]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
6aba47ca DJ |
4 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
5 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 | |
8621d6a9 | 6 | Free Software Foundation, Inc. |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
22 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
23 | Boston, MA 02110-1301, USA. */ | |
c906108c SS |
24 | |
25 | #include "defs.h" | |
26 | #include "gdb_string.h" | |
27 | #include <ctype.h> | |
28 | #include "symtab.h" | |
29 | #include "frame.h" | |
30 | #include "inferior.h" | |
60250e8b | 31 | #include "exceptions.h" |
c906108c | 32 | #include "breakpoint.h" |
03f2053f | 33 | #include "gdb_wait.h" |
c906108c SS |
34 | #include "gdbcore.h" |
35 | #include "gdbcmd.h" | |
210661e7 | 36 | #include "cli/cli-script.h" |
c906108c SS |
37 | #include "target.h" |
38 | #include "gdbthread.h" | |
39 | #include "annotate.h" | |
1adeb98a | 40 | #include "symfile.h" |
7a292a7a | 41 | #include "top.h" |
c906108c | 42 | #include <signal.h> |
2acceee2 | 43 | #include "inf-loop.h" |
4e052eda | 44 | #include "regcache.h" |
fd0407d6 | 45 | #include "value.h" |
06600e06 | 46 | #include "observer.h" |
f636b87d | 47 | #include "language.h" |
a77053c2 | 48 | #include "solib.h" |
f17517ea | 49 | #include "main.h" |
a77053c2 | 50 | |
9f976b41 | 51 | #include "gdb_assert.h" |
034dad6f | 52 | #include "mi/mi-common.h" |
c906108c SS |
53 | |
54 | /* Prototypes for local functions */ | |
55 | ||
96baa820 | 56 | static void signals_info (char *, int); |
c906108c | 57 | |
96baa820 | 58 | static void handle_command (char *, int); |
c906108c | 59 | |
96baa820 | 60 | static void sig_print_info (enum target_signal); |
c906108c | 61 | |
96baa820 | 62 | static void sig_print_header (void); |
c906108c | 63 | |
74b7792f | 64 | static void resume_cleanups (void *); |
c906108c | 65 | |
96baa820 | 66 | static int hook_stop_stub (void *); |
c906108c | 67 | |
96baa820 JM |
68 | static int restore_selected_frame (void *); |
69 | ||
70 | static void build_infrun (void); | |
71 | ||
4ef3f3be | 72 | static int follow_fork (void); |
96baa820 JM |
73 | |
74 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 75 | struct cmd_list_element *c); |
96baa820 | 76 | |
96baa820 JM |
77 | struct execution_control_state; |
78 | ||
79 | static int currently_stepping (struct execution_control_state *ecs); | |
80 | ||
81 | static void xdb_handle_command (char *args, int from_tty); | |
82 | ||
ea67f13b DJ |
83 | static int prepare_to_proceed (void); |
84 | ||
96baa820 | 85 | void _initialize_infrun (void); |
43ff13b4 | 86 | |
c906108c SS |
87 | int inferior_ignoring_startup_exec_events = 0; |
88 | int inferior_ignoring_leading_exec_events = 0; | |
89 | ||
5fbbeb29 CF |
90 | /* When set, stop the 'step' command if we enter a function which has |
91 | no line number information. The normal behavior is that we step | |
92 | over such function. */ | |
93 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
94 | static void |
95 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
96 | struct cmd_list_element *c, const char *value) | |
97 | { | |
98 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
99 | } | |
5fbbeb29 | 100 | |
43ff13b4 | 101 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 102 | |
43ff13b4 JM |
103 | int sync_execution = 0; |
104 | ||
c906108c SS |
105 | /* wait_for_inferior and normal_stop use this to notify the user |
106 | when the inferior stopped in a different thread than it had been | |
96baa820 JM |
107 | running in. */ |
108 | ||
39f77062 | 109 | static ptid_t previous_inferior_ptid; |
7a292a7a SS |
110 | |
111 | /* This is true for configurations that may follow through execl() and | |
112 | similar functions. At present this is only true for HP-UX native. */ | |
113 | ||
114 | #ifndef MAY_FOLLOW_EXEC | |
115 | #define MAY_FOLLOW_EXEC (0) | |
c906108c SS |
116 | #endif |
117 | ||
7a292a7a SS |
118 | static int may_follow_exec = MAY_FOLLOW_EXEC; |
119 | ||
527159b7 | 120 | static int debug_infrun = 0; |
920d2a44 AC |
121 | static void |
122 | show_debug_infrun (struct ui_file *file, int from_tty, | |
123 | struct cmd_list_element *c, const char *value) | |
124 | { | |
125 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
126 | } | |
527159b7 | 127 | |
d4f3574e SS |
128 | /* If the program uses ELF-style shared libraries, then calls to |
129 | functions in shared libraries go through stubs, which live in a | |
130 | table called the PLT (Procedure Linkage Table). The first time the | |
131 | function is called, the stub sends control to the dynamic linker, | |
132 | which looks up the function's real address, patches the stub so | |
133 | that future calls will go directly to the function, and then passes | |
134 | control to the function. | |
135 | ||
136 | If we are stepping at the source level, we don't want to see any of | |
137 | this --- we just want to skip over the stub and the dynamic linker. | |
138 | The simple approach is to single-step until control leaves the | |
139 | dynamic linker. | |
140 | ||
ca557f44 AC |
141 | However, on some systems (e.g., Red Hat's 5.2 distribution) the |
142 | dynamic linker calls functions in the shared C library, so you | |
143 | can't tell from the PC alone whether the dynamic linker is still | |
144 | running. In this case, we use a step-resume breakpoint to get us | |
145 | past the dynamic linker, as if we were using "next" to step over a | |
146 | function call. | |
d4f3574e SS |
147 | |
148 | IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic | |
149 | linker code or not. Normally, this means we single-step. However, | |
150 | if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an | |
151 | address where we can place a step-resume breakpoint to get past the | |
152 | linker's symbol resolution function. | |
153 | ||
154 | IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a | |
155 | pretty portable way, by comparing the PC against the address ranges | |
156 | of the dynamic linker's sections. | |
157 | ||
158 | SKIP_SOLIB_RESOLVER is generally going to be system-specific, since | |
159 | it depends on internal details of the dynamic linker. It's usually | |
160 | not too hard to figure out where to put a breakpoint, but it | |
161 | certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of | |
162 | sanity checking. If it can't figure things out, returning zero and | |
163 | getting the (possibly confusing) stepping behavior is better than | |
164 | signalling an error, which will obscure the change in the | |
165 | inferior's state. */ | |
c906108c | 166 | |
c906108c SS |
167 | /* This function returns TRUE if pc is the address of an instruction |
168 | that lies within the dynamic linker (such as the event hook, or the | |
169 | dld itself). | |
170 | ||
171 | This function must be used only when a dynamic linker event has | |
172 | been caught, and the inferior is being stepped out of the hook, or | |
173 | undefined results are guaranteed. */ | |
174 | ||
175 | #ifndef SOLIB_IN_DYNAMIC_LINKER | |
176 | #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 | |
177 | #endif | |
178 | ||
c2c6d25f | 179 | |
7a292a7a SS |
180 | /* Convert the #defines into values. This is temporary until wfi control |
181 | flow is completely sorted out. */ | |
182 | ||
692590c1 MS |
183 | #ifndef CANNOT_STEP_HW_WATCHPOINTS |
184 | #define CANNOT_STEP_HW_WATCHPOINTS 0 | |
185 | #else | |
186 | #undef CANNOT_STEP_HW_WATCHPOINTS | |
187 | #define CANNOT_STEP_HW_WATCHPOINTS 1 | |
188 | #endif | |
189 | ||
c906108c SS |
190 | /* Tables of how to react to signals; the user sets them. */ |
191 | ||
192 | static unsigned char *signal_stop; | |
193 | static unsigned char *signal_print; | |
194 | static unsigned char *signal_program; | |
195 | ||
196 | #define SET_SIGS(nsigs,sigs,flags) \ | |
197 | do { \ | |
198 | int signum = (nsigs); \ | |
199 | while (signum-- > 0) \ | |
200 | if ((sigs)[signum]) \ | |
201 | (flags)[signum] = 1; \ | |
202 | } while (0) | |
203 | ||
204 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
205 | do { \ | |
206 | int signum = (nsigs); \ | |
207 | while (signum-- > 0) \ | |
208 | if ((sigs)[signum]) \ | |
209 | (flags)[signum] = 0; \ | |
210 | } while (0) | |
211 | ||
39f77062 KB |
212 | /* Value to pass to target_resume() to cause all threads to resume */ |
213 | ||
214 | #define RESUME_ALL (pid_to_ptid (-1)) | |
c906108c SS |
215 | |
216 | /* Command list pointer for the "stop" placeholder. */ | |
217 | ||
218 | static struct cmd_list_element *stop_command; | |
219 | ||
220 | /* Nonzero if breakpoints are now inserted in the inferior. */ | |
221 | ||
222 | static int breakpoints_inserted; | |
223 | ||
224 | /* Function inferior was in as of last step command. */ | |
225 | ||
226 | static struct symbol *step_start_function; | |
227 | ||
228 | /* Nonzero if we are expecting a trace trap and should proceed from it. */ | |
229 | ||
230 | static int trap_expected; | |
231 | ||
c906108c SS |
232 | /* Nonzero if we want to give control to the user when we're notified |
233 | of shared library events by the dynamic linker. */ | |
234 | static int stop_on_solib_events; | |
920d2a44 AC |
235 | static void |
236 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
237 | struct cmd_list_element *c, const char *value) | |
238 | { | |
239 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
240 | value); | |
241 | } | |
c906108c | 242 | |
c906108c SS |
243 | /* Nonzero means expecting a trace trap |
244 | and should stop the inferior and return silently when it happens. */ | |
245 | ||
246 | int stop_after_trap; | |
247 | ||
248 | /* Nonzero means expecting a trap and caller will handle it themselves. | |
249 | It is used after attach, due to attaching to a process; | |
250 | when running in the shell before the child program has been exec'd; | |
251 | and when running some kinds of remote stuff (FIXME?). */ | |
252 | ||
c0236d92 | 253 | enum stop_kind stop_soon; |
c906108c SS |
254 | |
255 | /* Nonzero if proceed is being used for a "finish" command or a similar | |
256 | situation when stop_registers should be saved. */ | |
257 | ||
258 | int proceed_to_finish; | |
259 | ||
260 | /* Save register contents here when about to pop a stack dummy frame, | |
261 | if-and-only-if proceed_to_finish is set. | |
262 | Thus this contains the return value from the called function (assuming | |
263 | values are returned in a register). */ | |
264 | ||
72cec141 | 265 | struct regcache *stop_registers; |
c906108c | 266 | |
c906108c SS |
267 | /* Nonzero after stop if current stack frame should be printed. */ |
268 | ||
269 | static int stop_print_frame; | |
270 | ||
271 | static struct breakpoint *step_resume_breakpoint = NULL; | |
c906108c | 272 | |
e02bc4cc | 273 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
274 | returned by target_wait()/deprecated_target_wait_hook(). This |
275 | information is returned by get_last_target_status(). */ | |
39f77062 | 276 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
277 | static struct target_waitstatus target_last_waitstatus; |
278 | ||
c906108c SS |
279 | /* This is used to remember when a fork, vfork or exec event |
280 | was caught by a catchpoint, and thus the event is to be | |
281 | followed at the next resume of the inferior, and not | |
282 | immediately. */ | |
283 | static struct | |
488f131b JB |
284 | { |
285 | enum target_waitkind kind; | |
286 | struct | |
c906108c | 287 | { |
488f131b | 288 | int parent_pid; |
488f131b | 289 | int child_pid; |
c906108c | 290 | } |
488f131b JB |
291 | fork_event; |
292 | char *execd_pathname; | |
293 | } | |
c906108c SS |
294 | pending_follow; |
295 | ||
53904c9e AC |
296 | static const char follow_fork_mode_child[] = "child"; |
297 | static const char follow_fork_mode_parent[] = "parent"; | |
298 | ||
488f131b | 299 | static const char *follow_fork_mode_kind_names[] = { |
53904c9e AC |
300 | follow_fork_mode_child, |
301 | follow_fork_mode_parent, | |
302 | NULL | |
ef346e04 | 303 | }; |
c906108c | 304 | |
53904c9e | 305 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
306 | static void |
307 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
308 | struct cmd_list_element *c, const char *value) | |
309 | { | |
310 | fprintf_filtered (file, _("\ | |
311 | Debugger response to a program call of fork or vfork is \"%s\".\n"), | |
312 | value); | |
313 | } | |
c906108c SS |
314 | \f |
315 | ||
6604731b | 316 | static int |
4ef3f3be | 317 | follow_fork (void) |
c906108c | 318 | { |
ea1dd7bc | 319 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
c906108c | 320 | |
6604731b | 321 | return target_follow_fork (follow_child); |
c906108c SS |
322 | } |
323 | ||
6604731b DJ |
324 | void |
325 | follow_inferior_reset_breakpoints (void) | |
c906108c | 326 | { |
6604731b DJ |
327 | /* Was there a step_resume breakpoint? (There was if the user |
328 | did a "next" at the fork() call.) If so, explicitly reset its | |
329 | thread number. | |
330 | ||
331 | step_resumes are a form of bp that are made to be per-thread. | |
332 | Since we created the step_resume bp when the parent process | |
333 | was being debugged, and now are switching to the child process, | |
334 | from the breakpoint package's viewpoint, that's a switch of | |
335 | "threads". We must update the bp's notion of which thread | |
336 | it is for, or it'll be ignored when it triggers. */ | |
337 | ||
338 | if (step_resume_breakpoint) | |
339 | breakpoint_re_set_thread (step_resume_breakpoint); | |
340 | ||
341 | /* Reinsert all breakpoints in the child. The user may have set | |
342 | breakpoints after catching the fork, in which case those | |
343 | were never set in the child, but only in the parent. This makes | |
344 | sure the inserted breakpoints match the breakpoint list. */ | |
345 | ||
346 | breakpoint_re_set (); | |
347 | insert_breakpoints (); | |
c906108c | 348 | } |
c906108c | 349 | |
1adeb98a FN |
350 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
351 | ||
c906108c | 352 | static void |
96baa820 | 353 | follow_exec (int pid, char *execd_pathname) |
c906108c | 354 | { |
c906108c | 355 | int saved_pid = pid; |
7a292a7a SS |
356 | struct target_ops *tgt; |
357 | ||
358 | if (!may_follow_exec) | |
359 | return; | |
c906108c | 360 | |
c906108c SS |
361 | /* This is an exec event that we actually wish to pay attention to. |
362 | Refresh our symbol table to the newly exec'd program, remove any | |
363 | momentary bp's, etc. | |
364 | ||
365 | If there are breakpoints, they aren't really inserted now, | |
366 | since the exec() transformed our inferior into a fresh set | |
367 | of instructions. | |
368 | ||
369 | We want to preserve symbolic breakpoints on the list, since | |
370 | we have hopes that they can be reset after the new a.out's | |
371 | symbol table is read. | |
372 | ||
373 | However, any "raw" breakpoints must be removed from the list | |
374 | (e.g., the solib bp's), since their address is probably invalid | |
375 | now. | |
376 | ||
377 | And, we DON'T want to call delete_breakpoints() here, since | |
378 | that may write the bp's "shadow contents" (the instruction | |
379 | value that was overwritten witha TRAP instruction). Since | |
380 | we now have a new a.out, those shadow contents aren't valid. */ | |
381 | update_breakpoints_after_exec (); | |
382 | ||
383 | /* If there was one, it's gone now. We cannot truly step-to-next | |
384 | statement through an exec(). */ | |
385 | step_resume_breakpoint = NULL; | |
386 | step_range_start = 0; | |
387 | step_range_end = 0; | |
388 | ||
c906108c | 389 | /* What is this a.out's name? */ |
a3f17187 | 390 | printf_unfiltered (_("Executing new program: %s\n"), execd_pathname); |
c906108c SS |
391 | |
392 | /* We've followed the inferior through an exec. Therefore, the | |
393 | inferior has essentially been killed & reborn. */ | |
7a292a7a SS |
394 | |
395 | /* First collect the run target in effect. */ | |
396 | tgt = find_run_target (); | |
397 | /* If we can't find one, things are in a very strange state... */ | |
398 | if (tgt == NULL) | |
8a3fe4f8 | 399 | error (_("Could find run target to save before following exec")); |
7a292a7a | 400 | |
c906108c SS |
401 | gdb_flush (gdb_stdout); |
402 | target_mourn_inferior (); | |
39f77062 | 403 | inferior_ptid = pid_to_ptid (saved_pid); |
488f131b | 404 | /* Because mourn_inferior resets inferior_ptid. */ |
7a292a7a | 405 | push_target (tgt); |
c906108c SS |
406 | |
407 | /* That a.out is now the one to use. */ | |
408 | exec_file_attach (execd_pathname, 0); | |
409 | ||
410 | /* And also is where symbols can be found. */ | |
1adeb98a | 411 | symbol_file_add_main (execd_pathname, 0); |
c906108c SS |
412 | |
413 | /* Reset the shared library package. This ensures that we get | |
414 | a shlib event when the child reaches "_start", at which point | |
415 | the dld will have had a chance to initialize the child. */ | |
7a292a7a | 416 | #if defined(SOLIB_RESTART) |
c906108c | 417 | SOLIB_RESTART (); |
7a292a7a SS |
418 | #endif |
419 | #ifdef SOLIB_CREATE_INFERIOR_HOOK | |
39f77062 | 420 | SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); |
a77053c2 MK |
421 | #else |
422 | solib_create_inferior_hook (); | |
7a292a7a | 423 | #endif |
c906108c SS |
424 | |
425 | /* Reinsert all breakpoints. (Those which were symbolic have | |
426 | been reset to the proper address in the new a.out, thanks | |
427 | to symbol_file_command...) */ | |
428 | insert_breakpoints (); | |
429 | ||
430 | /* The next resume of this inferior should bring it to the shlib | |
431 | startup breakpoints. (If the user had also set bp's on | |
432 | "main" from the old (parent) process, then they'll auto- | |
433 | matically get reset there in the new process.) */ | |
c906108c SS |
434 | } |
435 | ||
436 | /* Non-zero if we just simulating a single-step. This is needed | |
437 | because we cannot remove the breakpoints in the inferior process | |
438 | until after the `wait' in `wait_for_inferior'. */ | |
439 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
440 | |
441 | /* The thread we inserted single-step breakpoints for. */ | |
442 | static ptid_t singlestep_ptid; | |
443 | ||
fd48f117 DJ |
444 | /* PC when we started this single-step. */ |
445 | static CORE_ADDR singlestep_pc; | |
446 | ||
9f976b41 DJ |
447 | /* If another thread hit the singlestep breakpoint, we save the original |
448 | thread here so that we can resume single-stepping it later. */ | |
449 | static ptid_t saved_singlestep_ptid; | |
450 | static int stepping_past_singlestep_breakpoint; | |
c906108c SS |
451 | \f |
452 | ||
453 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 454 | static void |
74b7792f | 455 | resume_cleanups (void *ignore) |
c906108c SS |
456 | { |
457 | normal_stop (); | |
458 | } | |
459 | ||
53904c9e AC |
460 | static const char schedlock_off[] = "off"; |
461 | static const char schedlock_on[] = "on"; | |
462 | static const char schedlock_step[] = "step"; | |
488f131b | 463 | static const char *scheduler_enums[] = { |
ef346e04 AC |
464 | schedlock_off, |
465 | schedlock_on, | |
466 | schedlock_step, | |
467 | NULL | |
468 | }; | |
920d2a44 AC |
469 | static const char *scheduler_mode = schedlock_off; |
470 | static void | |
471 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
472 | struct cmd_list_element *c, const char *value) | |
473 | { | |
474 | fprintf_filtered (file, _("\ | |
475 | Mode for locking scheduler during execution is \"%s\".\n"), | |
476 | value); | |
477 | } | |
c906108c SS |
478 | |
479 | static void | |
96baa820 | 480 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 481 | { |
eefe576e AC |
482 | if (!target_can_lock_scheduler) |
483 | { | |
484 | scheduler_mode = schedlock_off; | |
485 | error (_("Target '%s' cannot support this command."), target_shortname); | |
486 | } | |
c906108c SS |
487 | } |
488 | ||
489 | ||
490 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
491 | wants to interrupt some lengthy single-stepping operation | |
492 | (for child processes, the SIGINT goes to the inferior, and so | |
493 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
494 | other targets, that's not true). | |
495 | ||
496 | STEP nonzero if we should step (zero to continue instead). | |
497 | SIG is the signal to give the inferior (zero for none). */ | |
498 | void | |
96baa820 | 499 | resume (int step, enum target_signal sig) |
c906108c SS |
500 | { |
501 | int should_resume = 1; | |
74b7792f | 502 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
c906108c SS |
503 | QUIT; |
504 | ||
527159b7 | 505 | if (debug_infrun) |
8a9de0e4 AC |
506 | fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n", |
507 | step, sig); | |
527159b7 | 508 | |
ef5cf84e MS |
509 | /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */ |
510 | ||
c906108c | 511 | |
692590c1 MS |
512 | /* Some targets (e.g. Solaris x86) have a kernel bug when stepping |
513 | over an instruction that causes a page fault without triggering | |
514 | a hardware watchpoint. The kernel properly notices that it shouldn't | |
515 | stop, because the hardware watchpoint is not triggered, but it forgets | |
516 | the step request and continues the program normally. | |
517 | Work around the problem by removing hardware watchpoints if a step is | |
518 | requested, GDB will check for a hardware watchpoint trigger after the | |
519 | step anyway. */ | |
520 | if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted) | |
521 | remove_hw_watchpoints (); | |
488f131b | 522 | |
692590c1 | 523 | |
c2c6d25f JM |
524 | /* Normally, by the time we reach `resume', the breakpoints are either |
525 | removed or inserted, as appropriate. The exception is if we're sitting | |
526 | at a permanent breakpoint; we need to step over it, but permanent | |
527 | breakpoints can't be removed. So we have to test for it here. */ | |
528 | if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here) | |
