]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c AC |
3 | |
4 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
c6f0559b AC |
5 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free |
6 | Software Foundation, Inc. | |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | #include "defs.h" | |
26 | #include "gdb_string.h" | |
27 | #include <ctype.h> | |
28 | #include "symtab.h" | |
29 | #include "frame.h" | |
30 | #include "inferior.h" | |
60250e8b | 31 | #include "exceptions.h" |
c906108c | 32 | #include "breakpoint.h" |
03f2053f | 33 | #include "gdb_wait.h" |
c906108c SS |
34 | #include "gdbcore.h" |
35 | #include "gdbcmd.h" | |
210661e7 | 36 | #include "cli/cli-script.h" |
c906108c SS |
37 | #include "target.h" |
38 | #include "gdbthread.h" | |
39 | #include "annotate.h" | |
1adeb98a | 40 | #include "symfile.h" |
7a292a7a | 41 | #include "top.h" |
c906108c | 42 | #include <signal.h> |
2acceee2 | 43 | #include "inf-loop.h" |
4e052eda | 44 | #include "regcache.h" |
fd0407d6 | 45 | #include "value.h" |
06600e06 | 46 | #include "observer.h" |
f636b87d | 47 | #include "language.h" |
a77053c2 MK |
48 | #include "solib.h" |
49 | ||
9f976b41 | 50 | #include "gdb_assert.h" |
034dad6f | 51 | #include "mi/mi-common.h" |
c906108c SS |
52 | |
53 | /* Prototypes for local functions */ | |
54 | ||
96baa820 | 55 | static void signals_info (char *, int); |
c906108c | 56 | |
96baa820 | 57 | static void handle_command (char *, int); |
c906108c | 58 | |
96baa820 | 59 | static void sig_print_info (enum target_signal); |
c906108c | 60 | |
96baa820 | 61 | static void sig_print_header (void); |
c906108c | 62 | |
74b7792f | 63 | static void resume_cleanups (void *); |
c906108c | 64 | |
96baa820 | 65 | static int hook_stop_stub (void *); |
c906108c | 66 | |
96baa820 JM |
67 | static int restore_selected_frame (void *); |
68 | ||
69 | static void build_infrun (void); | |
70 | ||
4ef3f3be | 71 | static int follow_fork (void); |
96baa820 JM |
72 | |
73 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 74 | struct cmd_list_element *c); |
96baa820 | 75 | |
96baa820 JM |
76 | struct execution_control_state; |
77 | ||
78 | static int currently_stepping (struct execution_control_state *ecs); | |
79 | ||
80 | static void xdb_handle_command (char *args, int from_tty); | |
81 | ||
ea67f13b DJ |
82 | static int prepare_to_proceed (void); |
83 | ||
96baa820 | 84 | void _initialize_infrun (void); |
43ff13b4 | 85 | |
c906108c SS |
86 | int inferior_ignoring_startup_exec_events = 0; |
87 | int inferior_ignoring_leading_exec_events = 0; | |
88 | ||
5fbbeb29 CF |
89 | /* When set, stop the 'step' command if we enter a function which has |
90 | no line number information. The normal behavior is that we step | |
91 | over such function. */ | |
92 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
93 | static void |
94 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
95 | struct cmd_list_element *c, const char *value) | |
96 | { | |
97 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
98 | } | |
5fbbeb29 | 99 | |
43ff13b4 | 100 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 101 | |
43ff13b4 JM |
102 | int sync_execution = 0; |
103 | ||
c906108c SS |
104 | /* wait_for_inferior and normal_stop use this to notify the user |
105 | when the inferior stopped in a different thread than it had been | |
96baa820 JM |
106 | running in. */ |
107 | ||
39f77062 | 108 | static ptid_t previous_inferior_ptid; |
7a292a7a SS |
109 | |
110 | /* This is true for configurations that may follow through execl() and | |
111 | similar functions. At present this is only true for HP-UX native. */ | |
112 | ||
113 | #ifndef MAY_FOLLOW_EXEC | |
114 | #define MAY_FOLLOW_EXEC (0) | |
c906108c SS |
115 | #endif |
116 | ||
7a292a7a SS |
117 | static int may_follow_exec = MAY_FOLLOW_EXEC; |
118 | ||
527159b7 | 119 | static int debug_infrun = 0; |
920d2a44 AC |
120 | static void |
121 | show_debug_infrun (struct ui_file *file, int from_tty, | |
122 | struct cmd_list_element *c, const char *value) | |
123 | { | |
124 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
125 | } | |
527159b7 | 126 | |
d4f3574e SS |
127 | /* If the program uses ELF-style shared libraries, then calls to |
128 | functions in shared libraries go through stubs, which live in a | |
129 | table called the PLT (Procedure Linkage Table). The first time the | |
130 | function is called, the stub sends control to the dynamic linker, | |
131 | which looks up the function's real address, patches the stub so | |
132 | that future calls will go directly to the function, and then passes | |
133 | control to the function. | |
134 | ||
135 | If we are stepping at the source level, we don't want to see any of | |
136 | this --- we just want to skip over the stub and the dynamic linker. | |
137 | The simple approach is to single-step until control leaves the | |
138 | dynamic linker. | |
139 | ||
ca557f44 AC |
140 | However, on some systems (e.g., Red Hat's 5.2 distribution) the |
141 | dynamic linker calls functions in the shared C library, so you | |
142 | can't tell from the PC alone whether the dynamic linker is still | |
143 | running. In this case, we use a step-resume breakpoint to get us | |
144 | past the dynamic linker, as if we were using "next" to step over a | |
145 | function call. | |
d4f3574e SS |
146 | |
147 | IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic | |
148 | linker code or not. Normally, this means we single-step. However, | |
149 | if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an | |
150 | address where we can place a step-resume breakpoint to get past the | |
151 | linker's symbol resolution function. | |
152 | ||
153 | IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a | |
154 | pretty portable way, by comparing the PC against the address ranges | |
155 | of the dynamic linker's sections. | |
156 | ||
157 | SKIP_SOLIB_RESOLVER is generally going to be system-specific, since | |
158 | it depends on internal details of the dynamic linker. It's usually | |
159 | not too hard to figure out where to put a breakpoint, but it | |
160 | certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of | |
161 | sanity checking. If it can't figure things out, returning zero and | |
162 | getting the (possibly confusing) stepping behavior is better than | |
163 | signalling an error, which will obscure the change in the | |
164 | inferior's state. */ | |
c906108c | 165 | |
c906108c SS |
166 | /* This function returns TRUE if pc is the address of an instruction |
167 | that lies within the dynamic linker (such as the event hook, or the | |
168 | dld itself). | |
169 | ||
170 | This function must be used only when a dynamic linker event has | |
171 | been caught, and the inferior is being stepped out of the hook, or | |
172 | undefined results are guaranteed. */ | |
173 | ||
174 | #ifndef SOLIB_IN_DYNAMIC_LINKER | |
175 | #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 | |
176 | #endif | |
177 | ||
c2c6d25f JM |
178 | /* We can't step off a permanent breakpoint in the ordinary way, because we |
179 | can't remove it. Instead, we have to advance the PC to the next | |
180 | instruction. This macro should expand to a pointer to a function that | |
181 | does that, or zero if we have no such function. If we don't have a | |
182 | definition for it, we have to report an error. */ | |
488f131b | 183 | #ifndef SKIP_PERMANENT_BREAKPOINT |
c2c6d25f JM |
184 | #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint) |
185 | static void | |
c2d11a7d | 186 | default_skip_permanent_breakpoint (void) |
c2c6d25f | 187 | { |
8a3fe4f8 | 188 | error (_("\ |
c2c6d25f JM |
189 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ |
190 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
8a3fe4f8 | 191 | a command like `return' or `jump' to continue execution.")); |
c2c6d25f JM |
192 | } |
193 | #endif | |
488f131b | 194 | |
c2c6d25f | 195 | |
7a292a7a SS |
196 | /* Convert the #defines into values. This is temporary until wfi control |
197 | flow is completely sorted out. */ | |
198 | ||
199 | #ifndef HAVE_STEPPABLE_WATCHPOINT | |
200 | #define HAVE_STEPPABLE_WATCHPOINT 0 | |
201 | #else | |
202 | #undef HAVE_STEPPABLE_WATCHPOINT | |
203 | #define HAVE_STEPPABLE_WATCHPOINT 1 | |
204 | #endif | |
205 | ||
692590c1 MS |
206 | #ifndef CANNOT_STEP_HW_WATCHPOINTS |
207 | #define CANNOT_STEP_HW_WATCHPOINTS 0 | |
208 | #else | |
209 | #undef CANNOT_STEP_HW_WATCHPOINTS | |
210 | #define CANNOT_STEP_HW_WATCHPOINTS 1 | |
211 | #endif | |
212 | ||
c906108c SS |
213 | /* Tables of how to react to signals; the user sets them. */ |
214 | ||
215 | static unsigned char *signal_stop; | |
216 | static unsigned char *signal_print; | |
217 | static unsigned char *signal_program; | |
218 | ||
219 | #define SET_SIGS(nsigs,sigs,flags) \ | |
220 | do { \ | |
221 | int signum = (nsigs); \ | |
222 | while (signum-- > 0) \ | |
223 | if ((sigs)[signum]) \ | |
224 | (flags)[signum] = 1; \ | |
225 | } while (0) | |
226 | ||
227 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
228 | do { \ | |
229 | int signum = (nsigs); \ | |
230 | while (signum-- > 0) \ | |
231 | if ((sigs)[signum]) \ | |
232 | (flags)[signum] = 0; \ | |
233 | } while (0) | |
234 | ||
39f77062 KB |
235 | /* Value to pass to target_resume() to cause all threads to resume */ |
236 | ||
237 | #define RESUME_ALL (pid_to_ptid (-1)) | |
c906108c SS |
238 | |
239 | /* Command list pointer for the "stop" placeholder. */ | |
240 | ||
241 | static struct cmd_list_element *stop_command; | |
242 | ||
243 | /* Nonzero if breakpoints are now inserted in the inferior. */ | |
244 | ||
245 | static int breakpoints_inserted; | |
246 | ||
247 | /* Function inferior was in as of last step command. */ | |
248 | ||
249 | static struct symbol *step_start_function; | |
250 | ||
251 | /* Nonzero if we are expecting a trace trap and should proceed from it. */ | |
252 | ||
253 | static int trap_expected; | |
254 | ||
c906108c SS |
255 | /* Nonzero if we want to give control to the user when we're notified |
256 | of shared library events by the dynamic linker. */ | |
257 | static int stop_on_solib_events; | |
920d2a44 AC |
258 | static void |
259 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
260 | struct cmd_list_element *c, const char *value) | |
261 | { | |
262 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
263 | value); | |
264 | } | |
c906108c | 265 | |
c906108c SS |
266 | /* Nonzero means expecting a trace trap |
267 | and should stop the inferior and return silently when it happens. */ | |
268 | ||
269 | int stop_after_trap; | |
270 | ||
271 | /* Nonzero means expecting a trap and caller will handle it themselves. | |
272 | It is used after attach, due to attaching to a process; | |
273 | when running in the shell before the child program has been exec'd; | |
274 | and when running some kinds of remote stuff (FIXME?). */ | |
275 | ||
c0236d92 | 276 | enum stop_kind stop_soon; |
c906108c SS |
277 | |
278 | /* Nonzero if proceed is being used for a "finish" command or a similar | |
279 | situation when stop_registers should be saved. */ | |
280 | ||
281 | int proceed_to_finish; | |
282 | ||
283 | /* Save register contents here when about to pop a stack dummy frame, | |
284 | if-and-only-if proceed_to_finish is set. | |
285 | Thus this contains the return value from the called function (assuming | |
286 | values are returned in a register). */ | |
287 | ||
72cec141 | 288 | struct regcache *stop_registers; |
c906108c SS |
289 | |
290 | /* Nonzero if program stopped due to error trying to insert breakpoints. */ | |
291 | ||
292 | static int breakpoints_failed; | |
293 | ||
294 | /* Nonzero after stop if current stack frame should be printed. */ | |
295 | ||
296 | static int stop_print_frame; | |
297 | ||
298 | static struct breakpoint *step_resume_breakpoint = NULL; | |
c906108c | 299 | |
e02bc4cc | 300 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
301 | returned by target_wait()/deprecated_target_wait_hook(). This |
302 | information is returned by get_last_target_status(). */ | |
39f77062 | 303 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
304 | static struct target_waitstatus target_last_waitstatus; |
305 | ||
c906108c SS |
306 | /* This is used to remember when a fork, vfork or exec event |
307 | was caught by a catchpoint, and thus the event is to be | |
308 | followed at the next resume of the inferior, and not | |
309 | immediately. */ | |
