]>
Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
6aba47ca | 3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 |
5ae96ec1 MK |
4 | Free Software Foundation, Inc. |
5 | ||
6 | Contributed by Jiri Smid, SuSE Labs. | |
53e95fcf JS |
7 | |
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
22 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
23 | Boston, MA 02110-1301, USA. */ | |
53e95fcf JS |
24 | |
25 | #include "defs.h" | |
c4f35dd8 MK |
26 | #include "arch-utils.h" |
27 | #include "block.h" | |
28 | #include "dummy-frame.h" | |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
53e95fcf | 32 | #include "inferior.h" |
53e95fcf | 33 | #include "gdbcmd.h" |
c4f35dd8 MK |
34 | #include "gdbcore.h" |
35 | #include "objfiles.h" | |
53e95fcf | 36 | #include "regcache.h" |
2c261fae | 37 | #include "regset.h" |
53e95fcf | 38 | #include "symfile.h" |
c4f35dd8 | 39 | |
82dbc5f7 | 40 | #include "gdb_assert.h" |
c4f35dd8 | 41 | |
9c1488cb | 42 | #include "amd64-tdep.h" |
c4f35dd8 | 43 | #include "i387-tdep.h" |
53e95fcf | 44 | |
e53bef9f MK |
45 | /* Note that the AMD64 architecture was previously known as x86-64. |
46 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 47 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
48 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
49 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
50 | x86_64_-prefix since it's so much easier to type. */ | |
51 | ||
402ecd56 | 52 | /* Register information. */ |
c4f35dd8 | 53 | |
6707b003 | 54 | static const char *amd64_register_names[] = |
de220d0f | 55 | { |
6707b003 | 56 | "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", |
c4f35dd8 MK |
57 | |
58 | /* %r8 is indeed register number 8. */ | |
6707b003 UW |
59 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
60 | "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | |
c4f35dd8 | 61 | |
af233647 | 62 | /* %st0 is register number 24. */ |
6707b003 UW |
63 | "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", |
64 | "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | |
c4f35dd8 | 65 | |
af233647 | 66 | /* %xmm0 is register number 40. */ |
6707b003 UW |
67 | "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
68 | "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | |
69 | "mxcsr", | |
0e04a514 ML |
70 | }; |
71 | ||
c4f35dd8 | 72 | /* Total number of registers. */ |
6707b003 | 73 | #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names) |
de220d0f | 74 | |
c4f35dd8 | 75 | /* Return the name of register REGNUM. */ |
b6779aa2 | 76 | |
8695c747 | 77 | const char * |
e53bef9f | 78 | amd64_register_name (int regnum) |
53e95fcf | 79 | { |
e53bef9f | 80 | if (regnum >= 0 && regnum < AMD64_NUM_REGS) |
6707b003 | 81 | return amd64_register_names[regnum]; |
53e95fcf | 82 | |
c4f35dd8 | 83 | return NULL; |
53e95fcf JS |
84 | } |
85 | ||
86 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 87 | register REGNUM. */ |
53e95fcf | 88 | |
8695c747 | 89 | struct type * |
e53bef9f | 90 | amd64_register_type (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 91 | { |
6707b003 UW |
92 | if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM) |
93 | return builtin_type_int64; | |
94 | if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM) | |
95 | return builtin_type_void_data_ptr; | |
96 | if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM) | |
97 | return builtin_type_int64; | |
98 | if (regnum == AMD64_RIP_REGNUM) | |
99 | return builtin_type_void_func_ptr; | |
100 | if (regnum == AMD64_EFLAGS_REGNUM) | |
101 | return i386_eflags_type; | |
102 | if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM) | |
103 | return builtin_type_int32; | |
104 | if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7) | |
105 | return builtin_type_i387_ext; | |
106 | if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7) | |
107 | return builtin_type_int32; | |
108 | if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) | |
794ac428 | 109 | return i386_sse_type (gdbarch); |
6707b003 UW |
110 | if (regnum == AMD64_MXCSR_REGNUM) |
111 | return i386_mxcsr_type; | |
112 | ||
113 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
53e95fcf JS |
114 | } |
115 | ||
c4f35dd8 MK |
116 | /* DWARF Register Number Mapping as defined in the System V psABI, |
117 | section 3.6. */ | |
53e95fcf | 118 | |
e53bef9f | 119 | static int amd64_dwarf_regmap[] = |
0e04a514 | 120 | { |
c4f35dd8 | 121 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
122 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
123 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
124 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
125 | |
126 | /* Frame Pointer Register RBP. */ | |
90f90721 | 127 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
128 | |
129 | /* Stack Pointer Register RSP. */ | |
90f90721 | 130 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
131 | |
132 | /* Extended Integer Registers 8 - 15. */ | |
133 | 8, 9, 10, 11, 12, 13, 14, 15, | |
134 | ||
59207364 | 135 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 136 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
137 | |
138 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
139 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
140 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
141 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
142 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
143 | |
144 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
145 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
146 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
147 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
148 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
149 | |
150 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
