
1228 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1229 | will look right. Whether the backtrace needs to actually show the | |
1230 | stack at the time the inferior function was called is debatable, but | |
1231 | it certainly needs to not display garbage. So if you are contemplating | |
1232 | making dummy frames be different from normal frames, consider that. */ | |
1233 | ||
1234 | /* Perform a function call in the inferior. | |
1235 | ARGS is a vector of values of arguments (NARGS of them). | |
1236 | FUNCTION is a value, the function to be called. | |
1237 | Returns a value representing what the function returned. | |
1238 | May fail to return, if a breakpoint or signal is hit | |
1239 | during the execution of the function. | |
1240 | ||
1241 | ARGS is modified to contain coerced values. */ | |
1242 | ||
f23631e4 AC |
1243 | static struct value * |
1244 | hand_function_call (struct value *function, int nargs, struct value **args) | |
c906108c SS |
1245 | { |
1246 | register CORE_ADDR sp; | |
1247 | register int i; | |
da59e081 | 1248 | int rc; |
c906108c SS |
1249 | CORE_ADDR start_sp; |
1250 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1251 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1252 | and remove any extra bytes which might exist because ULONGEST is | |
070ad9f0 | 1253 | bigger than REGISTER_SIZE. |
c906108c SS |
1254 | |
1255 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1256 | sequence of instructions. But CISC machines will have |
1257 | to pack the instructions into REGISTER_SIZE units (and | |
1258 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1259 | REGISTER_SIZE). | |
7a292a7a SS |
1260 | |
1261 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1262 | target byte order. */ |
c906108c | 1263 | |
7a292a7a SS |
1264 | static ULONGEST *dummy; |
1265 | int sizeof_dummy1; | |
1266 | char *dummy1; | |
c906108c SS |
1267 | CORE_ADDR old_sp; |
1268 | struct type *value_type; | |
1269 | unsigned char struct_return; | |
1270 | CORE_ADDR struct_addr = 0; | |
36160dc4 | 1271 | struct regcache *retbuf; |
26e6c56a | 1272 | struct cleanup *retbuf_cleanup; |
7a292a7a | 1273 | struct inferior_status *inf_status; |
26e6c56a | 1274 | struct cleanup *inf_status_cleanup; |
c906108c | 1275 | CORE_ADDR funaddr; |
c5aa993b | 1276 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1277 | CORE_ADDR real_pc; |
1278 | struct type *param_type = NULL; | |
1279 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
76b2e19d | 1280 | int n_method_args = 0; |
c906108c | 1281 | |
7a292a7a SS |
1282 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1283 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1284 | dummy1 = alloca (sizeof_dummy1); | |
1285 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1286 | ||
c906108c | 1287 | if (!target_has_execution) |
c5aa993b | 1288 | noprocess (); |
c906108c | 1289 | |
26e6c56a AC |
1290 | /* Create a cleanup chain that contains the retbuf (buffer |
1291 | containing the register values). This chain is create BEFORE the | |
1292 | inf_status chain so that the inferior status can cleaned up | |
1293 | (restored or discarded) without having the retbuf freed. */ | |
36160dc4 AC |
1294 | retbuf = regcache_xmalloc (current_gdbarch); |
1295 | retbuf_cleanup = make_cleanup_regcache_xfree (retbuf); | |
26e6c56a AC |
1296 | |
1297 | /* A cleanup for the inferior status. Create this AFTER the retbuf | |
1298 | so that this can be discarded or applied without interfering with | |
1299 | the regbuf. */ | |
7a292a7a | 1300 | inf_status = save_inferior_status (1); |
26e6c56a | 1301 | inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status); |
c906108c | 1302 | |
f3824013 AC |
1303 | if (DEPRECATED_PUSH_DUMMY_FRAME_P ()) |
1304 | { | |
1305 | /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the | |
1306 | inferior registers (and POP_FRAME for restoring them). (At | |
1307 | least on most machines) they are saved on the stack in the | |
1308 | inferior. */ | |
1309 | DEPRECATED_PUSH_DUMMY_FRAME; | |
1310 | } | |
1311 | else | |
1312 | { | |
1313 | /* FIXME: cagney/2003-02-26: Step zero of this little tinker is | |
1314 | to extract the generic dummy frame code from the architecture | |
1315 | vector. Hence this direct call. | |
1316 | ||
1317 | A follow-on change is to modify this interface so that it takes | |
1318 | thread OR frame OR tpid as a parameter, and returns a dummy | |
1319 | frame handle. The handle can then be used further down as a | |
1320 | parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since | |
1321 | everything is ment to be using generic dummy frames, why not | |
1322 | even use some of the dummy frame code to here - do a regcache | |
1323 | dup and then pass the duped regcache, along with all the other | |
1324 | stuff, at one single point. | |
1325 | ||
1326 | In fact, you can even save the structure's return address in the | |
1327 | dummy frame and fix one of those nasty lost struct return edge | |
1328 | conditions. */ | |
1329 | generic_push_dummy_frame (); | |
1330 | } | |
c906108c | 1331 | |
dc604539 AC |
1332 | old_sp = read_sp (); |
1333 | ||
1334 | /* Ensure that the initial SP is correctly aligned. */ | |
1335 | if (gdbarch_frame_align_p (current_gdbarch)) | |
1336 | { | |
1337 | /* NOTE: cagney/2002-09-18: | |
1338 | ||
1339 | On a RISC architecture, a void parameterless generic dummy | |
1340 | frame (i.e., no parameters, no result) typically does not | |
1341 | need to push anything the stack and hence can leave SP and | |
1342 | FP. Similarly, a framelss (possibly leaf) function does not | |
1343 | push anything on the stack and, hence, that too can leave FP | |
1344 | and SP unchanged. As a consequence, a sequence of void | |
1345 | parameterless generic dummy frame calls to frameless | |
1346 | functions will create a sequence of effectively identical | |
1347 | frames (SP, FP and TOS and PC the same). This, not | |
1348 | suprisingly, results in what appears to be a stack in an | |
1349 | infinite loop --- when GDB tries to find a generic dummy | |
1350 | frame on the internal dummy frame stack, it will always find | |
1351 | the first one. | |
1352 | ||
1353 | To avoid this problem, the code below always grows the stack. | |
1354 | That way, two dummy frames can never be identical. It does | |
1355 | burn a few bytes of stack but that is a small price to pay | |
1356 | :-). */ | |
1357 | sp = gdbarch_frame_align (current_gdbarch, old_sp); | |
1358 | if (sp == old_sp) | |
1359 | { | |
1360 | if (INNER_THAN (1, 2)) | |
1361 | /* Stack grows down. */ | |
1362 | sp = gdbarch_frame_align (current_gdbarch, old_sp - 1); | |
1363 | else | |
1364 | /* Stack grows up. */ | |
1365 | sp = gdbarch_frame_align (current_gdbarch, old_sp + 1); | |
1366 | } | |
1367 | gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp) | |
1368 | || (INNER_THAN (2, 1) && sp >= old_sp)); | |
1369 | } | |
1370 | else | |
1371 | /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly | |
1372 | aligned the SP is! Further, per comment above, if the generic | |
1373 | dummy frame ends up empty (because nothing is pushed) GDB won't | |
1374 | be able to correctly perform back traces. If a target is | |
1375 | having trouble with backtraces, first thing to do is add | |
1376 | FRAME_ALIGN() to its architecture vector. After that, try | |
1377 | adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that | |
1378 | when the next outer frame is a generic dummy, it returns the | |
1379 | current frame's base. */ | |
1380 | sp = old_sp; | |
c906108c SS |
1381 | |
1382 | if (INNER_THAN (1, 2)) | |
1383 | { | |
1384 | /* Stack grows down */ | |
7a292a7a | 1385 | sp -= sizeof_dummy1; |
c906108c SS |
1386 | start_sp = sp; |
1387 | } | |
1388 | else | |
1389 | { | |
1390 | /* Stack grows up */ | |
1391 | start_sp = sp; | |
7a292a7a | 1392 | sp += sizeof_dummy1; |
c906108c SS |
1393 | } |
1394 | ||
dc604539 AC |
1395 | /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack |
1396 | after allocating space for the call dummy. A target can specify | |
1397 | a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local | |
1398 | alignment requirements are met. */ | |
1399 | ||
c906108c SS |
1400 | funaddr = find_function_addr (function, &value_type); |
1401 | CHECK_TYPEDEF (value_type); | |
1402 | ||
1403 | { | |
1404 | struct block *b = block_for_pc (funaddr); | |
1405 | /* If compiled without -g, assume GCC 2. */ | |
1406 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1407 | } | |
1408 | ||
1409 | /* Are we returning a value using a structure return or a normal | |
1410 | value return? */ | |
1411 | ||
1412 | struct_return = using_struct_return (function, funaddr, value_type, | |
1413 | using_gcc); | |
1414 | ||
1415 | /* Create a call sequence customized for this function | |
1416 | and the number of arguments for it. */ | |
7a292a7a | 1417 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1418 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1419 | REGISTER_SIZE, | |
c5aa993b | 1420 | (ULONGEST) dummy[i]); |
c906108c SS |
1421 | |
1422 | #ifdef GDB_TARGET_IS_HPPA | |
1423 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1424 | value_type, using_gcc); | |
1425 | #else | |
1426 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1427 | value_type, using_gcc); | |
1428 | real_pc = start_sp; | |
1429 | #endif | |
1430 | ||
7a292a7a SS |
1431 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1432 | { | |
c5aa993b | 1433 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
07555a72 | 1434 | if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES) |
6096c27a | 1435 | generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1); |
7a292a7a | 1436 | } |
c906108c | 1437 | |
7a292a7a SS |
1438 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1439 | { | |
1440 | real_pc = funaddr; | |
07555a72 | 1441 | if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES) |
6096c27a AC |
1442 | /* NOTE: cagney/2002-04-13: The entry point is going to be |
1443 | modified with a single breakpoint. */ | |
1444 | generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (), | |
1445 | CALL_DUMMY_ADDRESS () + 1); | |
7a292a7a | 1446 | } |
c906108c SS |
1447 | |
1448 | #ifdef lint | |
c5aa993b | 1449 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1450 | #endif |
1451 | ||
ad2f7632 | 1452 | if (nargs < TYPE_NFIELDS (ftype)) |
c906108c SS |
1453 | error ("too few arguments in function call"); |
1454 | ||
1455 | for (i = nargs - 1; i >= 0; i--) | |
1456 | { | |
ad2f7632 | 1457 | int prototyped; |
76b2e19d | 1458 | |
ad2f7632 DJ |
1459 | /* FIXME drow/2002-05-31: Should just always mark methods as |
1460 | prototyped. Can we respect TYPE_VARARGS? Probably not. */ | |
1461 | if (TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1462 | prototyped = 1; | |
1463 | else | |
1464 | prototyped = TYPE_PROTOTYPED (ftype); | |
c906108c | 1465 | |
ad2f7632 DJ |
1466 | if (i < TYPE_NFIELDS (ftype)) |
1467 | args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i), | |
1468 | prototyped); | |
c5aa993b | 1469 | else |
ad2f7632 | 1470 | args[i] = value_arg_coerce (args[i], NULL, 0); |
c906108c | 1471 | |
070ad9f0 DB |
1472 | /*elz: this code is to handle the case in which the function to be called |
1473 | has a pointer to function as parameter and the corresponding actual argument | |
7b83ea04 AC |
1474 | is the address of a function and not a pointer to function variable. |
1475 | In aCC compiled code, the calls through pointers to functions (in the body | |
1476 | of the function called by hand) are made via $$dyncall_external which | |
070ad9f0 DB |
1477 | requires some registers setting, this is taken care of if we call |