310 | static struct | |
488f131b JB |
311 | { |
312 | enum target_waitkind kind; | |
313 | struct | |
c906108c | 314 | { |
488f131b | 315 | int parent_pid; |
488f131b | 316 | int child_pid; |
c906108c | 317 | } |
488f131b JB |
318 | fork_event; |
319 | char *execd_pathname; | |
320 | } | |
c906108c SS |
321 | pending_follow; |
322 | ||
53904c9e AC |
323 | static const char follow_fork_mode_child[] = "child"; |
324 | static const char follow_fork_mode_parent[] = "parent"; | |
325 | ||
488f131b | 326 | static const char *follow_fork_mode_kind_names[] = { |
53904c9e AC |
327 | follow_fork_mode_child, |
328 | follow_fork_mode_parent, | |
329 | NULL | |
ef346e04 | 330 | }; |
c906108c | 331 | |
53904c9e | 332 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
333 | static void |
334 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
335 | struct cmd_list_element *c, const char *value) | |
336 | { | |
337 | fprintf_filtered (file, _("\ | |
338 | Debugger response to a program call of fork or vfork is \"%s\".\n"), | |
339 | value); | |
340 | } | |
c906108c SS |
341 | \f |
342 | ||
6604731b | 343 | static int |
4ef3f3be | 344 | follow_fork (void) |
c906108c | 345 | { |
ea1dd7bc | 346 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
c906108c | 347 | |
6604731b | 348 | return target_follow_fork (follow_child); |
c906108c SS |
349 | } |
350 | ||
6604731b DJ |
351 | void |
352 | follow_inferior_reset_breakpoints (void) | |
c906108c | 353 | { |
6604731b DJ |
354 | /* Was there a step_resume breakpoint? (There was if the user |
355 | did a "next" at the fork() call.) If so, explicitly reset its | |
356 | thread number. | |
357 | ||
358 | step_resumes are a form of bp that are made to be per-thread. | |
359 | Since we created the step_resume bp when the parent process | |
360 | was being debugged, and now are switching to the child process, | |
361 | from the breakpoint package's viewpoint, that's a switch of | |
362 | "threads". We must update the bp's notion of which thread | |
363 | it is for, or it'll be ignored when it triggers. */ | |
364 | ||
365 | if (step_resume_breakpoint) | |
366 | breakpoint_re_set_thread (step_resume_breakpoint); | |
367 | ||
368 | /* Reinsert all breakpoints in the child. The user may have set | |
369 | breakpoints after catching the fork, in which case those | |
370 | were never set in the child, but only in the parent. This makes | |
371 | sure the inserted breakpoints match the breakpoint list. */ | |
372 | ||
373 | breakpoint_re_set (); | |
374 | insert_breakpoints (); | |
c906108c | 375 | } |
c906108c | 376 | |
1adeb98a FN |
377 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
378 | ||
c906108c | 379 | static void |
96baa820 | 380 | follow_exec (int pid, char *execd_pathname) |
c906108c | 381 | { |
c906108c | 382 | int saved_pid = pid; |
7a292a7a SS |
383 | struct target_ops *tgt; |
384 | ||
385 | if (!may_follow_exec) | |
386 | return; | |
c906108c | 387 | |
c906108c SS |
388 | /* This is an exec event that we actually wish to pay attention to. |
389 | Refresh our symbol table to the newly exec'd program, remove any | |
390 | momentary bp's, etc. | |
391 | ||
392 | If there are breakpoints, they aren't really inserted now, | |
393 | since the exec() transformed our inferior into a fresh set | |
394 | of instructions. | |
395 | ||
396 | We want to preserve symbolic breakpoints on the list, since | |
397 | we have hopes that they can be reset after the new a.out's | |
398 | symbol table is read. | |
399 | ||
400 | However, any "raw" breakpoints must be removed from the list | |
401 | (e.g., the solib bp's), since their address is probably invalid | |
402 | now. | |
403 | ||
404 | And, we DON'T want to call delete_breakpoints() here, since | |
405 | that may write the bp's "shadow contents" (the instruction | |
406 | value that was overwritten witha TRAP instruction). Since | |
407 | we now have a new a.out, those shadow contents aren't valid. */ | |
408 | update_breakpoints_after_exec (); | |
409 | ||
410 | /* If there was one, it's gone now. We cannot truly step-to-next | |
411 | statement through an exec(). */ | |
412 | step_resume_breakpoint = NULL; | |
413 | step_range_start = 0; | |
414 | step_range_end = 0; | |
415 | ||
c906108c | 416 | /* What is this a.out's name? */ |
a3f17187 | 417 | printf_unfiltered (_("Executing new program: %s\n"), execd_pathname); |
c906108c SS |
418 | |
419 | /* We've followed the inferior through an exec. Therefore, the | |
420 | inferior has essentially been killed & reborn. */ | |
7a292a7a SS |
421 | |
422 | /* First collect the run target in effect. */ | |
423 | tgt = find_run_target (); | |
424 | /* If we can't find one, things are in a very strange state... */ | |
425 | if (tgt == NULL) | |
8a3fe4f8 | 426 | error (_("Could find run target to save before following exec")); |
7a292a7a | 427 | |
c906108c SS |
428 | gdb_flush (gdb_stdout); |
429 | target_mourn_inferior (); | |
39f77062 | 430 | inferior_ptid = pid_to_ptid (saved_pid); |
488f131b | 431 | /* Because mourn_inferior resets inferior_ptid. */ |
7a292a7a | 432 | push_target (tgt); |
c906108c SS |
433 | |
434 | /* That a.out is now the one to use. */ | |
435 | exec_file_attach (execd_pathname, 0); | |
436 | ||
437 | /* And also is where symbols can be found. */ | |
1adeb98a | 438 | symbol_file_add_main (execd_pathname, 0); |
c906108c SS |
439 | |
440 | /* Reset the shared library package. This ensures that we get | |
441 | a shlib event when the child reaches "_start", at which point | |
442 | the dld will have had a chance to initialize the child. */ | |
7a292a7a | 443 | #if defined(SOLIB_RESTART) |
c906108c | 444 | SOLIB_RESTART (); |
7a292a7a SS |
445 | #endif |
446 | #ifdef SOLIB_CREATE_INFERIOR_HOOK | |
39f77062 | 447 | SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); |
a77053c2 MK |
448 | #else |
449 | solib_create_inferior_hook (); | |
7a292a7a | 450 | #endif |
c906108c SS |
451 | |
452 | /* Reinsert all breakpoints. (Those which were symbolic have | |
453 | been reset to the proper address in the new a.out, thanks | |
454 | to symbol_file_command...) */ | |
455 | insert_breakpoints (); | |
456 | ||
457 | /* The next resume of this inferior should bring it to the shlib | |
458 | startup breakpoints. (If the user had also set bp's on | |
459 | "main" from the old (parent) process, then they'll auto- | |
460 | matically get reset there in the new process.) */ | |
c906108c SS |
461 | } |
462 | ||
463 | /* Non-zero if we just simulating a single-step. This is needed | |
464 | because we cannot remove the breakpoints in the inferior process | |
465 | until after the `wait' in `wait_for_inferior'. */ | |
466 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
467 | |
468 | /* The thread we inserted single-step breakpoints for. */ | |
469 | static ptid_t singlestep_ptid; | |
470 | ||
471 | /* If another thread hit the singlestep breakpoint, we save the original | |
472 | thread here so that we can resume single-stepping it later. */ | |
473 | static ptid_t saved_singlestep_ptid; | |
474 | static int stepping_past_singlestep_breakpoint; | |
c906108c SS |
475 | \f |
476 | ||
477 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 478 | static void |
74b7792f | 479 | resume_cleanups (void *ignore) |
c906108c SS |
480 | { |
481 | normal_stop (); | |
482 | } | |
483 | ||
53904c9e AC |
484 | static const char schedlock_off[] = "off"; |
485 | static const char schedlock_on[] = "on"; | |
486 | static const char schedlock_step[] = "step"; | |
488f131b | 487 | static const char *scheduler_enums[] = { |
ef346e04 AC |
488 | schedlock_off, |
489 | schedlock_on, | |
490 | schedlock_step, | |
491 | NULL | |
492 | }; | |
920d2a44 AC |
493 | static const char *scheduler_mode = schedlock_off; |
494 | static void | |
495 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
496 | struct cmd_list_element *c, const char *value) | |
497 | { | |
498 | fprintf_filtered (file, _("\ | |
499 | Mode for locking scheduler during execution is \"%s\".\n"), | |
500 | value); | |
501 | } | |
c906108c SS |
502 | |
503 | static void | |
96baa820 | 504 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 505 | { |
eefe576e AC |
506 | if (!target_can_lock_scheduler) |
507 | { | |
508 | scheduler_mode = schedlock_off; | |
509 | error (_("Target '%s' cannot support this command."), target_shortname); | |
510 | } | |
c906108c SS |
511 | } |
512 | ||
513 | ||
514 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
515 | wants to interrupt some lengthy single-stepping operation | |
516 | (for child processes, the SIGINT goes to the inferior, and so | |
517 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
518 | other targets, that's not true). | |
519 | ||
520 | STEP nonzero if we should step (zero to continue instead). | |
521 | SIG is the signal to give the inferior (zero for none). */ | |
522 | void | |
96baa820 | 523 | resume (int step, enum target_signal sig) |
c906108c SS |
524 | { |
525 | int should_resume = 1; | |
74b7792f | 526 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
c906108c SS |
527 | QUIT; |
528 | ||
527159b7 | 529 | if (debug_infrun) |
8a9de0e4 AC |
530 | fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n", |
531 | step, sig); | |
527159b7 | 532 | |
ef5cf84e MS |
533 | /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */ |
534 | ||
c906108c | 535 | |
692590c1 MS |
536 | /* Some targets (e.g. Solaris x86) have a kernel bug when stepping |
537 | over an instruction that causes a page fault without triggering | |
538 | a hardware watchpoint. The kernel properly notices that it shouldn't | |
539 | stop, because the hardware watchpoint is not triggered, but it forgets | |
540 | the step request and continues the program normally. | |
541 | Work around the problem by removing hardware watchpoints if a step is | |
542 | requested, GDB will check for a hardware watchpoint trigger after the | |
543 | step anyway. */ | |
544 | if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted) | |
545 | remove_hw_watchpoints (); | |
488f131b | 546 | |
692590c1 | 547 | |
c2c6d25f JM |
548 | /* Normally, by the time we reach `resume', the breakpoints are either |
549 | removed or inserted, as appropriate. The exception is if we're sitting | |
550 | at a permanent breakpoint; we need to step over it, but permanent | |
551 | breakpoints can't be removed. So we have to test for it here. */ | |
552 | if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here) | |
553 | SKIP_PERMANENT_BREAKPOINT (); | |
554 | ||
b0ed3589 | 555 | if (SOFTWARE_SINGLE_STEP_P () && step) |
c906108c SS |
556 | { |
557 | /* Do it the hard way, w/temp breakpoints */ | |
c5aa993b | 558 | SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ ); |
c906108c SS |
559 | /* ...and don't ask hardware to do it. */ |
560 | step = 0; | |
561 | /* and do not pull these breakpoints until after a `wait' in | |
562 | `wait_for_inferior' */ | |
563 | singlestep_breakpoints_inserted_p = 1; | |
9f976b41 | 564 | singlestep_ptid = inferior_ptid; |
c906108c SS |
565 | } |
566 | ||
c906108c | 567 | /* If there were any forks/vforks/execs that were caught and are |
6604731b | 568 | now to be followed, then do so. */ |
c906108c SS |
569 | switch (pending_follow.kind) |
570 | { | |
6604731b DJ |
571 | case TARGET_WAITKIND_FORKED: |
572 | case TARGET_WAITKIND_VFORKED: | |
c906108c | 573 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
6604731b DJ |
574 | if (follow_fork ()) |
575 | should_resume = 0; | |
c906108c SS |
576 | break; |
577 | ||
6604731b | 578 | case TARGET_WAITKIND_EXECD: |
c906108c | 579 | /* follow_exec is called as soon as the exec event is seen. */ |
6604731b | 580 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
c906108c SS |
581 | break; |
582 | ||
583 | default: | |
584 | break; | |
585 | } | |
c906108c SS |
586 | |
587 | /* Install inferior's terminal modes. */ | |
588 | target_terminal_inferior (); | |
589 | ||
590 | if (should_resume) | |
591 | { | |
39f77062 | 592 | ptid_t resume_ptid; |
dfcd3bfb | 593 | |
488f131b | 594 | resume_ptid = RESUME_ALL; /* Default */ |
ef5cf84e | 595 | |
8fb3e588 AC |
596 | if ((step || singlestep_breakpoints_inserted_p) |
597 | && (stepping_past_singlestep_breakpoint | |
598 | || (!breakpoints_inserted && breakpoint_here_p (read_pc ())))) | |
c906108c | 599 | { |
ef5cf84e MS |
600 | /* Stepping past a breakpoint without inserting breakpoints. |
601 | Make sure only the current thread gets to step, so that | |