151 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
152 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
153 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
c6f4c129 JB |
154 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
155 | ||
156 | /* Control and Status Flags Register. */ | |
157 | AMD64_EFLAGS_REGNUM, | |
158 | ||
159 | /* Selector Registers. */ | |
160 | AMD64_ES_REGNUM, | |
161 | AMD64_CS_REGNUM, | |
162 | AMD64_SS_REGNUM, | |
163 | AMD64_DS_REGNUM, | |
164 | AMD64_FS_REGNUM, | |
165 | AMD64_GS_REGNUM, | |
166 | -1, | |
167 | -1, | |
168 | ||
169 | /* Segment Base Address Registers. */ | |
170 | -1, | |
171 | -1, | |
172 | -1, | |
173 | -1, | |
174 | ||
175 | /* Special Selector Registers. */ | |
176 | -1, | |
177 | -1, | |
178 | ||
179 | /* Floating Point Control Registers. */ | |
180 | AMD64_MXCSR_REGNUM, | |
181 | AMD64_FCTRL_REGNUM, | |
182 | AMD64_FSTAT_REGNUM | |
c4f35dd8 | 183 | }; |
0e04a514 | 184 | |
e53bef9f MK |
185 | static const int amd64_dwarf_regmap_len = |
186 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 187 | |
c4f35dd8 MK |
188 | /* Convert DWARF register number REG to the appropriate register |
189 | number used by GDB. */ | |
26abbdc4 | 190 | |
c4f35dd8 | 191 | static int |
e53bef9f | 192 | amd64_dwarf_reg_to_regnum (int reg) |
53e95fcf | 193 | { |
c4f35dd8 | 194 | int regnum = -1; |
53e95fcf | 195 | |
16aff9a6 | 196 | if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
e53bef9f | 197 | regnum = amd64_dwarf_regmap[reg]; |
53e95fcf | 198 | |
c4f35dd8 | 199 | if (regnum == -1) |
8a3fe4f8 | 200 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
c4f35dd8 MK |
201 | |
202 | return regnum; | |
53e95fcf | 203 | } |
d532c08f MK |
204 | |
205 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
206 | needs any special handling. */ | |
207 | ||
208 | static int | |
e53bef9f | 209 | amd64_convert_register_p (int regnum, struct type *type) |
d532c08f MK |
210 | { |
211 | return i386_fp_regnum_p (regnum); | |
212 | } | |
53e95fcf JS |
213 | \f |
214 | ||
efb1c01c MK |
215 | /* Register classes as defined in the psABI. */ |
216 | ||
217 | enum amd64_reg_class | |
218 | { | |
219 | AMD64_INTEGER, | |
220 | AMD64_SSE, | |
221 | AMD64_SSEUP, | |
222 | AMD64_X87, | |
223 | AMD64_X87UP, | |
224 | AMD64_COMPLEX_X87, | |
225 | AMD64_NO_CLASS, | |
226 | AMD64_MEMORY | |
227 | }; | |
228 | ||
229 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
230 | details. */ | |
231 | ||
232 | static enum amd64_reg_class | |
233 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
234 | { | |
235 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
236 | if (class1 == class2) | |
237 | return class1; | |
238 | ||
239 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
240 | is the other class. */ | |
241 | if (class1 == AMD64_NO_CLASS) | |
242 | return class2; | |
243 | if (class2 == AMD64_NO_CLASS) | |
244 | return class1; | |
245 | ||
246 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
247 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
248 | return AMD64_MEMORY; | |
249 | ||
250 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
251 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
252 | return AMD64_INTEGER; | |
253 | ||
254 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
255 | MEMORY is used as class. */ | |
256 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
257 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
258 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
259 | return AMD64_MEMORY; | |
260 | ||
261 | /* Rule (f): Otherwise class SSE is used. */ | |
262 | return AMD64_SSE; | |
263 | } | |
264 | ||
265 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
266 | ||
79b1ab3d MK |
267 | /* Return non-zero if TYPE is a non-POD structure or union type. */ |
268 | ||
269 | static int | |
270 | amd64_non_pod_p (struct type *type) | |
271 | { | |
272 | /* ??? A class with a base class certainly isn't POD, but does this | |
273 | catch all non-POD structure types? */ | |
274 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | |
275 | return 1; | |
276 | ||
277 | return 0; | |
278 | } | |
279 | ||
efb1c01c MK |
280 | /* Classify TYPE according to the rules for aggregate (structures and |
281 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
282 | |
283 | static void | |
efb1c01c | 284 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
285 | { |
286 | int len = TYPE_LENGTH (type); | |
287 | ||
efb1c01c MK |
288 | /* 1. If the size of an object is larger than two eightbytes, or in |
289 | C++, is a non-POD structure or union type, or contains | |
290 | unaligned fields, it has class memory. */ | |
79b1ab3d | 291 | if (len > 16 || amd64_non_pod_p (type)) |
53e95fcf | 292 | { |
efb1c01c MK |
293 | class[0] = class[1] = AMD64_MEMORY; |
294 | return; | |
53e95fcf | 295 | } |
efb1c01c MK |
296 | |
297 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
298 | class[0] = class[1] = AMD64_NO_CLASS; | |
299 | ||
300 | /* 3. Each field of an object is classified recursively so that | |
301 | always two fields are considered. The resulting class is | |
302 | calculated according to the classes of the fields in the | |
303 | eightbyte: */ | |
304 | ||
305 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 306 | { |
efb1c01c MK |
307 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
308 | ||
309 | /* All fields in an array have the same type. */ | |
310 | amd64_classify (subtype, class); | |
311 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
312 | class[1] = class[0]; | |
8ffd9b1b | 313 | } |
53e95fcf JS |
314 | else |
315 | { | |
efb1c01c | 316 | int i; |
53e95fcf | 317 | |
efb1c01c MK |
318 | /* Structure or union. */ |
319 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
320 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