1478 | via a function pointer variable, but not via a function address. | |
7b83ea04 | 1479 | In cc this is not a problem. */ |
c906108c SS |
1480 | |
1481 | if (using_gcc == 0) | |
ad2f7632 | 1482 | if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD) |
c5aa993b | 1483 | /* if this parameter is a pointer to function */ |
c906108c | 1484 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
0004e5a2 | 1485 | if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC) |
070ad9f0 | 1486 | /* elz: FIXME here should go the test about the compiler used |
7b83ea04 | 1487 | to compile the target. We want to issue the error |
070ad9f0 DB |
1488 | message only if the compiler used was HP's aCC. |
1489 | If we used HP's cc, then there is no problem and no need | |
7b83ea04 | 1490 | to return at this point */ |
c5aa993b | 1491 | if (using_gcc == 0) /* && compiler == aCC */ |
c906108c | 1492 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1493 | pointer to function or just a function */ |
c906108c SS |
1494 | if (args[i]->lval == not_lval) |
1495 | { | |
1496 | char *arg_name; | |
c5aa993b JM |
1497 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1498 | error ("\ | |
c906108c SS |
1499 | You cannot use function <%s> as argument. \n\ |
1500 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1501 | } |
c906108c SS |
1502 | } |
1503 | ||
d03e67c9 AC |
1504 | if (REG_STRUCT_HAS_ADDR_P ()) |
1505 | { | |
1506 | /* This is a machine like the sparc, where we may need to pass a | |
1507 | pointer to the structure, not the structure itself. */ | |
1508 | for (i = nargs - 1; i >= 0; i--) | |
1509 | { | |
1510 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1511 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1512 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1513 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1514 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1515 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1516 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1517 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1518 | && TYPE_LENGTH (arg_type) > 8) | |
1519 | ) | |
1520 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
1521 | { | |
1522 | CORE_ADDR addr; | |
1523 | int len; /* = TYPE_LENGTH (arg_type); */ | |
1524 | int aligned_len; | |
1525 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1526 | len = TYPE_LENGTH (arg_type); | |
1527 | ||
1528 | if (STACK_ALIGN_P ()) | |
1529 | /* MVS 11/22/96: I think at least some of this | |
1530 | stack_align code is really broken. Better to let | |
1531 | PUSH_ARGUMENTS adjust the stack in a target-defined | |
1532 | manner. */ | |
1533 | aligned_len = STACK_ALIGN (len); | |
1534 | else | |
1535 | aligned_len = len; | |
1536 | if (INNER_THAN (1, 2)) | |
1537 | { | |
1538 | /* stack grows downward */ | |
1539 | sp -= aligned_len; | |
0b3f98d3 AC |
1540 | /* ... so the address of the thing we push is the |
1541 | stack pointer after we push it. */ | |
1542 | addr = sp; | |
d03e67c9 AC |
1543 | } |
1544 | else | |
1545 | { | |
1546 | /* The stack grows up, so the address of the thing | |
1547 | we push is the stack pointer before we push it. */ | |
1548 | addr = sp; | |
d03e67c9 AC |
1549 | sp += aligned_len; |
1550 | } | |
0b3f98d3 AC |
1551 | /* Push the structure. */ |
1552 | write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len); | |
d03e67c9 AC |
1553 | /* The value we're going to pass is the address of the |
1554 | thing we just pushed. */ | |
1555 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1556 | (LONGEST) addr); */ | |
1557 | args[i] = value_from_pointer (lookup_pointer_type (arg_type), | |
1558 | addr); | |
1559 | } | |
1560 | } | |
1561 | } | |
1562 | ||
c906108c SS |
1563 | |
1564 | /* Reserve space for the return structure to be written on the | |
dc604539 AC |
1565 | stack, if necessary. Make certain that the value is correctly |
1566 | aligned. */ | |
c906108c SS |
1567 | |
1568 | if (struct_return) | |
1569 | { | |
1570 | int len = TYPE_LENGTH (value_type); | |
2ada493a AC |
1571 | if (STACK_ALIGN_P ()) |
1572 | /* MVS 11/22/96: I think at least some of this stack_align | |
1573 | code is really broken. Better to let PUSH_ARGUMENTS adjust | |
1574 | the stack in a target-defined manner. */ | |
1575 | len = STACK_ALIGN (len); | |
c906108c SS |
1576 | if (INNER_THAN (1, 2)) |
1577 | { | |
dc604539 AC |
1578 | /* Stack grows downward. Align STRUCT_ADDR and SP after |
1579 | making space for the return value. */ | |
c906108c | 1580 | sp -= len; |
dc604539 AC |
1581 | if (gdbarch_frame_align_p (current_gdbarch)) |
1582 | sp = gdbarch_frame_align (current_gdbarch, sp); | |
c906108c SS |
1583 | struct_addr = sp; |
1584 | } | |
1585 | else | |
1586 | { | |
dc604539 AC |
1587 | /* Stack grows upward. Align the frame, allocate space, and |
1588 | then again, re-align the frame??? */ | |
1589 | if (gdbarch_frame_align_p (current_gdbarch)) | |
1590 | sp = gdbarch_frame_align (current_gdbarch, sp); | |
c906108c SS |
1591 | struct_addr = sp; |
1592 | sp += len; | |
dc604539 AC |
1593 | if (gdbarch_frame_align_p (current_gdbarch)) |
1594 | sp = gdbarch_frame_align (current_gdbarch, sp); | |
c906108c SS |
1595 | } |
1596 | } | |
1597 | ||
0a49d05e AC |
1598 | /* elz: on HPPA no need for this extra alignment, maybe it is needed |
1599 | on other architectures. This is because all the alignment is | |
1600 | taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and | |
1601 | in hppa_push_arguments */ | |
1602 | if (EXTRA_STACK_ALIGNMENT_NEEDED) | |
c906108c | 1603 | { |
0a49d05e AC |
1604 | /* MVS 11/22/96: I think at least some of this stack_align code |
1605 | is really broken. Better to let PUSH_ARGUMENTS adjust the | |
1606 | stack in a target-defined manner. */ | |
1607 | if (STACK_ALIGN_P () && INNER_THAN (1, 2)) | |
1608 | { | |
1609 | /* If stack grows down, we must leave a hole at the top. */ | |
1610 | int len = 0; | |
1611 | ||
1612 | for (i = nargs - 1; i >= 0; i--) | |
1613 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
1614 | if (CALL_DUMMY_STACK_ADJUST_P) | |
1615 | len += CALL_DUMMY_STACK_ADJUST; | |
1616 | sp -= STACK_ALIGN (len) - len; | |
1617 | } | |
c906108c | 1618 | } |
c906108c | 1619 | |
392a587b | 1620 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c | 1621 | |
69a0d5f4 AC |
1622 | if (PUSH_RETURN_ADDRESS_P ()) |
1623 | /* for targets that use no CALL_DUMMY */ | |
1624 | /* There are a number of targets now which actually don't write | |
1625 | any CALL_DUMMY instructions into the target, but instead just | |
1626 | save the machine state, push the arguments, and jump directly | |
1627 | to the callee function. Since this doesn't actually involve | |
1628 | executing a JSR/BSR instruction, the return address must be set | |
1629 | up by hand, either by pushing onto the stack or copying into a | |
1630 | return-address register as appropriate. Formerly this has been | |
1631 | done in PUSH_ARGUMENTS, but that's overloading its | |
1632 | functionality a bit, so I'm making it explicit to do it here. */ | |
1633 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); | |
c906108c | 1634 | |
2ada493a | 1635 | if (STACK_ALIGN_P () && !INNER_THAN (1, 2)) |
c906108c SS |
1636 | { |
1637 | /* If stack grows up, we must leave a hole at the bottom, note | |
7b83ea04 | 1638 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1639 | if (CALL_DUMMY_STACK_ADJUST_P) |
1640 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1641 | sp = STACK_ALIGN (sp); |
1642 | } | |
c906108c SS |
1643 | |
1644 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1645 | anything here! */ | |
1646 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1647 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1648 | a target-defined manner. */ | |
7a292a7a SS |
1649 | if (CALL_DUMMY_STACK_ADJUST_P) |
1650 | if (INNER_THAN (1, 2)) | |
1651 | { | |
1652 | /* stack grows downward */ | |
1653 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1654 | } | |
c906108c SS |
1655 | |
1656 | /* Store the address at which the structure is supposed to be | |
1657 | written. Note that this (and the code which reserved the space | |
1658 | above) assumes that gcc was used to compile this function. Since | |
1659 | it doesn't cost us anything but space and if the function is pcc | |
1660 | it will ignore this value, we will make that assumption. | |
1661 | ||
070ad9f0 | 1662 | Also note that on some machines (like the sparc) pcc uses a |
c906108c SS |
1663 | convention like gcc's. */ |
1664 | ||
1665 | if (struct_return) | |
1666 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1667 | ||
1668 | /* Write the stack pointer. This is here because the statements above | |
1669 | might fool with it. On SPARC, this write also stores the register | |
1670 | window into the right place in the new stack frame, which otherwise | |
1671 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1672 | write_sp (sp); | |
1673 | ||
d1e3cf49 AC |
1674 | if (SAVE_DUMMY_FRAME_TOS_P ()) |
1675 | SAVE_DUMMY_FRAME_TOS (sp); | |
43ff13b4 | 1676 | |
c906108c | 1677 | { |
c906108c SS |
1678 | char *name; |
1679 | struct symbol *symbol; | |
1680 | ||
1681 | name = NULL; | |
1682 | symbol = find_pc_function (funaddr); | |
1683 | if (symbol) | |
1684 | { | |
de5ad195 | 1685 | name = SYMBOL_PRINT_NAME (symbol); |
c906108c SS |
1686 | } |
1687 | else | |
1688 | { | |
1689 | /* Try the minimal symbols. */ | |
1690 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1691 | ||
1692 | if (msymbol) | |
1693 | { | |
de5ad195 | 1694 | name = SYMBOL_PRINT_NAME (msymbol); |
c906108c SS |
1695 | } |
1696 | } | |
1697 | if (name == NULL) | |
1698 | { | |
1699 | char format[80]; | |
1700 | sprintf (format, "at %s", local_hex_format ()); | |
1701 | name = alloca (80); | |
1702 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1703 | sprintf (name, format, (unsigned long) funaddr); | |
1704 | } | |
1705 | ||
1706 | /* Execute the stack dummy routine, calling FUNCTION. | |
1707 | When it is done, discard the empty frame | |
1708 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1709 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1710 | ||
1711 | if (rc == 1) | |
1712 | { | |
1713 | /* We stopped inside the FUNCTION because of a random signal. | |
1714 | Further execution of the FUNCTION is not allowed. */ | |
1715 | ||
7b83ea04 | 1716 | if (unwind_on_signal_p) |
242bfc55 FN |
1717 | { |
1718 | /* The user wants the context restored. */ | |
da59e081 | 1719 | |
dbe9fe58 AC |
1720 | /* We must get back to the frame we were before the dummy |
1721 | call. */ | |
1722 | frame_pop (get_current_frame ()); | |
242bfc55 FN |
1723 | |
1724 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1725 | a C++ name with arguments and stuff. */ | |
1726 | error ("\ | |
1727 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1728 | GDB has restored the context to what it was before the call.\n\ | |
1729 | To change this behavior use \"set unwindonsignal off\"\n\ | |
da59e081 | 1730 | Evaluation of the expression containing the function (%s) will be abandoned.", |
242bfc55 FN |
1731 | name); |
1732 | } | |
1733 | else | |
1734 | { | |
1735 | /* The user wants to stay in the frame where we stopped (default).*/ | |
1736 | ||
26e6c56a AC |
1737 | /* If we restored the inferior status (via the cleanup), |
1738 | we would print a spurious error message (Unable to | |
1739 | restore previously selected frame), would write the | |
1740 | registers from the inf_status (which is wrong), and | |
1741 | would do other wrong things. */ | |
1742 | discard_cleanups (inf_status_cleanup); | |
242bfc55 FN |
1743 | discard_inferior_status (inf_status); |
1744 | ||