602 | other threads don't sneak past breakpoints while they are | |
603 | not inserted. */ | |
c906108c | 604 | |
ef5cf84e | 605 | resume_ptid = inferior_ptid; |
c906108c | 606 | } |
ef5cf84e | 607 | |
8fb3e588 AC |
608 | if ((scheduler_mode == schedlock_on) |
609 | || (scheduler_mode == schedlock_step | |
610 | && (step || singlestep_breakpoints_inserted_p))) | |
c906108c | 611 | { |
ef5cf84e | 612 | /* User-settable 'scheduler' mode requires solo thread resume. */ |
488f131b | 613 | resume_ptid = inferior_ptid; |
c906108c | 614 | } |
ef5cf84e | 615 | |
c4ed33b9 AC |
616 | if (CANNOT_STEP_BREAKPOINT) |
617 | { | |
618 | /* Most targets can step a breakpoint instruction, thus | |
619 | executing it normally. But if this one cannot, just | |
620 | continue and we will hit it anyway. */ | |
621 | if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) | |
622 | step = 0; | |
623 | } | |
39f77062 | 624 | target_resume (resume_ptid, step, sig); |
c906108c SS |
625 | } |
626 | ||
627 | discard_cleanups (old_cleanups); | |
628 | } | |
629 | \f | |
630 | ||
631 | /* Clear out all variables saying what to do when inferior is continued. | |
632 | First do this, then set the ones you want, then call `proceed'. */ | |
633 | ||
634 | void | |
96baa820 | 635 | clear_proceed_status (void) |
c906108c SS |
636 | { |
637 | trap_expected = 0; | |
638 | step_range_start = 0; | |
639 | step_range_end = 0; | |
aa0cd9c1 | 640 | step_frame_id = null_frame_id; |
5fbbeb29 | 641 | step_over_calls = STEP_OVER_UNDEBUGGABLE; |
c906108c | 642 | stop_after_trap = 0; |
c0236d92 | 643 | stop_soon = NO_STOP_QUIETLY; |
c906108c SS |
644 | proceed_to_finish = 0; |
645 | breakpoint_proceeded = 1; /* We're about to proceed... */ | |
646 | ||
647 | /* Discard any remaining commands or status from previous stop. */ | |
648 | bpstat_clear (&stop_bpstat); | |
649 | } | |
650 | ||
ea67f13b DJ |
651 | /* This should be suitable for any targets that support threads. */ |
652 | ||
653 | static int | |
654 | prepare_to_proceed (void) | |
655 | { | |
656 | ptid_t wait_ptid; | |
657 | struct target_waitstatus wait_status; | |
658 | ||
659 | /* Get the last target status returned by target_wait(). */ | |
660 | get_last_target_status (&wait_ptid, &wait_status); | |
661 | ||
662 | /* Make sure we were stopped either at a breakpoint, or because | |
663 | of a Ctrl-C. */ | |
664 | if (wait_status.kind != TARGET_WAITKIND_STOPPED | |
8fb3e588 AC |
665 | || (wait_status.value.sig != TARGET_SIGNAL_TRAP |
666 | && wait_status.value.sig != TARGET_SIGNAL_INT)) | |
ea67f13b DJ |
667 | { |
668 | return 0; | |
669 | } | |
670 | ||
671 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
672 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
673 | { | |
674 | /* Switched over from WAIT_PID. */ | |
675 | CORE_ADDR wait_pc = read_pc_pid (wait_ptid); | |
676 | ||
677 | if (wait_pc != read_pc ()) | |
678 | { | |
679 | /* Switch back to WAIT_PID thread. */ | |
680 | inferior_ptid = wait_ptid; | |
681 | ||
682 | /* FIXME: This stuff came from switch_to_thread() in | |
683 | thread.c (which should probably be a public function). */ | |
684 | flush_cached_frames (); | |
685 | registers_changed (); | |
686 | stop_pc = wait_pc; | |
687 | select_frame (get_current_frame ()); | |
688 | } | |
689 | ||
8fb3e588 AC |
690 | /* We return 1 to indicate that there is a breakpoint here, |
691 | so we need to step over it before continuing to avoid | |
692 | hitting it straight away. */ | |
693 | if (breakpoint_here_p (wait_pc)) | |
694 | return 1; | |
ea67f13b DJ |
695 | } |
696 | ||
697 | return 0; | |
8fb3e588 | 698 | |
ea67f13b | 699 | } |
e4846b08 JJ |
700 | |
701 | /* Record the pc of the program the last time it stopped. This is | |
702 | just used internally by wait_for_inferior, but need to be preserved | |
703 | over calls to it and cleared when the inferior is started. */ | |
704 | static CORE_ADDR prev_pc; | |
705 | ||
c906108c SS |
706 | /* Basic routine for continuing the program in various fashions. |
707 | ||
708 | ADDR is the address to resume at, or -1 for resume where stopped. | |
709 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 710 | or -1 for act according to how it stopped. |
c906108c | 711 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
712 | -1 means return after that and print nothing. |
713 | You should probably set various step_... variables | |
714 | before calling here, if you are stepping. | |
c906108c SS |
715 | |
716 | You should call clear_proceed_status before calling proceed. */ | |
717 | ||
718 | void | |
96baa820 | 719 | proceed (CORE_ADDR addr, enum target_signal siggnal, int step) |
c906108c SS |
720 | { |
721 | int oneproc = 0; | |
722 | ||
723 | if (step > 0) | |
724 | step_start_function = find_pc_function (read_pc ()); | |
725 | if (step < 0) | |
726 | stop_after_trap = 1; | |
727 | ||
2acceee2 | 728 | if (addr == (CORE_ADDR) -1) |
c906108c | 729 | { |
c906108c | 730 | if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) |
3352ef37 AC |
731 | /* There is a breakpoint at the address we will resume at, |
732 | step one instruction before inserting breakpoints so that | |
733 | we do not stop right away (and report a second hit at this | |
734 | breakpoint). */ | |
c906108c | 735 | oneproc = 1; |
3352ef37 AC |
736 | else if (gdbarch_single_step_through_delay_p (current_gdbarch) |
737 | && gdbarch_single_step_through_delay (current_gdbarch, | |
738 | get_current_frame ())) | |
739 | /* We stepped onto an instruction that needs to be stepped | |
740 | again before re-inserting the breakpoint, do so. */ | |
c906108c SS |
741 | oneproc = 1; |
742 | } | |
743 | else | |
744 | { | |
745 | write_pc (addr); | |
c906108c SS |
746 | } |
747 | ||
527159b7 | 748 | if (debug_infrun) |
8a9de0e4 AC |
749 | fprintf_unfiltered (gdb_stdlog, |
750 | "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n", | |
751 | paddr_nz (addr), siggnal, step); | |
527159b7 | 752 | |
c906108c SS |
753 | /* In a multi-threaded task we may select another thread |
754 | and then continue or step. | |
755 | ||
756 | But if the old thread was stopped at a breakpoint, it | |
757 | will immediately cause another breakpoint stop without | |
758 | any execution (i.e. it will report a breakpoint hit | |
759 | incorrectly). So we must step over it first. | |
760 | ||
ea67f13b | 761 | prepare_to_proceed checks the current thread against the thread |
c906108c SS |
762 | that reported the most recent event. If a step-over is required |
763 | it returns TRUE and sets the current thread to the old thread. */ | |
ea67f13b DJ |
764 | if (prepare_to_proceed () && breakpoint_here_p (read_pc ())) |
765 | oneproc = 1; | |
c906108c | 766 | |
c906108c SS |
767 | if (oneproc) |
768 | /* We will get a trace trap after one instruction. | |
769 | Continue it automatically and insert breakpoints then. */ | |
770 | trap_expected = 1; | |
771 | else | |
772 | { | |
81d0cc19 GS |
773 | insert_breakpoints (); |
774 | /* If we get here there was no call to error() in | |
8fb3e588 | 775 | insert breakpoints -- so they were inserted. */ |
c906108c SS |
776 | breakpoints_inserted = 1; |
777 | } | |
778 | ||
779 | if (siggnal != TARGET_SIGNAL_DEFAULT) | |
780 | stop_signal = siggnal; | |
781 | /* If this signal should not be seen by program, | |
782 | give it zero. Used for debugging signals. */ | |
783 | else if (!signal_program[stop_signal]) | |
784 | stop_signal = TARGET_SIGNAL_0; | |
785 | ||
786 | annotate_starting (); | |
787 | ||
788 | /* Make sure that output from GDB appears before output from the | |
789 | inferior. */ | |
790 | gdb_flush (gdb_stdout); | |
791 | ||
e4846b08 JJ |
792 | /* Refresh prev_pc value just prior to resuming. This used to be |
793 | done in stop_stepping, however, setting prev_pc there did not handle | |
794 | scenarios such as inferior function calls or returning from | |
795 | a function via the return command. In those cases, the prev_pc | |
796 | value was not set properly for subsequent commands. The prev_pc value | |
797 | is used to initialize the starting line number in the ecs. With an | |
798 | invalid value, the gdb next command ends up stopping at the position | |
799 | represented by the next line table entry past our start position. | |
800 | On platforms that generate one line table entry per line, this | |
801 | is not a problem. However, on the ia64, the compiler generates | |
802 | extraneous line table entries that do not increase the line number. | |
803 | When we issue the gdb next command on the ia64 after an inferior call | |
804 | or a return command, we often end up a few instructions forward, still | |
805 | within the original line we started. | |
806 | ||
807 | An attempt was made to have init_execution_control_state () refresh | |
808 | the prev_pc value before calculating the line number. This approach | |
809 | did not work because on platforms that use ptrace, the pc register | |
810 | cannot be read unless the inferior is stopped. At that point, we | |
811 | are not guaranteed the inferior is stopped and so the read_pc () | |
812 | call can fail. Setting the prev_pc value here ensures the value is | |
8fb3e588 | 813 | updated correctly when the inferior is stopped. */ |
e4846b08 JJ |
814 | prev_pc = read_pc (); |
815 | ||
c906108c SS |
816 | /* Resume inferior. */ |
817 | resume (oneproc || step || bpstat_should_step (), stop_signal); | |
818 | ||
819 | /* Wait for it to stop (if not standalone) | |
820 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 JM |
821 | /* Do this only if we are not using the event loop, or if the target |
822 | does not support asynchronous execution. */ | |
362646f5 | 823 | if (!target_can_async_p ()) |
43ff13b4 JM |
824 | { |
825 | wait_for_inferior (); | |
826 | normal_stop (); | |
827 | } | |
c906108c | 828 | } |
c906108c SS |
829 | \f |
830 | ||
831 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 832 | |
c906108c | 833 | void |
96baa820 | 834 | start_remote (void) |
c906108c SS |
835 | { |
836 | init_thread_list (); | |
837 | init_wait_for_inferior (); | |
c0236d92 | 838 | stop_soon = STOP_QUIETLY; |
c906108c | 839 | trap_expected = 0; |
43ff13b4 | 840 | |
6426a772 JM |
841 | /* Always go on waiting for the target, regardless of the mode. */ |
842 | /* FIXME: cagney/1999-09-23: At present it isn't possible to | |
7e73cedf | 843 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
844 | nothing is returned (instead of just blocking). Because of this, |
845 | targets expecting an immediate response need to, internally, set | |
846 | things up so that the target_wait() is forced to eventually | |
847 | timeout. */ | |
848 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to | |
849 | differentiate to its caller what the state of the target is after | |
850 | the initial open has been performed. Here we're assuming that | |
851 | the target has stopped. It should be possible to eventually have | |
852 | target_open() return to the caller an indication that the target | |
853 | is currently running and GDB state should be set to the same as | |
854 | for an async run. */ | |
855 | wait_for_inferior (); | |
856 | normal_stop (); | |
c906108c SS |
857 | } |
858 | ||
859 | /* Initialize static vars when a new inferior begins. */ | |
860 | ||
861 | void | |
96baa820 | 862 | init_wait_for_inferior (void) |
c906108c SS |
863 | { |
864 | /* These are meaningless until the first time through wait_for_inferior. */ | |
865 | prev_pc = 0; | |
c906108c | 866 | |
c906108c SS |
867 | breakpoints_inserted = 0; |
868 | breakpoint_init_inferior (inf_starting); | |
869 | ||
870 | /* Don't confuse first call to proceed(). */ | |
871 | stop_signal = TARGET_SIGNAL_0; | |
872 | ||
873 | /* The first resume is not following a fork/vfork/exec. */ | |
874 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */ | |
c906108c | 875 | |
c906108c | 876 | clear_proceed_status (); |
9f976b41 DJ |
877 | |
878 | stepping_past_singlestep_breakpoint = 0; | |
c906108c | 879 | } |
c906108c | 880 | \f |
b83266a0 SS |
881 | /* This enum encodes possible reasons for doing a target_wait, so that |
882 | wfi can call target_wait in one place. (Ultimately the call will be | |
883 | moved out of the infinite loop entirely.) */ | |
884 | ||
c5aa993b JM |
885 | enum infwait_states |
886 | { | |
cd0fc7c3 SS |
887 | infwait_normal_state, |
888 | infwait_thread_hop_state, | |
cd0fc7c3 | 889 | infwait_nonstep_watch_state |
b83266a0 SS |
890 | }; |
891 | ||