6d350bb5 UW |
529 | { |
530 | if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch)) | |
531 | gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache); | |
532 | else | |
533 | error (_("\ | |
534 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ | |
535 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
536 | a command like `return' or `jump' to continue execution.")); | |
537 | } | |
c2c6d25f | 538 | |
b0ed3589 | 539 | if (SOFTWARE_SINGLE_STEP_P () && step) |
c906108c SS |
540 | { |
541 | /* Do it the hard way, w/temp breakpoints */ | |
0b1b3e42 | 542 | if (SOFTWARE_SINGLE_STEP (get_current_frame ())) |
e6590a1b UW |
543 | { |
544 | /* ...and don't ask hardware to do it. */ | |
545 | step = 0; | |
546 | /* and do not pull these breakpoints until after a `wait' in | |
547 | `wait_for_inferior' */ | |
548 | singlestep_breakpoints_inserted_p = 1; | |
549 | singlestep_ptid = inferior_ptid; | |
550 | singlestep_pc = read_pc (); | |
551 | } | |
c906108c SS |
552 | } |
553 | ||
c906108c | 554 | /* If there were any forks/vforks/execs that were caught and are |
6604731b | 555 | now to be followed, then do so. */ |
c906108c SS |
556 | switch (pending_follow.kind) |
557 | { | |
6604731b DJ |
558 | case TARGET_WAITKIND_FORKED: |
559 | case TARGET_WAITKIND_VFORKED: | |
c906108c | 560 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
6604731b DJ |
561 | if (follow_fork ()) |
562 | should_resume = 0; | |
c906108c SS |
563 | break; |
564 | ||
6604731b | 565 | case TARGET_WAITKIND_EXECD: |
c906108c | 566 | /* follow_exec is called as soon as the exec event is seen. */ |
6604731b | 567 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
c906108c SS |
568 | break; |
569 | ||
570 | default: | |
571 | break; | |
572 | } | |
c906108c SS |
573 | |
574 | /* Install inferior's terminal modes. */ | |
575 | target_terminal_inferior (); | |
576 | ||
577 | if (should_resume) | |
578 | { | |
39f77062 | 579 | ptid_t resume_ptid; |
dfcd3bfb | 580 | |
488f131b | 581 | resume_ptid = RESUME_ALL; /* Default */ |
ef5cf84e | 582 | |
8fb3e588 AC |
583 | if ((step || singlestep_breakpoints_inserted_p) |
584 | && (stepping_past_singlestep_breakpoint | |
585 | || (!breakpoints_inserted && breakpoint_here_p (read_pc ())))) | |
c906108c | 586 | { |
ef5cf84e MS |
587 | /* Stepping past a breakpoint without inserting breakpoints. |
588 | Make sure only the current thread gets to step, so that | |
589 | other threads don't sneak past breakpoints while they are | |
590 | not inserted. */ | |
c906108c | 591 | |
ef5cf84e | 592 | resume_ptid = inferior_ptid; |
c906108c | 593 | } |
ef5cf84e | 594 | |
8fb3e588 AC |
595 | if ((scheduler_mode == schedlock_on) |
596 | || (scheduler_mode == schedlock_step | |
597 | && (step || singlestep_breakpoints_inserted_p))) | |
c906108c | 598 | { |
ef5cf84e | 599 | /* User-settable 'scheduler' mode requires solo thread resume. */ |
488f131b | 600 | resume_ptid = inferior_ptid; |
c906108c | 601 | } |
ef5cf84e | 602 | |
e6cf7916 | 603 | if (gdbarch_cannot_step_breakpoint (current_gdbarch)) |
c4ed33b9 AC |
604 | { |
605 | /* Most targets can step a breakpoint instruction, thus | |
606 | executing it normally. But if this one cannot, just | |
607 | continue and we will hit it anyway. */ | |
608 | if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) | |
609 | step = 0; | |
610 | } | |
39f77062 | 611 | target_resume (resume_ptid, step, sig); |
c906108c SS |
612 | } |
613 | ||
614 | discard_cleanups (old_cleanups); | |
615 | } | |
616 | \f | |
617 | ||
618 | /* Clear out all variables saying what to do when inferior is continued. | |
619 | First do this, then set the ones you want, then call `proceed'. */ | |
620 | ||
621 | void | |
96baa820 | 622 | clear_proceed_status (void) |
c906108c SS |
623 | { |
624 | trap_expected = 0; | |
625 | step_range_start = 0; | |
626 | step_range_end = 0; | |
aa0cd9c1 | 627 | step_frame_id = null_frame_id; |
5fbbeb29 | 628 | step_over_calls = STEP_OVER_UNDEBUGGABLE; |
c906108c | 629 | stop_after_trap = 0; |
c0236d92 | 630 | stop_soon = NO_STOP_QUIETLY; |
c906108c SS |
631 | proceed_to_finish = 0; |
632 | breakpoint_proceeded = 1; /* We're about to proceed... */ | |
633 | ||
634 | /* Discard any remaining commands or status from previous stop. */ | |
635 | bpstat_clear (&stop_bpstat); | |
636 | } | |
637 | ||
ea67f13b DJ |
638 | /* This should be suitable for any targets that support threads. */ |
639 | ||
640 | static int | |
641 | prepare_to_proceed (void) | |
642 | { | |
643 | ptid_t wait_ptid; | |
644 | struct target_waitstatus wait_status; | |
645 | ||
646 | /* Get the last target status returned by target_wait(). */ | |
647 | get_last_target_status (&wait_ptid, &wait_status); | |
648 | ||
649 | /* Make sure we were stopped either at a breakpoint, or because | |
650 | of a Ctrl-C. */ | |
651 | if (wait_status.kind != TARGET_WAITKIND_STOPPED | |
8fb3e588 AC |
652 | || (wait_status.value.sig != TARGET_SIGNAL_TRAP |
653 | && wait_status.value.sig != TARGET_SIGNAL_INT)) | |
ea67f13b DJ |
654 | { |
655 | return 0; | |
656 | } | |
657 | ||
658 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
659 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
660 | { | |
661 | /* Switched over from WAIT_PID. */ | |
662 | CORE_ADDR wait_pc = read_pc_pid (wait_ptid); | |
663 | ||
664 | if (wait_pc != read_pc ()) | |
665 | { | |
666 | /* Switch back to WAIT_PID thread. */ | |
667 | inferior_ptid = wait_ptid; | |
668 | ||
669 | /* FIXME: This stuff came from switch_to_thread() in | |
670 | thread.c (which should probably be a public function). */ | |
35f196d9 | 671 | reinit_frame_cache (); |
ea67f13b DJ |
672 | registers_changed (); |
673 | stop_pc = wait_pc; | |
ea67f13b DJ |
674 | } |
675 | ||
8fb3e588 AC |
676 | /* We return 1 to indicate that there is a breakpoint here, |
677 | so we need to step over it before continuing to avoid | |
678 | hitting it straight away. */ | |
679 | if (breakpoint_here_p (wait_pc)) | |
680 | return 1; | |
ea67f13b DJ |
681 | } |
682 | ||
683 | return 0; | |
8fb3e588 | 684 | |
ea67f13b | 685 | } |
e4846b08 JJ |
686 | |
687 | /* Record the pc of the program the last time it stopped. This is | |
688 | just used internally by wait_for_inferior, but need to be preserved | |
689 | over calls to it and cleared when the inferior is started. */ | |
690 | static CORE_ADDR prev_pc; | |
691 | ||
c906108c SS |
692 | /* Basic routine for continuing the program in various fashions. |
693 | ||
694 | ADDR is the address to resume at, or -1 for resume where stopped. | |
695 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 696 | or -1 for act according to how it stopped. |
c906108c | 697 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
698 | -1 means return after that and print nothing. |
699 | You should probably set various step_... variables | |
700 | before calling here, if you are stepping. | |
c906108c SS |
701 | |
702 | You should call clear_proceed_status before calling proceed. */ | |
703 | ||
704 | void | |
96baa820 | 705 | proceed (CORE_ADDR addr, enum target_signal siggnal, int step) |
c906108c SS |
706 | { |
707 | int oneproc = 0; | |
708 | ||
709 | if (step > 0) | |
710 | step_start_function = find_pc_function (read_pc ()); | |
711 | if (step < 0) | |
712 | stop_after_trap = 1; | |
713 | ||
2acceee2 | 714 | if (addr == (CORE_ADDR) -1) |
c906108c | 715 | { |
c906108c | 716 | if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) |
3352ef37 AC |
717 | /* There is a breakpoint at the address we will resume at, |
718 | step one instruction before inserting breakpoints so that | |
719 | we do not stop right away (and report a second hit at this | |
720 | breakpoint). */ | |
c906108c | 721 | oneproc = 1; |
3352ef37 AC |
722 | else if (gdbarch_single_step_through_delay_p (current_gdbarch) |
723 | && gdbarch_single_step_through_delay (current_gdbarch, | |
724 | get_current_frame ())) | |
725 | /* We stepped onto an instruction that needs to be stepped | |
726 | again before re-inserting the breakpoint, do so. */ | |
c906108c SS |
727 | oneproc = 1; |
728 | } | |
729 | else | |
730 | { | |
731 | write_pc (addr); | |
c906108c SS |
732 | } |
733 | ||
527159b7 | 734 | if (debug_infrun) |
8a9de0e4 AC |
735 | fprintf_unfiltered (gdb_stdlog, |
736 | "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n", | |
737 | paddr_nz (addr), siggnal, step); | |
527159b7 | 738 | |
c906108c SS |
739 | /* In a multi-threaded task we may select another thread |
740 | and then continue or step. | |
741 | ||
742 | But if the old thread was stopped at a breakpoint, it | |
743 | will immediately cause another breakpoint stop without | |
744 | any execution (i.e. it will report a breakpoint hit | |
745 | incorrectly). So we must step over it first. | |
746 | ||
ea67f13b | 747 | prepare_to_proceed checks the current thread against the thread |
c906108c SS |
748 | that reported the most recent event. If a step-over is required |
749 | it returns TRUE and sets the current thread to the old thread. */ | |
ea67f13b DJ |
750 | if (prepare_to_proceed () && breakpoint_here_p (read_pc ())) |
751 | oneproc = 1; | |
c906108c | 752 | |
c906108c SS |
753 | if (oneproc) |
754 | /* We will get a trace trap after one instruction. | |
755 | Continue it automatically and insert breakpoints then. */ | |
756 | trap_expected = 1; | |
757 | else | |
758 | { | |
81d0cc19 GS |
759 | insert_breakpoints (); |
760 | /* If we get here there was no call to error() in | |
8fb3e588 | 761 | insert breakpoints -- so they were inserted. */ |
c906108c SS |
762 | breakpoints_inserted = 1; |
763 | } | |
764 | ||
765 | if (siggnal != TARGET_SIGNAL_DEFAULT) | |
766 | stop_signal = siggnal; | |
767 | /* If this signal should not be seen by program, | |
768 | give it zero. Used for debugging signals. */ | |
769 | else if (!signal_program[stop_signal]) | |
770 | stop_signal = TARGET_SIGNAL_0; | |
771 | ||
772 | annotate_starting (); | |
773 | ||
774 | /* Make sure that output from GDB appears before output from the | |
775 | inferior. */ | |
776 | gdb_flush (gdb_stdout); | |
777 | ||
e4846b08 JJ |
778 | /* Refresh prev_pc value just prior to resuming. This used to be |
779 | done in stop_stepping, however, setting prev_pc there did not handle | |
780 | scenarios such as inferior function calls or returning from | |
781 | a function via the return command. In those cases, the prev_pc | |
782 | value was not set properly for subsequent commands. The prev_pc value | |
783 | is used to initialize the starting line number in the ecs. With an | |
784 | invalid value, the gdb next command ends up stopping at the position | |
785 | represented by the next line table entry past our start position. | |
786 | On platforms that generate one line table entry per line, this | |
787 | is not a problem. However, on the ia64, the compiler generates | |
788 | extraneous line table entries that do not increase the line number. | |
789 | When we issue the gdb next command on the ia64 after an inferior call | |
790 | or a return command, we often end up a few instructions forward, still | |
791 | within the original line we started. | |
792 | ||
793 | An attempt was made to have init_execution_control_state () refresh | |
794 | the prev_pc value before calculating the line number. This approach | |
795 | did not work because on platforms that use ptrace, the pc register | |
796 | cannot be read unless the inferior is stopped. At that point, we | |
797 | are not guaranteed the inferior is stopped and so the read_pc () | |
798 | call can fail. Setting the prev_pc value here ensures the value is | |
8fb3e588 | 799 | updated correctly when the inferior is stopped. */ |
e4846b08 JJ |
800 | prev_pc = read_pc (); |
801 | ||
c906108c SS |
802 | /* Resume inferior. */ |
803 | resume (oneproc || step || bpstat_should_step (), stop_signal); | |
804 | ||
805 | /* Wait for it to stop (if not standalone) | |
806 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 JM |
807 | /* Do this only if we are not using the event loop, or if the target |
808 | does not support asynchronous execution. */ | |
362646f5 | 809 | if (!target_can_async_p ()) |
43ff13b4 JM |
810 | { |
811 | wait_for_inferior (); | |
812 | normal_stop (); | |
813 | } | |
c906108c | 814 | } |
c906108c SS |
815 | \f |
816 | ||
817 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 818 | |
c906108c | 819 | void |
8621d6a9 | 820 | start_remote (int from_tty) |
c906108c SS |
821 | { |
822 | init_thread_list (); | |
823 | init_wait_for_inferior (); | |
c0236d92 | 824 | stop_soon = STOP_QUIETLY; |
c906108c | 825 | trap_expected = 0; |
43ff13b4 | 826 | |
6426a772 JM |
827 | /* Always go on waiting for the target, regardless of the mode. */ |
828 | /* FIXME: cagney/1999-09-23: At present it isn't possible to | |
7e73cedf | 829 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
830 | nothing is returned (instead of just blocking). Because of this, |
831 | targets expecting an immediate response need to, internally, set | |
832 | things up so that the target_wait() is forced to eventually | |
833 | timeout. */ | |
834 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to | |
835 | differentiate to its caller what the state of the target is after | |
836 | the initial open has been performed. Here we're assuming that | |
837 | the target has stopped. It should be possible to eventually have | |
838 | target_open() return to the caller an indication that the target | |
839 | is currently running and GDB state should be set to the same as | |
840 | for an async run. */ | |
841 | wait_for_inferior (); | |
8621d6a9 DJ |
842 | |
843 | /* Now that the inferior has stopped, do any bookkeeping like | |
844 | loading shared libraries. We want to do this before normal_stop, | |
845 | so that the displayed frame is up to date. */ | |
846 | post_create_inferior (¤t_target, from_tty); | |
847 | ||
6426a772 | 848 | normal_stop (); |
c906108c SS |
849 | } |
850 | ||
851 | /* Initialize static vars when a new inferior begins. */ | |
852 | ||
853 | void | |
96baa820 | 854 | init_wait_for_inferior (void) |
c906108c SS |
855 | { |
856 | /* These are meaningless until the first time through wait_for_inferior. */ | |
857 | prev_pc = 0; | |
c906108c | 858 | |
c906108c SS |
859 | breakpoints_inserted = 0; |
860 | breakpoint_init_inferior (inf_starting); | |
861 | ||
862 | /* Don't confuse first call to proceed(). */ | |
863 | stop_signal = TARGET_SIGNAL_0; | |
864 | ||
865 | /* The first resume is not following a fork/vfork/exec. */ | |
866 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */ | |
c906108c | 867 | |
c906108c | 868 | clear_proceed_status (); |
9f976b41 DJ |
869 | |
870 | stepping_past_singlestep_breakpoint = 0; | |
c906108c | 871 | } |
c906108c | 872 | \f |
b83266a0 SS |
873 | /* This enum encodes possible reasons for doing a target_wait, so that |
874 | wfi can call target_wait in one place. (Ultimately the call will be | |
875 | moved out of the infinite loop entirely.) */ | |
876 | ||
c5aa993b JM |
877 | enum infwait_states |
878 | { | |
cd0fc7c3 SS |
879 | infwait_normal_state, |
880 | infwait_thread_hop_state, | |
cd0fc7c3 | 881 | infwait_nonstep_watch_state |
b83266a0 SS |
882 | }; |
883 | ||
11cf8741 JM |
884 | /* Why did the inferior stop? Used to print the appropriate messages |
885 | to the interface from within handle_inferior_event(). */ | |
886 | enum inferior_stop_reason | |
887 | { | |
11cf8741 JM |
888 | /* Step, next, nexti, stepi finished. */ |
889 | END_STEPPING_RANGE, | |
11cf8741 JM |
890 | /* Inferior terminated by signal. */ |
891 | SIGNAL_EXITED, | |
892 | /* Inferior exited. */ | |
893 | EXITED, | |
894 | /* Inferior received signal, and user asked to be notified. */ | |
895 | SIGNAL_RECEIVED | |
896 | }; | |
897 | ||
cd0fc7c3 SS |
898 | /* This structure contains what used to be local variables in |
899 | wait_for_inferior. Probably many of them can return to being | |
900 | locals in handle_inferior_event. */ | |
901 | ||
c5aa993b | 902 | struct execution_control_state |
488f131b JB |
903 | { |
904 | struct target_waitstatus ws; | |
905 | struct target_waitstatus *wp; | |
906 | int another_trap; | |
907 | int random_signal; | |
908 | CORE_ADDR stop_func_start; | |
909 | CORE_ADDR stop_func_end; | |
910 | char *stop_func_name; | |
911 | struct symtab_and_line sal; | |
488f131b JB |
912 | int current_line; |
913 | struct symtab *current_symtab; | |
914 | int handling_longjmp; /* FIXME */ | |
915 | ptid_t ptid; | |
916 | ptid_t saved_inferior_ptid; | |
68f53502 | 917 | int step_after_step_resume_breakpoint; |
488f131b JB |
918 | int stepping_through_solib_after_catch; |
919 | bpstat stepping_through_solib_catchpoints; | |
488f131b JB |
920 | int new_thread_event; |
921 | struct target_waitstatus tmpstatus; | |
922 | enum infwait_states infwait_state; | |
923 | ptid_t waiton_ptid; | |
924 | int wait_some_more; | |
925 | }; | |
926 | ||
927 | void init_execution_control_state (struct execution_control_state *ecs); | |
928 | ||
929 | void handle_inferior_event (struct execution_control_state *ecs); | |
cd0fc7c3 | 930 | |
c2c6d25f | 931 | static void step_into_function (struct execution_control_state *ecs); |
44cbf7b5 | 932 | static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); |
14e60db5 | 933 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); |
44cbf7b5 AC |
934 | static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, |
935 | struct frame_id sr_id); | |
104c1213 JM |
936 | static void stop_stepping (struct execution_control_state *ecs); |
937 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 938 | static void keep_going (struct execution_control_state *ecs); |
488f131b JB |
939 | static void print_stop_reason (enum inferior_stop_reason stop_reason, |
940 | int stop_info); | |
104c1213 | 941 | |
cd0fc7c3 SS |
942 | /* Wait for control to return from inferior to debugger. |
943 | If inferior gets a signal, we may decide to start it up again | |
944 | instead of returning. That is why there is a loop in this function. | |
945 | When this function actually returns it means the inferior | |
946 | should be left stopped and GDB should read more commands. */ | |
947 | ||
948 | void | |
96baa820 | 949 | wait_for_inferior (void) |
cd0fc7c3 SS |
950 | { |
951 | struct cleanup *old_cleanups; | |
952 | struct execution_control_state ecss; | |
953 | struct execution_control_state *ecs; | |
c906108c | 954 | |
527159b7 | 955 | if (debug_infrun) |
8a9de0e4 | 956 | fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n"); |
527159b7 | 957 | |
8601f500 | 958 | old_cleanups = make_cleanup (delete_step_resume_breakpoint, |
c906108c | 959 | &step_resume_breakpoint); |
cd0fc7c3 SS |
960 | |
961 | /* wfi still stays in a loop, so it's OK just to take the address of | |
962 | a local to get the ecs pointer. */ | |
963 | ecs = &ecss; | |
964 | ||
965 | /* Fill in with reasonable starting values. */ | |
966 | init_execution_control_state (ecs); | |
967 | ||
c906108c | 968 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 969 | previous_inferior_ptid = inferior_ptid; |
c906108c | 970 | |
cd0fc7c3 SS |
971 | overlay_cache_invalid = 1; |
972 | ||
973 | /* We have to invalidate the registers BEFORE calling target_wait | |
974 | because they can be loaded from the target while in target_wait. | |
975 | This makes remote debugging a bit more efficient for those | |
976 | targets that provide critical registers as part of their normal | |
977 | status mechanism. */ | |
978 | ||
979 | registers_changed (); | |
b83266a0 | 980 | |
c906108c SS |
981 | while (1) |
982 | { | |
9a4105ab AC |
983 | if (deprecated_target_wait_hook) |
984 | ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp); | |
cd0fc7c3 | 985 | else |
39f77062 | 986 | ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp); |
c906108c | 987 | |
cd0fc7c3 SS |
988 | /* Now figure out what to do with the result of the result. */ |
989 | handle_inferior_event (ecs); | |
c906108c | 990 | |
cd0fc7c3 SS |
991 | if (!ecs->wait_some_more) |
992 | break; | |
993 | } | |
994 | do_cleanups (old_cleanups); | |
995 | } | |
c906108c | 996 | |
43ff13b4 JM |
997 | /* Asynchronous version of wait_for_inferior. It is called by the |
998 | event loop whenever a change of state is detected on the file | |
999 | descriptor corresponding to the target. It can be called more than | |
1000 | once to complete a single execution command. In such cases we need | |
1001 | to keep the state in a global variable ASYNC_ECSS. If it is the | |
1002 | last time that this function is called for a single execution | |
1003 | command, then report to the user that the inferior has stopped, and | |
1004 | do the necessary cleanups. */ | |
1005 | ||
1006 | struct execution_control_state async_ecss; | |
1007 | struct execution_control_state *async_ecs; | |
1008 | ||
1009 | void | |
fba45db2 | 1010 | fetch_inferior_event (void *client_data) |
43ff13b4 JM |
1011 | { |
1012 | static struct cleanup *old_cleanups; | |
1013 | ||
c5aa993b | 1014 | async_ecs = &async_ecss; |
43ff13b4 JM |
1015 | |
1016 | if (!async_ecs->wait_some_more) | |
1017 | { | |
488f131b | 1018 | old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint, |
c5aa993b | 1019 | &step_resume_breakpoint); |
43ff13b4 JM |
1020 | |
1021 | /* Fill in with reasonable starting values. */ | |
1022 | init_execution_control_state (async_ecs); | |
1023 | ||
43ff13b4 | 1024 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 1025 | previous_inferior_ptid = inferior_ptid; |
43ff13b4 JM |
1026 | |
1027 | overlay_cache_invalid = 1; | |
1028 | ||
1029 | /* We have to invalidate the registers BEFORE calling target_wait | |
c5aa993b JM |
1030 | because they can be loaded from the target while in target_wait. |
1031 | This makes remote debugging a bit more efficient for those | |
1032 | targets that provide critical registers as part of their normal | |
1033 | status mechanism. */ | |
43ff13b4 JM |
1034 | |
1035 | registers_changed (); | |