321 | ||
322 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 323 | { |
efb1c01c MK |
324 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
325 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
326 | enum amd64_reg_class subclass[2]; | |
327 | ||
562c50c2 MK |
328 | /* Ignore static fields. */ |
329 | if (TYPE_FIELD_STATIC (type, i)) | |
330 | continue; | |
331 | ||
efb1c01c MK |
332 | gdb_assert (pos == 0 || pos == 1); |
333 | ||
334 | amd64_classify (subtype, subclass); | |
335 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
336 | if (pos == 0) | |
337 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 338 | } |
53e95fcf | 339 | } |
efb1c01c MK |
340 | |
341 | /* 4. Then a post merger cleanup is done: */ | |
342 | ||
343 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
344 | passed in memory. */ | |
345 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
346 | class[0] = class[1] = AMD64_MEMORY; | |
347 | ||
348 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
349 | SSE. */ | |
350 | if (class[0] == AMD64_SSEUP) | |
351 | class[0] = AMD64_SSE; | |
352 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
353 | class[1] = AMD64_SSE; | |
354 | } | |
355 | ||
356 | /* Classify TYPE, and store the result in CLASS. */ | |
357 | ||
358 | static void | |
359 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
360 | { | |
361 | enum type_code code = TYPE_CODE (type); | |
362 | int len = TYPE_LENGTH (type); | |
363 | ||
364 | class[0] = class[1] = AMD64_NO_CLASS; | |
365 | ||
366 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
367 | long, long long, and pointers are in the INTEGER class. Similarly, |
368 | range types, used by languages such as Ada, are also in the INTEGER | |
369 | class. */ | |
efb1c01c | 370 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
b929c77f | 371 | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
efb1c01c MK |
372 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
373 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
374 | class[0] = AMD64_INTEGER; | |
375 | ||
376 | /* Arguments of types float, double and __m64 are in class SSE. */ | |
377 | else if (code == TYPE_CODE_FLT && (len == 4 || len == 8)) | |
378 | /* FIXME: __m64 . */ | |
379 | class[0] = AMD64_SSE; | |
380 | ||
381 | /* Arguments of types __float128 and __m128 are split into two | |
382 | halves. The least significant ones belong to class SSE, the most | |
383 | significant one to class SSEUP. */ | |
384 | /* FIXME: __float128, __m128. */ | |
385 | ||
386 | /* The 64-bit mantissa of arguments of type long double belongs to | |
387 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
388 | class X87UP. */ | |
389 | else if (code == TYPE_CODE_FLT && len == 16) | |
390 | /* Class X87 and X87UP. */ | |
391 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
392 | ||
393 | /* Aggregates. */ | |
394 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
395 | || code == TYPE_CODE_UNION) | |
396 | amd64_classify_aggregate (type, class); | |
397 | } | |
398 | ||
399 | static enum return_value_convention | |
400 | amd64_return_value (struct gdbarch *gdbarch, struct type *type, | |
401 | struct regcache *regcache, | |
42835c2b | 402 | gdb_byte *readbuf, const gdb_byte *writebuf) |
efb1c01c MK |
403 | { |
404 | enum amd64_reg_class class[2]; | |
405 | int len = TYPE_LENGTH (type); | |
90f90721 MK |
406 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
407 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
408 | int integer_reg = 0; |
409 | int sse_reg = 0; | |
410 | int i; | |
411 | ||
412 | gdb_assert (!(readbuf && writebuf)); | |
413 | ||
414 | /* 1. Classify the return type with the classification algorithm. */ | |
415 | amd64_classify (type, class); | |
416 | ||
417 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d MK |
418 | for the return value and passes the address of this storage in |
419 | %rdi as if it were the first argument to the function. In effect, | |
420 | this address becomes a hidden first argument. | |
421 | ||
422 | On return %rax will contain the address that has been passed in | |
423 | by the caller in %rdi. */ | |
efb1c01c | 424 | if (class[0] == AMD64_MEMORY) |
6fa57a7d MK |
425 | { |
426 | /* As indicated by the comment above, the ABI guarantees that we | |
427 | can always find the return value just after the function has | |
428 | returned. */ | |
429 | ||
430 | if (readbuf) | |
431 | { | |
432 | ULONGEST addr; | |
433 | ||
434 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
435 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
436 | } | |
437 | ||
438 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
439 | } | |
efb1c01c MK |
440 | |
441 | gdb_assert (class[1] != AMD64_MEMORY); | |
442 | gdb_assert (len <= 16); | |
443 | ||
444 | for (i = 0; len > 0; i++, len -= 8) | |
445 | { | |
446 | int regnum = -1; | |
447 | int offset = 0; | |
448 | ||
449 | switch (class[i]) | |
450 | { | |
451 | case AMD64_INTEGER: | |
452 | /* 3. If the class is INTEGER, the next available register | |
453 | of the sequence %rax, %rdx is used. */ | |
454 | regnum = integer_regnum[integer_reg++]; | |
455 | break; | |
456 | ||
457 | case AMD64_SSE: | |
458 | /* 4. If the class is SSE, the next available SSE register | |
459 | of the sequence %xmm0, %xmm1 is used. */ | |
460 | regnum = sse_regnum[sse_reg++]; | |
461 | break; | |
462 | ||
463 | case AMD64_SSEUP: | |
464 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
465 | upper half of the last used SSE register. */ | |
466 | gdb_assert (sse_reg > 0); | |
467 | regnum = sse_regnum[sse_reg - 1]; | |
468 | offset = 8; | |
469 | break; | |
470 | ||
471 | case AMD64_X87: | |
472 | /* 6. If the class is X87, the value is returned on the X87 | |