11cf8741 JM |
892 | /* Why did the inferior stop? Used to print the appropriate messages |
893 | to the interface from within handle_inferior_event(). */ | |
894 | enum inferior_stop_reason | |
895 | { | |
896 | /* We don't know why. */ | |
897 | STOP_UNKNOWN, | |
898 | /* Step, next, nexti, stepi finished. */ | |
899 | END_STEPPING_RANGE, | |
900 | /* Found breakpoint. */ | |
901 | BREAKPOINT_HIT, | |
902 | /* Inferior terminated by signal. */ | |
903 | SIGNAL_EXITED, | |
904 | /* Inferior exited. */ | |
905 | EXITED, | |
906 | /* Inferior received signal, and user asked to be notified. */ | |
907 | SIGNAL_RECEIVED | |
908 | }; | |
909 | ||
cd0fc7c3 SS |
910 | /* This structure contains what used to be local variables in |
911 | wait_for_inferior. Probably many of them can return to being | |
912 | locals in handle_inferior_event. */ | |
913 | ||
c5aa993b | 914 | struct execution_control_state |
488f131b JB |
915 | { |
916 | struct target_waitstatus ws; | |
917 | struct target_waitstatus *wp; | |
918 | int another_trap; | |
919 | int random_signal; | |
920 | CORE_ADDR stop_func_start; | |
921 | CORE_ADDR stop_func_end; | |
922 | char *stop_func_name; | |
923 | struct symtab_and_line sal; | |
488f131b JB |
924 | int current_line; |
925 | struct symtab *current_symtab; | |
926 | int handling_longjmp; /* FIXME */ | |
927 | ptid_t ptid; | |
928 | ptid_t saved_inferior_ptid; | |
68f53502 | 929 | int step_after_step_resume_breakpoint; |
488f131b JB |
930 | int stepping_through_solib_after_catch; |
931 | bpstat stepping_through_solib_catchpoints; | |
488f131b JB |
932 | int new_thread_event; |
933 | struct target_waitstatus tmpstatus; | |
934 | enum infwait_states infwait_state; | |
935 | ptid_t waiton_ptid; | |
936 | int wait_some_more; | |
937 | }; | |
938 | ||
939 | void init_execution_control_state (struct execution_control_state *ecs); | |
940 | ||
941 | void handle_inferior_event (struct execution_control_state *ecs); | |
cd0fc7c3 | 942 | |
c2c6d25f | 943 | static void step_into_function (struct execution_control_state *ecs); |
44cbf7b5 AC |
944 | static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); |
945 | static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
946 | struct frame_id sr_id); | |
104c1213 JM |
947 | static void stop_stepping (struct execution_control_state *ecs); |
948 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 949 | static void keep_going (struct execution_control_state *ecs); |
488f131b JB |
950 | static void print_stop_reason (enum inferior_stop_reason stop_reason, |
951 | int stop_info); | |
104c1213 | 952 | |
cd0fc7c3 SS |
953 | /* Wait for control to return from inferior to debugger. |
954 | If inferior gets a signal, we may decide to start it up again | |
955 | instead of returning. That is why there is a loop in this function. | |
956 | When this function actually returns it means the inferior | |
957 | should be left stopped and GDB should read more commands. */ | |
958 | ||
959 | void | |
96baa820 | 960 | wait_for_inferior (void) |
cd0fc7c3 SS |
961 | { |
962 | struct cleanup *old_cleanups; | |
963 | struct execution_control_state ecss; | |
964 | struct execution_control_state *ecs; | |
c906108c | 965 | |
527159b7 | 966 | if (debug_infrun) |
8a9de0e4 | 967 | fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n"); |
527159b7 | 968 | |
8601f500 | 969 | old_cleanups = make_cleanup (delete_step_resume_breakpoint, |
c906108c | 970 | &step_resume_breakpoint); |
cd0fc7c3 SS |
971 | |
972 | /* wfi still stays in a loop, so it's OK just to take the address of | |
973 | a local to get the ecs pointer. */ | |
974 | ecs = &ecss; | |
975 | ||
976 | /* Fill in with reasonable starting values. */ | |
977 | init_execution_control_state (ecs); | |
978 | ||
c906108c | 979 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 980 | previous_inferior_ptid = inferior_ptid; |
c906108c | 981 | |
cd0fc7c3 SS |
982 | overlay_cache_invalid = 1; |
983 | ||
984 | /* We have to invalidate the registers BEFORE calling target_wait | |
985 | because they can be loaded from the target while in target_wait. | |
986 | This makes remote debugging a bit more efficient for those | |
987 | targets that provide critical registers as part of their normal | |
988 | status mechanism. */ | |
989 | ||
990 | registers_changed (); | |
b83266a0 | 991 | |
c906108c SS |
992 | while (1) |
993 | { | |
9a4105ab AC |
994 | if (deprecated_target_wait_hook) |
995 | ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp); | |
cd0fc7c3 | 996 | else |
39f77062 | 997 | ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp); |
c906108c | 998 | |
cd0fc7c3 SS |
999 | /* Now figure out what to do with the result of the result. */ |
1000 | handle_inferior_event (ecs); | |
c906108c | 1001 | |
cd0fc7c3 SS |
1002 | if (!ecs->wait_some_more) |
1003 | break; | |
1004 | } | |
1005 | do_cleanups (old_cleanups); | |
1006 | } | |
c906108c | 1007 | |
43ff13b4 JM |
1008 | /* Asynchronous version of wait_for_inferior. It is called by the |
1009 | event loop whenever a change of state is detected on the file | |
1010 | descriptor corresponding to the target. It can be called more than | |
1011 | once to complete a single execution command. In such cases we need | |
1012 | to keep the state in a global variable ASYNC_ECSS. If it is the | |
1013 | last time that this function is called for a single execution | |
1014 | command, then report to the user that the inferior has stopped, and | |
1015 | do the necessary cleanups. */ | |
1016 | ||
1017 | struct execution_control_state async_ecss; | |
1018 | struct execution_control_state *async_ecs; | |
1019 | ||
1020 | void | |
fba45db2 | 1021 | fetch_inferior_event (void *client_data) |
43ff13b4 JM |
1022 | { |
1023 | static struct cleanup *old_cleanups; | |
1024 | ||
c5aa993b | 1025 | async_ecs = &async_ecss; |
43ff13b4 JM |
1026 | |
1027 | if (!async_ecs->wait_some_more) | |
1028 | { | |
488f131b | 1029 | old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint, |
c5aa993b | 1030 | &step_resume_breakpoint); |
43ff13b4 JM |
1031 | |
1032 | /* Fill in with reasonable starting values. */ | |
1033 | init_execution_control_state (async_ecs); | |
1034 | ||
43ff13b4 | 1035 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 1036 | previous_inferior_ptid = inferior_ptid; |
43ff13b4 JM |
1037 | |
1038 | overlay_cache_invalid = 1; | |
1039 | ||
1040 | /* We have to invalidate the registers BEFORE calling target_wait | |
c5aa993b JM |
1041 | because they can be loaded from the target while in target_wait. |
1042 | This makes remote debugging a bit more efficient for those | |
1043 | targets that provide critical registers as part of their normal | |
1044 | status mechanism. */ | |
43ff13b4 JM |
1045 | |
1046 | registers_changed (); | |
1047 | } | |
1048 | ||
9a4105ab | 1049 | if (deprecated_target_wait_hook) |
488f131b | 1050 | async_ecs->ptid = |
9a4105ab | 1051 | deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 | 1052 | else |
39f77062 | 1053 | async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 JM |
1054 | |
1055 | /* Now figure out what to do with the result of the result. */ | |
1056 | handle_inferior_event (async_ecs); | |
1057 | ||
1058 | if (!async_ecs->wait_some_more) | |
1059 | { | |
adf40b2e | 1060 | /* Do only the cleanups that have been added by this |
488f131b JB |
1061 | function. Let the continuations for the commands do the rest, |
1062 | if there are any. */ | |
43ff13b4 JM |
1063 | do_exec_cleanups (old_cleanups); |
1064 | normal_stop (); | |
c2d11a7d JM |
1065 | if (step_multi && stop_step) |
1066 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); | |
1067 | else | |
1068 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
43ff13b4 JM |
1069 | } |
1070 | } | |
1071 | ||
cd0fc7c3 SS |
1072 | /* Prepare an execution control state for looping through a |
1073 | wait_for_inferior-type loop. */ | |
1074 | ||
1075 | void | |
96baa820 | 1076 | init_execution_control_state (struct execution_control_state *ecs) |
cd0fc7c3 | 1077 | { |
c2d11a7d | 1078 | /* ecs->another_trap? */ |
cd0fc7c3 | 1079 | ecs->random_signal = 0; |
68f53502 | 1080 | ecs->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 | 1081 | ecs->handling_longjmp = 0; /* FIXME */ |
cd0fc7c3 SS |
1082 | ecs->stepping_through_solib_after_catch = 0; |
1083 | ecs->stepping_through_solib_catchpoints = NULL; | |
cd0fc7c3 SS |
1084 | ecs->sal = find_pc_line (prev_pc, 0); |
1085 | ecs->current_line = ecs->sal.line; | |
1086 | ecs->current_symtab = ecs->sal.symtab; | |
1087 | ecs->infwait_state = infwait_normal_state; | |
39f77062 | 1088 | ecs->waiton_ptid = pid_to_ptid (-1); |
cd0fc7c3 SS |
1089 | ecs->wp = &(ecs->ws); |
1090 | } | |
1091 | ||
e02bc4cc | 1092 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
1093 | target_wait()/deprecated_target_wait_hook(). The data is actually |
1094 | cached by handle_inferior_event(), which gets called immediately | |
1095 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
1096 | |
1097 | void | |
488f131b | 1098 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 1099 | { |
39f77062 | 1100 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
1101 | *status = target_last_waitstatus; |
1102 | } | |
1103 | ||
dd80620e MS |
1104 | /* Switch thread contexts, maintaining "infrun state". */ |
1105 | ||
1106 | static void | |
1107 | context_switch (struct execution_control_state *ecs) | |
1108 | { | |
1109 | /* Caution: it may happen that the new thread (or the old one!) | |
1110 | is not in the thread list. In this case we must not attempt | |
1111 | to "switch context", or we run the risk that our context may | |
1112 | be lost. This may happen as a result of the target module | |
1113 | mishandling thread creation. */ | |
1114 | ||
1115 | if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid)) | |
488f131b | 1116 | { /* Perform infrun state context switch: */ |
dd80620e | 1117 | /* Save infrun state for the old thread. */ |
0ce3d317 | 1118 | save_infrun_state (inferior_ptid, prev_pc, |
dd80620e | 1119 | trap_expected, step_resume_breakpoint, |
15960608 | 1120 | step_range_start, |
aa0cd9c1 | 1121 | step_range_end, &step_frame_id, |
dd80620e MS |
1122 | ecs->handling_longjmp, ecs->another_trap, |
1123 | ecs->stepping_through_solib_after_catch, | |
1124 | ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1125 | ecs->current_line, ecs->current_symtab); |
dd80620e MS |
1126 | |
1127 | /* Load infrun state for the new thread. */ | |
0ce3d317 | 1128 | load_infrun_state (ecs->ptid, &prev_pc, |
dd80620e | 1129 | &trap_expected, &step_resume_breakpoint, |
15960608 | 1130 | &step_range_start, |
aa0cd9c1 | 1131 | &step_range_end, &step_frame_id, |
dd80620e MS |
1132 | &ecs->handling_longjmp, &ecs->another_trap, |
1133 | &ecs->stepping_through_solib_after_catch, | |
1134 | &ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1135 | &ecs->current_line, &ecs->current_symtab); |
dd80620e MS |
1136 | } |
1137 | inferior_ptid = ecs->ptid; | |
1138 | } | |
1139 | ||
4fa8626c DJ |
1140 | static void |
1141 | adjust_pc_after_break (struct execution_control_state *ecs) | |
1142 | { | |
8aad930b | 1143 | CORE_ADDR breakpoint_pc; |
4fa8626c DJ |
1144 | |
1145 | /* If this target does not decrement the PC after breakpoints, then | |
1146 | we have nothing to do. */ | |
1147 | if (DECR_PC_AFTER_BREAK == 0) | |
1148 | return; | |
1149 | ||
1150 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If | |
1151 | we aren't, just return. | |
9709f61c DJ |
1152 | |
1153 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
1154 | affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented | |
1155 | by software breakpoints should be handled through the normal breakpoint | |
1156 | layer. | |
8fb3e588 | 1157 | |
4fa8626c DJ |
1158 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
1159 | different signals (SIGILL or SIGEMT for instance), but it is less | |
1160 | clear where the PC is pointing afterwards. It may not match | |
1161 | DECR_PC_AFTER_BREAK. I don't know any specific target that generates | |
1162 | these signals at breakpoints (the code has been in GDB since at least | |
1163 | 1992) so I can not guess how to handle them here. | |
8fb3e588 | 1164 | |
4fa8626c DJ |
1165 | In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS |
1166 | would have the PC after hitting a watchpoint affected by | |
1167 | DECR_PC_AFTER_BREAK. I haven't found any target with both of these set | |