1745 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1746 | a C++ name with arguments and stuff. */ | |
1747 | error ("\ | |
1748 | The program being debugged was signaled while in a function called from GDB.\n\ | |
1749 | GDB remains in the frame where the signal was received.\n\ | |
1750 | To change this behavior use \"set unwindonsignal on\"\n\ | |
1751 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1752 | name); | |
1753 | } | |
da59e081 JM |
1754 | } |
1755 | ||
1756 | if (rc == 2) | |
c906108c | 1757 | { |
da59e081 | 1758 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1759 | |
26e6c56a AC |
1760 | /* If we restored the inferior status (via the cleanup), we |
1761 | would print a spurious error message (Unable to restore | |
1762 | previously selected frame), would write the registers from | |
1763 | the inf_status (which is wrong), and would do other wrong | |
1764 | things. */ | |
1765 | discard_cleanups (inf_status_cleanup); | |
7a292a7a | 1766 | discard_inferior_status (inf_status); |
c906108c SS |
1767 | |
1768 | /* The following error message used to say "The expression | |
1769 | which contained the function call has been discarded." It | |
1770 | is a hard concept to explain in a few words. Ideally, GDB | |
1771 | would be able to resume evaluation of the expression when | |
1772 | the function finally is done executing. Perhaps someday | |
1773 | this will be implemented (it would not be easy). */ | |
1774 | ||
1775 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1776 | a C++ name with arguments and stuff. */ | |
1777 | error ("\ | |
1778 | The program being debugged stopped while in a function called from GDB.\n\ | |
1779 | When the function (%s) is done executing, GDB will silently\n\ | |
1780 | stop (instead of continuing to evaluate the expression containing\n\ | |
1781 | the function call).", name); | |
1782 | } | |
1783 | ||
da59e081 | 1784 | /* If we get here the called FUNCTION run to completion. */ |
26e6c56a AC |
1785 | |
1786 | /* Restore the inferior status, via its cleanup. At this stage, | |
1787 | leave the RETBUF alone. */ | |
1788 | do_cleanups (inf_status_cleanup); | |
c906108c SS |
1789 | |
1790 | /* Figure out the value returned by the function. */ | |
dc604539 AC |
1791 | /* elz: I defined this new macro for the hppa architecture only. |
1792 | this gives us a way to get the value returned by the function | |
1793 | from the stack, at the same address we told the function to put | |
1794 | it. We cannot assume on the pa that r28 still contains the | |
1795 | address of the returned structure. Usually this will be | |
1796 | overwritten by the callee. I don't know about other | |
1797 | architectures, so I defined this macro */ | |
c906108c SS |
1798 | #ifdef VALUE_RETURNED_FROM_STACK |
1799 | if (struct_return) | |
26e6c56a AC |
1800 | { |
1801 | do_cleanups (retbuf_cleanup); | |
1802 | return VALUE_RETURNED_FROM_STACK (value_type, struct_addr); | |
1803 | } | |
c906108c | 1804 | #endif |
dc604539 AC |
1805 | /* NOTE: cagney/2002-09-10: Only when the stack has been correctly |
1806 | aligned (using frame_align()) do we can trust STRUCT_ADDR and | |
1807 | fetch the return value direct from the stack. This lack of | |
1808 | trust comes about because legacy targets have a nasty habit of | |
1809 | silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR. | |
1810 | For such targets, just hope that value_being_returned() can | |
1811 | find the adjusted value. */ | |
1812 | if (struct_return && gdbarch_frame_align_p (current_gdbarch)) | |
1813 | { | |
1814 | struct value *retval = value_at (value_type, struct_addr, NULL); | |
1815 | do_cleanups (retbuf_cleanup); | |
1816 | return retval; | |
1817 | } | |
1818 | else | |
1819 | { | |
1820 | struct value *retval = value_being_returned (value_type, retbuf, | |
1821 | struct_return); | |
1822 | do_cleanups (retbuf_cleanup); | |
1823 | return retval; | |
1824 | } | |
c906108c SS |
1825 | } |
1826 | } | |
7a292a7a | 1827 | |
f23631e4 AC |
1828 | struct value * |
1829 | call_function_by_hand (struct value *function, int nargs, struct value **args) | |
c906108c | 1830 | { |
7a292a7a SS |
1831 | if (CALL_DUMMY_P) |
1832 | { | |
1833 | return hand_function_call (function, nargs, args); | |
1834 | } | |
1835 | else | |
1836 | { | |
1837 | error ("Cannot invoke functions on this machine."); | |
1838 | } | |
c906108c | 1839 | } |
c5aa993b | 1840 | \f |
7a292a7a | 1841 | |
c906108c | 1842 | |
c906108c SS |
1843 | /* Create a value for an array by allocating space in the inferior, copying |
1844 | the data into that space, and then setting up an array value. | |
1845 | ||
1846 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1847 | populated from the values passed in ELEMVEC. | |
1848 | ||
1849 | The element type of the array is inherited from the type of the | |
1850 | first element, and all elements must have the same size (though we | |
1851 | don't currently enforce any restriction on their types). */ | |
1852 | ||
f23631e4 AC |
1853 | struct value * |
1854 | value_array (int lowbound, int highbound, struct value **elemvec) | |
c906108c SS |
1855 | { |
1856 | int nelem; | |
1857 | int idx; | |
1858 | unsigned int typelength; | |
f23631e4 | 1859 | struct value *val; |
c906108c SS |
1860 | struct type *rangetype; |
1861 | struct type *arraytype; | |
1862 | CORE_ADDR addr; | |
1863 | ||
1864 | /* Validate that the bounds are reasonable and that each of the elements | |
1865 | have the same size. */ | |
1866 | ||
1867 | nelem = highbound - lowbound + 1; | |
1868 | if (nelem <= 0) | |
1869 | { | |
1870 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1871 | } | |
1872 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1873 | for (idx = 1; idx < nelem; idx++) | |
1874 | { | |
1875 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1876 | { | |
1877 | error ("array elements must all be the same size"); | |
1878 | } | |
1879 | } | |
1880 | ||
1881 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1882 | lowbound, highbound); | |
c5aa993b JM |
1883 | arraytype = create_array_type ((struct type *) NULL, |
1884 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1885 | |
1886 | if (!current_language->c_style_arrays) | |
1887 | { | |
1888 | val = allocate_value (arraytype); | |
1889 | for (idx = 0; idx < nelem; idx++) | |
1890 | { | |
1891 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1892 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1893 | typelength); | |
1894 | } | |
1895 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1896 | return val; | |
1897 | } | |
1898 | ||
1899 | /* Allocate space to store the array in the inferior, and then initialize | |
1900 | it by copying in each element. FIXME: Is it worth it to create a | |
1901 | local buffer in which to collect each value and then write all the | |
1902 | bytes in one operation? */ | |
1903 | ||
1904 | addr = allocate_space_in_inferior (nelem * typelength); | |
1905 | for (idx = 0; idx < nelem; idx++) | |
1906 | { | |
1907 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1908 | typelength); | |
1909 | } | |
1910 | ||
1911 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1912 | ||
1913 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1914 | return (val); | |
1915 | } | |
1916 | ||
1917 | /* Create a value for a string constant by allocating space in the inferior, | |
1918 | copying the data into that space, and returning the address with type | |
1919 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1920 | of characters. | |
1921 | Note that string types are like array of char types with a lower bound of | |
1922 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1923 | embedded null bytes. */ | |
1924 | ||
f23631e4 | 1925 | struct value * |
fba45db2 | 1926 | value_string (char *ptr, int len) |
c906108c | 1927 | { |
f23631e4 | 1928 | struct value *val; |
c906108c SS |
1929 | int lowbound = current_language->string_lower_bound; |
1930 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1931 | builtin_type_int, | |
1932 | lowbound, len + lowbound - 1); | |
1933 | struct type *stringtype | |
c5aa993b | 1934 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1935 | CORE_ADDR addr; |
1936 | ||
1937 | if (current_language->c_style_arrays == 0) | |
1938 | { | |
1939 | val = allocate_value (stringtype); | |
1940 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1941 | return val; | |
1942 | } | |
1943 | ||
1944 | ||
1945 | /* Allocate space to store the string in the inferior, and then | |
1946 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1947 | ||
1948 | addr = allocate_space_in_inferior (len); | |
1949 | write_memory (addr, ptr, len); | |
1950 | ||
1951 | val = value_at_lazy (stringtype, addr, NULL); | |
1952 | return (val); | |
1953 | } | |
1954 | ||
f23631e4 | 1955 | struct value * |
fba45db2 | 1956 | value_bitstring (char *ptr, int len) |
c906108c | 1957 | { |
f23631e4 | 1958 | struct value *val; |
c906108c SS |
1959 | struct type *domain_type = create_range_type (NULL, builtin_type_int, |
1960 | 0, len - 1); | |
c5aa993b | 1961 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1962 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1963 | val = allocate_value (type); | |
1964 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1965 | return val; | |
1966 | } | |
1967 | \f | |
1968 | /* See if we can pass arguments in T2 to a function which takes arguments | |
ad2f7632 DJ |
1969 | of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated |
1970 | vector. If some arguments need coercion of some sort, then the coerced | |
1971 | values are written into T2. Return value is 0 if the arguments could be | |
1972 | matched, or the position at which they differ if not. | |
c906108c SS |
1973 | |
1974 | STATICP is nonzero if the T1 argument list came from a | |
ad2f7632 DJ |
1975 | static member function. T2 will still include the ``this'' pointer, |
1976 | but it will be skipped. | |
c906108c SS |
1977 | |
1978 | For non-static member functions, we ignore the first argument, | |
1979 | which is the type of the instance variable. This is because we want | |
1980 | to handle calls with objects from derived classes. This is not | |
1981 | entirely correct: we should actually check to make sure that a | |
1982 | requested operation is type secure, shouldn't we? FIXME. */ | |
1983 | ||
1984 | static int | |
ad2f7632 DJ |
1985 | typecmp (int staticp, int varargs, int nargs, |
1986 | struct field t1[], struct value *t2[]) | |
c906108c SS |
1987 | { |
1988 | int i; | |
1989 | ||
1990 | if (t2 == 0) | |
ad2f7632 DJ |
1991 | internal_error (__FILE__, __LINE__, "typecmp: no argument list"); |
1992 | ||
4a1970e4 DJ |
1993 | /* Skip ``this'' argument if applicable. T2 will always include THIS. */ |
1994 | if (staticp) | |
ad2f7632 DJ |
1995 | t2 ++; |
1996 | ||
1997 | for (i = 0; | |
1998 | (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; | |
1999 | i++) | |
c906108c | 2000 | { |
c5aa993b | 2001 | struct type *tt1, *tt2; |
ad2f7632 | 2002 | |
c5aa993b JM |
2003 | if (!t2[i]) |
2004 | return i + 1; | |
ad2f7632 DJ |
2005 | |
2006 | tt1 = check_typedef (t1[i].type); | |
c5aa993b | 2007 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
ad2f7632 | 2008 | |
c906108c | 2009 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 2010 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
2011 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
2012 | { | |
2013 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
2014 | t2[i] = value_coerce_array (t2[i]); | |
2015 | else | |
2016 | t2[i] = value_addr (t2[i]); | |
2017 | continue; | |
2018 | } | |
2019 | ||
802db21b DB |
2020 | /* djb - 20000715 - Until the new type structure is in the |