473 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 474 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
475 | if (writebuf) |
476 | i387_return_value (gdbarch, regcache); | |
477 | break; | |
478 | ||
479 | case AMD64_X87UP: | |
480 | /* 7. If the class is X87UP, the value is returned together | |
481 | with the previous X87 value in %st0. */ | |
482 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
90f90721 | 483 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
484 | offset = 8; |
485 | len = 2; | |
486 | break; | |
487 | ||
488 | case AMD64_NO_CLASS: | |
489 | continue; | |
490 | ||
491 | default: | |
492 | gdb_assert (!"Unexpected register class."); | |
493 | } | |
494 | ||
495 | gdb_assert (regnum != -1); | |
496 | ||
497 | if (readbuf) | |
498 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 499 | readbuf + i * 8); |
efb1c01c MK |
500 | if (writebuf) |
501 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 502 | writebuf + i * 8); |
efb1c01c MK |
503 | } |
504 | ||
505 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
506 | } |
507 | \f | |
508 | ||
720aa428 MK |
509 | static CORE_ADDR |
510 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
6470d250 | 511 | struct value **args, CORE_ADDR sp, int struct_return) |
720aa428 MK |
512 | { |
513 | static int integer_regnum[] = | |
514 | { | |
90f90721 MK |
515 | AMD64_RDI_REGNUM, /* %rdi */ |
516 | AMD64_RSI_REGNUM, /* %rsi */ | |
517 | AMD64_RDX_REGNUM, /* %rdx */ | |
518 | AMD64_RCX_REGNUM, /* %rcx */ | |
519 | 8, /* %r8 */ | |
520 | 9 /* %r9 */ | |
720aa428 MK |
521 | }; |
522 | static int sse_regnum[] = | |
523 | { | |
524 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
525 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
526 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
527 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
528 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 MK |
529 | }; |
530 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
531 | int num_stack_args = 0; | |
532 | int num_elements = 0; | |
533 | int element = 0; | |
534 | int integer_reg = 0; | |
535 | int sse_reg = 0; | |
536 | int i; | |
537 | ||
6470d250 MK |
538 | /* Reserve a register for the "hidden" argument. */ |
539 | if (struct_return) | |
540 | integer_reg++; | |
541 | ||
720aa428 MK |
542 | for (i = 0; i < nargs; i++) |
543 | { | |
4991999e | 544 | struct type *type = value_type (args[i]); |
720aa428 MK |
545 | int len = TYPE_LENGTH (type); |
546 | enum amd64_reg_class class[2]; | |
547 | int needed_integer_regs = 0; | |
548 | int needed_sse_regs = 0; | |
549 | int j; | |
550 | ||
551 | /* Classify argument. */ | |
552 | amd64_classify (type, class); | |
553 | ||
554 | /* Calculate the number of integer and SSE registers needed for | |
555 | this argument. */ | |
556 | for (j = 0; j < 2; j++) | |
557 | { | |
558 | if (class[j] == AMD64_INTEGER) | |
559 | needed_integer_regs++; | |
560 | else if (class[j] == AMD64_SSE) | |
561 | needed_sse_regs++; | |
562 | } | |
563 | ||
564 | /* Check whether enough registers are available, and if the | |
565 | argument should be passed in registers at all. */ | |
566 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
567 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
568 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
569 | { | |
570 | /* The argument will be passed on the stack. */ | |
571 | num_elements += ((len + 7) / 8); | |
572 | stack_args[num_stack_args++] = args[i]; | |
573 | } | |
574 | else | |
575 | { | |
576 | /* The argument will be passed in registers. */ | |
d8de1ef7 MK |
577 | const gdb_byte *valbuf = value_contents (args[i]); |
578 | gdb_byte buf[8]; | |
720aa428 MK |
579 | |
580 | gdb_assert (len <= 16); | |
581 | ||
582 | for (j = 0; len > 0; j++, len -= 8) | |
583 | { | |
584 | int regnum = -1; | |
585 | int offset = 0; | |
586 | ||
587 | switch (class[j]) | |
588 | { | |
589 | case AMD64_INTEGER: | |
590 | regnum = integer_regnum[integer_reg++]; | |
591 | break; | |
592 | ||
593 | case AMD64_SSE: | |
594 | regnum = sse_regnum[sse_reg++]; | |
595 | break; | |
596 | ||
597 | case AMD64_SSEUP: | |
598 | gdb_assert (sse_reg > 0); | |
599 | regnum = sse_regnum[sse_reg - 1]; | |
600 | offset = 8; | |
601 | break; | |
602 | ||
603 | default: | |
604 | gdb_assert (!"Unexpected register class."); | |
605 | } | |
606 | ||
607 | gdb_assert (regnum != -1); | |
608 | memset (buf, 0, sizeof buf); | |
609 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
610 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
611 | } | |
612 | } | |
613 | } | |
614 | ||
615 | /* Allocate space for the arguments on the stack. */ | |
616 | sp -= num_elements * 8; | |
617 | ||
618 | /* The psABI says that "The end of the input argument area shall be | |
619 | aligned on a 16 byte boundary." */ | |
620 | sp &= ~0xf; | |
621 | ||
622 | /* Write out the arguments to the stack. */ | |
623 | for (i = 0; i < num_stack_args; i++) | |
624 | { | |
4991999e | 625 | struct type *type = value_type (stack_args[i]); |
d8de1ef7 | 626 | const gdb_byte *valbuf = value_contents (stack_args[i]); |
720aa428 MK |
627 | int len = TYPE_LENGTH (type); |
628 | ||
629 | write_memory (sp + element * 8, valbuf, len); | |
630 | element += ((len + 7) / 8); | |
631 | } | |
632 | ||
633 | /* The psABI says that "For calls that may call functions that use | |
634 | varargs or stdargs (prototype-less calls or calls to functions | |
635 | containing ellipsis (...) in the declaration) %al is used as | |
636 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 637 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
638 | return sp; |
639 | } | |
640 | ||
c4f35dd8 | 641 | static CORE_ADDR |
7d9b040b | 642 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
e53bef9f MK |
643 | struct regcache *regcache, CORE_ADDR bp_addr, |