1036 | } | |
1037 | ||
9a4105ab | 1038 | if (deprecated_target_wait_hook) |
488f131b | 1039 | async_ecs->ptid = |
9a4105ab | 1040 | deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 | 1041 | else |
39f77062 | 1042 | async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 JM |
1043 | |
1044 | /* Now figure out what to do with the result of the result. */ | |
1045 | handle_inferior_event (async_ecs); | |
1046 | ||
1047 | if (!async_ecs->wait_some_more) | |
1048 | { | |
adf40b2e | 1049 | /* Do only the cleanups that have been added by this |
488f131b JB |
1050 | function. Let the continuations for the commands do the rest, |
1051 | if there are any. */ | |
43ff13b4 JM |
1052 | do_exec_cleanups (old_cleanups); |
1053 | normal_stop (); | |
c2d11a7d JM |
1054 | if (step_multi && stop_step) |
1055 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); | |
1056 | else | |
1057 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
43ff13b4 JM |
1058 | } |
1059 | } | |
1060 | ||
cd0fc7c3 SS |
1061 | /* Prepare an execution control state for looping through a |
1062 | wait_for_inferior-type loop. */ | |
1063 | ||
1064 | void | |
96baa820 | 1065 | init_execution_control_state (struct execution_control_state *ecs) |
cd0fc7c3 | 1066 | { |
6ad80df0 | 1067 | ecs->another_trap = 0; |
cd0fc7c3 | 1068 | ecs->random_signal = 0; |
68f53502 | 1069 | ecs->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 | 1070 | ecs->handling_longjmp = 0; /* FIXME */ |
cd0fc7c3 SS |
1071 | ecs->stepping_through_solib_after_catch = 0; |
1072 | ecs->stepping_through_solib_catchpoints = NULL; | |
cd0fc7c3 SS |
1073 | ecs->sal = find_pc_line (prev_pc, 0); |
1074 | ecs->current_line = ecs->sal.line; | |
1075 | ecs->current_symtab = ecs->sal.symtab; | |
1076 | ecs->infwait_state = infwait_normal_state; | |
39f77062 | 1077 | ecs->waiton_ptid = pid_to_ptid (-1); |
cd0fc7c3 SS |
1078 | ecs->wp = &(ecs->ws); |
1079 | } | |
1080 | ||
e02bc4cc | 1081 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
1082 | target_wait()/deprecated_target_wait_hook(). The data is actually |
1083 | cached by handle_inferior_event(), which gets called immediately | |
1084 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
1085 | |
1086 | void | |
488f131b | 1087 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 1088 | { |
39f77062 | 1089 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
1090 | *status = target_last_waitstatus; |
1091 | } | |
1092 | ||
ac264b3b MS |
1093 | void |
1094 | nullify_last_target_wait_ptid (void) | |
1095 | { | |
1096 | target_last_wait_ptid = minus_one_ptid; | |
1097 | } | |
1098 | ||
dd80620e MS |
1099 | /* Switch thread contexts, maintaining "infrun state". */ |
1100 | ||
1101 | static void | |
1102 | context_switch (struct execution_control_state *ecs) | |
1103 | { | |
1104 | /* Caution: it may happen that the new thread (or the old one!) | |
1105 | is not in the thread list. In this case we must not attempt | |
1106 | to "switch context", or we run the risk that our context may | |
1107 | be lost. This may happen as a result of the target module | |
1108 | mishandling thread creation. */ | |
1109 | ||
fd48f117 DJ |
1110 | if (debug_infrun) |
1111 | { | |
1112 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
1113 | target_pid_to_str (inferior_ptid)); | |
1114 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
1115 | target_pid_to_str (ecs->ptid)); | |
1116 | } | |
1117 | ||
dd80620e | 1118 | if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid)) |
488f131b | 1119 | { /* Perform infrun state context switch: */ |
dd80620e | 1120 | /* Save infrun state for the old thread. */ |
0ce3d317 | 1121 | save_infrun_state (inferior_ptid, prev_pc, |
dd80620e | 1122 | trap_expected, step_resume_breakpoint, |
15960608 | 1123 | step_range_start, |
aa0cd9c1 | 1124 | step_range_end, &step_frame_id, |
dd80620e MS |
1125 | ecs->handling_longjmp, ecs->another_trap, |
1126 | ecs->stepping_through_solib_after_catch, | |
1127 | ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1128 | ecs->current_line, ecs->current_symtab); |
dd80620e MS |
1129 | |
1130 | /* Load infrun state for the new thread. */ | |
0ce3d317 | 1131 | load_infrun_state (ecs->ptid, &prev_pc, |
dd80620e | 1132 | &trap_expected, &step_resume_breakpoint, |
15960608 | 1133 | &step_range_start, |
aa0cd9c1 | 1134 | &step_range_end, &step_frame_id, |
dd80620e MS |
1135 | &ecs->handling_longjmp, &ecs->another_trap, |
1136 | &ecs->stepping_through_solib_after_catch, | |
1137 | &ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1138 | &ecs->current_line, &ecs->current_symtab); |
dd80620e MS |
1139 | } |
1140 | inferior_ptid = ecs->ptid; | |
35f196d9 | 1141 | reinit_frame_cache (); |
dd80620e MS |
1142 | } |
1143 | ||
4fa8626c DJ |
1144 | static void |
1145 | adjust_pc_after_break (struct execution_control_state *ecs) | |
1146 | { | |
8aad930b | 1147 | CORE_ADDR breakpoint_pc; |
4fa8626c DJ |
1148 | |
1149 | /* If this target does not decrement the PC after breakpoints, then | |
1150 | we have nothing to do. */ | |
b798847d | 1151 | if (gdbarch_decr_pc_after_break (current_gdbarch) == 0) |
4fa8626c DJ |
1152 | return; |
1153 | ||
1154 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If | |
1155 | we aren't, just return. | |
9709f61c DJ |
1156 | |
1157 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
1158 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
1159 | implemented by software breakpoints should be handled through the normal | |
1160 | breakpoint layer. | |
8fb3e588 | 1161 | |
4fa8626c DJ |
1162 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
1163 | different signals (SIGILL or SIGEMT for instance), but it is less | |
1164 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
1165 | gdbarch_decr_pc_after_break. I don't know any specific target that |
1166 | generates these signals at breakpoints (the code has been in GDB since at | |
1167 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 1168 | |
e6cf7916 UW |
1169 | In earlier versions of GDB, a target with |
1170 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
1171 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
1172 | target with both of these set in GDB history, and it seems unlikely to be | |
1173 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c DJ |
1174 | |
1175 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
1176 | return; | |
1177 | ||
1178 | if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) | |
1179 | return; | |
1180 | ||
8aad930b AC |
1181 | /* Find the location where (if we've hit a breakpoint) the |
1182 | breakpoint would be. */ | |
b798847d UW |
1183 | breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break |
1184 | (current_gdbarch); | |
8aad930b AC |
1185 | |
1186 | if (SOFTWARE_SINGLE_STEP_P ()) | |
1187 | { | |
1188 | /* When using software single-step, a SIGTRAP can only indicate | |
8fb3e588 AC |
1189 | an inserted breakpoint. This actually makes things |
1190 | easier. */ | |
8aad930b AC |
1191 | if (singlestep_breakpoints_inserted_p) |
1192 | /* When software single stepping, the instruction at [prev_pc] | |
1193 | is never a breakpoint, but the instruction following | |
1194 | [prev_pc] (in program execution order) always is. Assume | |
1195 | that following instruction was reached and hence a software | |
1196 | breakpoint was hit. */ | |
1197 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1198 | else if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1199 | /* The inferior was free running (i.e., no single-step | |
1200 | breakpoints inserted) and it hit a software breakpoint. */ | |
1201 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1202 | } | |
1203 | else | |
1204 | { | |
1205 | /* When using hardware single-step, a SIGTRAP is reported for | |
8fb3e588 AC |
1206 | both a completed single-step and a software breakpoint. Need |
1207 | to differentiate between the two as the latter needs | |
90225438 AS |
1208 | adjusting but the former does not. |
1209 | ||
1210 | When the thread to be examined does not match the current thread | |
1211 | context we can't use currently_stepping, so assume no | |
1212 | single-stepping in this case. */ | |
1213 | if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs)) | |
8aad930b AC |
1214 | { |
1215 | if (prev_pc == breakpoint_pc | |
1216 | && software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1217 | /* Hardware single-stepped a software breakpoint (as | |
1218 | occures when the inferior is resumed with PC pointing | |
1219 | at not-yet-hit software breakpoint). Since the | |
1220 | breakpoint really is executed, the inferior needs to be | |
1221 | backed up to the breakpoint address. */ | |
1222 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1223 | } | |
1224 | else | |
1225 | { | |
1226 | if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1227 | /* The inferior was free running (i.e., no hardware | |
1228 | single-step and no possibility of a false SIGTRAP) and | |
1229 | hit a software breakpoint. */ | |
1230 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1231 | } | |
1232 | } | |
4fa8626c DJ |
1233 | } |
1234 | ||
cd0fc7c3 SS |
1235 | /* Given an execution control state that has been freshly filled in |
1236 | by an event from the inferior, figure out what it means and take | |
1237 | appropriate action. */ | |
c906108c | 1238 | |
7270d8f2 OF |
1239 | int stepped_after_stopped_by_watchpoint; |
1240 | ||
cd0fc7c3 | 1241 | void |
96baa820 | 1242 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 1243 | { |
8bbde302 BE |
1244 | /* NOTE: bje/2005-05-02: If you're looking at this code and thinking |
1245 | that the variable stepped_after_stopped_by_watchpoint isn't used, | |
1246 | then you're wrong! See remote.c:remote_stopped_data_address. */ | |
1247 | ||
c8edd8b4 | 1248 | int sw_single_step_trap_p = 0; |
8fb3e588 | 1249 | int stopped_by_watchpoint = -1; /* Mark as unknown. */ |
cd0fc7c3 | 1250 | |
e02bc4cc | 1251 | /* Cache the last pid/waitstatus. */ |
39f77062 | 1252 | target_last_wait_ptid = ecs->ptid; |
e02bc4cc DS |
1253 | target_last_waitstatus = *ecs->wp; |
1254 | ||
4fa8626c DJ |
1255 | adjust_pc_after_break (ecs); |
1256 | ||
488f131b JB |
1257 | switch (ecs->infwait_state) |
1258 | { | |
1259 | case infwait_thread_hop_state: | |
527159b7 | 1260 | if (debug_infrun) |
8a9de0e4 | 1261 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n"); |
488f131b JB |
1262 | /* Cancel the waiton_ptid. */ |
1263 | ecs->waiton_ptid = pid_to_ptid (-1); | |
65e82032 | 1264 | break; |
b83266a0 | 1265 | |
488f131b | 1266 | case infwait_normal_state: |
527159b7 | 1267 | if (debug_infrun) |
8a9de0e4 | 1268 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); |
488f131b JB |
1269 | stepped_after_stopped_by_watchpoint = 0; |
1270 | break; | |
b83266a0 | 1271 | |
488f131b | 1272 | case infwait_nonstep_watch_state: |
527159b7 | 1273 | if (debug_infrun) |
8a9de0e4 AC |
1274 | fprintf_unfiltered (gdb_stdlog, |
1275 | "infrun: infwait_nonstep_watch_state\n"); | |
488f131b | 1276 | insert_breakpoints (); |
c906108c | 1277 | |
488f131b JB |
1278 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
1279 | handle things like signals arriving and other things happening | |
1280 | in combination correctly? */ | |
1281 | stepped_after_stopped_by_watchpoint = 1; | |
1282 | break; | |
65e82032 AC |
1283 | |
1284 | default: | |
e2e0b3e5 | 1285 | internal_error (__FILE__, __LINE__, _("bad switch")); |
488f131b JB |
1286 | } |
1287 | ecs->infwait_state = infwait_normal_state; | |
c906108c | 1288 | |
35f196d9 | 1289 | reinit_frame_cache (); |
c906108c | 1290 | |
488f131b | 1291 | /* If it's a new process, add it to the thread database */ |
c906108c | 1292 | |
488f131b | 1293 | ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) |
b9b5d7ea | 1294 | && !ptid_equal (ecs->ptid, minus_one_ptid) |
488f131b JB |
1295 | && !in_thread_list (ecs->ptid)); |
1296 | ||
1297 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
1298 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) | |
1299 | { | |
1300 | add_thread (ecs->ptid); | |
c906108c | 1301 | |
488f131b JB |
1302 | ui_out_text (uiout, "[New "); |
1303 | ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid)); | |
1304 | ui_out_text (uiout, "]\n"); | |
488f131b | 1305 | } |
c906108c | 1306 | |
488f131b JB |
1307 | switch (ecs->ws.kind) |
1308 | { | |
1309 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 1310 | if (debug_infrun) |
8a9de0e4 | 1311 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
488f131b JB |
1312 | /* Ignore gracefully during startup of the inferior, as it |
1313 | might be the shell which has just loaded some objects, | |
1314 | otherwise add the symbols for the newly loaded objects. */ | |
c906108c | 1315 | #ifdef SOLIB_ADD |
c0236d92 | 1316 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b JB |
1317 | { |
1318 | /* Remove breakpoints, SOLIB_ADD might adjust | |
1319 | breakpoint addresses via breakpoint_re_set. */ | |
1320 | if (breakpoints_inserted) | |
1321 | remove_breakpoints (); | |
c906108c | 1322 | |
488f131b JB |
1323 | /* Check for any newly added shared libraries if we're |
1324 | supposed to be adding them automatically. Switch | |
1325 | terminal for any messages produced by | |
1326 | breakpoint_re_set. */ | |
1327 | target_terminal_ours_for_output (); | |
aff6338a | 1328 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
1329 | stack's section table is kept up-to-date. Architectures, |
1330 | (e.g., PPC64), use the section table to perform | |
1331 | operations such as address => section name and hence | |
1332 | require the table to contain all sections (including | |
1333 | those found in shared libraries). */ | |
aff6338a | 1334 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
1335 | exec_ops to SOLIB_ADD. This is because current GDB is |
1336 | only tooled to propagate section_table changes out from | |
1337 | the "current_target" (see target_resize_to_sections), and | |
1338 | not up from the exec stratum. This, of course, isn't | |
1339 | right. "infrun.c" should only interact with the | |
1340 | exec/process stratum, instead relying on the target stack | |
1341 | to propagate relevant changes (stop, section table | |
1342 | changed, ...) up to other layers. */ | |
aff6338a | 1343 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
488f131b JB |
1344 | target_terminal_inferior (); |
1345 | ||
1346 | /* Reinsert breakpoints and continue. */ | |
1347 | if (breakpoints_inserted) | |
1348 | insert_breakpoints (); | |
1349 | } | |
c906108c | 1350 | #endif |
488f131b JB |
1351 | resume (0, TARGET_SIGNAL_0); |
1352 | prepare_to_wait (ecs); | |
1353 | return; | |
c5aa993b | 1354 | |
488f131b | 1355 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 1356 | if (debug_infrun) |
8a9de0e4 | 1357 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
488f131b JB |
1358 | resume (0, TARGET_SIGNAL_0); |
1359 | prepare_to_wait (ecs); | |
1360 | return; | |
c5aa993b | 1361 | |
488f131b | 1362 | case TARGET_WAITKIND_EXITED: |
527159b7 | 1363 | if (debug_infrun) |
8a9de0e4 | 1364 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n"); |
488f131b JB |
1365 | target_terminal_ours (); /* Must do this before mourn anyway */ |
1366 | print_stop_reason (EXITED, ecs->ws.value.integer); | |
1367 | ||
1368 | /* Record the exit code in the convenience variable $_exitcode, so | |
1369 | that the user can inspect this again later. */ | |
1370 | set_internalvar (lookup_internalvar ("_exitcode"), | |
1371 | value_from_longest (builtin_type_int, | |
1372 | (LONGEST) ecs->ws.value.integer)); | |
1373 | gdb_flush (gdb_stdout); | |
1374 | target_mourn_inferior (); | |
e6590a1b | 1375 | singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */ |
488f131b JB |
1376 | stop_print_frame = 0; |
1377 | stop_stepping (ecs); | |
1378 | return; | |
c5aa993b | 1379 | |
488f131b | 1380 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 1381 | if (debug_infrun) |
8a9de0e4 | 1382 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n"); |
488f131b JB |
1383 | stop_print_frame = 0; |
1384 | stop_signal = ecs->ws.value.sig; | |
1385 | target_terminal_ours (); /* Must do this before mourn anyway */ | |
c5aa993b | 1386 | |
488f131b JB |
1387 | /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't |
1388 | reach here unless the inferior is dead. However, for years | |
1389 | target_kill() was called here, which hints that fatal signals aren't | |
1390 | really fatal on some systems. If that's true, then some changes | |
1391 | may be needed. */ | |
1392 | target_mourn_inferior (); | |
c906108c | 1393 | |
488f131b | 1394 | print_stop_reason (SIGNAL_EXITED, stop_signal); |
e6590a1b | 1395 | singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */ |
488f131b JB |
1396 | stop_stepping (ecs); |
1397 | return; | |
c906108c | 1398 | |
488f131b JB |
1399 | /* The following are the only cases in which we keep going; |
1400 | the above cases end in a continue or goto. */ | |
1401 | case TARGET_WAITKIND_FORKED: | |
deb3b17b | 1402 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 1403 | if (debug_infrun) |
8a9de0e4 | 1404 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); |
488f131b JB |
1405 | stop_signal = TARGET_SIGNAL_TRAP; |
1406 | pending_follow.kind = ecs->ws.kind; | |
1407 | ||
8e7d2c16 DJ |
1408 | pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid); |
1409 | pending_follow.fork_event.child_pid = ecs->ws.value.related_pid; | |
c906108c | 1410 | |
5a2901d9 DJ |
1411 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
1412 | { | |
1413 | context_switch (ecs); | |
35f196d9 | 1414 | reinit_frame_cache (); |
5a2901d9 DJ |
1415 | } |
1416 | ||
488f131b | 1417 | stop_pc = read_pc (); |
675bf4cb | 1418 | |
00d4360e | 1419 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1420 | |
488f131b | 1421 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
04e68871 DJ |
1422 | |
1423 | /* If no catchpoint triggered for this, then keep going. */ | |
1424 | if (ecs->random_signal) | |
1425 | { | |
1426 | stop_signal = TARGET_SIGNAL_0; | |
1427 | keep_going (ecs); | |
1428 | return; | |
1429 | } | |
488f131b JB |
1430 | goto process_event_stop_test; |
1431 | ||
1432 | case TARGET_WAITKIND_EXECD: | |
527159b7 | 1433 | if (debug_infrun) |
fc5261f2 | 1434 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b JB |
1435 | stop_signal = TARGET_SIGNAL_TRAP; |
1436 | ||
7d2830a3 | 1437 | /* NOTE drow/2002-12-05: This code should be pushed down into the |
8fb3e588 AC |
1438 | target_wait function. Until then following vfork on HP/UX 10.20 |
1439 | is probably broken by this. Of course, it's broken anyway. */ | |
488f131b JB |
1440 | /* Is this a target which reports multiple exec events per actual |
1441 | call to exec()? (HP-UX using ptrace does, for example.) If so, | |
1442 | ignore all but the last one. Just resume the exec'r, and wait | |
1443 | for the next exec event. */ | |
1444 | if (inferior_ignoring_leading_exec_events) | |
1445 | { | |
1446 | inferior_ignoring_leading_exec_events--; | |
488f131b JB |
1447 | target_resume (ecs->ptid, 0, TARGET_SIGNAL_0); |
1448 | prepare_to_wait (ecs); | |
1449 | return; | |
1450 | } | |
1451 | inferior_ignoring_leading_exec_events = | |
1452 | target_reported_exec_events_per_exec_call () - 1; | |
1453 | ||
1454 | pending_follow.execd_pathname = | |
1455 | savestring (ecs->ws.value.execd_pathname, | |
1456 | strlen (ecs->ws.value.execd_pathname)); | |
1457 | ||
488f131b JB |
1458 | /* This causes the eventpoints and symbol table to be reset. Must |
1459 | do this now, before trying to determine whether to stop. */ | |
1460 | follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname); | |
1461 | xfree (pending_follow.execd_pathname); | |
c906108c | 1462 | |
488f131b JB |
1463 | stop_pc = read_pc_pid (ecs->ptid); |
1464 | ecs->saved_inferior_ptid = inferior_ptid; | |
1465 | inferior_ptid = ecs->ptid; | |
675bf4cb | 1466 | |
00d4360e | 1467 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1468 | |
488f131b JB |
1469 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
1470 | inferior_ptid = ecs->saved_inferior_ptid; | |
04e68871 | 1471 | |
5a2901d9 DJ |
1472 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
1473 | { | |
1474 | context_switch (ecs); | |
35f196d9 | 1475 | reinit_frame_cache (); |
5a2901d9 DJ |
1476 | } |
1477 | ||
04e68871 DJ |
1478 | /* If no catchpoint triggered for this, then keep going. */ |
1479 | if (ecs->random_signal) | |
1480 | { | |
1481 | stop_signal = TARGET_SIGNAL_0; | |
1482 | keep_going (ecs); | |
1483 | return; | |
1484 | } | |
488f131b JB |
1485 | goto process_event_stop_test; |
1486 | ||
b4dc5ffa MK |
1487 | /* Be careful not to try to gather much state about a thread |
1488 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 1489 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 1490 | if (debug_infrun) |
8a9de0e4 | 1491 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); |
488f131b JB |
1492 | resume (0, TARGET_SIGNAL_0); |
1493 | prepare_to_wait (ecs); | |
1494 | return; | |
c906108c | 1495 | |
488f131b JB |
1496 | /* Before examining the threads further, step this thread to |
1497 | get it entirely out of the syscall. (We get notice of the | |
1498 | event when the thread is just on the verge of exiting a | |
1499 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 1500 | into user code.) */ |
488f131b | 1501 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 1502 | if (debug_infrun) |
8a9de0e4 | 1503 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); |
488f131b | 1504 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); |
488f131b JB |
1505 | prepare_to_wait (ecs); |
1506 | return; | |
c906108c | 1507 | |
488f131b | 1508 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 1509 | if (debug_infrun) |
8a9de0e4 | 1510 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
488f131b JB |
1511 | stop_signal = ecs->ws.value.sig; |