2021 | place, and we can attempt things like implicit conversions, | |
2022 | we need to do this so you can take something like a map<const | |
2023 | char *>, and properly access map["hello"], because the | |
2024 | argument to [] will be a reference to a pointer to a char, | |
7168a814 | 2025 | and the argument will be a pointer to a char. */ |
802db21b DB |
2026 | while ( TYPE_CODE(tt1) == TYPE_CODE_REF || |
2027 | TYPE_CODE (tt1) == TYPE_CODE_PTR) | |
2028 | { | |
2029 | tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); | |
2030 | } | |
2031 | while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY || | |
2032 | TYPE_CODE(tt2) == TYPE_CODE_PTR || | |
2033 | TYPE_CODE(tt2) == TYPE_CODE_REF) | |
c906108c | 2034 | { |
802db21b | 2035 | tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) ); |
c906108c | 2036 | } |
c5aa993b JM |
2037 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
2038 | continue; | |
c906108c SS |
2039 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
2040 | ||
2041 | /* We should be doing much hairier argument matching (see section 13.2 | |
7b83ea04 AC |
2042 | of the ARM), but as a quick kludge, just check for the same type |
2043 | code. */ | |
ad2f7632 | 2044 | if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 2045 | return i + 1; |
c906108c | 2046 | } |
ad2f7632 | 2047 | if (varargs || t2[i] == NULL) |
c5aa993b | 2048 | return 0; |
ad2f7632 | 2049 | return i + 1; |
c906108c SS |
2050 | } |
2051 | ||
2052 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2053 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2054 | and search in it assuming it has (class) type TYPE. | |
2055 | If found, return value, else return NULL. | |
2056 | ||
2057 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
2058 | look for a baseclass named NAME. */ | |
2059 | ||
f23631e4 AC |
2060 | static struct value * |
2061 | search_struct_field (char *name, struct value *arg1, int offset, | |
fba45db2 | 2062 | register struct type *type, int looking_for_baseclass) |
c906108c SS |
2063 | { |
2064 | int i; | |
2065 | int nbases = TYPE_N_BASECLASSES (type); | |
2066 | ||
2067 | CHECK_TYPEDEF (type); | |
2068 | ||
c5aa993b | 2069 | if (!looking_for_baseclass) |
c906108c SS |
2070 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2071 | { | |
2072 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2073 | ||
db577aea | 2074 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 2075 | { |
f23631e4 | 2076 | struct value *v; |
c906108c | 2077 | if (TYPE_FIELD_STATIC (type, i)) |
2c2738a0 DC |
2078 | { |
2079 | v = value_static_field (type, i); | |
2080 | if (v == 0) | |
2081 | error ("field %s is nonexistent or has been optimised out", | |
2082 | name); | |
2083 | } | |
c906108c | 2084 | else |
2c2738a0 DC |
2085 | { |
2086 | v = value_primitive_field (arg1, offset, i, type); | |
2087 | if (v == 0) | |
2088 | error ("there is no field named %s", name); | |
2089 | } | |
c906108c SS |
2090 | return v; |
2091 | } | |
2092 | ||
2093 | if (t_field_name | |
2094 | && (t_field_name[0] == '\0' | |
2095 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
db577aea | 2096 | && (strcmp_iw (t_field_name, "else") == 0)))) |
c906108c SS |
2097 | { |
2098 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2099 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2100 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2101 | { | |
2102 | /* Look for a match through the fields of an anonymous union, | |
2103 | or anonymous struct. C++ provides anonymous unions. | |
2104 | ||
1b831c93 AC |
2105 | In the GNU Chill (now deleted from GDB) |
2106 | implementation of variant record types, each | |
2107 | <alternative field> has an (anonymous) union type, | |
2108 | each member of the union represents a <variant | |
2109 | alternative>. Each <variant alternative> is | |
2110 | represented as a struct, with a member for each | |
2111 | <variant field>. */ | |
c5aa993b | 2112 | |
f23631e4 | 2113 | struct value *v; |
c906108c SS |
2114 | int new_offset = offset; |
2115 | ||
db034ac5 AC |
2116 | /* This is pretty gross. In G++, the offset in an |
2117 | anonymous union is relative to the beginning of the | |
1b831c93 AC |
2118 | enclosing struct. In the GNU Chill (now deleted |
2119 | from GDB) implementation of variant records, the | |
2120 | bitpos is zero in an anonymous union field, so we | |
2121 | have to add the offset of the union here. */ | |
c906108c SS |
2122 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
2123 | || (TYPE_NFIELDS (field_type) > 0 | |
2124 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2125 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2126 | ||
2127 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2128 | looking_for_baseclass); | |
2129 | if (v) | |
2130 | return v; | |
2131 | } | |
2132 | } | |
2133 | } | |
2134 | ||
c5aa993b | 2135 | for (i = 0; i < nbases; i++) |
c906108c | 2136 | { |
f23631e4 | 2137 | struct value *v; |
c906108c SS |
2138 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
2139 | /* If we are looking for baseclasses, this is what we get when we | |
7b83ea04 AC |
2140 | hit them. But it could happen that the base part's member name |
2141 | is not yet filled in. */ | |
c906108c SS |
2142 | int found_baseclass = (looking_for_baseclass |
2143 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
db577aea | 2144 | && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0)); |
c906108c SS |
2145 | |
2146 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2147 | { | |
2148 | int boffset; | |
f23631e4 | 2149 | struct value *v2 = allocate_value (basetype); |
c906108c SS |
2150 | |
2151 | boffset = baseclass_offset (type, i, | |
2152 | VALUE_CONTENTS (arg1) + offset, | |
2153 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2154 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2155 | if (boffset == -1) |
2156 | error ("virtual baseclass botch"); | |
2157 | ||
2158 | /* The virtual base class pointer might have been clobbered by the | |
2159 | user program. Make sure that it still points to a valid memory | |
2160 | location. */ | |
2161 | ||
2162 | boffset += offset; | |
2163 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2164 | { | |
2165 | CORE_ADDR base_addr; | |
c5aa993b | 2166 | |
c906108c SS |
2167 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2168 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2169 | TYPE_LENGTH (basetype)) != 0) | |
2170 | error ("virtual baseclass botch"); | |
2171 | VALUE_LVAL (v2) = lval_memory; | |
2172 | VALUE_ADDRESS (v2) = base_addr; | |
2173 | } | |
2174 | else | |
2175 | { | |
2176 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2177 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2178 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2179 | if (VALUE_LAZY (arg1)) | |
2180 | VALUE_LAZY (v2) = 1; | |
2181 | else | |
2182 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2183 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2184 | TYPE_LENGTH (basetype)); | |
2185 | } | |
2186 | ||
2187 | if (found_baseclass) | |
2188 | return v2; | |
2189 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2190 | looking_for_baseclass); | |
2191 | } | |
2192 | else if (found_baseclass) | |
2193 | v = value_primitive_field (arg1, offset, i, type); | |
2194 | else | |
2195 | v = search_struct_field (name, arg1, | |
c5aa993b | 2196 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2197 | basetype, looking_for_baseclass); |
c5aa993b JM |
2198 | if (v) |
2199 | return v; | |
c906108c SS |
2200 | } |
2201 | return NULL; | |
2202 | } | |
2203 | ||
2204 | ||
2205 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2206 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2207 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2208 | * looking (in case VALADDR is the contents of an enclosing object). | |
2209 | * | |
2210 | * This routine recurses on the primary base of the derived class because | |
2211 | * the virtual base entries of the primary base appear before the other | |
2212 | * virtual base entries. | |
2213 | * | |
2214 | * If the virtual base is not found, a negative integer is returned. | |
2215 | * The magnitude of the negative integer is the number of entries in | |
2216 | * the virtual table to skip over (entries corresponding to various | |
2217 | * ancestral classes in the chain of primary bases). | |
2218 | * | |
2219 | * Important: This assumes the HP / Taligent C++ runtime | |
2220 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2221 | * conventions. */ | |
2222 | ||
2223 | void | |
fba45db2 KB |
2224 | find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr, |
2225 | int offset, int *boffset_p, int *skip_p) | |
c906108c | 2226 | { |
c5aa993b JM |
2227 | int boffset; /* offset of virtual base */ |
2228 | int index; /* displacement to use in virtual table */ | |
c906108c | 2229 | int skip; |
c5aa993b | 2230 | |
f23631e4 | 2231 | struct value *vp; |
c5aa993b JM |
2232 | CORE_ADDR vtbl; /* the virtual table pointer */ |
2233 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2234 | |
2235 | /* Look for the virtual base recursively in the primary base, first. | |
2236 | * This is because the derived class object and its primary base | |
2237 | * subobject share the primary virtual table. */ | |
c5aa993b | 2238 | |
c906108c | 2239 | boffset = 0; |
c5aa993b | 2240 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2241 | if (pbc) |
2242 | { | |
2243 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2244 | if (skip < 0) | |
c5aa993b JM |
2245 | { |
2246 | *boffset_p = boffset; | |
2247 | *skip_p = -1; | |
2248 | return; | |
2249 | } | |
c906108c SS |
2250 | } |
2251 | else | |
2252 | skip = 0; | |
2253 | ||
2254 | ||
2255 | /* Find the index of the virtual base according to HP/Taligent | |
2256 | runtime spec. (Depth-first, left-to-right.) */ | |
2257 | index = virtual_base_index_skip_primaries (basetype, type); | |
2258 | ||
c5aa993b JM |
2259 | if (index < 0) |
2260 | { | |
2261 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2262 | *boffset_p = 0; | |
2263 | return; | |
2264 | } | |
c906108c | 2265 | |
c5aa993b | 2266 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2267 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2268 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2269 | |
c5aa993b | 2270 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2271 | if (vtbl == 0) |
2272 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2273 | ||
2274 | ||
2275 | /* Find virtual base's offset -- jump over entries for primary base | |
2276 | * ancestors, then use the index computed above. But also adjust by | |
2277 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2278 | * virtual base entries. Offset is negative -- virtual base entries | |
2279 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2280 | |
070ad9f0 | 2281 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2282 | & use long type */ |
c906108c SS |
2283 | |
2284 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2285 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2286 | boffset = value_as_long (vp); |
2287 | *skip_p = -1; | |
2288 | *boffset_p = boffset; | |
2289 | return; | |
2290 | } | |
2291 | ||
2292 | ||
2293 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2294 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2295 | and search in it assuming it has (class) type TYPE. | |
2296 | If found, return value, else if name matched and args not return (value)-1, | |
2297 | else return NULL. */ | |
2298 | ||
f23631e4 AC |
2299 | static struct value * |
2300 | search_struct_method (char *name, struct value **arg1p, | |