1168 | in GDB history, and it seems unlikely to be correct, so | |
1169 | HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */ | |
1170 | ||
1171 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
1172 | return; | |
1173 | ||
1174 | if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) | |
1175 | return; | |
1176 | ||
8aad930b AC |
1177 | /* Find the location where (if we've hit a breakpoint) the |
1178 | breakpoint would be. */ | |
1179 | breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK; | |
1180 | ||
1181 | if (SOFTWARE_SINGLE_STEP_P ()) | |
1182 | { | |
1183 | /* When using software single-step, a SIGTRAP can only indicate | |
8fb3e588 AC |
1184 | an inserted breakpoint. This actually makes things |
1185 | easier. */ | |
8aad930b AC |
1186 | if (singlestep_breakpoints_inserted_p) |
1187 | /* When software single stepping, the instruction at [prev_pc] | |
1188 | is never a breakpoint, but the instruction following | |
1189 | [prev_pc] (in program execution order) always is. Assume | |
1190 | that following instruction was reached and hence a software | |
1191 | breakpoint was hit. */ | |
1192 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1193 | else if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1194 | /* The inferior was free running (i.e., no single-step | |
1195 | breakpoints inserted) and it hit a software breakpoint. */ | |
1196 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1197 | } | |
1198 | else | |
1199 | { | |
1200 | /* When using hardware single-step, a SIGTRAP is reported for | |
8fb3e588 AC |
1201 | both a completed single-step and a software breakpoint. Need |
1202 | to differentiate between the two as the latter needs | |
1203 | adjusting but the former does not. */ | |
8aad930b AC |
1204 | if (currently_stepping (ecs)) |
1205 | { | |
1206 | if (prev_pc == breakpoint_pc | |
1207 | && software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1208 | /* Hardware single-stepped a software breakpoint (as | |
1209 | occures when the inferior is resumed with PC pointing | |
1210 | at not-yet-hit software breakpoint). Since the | |
1211 | breakpoint really is executed, the inferior needs to be | |
1212 | backed up to the breakpoint address. */ | |
1213 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1214 | } | |
1215 | else | |
1216 | { | |
1217 | if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1218 | /* The inferior was free running (i.e., no hardware | |
1219 | single-step and no possibility of a false SIGTRAP) and | |
1220 | hit a software breakpoint. */ | |
1221 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1222 | } | |
1223 | } | |
4fa8626c DJ |
1224 | } |
1225 | ||
cd0fc7c3 SS |
1226 | /* Given an execution control state that has been freshly filled in |
1227 | by an event from the inferior, figure out what it means and take | |
1228 | appropriate action. */ | |
c906108c | 1229 | |
7270d8f2 OF |
1230 | int stepped_after_stopped_by_watchpoint; |
1231 | ||
cd0fc7c3 | 1232 | void |
96baa820 | 1233 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 1234 | { |
8bbde302 BE |
1235 | /* NOTE: bje/2005-05-02: If you're looking at this code and thinking |
1236 | that the variable stepped_after_stopped_by_watchpoint isn't used, | |
1237 | then you're wrong! See remote.c:remote_stopped_data_address. */ | |
1238 | ||
c8edd8b4 | 1239 | int sw_single_step_trap_p = 0; |
8fb3e588 | 1240 | int stopped_by_watchpoint = -1; /* Mark as unknown. */ |
cd0fc7c3 | 1241 | |
e02bc4cc | 1242 | /* Cache the last pid/waitstatus. */ |
39f77062 | 1243 | target_last_wait_ptid = ecs->ptid; |
e02bc4cc DS |
1244 | target_last_waitstatus = *ecs->wp; |
1245 | ||
4fa8626c DJ |
1246 | adjust_pc_after_break (ecs); |
1247 | ||
488f131b JB |
1248 | switch (ecs->infwait_state) |
1249 | { | |
1250 | case infwait_thread_hop_state: | |
527159b7 | 1251 | if (debug_infrun) |
8a9de0e4 | 1252 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n"); |
488f131b JB |
1253 | /* Cancel the waiton_ptid. */ |
1254 | ecs->waiton_ptid = pid_to_ptid (-1); | |
65e82032 | 1255 | break; |
b83266a0 | 1256 | |
488f131b | 1257 | case infwait_normal_state: |
527159b7 | 1258 | if (debug_infrun) |
8a9de0e4 | 1259 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); |
488f131b JB |
1260 | stepped_after_stopped_by_watchpoint = 0; |
1261 | break; | |
b83266a0 | 1262 | |
488f131b | 1263 | case infwait_nonstep_watch_state: |
527159b7 | 1264 | if (debug_infrun) |
8a9de0e4 AC |
1265 | fprintf_unfiltered (gdb_stdlog, |
1266 | "infrun: infwait_nonstep_watch_state\n"); | |
488f131b | 1267 | insert_breakpoints (); |
c906108c | 1268 | |
488f131b JB |
1269 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
1270 | handle things like signals arriving and other things happening | |
1271 | in combination correctly? */ | |
1272 | stepped_after_stopped_by_watchpoint = 1; | |
1273 | break; | |
65e82032 AC |
1274 | |
1275 | default: | |
e2e0b3e5 | 1276 | internal_error (__FILE__, __LINE__, _("bad switch")); |
488f131b JB |
1277 | } |
1278 | ecs->infwait_state = infwait_normal_state; | |
c906108c | 1279 | |
488f131b | 1280 | flush_cached_frames (); |
c906108c | 1281 | |
488f131b | 1282 | /* If it's a new process, add it to the thread database */ |
c906108c | 1283 | |
488f131b | 1284 | ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) |
b9b5d7ea | 1285 | && !ptid_equal (ecs->ptid, minus_one_ptid) |
488f131b JB |
1286 | && !in_thread_list (ecs->ptid)); |
1287 | ||
1288 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
1289 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) | |
1290 | { | |
1291 | add_thread (ecs->ptid); | |
c906108c | 1292 | |
488f131b JB |
1293 | ui_out_text (uiout, "[New "); |
1294 | ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid)); | |
1295 | ui_out_text (uiout, "]\n"); | |
488f131b | 1296 | } |
c906108c | 1297 | |
488f131b JB |
1298 | switch (ecs->ws.kind) |
1299 | { | |
1300 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 1301 | if (debug_infrun) |
8a9de0e4 | 1302 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
488f131b JB |
1303 | /* Ignore gracefully during startup of the inferior, as it |
1304 | might be the shell which has just loaded some objects, | |
1305 | otherwise add the symbols for the newly loaded objects. */ | |
c906108c | 1306 | #ifdef SOLIB_ADD |
c0236d92 | 1307 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b JB |
1308 | { |
1309 | /* Remove breakpoints, SOLIB_ADD might adjust | |
1310 | breakpoint addresses via breakpoint_re_set. */ | |
1311 | if (breakpoints_inserted) | |
1312 | remove_breakpoints (); | |
c906108c | 1313 | |
488f131b JB |
1314 | /* Check for any newly added shared libraries if we're |
1315 | supposed to be adding them automatically. Switch | |
1316 | terminal for any messages produced by | |
1317 | breakpoint_re_set. */ | |
1318 | target_terminal_ours_for_output (); | |
aff6338a | 1319 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
1320 | stack's section table is kept up-to-date. Architectures, |
1321 | (e.g., PPC64), use the section table to perform | |
1322 | operations such as address => section name and hence | |
1323 | require the table to contain all sections (including | |
1324 | those found in shared libraries). */ | |
aff6338a | 1325 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
1326 | exec_ops to SOLIB_ADD. This is because current GDB is |
1327 | only tooled to propagate section_table changes out from | |
1328 | the "current_target" (see target_resize_to_sections), and | |
1329 | not up from the exec stratum. This, of course, isn't | |
1330 | right. "infrun.c" should only interact with the | |
1331 | exec/process stratum, instead relying on the target stack | |
1332 | to propagate relevant changes (stop, section table | |
1333 | changed, ...) up to other layers. */ | |
aff6338a | 1334 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
488f131b JB |
1335 | target_terminal_inferior (); |
1336 | ||
1337 | /* Reinsert breakpoints and continue. */ | |
1338 | if (breakpoints_inserted) | |
1339 | insert_breakpoints (); | |
1340 | } | |
c906108c | 1341 | #endif |
488f131b JB |
1342 | resume (0, TARGET_SIGNAL_0); |
1343 | prepare_to_wait (ecs); | |
1344 | return; | |
c5aa993b | 1345 | |
488f131b | 1346 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 1347 | if (debug_infrun) |
8a9de0e4 | 1348 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
488f131b JB |
1349 | resume (0, TARGET_SIGNAL_0); |
1350 | prepare_to_wait (ecs); | |
1351 | return; | |
c5aa993b | 1352 | |
488f131b | 1353 | case TARGET_WAITKIND_EXITED: |
527159b7 | 1354 | if (debug_infrun) |
8a9de0e4 | 1355 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n"); |
488f131b JB |
1356 | target_terminal_ours (); /* Must do this before mourn anyway */ |
1357 | print_stop_reason (EXITED, ecs->ws.value.integer); | |
1358 | ||
1359 | /* Record the exit code in the convenience variable $_exitcode, so | |
1360 | that the user can inspect this again later. */ | |
1361 | set_internalvar (lookup_internalvar ("_exitcode"), | |
1362 | value_from_longest (builtin_type_int, | |
1363 | (LONGEST) ecs->ws.value.integer)); | |
1364 | gdb_flush (gdb_stdout); | |
1365 | target_mourn_inferior (); | |
1366 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1367 | stop_print_frame = 0; | |
1368 | stop_stepping (ecs); | |
1369 | return; | |
c5aa993b | 1370 | |
488f131b | 1371 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 1372 | if (debug_infrun) |
8a9de0e4 | 1373 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n"); |
488f131b JB |
1374 | stop_print_frame = 0; |
1375 | stop_signal = ecs->ws.value.sig; | |
1376 | target_terminal_ours (); /* Must do this before mourn anyway */ | |
c5aa993b | 1377 | |
488f131b JB |
1378 | /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't |
1379 | reach here unless the inferior is dead. However, for years | |
1380 | target_kill() was called here, which hints that fatal signals aren't | |
1381 | really fatal on some systems. If that's true, then some changes | |
1382 | may be needed. */ | |
1383 | target_mourn_inferior (); | |
c906108c | 1384 | |
488f131b JB |
1385 | print_stop_reason (SIGNAL_EXITED, stop_signal); |
1386 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1387 | stop_stepping (ecs); | |
1388 | return; | |
c906108c | 1389 | |
488f131b JB |
1390 | /* The following are the only cases in which we keep going; |
1391 | the above cases end in a continue or goto. */ | |
1392 | case TARGET_WAITKIND_FORKED: | |
deb3b17b | 1393 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 1394 | if (debug_infrun) |
8a9de0e4 | 1395 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); |
488f131b JB |
1396 | stop_signal = TARGET_SIGNAL_TRAP; |
1397 | pending_follow.kind = ecs->ws.kind; | |
1398 | ||
8e7d2c16 DJ |
1399 | pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid); |
1400 | pending_follow.fork_event.child_pid = ecs->ws.value.related_pid; | |
c906108c | 1401 | |
488f131b | 1402 | stop_pc = read_pc (); |
675bf4cb | 1403 | |
00d4360e | 1404 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1405 | |
488f131b | 1406 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
04e68871 DJ |
1407 | |
1408 | /* If no catchpoint triggered for this, then keep going. */ | |
1409 | if (ecs->random_signal) | |
1410 | { | |
1411 | stop_signal = TARGET_SIGNAL_0; | |
1412 | keep_going (ecs); | |
1413 | return; | |
1414 | } | |
488f131b JB |
1415 | goto process_event_stop_test; |
1416 | ||
1417 | case TARGET_WAITKIND_EXECD: | |
527159b7 | 1418 | if (debug_infrun) |
8a9de0e4 | 1419 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n"); |
488f131b JB |
1420 | stop_signal = TARGET_SIGNAL_TRAP; |
1421 | ||
7d2830a3 | 1422 | /* NOTE drow/2002-12-05: This code should be pushed down into the |
8fb3e588 AC |
1423 | target_wait function. Until then following vfork on HP/UX 10.20 |
1424 | is probably broken by this. Of course, it's broken anyway. */ | |
488f131b JB |
1425 | /* Is this a target which reports multiple exec events per actual |
1426 | call to exec()? (HP-UX using ptrace does, for example.) If so, | |
1427 | ignore all but the last one. Just resume the exec'r, and wait | |
1428 | for the next exec event. */ | |
1429 | if (inferior_ignoring_leading_exec_events) | |
1430 | { | |
1431 | inferior_ignoring_leading_exec_events--; | |
1432 | if (pending_follow.kind == TARGET_WAITKIND_VFORKED) | |
1433 | ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event. | |