1512 | break; | |
c906108c | 1513 | |
488f131b JB |
1514 | /* We had an event in the inferior, but we are not interested |
1515 | in handling it at this level. The lower layers have already | |
8e7d2c16 | 1516 | done what needs to be done, if anything. |
8fb3e588 AC |
1517 | |
1518 | One of the possible circumstances for this is when the | |
1519 | inferior produces output for the console. The inferior has | |
1520 | not stopped, and we are ignoring the event. Another possible | |
1521 | circumstance is any event which the lower level knows will be | |
1522 | reported multiple times without an intervening resume. */ | |
488f131b | 1523 | case TARGET_WAITKIND_IGNORE: |
527159b7 | 1524 | if (debug_infrun) |
8a9de0e4 | 1525 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); |
8e7d2c16 | 1526 | prepare_to_wait (ecs); |
488f131b JB |
1527 | return; |
1528 | } | |
c906108c | 1529 | |
488f131b JB |
1530 | /* We may want to consider not doing a resume here in order to give |
1531 | the user a chance to play with the new thread. It might be good | |
1532 | to make that a user-settable option. */ | |
c906108c | 1533 | |
488f131b JB |
1534 | /* At this point, all threads are stopped (happens automatically in |
1535 | either the OS or the native code). Therefore we need to continue | |
1536 | all threads in order to make progress. */ | |
1537 | if (ecs->new_thread_event) | |
1538 | { | |
1539 | target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); | |
1540 | prepare_to_wait (ecs); | |
1541 | return; | |
1542 | } | |
c906108c | 1543 | |
488f131b JB |
1544 | stop_pc = read_pc_pid (ecs->ptid); |
1545 | ||
527159b7 | 1546 | if (debug_infrun) |
8a9de0e4 | 1547 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc)); |
527159b7 | 1548 | |
9f976b41 DJ |
1549 | if (stepping_past_singlestep_breakpoint) |
1550 | { | |
8fb3e588 AC |
1551 | gdb_assert (SOFTWARE_SINGLE_STEP_P () |
1552 | && singlestep_breakpoints_inserted_p); | |
9f976b41 DJ |
1553 | gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); |
1554 | gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); | |
1555 | ||
1556 | stepping_past_singlestep_breakpoint = 0; | |
1557 | ||
1558 | /* We've either finished single-stepping past the single-step | |
8fb3e588 AC |
1559 | breakpoint, or stopped for some other reason. It would be nice if |
1560 | we could tell, but we can't reliably. */ | |
9f976b41 | 1561 | if (stop_signal == TARGET_SIGNAL_TRAP) |
8fb3e588 | 1562 | { |
527159b7 | 1563 | if (debug_infrun) |
8a9de0e4 | 1564 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n"); |
9f976b41 | 1565 | /* Pull the single step breakpoints out of the target. */ |
e0cd558a | 1566 | remove_single_step_breakpoints (); |
9f976b41 DJ |
1567 | singlestep_breakpoints_inserted_p = 0; |
1568 | ||
1569 | ecs->random_signal = 0; | |
1570 | ||
1571 | ecs->ptid = saved_singlestep_ptid; | |
1572 | context_switch (ecs); | |
9a4105ab AC |
1573 | if (deprecated_context_hook) |
1574 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
9f976b41 DJ |
1575 | |
1576 | resume (1, TARGET_SIGNAL_0); | |
1577 | prepare_to_wait (ecs); | |
1578 | return; | |
1579 | } | |
1580 | } | |
1581 | ||
1582 | stepping_past_singlestep_breakpoint = 0; | |
1583 | ||
488f131b JB |
1584 | /* See if a thread hit a thread-specific breakpoint that was meant for |
1585 | another thread. If so, then step that thread past the breakpoint, | |
1586 | and continue it. */ | |
1587 | ||
1588 | if (stop_signal == TARGET_SIGNAL_TRAP) | |
1589 | { | |
9f976b41 DJ |
1590 | int thread_hop_needed = 0; |
1591 | ||
f8d40ec8 JB |
1592 | /* Check if a regular breakpoint has been hit before checking |
1593 | for a potential single step breakpoint. Otherwise, GDB will | |
1594 | not see this breakpoint hit when stepping onto breakpoints. */ | |
4fa8626c | 1595 | if (breakpoints_inserted && breakpoint_here_p (stop_pc)) |
488f131b | 1596 | { |
c5aa993b | 1597 | ecs->random_signal = 0; |
4fa8626c | 1598 | if (!breakpoint_thread_match (stop_pc, ecs->ptid)) |
9f976b41 DJ |
1599 | thread_hop_needed = 1; |
1600 | } | |
1601 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
1602 | { | |
fd48f117 DJ |
1603 | /* We have not context switched yet, so this should be true |
1604 | no matter which thread hit the singlestep breakpoint. */ | |
1605 | gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid)); | |
1606 | if (debug_infrun) | |
1607 | fprintf_unfiltered (gdb_stdlog, "infrun: software single step " | |
1608 | "trap for %s\n", | |
1609 | target_pid_to_str (ecs->ptid)); | |
1610 | ||
9f976b41 DJ |
1611 | ecs->random_signal = 0; |
1612 | /* The call to in_thread_list is necessary because PTIDs sometimes | |
1613 | change when we go from single-threaded to multi-threaded. If | |
1614 | the singlestep_ptid is still in the list, assume that it is | |
1615 | really different from ecs->ptid. */ | |
1616 | if (!ptid_equal (singlestep_ptid, ecs->ptid) | |
1617 | && in_thread_list (singlestep_ptid)) | |
1618 | { | |
fd48f117 DJ |
1619 | /* If the PC of the thread we were trying to single-step |
1620 | has changed, discard this event (which we were going | |
1621 | to ignore anyway), and pretend we saw that thread | |
1622 | trap. This prevents us continuously moving the | |
1623 | single-step breakpoint forward, one instruction at a | |
1624 | time. If the PC has changed, then the thread we were | |
1625 | trying to single-step has trapped or been signalled, | |
1626 | but the event has not been reported to GDB yet. | |
1627 | ||
1628 | There might be some cases where this loses signal | |
1629 | information, if a signal has arrived at exactly the | |
1630 | same time that the PC changed, but this is the best | |
1631 | we can do with the information available. Perhaps we | |
1632 | should arrange to report all events for all threads | |
1633 | when they stop, or to re-poll the remote looking for | |
1634 | this particular thread (i.e. temporarily enable | |
1635 | schedlock). */ | |
1636 | if (read_pc_pid (singlestep_ptid) != singlestep_pc) | |
1637 | { | |
1638 | if (debug_infrun) | |
1639 | fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread," | |
1640 | " but expected thread advanced also\n"); | |
1641 | ||
1642 | /* The current context still belongs to | |
1643 | singlestep_ptid. Don't swap here, since that's | |
1644 | the context we want to use. Just fudge our | |
1645 | state and continue. */ | |
1646 | ecs->ptid = singlestep_ptid; | |
1647 | stop_pc = read_pc_pid (ecs->ptid); | |
1648 | } | |
1649 | else | |
1650 | { | |
1651 | if (debug_infrun) | |
1652 | fprintf_unfiltered (gdb_stdlog, | |
1653 | "infrun: unexpected thread\n"); | |
1654 | ||
1655 | thread_hop_needed = 1; | |
1656 | stepping_past_singlestep_breakpoint = 1; | |
1657 | saved_singlestep_ptid = singlestep_ptid; | |
1658 | } | |
9f976b41 DJ |
1659 | } |
1660 | } | |
1661 | ||
1662 | if (thread_hop_needed) | |
8fb3e588 AC |
1663 | { |
1664 | int remove_status; | |
1665 | ||
527159b7 | 1666 | if (debug_infrun) |
8a9de0e4 | 1667 | fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n"); |
527159b7 | 1668 | |
8fb3e588 AC |
1669 | /* Saw a breakpoint, but it was hit by the wrong thread. |
1670 | Just continue. */ | |
1671 | ||
1672 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
488f131b | 1673 | { |
8fb3e588 | 1674 | /* Pull the single step breakpoints out of the target. */ |
e0cd558a | 1675 | remove_single_step_breakpoints (); |
8fb3e588 AC |
1676 | singlestep_breakpoints_inserted_p = 0; |
1677 | } | |
1678 | ||
1679 | remove_status = remove_breakpoints (); | |
1680 | /* Did we fail to remove breakpoints? If so, try | |
1681 | to set the PC past the bp. (There's at least | |
1682 | one situation in which we can fail to remove | |
1683 | the bp's: On HP-UX's that use ttrace, we can't | |
1684 | change the address space of a vforking child | |
1685 | process until the child exits (well, okay, not | |
1686 | then either :-) or execs. */ | |
1687 | if (remove_status != 0) | |
1688 | { | |
1689 | /* FIXME! This is obviously non-portable! */ | |
1690 | write_pc_pid (stop_pc + 4, ecs->ptid); | |
1691 | /* We need to restart all the threads now, | |
1692 | * unles we're running in scheduler-locked mode. | |
1693 | * Use currently_stepping to determine whether to | |
1694 | * step or continue. | |
1695 | */ | |
1696 | /* FIXME MVS: is there any reason not to call resume()? */ | |
1697 | if (scheduler_mode == schedlock_on) | |
1698 | target_resume (ecs->ptid, | |
1699 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
488f131b | 1700 | else |
8fb3e588 AC |
1701 | target_resume (RESUME_ALL, |
1702 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
1703 | prepare_to_wait (ecs); | |
1704 | return; | |
1705 | } | |
1706 | else | |
1707 | { /* Single step */ | |
1708 | breakpoints_inserted = 0; | |
1709 | if (!ptid_equal (inferior_ptid, ecs->ptid)) | |
1710 | context_switch (ecs); | |
1711 | ecs->waiton_ptid = ecs->ptid; | |
1712 | ecs->wp = &(ecs->ws); | |
1713 | ecs->another_trap = 1; | |
1714 | ||
1715 | ecs->infwait_state = infwait_thread_hop_state; | |
1716 | keep_going (ecs); | |
1717 | registers_changed (); | |
1718 | return; | |
1719 | } | |
488f131b | 1720 | } |
f8d40ec8 | 1721 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
8fb3e588 AC |
1722 | { |
1723 | sw_single_step_trap_p = 1; | |
1724 | ecs->random_signal = 0; | |
1725 | } | |
488f131b JB |
1726 | } |
1727 | else | |
1728 | ecs->random_signal = 1; | |
c906108c | 1729 | |
488f131b | 1730 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
1731 | so, then switch to that thread. */ |
1732 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 1733 | { |
527159b7 | 1734 | if (debug_infrun) |
8a9de0e4 | 1735 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 1736 | |
488f131b | 1737 | context_switch (ecs); |
c5aa993b | 1738 | |
9a4105ab AC |
1739 | if (deprecated_context_hook) |
1740 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
488f131b | 1741 | } |
c906108c | 1742 | |
488f131b JB |
1743 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
1744 | { | |
1745 | /* Pull the single step breakpoints out of the target. */ | |
e0cd558a | 1746 | remove_single_step_breakpoints (); |
488f131b JB |
1747 | singlestep_breakpoints_inserted_p = 0; |
1748 | } | |
c906108c | 1749 | |
488f131b JB |
1750 | /* It may not be necessary to disable the watchpoint to stop over |
1751 | it. For example, the PA can (with some kernel cooperation) | |
1752 | single step over a watchpoint without disabling the watchpoint. */ | |
1753 | if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1754 | { | |
527159b7 | 1755 | if (debug_infrun) |
8a9de0e4 | 1756 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1757 | resume (1, 0); |
1758 | prepare_to_wait (ecs); | |
1759 | return; | |
1760 | } | |
c906108c | 1761 | |
488f131b JB |
1762 | /* It is far more common to need to disable a watchpoint to step |
1763 | the inferior over it. FIXME. What else might a debug | |
1764 | register or page protection watchpoint scheme need here? */ | |
e6cf7916 UW |
1765 | if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch) |
1766 | && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
488f131b JB |
1767 | { |
1768 | /* At this point, we are stopped at an instruction which has | |
1769 | attempted to write to a piece of memory under control of | |
1770 | a watchpoint. The instruction hasn't actually executed | |
1771 | yet. If we were to evaluate the watchpoint expression | |
1772 | now, we would get the old value, and therefore no change | |
1773 | would seem to have occurred. | |
1774 | ||
1775 | In order to make watchpoints work `right', we really need | |
1776 | to complete the memory write, and then evaluate the | |
1777 | watchpoint expression. The following code does that by | |
1778 | removing the watchpoint (actually, all watchpoints and | |
1779 | breakpoints), single-stepping the target, re-inserting | |
1780 | watchpoints, and then falling through to let normal | |
1781 | single-step processing handle proceed. Since this | |
1782 | includes evaluating watchpoints, things will come to a | |
1783 | stop in the correct manner. */ | |
1784 | ||
527159b7 | 1785 | if (debug_infrun) |
8a9de0e4 | 1786 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1787 | remove_breakpoints (); |
1788 | registers_changed (); | |
1789 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */ | |
c5aa993b | 1790 | |
488f131b JB |
1791 | ecs->waiton_ptid = ecs->ptid; |
1792 | ecs->wp = &(ecs->ws); | |
1793 | ecs->infwait_state = infwait_nonstep_watch_state; | |
1794 | prepare_to_wait (ecs); | |
1795 | return; | |
1796 | } | |
1797 | ||
1798 | /* It may be possible to simply continue after a watchpoint. */ | |
1799 | if (HAVE_CONTINUABLE_WATCHPOINT) | |
00d4360e | 1800 | stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws); |
488f131b JB |
1801 | |
1802 | ecs->stop_func_start = 0; | |
1803 | ecs->stop_func_end = 0; | |
1804 | ecs->stop_func_name = 0; | |
1805 | /* Don't care about return value; stop_func_start and stop_func_name | |
1806 | will both be 0 if it doesn't work. */ | |
1807 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
1808 | &ecs->stop_func_start, &ecs->stop_func_end); | |
782263ab | 1809 | ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET; |
488f131b JB |
1810 | ecs->another_trap = 0; |
1811 | bpstat_clear (&stop_bpstat); | |
1812 | stop_step = 0; | |
1813 | stop_stack_dummy = 0; | |
1814 | stop_print_frame = 1; | |
1815 | ecs->random_signal = 0; | |
1816 | stopped_by_random_signal = 0; | |
488f131b | 1817 | |
3352ef37 AC |
1818 | if (stop_signal == TARGET_SIGNAL_TRAP |
1819 | && trap_expected | |
1820 | && gdbarch_single_step_through_delay_p (current_gdbarch) | |
1821 | && currently_stepping (ecs)) | |
1822 | { | |
1823 | /* We're trying to step of a breakpoint. Turns out that we're | |
1824 | also on an instruction that needs to be stepped multiple | |
1825 | times before it's been fully executing. E.g., architectures | |
1826 | with a delay slot. It needs to be stepped twice, once for | |
1827 | the instruction and once for the delay slot. */ | |
1828 | int step_through_delay | |
1829 | = gdbarch_single_step_through_delay (current_gdbarch, | |
1830 | get_current_frame ()); | |
527159b7 | 1831 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 1832 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
3352ef37 AC |
1833 | if (step_range_end == 0 && step_through_delay) |
1834 | { | |
1835 | /* The user issued a continue when stopped at a breakpoint. | |
1836 | Set up for another trap and get out of here. */ | |
1837 | ecs->another_trap = 1; | |
1838 | keep_going (ecs); | |
1839 | return; | |
1840 | } | |
1841 | else if (step_through_delay) | |
1842 | { | |
1843 | /* The user issued a step when stopped at a breakpoint. | |
1844 | Maybe we should stop, maybe we should not - the delay | |
1845 | slot *might* correspond to a line of source. In any | |
1846 | case, don't decide that here, just set ecs->another_trap, | |
1847 | making sure we single-step again before breakpoints are | |
1848 | re-inserted. */ | |
1849 | ecs->another_trap = 1; | |
1850 | } | |
1851 | } | |
1852 | ||
488f131b JB |
1853 | /* Look at the cause of the stop, and decide what to do. |
1854 | The alternatives are: | |
1855 | 1) break; to really stop and return to the debugger, | |
1856 | 2) drop through to start up again | |
1857 | (set ecs->another_trap to 1 to single step once) | |
1858 | 3) set ecs->random_signal to 1, and the decision between 1 and 2 | |
1859 | will be made according to the signal handling tables. */ | |
1860 | ||
1861 | /* First, distinguish signals caused by the debugger from signals | |
03cebad2 MK |
1862 | that have to do with the program's own actions. Note that |
1863 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
1864 | on the operating system version. Here we detect when a SIGILL or | |
1865 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
1866 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
1867 | when we're trying to execute a breakpoint instruction on a | |
1868 | non-executable stack. This happens for call dummy breakpoints | |
1869 | for architectures like SPARC that place call dummies on the | |
1870 | stack. */ | |
488f131b JB |
1871 | |
1872 | if (stop_signal == TARGET_SIGNAL_TRAP | |
8fb3e588 AC |
1873 | || (breakpoints_inserted |
1874 | && (stop_signal == TARGET_SIGNAL_ILL | |
1875 | || stop_signal == TARGET_SIGNAL_SEGV | |
1876 | || stop_signal == TARGET_SIGNAL_EMT)) | |
1877 | || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP) | |
488f131b JB |
1878 | { |
1879 | if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) | |
1880 | { | |
527159b7 | 1881 | if (debug_infrun) |
8a9de0e4 | 1882 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); |
488f131b JB |
1883 | stop_print_frame = 0; |
1884 | stop_stepping (ecs); | |
1885 | return; | |
1886 | } | |
c54cfec8 EZ |
1887 | |
1888 | /* This is originated from start_remote(), start_inferior() and | |
1889 | shared libraries hook functions. */ | |
c0236d92 | 1890 | if (stop_soon == STOP_QUIETLY) |
488f131b | 1891 | { |
527159b7 | 1892 | if (debug_infrun) |
8a9de0e4 | 1893 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); |
488f131b JB |
1894 | stop_stepping (ecs); |
1895 | return; | |
1896 | } | |
1897 | ||
c54cfec8 EZ |
1898 | /* This originates from attach_command(). We need to overwrite |
1899 | the stop_signal here, because some kernels don't ignore a | |
1900 | SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call. | |
1901 | See more comments in inferior.h. */ | |
c0236d92 | 1902 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP) |
c54cfec8 EZ |
1903 | { |
1904 | stop_stepping (ecs); | |
1905 | if (stop_signal == TARGET_SIGNAL_STOP) | |
1906 | stop_signal = TARGET_SIGNAL_0; | |
1907 | return; | |
1908 | } | |
1909 | ||
d303a6c7 AC |
1910 | /* Don't even think about breakpoints if just proceeded over a |
1911 | breakpoint. */ | |
1912 | if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected) | |
527159b7 RC |
1913 | { |
1914 | if (debug_infrun) | |
8a9de0e4 | 1915 | fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n"); |
527159b7 RC |
1916 | bpstat_clear (&stop_bpstat); |
1917 | } | |
488f131b JB |
1918 | else |
1919 | { | |
1920 | /* See if there is a breakpoint at the current PC. */ | |
8fb3e588 | 1921 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, |
00d4360e | 1922 | stopped_by_watchpoint); |
488f131b | 1923 | |
488f131b JB |
1924 | /* Following in case break condition called a |
1925 | function. */ | |
1926 | stop_print_frame = 1; | |
1927 | } | |
1928 | ||
73dd234f | 1929 | /* NOTE: cagney/2003-03-29: These two checks for a random signal |
8fb3e588 AC |
1930 | at one stage in the past included checks for an inferior |
1931 | function call's call dummy's return breakpoint. The original | |
1932 | comment, that went with the test, read: | |
73dd234f | 1933 | |
8fb3e588 AC |
1934 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
1935 | another signal besides SIGTRAP, so check here as well as | |
1936 | above.'' | |
73dd234f AC |
1937 | |
1938 | If someone ever tries to get get call dummys on a | |
1939 | non-executable stack to work (where the target would stop | |
03cebad2 MK |
1940 | with something like a SIGSEGV), then those tests might need |
1941 | to be re-instated. Given, however, that the tests were only | |
73dd234f | 1942 | enabled when momentary breakpoints were not being used, I |
03cebad2 MK |
1943 | suspect that it won't be the case. |
1944 | ||
8fb3e588 AC |
1945 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
1946 | be necessary for call dummies on a non-executable stack on | |
1947 | SPARC. */ | |
73dd234f | 1948 | |
488f131b JB |
1949 | if (stop_signal == TARGET_SIGNAL_TRAP) |
1950 | ecs->random_signal | |
1951 | = !(bpstat_explains_signal (stop_bpstat) | |
1952 | || trap_expected | |
488f131b | 1953 | || (step_range_end && step_resume_breakpoint == NULL)); |
488f131b JB |
1954 | else |
1955 | { | |
73dd234f | 1956 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
488f131b JB |
1957 | if (!ecs->random_signal) |
1958 | stop_signal = TARGET_SIGNAL_TRAP; | |
1959 | } | |
1960 | } | |
1961 | ||
1962 | /* When we reach this point, we've pretty much decided | |
1963 | that the reason for stopping must've been a random | |
1964 | (unexpected) signal. */ | |
1965 | ||
1966 | else | |
1967 | ecs->random_signal = 1; | |
488f131b | 1968 | |
04e68871 | 1969 | process_event_stop_test: |
488f131b JB |
1970 | /* For the program's own signals, act according to |
1971 | the signal handling tables. */ | |
1972 | ||
1973 | if (ecs->random_signal) | |
1974 | { | |
1975 | /* Signal not for debugging purposes. */ | |
1976 | int printed = 0; | |
1977 | ||
527159b7 | 1978 | if (debug_infrun) |
8a9de0e4 | 1979 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal); |
527159b7 | 1980 | |
488f131b JB |
1981 | stopped_by_random_signal = 1; |
1982 | ||
1983 | if (signal_print[stop_signal]) | |
1984 | { | |
1985 | printed = 1; | |
1986 | target_terminal_ours_for_output (); | |
1987 | print_stop_reason (SIGNAL_RECEIVED, stop_signal); | |
1988 | } | |
1989 | if (signal_stop[stop_signal]) | |
1990 | { | |
1991 | stop_stepping (ecs); | |
1992 | return; | |
1993 | } | |
1994 | /* If not going to stop, give terminal back | |
1995 | if we took it away. */ | |
1996 | else if (printed) | |
1997 | target_terminal_inferior (); | |
1998 | ||
1999 | /* Clear the signal if it should not be passed. */ | |
2000 | if (signal_program[stop_signal] == 0) | |
2001 | stop_signal = TARGET_SIGNAL_0; | |
2002 | ||
68f53502 AC |
2003 | if (prev_pc == read_pc () |
2004 | && !breakpoints_inserted | |
2005 | && breakpoint_here_p (read_pc ()) | |
2006 | && step_resume_breakpoint == NULL) | |
2007 | { | |
2008 | /* We were just starting a new sequence, attempting to | |
2009 | single-step off of a breakpoint and expecting a SIGTRAP. | |