2301 | struct value **args, int offset, | |
fba45db2 | 2302 | int *static_memfuncp, register struct type *type) |
c906108c SS |
2303 | { |
2304 | int i; | |
f23631e4 | 2305 | struct value *v; |
c906108c SS |
2306 | int name_matched = 0; |
2307 | char dem_opname[64]; | |
2308 | ||
2309 | CHECK_TYPEDEF (type); | |
2310 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2311 | { | |
2312 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2313 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2314 | if (strncmp (t_field_name, "__", 2) == 0 || |
2315 | strncmp (t_field_name, "op", 2) == 0 || | |
2316 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2317 | { |
c5aa993b JM |
2318 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2319 | t_field_name = dem_opname; | |
2320 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2321 | t_field_name = dem_opname; |
c906108c | 2322 | } |
db577aea | 2323 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2324 | { |
2325 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2326 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2327 | name_matched = 1; |
c906108c | 2328 | |
de17c821 | 2329 | check_stub_method_group (type, i); |
c906108c SS |
2330 | if (j > 0 && args == 0) |
2331 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
acf5ed49 | 2332 | else if (j == 0 && args == 0) |
c906108c | 2333 | { |
acf5ed49 DJ |
2334 | v = value_fn_field (arg1p, f, j, type, offset); |
2335 | if (v != NULL) | |
2336 | return v; | |
c906108c | 2337 | } |
acf5ed49 DJ |
2338 | else |
2339 | while (j >= 0) | |
2340 | { | |
acf5ed49 | 2341 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
ad2f7632 DJ |
2342 | TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
2343 | TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), | |
acf5ed49 DJ |
2344 | TYPE_FN_FIELD_ARGS (f, j), args)) |
2345 | { | |
2346 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2347 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2348 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2349 | *static_memfuncp = 1; | |
2350 | v = value_fn_field (arg1p, f, j, type, offset); | |
2351 | if (v != NULL) | |
2352 | return v; | |
2353 | } | |
2354 | j--; | |
2355 | } | |
c906108c SS |
2356 | } |
2357 | } | |
2358 | ||
2359 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2360 | { | |
2361 | int base_offset; | |
2362 | ||
2363 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2364 | { | |
c5aa993b JM |
2365 | if (TYPE_HAS_VTABLE (type)) |
2366 | { | |
2367 | /* HP aCC compiled type, search for virtual base offset | |
7b83ea04 | 2368 | according to HP/Taligent runtime spec. */ |
c5aa993b JM |
2369 | int skip; |
2370 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2371 | VALUE_CONTENTS_ALL (*arg1p), | |
2372 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2373 | &base_offset, &skip); | |
2374 | if (skip >= 0) | |
2375 | error ("Virtual base class offset not found in vtable"); | |
2376 | } | |
2377 | else | |
2378 | { | |
2379 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2380 | char *base_valaddr; | |
2381 | ||
2382 | /* The virtual base class pointer might have been clobbered by the | |
7b83ea04 AC |
2383 | user program. Make sure that it still points to a valid memory |
2384 | location. */ | |
c5aa993b JM |
2385 | |
2386 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2387 | { | |
2388 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2389 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2390 | + VALUE_OFFSET (*arg1p) + offset, | |
2391 | base_valaddr, | |
2392 | TYPE_LENGTH (baseclass)) != 0) | |
2393 | error ("virtual baseclass botch"); | |
2394 | } | |
2395 | else | |
2396 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2397 | ||
2398 | base_offset = | |
2399 | baseclass_offset (type, i, base_valaddr, | |
2400 | VALUE_ADDRESS (*arg1p) | |
2401 | + VALUE_OFFSET (*arg1p) + offset); | |
2402 | if (base_offset == -1) | |
2403 | error ("virtual baseclass botch"); | |
2404 | } | |
2405 | } | |
c906108c SS |
2406 | else |
2407 | { | |
2408 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2409 | } |
c906108c SS |
2410 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2411 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
f23631e4 | 2412 | if (v == (struct value *) - 1) |
c906108c SS |
2413 | { |
2414 | name_matched = 1; | |
2415 | } | |
2416 | else if (v) | |
2417 | { | |
2418 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2419 | /* *arg1p = arg1_tmp; */ |
c906108c | 2420 | return v; |
c5aa993b | 2421 | } |
c906108c | 2422 | } |
c5aa993b | 2423 | if (name_matched) |
f23631e4 | 2424 | return (struct value *) - 1; |
c5aa993b JM |
2425 | else |
2426 | return NULL; | |
c906108c SS |
2427 | } |
2428 | ||
2429 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2430 | extract the component named NAME from the ultimate target structure/union | |
2431 | and return it as a value with its appropriate type. | |
2432 | ERR is used in the error message if *ARGP's type is wrong. | |
2433 | ||
2434 | C++: ARGS is a list of argument types to aid in the selection of | |
2435 | an appropriate method. Also, handle derived types. | |
2436 | ||
2437 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2438 | where the truthvalue of whether the function that was resolved was | |
2439 | a static member function or not is stored. | |
2440 | ||
2441 | ERR is an error message to be printed in case the field is not found. */ | |
2442 | ||
f23631e4 AC |
2443 | struct value * |
2444 | value_struct_elt (struct value **argp, struct value **args, | |
fba45db2 | 2445 | char *name, int *static_memfuncp, char *err) |
c906108c SS |
2446 | { |
2447 | register struct type *t; | |
f23631e4 | 2448 | struct value *v; |
c906108c SS |
2449 | |
2450 | COERCE_ARRAY (*argp); | |
2451 | ||
2452 | t = check_typedef (VALUE_TYPE (*argp)); | |
2453 | ||
2454 | /* Follow pointers until we get to a non-pointer. */ | |
2455 | ||
2456 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2457 | { | |
2458 | *argp = value_ind (*argp); | |
2459 | /* Don't coerce fn pointer to fn and then back again! */ | |
2460 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2461 | COERCE_ARRAY (*argp); | |
2462 | t = check_typedef (VALUE_TYPE (*argp)); | |
2463 | } | |
2464 | ||
2465 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2466 | error ("not implemented: member type in value_struct_elt"); | |
2467 | ||
c5aa993b | 2468 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2469 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2470 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2471 | ||
2472 | /* Assume it's not, unless we see that it is. */ | |
2473 | if (static_memfuncp) | |
c5aa993b | 2474 | *static_memfuncp = 0; |
c906108c SS |
2475 | |
2476 | if (!args) | |
2477 | { | |
2478 | /* if there are no arguments ...do this... */ | |
2479 | ||
2480 | /* Try as a field first, because if we succeed, there | |
7b83ea04 | 2481 | is less work to be done. */ |
c906108c SS |
2482 | v = search_struct_field (name, *argp, 0, t, 0); |
2483 | if (v) | |
2484 | return v; | |
2485 | ||
2486 | /* C++: If it was not found as a data field, then try to | |
7b83ea04 | 2487 | return it as a pointer to a method. */ |
c906108c SS |
2488 | |
2489 | if (destructor_name_p (name, t)) | |
2490 | error ("Cannot get value of destructor"); | |
2491 | ||
2492 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2493 | ||
f23631e4 | 2494 | if (v == (struct value *) - 1) |
c906108c SS |
2495 | error ("Cannot take address of a method"); |
2496 | else if (v == 0) | |
2497 | { | |
2498 | if (TYPE_NFN_FIELDS (t)) | |
2499 | error ("There is no member or method named %s.", name); | |
2500 | else | |
2501 | error ("There is no member named %s.", name); | |
2502 | } | |
2503 | return v; | |
2504 | } | |
2505 | ||
2506 | if (destructor_name_p (name, t)) | |
2507 | { | |
2508 | if (!args[1]) | |
2509 | { | |
2510 | /* Destructors are a special case. */ | |
2511 | int m_index, f_index; | |
2512 | ||
2513 | v = NULL; | |
2514 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2515 | { | |
2516 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2517 | f_index, NULL, 0); | |
2518 | } | |
2519 | if (v == NULL) | |
2520 | error ("could not find destructor function named %s.", name); | |
2521 | else | |
2522 | return v; | |
2523 | } | |
2524 | else | |
2525 | { | |
2526 | error ("destructor should not have any argument"); | |
2527 | } | |
2528 | } | |
2529 | else | |
2530 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
7168a814 | 2531 | |
f23631e4 | 2532 | if (v == (struct value *) - 1) |
c906108c | 2533 | { |
7168a814 | 2534 | error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name); |
c906108c SS |
2535 | } |
2536 | else if (v == 0) | |
2537 | { | |
2538 | /* See if user tried to invoke data as function. If so, | |
7b83ea04 AC |
2539 | hand it back. If it's not callable (i.e., a pointer to function), |
2540 | gdb should give an error. */ | |
c906108c SS |
2541 | v = search_struct_field (name, *argp, 0, t, 0); |
2542 | } | |
2543 | ||
2544 | if (!v) | |
2545 | error ("Structure has no component named %s.", name); | |
2546 | return v; | |
2547 | } | |
2548 | ||
2549 | /* Search through the methods of an object (and its bases) | |
2550 | * to find a specified method. Return the pointer to the | |
2551 | * fn_field list of overloaded instances. | |
2552 | * Helper function for value_find_oload_list. | |
2553 | * ARGP is a pointer to a pointer to a value (the object) | |
2554 | * METHOD is a string containing the method name | |
2555 | * OFFSET is the offset within the value | |
c906108c SS |
2556 | * TYPE is the assumed type of the object |
2557 | * NUM_FNS is the number of overloaded instances | |
2558 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2559 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2560 | ||
7a292a7a | 2561 | static struct fn_field * |
f23631e4 | 2562 | find_method_list (struct value **argp, char *method, int offset, |
4a1970e4 | 2563 | struct type *type, int *num_fns, |
fba45db2 | 2564 | struct type **basetype, int *boffset) |
c906108c SS |
2565 | { |
2566 | int i; | |
c5aa993b | 2567 | struct fn_field *f; |
c906108c SS |
2568 | CHECK_TYPEDEF (type); |
2569 | ||
2570 | *num_fns = 0; | |
2571 | ||
c5aa993b JM |
2572 | /* First check in object itself */ |
2573 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2574 | { |
2575 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2576 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
db577aea | 2577 | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
c5aa993b | 2578 | { |
4a1970e4 DJ |
2579 | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
2580 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
4a1970e4 DJ |
2581 | |
2582 | *num_fns = len; | |
c5aa993b JM |
2583 | *basetype = type; |
2584 | *boffset = offset; | |
4a1970e4 | 2585 | |
de17c821 DJ |
2586 | /* Resolve any stub methods. */ |
2587 | check_stub_method_group (type, i); | |
4a1970e4 DJ |
2588 | |
2589 | return f; | |
c5aa993b JM |
2590 | } |
2591 | } | |
2592 | ||
c906108c SS |
2593 | /* Not found in object, check in base subobjects */ |
2594 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2595 | { | |
2596 | int base_offset; | |
2597 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2598 | { | |
c5aa993b JM |
2599 | if (TYPE_HAS_VTABLE (type)) |
2600 | { | |
2601 | /* HP aCC compiled type, search for virtual base offset | |
2602 | * according to HP/Taligent runtime spec. */ | |
2603 | int skip; | |
2604 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2605 | VALUE_CONTENTS_ALL (*argp), | |
2606 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2607 | &base_offset, &skip); | |