1434 | parent_pid); | |
1435 | target_resume (ecs->ptid, 0, TARGET_SIGNAL_0); | |
1436 | prepare_to_wait (ecs); | |
1437 | return; | |
1438 | } | |
1439 | inferior_ignoring_leading_exec_events = | |
1440 | target_reported_exec_events_per_exec_call () - 1; | |
1441 | ||
1442 | pending_follow.execd_pathname = | |
1443 | savestring (ecs->ws.value.execd_pathname, | |
1444 | strlen (ecs->ws.value.execd_pathname)); | |
1445 | ||
488f131b JB |
1446 | /* This causes the eventpoints and symbol table to be reset. Must |
1447 | do this now, before trying to determine whether to stop. */ | |
1448 | follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname); | |
1449 | xfree (pending_follow.execd_pathname); | |
c906108c | 1450 | |
488f131b JB |
1451 | stop_pc = read_pc_pid (ecs->ptid); |
1452 | ecs->saved_inferior_ptid = inferior_ptid; | |
1453 | inferior_ptid = ecs->ptid; | |
675bf4cb | 1454 | |
00d4360e | 1455 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1456 | |
488f131b JB |
1457 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
1458 | inferior_ptid = ecs->saved_inferior_ptid; | |
04e68871 DJ |
1459 | |
1460 | /* If no catchpoint triggered for this, then keep going. */ | |
1461 | if (ecs->random_signal) | |
1462 | { | |
1463 | stop_signal = TARGET_SIGNAL_0; | |
1464 | keep_going (ecs); | |
1465 | return; | |
1466 | } | |
488f131b JB |
1467 | goto process_event_stop_test; |
1468 | ||
b4dc5ffa MK |
1469 | /* Be careful not to try to gather much state about a thread |
1470 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 1471 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 1472 | if (debug_infrun) |
8a9de0e4 | 1473 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); |
488f131b JB |
1474 | resume (0, TARGET_SIGNAL_0); |
1475 | prepare_to_wait (ecs); | |
1476 | return; | |
c906108c | 1477 | |
488f131b JB |
1478 | /* Before examining the threads further, step this thread to |
1479 | get it entirely out of the syscall. (We get notice of the | |
1480 | event when the thread is just on the verge of exiting a | |
1481 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 1482 | into user code.) */ |
488f131b | 1483 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 1484 | if (debug_infrun) |
8a9de0e4 | 1485 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); |
488f131b | 1486 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); |
488f131b JB |
1487 | prepare_to_wait (ecs); |
1488 | return; | |
c906108c | 1489 | |
488f131b | 1490 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 1491 | if (debug_infrun) |
8a9de0e4 | 1492 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
488f131b JB |
1493 | stop_signal = ecs->ws.value.sig; |
1494 | break; | |
c906108c | 1495 | |
488f131b JB |
1496 | /* We had an event in the inferior, but we are not interested |
1497 | in handling it at this level. The lower layers have already | |
8e7d2c16 | 1498 | done what needs to be done, if anything. |
8fb3e588 AC |
1499 | |
1500 | One of the possible circumstances for this is when the | |
1501 | inferior produces output for the console. The inferior has | |
1502 | not stopped, and we are ignoring the event. Another possible | |
1503 | circumstance is any event which the lower level knows will be | |
1504 | reported multiple times without an intervening resume. */ | |
488f131b | 1505 | case TARGET_WAITKIND_IGNORE: |
527159b7 | 1506 | if (debug_infrun) |
8a9de0e4 | 1507 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); |
8e7d2c16 | 1508 | prepare_to_wait (ecs); |
488f131b JB |
1509 | return; |
1510 | } | |
c906108c | 1511 | |
488f131b JB |
1512 | /* We may want to consider not doing a resume here in order to give |
1513 | the user a chance to play with the new thread. It might be good | |
1514 | to make that a user-settable option. */ | |
c906108c | 1515 | |
488f131b JB |
1516 | /* At this point, all threads are stopped (happens automatically in |
1517 | either the OS or the native code). Therefore we need to continue | |
1518 | all threads in order to make progress. */ | |
1519 | if (ecs->new_thread_event) | |
1520 | { | |
1521 | target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); | |
1522 | prepare_to_wait (ecs); | |
1523 | return; | |
1524 | } | |
c906108c | 1525 | |
488f131b JB |
1526 | stop_pc = read_pc_pid (ecs->ptid); |
1527 | ||
527159b7 | 1528 | if (debug_infrun) |
8a9de0e4 | 1529 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc)); |
527159b7 | 1530 | |
9f976b41 DJ |
1531 | if (stepping_past_singlestep_breakpoint) |
1532 | { | |
8fb3e588 AC |
1533 | gdb_assert (SOFTWARE_SINGLE_STEP_P () |
1534 | && singlestep_breakpoints_inserted_p); | |
9f976b41 DJ |
1535 | gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); |
1536 | gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); | |
1537 | ||
1538 | stepping_past_singlestep_breakpoint = 0; | |
1539 | ||
1540 | /* We've either finished single-stepping past the single-step | |
8fb3e588 AC |
1541 | breakpoint, or stopped for some other reason. It would be nice if |
1542 | we could tell, but we can't reliably. */ | |
9f976b41 | 1543 | if (stop_signal == TARGET_SIGNAL_TRAP) |
8fb3e588 | 1544 | { |
527159b7 | 1545 | if (debug_infrun) |
8a9de0e4 | 1546 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n"); |
9f976b41 DJ |
1547 | /* Pull the single step breakpoints out of the target. */ |
1548 | SOFTWARE_SINGLE_STEP (0, 0); | |
1549 | singlestep_breakpoints_inserted_p = 0; | |
1550 | ||
1551 | ecs->random_signal = 0; | |
1552 | ||
1553 | ecs->ptid = saved_singlestep_ptid; | |
1554 | context_switch (ecs); | |
9a4105ab AC |
1555 | if (deprecated_context_hook) |
1556 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
9f976b41 DJ |
1557 | |
1558 | resume (1, TARGET_SIGNAL_0); | |
1559 | prepare_to_wait (ecs); | |
1560 | return; | |
1561 | } | |
1562 | } | |
1563 | ||
1564 | stepping_past_singlestep_breakpoint = 0; | |
1565 | ||
488f131b JB |
1566 | /* See if a thread hit a thread-specific breakpoint that was meant for |
1567 | another thread. If so, then step that thread past the breakpoint, | |
1568 | and continue it. */ | |
1569 | ||
1570 | if (stop_signal == TARGET_SIGNAL_TRAP) | |
1571 | { | |
9f976b41 DJ |
1572 | int thread_hop_needed = 0; |
1573 | ||
f8d40ec8 JB |
1574 | /* Check if a regular breakpoint has been hit before checking |
1575 | for a potential single step breakpoint. Otherwise, GDB will | |
1576 | not see this breakpoint hit when stepping onto breakpoints. */ | |
4fa8626c | 1577 | if (breakpoints_inserted && breakpoint_here_p (stop_pc)) |
488f131b | 1578 | { |
c5aa993b | 1579 | ecs->random_signal = 0; |
4fa8626c | 1580 | if (!breakpoint_thread_match (stop_pc, ecs->ptid)) |
9f976b41 DJ |
1581 | thread_hop_needed = 1; |
1582 | } | |
1583 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
1584 | { | |
1585 | ecs->random_signal = 0; | |
1586 | /* The call to in_thread_list is necessary because PTIDs sometimes | |
1587 | change when we go from single-threaded to multi-threaded. If | |
1588 | the singlestep_ptid is still in the list, assume that it is | |
1589 | really different from ecs->ptid. */ | |
1590 | if (!ptid_equal (singlestep_ptid, ecs->ptid) | |
1591 | && in_thread_list (singlestep_ptid)) | |
1592 | { | |
1593 | thread_hop_needed = 1; | |
1594 | stepping_past_singlestep_breakpoint = 1; | |
1595 | saved_singlestep_ptid = singlestep_ptid; | |
1596 | } | |
1597 | } | |
1598 | ||
1599 | if (thread_hop_needed) | |
8fb3e588 AC |
1600 | { |
1601 | int remove_status; | |
1602 | ||
527159b7 | 1603 | if (debug_infrun) |
8a9de0e4 | 1604 | fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n"); |
527159b7 | 1605 | |
8fb3e588 AC |
1606 | /* Saw a breakpoint, but it was hit by the wrong thread. |
1607 | Just continue. */ | |
1608 | ||
1609 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
488f131b | 1610 | { |
8fb3e588 AC |
1611 | /* Pull the single step breakpoints out of the target. */ |
1612 | SOFTWARE_SINGLE_STEP (0, 0); | |
1613 | singlestep_breakpoints_inserted_p = 0; | |
1614 | } | |
1615 | ||
1616 | remove_status = remove_breakpoints (); | |
1617 | /* Did we fail to remove breakpoints? If so, try | |
1618 | to set the PC past the bp. (There's at least | |
1619 | one situation in which we can fail to remove | |
1620 | the bp's: On HP-UX's that use ttrace, we can't | |
1621 | change the address space of a vforking child | |
1622 | process until the child exits (well, okay, not | |
1623 | then either :-) or execs. */ | |
1624 | if (remove_status != 0) | |
1625 | { | |
1626 | /* FIXME! This is obviously non-portable! */ | |
1627 | write_pc_pid (stop_pc + 4, ecs->ptid); | |
1628 | /* We need to restart all the threads now, | |
1629 | * unles we're running in scheduler-locked mode. | |
1630 | * Use currently_stepping to determine whether to | |
1631 | * step or continue. | |
1632 | */ | |
1633 | /* FIXME MVS: is there any reason not to call resume()? */ | |
1634 | if (scheduler_mode == schedlock_on) | |
1635 | target_resume (ecs->ptid, | |
1636 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
488f131b | 1637 | else |
8fb3e588 AC |
1638 | target_resume (RESUME_ALL, |
1639 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
1640 | prepare_to_wait (ecs); | |
1641 | return; | |
1642 | } | |
1643 | else | |
1644 | { /* Single step */ | |
1645 | breakpoints_inserted = 0; | |
1646 | if (!ptid_equal (inferior_ptid, ecs->ptid)) | |
1647 | context_switch (ecs); | |
1648 | ecs->waiton_ptid = ecs->ptid; | |
1649 | ecs->wp = &(ecs->ws); | |
1650 | ecs->another_trap = 1; | |
1651 | ||
1652 | ecs->infwait_state = infwait_thread_hop_state; | |
1653 | keep_going (ecs); | |
1654 | registers_changed (); | |
1655 | return; | |
1656 | } | |
488f131b | 1657 | } |
f8d40ec8 | 1658 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
8fb3e588 AC |
1659 | { |
1660 | sw_single_step_trap_p = 1; | |
1661 | ecs->random_signal = 0; | |
1662 | } | |
488f131b JB |
1663 | } |
1664 | else | |
1665 | ecs->random_signal = 1; | |
c906108c | 1666 | |
488f131b | 1667 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
1668 | so, then switch to that thread. */ |
1669 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 1670 | { |
527159b7 | 1671 | if (debug_infrun) |
8a9de0e4 | 1672 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 1673 | |
488f131b | 1674 | context_switch (ecs); |
c5aa993b | 1675 | |
9a4105ab AC |
1676 | if (deprecated_context_hook) |
1677 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
c5aa993b | 1678 | |
488f131b JB |
1679 | flush_cached_frames (); |
1680 | } | |
c906108c | 1681 | |
488f131b JB |
1682 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
1683 | { | |
1684 | /* Pull the single step breakpoints out of the target. */ | |
1685 | SOFTWARE_SINGLE_STEP (0, 0); | |
1686 | singlestep_breakpoints_inserted_p = 0; | |
1687 | } | |
c906108c | 1688 | |
488f131b JB |
1689 | /* It may not be necessary to disable the watchpoint to stop over |
1690 | it. For example, the PA can (with some kernel cooperation) | |
1691 | single step over a watchpoint without disabling the watchpoint. */ | |
1692 | if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1693 | { | |
527159b7 | 1694 | if (debug_infrun) |
8a9de0e4 | 1695 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1696 | resume (1, 0); |
1697 | prepare_to_wait (ecs); | |
1698 | return; | |
1699 | } | |
c906108c | 1700 | |
488f131b JB |
1701 | /* It is far more common to need to disable a watchpoint to step |
1702 | the inferior over it. FIXME. What else might a debug | |
1703 | register or page protection watchpoint scheme need here? */ | |
1704 | if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1705 | { | |
1706 | /* At this point, we are stopped at an instruction which has | |
1707 | attempted to write to a piece of memory under control of | |
1708 | a watchpoint. The instruction hasn't actually executed | |
1709 | yet. If we were to evaluate the watchpoint expression | |
1710 | now, we would get the old value, and therefore no change | |
1711 | would seem to have occurred. | |
1712 | ||
1713 | In order to make watchpoints work `right', we really need | |
1714 | to complete the memory write, and then evaluate the | |
1715 | watchpoint expression. The following code does that by | |
1716 | removing the watchpoint (actually, all watchpoints and | |
1717 | breakpoints), single-stepping the target, re-inserting | |
1718 | watchpoints, and then falling through to let normal | |