644 | int nargs, struct value **args, CORE_ADDR sp, | |
645 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 646 | { |
d8de1ef7 | 647 | gdb_byte buf[8]; |
c4f35dd8 MK |
648 | |
649 | /* Pass arguments. */ | |
6470d250 | 650 | sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); |
c4f35dd8 MK |
651 | |
652 | /* Pass "hidden" argument". */ | |
653 | if (struct_return) | |
654 | { | |
655 | store_unsigned_integer (buf, 8, struct_addr); | |
90f90721 | 656 | regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf); |
c4f35dd8 MK |
657 | } |
658 | ||
659 | /* Store return address. */ | |
660 | sp -= 8; | |
10f93086 | 661 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
662 | write_memory (sp, buf, 8); |
663 | ||
664 | /* Finally, update the stack pointer... */ | |
665 | store_unsigned_integer (buf, 8, sp); | |
90f90721 | 666 | regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
667 | |
668 | /* ...and fake a frame pointer. */ | |
90f90721 | 669 | regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 670 | |
3e210248 | 671 | return sp + 16; |
53e95fcf | 672 | } |
c4f35dd8 MK |
673 | \f |
674 | ||
675 | /* The maximum number of saved registers. This should include %rip. */ | |
90f90721 | 676 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 677 | |
e53bef9f | 678 | struct amd64_frame_cache |
c4f35dd8 MK |
679 | { |
680 | /* Base address. */ | |
681 | CORE_ADDR base; | |
682 | CORE_ADDR sp_offset; | |
683 | CORE_ADDR pc; | |
684 | ||
685 | /* Saved registers. */ | |
e53bef9f | 686 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 MK |
687 | CORE_ADDR saved_sp; |
688 | ||
689 | /* Do we have a frame? */ | |
690 | int frameless_p; | |
691 | }; | |
8dda9770 | 692 | |
d2449ee8 | 693 | /* Initialize a frame cache. */ |
c4f35dd8 | 694 | |
d2449ee8 DJ |
695 | static void |
696 | amd64_init_frame_cache (struct amd64_frame_cache *cache) | |
8dda9770 | 697 | { |
c4f35dd8 MK |
698 | int i; |
699 | ||
c4f35dd8 MK |
700 | /* Base address. */ |
701 | cache->base = 0; | |
702 | cache->sp_offset = -8; | |
703 | cache->pc = 0; | |
704 | ||
705 | /* Saved registers. We initialize these to -1 since zero is a valid | |
706 | offset (that's where %rbp is supposed to be stored). */ | |
e53bef9f | 707 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
708 | cache->saved_regs[i] = -1; |
709 | cache->saved_sp = 0; | |
710 | ||
711 | /* Frameless until proven otherwise. */ | |
712 | cache->frameless_p = 1; | |
d2449ee8 | 713 | } |
c4f35dd8 | 714 | |
d2449ee8 DJ |
715 | /* Allocate and initialize a frame cache. */ |
716 | ||
717 | static struct amd64_frame_cache * | |
718 | amd64_alloc_frame_cache (void) | |
719 | { | |
720 | struct amd64_frame_cache *cache; | |
721 | ||
722 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | |
723 | amd64_init_frame_cache (cache); | |
c4f35dd8 | 724 | return cache; |
8dda9770 | 725 | } |
53e95fcf | 726 | |
c4f35dd8 MK |
727 | /* Do a limited analysis of the prologue at PC and update CACHE |
728 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
729 | address where the analysis stopped. | |
730 | ||
731 | We will handle only functions beginning with: | |
732 | ||
733 | pushq %rbp 0x55 | |
734 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
735 | ||
736 | Any function that doesn't start with this sequence will be assumed | |
737 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
738 | ||
739 | static CORE_ADDR | |
e53bef9f MK |
740 | amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, |
741 | struct amd64_frame_cache *cache) | |
53e95fcf | 742 | { |
d8de1ef7 MK |
743 | static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ |
744 | gdb_byte buf[3]; | |
745 | gdb_byte op; | |
c4f35dd8 MK |
746 | |
747 | if (current_pc <= pc) | |
748 | return current_pc; | |
749 | ||
750 | op = read_memory_unsigned_integer (pc, 1); | |
751 | ||
752 | if (op == 0x55) /* pushq %rbp */ | |
753 | { | |
754 | /* Take into account that we've executed the `pushq %rbp' that | |
755 | starts this instruction sequence. */ | |
90f90721 | 756 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
757 | cache->sp_offset += 8; |
758 | ||
759 | /* If that's all, return now. */ | |
760 | if (current_pc <= pc + 1) | |
761 | return current_pc; | |
762 | ||
763 | /* Check for `movq %rsp, %rbp'. */ | |
764 | read_memory (pc + 1, buf, 3); | |
765 | if (memcmp (buf, proto, 3) != 0) | |
766 | return pc + 1; | |
767 | ||
768 | /* OK, we actually have a frame. */ | |
769 | cache->frameless_p = 0; | |
770 | return pc + 4; | |
771 | } | |
772 | ||
773 | return pc; | |
53e95fcf JS |
774 | } |
775 | ||
c4f35dd8 MK |
776 | /* Return PC of first real instruction. */ |
777 | ||
778 | static CORE_ADDR | |
e53bef9f | 779 | amd64_skip_prologue (CORE_ADDR start_pc) |
53e95fcf | 780 | { |
e53bef9f | 781 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
782 | CORE_ADDR pc; |
783 | ||
d2449ee8 | 784 | amd64_init_frame_cache (&cache); |
594706e6 | 785 | pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache); |
c4f35dd8 MK |
786 | if (cache.frameless_p) |
787 | return start_pc; | |
788 | ||
789 | return pc; | |
53e95fcf | 790 | } |
c4f35dd8 | 791 | \f |
53e95fcf | 792 | |
c4f35dd8 MK |
793 | /* Normal frames. */ |
794 | ||
e53bef9f MK |
795 | static struct amd64_frame_cache * |
796 | amd64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 797 | { |
e53bef9f | 798 | struct amd64_frame_cache *cache; |
d8de1ef7 | 799 | gdb_byte buf[8]; |
6d686a84 | 800 | int i; |
6d686a84 | 801 | |
c4f35dd8 MK |
802 | if (*this_cache) |
803 | return *this_cache; | |
6d686a84 | 804 | |
e53bef9f | 805 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
806 | *this_cache = cache; |
807 | ||
93d42b30 | 808 | cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME); |
c4f35dd8 | 809 | if (cache->pc != 0) |