2608 | if (skip >= 0) | |
2609 | error ("Virtual base class offset not found in vtable"); | |
2610 | } | |
2611 | else | |
2612 | { | |
2613 | /* probably g++ runtime model */ | |
2614 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2615 | base_offset = | |
2616 | baseclass_offset (type, i, | |
2617 | VALUE_CONTENTS (*argp) + base_offset, | |
2618 | VALUE_ADDRESS (*argp) + base_offset); | |
2619 | if (base_offset == -1) | |
2620 | error ("virtual baseclass botch"); | |
2621 | } | |
2622 | } | |
2623 | else | |
2624 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2625 | { |
2626 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2627 | } |
c906108c | 2628 | f = find_method_list (argp, method, base_offset + offset, |
4a1970e4 DJ |
2629 | TYPE_BASECLASS (type, i), num_fns, basetype, |
2630 | boffset); | |
c906108c | 2631 | if (f) |
c5aa993b | 2632 | return f; |
c906108c | 2633 | } |
c5aa993b | 2634 | return NULL; |
c906108c SS |
2635 | } |
2636 | ||
2637 | /* Return the list of overloaded methods of a specified name. | |
2638 | * ARGP is a pointer to a pointer to a value (the object) | |
2639 | * METHOD is the method name | |
2640 | * OFFSET is the offset within the value contents | |
c906108c SS |
2641 | * NUM_FNS is the number of overloaded instances |
2642 | * BASETYPE is set to the type of the base subobject that defines the method | |
2643 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2644 | ||
2645 | struct fn_field * | |
f23631e4 | 2646 | value_find_oload_method_list (struct value **argp, char *method, int offset, |
4a1970e4 DJ |
2647 | int *num_fns, struct type **basetype, |
2648 | int *boffset) | |
c906108c | 2649 | { |
c5aa993b | 2650 | struct type *t; |
c906108c SS |
2651 | |
2652 | t = check_typedef (VALUE_TYPE (*argp)); | |
2653 | ||
c5aa993b | 2654 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2655 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2656 | { | |
2657 | *argp = value_ind (*argp); | |
2658 | /* Don't coerce fn pointer to fn and then back again! */ | |
2659 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2660 | COERCE_ARRAY (*argp); | |
2661 | t = check_typedef (VALUE_TYPE (*argp)); | |
2662 | } | |
c5aa993b | 2663 | |
c906108c SS |
2664 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2665 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2666 | |
2667 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2668 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2669 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2670 | |
4a1970e4 | 2671 | return find_method_list (argp, method, 0, t, num_fns, basetype, boffset); |
c906108c SS |
2672 | } |
2673 | ||
2674 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2675 | entry for "this" in the case of C++ methods), the number of | |
2676 | arguments NARGS, the NAME of a function whether it's a method or | |
2677 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2678 | overload resolution rules in ANSI C++, find the best function that | |
2679 | matches on the argument types according to the overload resolution | |
2680 | rules. | |
2681 | ||
2682 | In the case of class methods, the parameter OBJ is an object value | |
2683 | in which to search for overloaded methods. | |
2684 | ||
2685 | In the case of non-method functions, the parameter FSYM is a symbol | |
2686 | corresponding to one of the overloaded functions. | |
2687 | ||
2688 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2689 | non-standard coercions, 100 -> incompatible. | |
2690 | ||
2691 | If a method is being searched for, VALP will hold the value. | |
2692 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2693 | ||
2694 | If a method is being searched for, and it is a static method, | |
2695 | then STATICP will point to a non-zero value. | |
2696 | ||
2697 | Note: This function does *not* check the value of | |
2698 | overload_resolution. Caller must check it to see whether overload | |
2699 | resolution is permitted. | |
c5aa993b | 2700 | */ |
c906108c SS |
2701 | |
2702 | int | |
fba45db2 | 2703 | find_overload_match (struct type **arg_types, int nargs, char *name, int method, |
7f8c9282 | 2704 | int lax, struct value **objp, struct symbol *fsym, |
f23631e4 | 2705 | struct value **valp, struct symbol **symp, int *staticp) |
c906108c SS |
2706 | { |
2707 | int nparms; | |
c5aa993b | 2708 | struct type **parm_types; |
c906108c | 2709 | int champ_nparms = 0; |
7f8c9282 | 2710 | struct value *obj = (objp ? *objp : NULL); |
c5aa993b JM |
2711 | |
2712 | short oload_champ = -1; /* Index of best overloaded function */ | |
2713 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2714 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2715 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2716 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2717 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2718 | ||
2719 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2720 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2721 | ||
f23631e4 | 2722 | struct value *temp = obj; |
c5aa993b JM |
2723 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2724 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2725 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2726 | struct type *basetype = NULL; | |
c906108c SS |
2727 | int boffset; |
2728 | register int jj; | |
2729 | register int ix; | |
4a1970e4 | 2730 | int static_offset; |
02f0d45d | 2731 | struct cleanup *cleanups = NULL; |
c906108c | 2732 | |
c5aa993b JM |
2733 | char *obj_type_name = NULL; |
2734 | char *func_name = NULL; | |
c906108c SS |
2735 | |
2736 | /* Get the list of overloaded methods or functions */ | |
2737 | if (method) | |
2738 | { | |
2739 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
2740 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
7b83ea04 | 2741 | value rather than the object itself, so try again */ |
c906108c | 2742 | if ((!obj_type_name || !*obj_type_name) && |
c5aa993b JM |
2743 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2744 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2745 | |
2746 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2747 | &num_fns, |
2748 | &basetype, &boffset); | |
c906108c | 2749 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2750 | error ("Couldn't find method %s%s%s", |
2751 | obj_type_name, | |
2752 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2753 | name); | |
4a1970e4 DJ |
2754 | /* If we are dealing with stub method types, they should have |
2755 | been resolved by find_method_list via value_find_oload_method_list | |
2756 | above. */ | |
2757 | gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); | |
c906108c SS |
2758 | } |
2759 | else | |
2760 | { | |
2761 | int i = -1; | |
22abf04a | 2762 | func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS); |
c906108c | 2763 | |
917317f4 | 2764 | /* If the name is NULL this must be a C-style function. |
7b83ea04 | 2765 | Just return the same symbol. */ |
917317f4 | 2766 | if (!func_name) |
7b83ea04 | 2767 | { |
917317f4 | 2768 | *symp = fsym; |
7b83ea04 AC |
2769 | return 0; |
2770 | } | |
917317f4 | 2771 | |
c906108c | 2772 | oload_syms = make_symbol_overload_list (fsym); |
02f0d45d | 2773 | cleanups = make_cleanup (xfree, oload_syms); |
c906108c | 2774 | while (oload_syms[++i]) |
c5aa993b | 2775 | num_fns++; |
c906108c | 2776 | if (!num_fns) |
c5aa993b | 2777 | error ("Couldn't find function %s", func_name); |
c906108c | 2778 | } |
c5aa993b | 2779 | |
c906108c SS |
2780 | oload_champ_bv = NULL; |
2781 | ||
c5aa993b | 2782 | /* Consider each candidate in turn */ |
c906108c SS |
2783 | for (ix = 0; ix < num_fns; ix++) |
2784 | { | |
4a1970e4 | 2785 | static_offset = 0; |
db577aea AC |
2786 | if (method) |
2787 | { | |
4a1970e4 DJ |
2788 | if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix)) |
2789 | static_offset = 1; | |
ad2f7632 | 2790 | nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
db577aea AC |
2791 | } |
2792 | else | |
2793 | { | |
2794 | /* If it's not a method, this is the proper place */ | |
2795 | nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix])); | |
2796 | } | |
c906108c | 2797 | |
c5aa993b | 2798 | /* Prepare array of parameter types */ |
c906108c SS |
2799 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2800 | for (jj = 0; jj < nparms; jj++) | |
db577aea | 2801 | parm_types[jj] = (method |
ad2f7632 | 2802 | ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
db577aea | 2803 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj)); |
c906108c | 2804 | |
4a1970e4 DJ |
2805 | /* Compare parameter types to supplied argument types. Skip THIS for |
2806 | static methods. */ | |
2807 | bv = rank_function (parm_types, nparms, arg_types + static_offset, | |
2808 | nargs - static_offset); | |
c5aa993b | 2809 | |
c906108c | 2810 | if (!oload_champ_bv) |
c5aa993b JM |
2811 | { |
2812 | oload_champ_bv = bv; | |
2813 | oload_champ = 0; | |
2814 | champ_nparms = nparms; | |
2815 | } | |
c906108c | 2816 | else |
c5aa993b JM |
2817 | /* See whether current candidate is better or worse than previous best */ |
2818 | switch (compare_badness (bv, oload_champ_bv)) | |
2819 | { | |
2820 | case 0: | |
2821 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2822 | oload_ambig_champ = ix; | |
2823 | break; | |
2824 | case 1: | |
2825 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2826 | oload_ambig_champ = ix; | |
2827 | break; | |
2828 | case 2: | |
2829 | oload_champ_bv = bv; /* new champion, record details */ | |
2830 | oload_ambiguous = 0; | |
2831 | oload_champ = ix; | |
2832 | oload_ambig_champ = -1; | |
2833 | champ_nparms = nparms; | |
2834 | break; | |
2835 | case 3: | |
2836 | default: | |
2837 | break; | |
2838 | } | |
b8c9b27d | 2839 | xfree (parm_types); |
6b1ba9a0 ND |
2840 | if (overload_debug) |
2841 | { | |
2842 | if (method) | |
2843 | fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); | |
2844 | else | |
2845 | fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); | |
4a1970e4 | 2846 | for (jj = 0; jj < nargs - static_offset; jj++) |
6b1ba9a0 ND |
2847 | fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2848 | fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
2849 | } | |
c5aa993b | 2850 | } /* end loop over all candidates */ |
db577aea AC |
2851 | /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one |
2852 | if they have the exact same goodness. This is because there is no | |
2853 | way to differentiate based on return type, which we need to in | |
2854 | cases like overloads of .begin() <It's both const and non-const> */ | |
2855 | #if 0 | |
c906108c SS |
2856 | if (oload_ambiguous) |
2857 | { | |
2858 | if (method) | |
c5aa993b JM |
2859 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2860 | obj_type_name, | |
2861 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2862 | name); | |
c906108c | 2863 | else |
c5aa993b JM |
2864 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2865 | func_name); | |
c906108c | 2866 | } |
db577aea | 2867 | #endif |
c906108c | 2868 | |
4a1970e4 DJ |
2869 | /* Check how bad the best match is. */ |
2870 | static_offset = 0; | |
2871 | if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) | |
2872 | static_offset = 1; | |
2873 | for (ix = 1; ix <= nargs - static_offset; ix++) | |
c906108c | 2874 | { |
6b1ba9a0 ND |
2875 | if (oload_champ_bv->rank[ix] >= 100) |
2876 | oload_incompatible = 1; /* truly mismatched types */ | |
2877 | ||
2878 | else if (oload_champ_bv->rank[ix] >= 10) | |
2879 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
c906108c SS |
2880 | } |
2881 | if (oload_incompatible) | |
2882 | { | |
2883 | if (method) | |
c5aa993b JM |