1719 | single-step processing handle proceed. Since this | |
1720 | includes evaluating watchpoints, things will come to a | |
1721 | stop in the correct manner. */ | |
1722 | ||
527159b7 | 1723 | if (debug_infrun) |
8a9de0e4 | 1724 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1725 | remove_breakpoints (); |
1726 | registers_changed (); | |
1727 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */ | |
c5aa993b | 1728 | |
488f131b JB |
1729 | ecs->waiton_ptid = ecs->ptid; |
1730 | ecs->wp = &(ecs->ws); | |
1731 | ecs->infwait_state = infwait_nonstep_watch_state; | |
1732 | prepare_to_wait (ecs); | |
1733 | return; | |
1734 | } | |
1735 | ||
1736 | /* It may be possible to simply continue after a watchpoint. */ | |
1737 | if (HAVE_CONTINUABLE_WATCHPOINT) | |
00d4360e | 1738 | stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws); |
488f131b JB |
1739 | |
1740 | ecs->stop_func_start = 0; | |
1741 | ecs->stop_func_end = 0; | |
1742 | ecs->stop_func_name = 0; | |
1743 | /* Don't care about return value; stop_func_start and stop_func_name | |
1744 | will both be 0 if it doesn't work. */ | |
1745 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
1746 | &ecs->stop_func_start, &ecs->stop_func_end); | |
782263ab | 1747 | ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET; |
488f131b JB |
1748 | ecs->another_trap = 0; |
1749 | bpstat_clear (&stop_bpstat); | |
1750 | stop_step = 0; | |
1751 | stop_stack_dummy = 0; | |
1752 | stop_print_frame = 1; | |
1753 | ecs->random_signal = 0; | |
1754 | stopped_by_random_signal = 0; | |
1755 | breakpoints_failed = 0; | |
1756 | ||
3352ef37 AC |
1757 | if (stop_signal == TARGET_SIGNAL_TRAP |
1758 | && trap_expected | |
1759 | && gdbarch_single_step_through_delay_p (current_gdbarch) | |
1760 | && currently_stepping (ecs)) | |
1761 | { | |
1762 | /* We're trying to step of a breakpoint. Turns out that we're | |
1763 | also on an instruction that needs to be stepped multiple | |
1764 | times before it's been fully executing. E.g., architectures | |
1765 | with a delay slot. It needs to be stepped twice, once for | |
1766 | the instruction and once for the delay slot. */ | |
1767 | int step_through_delay | |
1768 | = gdbarch_single_step_through_delay (current_gdbarch, | |
1769 | get_current_frame ()); | |
527159b7 | 1770 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 1771 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
3352ef37 AC |
1772 | if (step_range_end == 0 && step_through_delay) |
1773 | { | |
1774 | /* The user issued a continue when stopped at a breakpoint. | |
1775 | Set up for another trap and get out of here. */ | |
1776 | ecs->another_trap = 1; | |
1777 | keep_going (ecs); | |
1778 | return; | |
1779 | } | |
1780 | else if (step_through_delay) | |
1781 | { | |
1782 | /* The user issued a step when stopped at a breakpoint. | |
1783 | Maybe we should stop, maybe we should not - the delay | |
1784 | slot *might* correspond to a line of source. In any | |
1785 | case, don't decide that here, just set ecs->another_trap, | |
1786 | making sure we single-step again before breakpoints are | |
1787 | re-inserted. */ | |
1788 | ecs->another_trap = 1; | |
1789 | } | |
1790 | } | |
1791 | ||
488f131b JB |
1792 | /* Look at the cause of the stop, and decide what to do. |
1793 | The alternatives are: | |
1794 | 1) break; to really stop and return to the debugger, | |
1795 | 2) drop through to start up again | |
1796 | (set ecs->another_trap to 1 to single step once) | |
1797 | 3) set ecs->random_signal to 1, and the decision between 1 and 2 | |
1798 | will be made according to the signal handling tables. */ | |
1799 | ||
1800 | /* First, distinguish signals caused by the debugger from signals | |
03cebad2 MK |
1801 | that have to do with the program's own actions. Note that |
1802 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
1803 | on the operating system version. Here we detect when a SIGILL or | |
1804 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
1805 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
1806 | when we're trying to execute a breakpoint instruction on a | |
1807 | non-executable stack. This happens for call dummy breakpoints | |
1808 | for architectures like SPARC that place call dummies on the | |
1809 | stack. */ | |
488f131b JB |
1810 | |
1811 | if (stop_signal == TARGET_SIGNAL_TRAP | |
8fb3e588 AC |
1812 | || (breakpoints_inserted |
1813 | && (stop_signal == TARGET_SIGNAL_ILL | |
1814 | || stop_signal == TARGET_SIGNAL_SEGV | |
1815 | || stop_signal == TARGET_SIGNAL_EMT)) | |
1816 | || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP) | |
488f131b JB |
1817 | { |
1818 | if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) | |
1819 | { | |
527159b7 | 1820 | if (debug_infrun) |
8a9de0e4 | 1821 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); |
488f131b JB |
1822 | stop_print_frame = 0; |
1823 | stop_stepping (ecs); | |
1824 | return; | |
1825 | } | |
c54cfec8 EZ |
1826 | |
1827 | /* This is originated from start_remote(), start_inferior() and | |
1828 | shared libraries hook functions. */ | |
c0236d92 | 1829 | if (stop_soon == STOP_QUIETLY) |
488f131b | 1830 | { |
527159b7 | 1831 | if (debug_infrun) |
8a9de0e4 | 1832 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); |
488f131b JB |
1833 | stop_stepping (ecs); |
1834 | return; | |
1835 | } | |
1836 | ||
c54cfec8 EZ |
1837 | /* This originates from attach_command(). We need to overwrite |
1838 | the stop_signal here, because some kernels don't ignore a | |
1839 | SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call. | |
1840 | See more comments in inferior.h. */ | |
c0236d92 | 1841 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP) |
c54cfec8 EZ |
1842 | { |
1843 | stop_stepping (ecs); | |
1844 | if (stop_signal == TARGET_SIGNAL_STOP) | |
1845 | stop_signal = TARGET_SIGNAL_0; | |
1846 | return; | |
1847 | } | |
1848 | ||
d303a6c7 AC |
1849 | /* Don't even think about breakpoints if just proceeded over a |
1850 | breakpoint. */ | |
1851 | if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected) | |
527159b7 RC |
1852 | { |
1853 | if (debug_infrun) | |
8a9de0e4 | 1854 | fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n"); |
527159b7 RC |
1855 | bpstat_clear (&stop_bpstat); |
1856 | } | |
488f131b JB |
1857 | else |
1858 | { | |
1859 | /* See if there is a breakpoint at the current PC. */ | |
8fb3e588 | 1860 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, |
00d4360e | 1861 | stopped_by_watchpoint); |
488f131b | 1862 | |
488f131b JB |
1863 | /* Following in case break condition called a |
1864 | function. */ | |
1865 | stop_print_frame = 1; | |
1866 | } | |
1867 | ||
73dd234f | 1868 | /* NOTE: cagney/2003-03-29: These two checks for a random signal |
8fb3e588 AC |
1869 | at one stage in the past included checks for an inferior |
1870 | function call's call dummy's return breakpoint. The original | |
1871 | comment, that went with the test, read: | |
73dd234f | 1872 | |
8fb3e588 AC |
1873 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
1874 | another signal besides SIGTRAP, so check here as well as | |
1875 | above.'' | |
73dd234f AC |
1876 | |
1877 | If someone ever tries to get get call dummys on a | |
1878 | non-executable stack to work (where the target would stop | |
03cebad2 MK |
1879 | with something like a SIGSEGV), then those tests might need |
1880 | to be re-instated. Given, however, that the tests were only | |
73dd234f | 1881 | enabled when momentary breakpoints were not being used, I |
03cebad2 MK |
1882 | suspect that it won't be the case. |
1883 | ||
8fb3e588 AC |
1884 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
1885 | be necessary for call dummies on a non-executable stack on | |
1886 | SPARC. */ | |
73dd234f | 1887 | |
488f131b JB |
1888 | if (stop_signal == TARGET_SIGNAL_TRAP) |
1889 | ecs->random_signal | |
1890 | = !(bpstat_explains_signal (stop_bpstat) | |
1891 | || trap_expected | |
488f131b | 1892 | || (step_range_end && step_resume_breakpoint == NULL)); |
488f131b JB |
1893 | else |
1894 | { | |
73dd234f | 1895 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
488f131b JB |
1896 | if (!ecs->random_signal) |
1897 | stop_signal = TARGET_SIGNAL_TRAP; | |
1898 | } | |
1899 | } | |
1900 | ||
1901 | /* When we reach this point, we've pretty much decided | |
1902 | that the reason for stopping must've been a random | |
1903 | (unexpected) signal. */ | |
1904 | ||
1905 | else | |
1906 | ecs->random_signal = 1; | |
488f131b | 1907 | |
04e68871 | 1908 | process_event_stop_test: |
488f131b JB |
1909 | /* For the program's own signals, act according to |
1910 | the signal handling tables. */ | |
1911 | ||
1912 | if (ecs->random_signal) | |
1913 | { | |
1914 | /* Signal not for debugging purposes. */ | |
1915 | int printed = 0; | |
1916 | ||
527159b7 | 1917 | if (debug_infrun) |
8a9de0e4 | 1918 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal); |
527159b7 | 1919 | |
488f131b JB |
1920 | stopped_by_random_signal = 1; |
1921 | ||
1922 | if (signal_print[stop_signal]) | |
1923 | { | |
1924 | printed = 1; | |
1925 | target_terminal_ours_for_output (); | |
1926 | print_stop_reason (SIGNAL_RECEIVED, stop_signal); | |
1927 | } | |
1928 | if (signal_stop[stop_signal]) | |
1929 | { | |
1930 | stop_stepping (ecs); | |
1931 | return; | |
1932 | } | |
1933 | /* If not going to stop, give terminal back | |
1934 | if we took it away. */ | |
1935 | else if (printed) | |
1936 | target_terminal_inferior (); | |
1937 | ||
1938 | /* Clear the signal if it should not be passed. */ | |
1939 | if (signal_program[stop_signal] == 0) | |
1940 | stop_signal = TARGET_SIGNAL_0; | |
1941 | ||
68f53502 AC |
1942 | if (prev_pc == read_pc () |
1943 | && !breakpoints_inserted | |
1944 | && breakpoint_here_p (read_pc ()) | |
1945 | && step_resume_breakpoint == NULL) | |
1946 | { | |
1947 | /* We were just starting a new sequence, attempting to | |
1948 | single-step off of a breakpoint and expecting a SIGTRAP. | |
1949 | Intead this signal arrives. This signal will take us out | |
1950 | of the stepping range so GDB needs to remember to, when | |
1951 | the signal handler returns, resume stepping off that | |
1952 | breakpoint. */ | |
1953 | /* To simplify things, "continue" is forced to use the same | |
1954 | code paths as single-step - set a breakpoint at the | |
1955 | signal return address and then, once hit, step off that | |
1956 | breakpoint. */ | |
44cbf7b5 | 1957 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
68f53502 | 1958 | ecs->step_after_step_resume_breakpoint = 1; |
9d799f85 AC |
1959 | keep_going (ecs); |
1960 | return; | |
68f53502 | 1961 | } |
9d799f85 AC |
1962 | |
1963 | if (step_range_end != 0 | |
1964 | && stop_signal != TARGET_SIGNAL_0 | |
1965 | && stop_pc >= step_range_start && stop_pc < step_range_end | |
1966 | && frame_id_eq (get_frame_id (get_current_frame ()), | |
1967 | step_frame_id) | |
1968 | && step_resume_breakpoint == NULL) | |
d303a6c7 AC |
1969 | { |
1970 | /* The inferior is about to take a signal that will take it | |
1971 | out of the single step range. Set a breakpoint at the | |
1972 | current PC (which is presumably where the signal handler | |
1973 | will eventually return) and then allow the inferior to | |
1974 | run free. | |
1975 | ||
1976 | Note that this is only needed for a signal delivered | |
1977 | while in the single-step range. Nested signals aren't a | |
1978 | problem as they eventually all return. */ | |
44cbf7b5 | 1979 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
9d799f85 AC |
1980 | keep_going (ecs); |
1981 | return; | |
d303a6c7 | 1982 | } |
9d799f85 AC |
1983 | |
1984 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
1985 | when either there's a nested signal, or when there's a | |
1986 | pending signal enabled just as the signal handler returns | |
1987 | (leaving the inferior at the step-resume-breakpoint without | |
1988 | actually executing it). Either way continue until the | |
1989 | breakpoint is really hit. */ | |
488f131b JB |
1990 | keep_going (ecs); |
1991 | return; | |
1992 | } | |
1993 | ||
1994 | /* Handle cases caused by hitting a breakpoint. */ | |
1995 | { | |
1996 | CORE_ADDR jmp_buf_pc; | |
1997 | struct bpstat_what what; | |
1998 | ||
1999 | what = bpstat_what (stop_bpstat); | |
2000 | ||
2001 | if (what.call_dummy) | |
2002 | { | |
2003 | stop_stack_dummy = 1; | |
c5aa993b | 2004 | } |
c906108c | 2005 | |
488f131b | 2006 | switch (what.main_action) |