e53bef9f | 810 | amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); |
c4f35dd8 MK |
811 | |
812 | if (cache->frameless_p) | |
813 | { | |
4a28816e MK |
814 | /* We didn't find a valid frame. If we're at the start of a |
815 | function, or somewhere half-way its prologue, the function's | |
816 | frame probably hasn't been fully setup yet. Try to | |
817 | reconstruct the base address for the stack frame by looking | |
818 | at the stack pointer. For truly "frameless" functions this | |
819 | might work too. */ | |
c4f35dd8 | 820 | |
90f90721 | 821 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
822 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; |
823 | } | |
35883a3f MK |
824 | else |
825 | { | |
90f90721 | 826 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
35883a3f MK |
827 | cache->base = extract_unsigned_integer (buf, 8); |
828 | } | |
c4f35dd8 MK |
829 | |
830 | /* Now that we have the base address for the stack frame we can | |
831 | calculate the value of %rsp in the calling frame. */ | |
832 | cache->saved_sp = cache->base + 16; | |
833 | ||
35883a3f MK |
834 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
835 | frame we find it at the same offset from the reconstructed base | |
836 | address. */ | |
90f90721 | 837 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; |
35883a3f | 838 | |
c4f35dd8 MK |
839 | /* Adjust all the saved registers such that they contain addresses |
840 | instead of offsets. */ | |
e53bef9f | 841 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
842 | if (cache->saved_regs[i] != -1) |
843 | cache->saved_regs[i] += cache->base; | |
844 | ||
845 | return cache; | |
6d686a84 ML |
846 | } |
847 | ||
c4f35dd8 | 848 | static void |
e53bef9f MK |
849 | amd64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
850 | struct frame_id *this_id) | |
c4f35dd8 | 851 | { |
e53bef9f MK |
852 | struct amd64_frame_cache *cache = |
853 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
854 | |
855 | /* This marks the outermost frame. */ | |
856 | if (cache->base == 0) | |
857 | return; | |
858 | ||
859 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
860 | } | |
e76e1718 | 861 | |
c4f35dd8 | 862 | static void |
e53bef9f MK |
863 | amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache, |
864 | int regnum, int *optimizedp, | |
865 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
5323dd1d | 866 | int *realnump, gdb_byte *valuep) |
53e95fcf | 867 | { |
e53bef9f MK |
868 | struct amd64_frame_cache *cache = |
869 | amd64_frame_cache (next_frame, this_cache); | |
e76e1718 | 870 | |
c4f35dd8 | 871 | gdb_assert (regnum >= 0); |
b1ab997b | 872 | |
3e8c568d | 873 | if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp) |
c4f35dd8 MK |
874 | { |
875 | *optimizedp = 0; | |
876 | *lvalp = not_lval; | |
877 | *addrp = 0; | |
878 | *realnump = -1; | |
879 | if (valuep) | |
880 | { | |
881 | /* Store the value. */ | |
882 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
883 | } | |
884 | return; | |
885 | } | |
e76e1718 | 886 | |
e53bef9f | 887 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
c4f35dd8 MK |
888 | { |
889 | *optimizedp = 0; | |
890 | *lvalp = lval_memory; | |
891 | *addrp = cache->saved_regs[regnum]; | |
892 | *realnump = -1; | |
893 | if (valuep) | |
894 | { | |
895 | /* Read the value in from memory. */ | |
896 | read_memory (*addrp, valuep, | |
897 | register_size (current_gdbarch, regnum)); | |
898 | } | |
899 | return; | |
900 | } | |
e76e1718 | 901 | |
00b25ff3 AC |
902 | *optimizedp = 0; |
903 | *lvalp = lval_register; | |
904 | *addrp = 0; | |
905 | *realnump = regnum; | |
906 | if (valuep) | |
907 | frame_unwind_register (next_frame, (*realnump), valuep); | |
c4f35dd8 | 908 | } |
e76e1718 | 909 | |
e53bef9f | 910 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
911 | { |
912 | NORMAL_FRAME, | |
e53bef9f MK |
913 | amd64_frame_this_id, |
914 | amd64_frame_prev_register | |
c4f35dd8 | 915 | }; |
e76e1718 | 916 | |
c4f35dd8 | 917 | static const struct frame_unwind * |
e53bef9f | 918 | amd64_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 919 | { |
e53bef9f | 920 | return &amd64_frame_unwind; |
c4f35dd8 MK |
921 | } |
922 | \f | |
e76e1718 | 923 | |
c4f35dd8 MK |
924 | /* Signal trampolines. */ |
925 | ||
926 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
927 | 64-bit variants. This would require using identical frame caches | |
928 | on both platforms. */ | |
929 | ||
e53bef9f MK |
930 | static struct amd64_frame_cache * |
931 | amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
c4f35dd8 | 932 | { |
e53bef9f | 933 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
934 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
935 | CORE_ADDR addr; | |
d8de1ef7 | 936 | gdb_byte buf[8]; |
2b5e0749 | 937 | int i; |
c4f35dd8 MK |
938 | |
939 | if (*this_cache) | |
940 | return *this_cache; | |
941 | ||
e53bef9f | 942 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 943 | |
90f90721 | 944 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
945 | cache->base = extract_unsigned_integer (buf, 8) - 8; |
946 | ||
947 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 | 948 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 949 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
950 | for (i = 0; i < tdep->sc_num_regs; i++) |
951 | if (tdep->sc_reg_offset[i] != -1) | |
952 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
953 | |
954 | *this_cache = cache; | |
955 | return cache; | |
53e95fcf JS |
956 | } |
957 | ||
c4f35dd8 | 958 | static void |
e53bef9f MK |
959 | amd64_sigtramp_frame_this_id (struct frame_info *next_frame, |
960 | void **this_cache, struct frame_id *this_id) | |
c4f35dd8 | 961 | { |
e53bef9f MK |
962 | struct amd64_frame_cache *cache = |
963 | amd64_sigtramp_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