2010 | Intead this signal arrives. This signal will take us out | |
2011 | of the stepping range so GDB needs to remember to, when | |
2012 | the signal handler returns, resume stepping off that | |
2013 | breakpoint. */ | |
2014 | /* To simplify things, "continue" is forced to use the same | |
2015 | code paths as single-step - set a breakpoint at the | |
2016 | signal return address and then, once hit, step off that | |
2017 | breakpoint. */ | |
d3169d93 | 2018 | |
44cbf7b5 | 2019 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
68f53502 | 2020 | ecs->step_after_step_resume_breakpoint = 1; |
9d799f85 AC |
2021 | keep_going (ecs); |
2022 | return; | |
68f53502 | 2023 | } |
9d799f85 AC |
2024 | |
2025 | if (step_range_end != 0 | |
2026 | && stop_signal != TARGET_SIGNAL_0 | |
2027 | && stop_pc >= step_range_start && stop_pc < step_range_end | |
2028 | && frame_id_eq (get_frame_id (get_current_frame ()), | |
2029 | step_frame_id) | |
2030 | && step_resume_breakpoint == NULL) | |
d303a6c7 AC |
2031 | { |
2032 | /* The inferior is about to take a signal that will take it | |
2033 | out of the single step range. Set a breakpoint at the | |
2034 | current PC (which is presumably where the signal handler | |
2035 | will eventually return) and then allow the inferior to | |
2036 | run free. | |
2037 | ||
2038 | Note that this is only needed for a signal delivered | |
2039 | while in the single-step range. Nested signals aren't a | |
2040 | problem as they eventually all return. */ | |
44cbf7b5 | 2041 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
9d799f85 AC |
2042 | keep_going (ecs); |
2043 | return; | |
d303a6c7 | 2044 | } |
9d799f85 AC |
2045 | |
2046 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
2047 | when either there's a nested signal, or when there's a | |
2048 | pending signal enabled just as the signal handler returns | |
2049 | (leaving the inferior at the step-resume-breakpoint without | |
2050 | actually executing it). Either way continue until the | |
2051 | breakpoint is really hit. */ | |
488f131b JB |
2052 | keep_going (ecs); |
2053 | return; | |
2054 | } | |
2055 | ||
2056 | /* Handle cases caused by hitting a breakpoint. */ | |
2057 | { | |
2058 | CORE_ADDR jmp_buf_pc; | |
2059 | struct bpstat_what what; | |
2060 | ||
2061 | what = bpstat_what (stop_bpstat); | |
2062 | ||
2063 | if (what.call_dummy) | |
2064 | { | |
2065 | stop_stack_dummy = 1; | |
c5aa993b | 2066 | } |
c906108c | 2067 | |
488f131b | 2068 | switch (what.main_action) |
c5aa993b | 2069 | { |
488f131b JB |
2070 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: |
2071 | /* If we hit the breakpoint at longjmp, disable it for the | |
2072 | duration of this command. Then, install a temporary | |
2073 | breakpoint at the target of the jmp_buf. */ | |
527159b7 | 2074 | if (debug_infrun) |
8802d8ed | 2075 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); |
488f131b JB |
2076 | disable_longjmp_breakpoint (); |
2077 | remove_breakpoints (); | |
2078 | breakpoints_inserted = 0; | |
91104499 UW |
2079 | if (!gdbarch_get_longjmp_target_p (current_gdbarch) |
2080 | || !gdbarch_get_longjmp_target (current_gdbarch, &jmp_buf_pc)) | |
c5aa993b | 2081 | { |
488f131b | 2082 | keep_going (ecs); |
104c1213 | 2083 | return; |
c5aa993b | 2084 | } |
488f131b JB |
2085 | |
2086 | /* Need to blow away step-resume breakpoint, as it | |
2087 | interferes with us */ | |
2088 | if (step_resume_breakpoint != NULL) | |
104c1213 | 2089 | { |
488f131b | 2090 | delete_step_resume_breakpoint (&step_resume_breakpoint); |
104c1213 | 2091 | } |
c906108c | 2092 | |
8fb3e588 | 2093 | set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id); |
488f131b JB |
2094 | ecs->handling_longjmp = 1; /* FIXME */ |
2095 | keep_going (ecs); | |
2096 | return; | |
c906108c | 2097 | |
488f131b JB |
2098 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
2099 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: | |
527159b7 | 2100 | if (debug_infrun) |
8802d8ed | 2101 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); |
488f131b JB |
2102 | remove_breakpoints (); |
2103 | breakpoints_inserted = 0; | |
488f131b JB |
2104 | disable_longjmp_breakpoint (); |
2105 | ecs->handling_longjmp = 0; /* FIXME */ | |
2106 | if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) | |
2107 | break; | |
2108 | /* else fallthrough */ | |
2109 | ||
2110 | case BPSTAT_WHAT_SINGLE: | |
527159b7 | 2111 | if (debug_infrun) |
8802d8ed | 2112 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); |
488f131b | 2113 | if (breakpoints_inserted) |
569631c6 | 2114 | remove_breakpoints (); |
488f131b JB |
2115 | breakpoints_inserted = 0; |
2116 | ecs->another_trap = 1; | |
2117 | /* Still need to check other stuff, at least the case | |
2118 | where we are stepping and step out of the right range. */ | |
2119 | break; | |
c906108c | 2120 | |
488f131b | 2121 | case BPSTAT_WHAT_STOP_NOISY: |
527159b7 | 2122 | if (debug_infrun) |
8802d8ed | 2123 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); |
488f131b | 2124 | stop_print_frame = 1; |
c906108c | 2125 | |
d303a6c7 AC |
2126 | /* We are about to nuke the step_resume_breakpointt via the |
2127 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2128 | |
488f131b JB |
2129 | stop_stepping (ecs); |
2130 | return; | |
c5aa993b | 2131 | |
488f131b | 2132 | case BPSTAT_WHAT_STOP_SILENT: |
527159b7 | 2133 | if (debug_infrun) |
8802d8ed | 2134 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); |
488f131b | 2135 | stop_print_frame = 0; |
c5aa993b | 2136 | |
d303a6c7 AC |
2137 | /* We are about to nuke the step_resume_breakpoin via the |
2138 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2139 | |
488f131b | 2140 | stop_stepping (ecs); |
e441088d | 2141 | return; |
c5aa993b | 2142 | |
488f131b JB |
2143 | case BPSTAT_WHAT_STEP_RESUME: |
2144 | /* This proably demands a more elegant solution, but, yeah | |
2145 | right... | |
c5aa993b | 2146 | |
488f131b JB |
2147 | This function's use of the simple variable |
2148 | step_resume_breakpoint doesn't seem to accomodate | |
2149 | simultaneously active step-resume bp's, although the | |
2150 | breakpoint list certainly can. | |
c5aa993b | 2151 | |
488f131b JB |
2152 | If we reach here and step_resume_breakpoint is already |
2153 | NULL, then apparently we have multiple active | |
2154 | step-resume bp's. We'll just delete the breakpoint we | |
2155 | stopped at, and carry on. | |
2156 | ||
2157 | Correction: what the code currently does is delete a | |
2158 | step-resume bp, but it makes no effort to ensure that | |
2159 | the one deleted is the one currently stopped at. MVS */ | |
c5aa993b | 2160 | |
527159b7 | 2161 | if (debug_infrun) |
8802d8ed | 2162 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); |
527159b7 | 2163 | |
488f131b JB |
2164 | if (step_resume_breakpoint == NULL) |
2165 | { | |
2166 | step_resume_breakpoint = | |
2167 | bpstat_find_step_resume_breakpoint (stop_bpstat); | |
2168 | } | |
2169 | delete_step_resume_breakpoint (&step_resume_breakpoint); | |
68f53502 AC |
2170 | if (ecs->step_after_step_resume_breakpoint) |
2171 | { | |
2172 | /* Back when the step-resume breakpoint was inserted, we | |
2173 | were trying to single-step off a breakpoint. Go back | |
2174 | to doing that. */ | |
2175 | ecs->step_after_step_resume_breakpoint = 0; | |
2176 | remove_breakpoints (); | |
2177 | breakpoints_inserted = 0; | |
2178 | ecs->another_trap = 1; | |
2179 | keep_going (ecs); | |
2180 | return; | |
2181 | } | |
488f131b JB |
2182 | break; |
2183 | ||
488f131b JB |
2184 | case BPSTAT_WHAT_CHECK_SHLIBS: |
2185 | case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK: | |
c906108c | 2186 | { |
527159b7 | 2187 | if (debug_infrun) |
8802d8ed | 2188 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n"); |
488f131b JB |
2189 | /* Remove breakpoints, we eventually want to step over the |
2190 | shlib event breakpoint, and SOLIB_ADD might adjust | |
2191 | breakpoint addresses via breakpoint_re_set. */ | |
2192 | if (breakpoints_inserted) | |
2193 | remove_breakpoints (); | |
c5aa993b | 2194 | breakpoints_inserted = 0; |
488f131b JB |
2195 | |
2196 | /* Check for any newly added shared libraries if we're | |
2197 | supposed to be adding them automatically. Switch | |
2198 | terminal for any messages produced by | |
2199 | breakpoint_re_set. */ | |
2200 | target_terminal_ours_for_output (); | |
aff6338a | 2201 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
2202 | stack's section table is kept up-to-date. Architectures, |
2203 | (e.g., PPC64), use the section table to perform | |
2204 | operations such as address => section name and hence | |
2205 | require the table to contain all sections (including | |
2206 | those found in shared libraries). */ | |
aff6338a | 2207 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
2208 | exec_ops to SOLIB_ADD. This is because current GDB is |
2209 | only tooled to propagate section_table changes out from | |
2210 | the "current_target" (see target_resize_to_sections), and | |
2211 | not up from the exec stratum. This, of course, isn't | |
2212 | right. "infrun.c" should only interact with the | |
2213 | exec/process stratum, instead relying on the target stack | |
2214 | to propagate relevant changes (stop, section table | |
2215 | changed, ...) up to other layers. */ | |
a77053c2 | 2216 | #ifdef SOLIB_ADD |
aff6338a | 2217 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
a77053c2 MK |
2218 | #else |
2219 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
2220 | #endif | |
488f131b JB |
2221 | target_terminal_inferior (); |
2222 | ||
2223 | /* Try to reenable shared library breakpoints, additional | |
2224 | code segments in shared libraries might be mapped in now. */ | |
2225 | re_enable_breakpoints_in_shlibs (); | |
2226 | ||
2227 | /* If requested, stop when the dynamic linker notifies | |
2228 | gdb of events. This allows the user to get control | |
2229 | and place breakpoints in initializer routines for | |
2230 | dynamically loaded objects (among other things). */ | |
877522db | 2231 | if (stop_on_solib_events || stop_stack_dummy) |
d4f3574e | 2232 | { |
488f131b | 2233 | stop_stepping (ecs); |
d4f3574e SS |
2234 | return; |
2235 | } | |
c5aa993b | 2236 | |
488f131b JB |
2237 | /* If we stopped due to an explicit catchpoint, then the |
2238 | (see above) call to SOLIB_ADD pulled in any symbols | |
2239 | from a newly-loaded library, if appropriate. | |
2240 | ||
2241 | We do want the inferior to stop, but not where it is | |
2242 | now, which is in the dynamic linker callback. Rather, | |
2243 | we would like it stop in the user's program, just after | |
2244 | the call that caused this catchpoint to trigger. That | |
2245 | gives the user a more useful vantage from which to | |
2246 | examine their program's state. */ | |
8fb3e588 AC |
2247 | else if (what.main_action |
2248 | == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK) | |
c906108c | 2249 | { |
488f131b JB |
2250 | /* ??rehrauer: If I could figure out how to get the |
2251 | right return PC from here, we could just set a temp | |
2252 | breakpoint and resume. I'm not sure we can without | |
2253 | cracking open the dld's shared libraries and sniffing | |
2254 | their unwind tables and text/data ranges, and that's | |
2255 | not a terribly portable notion. | |
2256 | ||
2257 | Until that time, we must step the inferior out of the | |
2258 | dld callback, and also out of the dld itself (and any | |
2259 | code or stubs in libdld.sl, such as "shl_load" and | |
2260 | friends) until we reach non-dld code. At that point, | |
2261 | we can stop stepping. */ | |
2262 | bpstat_get_triggered_catchpoints (stop_bpstat, | |
2263 | &ecs-> | |
2264 | stepping_through_solib_catchpoints); | |
2265 | ecs->stepping_through_solib_after_catch = 1; | |
2266 | ||
2267 | /* Be sure to lift all breakpoints, so the inferior does | |
2268 | actually step past this point... */ | |
2269 | ecs->another_trap = 1; | |
2270 | break; | |
c906108c | 2271 | } |
c5aa993b | 2272 | else |
c5aa993b | 2273 | { |
488f131b | 2274 | /* We want to step over this breakpoint, then keep going. */ |
c5aa993b | 2275 | ecs->another_trap = 1; |
488f131b | 2276 | break; |
c5aa993b | 2277 | } |
488f131b | 2278 | } |
488f131b | 2279 | break; |
c906108c | 2280 | |
488f131b JB |
2281 | case BPSTAT_WHAT_LAST: |
2282 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
c906108c | 2283 | |
488f131b JB |
2284 | case BPSTAT_WHAT_KEEP_CHECKING: |
2285 | break; | |
2286 | } | |
2287 | } | |
c906108c | 2288 | |
488f131b JB |
2289 | /* We come here if we hit a breakpoint but should not |
2290 | stop for it. Possibly we also were stepping | |
2291 | and should stop for that. So fall through and | |
2292 | test for stepping. But, if not stepping, | |
2293 | do not stop. */ | |
c906108c | 2294 | |
9d1ff73f MS |
2295 | /* Are we stepping to get the inferior out of the dynamic linker's |
2296 | hook (and possibly the dld itself) after catching a shlib | |
2297 | event? */ | |
488f131b JB |
2298 | if (ecs->stepping_through_solib_after_catch) |
2299 | { | |
2300 | #if defined(SOLIB_ADD) | |
2301 | /* Have we reached our destination? If not, keep going. */ | |
2302 | if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) | |
2303 | { | |
527159b7 | 2304 | if (debug_infrun) |
8a9de0e4 | 2305 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n"); |
488f131b JB |
2306 | ecs->another_trap = 1; |
2307 | keep_going (ecs); | |
104c1213 | 2308 | return; |
488f131b JB |
2309 | } |
2310 | #endif | |
527159b7 | 2311 | if (debug_infrun) |
8a9de0e4 | 2312 | fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n"); |
488f131b JB |
2313 | /* Else, stop and report the catchpoint(s) whose triggering |
2314 | caused us to begin stepping. */ | |
2315 | ecs->stepping_through_solib_after_catch = 0; | |
2316 | bpstat_clear (&stop_bpstat); | |
2317 | stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints); | |
2318 | bpstat_clear (&ecs->stepping_through_solib_catchpoints); | |
2319 | stop_print_frame = 1; | |
2320 | stop_stepping (ecs); | |
2321 | return; | |
2322 | } | |
c906108c | 2323 | |
488f131b JB |
2324 | if (step_resume_breakpoint) |
2325 | { | |
527159b7 | 2326 | if (debug_infrun) |
d3169d93 DJ |
2327 | fprintf_unfiltered (gdb_stdlog, |
2328 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 2329 | |
488f131b JB |
2330 | /* Having a step-resume breakpoint overrides anything |
2331 | else having to do with stepping commands until | |
2332 | that breakpoint is reached. */ | |
488f131b JB |
2333 | keep_going (ecs); |
2334 | return; | |
2335 | } | |
c5aa993b | 2336 | |
488f131b JB |
2337 | if (step_range_end == 0) |
2338 | { | |
527159b7 | 2339 | if (debug_infrun) |
8a9de0e4 | 2340 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 2341 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
2342 | keep_going (ecs); |
2343 | return; | |
2344 | } | |
c5aa993b | 2345 | |
488f131b | 2346 | /* If stepping through a line, keep going if still within it. |
c906108c | 2347 | |
488f131b JB |
2348 | Note that step_range_end is the address of the first instruction |
2349 | beyond the step range, and NOT the address of the last instruction | |
2350 | within it! */ | |
2351 | if (stop_pc >= step_range_start && stop_pc < step_range_end) | |
2352 | { | |
527159b7 | 2353 | if (debug_infrun) |
8a9de0e4 | 2354 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n", |
527159b7 RC |
2355 | paddr_nz (step_range_start), |
2356 | paddr_nz (step_range_end)); | |
488f131b JB |
2357 | keep_going (ecs); |
2358 | return; | |
2359 | } | |
c5aa993b | 2360 | |
488f131b | 2361 | /* We stepped out of the stepping range. */ |
c906108c | 2362 | |
488f131b JB |
2363 | /* If we are stepping at the source level and entered the runtime |
2364 | loader dynamic symbol resolution code, we keep on single stepping | |
2365 | until we exit the run time loader code and reach the callee's | |
2366 | address. */ | |
2367 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
a77053c2 MK |
2368 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE |
2369 | && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc) | |
2370 | #else | |
2371 | && in_solib_dynsym_resolve_code (stop_pc) | |
2372 | #endif | |
2373 | ) | |
488f131b | 2374 | { |
4c8c40e6 MK |
2375 | CORE_ADDR pc_after_resolver = |
2376 | gdbarch_skip_solib_resolver (current_gdbarch, stop_pc); | |
c906108c | 2377 | |
527159b7 | 2378 | if (debug_infrun) |
8a9de0e4 | 2379 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n"); |
527159b7 | 2380 | |
488f131b JB |
2381 | if (pc_after_resolver) |
2382 | { | |
2383 | /* Set up a step-resume breakpoint at the address | |
2384 | indicated by SKIP_SOLIB_RESOLVER. */ | |
2385 | struct symtab_and_line sr_sal; | |
fe39c653 | 2386 | init_sal (&sr_sal); |
488f131b JB |
2387 | sr_sal.pc = pc_after_resolver; |
2388 | ||
44cbf7b5 | 2389 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c5aa993b | 2390 | } |
c906108c | 2391 | |
488f131b JB |
2392 | keep_going (ecs); |
2393 | return; | |
2394 | } | |
c906108c | 2395 | |
42edda50 AC |
2396 | if (step_range_end != 1 |
2397 | && (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2398 | || step_over_calls == STEP_OVER_ALL) | |
2399 | && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME) | |
488f131b | 2400 | { |
527159b7 | 2401 | if (debug_infrun) |
8a9de0e4 | 2402 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n"); |
42edda50 | 2403 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
2404 | a signal trampoline (either by a signal being delivered or by |
2405 | the signal handler returning). Just single-step until the | |
2406 | inferior leaves the trampoline (either by calling the handler | |
2407 | or returning). */ | |
488f131b JB |
2408 | keep_going (ecs); |
2409 | return; | |
2410 | } | |
c906108c | 2411 | |
c17eaafe DJ |
2412 | /* Check for subroutine calls. The check for the current frame |
2413 | equalling the step ID is not necessary - the check of the | |
2414 | previous frame's ID is sufficient - but it is a common case and | |
2415 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
2416 | |
2417 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
2418 | being equal, so to get into this block, both the current and | |
2419 | previous frame must have valid frame IDs. */ | |
c17eaafe DJ |
2420 | if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id) |
2421 | && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id)) | |
488f131b | 2422 | { |
95918acb | 2423 | CORE_ADDR real_stop_pc; |
8fb3e588 | 2424 | |
527159b7 | 2425 | if (debug_infrun) |
8a9de0e4 | 2426 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 2427 | |
95918acb AC |
2428 | if ((step_over_calls == STEP_OVER_NONE) |
2429 | || ((step_range_end == 1) | |
2430 | && in_prologue (prev_pc, ecs->stop_func_start))) | |
2431 | { | |
2432 | /* I presume that step_over_calls is only 0 when we're | |
2433 | supposed to be stepping at the assembly language level | |
2434 | ("stepi"). Just stop. */ | |
2435 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
2436 | thought it was a subroutine call but it was not. Stop as | |
2437 | well. FENN */ | |
2438 | stop_step = 1; | |
2439 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2440 | stop_stepping (ecs); | |
2441 | return; | |
2442 | } | |
8fb3e588 | 2443 | |
8567c30f AC |
2444 | if (step_over_calls == STEP_OVER_ALL) |
2445 | { | |
2446 | /* We're doing a "next", set a breakpoint at callee's return | |
2447 | address (the address at which the caller will | |
2448 | resume). */ | |
14e60db5 | 2449 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
8567c30f AC |
2450 | keep_going (ecs); |
2451 | return; | |
2452 | } | |
a53c66de | 2453 | |
95918acb | 2454 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
2455 | calling routine and the real function), locate the real |
2456 | function. That's what tells us (a) whether we want to step | |
2457 | into it at all, and (b) what prologue we want to run to the | |
2458 | end of, if we do step into it. */ | |
52f729a7 | 2459 | real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc); |
95918acb | 2460 | if (real_stop_pc == 0) |
52f729a7 UW |
2461 | real_stop_pc = gdbarch_skip_trampoline_code |
2462 | (current_gdbarch, get_current_frame (), stop_pc); | |
95918acb AC |
2463 | if (real_stop_pc != 0) |
2464 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 2465 | |
a77053c2 MK |
2466 | if ( |
2467 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE | |
2468 | IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start) | |
2469 | #else | |
2470 | in_solib_dynsym_resolve_code (ecs->stop_func_start) | |
2471 | #endif | |
2472 | ) | |
1b2bfbb9 RC |
2473 | { |
2474 | struct symtab_and_line sr_sal; | |
2475 | init_sal (&sr_sal); | |
2476 | sr_sal.pc = ecs->stop_func_start; | |
2477 | ||
44cbf7b5 | 2478 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
8fb3e588 AC |
2479 | keep_going (ecs); |
2480 | return; | |
1b2bfbb9 RC |
2481 | } |
2482 | ||
95918acb | 2483 | /* If we have line number information for the function we are |
8fb3e588 | 2484 | thinking of stepping into, step into it. |
95918acb | 2485 | |
8fb3e588 AC |
2486 | If there are several symtabs at that PC (e.g. with include |
2487 | files), just want to know whether *any* of them have line | |
2488 | numbers. find_pc_line handles this. */ | |
95918acb AC |
2489 | { |
2490 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 2491 | |
95918acb AC |
2492 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2493 | if (tmp_sal.line != 0) | |
2494 | { | |
2495 | step_into_function (ecs); | |
2496 | return; | |
2497 | } | |
2498 | } | |
2499 | ||
2500 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
2501 | set, we stop the step so that the user has a chance to switch |
2502 | in assembly mode. */ | |
95918acb AC |
2503 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug) |
2504 | { | |