2884 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2885 | obj_type_name, | |
2886 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2887 | name); | |
c906108c | 2888 | else |
c5aa993b JM |
2889 | error ("Cannot resolve function %s to any overloaded instance", |
2890 | func_name); | |
c906108c SS |
2891 | } |
2892 | else if (oload_non_standard) | |
2893 | { | |
2894 | if (method) | |
c5aa993b JM |
2895 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2896 | obj_type_name, | |
2897 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2898 | name); | |
c906108c | 2899 | else |
c5aa993b JM |
2900 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2901 | func_name); | |
c906108c SS |
2902 | } |
2903 | ||
2904 | if (method) | |
2905 | { | |
4a1970e4 DJ |
2906 | if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ)) |
2907 | *staticp = 1; | |
2908 | else if (staticp) | |
2909 | *staticp = 0; | |
c906108c | 2910 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) |
c5aa993b | 2911 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2912 | else |
c5aa993b | 2913 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2914 | } |
2915 | else | |
2916 | { | |
2917 | *symp = oload_syms[oload_champ]; | |
b8c9b27d | 2918 | xfree (func_name); |
c906108c SS |
2919 | } |
2920 | ||
7f8c9282 DJ |
2921 | if (objp) |
2922 | { | |
2923 | if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR | |
2924 | && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR) | |
2925 | { | |
2926 | temp = value_addr (temp); | |
2927 | } | |
2928 | *objp = temp; | |
2929 | } | |
02f0d45d DJ |
2930 | if (cleanups != NULL) |
2931 | do_cleanups (cleanups); | |
2932 | ||
c906108c SS |
2933 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); |
2934 | } | |
2935 | ||
2936 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2937 | of type TYPE. If TYPE does not have a destructor, or | |
2938 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2939 | int | |
fba45db2 | 2940 | destructor_name_p (const char *name, const struct type *type) |
c906108c SS |
2941 | { |
2942 | /* destructors are a special case. */ | |
2943 | ||
2944 | if (name[0] == '~') | |
2945 | { | |
2946 | char *dname = type_name_no_tag (type); | |
2947 | char *cp = strchr (dname, '<'); | |
2948 | unsigned int len; | |
2949 | ||
2950 | /* Do not compare the template part for template classes. */ | |
2951 | if (cp == NULL) | |
2952 | len = strlen (dname); | |
2953 | else | |
2954 | len = cp - dname; | |
2955 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2956 | error ("name of destructor must equal name of class"); | |
2957 | else | |
2958 | return 1; | |
2959 | } | |
2960 | return 0; | |
2961 | } | |
2962 | ||
2963 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2964 | return 1 if the component named NAME from the ultimate | |
2965 | target structure/union is defined, otherwise, return 0. */ | |
2966 | ||
2967 | static int | |
fba45db2 | 2968 | check_field_in (register struct type *type, const char *name) |
c906108c SS |
2969 | { |
2970 | register int i; | |
2971 | ||
2972 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2973 | { | |
2974 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
db577aea | 2975 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c SS |
2976 | return 1; |
2977 | } | |
2978 | ||
2979 | /* C++: If it was not found as a data field, then try to | |
2980 | return it as a pointer to a method. */ | |
2981 | ||
2982 | /* Destructors are a special case. */ | |
2983 | if (destructor_name_p (name, type)) | |
2984 | { | |
2985 | int m_index, f_index; | |
2986 | ||
2987 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2988 | } | |
2989 | ||
2990 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2991 | { | |
db577aea | 2992 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
c906108c SS |
2993 | return 1; |
2994 | } | |
2995 | ||
2996 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2997 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2998 | return 1; | |
c5aa993b | 2999 | |
c906108c SS |
3000 | return 0; |
3001 | } | |
3002 | ||
3003 | ||
3004 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
3005 | return 1 if the component named NAME from the ultimate | |
3006 | target structure/union is defined, otherwise, return 0. */ | |
3007 | ||
3008 | int | |
f23631e4 | 3009 | check_field (struct value *arg1, const char *name) |
c906108c SS |
3010 | { |
3011 | register struct type *t; | |
3012 | ||
3013 | COERCE_ARRAY (arg1); | |
3014 | ||
3015 | t = VALUE_TYPE (arg1); | |
3016 | ||
3017 | /* Follow pointers until we get to a non-pointer. */ | |
3018 | ||
3019 | for (;;) | |
3020 | { | |
3021 | CHECK_TYPEDEF (t); | |
3022 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
3023 | break; | |
3024 | t = TYPE_TARGET_TYPE (t); | |
3025 | } | |
3026 | ||
3027 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
3028 | error ("not implemented: member type in check_field"); | |
3029 | ||
c5aa993b | 3030 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3031 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3032 | error ("Internal error: `this' is not an aggregate"); | |
3033 | ||
3034 | return check_field_in (t, name); | |
3035 | } | |
3036 | ||
3037 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
3038 | return the address of this member as a "pointer to member" | |
3039 | type. If INTYPE is non-null, then it will be the type | |
3040 | of the member we are looking for. This will help us resolve | |
3041 | "pointers to member functions". This function is used | |
3042 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
3043 | ||
f23631e4 | 3044 | struct value * |
fba45db2 KB |
3045 | value_struct_elt_for_reference (struct type *domain, int offset, |
3046 | struct type *curtype, char *name, | |
3047 | struct type *intype) | |
c906108c SS |
3048 | { |
3049 | register struct type *t = curtype; | |
3050 | register int i; | |
f23631e4 | 3051 | struct value *v; |
c906108c | 3052 | |
c5aa993b | 3053 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
3054 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
3055 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
3056 | ||
3057 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
3058 | { | |
3059 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 3060 | |
c906108c SS |
3061 | if (t_field_name && STREQ (t_field_name, name)) |
3062 | { | |
3063 | if (TYPE_FIELD_STATIC (t, i)) | |
3064 | { | |
3065 | v = value_static_field (t, i); | |
3066 | if (v == NULL) | |
2c2738a0 | 3067 | error ("static field %s has been optimized out", |
c906108c SS |
3068 | name); |
3069 | return v; | |
3070 | } | |
3071 | if (TYPE_FIELD_PACKED (t, i)) | |
3072 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 3073 | |
c906108c SS |
3074 | return value_from_longest |
3075 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
3076 | domain)), | |
3077 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
3078 | } | |
3079 | } | |
3080 | ||
3081 | /* C++: If it was not found as a data field, then try to | |
3082 | return it as a pointer to a method. */ | |
3083 | ||
3084 | /* Destructors are a special case. */ | |
3085 | if (destructor_name_p (name, t)) | |
3086 | { | |
3087 | error ("member pointers to destructors not implemented yet"); | |
3088 | } | |
3089 | ||
3090 | /* Perform all necessary dereferencing. */ | |
3091 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3092 | intype = TYPE_TARGET_TYPE (intype); | |
3093 | ||
3094 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3095 | { | |
3096 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3097 | char dem_opname[64]; | |
3098 | ||
c5aa993b JM |
3099 | if (strncmp (t_field_name, "__", 2) == 0 || |
3100 | strncmp (t_field_name, "op", 2) == 0 || | |
3101 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3102 | { |
c5aa993b JM |
3103 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3104 | t_field_name = dem_opname; | |
3105 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3106 | t_field_name = dem_opname; |
c906108c SS |
3107 | } |
3108 | if (t_field_name && STREQ (t_field_name, name)) | |
3109 | { | |
3110 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3111 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3112 | |
de17c821 DJ |
3113 | check_stub_method_group (t, i); |
3114 | ||
c906108c SS |
3115 | if (intype == 0 && j > 1) |
3116 | error ("non-unique member `%s' requires type instantiation", name); | |
3117 | if (intype) | |
3118 | { | |
3119 | while (j--) | |
3120 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3121 | break; | |
3122 | if (j < 0) | |
3123 | error ("no member function matches that type instantiation"); | |
3124 | } | |
3125 | else | |
3126 | j = 0; | |
c5aa993b | 3127 | |
c906108c SS |
3128 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
3129 | { | |
3130 | return value_from_longest | |
3131 | (lookup_reference_type | |
3132 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3133 | domain)), | |
3134 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3135 | } | |
3136 | else | |
3137 | { | |
3138 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3139 | 0, VAR_NAMESPACE, 0, NULL); | |
3140 | if (s == NULL) | |
3141 | { | |
3142 | v = 0; | |
3143 | } | |
3144 | else | |
3145 | { | |
3146 | v = read_var_value (s, 0); | |
3147 | #if 0 | |
3148 | VALUE_TYPE (v) = lookup_reference_type | |
3149 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3150 | domain)); | |
3151 | #endif | |
3152 | } | |
3153 | return v; | |
3154 | } | |
3155 | } | |
3156 | } | |
3157 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3158 | { | |
f23631e4 | 3159 | struct value *v; |
c906108c SS |
3160 | int base_offset; |
3161 | ||
3162 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3163 | base_offset = 0; | |
3164 | else | |
3165 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3166 | v = value_struct_elt_for_reference (domain, | |
3167 | offset + base_offset, | |
3168 | TYPE_BASECLASS (t, i), | |
3169 | name, | |
3170 | intype); | |
3171 | if (v) | |
3172 | return v; | |
3173 | } | |
3174 | return 0; | |
3175 | } | |
3176 | ||
3177 | ||
c906108c SS |
3178 | /* Given a pointer value V, find the real (RTTI) type |
3179 | of the object it points to. | |
3180 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3181 | and refer to the values computed for the object pointed to. */ | |
3182 | ||
3183 | struct type * | |
f23631e4 | 3184 | value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc) |
c906108c | 3185 | { |
f23631e4 | 3186 | struct value *target; |
c906108c SS |
3187 | |
3188 | target = value_ind (v); | |
3189 | ||
3190 | return value_rtti_type (target, full, top, using_enc); | |
3191 | } | |
3192 | ||
3193 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3194 | if that is different from the enclosing type, create a new value | |
3195 | using the real run-time type as the enclosing type (and of the same | |
3196 | type as ARGP) and return it, with the embedded offset adjusted to | |
3197 | be the correct offset to the enclosed object | |
3198 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3199 | parameters, computed by value_rtti_type(). If these are available, | |
3200 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3201 | (Pass RTYPE == NULL if they're not available */ | |
3202 | ||
f23631e4 AC |
3203 | struct value * |
3204 | value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop, | |
fba45db2 | 3205 | int xusing_enc) |
c906108c | 3206 | { |
c5aa993b | 3207 | struct type *real_type; |
c906108c SS |
3208 | int full = 0; |
3209 | int top = -1; | |
3210 | int using_enc = 0; | |
f23631e4 | 3211 | struct value *new_val; |
c906108c SS |
3212 | |
3213 | if (rtype) | |