964 | |
965 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
966 | } | |
967 | ||
968 | static void | |
e53bef9f MK |
969 | amd64_sigtramp_frame_prev_register (struct frame_info *next_frame, |
970 | void **this_cache, | |
971 | int regnum, int *optimizedp, | |
972 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
5323dd1d | 973 | int *realnump, gdb_byte *valuep) |
c4f35dd8 MK |
974 | { |
975 | /* Make sure we've initialized the cache. */ | |
e53bef9f | 976 | amd64_sigtramp_frame_cache (next_frame, this_cache); |
c4f35dd8 | 977 | |
e53bef9f MK |
978 | amd64_frame_prev_register (next_frame, this_cache, regnum, |
979 | optimizedp, lvalp, addrp, realnump, valuep); | |
c4f35dd8 MK |
980 | } |
981 | ||
e53bef9f | 982 | static const struct frame_unwind amd64_sigtramp_frame_unwind = |
c4f35dd8 MK |
983 | { |
984 | SIGTRAMP_FRAME, | |
e53bef9f MK |
985 | amd64_sigtramp_frame_this_id, |
986 | amd64_sigtramp_frame_prev_register | |
c4f35dd8 MK |
987 | }; |
988 | ||
989 | static const struct frame_unwind * | |
e53bef9f | 990 | amd64_sigtramp_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 991 | { |
911bc6ee MK |
992 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
993 | ||
994 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
995 | handler. */ | |
996 | if (tdep->sigcontext_addr == NULL) | |
997 | return NULL; | |
998 | ||
999 | if (tdep->sigtramp_p != NULL) | |
1000 | { | |
1001 | if (tdep->sigtramp_p (next_frame)) | |
1002 | return &amd64_sigtramp_frame_unwind; | |
1003 | } | |
c4f35dd8 | 1004 | |
911bc6ee | 1005 | if (tdep->sigtramp_start != 0) |
1c3545ae | 1006 | { |
911bc6ee | 1007 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1c3545ae | 1008 | |
911bc6ee MK |
1009 | gdb_assert (tdep->sigtramp_end != 0); |
1010 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
1011 | return &amd64_sigtramp_frame_unwind; | |
1c3545ae | 1012 | } |
c4f35dd8 MK |
1013 | |
1014 | return NULL; | |
1015 | } | |
1016 | \f | |
1017 | ||
1018 | static CORE_ADDR | |
e53bef9f | 1019 | amd64_frame_base_address (struct frame_info *next_frame, void **this_cache) |
c4f35dd8 | 1020 | { |
e53bef9f MK |
1021 | struct amd64_frame_cache *cache = |
1022 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
1023 | |
1024 | return cache->base; | |
1025 | } | |
1026 | ||
e53bef9f | 1027 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 1028 | { |
e53bef9f MK |
1029 | &amd64_frame_unwind, |
1030 | amd64_frame_base_address, | |
1031 | amd64_frame_base_address, | |
1032 | amd64_frame_base_address | |
c4f35dd8 MK |
1033 | }; |
1034 | ||
166f4c7b | 1035 | static struct frame_id |
e53bef9f | 1036 | amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 1037 | { |
d8de1ef7 | 1038 | gdb_byte buf[8]; |
c4f35dd8 MK |
1039 | CORE_ADDR fp; |
1040 | ||
90f90721 | 1041 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
c4f35dd8 MK |
1042 | fp = extract_unsigned_integer (buf, 8); |
1043 | ||
1044 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
1045 | } |
1046 | ||
8b148df9 AC |
1047 | /* 16 byte align the SP per frame requirements. */ |
1048 | ||
1049 | static CORE_ADDR | |
e53bef9f | 1050 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
1051 | { |
1052 | return sp & -(CORE_ADDR)16; | |
1053 | } | |
473f17b0 MK |
1054 | \f |
1055 | ||
593adc23 MK |
1056 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
1057 | in the floating-point register set REGSET to register cache | |
1058 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
473f17b0 MK |
1059 | |
1060 | static void | |
e53bef9f MK |
1061 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
1062 | int regnum, const void *fpregs, size_t len) | |
473f17b0 | 1063 | { |
9ea75c57 | 1064 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); |
473f17b0 MK |
1065 | |
1066 | gdb_assert (len == tdep->sizeof_fpregset); | |
90f90721 | 1067 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 1068 | } |
8b148df9 | 1069 | |
593adc23 MK |
1070 | /* Collect register REGNUM from the register cache REGCACHE and store |
1071 | it in the buffer specified by FPREGS and LEN as described by the | |
1072 | floating-point register set REGSET. If REGNUM is -1, do this for | |
1073 | all registers in REGSET. */ | |
1074 | ||
1075 | static void | |
1076 | amd64_collect_fpregset (const struct regset *regset, | |
1077 | const struct regcache *regcache, | |
1078 | int regnum, void *fpregs, size_t len) | |
1079 | { | |
1080 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | |
1081 | ||
1082 | gdb_assert (len == tdep->sizeof_fpregset); | |
1083 | amd64_collect_fxsave (regcache, regnum, fpregs); | |
1084 | } | |
1085 | ||
c6b33596 MK |
1086 | /* Return the appropriate register set for the core section identified |
1087 | by SECT_NAME and SECT_SIZE. */ | |
1088 | ||
1089 | static const struct regset * | |
e53bef9f MK |
1090 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
1091 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
1092 | { |
1093 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1094 | ||
1095 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
1096 | { | |
1097 | if (tdep->fpregset == NULL) | |
593adc23 MK |
1098 | tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, |
1099 | amd64_collect_fpregset); | |
c6b33596 MK |
1100 | |
1101 | return tdep->fpregset; | |
1102 | } | |
1103 | ||
1104 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
1105 | } | |
1106 | \f | |
1107 | ||
2213a65d | 1108 | void |
90f90721 | 1109 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1110 | { |
0c1a73d6 | 1111 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1112 | |
473f17b0 MK |
1113 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
1114 | floating-point registers. */ | |
1115 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
1116 | ||