2505 | stop_step = 1; | |
2506 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2507 | stop_stepping (ecs); | |
2508 | return; | |
2509 | } | |
2510 | ||
2511 | /* Set a breakpoint at callee's return address (the address at | |
8fb3e588 | 2512 | which the caller will resume). */ |
14e60db5 | 2513 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
95918acb | 2514 | keep_going (ecs); |
488f131b | 2515 | return; |
488f131b | 2516 | } |
c906108c | 2517 | |
488f131b JB |
2518 | /* If we're in the return path from a shared library trampoline, |
2519 | we want to proceed through the trampoline when stepping. */ | |
e76f05fa UW |
2520 | if (gdbarch_in_solib_return_trampoline (current_gdbarch, |
2521 | stop_pc, ecs->stop_func_name)) | |
488f131b | 2522 | { |
488f131b | 2523 | /* Determine where this trampoline returns. */ |
52f729a7 UW |
2524 | CORE_ADDR real_stop_pc; |
2525 | real_stop_pc = gdbarch_skip_trampoline_code | |
2526 | (current_gdbarch, get_current_frame (), stop_pc); | |
c906108c | 2527 | |
527159b7 | 2528 | if (debug_infrun) |
8a9de0e4 | 2529 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n"); |
527159b7 | 2530 | |
488f131b | 2531 | /* Only proceed through if we know where it's going. */ |
d764a824 | 2532 | if (real_stop_pc) |
488f131b JB |
2533 | { |
2534 | /* And put the step-breakpoint there and go until there. */ | |
2535 | struct symtab_and_line sr_sal; | |
2536 | ||
fe39c653 | 2537 | init_sal (&sr_sal); /* initialize to zeroes */ |
d764a824 | 2538 | sr_sal.pc = real_stop_pc; |
488f131b | 2539 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
44cbf7b5 AC |
2540 | |
2541 | /* Do not specify what the fp should be when we stop since | |
2542 | on some machines the prologue is where the new fp value | |
2543 | is established. */ | |
2544 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); | |
c906108c | 2545 | |
488f131b JB |
2546 | /* Restart without fiddling with the step ranges or |
2547 | other state. */ | |
2548 | keep_going (ecs); | |
2549 | return; | |
2550 | } | |
2551 | } | |
c906108c | 2552 | |
7ed0fe66 DJ |
2553 | ecs->sal = find_pc_line (stop_pc, 0); |
2554 | ||
1b2bfbb9 RC |
2555 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
2556 | the trampoline processing logic, however, there are some trampolines | |
2557 | that have no names, so we should do trampoline handling first. */ | |
2558 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
7ed0fe66 DJ |
2559 | && ecs->stop_func_name == NULL |
2560 | && ecs->sal.line == 0) | |
1b2bfbb9 | 2561 | { |
527159b7 | 2562 | if (debug_infrun) |
8a9de0e4 | 2563 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n"); |
527159b7 | 2564 | |
1b2bfbb9 | 2565 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
2566 | undebuggable function (where there is no debugging information |
2567 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
2568 | inferior stopped). Since we want to skip this kind of code, |
2569 | we keep going until the inferior returns from this | |
14e60db5 DJ |
2570 | function - unless the user has asked us not to (via |
2571 | set step-mode) or we no longer know how to get back | |
2572 | to the call site. */ | |
2573 | if (step_stop_if_no_debug | |
2574 | || !frame_id_p (frame_unwind_id (get_current_frame ()))) | |
1b2bfbb9 RC |
2575 | { |
2576 | /* If we have no line number and the step-stop-if-no-debug | |
2577 | is set, we stop the step so that the user has a chance to | |
2578 | switch in assembly mode. */ | |
2579 | stop_step = 1; | |
2580 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2581 | stop_stepping (ecs); | |
2582 | return; | |
2583 | } | |
2584 | else | |
2585 | { | |
2586 | /* Set a breakpoint at callee's return address (the address | |
2587 | at which the caller will resume). */ | |
14e60db5 | 2588 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
1b2bfbb9 RC |
2589 | keep_going (ecs); |
2590 | return; | |
2591 | } | |
2592 | } | |
2593 | ||
2594 | if (step_range_end == 1) | |
2595 | { | |
2596 | /* It is stepi or nexti. We always want to stop stepping after | |
2597 | one instruction. */ | |
527159b7 | 2598 | if (debug_infrun) |
8a9de0e4 | 2599 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
1b2bfbb9 RC |
2600 | stop_step = 1; |
2601 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2602 | stop_stepping (ecs); | |
2603 | return; | |
2604 | } | |
2605 | ||
488f131b JB |
2606 | if (ecs->sal.line == 0) |
2607 | { | |
2608 | /* We have no line number information. That means to stop | |
2609 | stepping (does this always happen right after one instruction, | |
2610 | when we do "s" in a function with no line numbers, | |
2611 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 2612 | if (debug_infrun) |
8a9de0e4 | 2613 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
488f131b JB |
2614 | stop_step = 1; |
2615 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2616 | stop_stepping (ecs); | |
2617 | return; | |
2618 | } | |
c906108c | 2619 | |
488f131b JB |
2620 | if ((stop_pc == ecs->sal.pc) |
2621 | && (ecs->current_line != ecs->sal.line | |
2622 | || ecs->current_symtab != ecs->sal.symtab)) | |
2623 | { | |
2624 | /* We are at the start of a different line. So stop. Note that | |
2625 | we don't stop if we step into the middle of a different line. | |
2626 | That is said to make things like for (;;) statements work | |
2627 | better. */ | |
527159b7 | 2628 | if (debug_infrun) |
8a9de0e4 | 2629 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n"); |
488f131b JB |
2630 | stop_step = 1; |
2631 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2632 | stop_stepping (ecs); | |
2633 | return; | |
2634 | } | |
c906108c | 2635 | |
488f131b | 2636 | /* We aren't done stepping. |
c906108c | 2637 | |
488f131b JB |
2638 | Optimize by setting the stepping range to the line. |
2639 | (We might not be in the original line, but if we entered a | |
2640 | new line in mid-statement, we continue stepping. This makes | |
2641 | things like for(;;) statements work better.) */ | |
c906108c | 2642 | |
488f131b | 2643 | if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end) |
c5aa993b | 2644 | { |
488f131b JB |
2645 | /* If this is the last line of the function, don't keep stepping |
2646 | (it would probably step us out of the function). | |
2647 | This is particularly necessary for a one-line function, | |
2648 | in which after skipping the prologue we better stop even though | |
2649 | we will be in mid-line. */ | |
527159b7 | 2650 | if (debug_infrun) |
8a9de0e4 | 2651 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n"); |
488f131b JB |
2652 | stop_step = 1; |
2653 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2654 | stop_stepping (ecs); | |
2655 | return; | |
c5aa993b | 2656 | } |
488f131b JB |
2657 | step_range_start = ecs->sal.pc; |
2658 | step_range_end = ecs->sal.end; | |
aa0cd9c1 | 2659 | step_frame_id = get_frame_id (get_current_frame ()); |
488f131b JB |
2660 | ecs->current_line = ecs->sal.line; |
2661 | ecs->current_symtab = ecs->sal.symtab; | |
2662 | ||
aa0cd9c1 AC |
2663 | /* In the case where we just stepped out of a function into the |
2664 | middle of a line of the caller, continue stepping, but | |
2665 | step_frame_id must be modified to current frame */ | |
65815ea1 AC |
2666 | #if 0 |
2667 | /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too | |
2668 | generous. It will trigger on things like a step into a frameless | |
2669 | stackless leaf function. I think the logic should instead look | |
2670 | at the unwound frame ID has that should give a more robust | |
2671 | indication of what happened. */ | |
8fb3e588 AC |
2672 | if (step - ID == current - ID) |
2673 | still stepping in same function; | |
2674 | else if (step - ID == unwind (current - ID)) | |
2675 | stepped into a function; | |
2676 | else | |
2677 | stepped out of a function; | |
2678 | /* Of course this assumes that the frame ID unwind code is robust | |
2679 | and we're willing to introduce frame unwind logic into this | |
2680 | function. Fortunately, those days are nearly upon us. */ | |
65815ea1 | 2681 | #endif |
488f131b | 2682 | { |
aa0cd9c1 AC |
2683 | struct frame_id current_frame = get_frame_id (get_current_frame ()); |
2684 | if (!(frame_id_inner (current_frame, step_frame_id))) | |
2685 | step_frame_id = current_frame; | |
488f131b | 2686 | } |
c906108c | 2687 | |
527159b7 | 2688 | if (debug_infrun) |
8a9de0e4 | 2689 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 2690 | keep_going (ecs); |
104c1213 JM |
2691 | } |
2692 | ||
2693 | /* Are we in the middle of stepping? */ | |
2694 | ||
2695 | static int | |
2696 | currently_stepping (struct execution_control_state *ecs) | |
2697 | { | |
d303a6c7 | 2698 | return ((!ecs->handling_longjmp |
104c1213 JM |
2699 | && ((step_range_end && step_resume_breakpoint == NULL) |
2700 | || trap_expected)) | |
2701 | || ecs->stepping_through_solib_after_catch | |
2702 | || bpstat_should_step ()); | |
2703 | } | |
c906108c | 2704 | |
c2c6d25f JM |
2705 | /* Subroutine call with source code we should not step over. Do step |
2706 | to the first line of code in it. */ | |
2707 | ||
2708 | static void | |
2709 | step_into_function (struct execution_control_state *ecs) | |
2710 | { | |
2711 | struct symtab *s; | |
2712 | struct symtab_and_line sr_sal; | |
2713 | ||
2714 | s = find_pc_symtab (stop_pc); | |
2715 | if (s && s->language != language_asm) | |
a433963d UW |
2716 | ecs->stop_func_start = gdbarch_skip_prologue |
2717 | (current_gdbarch, ecs->stop_func_start); | |
c2c6d25f JM |
2718 | |
2719 | ecs->sal = find_pc_line (ecs->stop_func_start, 0); | |
2720 | /* Use the step_resume_break to step until the end of the prologue, | |
2721 | even if that involves jumps (as it seems to on the vax under | |
2722 | 4.2). */ | |
2723 | /* If the prologue ends in the middle of a source line, continue to | |
2724 | the end of that source line (if it is still within the function). | |
2725 | Otherwise, just go to end of prologue. */ | |
c2c6d25f JM |
2726 | if (ecs->sal.end |
2727 | && ecs->sal.pc != ecs->stop_func_start | |
2728 | && ecs->sal.end < ecs->stop_func_end) | |
2729 | ecs->stop_func_start = ecs->sal.end; | |
c2c6d25f | 2730 | |
2dbd5e30 KB |
2731 | /* Architectures which require breakpoint adjustment might not be able |
2732 | to place a breakpoint at the computed address. If so, the test | |
2733 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
2734 | ecs->stop_func_start to an address at which a breakpoint may be | |
2735 | legitimately placed. | |
8fb3e588 | 2736 | |
2dbd5e30 KB |
2737 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
2738 | made, GDB will enter an infinite loop when stepping through | |
2739 | optimized code consisting of VLIW instructions which contain | |
2740 | subinstructions corresponding to different source lines. On | |
2741 | FR-V, it's not permitted to place a breakpoint on any but the | |
2742 | first subinstruction of a VLIW instruction. When a breakpoint is | |
2743 | set, GDB will adjust the breakpoint address to the beginning of | |
2744 | the VLIW instruction. Thus, we need to make the corresponding | |
2745 | adjustment here when computing the stop address. */ | |
8fb3e588 | 2746 | |
2dbd5e30 KB |
2747 | if (gdbarch_adjust_breakpoint_address_p (current_gdbarch)) |
2748 | { | |
2749 | ecs->stop_func_start | |
2750 | = gdbarch_adjust_breakpoint_address (current_gdbarch, | |
8fb3e588 | 2751 | ecs->stop_func_start); |
2dbd5e30 KB |
2752 | } |
2753 | ||
c2c6d25f JM |
2754 | if (ecs->stop_func_start == stop_pc) |
2755 | { | |
2756 | /* We are already there: stop now. */ | |
2757 | stop_step = 1; | |
488f131b | 2758 | print_stop_reason (END_STEPPING_RANGE, 0); |
c2c6d25f JM |
2759 | stop_stepping (ecs); |
2760 | return; | |
2761 | } | |
2762 | else | |
2763 | { | |
2764 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 2765 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
2766 | sr_sal.pc = ecs->stop_func_start; |
2767 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
44cbf7b5 | 2768 | |
c2c6d25f | 2769 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
2770 | some machines the prologue is where the new fp value is |
2771 | established. */ | |
44cbf7b5 | 2772 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c2c6d25f JM |
2773 | |
2774 | /* And make sure stepping stops right away then. */ | |
2775 | step_range_end = step_range_start; | |
2776 | } | |
2777 | keep_going (ecs); | |
2778 | } | |
d4f3574e | 2779 | |
d3169d93 | 2780 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
2781 | This is used to both functions and to skip over code. */ |
2782 | ||
2783 | static void | |
2784 | insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
2785 | struct frame_id sr_id) | |
2786 | { | |
2787 | /* There should never be more than one step-resume breakpoint per | |
2788 | thread, so we should never be setting a new | |
2789 | step_resume_breakpoint when one is already active. */ | |
2790 | gdb_assert (step_resume_breakpoint == NULL); | |
d3169d93 DJ |
2791 | |
2792 | if (debug_infrun) | |
2793 | fprintf_unfiltered (gdb_stdlog, | |
2794 | "infrun: inserting step-resume breakpoint at 0x%s\n", | |
2795 | paddr_nz (sr_sal.pc)); | |
2796 | ||
44cbf7b5 AC |
2797 | step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, |
2798 | bp_step_resume); | |
2799 | if (breakpoints_inserted) | |
2800 | insert_breakpoints (); | |
2801 | } | |
7ce450bd | 2802 | |
d3169d93 | 2803 | /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used |
14e60db5 | 2804 | to skip a potential signal handler. |
7ce450bd | 2805 | |
14e60db5 DJ |
2806 | This is called with the interrupted function's frame. The signal |
2807 | handler, when it returns, will resume the interrupted function at | |
2808 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
2809 | |
2810 | static void | |
44cbf7b5 | 2811 | insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
2812 | { |
2813 | struct symtab_and_line sr_sal; | |
2814 | ||
d303a6c7 AC |
2815 | init_sal (&sr_sal); /* initialize to zeros */ |
2816 | ||
bf6ae464 UW |
2817 | sr_sal.pc = gdbarch_addr_bits_remove |
2818 | (current_gdbarch, get_frame_pc (return_frame)); | |
d303a6c7 AC |
2819 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
2820 | ||
44cbf7b5 | 2821 | insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame)); |
d303a6c7 AC |
2822 | } |
2823 | ||
14e60db5 DJ |
2824 | /* Similar to insert_step_resume_breakpoint_at_frame, except |
2825 | but a breakpoint at the previous frame's PC. This is used to | |
2826 | skip a function after stepping into it (for "next" or if the called | |
2827 | function has no debugging information). | |
2828 | ||
2829 | The current function has almost always been reached by single | |
2830 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
2831 | current function, and the breakpoint will be set at the caller's | |
2832 | resume address. | |
2833 | ||
2834 | This is a separate function rather than reusing | |
2835 | insert_step_resume_breakpoint_at_frame in order to avoid | |
2836 | get_prev_frame, which may stop prematurely (see the implementation | |
2837 | of frame_unwind_id for an example). */ | |
2838 | ||
2839 | static void | |
2840 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
2841 | { | |
2842 | struct symtab_and_line sr_sal; | |
2843 | ||
2844 | /* We shouldn't have gotten here if we don't know where the call site | |
2845 | is. */ | |
2846 | gdb_assert (frame_id_p (frame_unwind_id (next_frame))); | |
2847 | ||
2848 | init_sal (&sr_sal); /* initialize to zeros */ | |
2849 | ||
bf6ae464 UW |
2850 | sr_sal.pc = gdbarch_addr_bits_remove |
2851 | (current_gdbarch, frame_pc_unwind (next_frame)); | |
14e60db5 DJ |
2852 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
2853 | ||
2854 | insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame)); | |
2855 | } | |
2856 | ||
104c1213 JM |
2857 | static void |
2858 | stop_stepping (struct execution_control_state *ecs) | |
2859 | { | |
527159b7 | 2860 | if (debug_infrun) |
8a9de0e4 | 2861 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); |
527159b7 | 2862 | |
cd0fc7c3 SS |
2863 | /* Let callers know we don't want to wait for the inferior anymore. */ |
2864 | ecs->wait_some_more = 0; | |
2865 | } | |
2866 | ||
d4f3574e SS |
2867 | /* This function handles various cases where we need to continue |
2868 | waiting for the inferior. */ | |
2869 | /* (Used to be the keep_going: label in the old wait_for_inferior) */ | |
2870 | ||
2871 | static void | |
2872 | keep_going (struct execution_control_state *ecs) | |
2873 | { | |
d4f3574e | 2874 | /* Save the pc before execution, to compare with pc after stop. */ |
488f131b | 2875 | prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ |
d4f3574e | 2876 | |
d4f3574e SS |
2877 | /* If we did not do break;, it means we should keep running the |
2878 | inferior and not return to debugger. */ | |
2879 | ||
2880 | if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) | |
2881 | { | |
2882 | /* We took a signal (which we are supposed to pass through to | |
488f131b JB |
2883 | the inferior, else we'd have done a break above) and we |
2884 | haven't yet gotten our trap. Simply continue. */ | |
d4f3574e SS |
2885 | resume (currently_stepping (ecs), stop_signal); |
2886 | } | |
2887 | else | |
2888 | { | |
2889 | /* Either the trap was not expected, but we are continuing | |
488f131b JB |
2890 | anyway (the user asked that this signal be passed to the |
2891 | child) | |
2892 | -- or -- | |
2893 | The signal was SIGTRAP, e.g. it was our signal, but we | |
2894 | decided we should resume from it. | |
d4f3574e | 2895 | |
68f53502 | 2896 | We're going to run this baby now! */ |
d4f3574e | 2897 | |
68f53502 | 2898 | if (!breakpoints_inserted && !ecs->another_trap) |
d4f3574e | 2899 | { |
569631c6 UW |
2900 | /* Stop stepping when inserting breakpoints |
2901 | has failed. */ | |
2902 | if (insert_breakpoints () != 0) | |
d4f3574e SS |
2903 | { |
2904 | stop_stepping (ecs); | |
2905 | return; | |
2906 | } | |
2907 | breakpoints_inserted = 1; | |
2908 | } | |
2909 | ||
2910 | trap_expected = ecs->another_trap; | |
2911 | ||
2912 | /* Do not deliver SIGNAL_TRAP (except when the user explicitly | |
488f131b JB |
2913 | specifies that such a signal should be delivered to the |
2914 | target program). | |
2915 | ||
2916 | Typically, this would occure when a user is debugging a | |
2917 | target monitor on a simulator: the target monitor sets a | |
2918 | breakpoint; the simulator encounters this break-point and | |
2919 | halts the simulation handing control to GDB; GDB, noteing | |
2920 | that the break-point isn't valid, returns control back to the | |
2921 | simulator; the simulator then delivers the hardware | |
2922 | equivalent of a SIGNAL_TRAP to the program being debugged. */ | |
2923 | ||
2924 | if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal]) | |
d4f3574e SS |
2925 | stop_signal = TARGET_SIGNAL_0; |
2926 | ||
d4f3574e SS |
2927 | |
2928 | resume (currently_stepping (ecs), stop_signal); | |
2929 | } | |
2930 | ||
488f131b | 2931 | prepare_to_wait (ecs); |
d4f3574e SS |
2932 | } |
2933 | ||
104c1213 JM |
2934 | /* This function normally comes after a resume, before |
2935 | handle_inferior_event exits. It takes care of any last bits of | |
2936 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 2937 | |
104c1213 JM |
2938 | static void |
2939 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 2940 | { |
527159b7 | 2941 | if (debug_infrun) |
8a9de0e4 | 2942 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 JM |
2943 | if (ecs->infwait_state == infwait_normal_state) |
2944 | { | |
2945 | overlay_cache_invalid = 1; | |
2946 | ||
2947 | /* We have to invalidate the registers BEFORE calling | |
488f131b JB |
2948 | target_wait because they can be loaded from the target while |
2949 | in target_wait. This makes remote debugging a bit more | |
2950 | efficient for those targets that provide critical registers | |
2951 | as part of their normal status mechanism. */ | |
104c1213 JM |
2952 | |
2953 | registers_changed (); | |
39f77062 | 2954 | ecs->waiton_ptid = pid_to_ptid (-1); |
104c1213 JM |
2955 | ecs->wp = &(ecs->ws); |
2956 | } | |
2957 | /* This is the old end of the while loop. Let everybody know we | |
2958 | want to wait for the inferior some more and get called again | |
2959 | soon. */ | |
2960 | ecs->wait_some_more = 1; | |
c906108c | 2961 | } |
11cf8741 JM |
2962 | |
2963 | /* Print why the inferior has stopped. We always print something when | |
2964 | the inferior exits, or receives a signal. The rest of the cases are | |
2965 | dealt with later on in normal_stop() and print_it_typical(). Ideally | |
2966 | there should be a call to this function from handle_inferior_event() | |
2967 | each time stop_stepping() is called.*/ | |
2968 | static void | |
2969 | print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) | |
2970 | { | |
2971 | switch (stop_reason) | |
2972 | { | |
11cf8741 JM |
2973 | case END_STEPPING_RANGE: |
2974 | /* We are done with a step/next/si/ni command. */ | |
2975 | /* For now print nothing. */ | |
fb40c209 | 2976 | /* Print a message only if not in the middle of doing a "step n" |
488f131b | 2977 | operation for n > 1 */ |
fb40c209 | 2978 | if (!step_multi || !stop_step) |
9dc5e2a9 | 2979 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2980 | ui_out_field_string |
2981 | (uiout, "reason", | |
2982 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
11cf8741 | 2983 | break; |
11cf8741 JM |
2984 | case SIGNAL_EXITED: |
2985 | /* The inferior was terminated by a signal. */ | |
8b93c638 | 2986 | annotate_signalled (); |
9dc5e2a9 | 2987 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2988 | ui_out_field_string |
2989 | (uiout, "reason", | |
2990 | async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
8b93c638 JM |
2991 | ui_out_text (uiout, "\nProgram terminated with signal "); |
2992 | annotate_signal_name (); | |