3214 | { | |
3215 | real_type = rtype; | |
3216 | full = xfull; | |
3217 | top = xtop; | |
3218 | using_enc = xusing_enc; | |
3219 | } | |
3220 | else | |
3221 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3222 | ||
3223 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3224 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3225 | return argp; | |
3226 | ||
3227 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3228 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3229 | if (full) |
3230 | { | |
2b127877 | 3231 | argp = value_change_enclosing_type (argp, real_type); |
c906108c SS |
3232 | return argp; |
3233 | } | |
3234 | ||
3235 | /* Check if object is in memory */ | |
3236 | if (VALUE_LVAL (argp) != lval_memory) | |
3237 | { | |
3238 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3239 | |
c906108c SS |
3240 | return argp; |
3241 | } | |
c5aa993b | 3242 | |
c906108c SS |
3243 | /* All other cases -- retrieve the complete object */ |
3244 | /* Go back by the computed top_offset from the beginning of the object, | |
3245 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3246 | used for its computation. */ | |
3247 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3248 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3249 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3250 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3251 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3252 | return new_val; | |
3253 | } | |
3254 | ||
389e51db AC |
3255 | |
3256 | ||
3257 | ||
d069f99d | 3258 | /* Return the value of the local variable, if one exists. |
c906108c SS |
3259 | Flag COMPLAIN signals an error if the request is made in an |
3260 | inappropriate context. */ | |
3261 | ||
f23631e4 | 3262 | struct value * |
d069f99d | 3263 | value_of_local (const char *name, int complain) |
c906108c SS |
3264 | { |
3265 | struct symbol *func, *sym; | |
3266 | struct block *b; | |
3267 | int i; | |
d069f99d | 3268 | struct value * ret; |
c906108c | 3269 | |
6e7f8b9c | 3270 | if (deprecated_selected_frame == 0) |
c906108c SS |
3271 | { |
3272 | if (complain) | |
c5aa993b JM |
3273 | error ("no frame selected"); |
3274 | else | |
3275 | return 0; | |
c906108c SS |
3276 | } |
3277 | ||
6e7f8b9c | 3278 | func = get_frame_function (deprecated_selected_frame); |
c906108c SS |
3279 | if (!func) |
3280 | { | |
3281 | if (complain) | |
2625d86c | 3282 | error ("no `%s' in nameless context", name); |
c5aa993b JM |
3283 | else |
3284 | return 0; | |
c906108c SS |
3285 | } |
3286 | ||
3287 | b = SYMBOL_BLOCK_VALUE (func); | |
3288 | i = BLOCK_NSYMS (b); | |
3289 | if (i <= 0) | |
3290 | { | |
3291 | if (complain) | |
2625d86c | 3292 | error ("no args, no `%s'", name); |
c5aa993b JM |
3293 | else |
3294 | return 0; | |
c906108c SS |
3295 | } |
3296 | ||
3297 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3298 | symbol instead of the LOC_ARG one (if both exist). */ | |
d069f99d | 3299 | sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE); |
c906108c SS |
3300 | if (sym == NULL) |
3301 | { | |
3302 | if (complain) | |
2625d86c | 3303 | error ("current stack frame does not contain a variable named `%s'", name); |
c906108c SS |
3304 | else |
3305 | return NULL; | |
3306 | } | |
3307 | ||
6e7f8b9c | 3308 | ret = read_var_value (sym, deprecated_selected_frame); |
d069f99d | 3309 | if (ret == 0 && complain) |
2625d86c | 3310 | error ("`%s' argument unreadable", name); |
d069f99d AF |
3311 | return ret; |
3312 | } | |
3313 | ||
3314 | /* C++/Objective-C: return the value of the class instance variable, | |
3315 | if one exists. Flag COMPLAIN signals an error if the request is | |
3316 | made in an inappropriate context. */ | |
3317 | ||
3318 | struct value * | |
3319 | value_of_this (int complain) | |
3320 | { | |
3321 | if (current_language->la_language == language_objc) | |
3322 | return value_of_local ("self", complain); | |
3323 | else | |
3324 | return value_of_local ("this", complain); | |
c906108c SS |
3325 | } |
3326 | ||
3327 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3328 | long, starting at LOWBOUND. The result has the same lower bound as | |
3329 | the original ARRAY. */ | |
3330 | ||
f23631e4 AC |
3331 | struct value * |
3332 | value_slice (struct value *array, int lowbound, int length) | |
c906108c SS |
3333 | { |
3334 | struct type *slice_range_type, *slice_type, *range_type; | |
7a67d0fe | 3335 | LONGEST lowerbound, upperbound; |
f23631e4 | 3336 | struct value *slice; |
c906108c SS |
3337 | struct type *array_type; |
3338 | array_type = check_typedef (VALUE_TYPE (array)); | |
3339 | COERCE_VARYING_ARRAY (array, array_type); | |
3340 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3341 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3342 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3343 | error ("cannot take slice of non-array"); | |
3344 | range_type = TYPE_INDEX_TYPE (array_type); | |
3345 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3346 | error ("slice from bad array or bitstring"); | |
3347 | if (lowbound < lowerbound || length < 0 | |
db034ac5 | 3348 | || lowbound + length - 1 > upperbound) |
c906108c SS |
3349 | error ("slice out of range"); |
3350 | /* FIXME-type-allocation: need a way to free this type when we are | |
3351 | done with it. */ | |
c5aa993b | 3352 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3353 | TYPE_TARGET_TYPE (range_type), |
3354 | lowbound, lowbound + length - 1); | |
3355 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3356 | { | |
3357 | int i; | |
c5aa993b | 3358 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3359 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3360 | slice = value_zero (slice_type, not_lval); | |
3361 | for (i = 0; i < length; i++) | |
3362 | { | |
3363 | int element = value_bit_index (array_type, | |
3364 | VALUE_CONTENTS (array), | |
3365 | lowbound + i); | |
3366 | if (element < 0) | |
3367 | error ("internal error accessing bitstring"); | |
3368 | else if (element > 0) | |
3369 | { | |
3370 | int j = i % TARGET_CHAR_BIT; | |
3371 | if (BITS_BIG_ENDIAN) | |
3372 | j = TARGET_CHAR_BIT - 1 - j; | |
3373 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3374 | } | |
3375 | } | |
3376 | /* We should set the address, bitssize, and bitspos, so the clice | |
7b83ea04 AC |
3377 | can be used on the LHS, but that may require extensions to |
3378 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3379 | } |
3380 | else | |
3381 | { | |
3382 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
7a67d0fe | 3383 | LONGEST offset |
c906108c | 3384 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); |
c5aa993b | 3385 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3386 | slice_range_type); |
3387 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3388 | slice = allocate_value (slice_type); | |
3389 | if (VALUE_LAZY (array)) | |
3390 | VALUE_LAZY (slice) = 1; | |
3391 | else | |
3392 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3393 | TYPE_LENGTH (slice_type)); | |
3394 | if (VALUE_LVAL (array) == lval_internalvar) | |
3395 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3396 | else | |
3397 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3398 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3399 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3400 | } | |
3401 | return slice; | |
3402 | } | |
3403 | ||
070ad9f0 DB |
3404 | /* Create a value for a FORTRAN complex number. Currently most of |
3405 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3406 | composed of 2 doubles. This really should be a smarter routine | |
3407 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3408 | doubles. FIXME: fmb */ |
c906108c | 3409 | |
f23631e4 AC |
3410 | struct value * |
3411 | value_literal_complex (struct value *arg1, struct value *arg2, struct type *type) | |
c906108c | 3412 | { |
f23631e4 | 3413 | struct value *val; |
c906108c SS |
3414 | struct type *real_type = TYPE_TARGET_TYPE (type); |
3415 | ||
3416 | val = allocate_value (type); | |
3417 | arg1 = value_cast (real_type, arg1); | |
3418 | arg2 = value_cast (real_type, arg2); | |
3419 | ||
3420 | memcpy (VALUE_CONTENTS_RAW (val), | |
3421 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3422 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3423 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3424 | return val; | |
3425 | } | |
3426 | ||
3427 | /* Cast a value into the appropriate complex data type. */ | |
3428 | ||
f23631e4 AC |
3429 | static struct value * |
3430 | cast_into_complex (struct type *type, struct value *val) | |
c906108c SS |
3431 | { |
3432 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3433 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3434 | { | |
3435 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
f23631e4 AC |
3436 | struct value *re_val = allocate_value (val_real_type); |
3437 | struct value *im_val = allocate_value (val_real_type); | |
c906108c SS |
3438 | |
3439 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3440 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3441 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3442 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3443 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3444 | |
3445 | return value_literal_complex (re_val, im_val, type); | |
3446 | } | |
3447 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3448 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3449 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3450 | else | |
3451 | error ("cannot cast non-number to complex"); | |
3452 | } | |
3453 | ||
3454 | void | |
fba45db2 | 3455 | _initialize_valops (void) |
c906108c SS |
3456 | { |
3457 | #if 0 | |
3458 | add_show_from_set | |
c5aa993b | 3459 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3460 | "Set automatic abandonment of expressions upon failure.", |
3461 | &setlist), | |
3462 | &showlist); | |
3463 | #endif | |
3464 | ||
3465 | add_show_from_set | |
c5aa993b | 3466 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3467 | "Set overload resolution in evaluating C++ functions.", |
3468 | &setlist), | |
3469 | &showlist); | |
3470 | overload_resolution = 1; | |
3471 | ||
242bfc55 FN |
3472 | add_show_from_set ( |
3473 | add_set_cmd ("unwindonsignal", no_class, var_boolean, | |
3474 | (char *) &unwind_on_signal_p, | |
3475 | "Set unwinding of stack if a signal is received while in a call dummy.\n\ | |
3476 | The unwindonsignal lets the user determine what gdb should do if a signal\n\ | |
3477 | is received while in a function called from gdb (call dummy). If set, gdb\n\ | |
3478 | unwinds the stack and restore the context to what as it was before the call.\n\ | |
3479 | The default is to stop in the frame where the signal was received.", &setlist), | |
3480 | &showlist); | |
1e698235 DJ |
3481 | |
3482 | add_show_from_set | |
3483 | (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean, | |
3484 | (char *) &coerce_float_to_double, | |
3485 | "Set coercion of floats to doubles when calling functions\n" | |
3486 | "Variables of type float should generally be converted to doubles before\n" | |
3487 | "calling an unprototyped function, and left alone when calling a prototyped\n" | |
3488 | "function. However, some older debug info formats do not provide enough\n" | |
3489 | "information to determine that a function is prototyped. If this flag is\n" | |
3490 | "set, GDB will perform the conversion for a function it considers\n" | |
3491 | "unprototyped.\n" | |
3492 | "The default is to perform the conversion.\n", | |
3493 | &setlist), | |
3494 | &showlist); | |
3495 | coerce_float_to_double = 1; | |
c906108c | 3496 | } |