5716833c | 1117 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 1118 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 1119 | tdep->num_xmm_regs = 16; |
53e95fcf | 1120 | |
0c1a73d6 | 1121 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1122 | set_gdbarch_long_bit (gdbarch, 64); |
1123 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1124 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1125 | ||
e53bef9f MK |
1126 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
1127 | up 128 bits, even though it's still based on the i387 extended | |
1128 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
1129 | set_gdbarch_long_double_bit (gdbarch, 128); |
1130 | ||
e53bef9f MK |
1131 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
1132 | set_gdbarch_register_name (gdbarch, amd64_register_name); | |
1133 | set_gdbarch_register_type (gdbarch, amd64_register_type); | |
b83b026c MK |
1134 | |
1135 | /* Register numbers of various important registers. */ | |
90f90721 MK |
1136 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
1137 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
1138 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
1139 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 1140 | |
e53bef9f MK |
1141 | /* The "default" register numbering scheme for AMD64 is referred to |
1142 | as the "DWARF Register Number Mapping" in the System V psABI. | |
1143 | The preferred debugging format for all known AMD64 targets is | |
1144 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
1145 | DWARF-1), but we provide the same mapping just in case. This | |
1146 | mapping is also used for stabs, which GCC does support. */ | |
1147 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1148 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1149 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
de220d0f | 1150 | |
c4f35dd8 | 1151 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 1152 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 1153 | |
c4f35dd8 | 1154 | /* Call dummy code. */ |
e53bef9f MK |
1155 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
1156 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 1157 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 1158 | |
e53bef9f | 1159 | set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p); |
d532c08f MK |
1160 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
1161 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1162 | ||
efb1c01c | 1163 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 1164 | |
e53bef9f | 1165 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 1166 | |
c4f35dd8 | 1167 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 1168 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 1169 | tdep->mm0_regnum = -1; |
2213a65d | 1170 | |
e53bef9f | 1171 | set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id); |
53e95fcf | 1172 | |
e53bef9f MK |
1173 | frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer); |
1174 | frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer); | |
1175 | frame_base_set_default (gdbarch, &amd64_frame_base); | |
c6b33596 MK |
1176 | |
1177 | /* If we have a register mapping, enable the generic core file support. */ | |
1178 | if (tdep->gregset_reg_offset) | |
1179 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 1180 | amd64_regset_from_core_section); |
c4f35dd8 MK |
1181 | } |
1182 | \f | |
1183 | ||
90f90721 | 1184 | #define I387_ST0_REGNUM AMD64_ST0_REGNUM |
c4f35dd8 | 1185 | |
41d041d6 MK |
1186 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
1187 | sense that the instruction pointer and data pointer are simply | |
1188 | 64-bit offsets into the code segment and the data segment instead | |
1189 | of a selector offset pair. The functions below store the upper 32 | |
1190 | bits of these pointers (instead of just the 16-bits of the segment | |
1191 | selector). */ | |
1192 | ||
1193 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
1194 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
1195 | -1, do this for all registers. This function masks off any of the | |
1196 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
1197 | |
1198 | void | |
90f90721 | 1199 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
41d041d6 | 1200 | const void *fxsave) |
c4f35dd8 | 1201 | { |
41d041d6 | 1202 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 1203 | |
f0ef85a5 | 1204 | if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
c4f35dd8 | 1205 | { |
d8de1ef7 | 1206 | const gdb_byte *regs = fxsave; |
41d041d6 | 1207 | |
0485f6ad | 1208 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
41d041d6 | 1209 | regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); |
0485f6ad | 1210 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
41d041d6 | 1211 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); |
c4f35dd8 | 1212 | } |
0c1a73d6 MK |
1213 | } |
1214 | ||
3c017e40 MK |
1215 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
1216 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
1217 | all registers. This function doesn't touch any of the reserved | |
1218 | bits in *FXSAVE. */ | |
1219 | ||
1220 | void | |
1221 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
1222 | void *fxsave) | |
1223 | { | |
d8de1ef7 | 1224 | gdb_byte *regs = fxsave; |
3c017e40 MK |
1225 | |
1226 | i387_collect_fxsave (regcache, regnum, fxsave); | |
1227 | ||
f0ef85a5 MK |
1228 | if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
1229 | { | |
1230 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) | |
1231 | regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12); | |
1232 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) | |
1233 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20); | |
1234 | } | |
3c017e40 | 1235 | } |