488f131b JB |
2993 | ui_out_field_string (uiout, "signal-name", |
2994 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2995 | annotate_signal_name_end (); |
2996 | ui_out_text (uiout, ", "); | |
2997 | annotate_signal_string (); | |
488f131b JB |
2998 | ui_out_field_string (uiout, "signal-meaning", |
2999 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
3000 | annotate_signal_string_end (); |
3001 | ui_out_text (uiout, ".\n"); | |
3002 | ui_out_text (uiout, "The program no longer exists.\n"); | |
11cf8741 JM |
3003 | break; |
3004 | case EXITED: | |
3005 | /* The inferior program is finished. */ | |
8b93c638 JM |
3006 | annotate_exited (stop_info); |
3007 | if (stop_info) | |
3008 | { | |
9dc5e2a9 | 3009 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
3010 | ui_out_field_string (uiout, "reason", |
3011 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
8b93c638 | 3012 | ui_out_text (uiout, "\nProgram exited with code "); |
488f131b JB |
3013 | ui_out_field_fmt (uiout, "exit-code", "0%o", |
3014 | (unsigned int) stop_info); | |
8b93c638 JM |
3015 | ui_out_text (uiout, ".\n"); |
3016 | } | |
3017 | else | |
3018 | { | |
9dc5e2a9 | 3019 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
3020 | ui_out_field_string |
3021 | (uiout, "reason", | |
3022 | async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
8b93c638 JM |
3023 | ui_out_text (uiout, "\nProgram exited normally.\n"); |
3024 | } | |
f17517ea AS |
3025 | /* Support the --return-child-result option. */ |
3026 | return_child_result_value = stop_info; | |
11cf8741 JM |
3027 | break; |
3028 | case SIGNAL_RECEIVED: | |
3029 | /* Signal received. The signal table tells us to print about | |
3030 | it. */ | |
8b93c638 JM |
3031 | annotate_signal (); |
3032 | ui_out_text (uiout, "\nProgram received signal "); | |
3033 | annotate_signal_name (); | |
84c6c83c | 3034 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
3035 | ui_out_field_string |
3036 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b JB |
3037 | ui_out_field_string (uiout, "signal-name", |
3038 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
3039 | annotate_signal_name_end (); |
3040 | ui_out_text (uiout, ", "); | |
3041 | annotate_signal_string (); | |
488f131b JB |
3042 | ui_out_field_string (uiout, "signal-meaning", |
3043 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
3044 | annotate_signal_string_end (); |
3045 | ui_out_text (uiout, ".\n"); | |
11cf8741 JM |
3046 | break; |
3047 | default: | |
8e65ff28 | 3048 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 3049 | _("print_stop_reason: unrecognized enum value")); |
11cf8741 JM |
3050 | break; |
3051 | } | |
3052 | } | |
c906108c | 3053 | \f |
43ff13b4 | 3054 | |
c906108c SS |
3055 | /* Here to return control to GDB when the inferior stops for real. |
3056 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
3057 | ||
3058 | STOP_PRINT_FRAME nonzero means print the executing frame | |
3059 | (pc, function, args, file, line number and line text). | |
3060 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
3061 | attempting to insert breakpoints. */ | |
3062 | ||
3063 | void | |
96baa820 | 3064 | normal_stop (void) |
c906108c | 3065 | { |
73b65bb0 DJ |
3066 | struct target_waitstatus last; |
3067 | ptid_t last_ptid; | |
3068 | ||
3069 | get_last_target_status (&last_ptid, &last); | |
3070 | ||
c906108c SS |
3071 | /* As with the notification of thread events, we want to delay |
3072 | notifying the user that we've switched thread context until | |
3073 | the inferior actually stops. | |
3074 | ||
73b65bb0 DJ |
3075 | There's no point in saying anything if the inferior has exited. |
3076 | Note that SIGNALLED here means "exited with a signal", not | |
3077 | "received a signal". */ | |
488f131b | 3078 | if (!ptid_equal (previous_inferior_ptid, inferior_ptid) |
73b65bb0 DJ |
3079 | && target_has_execution |
3080 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
3081 | && last.kind != TARGET_WAITKIND_EXITED) | |
c906108c SS |
3082 | { |
3083 | target_terminal_ours_for_output (); | |
a3f17187 | 3084 | printf_filtered (_("[Switching to %s]\n"), |
39f77062 KB |
3085 | target_pid_or_tid_to_str (inferior_ptid)); |
3086 | previous_inferior_ptid = inferior_ptid; | |
c906108c | 3087 | } |
c906108c | 3088 | |
4fa8626c | 3089 | /* NOTE drow/2004-01-17: Is this still necessary? */ |
c906108c SS |
3090 | /* Make sure that the current_frame's pc is correct. This |
3091 | is a correction for setting up the frame info before doing | |
b798847d | 3092 | gdbarch_decr_pc_after_break */ |
b87efeee AC |
3093 | if (target_has_execution) |
3094 | /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to | |
b798847d | 3095 | gdbarch_decr_pc_after_break, the program counter can change. Ask the |
b87efeee | 3096 | frame code to check for this and sort out any resultant mess. |
b798847d | 3097 | gdbarch_decr_pc_after_break needs to just go away. */ |
2f107107 | 3098 | deprecated_update_frame_pc_hack (get_current_frame (), read_pc ()); |
c906108c | 3099 | |
c906108c SS |
3100 | if (target_has_execution && breakpoints_inserted) |
3101 | { | |
3102 | if (remove_breakpoints ()) | |
3103 | { | |
3104 | target_terminal_ours_for_output (); | |
a3f17187 AC |
3105 | printf_filtered (_("\ |
3106 | Cannot remove breakpoints because program is no longer writable.\n\ | |
3107 | It might be running in another process.\n\ | |
3108 | Further execution is probably impossible.\n")); | |
c906108c SS |
3109 | } |
3110 | } | |
3111 | breakpoints_inserted = 0; | |
3112 | ||
3113 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
3114 | Delete any breakpoint that is to be deleted at the next stop. */ | |
3115 | ||
3116 | breakpoint_auto_delete (stop_bpstat); | |
3117 | ||
3118 | /* If an auto-display called a function and that got a signal, | |
3119 | delete that auto-display to avoid an infinite recursion. */ | |
3120 | ||
3121 | if (stopped_by_random_signal) | |
3122 | disable_current_display (); | |
3123 | ||
3124 | /* Don't print a message if in the middle of doing a "step n" | |
3125 | operation for n > 1 */ | |
3126 | if (step_multi && stop_step) | |
3127 | goto done; | |
3128 | ||
3129 | target_terminal_ours (); | |
3130 | ||
7abfe014 DJ |
3131 | /* Set the current source location. This will also happen if we |
3132 | display the frame below, but the current SAL will be incorrect | |
3133 | during a user hook-stop function. */ | |
3134 | if (target_has_stack && !stop_stack_dummy) | |
3135 | set_current_sal_from_frame (get_current_frame (), 1); | |
3136 | ||
5913bcb0 AC |
3137 | /* Look up the hook_stop and run it (CLI internally handles problem |
3138 | of stop_command's pre-hook not existing). */ | |
3139 | if (stop_command) | |
3140 | catch_errors (hook_stop_stub, stop_command, | |
3141 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
c906108c SS |
3142 | |
3143 | if (!target_has_stack) | |
3144 | { | |
3145 | ||
3146 | goto done; | |
3147 | } | |
3148 | ||
3149 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
3150 | and current location is based on that. | |
3151 | Don't do this on return from a stack dummy routine, | |
3152 | or if the program has exited. */ | |
3153 | ||
3154 | if (!stop_stack_dummy) | |
3155 | { | |
0f7d239c | 3156 | select_frame (get_current_frame ()); |
c906108c SS |
3157 | |
3158 | /* Print current location without a level number, if | |
c5aa993b JM |
3159 | we have changed functions or hit a breakpoint. |
3160 | Print source line if we have one. | |
3161 | bpstat_print() contains the logic deciding in detail | |
3162 | what to print, based on the event(s) that just occurred. */ | |
c906108c | 3163 | |
206415a3 | 3164 | if (stop_print_frame) |
c906108c SS |
3165 | { |
3166 | int bpstat_ret; | |
3167 | int source_flag; | |
917317f4 | 3168 | int do_frame_printing = 1; |
c906108c SS |
3169 | |
3170 | bpstat_ret = bpstat_print (stop_bpstat); | |
917317f4 JM |
3171 | switch (bpstat_ret) |
3172 | { | |
3173 | case PRINT_UNKNOWN: | |
aa0cd9c1 | 3174 | /* FIXME: cagney/2002-12-01: Given that a frame ID does |
8fb3e588 AC |
3175 | (or should) carry around the function and does (or |
3176 | should) use that when doing a frame comparison. */ | |
917317f4 | 3177 | if (stop_step |
aa0cd9c1 AC |
3178 | && frame_id_eq (step_frame_id, |
3179 | get_frame_id (get_current_frame ())) | |
917317f4 | 3180 | && step_start_function == find_pc_function (stop_pc)) |
488f131b | 3181 | source_flag = SRC_LINE; /* finished step, just print source line */ |
917317f4 | 3182 | else |
488f131b | 3183 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3184 | break; |
3185 | case PRINT_SRC_AND_LOC: | |
488f131b | 3186 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3187 | break; |
3188 | case PRINT_SRC_ONLY: | |
c5394b80 | 3189 | source_flag = SRC_LINE; |
917317f4 JM |
3190 | break; |
3191 | case PRINT_NOTHING: | |
488f131b | 3192 | source_flag = SRC_LINE; /* something bogus */ |
917317f4 JM |
3193 | do_frame_printing = 0; |
3194 | break; | |
3195 | default: | |
e2e0b3e5 | 3196 | internal_error (__FILE__, __LINE__, _("Unknown value.")); |
917317f4 | 3197 | } |
c906108c | 3198 | |
9dc5e2a9 | 3199 | if (ui_out_is_mi_like_p (uiout)) |
39f77062 | 3200 | ui_out_field_int (uiout, "thread-id", |
488f131b | 3201 | pid_to_thread_id (inferior_ptid)); |
c906108c SS |
3202 | /* The behavior of this routine with respect to the source |
3203 | flag is: | |
c5394b80 JM |
3204 | SRC_LINE: Print only source line |
3205 | LOCATION: Print only location | |
3206 | SRC_AND_LOC: Print location and source line */ | |
917317f4 | 3207 | if (do_frame_printing) |
b04f3ab4 | 3208 | print_stack_frame (get_selected_frame (NULL), 0, source_flag); |
c906108c SS |
3209 | |
3210 | /* Display the auto-display expressions. */ | |
3211 | do_displays (); | |
3212 | } | |
3213 | } | |
3214 | ||
3215 | /* Save the function value return registers, if we care. | |
3216 | We might be about to restore their previous contents. */ | |
3217 | if (proceed_to_finish) | |
72cec141 AC |
3218 | /* NB: The copy goes through to the target picking up the value of |
3219 | all the registers. */ | |
3220 | regcache_cpy (stop_registers, current_regcache); | |
c906108c SS |
3221 | |
3222 | if (stop_stack_dummy) | |
3223 | { | |
dbe9fe58 AC |
3224 | /* Pop the empty frame that contains the stack dummy. POP_FRAME |
3225 | ends with a setting of the current frame, so we can use that | |
3226 | next. */ | |
3227 | frame_pop (get_current_frame ()); | |
c906108c | 3228 | /* Set stop_pc to what it was before we called the function. |
c5aa993b JM |
3229 | Can't rely on restore_inferior_status because that only gets |
3230 | called if we don't stop in the called function. */ | |
c906108c | 3231 | stop_pc = read_pc (); |
0f7d239c | 3232 | select_frame (get_current_frame ()); |
c906108c SS |
3233 | } |
3234 | ||
c906108c SS |
3235 | done: |
3236 | annotate_stopped (); | |
7a464420 | 3237 | observer_notify_normal_stop (stop_bpstat); |
c906108c SS |
3238 | } |
3239 | ||
3240 | static int | |
96baa820 | 3241 | hook_stop_stub (void *cmd) |
c906108c | 3242 | { |
5913bcb0 | 3243 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
3244 | return (0); |
3245 | } | |
3246 | \f | |
c5aa993b | 3247 | int |
96baa820 | 3248 | signal_stop_state (int signo) |
c906108c SS |
3249 | { |
3250 | return signal_stop[signo]; | |
3251 | } | |
3252 | ||
c5aa993b | 3253 | int |
96baa820 | 3254 | signal_print_state (int signo) |
c906108c SS |
3255 | { |
3256 | return signal_print[signo]; | |
3257 | } | |
3258 | ||
c5aa993b | 3259 | int |
96baa820 | 3260 | signal_pass_state (int signo) |
c906108c SS |
3261 | { |
3262 | return signal_program[signo]; | |
3263 | } | |
3264 | ||
488f131b | 3265 | int |
7bda5e4a | 3266 | signal_stop_update (int signo, int state) |
d4f3574e SS |
3267 | { |
3268 | int ret = signal_stop[signo]; | |
3269 | signal_stop[signo] = state; | |
3270 | return ret; | |
3271 | } | |
3272 | ||
488f131b | 3273 | int |
7bda5e4a | 3274 | signal_print_update (int signo, int state) |
d4f3574e SS |
3275 | { |
3276 | int ret = signal_print[signo]; | |
3277 | signal_print[signo] = state; | |
3278 | return ret; | |
3279 | } | |
3280 | ||
488f131b | 3281 | int |
7bda5e4a | 3282 | signal_pass_update (int signo, int state) |
d4f3574e SS |
3283 | { |
3284 | int ret = signal_program[signo]; | |
3285 | signal_program[signo] = state; | |
3286 | return ret; | |
3287 | } | |
3288 | ||
c906108c | 3289 | static void |
96baa820 | 3290 | sig_print_header (void) |
c906108c | 3291 | { |
a3f17187 AC |
3292 | printf_filtered (_("\ |
3293 | Signal Stop\tPrint\tPass to program\tDescription\n")); | |
c906108c SS |
3294 | } |
3295 | ||
3296 | static void | |
96baa820 | 3297 | sig_print_info (enum target_signal oursig) |
c906108c SS |
3298 | { |
3299 | char *name = target_signal_to_name (oursig); | |
3300 | int name_padding = 13 - strlen (name); | |
96baa820 | 3301 | |
c906108c SS |
3302 | if (name_padding <= 0) |
3303 | name_padding = 0; | |
3304 | ||
3305 | printf_filtered ("%s", name); | |
488f131b | 3306 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
3307 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
3308 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
3309 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
3310 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
3311 | } | |
3312 | ||
3313 | /* Specify how various signals in the inferior should be handled. */ | |
3314 | ||
3315 | static void | |
96baa820 | 3316 | handle_command (char *args, int from_tty) |
c906108c SS |
3317 | { |
3318 | char **argv; | |
3319 | int digits, wordlen; | |
3320 | int sigfirst, signum, siglast; | |
3321 | enum target_signal oursig; | |
3322 | int allsigs; | |
3323 | int nsigs; | |
3324 | unsigned char *sigs; | |
3325 | struct cleanup *old_chain; | |
3326 | ||
3327 | if (args == NULL) | |
3328 | { | |
e2e0b3e5 | 3329 | error_no_arg (_("signal to handle")); |
c906108c SS |
3330 | } |
3331 | ||
3332 | /* Allocate and zero an array of flags for which signals to handle. */ | |
3333 | ||
3334 | nsigs = (int) TARGET_SIGNAL_LAST; | |
3335 | sigs = (unsigned char *) alloca (nsigs); | |
3336 | memset (sigs, 0, nsigs); | |
3337 | ||
3338 | /* Break the command line up into args. */ | |
3339 | ||
3340 | argv = buildargv (args); | |
3341 | if (argv == NULL) | |
3342 | { | |
3343 | nomem (0); | |
3344 | } | |
7a292a7a | 3345 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3346 | |
3347 | /* Walk through the args, looking for signal oursigs, signal names, and | |
3348 | actions. Signal numbers and signal names may be interspersed with | |
3349 | actions, with the actions being performed for all signals cumulatively | |
3350 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
3351 | ||
3352 | while (*argv != NULL) | |
3353 | { | |
3354 | wordlen = strlen (*argv); | |
3355 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
3356 | {; | |
3357 | } | |
3358 | allsigs = 0; | |
3359 | sigfirst = siglast = -1; | |
3360 | ||
3361 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
3362 | { | |
3363 | /* Apply action to all signals except those used by the | |
3364 | debugger. Silently skip those. */ | |
3365 | allsigs = 1; | |
3366 | sigfirst = 0; | |
3367 | siglast = nsigs - 1; | |
3368 | } | |
3369 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
3370 | { | |
3371 | SET_SIGS (nsigs, sigs, signal_stop); | |
3372 | SET_SIGS (nsigs, sigs, signal_print); | |
3373 | } | |
3374 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
3375 | { | |
3376 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3377 | } | |
3378 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
3379 | { | |
3380 | SET_SIGS (nsigs, sigs, signal_print); | |
3381 | } | |
3382 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
3383 | { | |
3384 | SET_SIGS (nsigs, sigs, signal_program); | |
3385 | } | |
3386 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
3387 | { | |
3388 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3389 | } | |
3390 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
3391 | { | |
3392 | SET_SIGS (nsigs, sigs, signal_program); | |
3393 | } | |
3394 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
3395 | { | |
3396 | UNSET_SIGS (nsigs, sigs, signal_print); | |
3397 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3398 | } | |
3399 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
3400 | { | |
3401 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3402 | } | |
3403 | else if (digits > 0) | |
3404 | { | |
3405 | /* It is numeric. The numeric signal refers to our own | |
3406 | internal signal numbering from target.h, not to host/target | |
3407 | signal number. This is a feature; users really should be | |
3408 | using symbolic names anyway, and the common ones like | |
3409 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
3410 | ||
3411 | sigfirst = siglast = (int) | |
3412 | target_signal_from_command (atoi (*argv)); | |
3413 | if ((*argv)[digits] == '-') | |
3414 | { | |
3415 | siglast = (int) | |
3416 | target_signal_from_command (atoi ((*argv) + digits + 1)); | |
3417 | } | |
3418 | if (sigfirst > siglast) | |
3419 | { | |
3420 | /* Bet he didn't figure we'd think of this case... */ | |
3421 | signum = sigfirst; | |
3422 | sigfirst = siglast; | |
3423 | siglast = signum; | |
3424 | } | |
3425 | } | |
3426 | else | |
3427 | { | |
3428 | oursig = target_signal_from_name (*argv); | |
3429 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
3430 | { | |
3431 | sigfirst = siglast = (int) oursig; | |
3432 | } | |
3433 | else | |
3434 | { | |
3435 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 3436 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
3437 | } |
3438 | } | |
3439 | ||
3440 | /* If any signal numbers or symbol names were found, set flags for | |
c5aa993b | 3441 | which signals to apply actions to. */ |
c906108c SS |
3442 | |
3443 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
3444 | { | |
3445 | switch ((enum target_signal) signum) | |
3446 | { | |
3447 | case TARGET_SIGNAL_TRAP: | |
3448 | case TARGET_SIGNAL_INT: | |
3449 | if (!allsigs && !sigs[signum]) | |
3450 | { | |
3451 | if (query ("%s is used by the debugger.\n\ | |
488f131b | 3452 | Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum))) |
c906108c SS |
3453 | { |
3454 | sigs[signum] = 1; | |
3455 | } | |
3456 | else | |
3457 | { | |
a3f17187 | 3458 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
3459 | gdb_flush (gdb_stdout); |
3460 | } | |
3461 | } | |
3462 | break; | |
3463 | case TARGET_SIGNAL_0: | |
3464 | case TARGET_SIGNAL_DEFAULT: | |
3465 | case TARGET_SIGNAL_UNKNOWN: | |
3466 | /* Make sure that "all" doesn't print these. */ | |
3467 | break; | |
3468 | default: | |
3469 | sigs[signum] = 1; | |
3470 | break; | |
3471 | } | |
3472 | } | |
3473 | ||
3474 | argv++; | |
3475 | } | |
3476 | ||
39f77062 | 3477 | target_notice_signals (inferior_ptid); |
c906108c SS |
3478 | |
3479 | if (from_tty) | |
3480 | { | |
3481 | /* Show the results. */ | |
3482 | sig_print_header (); | |
3483 | for (signum = 0; signum < nsigs; signum++) | |
3484 | { | |
3485 | if (sigs[signum]) | |
3486 | { | |
3487 | sig_print_info (signum); | |
3488 | } | |
3489 | } | |
3490 | } | |
3491 | ||
3492 | do_cleanups (old_chain); | |
3493 | } | |
3494 | ||
3495 | static void | |
96baa820 | 3496 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
3497 | { |
3498 | char **argv; | |
3499 | struct cleanup *old_chain; | |
3500 | ||
3501 | /* Break the command line up into args. */ | |
3502 | ||
3503 | argv = buildargv (args); | |
3504 | if (argv == NULL) | |
3505 | { | |
3506 | nomem (0); | |
3507 | } | |
7a292a7a | 3508 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3509 | if (argv[1] != (char *) NULL) |
3510 | { | |
3511 | char *argBuf; | |
3512 | int bufLen; | |
3513 | ||
3514 | bufLen = strlen (argv[0]) + 20; | |
3515 | argBuf = (char *) xmalloc (bufLen); | |
3516 | if (argBuf) | |
3517 | { | |
3518 | int validFlag = 1; | |
3519 | enum target_signal oursig; | |
3520 | ||
3521 | oursig = target_signal_from_name (argv[0]); | |
3522 | memset (argBuf, 0, bufLen); | |
3523 | if (strcmp (argv[1], "Q") == 0) | |
3524 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3525 | else | |
3526 | { | |
3527 | if (strcmp (argv[1], "s") == 0) | |
3528 | { | |
3529 | if (!signal_stop[oursig]) | |
3530 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
3531 | else | |
3532 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
3533 | } | |
3534 | else if (strcmp (argv[1], "i") == 0) | |
3535 | { | |
3536 | if (!signal_program[oursig]) | |
3537 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
3538 | else | |
3539 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
3540 | } | |
3541 | else if (strcmp (argv[1], "r") == 0) | |
3542 | { | |
3543 | if (!signal_print[oursig]) | |
3544 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
3545 | else | |
3546 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3547 | } | |
3548 | else | |
3549 | validFlag = 0; | |
3550 | } | |
3551 | if (validFlag) | |
3552 | handle_command (argBuf, from_tty); | |
3553 | else | |
a3f17187 | 3554 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 3555 | if (argBuf) |
b8c9b27d | 3556 | xfree (argBuf); |
c906108c SS |
3557 | } |
3558 | } | |
3559 | do_cleanups (old_chain); | |
3560 | } | |
3561 | ||
3562 | /* Print current contents of the tables set by the handle command. | |
3563 | It is possible we should just be printing signals actually used | |
3564 | by the current target (but for things to work right when switching | |
3565 | targets, all signals should be in the signal tables). */ | |
3566 | ||
3567 | static void | |
96baa820 | 3568 | signals_info (char *signum_exp, int from_tty) |
c906108c SS |
3569 | { |
3570 | enum target_signal oursig; | |
3571 | sig_print_header (); | |
3572 | ||
3573 | if (signum_exp) | |
3574 | { | |
3575 | /* First see if this is a symbol name. */ | |
3576 | oursig = target_signal_from_name (signum_exp); | |
3577 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
3578 | { | |
3579 | /* No, try numeric. */ | |
3580 | oursig = | |
bb518678 | 3581 | target_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
3582 | } |
3583 | sig_print_info (oursig); | |
3584 | return; | |
3585 | } | |
3586 | ||
3587 | printf_filtered ("\n"); | |
3588 | /* These ugly casts brought to you by the native VAX compiler. */ | |
3589 | for (oursig = TARGET_SIGNAL_FIRST; | |
3590 | (int) oursig < (int) TARGET_SIGNAL_LAST; | |
3591 | oursig = (enum target_signal) ((int) oursig + 1)) | |
3592 | { | |
3593 | QUIT; | |
3594 | ||
3595 | if (oursig != TARGET_SIGNAL_UNKNOWN | |
488f131b | 3596 | && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) |
c906108c SS |
3597 | sig_print_info (oursig); |
3598 | } | |
3599 | ||
a3f17187 | 3600 | printf_filtered (_("\nUse the \"handle\" command to change these tables.\n")); |
c906108c SS |
3601 | } |
3602 | \f | |
7a292a7a SS |
3603 | struct inferior_status |
3604 | { | |
3605 | enum target_signal stop_signal; | |
3606 | CORE_ADDR stop_pc; | |
3607 | bpstat stop_bpstat; | |
3608 | int stop_step; | |
3609 | int stop_stack_dummy; | |
3610 | int stopped_by_random_signal; | |
3611 | int trap_expected; | |
3612 | CORE_ADDR step_range_start; | |
3613 | CORE_ADDR step_range_end; | |
aa0cd9c1 | 3614 | struct frame_id step_frame_id; |
5fbbeb29 | 3615 | enum step_over_calls_kind step_over_calls; |
7a292a7a SS |
3616 | CORE_ADDR step_resume_break_address; |
3617 | int stop_after_trap; | |
c0236d92 | 3618 | int stop_soon; |
72cec141 | 3619 | struct regcache *stop_registers; |
7a292a7a SS |
3620 | |
3621 | /* These are here because if call_function_by_hand has written some | |
3622 | registers and then decides to call error(), we better not have changed | |
3623 | any registers. */ | |
72cec141 | 3624 | struct regcache *registers; |
7a292a7a | 3625 | |
101dcfbe AC |
3626 | /* A frame unique identifier. */ |
3627 | struct frame_id selected_frame_id; | |
3628 | ||
7a292a7a SS |
3629 | int breakpoint_proceeded; |
3630 | int restore_stack_info; | |
3631 | int proceed_to_finish; | |
3632 | }; | |
3633 | ||
7a292a7a | 3634 | void |
96baa820 JM |
3635 | write_inferior_status_register (struct inferior_status *inf_status, int regno, |
3636 | LONGEST val) | |
7a292a7a | 3637 | { |
3acba339 | 3638 | int size = register_size (current_gdbarch, regno); |
7a292a7a SS |
3639 | void *buf = alloca (size); |
3640 | store_signed_integer (buf, size, val); | |
0818c12a | 3641 | regcache_raw_write (inf_status->registers, regno, buf); |
7a292a7a SS |
3642 | } |
3643 | ||
c906108c SS |
3644 | /* Save all of the information associated with the inferior<==>gdb |
3645 | connection. INF_STATUS is a pointer to a "struct inferior_status" | |
3646 | (defined in inferior.h). */ | |
3647 | ||
7a292a7a | 3648 | struct inferior_status * |
96baa820 | 3649 | save_inferior_status (int restore_stack_info) |
c906108c | 3650 | { |
72cec141 | 3651 | struct inferior_status *inf_status = XMALLOC (struct inferior_status); |
7a292a7a | 3652 | |
c906108c SS |
3653 | inf_status->stop_signal = stop_signal; |
3654 | inf_status->stop_pc = stop_pc; | |
3655 | inf_status->stop_step = stop_step; | |
3656 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
3657 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
3658 | inf_status->trap_expected = trap_expected; | |
3659 | inf_status->step_range_start = step_range_start; | |
3660 | inf_status->step_range_end = step_range_end; | |
aa0cd9c1 | 3661 | inf_status->step_frame_id = step_frame_id; |
c906108c SS |
3662 | inf_status->step_over_calls = step_over_calls; |
3663 | inf_status->stop_after_trap = stop_after_trap; | |
c0236d92 | 3664 | inf_status->stop_soon = stop_soon; |
c906108c SS |
3665 | /* Save original bpstat chain here; replace it with copy of chain. |
3666 | If caller's caller is walking the chain, they'll be happier if we | |
7a292a7a SS |
3667 | hand them back the original chain when restore_inferior_status is |
3668 | called. */ | |
c906108c SS |
3669 | inf_status->stop_bpstat = stop_bpstat; |
3670 | stop_bpstat = bpstat_copy (stop_bpstat); | |
3671 | inf_status->breakpoint_proceeded = breakpoint_proceeded; | |
3672 | inf_status->restore_stack_info = restore_stack_info; | |
3673 | inf_status->proceed_to_finish = proceed_to_finish; | |
c5aa993b | 3674 | |
72cec141 | 3675 | inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers); |
c906108c | 3676 | |
72cec141 | 3677 | inf_status->registers = regcache_dup (current_regcache); |
c906108c | 3678 | |
206415a3 | 3679 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
7a292a7a | 3680 | return inf_status; |
c906108c SS |
3681 | } |
3682 | ||
c906108c | 3683 | static int |
96baa820 | 3684 | restore_selected_frame (void *args) |
c906108c | 3685 | { |
488f131b | 3686 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 3687 | struct frame_info *frame; |
c906108c | 3688 | |
101dcfbe | 3689 | frame = frame_find_by_id (*fid); |
c906108c | 3690 | |
aa0cd9c1 AC |
3691 | /* If inf_status->selected_frame_id is NULL, there was no previously |
3692 | selected frame. */ | |
101dcfbe | 3693 | if (frame == NULL) |
c906108c | 3694 | { |
8a3fe4f8 | 3695 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
3696 | return 0; |
3697 | } | |
3698 | ||
0f7d239c | 3699 | select_frame (frame); |
c906108c SS |
3700 | |
3701 | return (1); | |
3702 | } | |
3703 | ||
3704 | void | |
96baa820 | 3705 | restore_inferior_status (struct inferior_status *inf_status) |
c906108c SS |
3706 | { |
3707 | stop_signal = inf_status->stop_signal; | |
3708 | stop_pc = inf_status->stop_pc; | |
3709 | stop_step = inf_status->stop_step; | |
3710 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
3711 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
3712 | trap_expected = inf_status->trap_expected; | |
3713 | step_range_start = inf_status->step_range_start; | |
3714 | step_range_end = inf_status->step_range_end; | |
aa0cd9c1 | 3715 | step_frame_id = inf_status->step_frame_id; |
c906108c SS |
3716 | step_over_calls = inf_status->step_over_calls; |
3717 | stop_after_trap = inf_status->stop_after_trap; | |
c0236d92 | 3718 | stop_soon = inf_status->stop_soon; |
c906108c SS |
3719 | bpstat_clear (&stop_bpstat); |
3720 | stop_bpstat = inf_status->stop_bpstat; | |
3721 | breakpoint_proceeded = inf_status->breakpoint_proceeded; | |
3722 | proceed_to_finish = inf_status->proceed_to_finish; | |
3723 | ||
72cec141 AC |
3724 | /* FIXME: Is the restore of stop_registers always needed. */ |
3725 | regcache_xfree (stop_registers); | |
3726 | stop_registers = inf_status->stop_registers; | |
c906108c SS |
3727 | |
3728 | /* The inferior can be gone if the user types "print exit(0)" | |
3729 | (and perhaps other times). */ | |
3730 | if (target_has_execution) | |
72cec141 AC |
3731 | /* NB: The register write goes through to the target. */ |
3732 | regcache_cpy (current_regcache, inf_status->registers); | |
3733 | regcache_xfree (inf_status->registers); | |
c906108c | 3734 | |
c906108c SS |
3735 | /* FIXME: If we are being called after stopping in a function which |
3736 | is called from gdb, we should not be trying to restore the | |
3737 | selected frame; it just prints a spurious error message (The | |
3738 | message is useful, however, in detecting bugs in gdb (like if gdb | |
3739 | clobbers the stack)). In fact, should we be restoring the | |
3740 | inferior status at all in that case? . */ | |
3741 | ||
3742 | if (target_has_stack && inf_status->restore_stack_info) | |
3743 | { | |
c906108c | 3744 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
3745 | walking the stack might encounter a garbage pointer and |
3746 | error() trying to dereference it. */ | |
488f131b JB |
3747 | if (catch_errors |
3748 | (restore_selected_frame, &inf_status->selected_frame_id, | |
3749 | "Unable to restore previously selected frame:\n", | |
3750 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
3751 | /* Error in restoring the selected frame. Select the innermost |
3752 | frame. */ | |
0f7d239c | 3753 | select_frame (get_current_frame ()); |
c906108c SS |
3754 | |
3755 | } | |
c906108c | 3756 | |
72cec141 | 3757 | xfree (inf_status); |
7a292a7a | 3758 | } |
c906108c | 3759 | |
74b7792f AC |
3760 | static void |
3761 | do_restore_inferior_status_cleanup (void *sts) | |
3762 | { | |
3763 | restore_inferior_status (sts); | |
3764 | } | |
3765 | ||
3766 | struct cleanup * | |
3767 | make_cleanup_restore_inferior_status (struct inferior_status *inf_status) | |
3768 | { | |
3769 | return make_cleanup (do_restore_inferior_status_cleanup, inf_status); | |
3770 | } | |
3771 | ||
c906108c | 3772 | void |
96baa820 | 3773 | discard_inferior_status (struct inferior_status *inf_status) |
7a292a7a SS |
3774 | { |
3775 | /* See save_inferior_status for info on stop_bpstat. */ | |
3776 | bpstat_clear (&inf_status->stop_bpstat); | |
72cec141 AC |
3777 | regcache_xfree (inf_status->registers); |
3778 | regcache_xfree (inf_status->stop_registers); | |
3779 | xfree (inf_status); | |
7a292a7a SS |
3780 | } |
3781 | ||
47932f85 DJ |
3782 | int |
3783 | inferior_has_forked (int pid, int *child_pid) | |
3784 | { | |
3785 | struct target_waitstatus last; | |
3786 | ptid_t last_ptid; | |
3787 | ||
3788 | get_last_target_status (&last_ptid, &last); | |
3789 | ||
3790 | if (last.kind != TARGET_WAITKIND_FORKED) | |
3791 | return 0; | |
3792 | ||
3793 | if (ptid_get_pid (last_ptid) != pid) | |
3794 | return 0; | |
3795 | ||
3796 | *child_pid = last.value.related_pid; | |
3797 | return 1; | |
3798 | } | |
3799 | ||
3800 | int | |
3801 | inferior_has_vforked (int pid, int *child_pid) | |
3802 | { | |
3803 | struct target_waitstatus last; | |
3804 | ptid_t last_ptid; | |
3805 | ||
3806 | get_last_target_status (&last_ptid, &last); | |
3807 | ||
3808 | if (last.kind != TARGET_WAITKIND_VFORKED) | |
3809 | return 0; | |
3810 | ||
3811 | if (ptid_get_pid (last_ptid) != pid) | |
3812 | return 0; | |
3813 | ||
3814 | *child_pid = last.value.related_pid; | |
3815 | return 1; | |
3816 | } | |
3817 | ||
3818 | int | |
3819 | inferior_has_execd (int pid, char **execd_pathname) | |
3820 | { | |
3821 | struct target_waitstatus last; | |
3822 | ptid_t last_ptid; | |
3823 | ||
3824 | get_last_target_status (&last_ptid, &last); | |
3825 | ||
3826 | if (last.kind != TARGET_WAITKIND_EXECD) | |
3827 | return 0; | |
3828 | ||
3829 | if (ptid_get_pid (last_ptid) != pid) | |
3830 | return 0; | |
3831 | ||
3832 | *execd_pathname = xstrdup (last.value.execd_pathname); | |
3833 | return 1; | |
3834 | } | |
3835 | ||
ca6724c1 KB |
3836 | /* Oft used ptids */ |
3837 | ptid_t null_ptid; | |
3838 | ptid_t minus_one_ptid; | |
3839 | ||
3840 | /* Create a ptid given the necessary PID, LWP, and TID components. */ | |
488f131b | 3841 | |
ca6724c1 KB |
3842 | ptid_t |
3843 | ptid_build (int pid, long lwp, long tid) | |
3844 | { | |
3845 | ptid_t ptid; | |
3846 | ||
3847 | ptid.pid = pid; | |
3848 | ptid.lwp = lwp; | |
3849 | ptid.tid = tid; | |
3850 | return ptid; | |
3851 | } | |
3852 | ||
3853 | /* Create a ptid from just a pid. */ | |
3854 | ||
3855 | ptid_t | |
3856 | pid_to_ptid (int pid) | |
3857 | { | |
3858 | return ptid_build (pid, 0, 0); | |
3859 | } | |
3860 | ||
3861 | /* Fetch the pid (process id) component from a ptid. */ | |
3862 | ||
3863 | int | |
3864 | ptid_get_pid (ptid_t ptid) | |
3865 | { | |
3866 | return ptid.pid; | |
3867 | } | |
3868 | ||
3869 | /* Fetch the lwp (lightweight process) component from a ptid. */ | |
3870 | ||
3871 | long | |
3872 | ptid_get_lwp (ptid_t ptid) | |
3873 | { | |
3874 | return ptid.lwp; | |
3875 | } | |
3876 | ||
3877 | /* Fetch the tid (thread id) component from a ptid. */ | |
3878 | ||
3879 | long | |
3880 | ptid_get_tid (ptid_t ptid) | |
3881 | { | |
3882 | return ptid.tid; | |
3883 | } | |
3884 | ||
3885 | /* ptid_equal() is used to test equality of two ptids. */ | |
3886 | ||
3887 | int | |
3888 | ptid_equal (ptid_t ptid1, ptid_t ptid2) | |
3889 | { | |
3890 | return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp | |
488f131b | 3891 | && ptid1.tid == ptid2.tid); |
ca6724c1 KB |
3892 | } |
3893 | ||
3894 | /* restore_inferior_ptid() will be used by the cleanup machinery | |
3895 | to restore the inferior_ptid value saved in a call to | |
3896 | save_inferior_ptid(). */ | |
ce696e05 KB |
3897 | |
3898 | static void | |
3899 | restore_inferior_ptid (void *arg) | |
3900 | { | |
3901 | ptid_t *saved_ptid_ptr = arg; | |
3902 | inferior_ptid = *saved_ptid_ptr; | |
3903 | xfree (arg); | |
3904 | } | |
3905 | ||
3906 | /* Save the value of inferior_ptid so that it may be restored by a | |
3907 | later call to do_cleanups(). Returns the struct cleanup pointer | |
3908 | needed for later doing the cleanup. */ | |
3909 | ||
3910 | struct cleanup * | |
3911 | save_inferior_ptid (void) | |
3912 | { | |
3913 | ptid_t *saved_ptid_ptr; | |
3914 | ||
3915 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
3916 | *saved_ptid_ptr = inferior_ptid; | |
3917 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
3918 | } | |
c5aa993b | 3919 | \f |
488f131b | 3920 | |
7a292a7a | 3921 | static void |
96baa820 | 3922 | build_infrun (void) |
7a292a7a | 3923 | { |
72cec141 | 3924 | stop_registers = regcache_xmalloc (current_gdbarch); |
7a292a7a | 3925 | } |
c906108c | 3926 | |
c906108c | 3927 | void |
96baa820 | 3928 | _initialize_infrun (void) |
c906108c | 3929 | { |
52f0bd74 AC |
3930 | int i; |
3931 | int numsigs; | |
c906108c SS |
3932 | struct cmd_list_element *c; |
3933 | ||
046a4708 AC |
3934 | DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers); |
3935 | deprecated_register_gdbarch_swap (NULL, 0, build_infrun); | |
0f71a2f6 | 3936 | |
1bedd215 AC |
3937 | add_info ("signals", signals_info, _("\ |
3938 | What debugger does when program gets various signals.\n\ | |
3939 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
3940 | add_info_alias ("handle", "signals", 0); |
3941 | ||
1bedd215 AC |
3942 | add_com ("handle", class_run, handle_command, _("\ |
3943 | Specify how to handle a signal.\n\ | |
c906108c SS |
3944 | Args are signals and actions to apply to those signals.\n\ |
3945 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3946 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3947 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3948 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3949 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3950 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ | |
c906108c SS |
3951 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
3952 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3953 | Print means print a message if this signal happens.\n\ | |
3954 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3955 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3956 | Pass and Stop may be combined.")); |
c906108c SS |
3957 | if (xdb_commands) |
3958 | { | |
1bedd215 AC |
3959 | add_com ("lz", class_info, signals_info, _("\ |
3960 | What debugger does when program gets various signals.\n\ | |
3961 | Specify a signal as argument to print info on that signal only.")); | |
3962 | add_com ("z", class_run, xdb_handle_command, _("\ | |
3963 | Specify how to handle a signal.\n\ | |
c906108c SS |
3964 | Args are signals and actions to apply to those signals.\n\ |
3965 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3966 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3967 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3968 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3969 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3970 | Recognized actions include \"s\" (toggles between stop and nostop), \n\ | |
c906108c SS |
3971 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
3972 | nopass), \"Q\" (noprint)\n\ | |
3973 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3974 | Print means print a message if this signal happens.\n\ | |
3975 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3976 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3977 | Pass and Stop may be combined.")); |
c906108c SS |
3978 | } |
3979 | ||
3980 | if (!dbx_commands) | |
1a966eab AC |
3981 | stop_command = add_cmd ("stop", class_obscure, |
3982 | not_just_help_class_command, _("\ | |
3983 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 3984 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 3985 | of the program stops."), &cmdlist); |
c906108c | 3986 | |
85c07804 AC |
3987 | add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
3988 | Set inferior debugging."), _("\ | |
3989 | Show inferior debugging."), _("\ | |
3990 | When non-zero, inferior specific debugging is enabled."), | |
3991 | NULL, | |
920d2a44 | 3992 | show_debug_infrun, |
85c07804 | 3993 | &setdebuglist, &showdebuglist); |
527159b7 | 3994 | |
c906108c | 3995 | numsigs = (int) TARGET_SIGNAL_LAST; |
488f131b | 3996 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
3997 | signal_print = (unsigned char *) |
3998 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
3999 | signal_program = (unsigned char *) | |
4000 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
4001 | for (i = 0; i < numsigs; i++) | |
4002 | { | |
4003 | signal_stop[i] = 1; | |
4004 | signal_print[i] = 1; | |
4005 | signal_program[i] = 1; | |
4006 | } | |
4007 | ||
4008 | /* Signals caused by debugger's own actions | |
4009 | should not be given to the program afterwards. */ | |
4010 | signal_program[TARGET_SIGNAL_TRAP] = 0; | |
4011 | signal_program[TARGET_SIGNAL_INT] = 0; | |
4012 | ||
4013 | /* Signals that are not errors should not normally enter the debugger. */ | |
4014 | signal_stop[TARGET_SIGNAL_ALRM] = 0; | |
4015 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
4016 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
4017 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
4018 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
4019 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
4020 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
4021 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
4022 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
4023 | signal_print[TARGET_SIGNAL_IO] = 0; | |
4024 | signal_stop[TARGET_SIGNAL_POLL] = 0; | |
4025 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
4026 | signal_stop[TARGET_SIGNAL_URG] = 0; | |
4027 | signal_print[TARGET_SIGNAL_URG] = 0; | |
4028 | signal_stop[TARGET_SIGNAL_WINCH] = 0; | |
4029 | signal_print[TARGET_SIGNAL_WINCH] = 0; | |
4030 | ||
cd0fc7c3 SS |
4031 | /* These signals are used internally by user-level thread |
4032 | implementations. (See signal(5) on Solaris.) Like the above | |
4033 | signals, a healthy program receives and handles them as part of | |
4034 | its normal operation. */ | |
4035 | signal_stop[TARGET_SIGNAL_LWP] = 0; | |
4036 | signal_print[TARGET_SIGNAL_LWP] = 0; | |
4037 | signal_stop[TARGET_SIGNAL_WAITING] = 0; | |
4038 | signal_print[TARGET_SIGNAL_WAITING] = 0; | |
4039 | signal_stop[TARGET_SIGNAL_CANCEL] = 0; | |
4040 | signal_print[TARGET_SIGNAL_CANCEL] = 0; | |
4041 | ||
85c07804 AC |
4042 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
4043 | &stop_on_solib_events, _("\ | |
4044 | Set stopping for shared library events."), _("\ | |
4045 | Show stopping for shared library events."), _("\ | |
c906108c SS |
4046 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
4047 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 AC |
4048 | to the user would be loading/unloading of a new library."), |
4049 | NULL, | |
920d2a44 | 4050 | show_stop_on_solib_events, |
85c07804 | 4051 | &setlist, &showlist); |
c906108c | 4052 | |
7ab04401 AC |
4053 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
4054 | follow_fork_mode_kind_names, | |
4055 | &follow_fork_mode_string, _("\ | |
4056 | Set debugger response to a program call of fork or vfork."), _("\ | |
4057 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
4058 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
4059 | parent - the original process is debugged after a fork\n\ | |
4060 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 4061 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
4062 | By default, the debugger will follow the parent process."), |
4063 | NULL, | |
920d2a44 | 4064 | show_follow_fork_mode_string, |
7ab04401 AC |
4065 | &setlist, &showlist); |
4066 | ||
4067 | add_setshow_enum_cmd ("scheduler-locking", class_run, | |
4068 | scheduler_enums, &scheduler_mode, _("\ | |
4069 | Set mode for locking scheduler during execution."), _("\ | |
4070 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
4071 | off == no locking (threads may preempt at any time)\n\ |
4072 | on == full locking (no thread except the current thread may run)\n\ | |
4073 | step == scheduler locked during every single-step operation.\n\ | |
4074 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
4075 | Other threads may run while stepping over a function call ('next')."), |
4076 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 4077 | show_scheduler_mode, |
7ab04401 | 4078 | &setlist, &showlist); |
5fbbeb29 | 4079 | |
5bf193a2 AC |
4080 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
4081 | Set mode of the step operation."), _("\ | |
4082 | Show mode of the step operation."), _("\ | |
4083 | When set, doing a step over a function without debug line information\n\ | |
4084 | will stop at the first instruction of that function. Otherwise, the\n\ | |
4085 | function is skipped and the step command stops at a different source line."), | |
4086 | NULL, | |
920d2a44 | 4087 | show_step_stop_if_no_debug, |
5bf193a2 | 4088 | &setlist, &showlist); |
ca6724c1 KB |
4089 | |
4090 | /* ptid initializations */ | |
4091 | null_ptid = ptid_build (0, 0, 0); | |
4092 | minus_one_ptid = ptid_build (-1, 0, 0); | |
4093 | inferior_ptid = null_ptid; | |
4094 | target_last_wait_ptid = minus_one_ptid; | |
c906108c | 4095 | } |