c5aa993b | 2007 | { |
488f131b JB |
2008 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: |
2009 | /* If we hit the breakpoint at longjmp, disable it for the | |
2010 | duration of this command. Then, install a temporary | |
2011 | breakpoint at the target of the jmp_buf. */ | |
527159b7 | 2012 | if (debug_infrun) |
8a9de0e4 | 2013 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n"); |
488f131b JB |
2014 | disable_longjmp_breakpoint (); |
2015 | remove_breakpoints (); | |
2016 | breakpoints_inserted = 0; | |
2017 | if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc)) | |
c5aa993b | 2018 | { |
488f131b | 2019 | keep_going (ecs); |
104c1213 | 2020 | return; |
c5aa993b | 2021 | } |
488f131b JB |
2022 | |
2023 | /* Need to blow away step-resume breakpoint, as it | |
2024 | interferes with us */ | |
2025 | if (step_resume_breakpoint != NULL) | |
104c1213 | 2026 | { |
488f131b | 2027 | delete_step_resume_breakpoint (&step_resume_breakpoint); |
104c1213 | 2028 | } |
c906108c | 2029 | |
8fb3e588 | 2030 | set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id); |
488f131b JB |
2031 | ecs->handling_longjmp = 1; /* FIXME */ |
2032 | keep_going (ecs); | |
2033 | return; | |
c906108c | 2034 | |
488f131b JB |
2035 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
2036 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: | |
527159b7 | 2037 | if (debug_infrun) |
8a9de0e4 | 2038 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n"); |
488f131b JB |
2039 | remove_breakpoints (); |
2040 | breakpoints_inserted = 0; | |
488f131b JB |
2041 | disable_longjmp_breakpoint (); |
2042 | ecs->handling_longjmp = 0; /* FIXME */ | |
2043 | if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) | |
2044 | break; | |
2045 | /* else fallthrough */ | |
2046 | ||
2047 | case BPSTAT_WHAT_SINGLE: | |
527159b7 | 2048 | if (debug_infrun) |
8a9de0e4 | 2049 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n"); |
488f131b | 2050 | if (breakpoints_inserted) |
c5aa993b | 2051 | { |
488f131b | 2052 | remove_breakpoints (); |
c5aa993b | 2053 | } |
488f131b JB |
2054 | breakpoints_inserted = 0; |
2055 | ecs->another_trap = 1; | |
2056 | /* Still need to check other stuff, at least the case | |
2057 | where we are stepping and step out of the right range. */ | |
2058 | break; | |
c906108c | 2059 | |
488f131b | 2060 | case BPSTAT_WHAT_STOP_NOISY: |
527159b7 | 2061 | if (debug_infrun) |
8a9de0e4 | 2062 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n"); |
488f131b | 2063 | stop_print_frame = 1; |
c906108c | 2064 | |
d303a6c7 AC |
2065 | /* We are about to nuke the step_resume_breakpointt via the |
2066 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2067 | |
488f131b JB |
2068 | stop_stepping (ecs); |
2069 | return; | |
c5aa993b | 2070 | |
488f131b | 2071 | case BPSTAT_WHAT_STOP_SILENT: |
527159b7 | 2072 | if (debug_infrun) |
8a9de0e4 | 2073 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n"); |
488f131b | 2074 | stop_print_frame = 0; |
c5aa993b | 2075 | |
d303a6c7 AC |
2076 | /* We are about to nuke the step_resume_breakpoin via the |
2077 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2078 | |
488f131b | 2079 | stop_stepping (ecs); |
e441088d | 2080 | return; |
c5aa993b | 2081 | |
488f131b JB |
2082 | case BPSTAT_WHAT_STEP_RESUME: |
2083 | /* This proably demands a more elegant solution, but, yeah | |
2084 | right... | |
c5aa993b | 2085 | |
488f131b JB |
2086 | This function's use of the simple variable |
2087 | step_resume_breakpoint doesn't seem to accomodate | |
2088 | simultaneously active step-resume bp's, although the | |
2089 | breakpoint list certainly can. | |
c5aa993b | 2090 | |
488f131b JB |
2091 | If we reach here and step_resume_breakpoint is already |
2092 | NULL, then apparently we have multiple active | |
2093 | step-resume bp's. We'll just delete the breakpoint we | |
2094 | stopped at, and carry on. | |
2095 | ||
2096 | Correction: what the code currently does is delete a | |
2097 | step-resume bp, but it makes no effort to ensure that | |
2098 | the one deleted is the one currently stopped at. MVS */ | |
c5aa993b | 2099 | |
527159b7 | 2100 | if (debug_infrun) |
8a9de0e4 | 2101 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n"); |
527159b7 | 2102 | |
488f131b JB |
2103 | if (step_resume_breakpoint == NULL) |
2104 | { | |
2105 | step_resume_breakpoint = | |
2106 | bpstat_find_step_resume_breakpoint (stop_bpstat); | |
2107 | } | |
2108 | delete_step_resume_breakpoint (&step_resume_breakpoint); | |
68f53502 AC |
2109 | if (ecs->step_after_step_resume_breakpoint) |
2110 | { | |
2111 | /* Back when the step-resume breakpoint was inserted, we | |
2112 | were trying to single-step off a breakpoint. Go back | |
2113 | to doing that. */ | |
2114 | ecs->step_after_step_resume_breakpoint = 0; | |
2115 | remove_breakpoints (); | |
2116 | breakpoints_inserted = 0; | |
2117 | ecs->another_trap = 1; | |
2118 | keep_going (ecs); | |
2119 | return; | |
2120 | } | |
488f131b JB |
2121 | break; |
2122 | ||
2123 | case BPSTAT_WHAT_THROUGH_SIGTRAMP: | |
527159b7 | 2124 | if (debug_infrun) |
8a9de0e4 | 2125 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n"); |
488f131b JB |
2126 | /* If were waiting for a trap, hitting the step_resume_break |
2127 | doesn't count as getting it. */ | |
2128 | if (trap_expected) | |
2129 | ecs->another_trap = 1; | |
2130 | break; | |
2131 | ||
2132 | case BPSTAT_WHAT_CHECK_SHLIBS: | |
2133 | case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK: | |
c906108c | 2134 | { |
527159b7 | 2135 | if (debug_infrun) |
8a9de0e4 | 2136 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n"); |
488f131b JB |
2137 | /* Remove breakpoints, we eventually want to step over the |
2138 | shlib event breakpoint, and SOLIB_ADD might adjust | |
2139 | breakpoint addresses via breakpoint_re_set. */ | |
2140 | if (breakpoints_inserted) | |
2141 | remove_breakpoints (); | |
c5aa993b | 2142 | breakpoints_inserted = 0; |
488f131b JB |
2143 | |
2144 | /* Check for any newly added shared libraries if we're | |
2145 | supposed to be adding them automatically. Switch | |
2146 | terminal for any messages produced by | |
2147 | breakpoint_re_set. */ | |
2148 | target_terminal_ours_for_output (); | |
aff6338a | 2149 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
2150 | stack's section table is kept up-to-date. Architectures, |
2151 | (e.g., PPC64), use the section table to perform | |
2152 | operations such as address => section name and hence | |
2153 | require the table to contain all sections (including | |
2154 | those found in shared libraries). */ | |
aff6338a | 2155 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
2156 | exec_ops to SOLIB_ADD. This is because current GDB is |
2157 | only tooled to propagate section_table changes out from | |
2158 | the "current_target" (see target_resize_to_sections), and | |
2159 | not up from the exec stratum. This, of course, isn't | |
2160 | right. "infrun.c" should only interact with the | |
2161 | exec/process stratum, instead relying on the target stack | |
2162 | to propagate relevant changes (stop, section table | |
2163 | changed, ...) up to other layers. */ | |
a77053c2 | 2164 | #ifdef SOLIB_ADD |
aff6338a | 2165 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
a77053c2 MK |
2166 | #else |
2167 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
2168 | #endif | |
488f131b JB |
2169 | target_terminal_inferior (); |
2170 | ||
2171 | /* Try to reenable shared library breakpoints, additional | |
2172 | code segments in shared libraries might be mapped in now. */ | |
2173 | re_enable_breakpoints_in_shlibs (); | |
2174 | ||
2175 | /* If requested, stop when the dynamic linker notifies | |
2176 | gdb of events. This allows the user to get control | |
2177 | and place breakpoints in initializer routines for | |
2178 | dynamically loaded objects (among other things). */ | |
877522db | 2179 | if (stop_on_solib_events || stop_stack_dummy) |
d4f3574e | 2180 | { |
488f131b | 2181 | stop_stepping (ecs); |
d4f3574e SS |
2182 | return; |
2183 | } | |
c5aa993b | 2184 | |
488f131b JB |
2185 | /* If we stopped due to an explicit catchpoint, then the |
2186 | (see above) call to SOLIB_ADD pulled in any symbols | |
2187 | from a newly-loaded library, if appropriate. | |
2188 | ||
2189 | We do want the inferior to stop, but not where it is | |
2190 | now, which is in the dynamic linker callback. Rather, | |
2191 | we would like it stop in the user's program, just after | |
2192 | the call that caused this catchpoint to trigger. That | |
2193 | gives the user a more useful vantage from which to | |
2194 | examine their program's state. */ | |
8fb3e588 AC |
2195 | else if (what.main_action |
2196 | == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK) | |
c906108c | 2197 | { |
488f131b JB |
2198 | /* ??rehrauer: If I could figure out how to get the |
2199 | right return PC from here, we could just set a temp | |
2200 | breakpoint and resume. I'm not sure we can without | |
2201 | cracking open the dld's shared libraries and sniffing | |
2202 | their unwind tables and text/data ranges, and that's | |
2203 | not a terribly portable notion. | |
2204 | ||
2205 | Until that time, we must step the inferior out of the | |
2206 | dld callback, and also out of the dld itself (and any | |
2207 | code or stubs in libdld.sl, such as "shl_load" and | |
2208 | friends) until we reach non-dld code. At that point, | |
2209 | we can stop stepping. */ | |
2210 | bpstat_get_triggered_catchpoints (stop_bpstat, | |
2211 | &ecs-> | |
2212 | stepping_through_solib_catchpoints); | |
2213 | ecs->stepping_through_solib_after_catch = 1; | |
2214 | ||
2215 | /* Be sure to lift all breakpoints, so the inferior does | |
2216 | actually step past this point... */ | |
2217 | ecs->another_trap = 1; | |
2218 | break; | |
c906108c | 2219 | } |
c5aa993b | 2220 | else |
c5aa993b | 2221 | { |
488f131b | 2222 | /* We want to step over this breakpoint, then keep going. */ |
c5aa993b | 2223 | ecs->another_trap = 1; |
488f131b | 2224 | break; |
c5aa993b | 2225 | } |
488f131b | 2226 | } |
488f131b | 2227 | break; |
c906108c | 2228 | |
488f131b JB |
2229 | case BPSTAT_WHAT_LAST: |
2230 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
c906108c | 2231 | |
488f131b JB |
2232 | case BPSTAT_WHAT_KEEP_CHECKING: |
2233 | break; | |
2234 | } | |
2235 | } | |
c906108c | 2236 | |
488f131b JB |
2237 | /* We come here if we hit a breakpoint but should not |
2238 | stop for it. Possibly we also were stepping | |
2239 | and should stop for that. So fall through and | |
2240 | test for stepping. But, if not stepping, | |
2241 | do not stop. */ | |
c906108c | 2242 | |
9d1ff73f MS |
2243 | /* Are we stepping to get the inferior out of the dynamic linker's |
2244 | hook (and possibly the dld itself) after catching a shlib | |
2245 | event? */ | |
488f131b JB |
2246 | if (ecs->stepping_through_solib_after_catch) |
2247 | { | |
2248 | #if defined(SOLIB_ADD) | |
2249 | /* Have we reached our destination? If not, keep going. */ | |
2250 | if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) | |
2251 | { | |
527159b7 | 2252 | if (debug_infrun) |
8a9de0e4 | 2253 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n"); |
488f131b JB |
2254 | ecs->another_trap = 1; |
2255 | keep_going (ecs); | |
104c1213 | 2256 | return; |
488f131b JB |
2257 | } |
2258 | #endif | |
527159b7 | 2259 | if (debug_infrun) |
8a9de0e4 | 2260 | fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n"); |
488f131b JB |
2261 | /* Else, stop and report the catchpoint(s) whose triggering |
2262 | caused us to begin stepping. */ | |
2263 | ecs->stepping_through_solib_after_catch = 0; | |
2264 | bpstat_clear (&stop_bpstat); | |
2265 | stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints); | |
2266 | bpstat_clear (&ecs->stepping_through_solib_catchpoints); | |
2267 | stop_print_frame = 1; | |
2268 | stop_stepping (ecs); | |
2269 | return; | |
2270 | } | |
c906108c | 2271 | |
488f131b JB |
2272 | if (step_resume_breakpoint) |
2273 | { | |
527159b7 | 2274 | if (debug_infrun) |
8a9de0e4 | 2275 | fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n"); |
527159b7 | 2276 | |
488f131b JB |
2277 | /* Having a step-resume breakpoint overrides anything |
2278 | else having to do with stepping commands until | |
2279 | that breakpoint is reached. */ | |
488f131b JB |
2280 | keep_going (ecs); |
2281 | return; | |
2282 | } | |
c5aa993b | 2283 | |
488f131b JB |
2284 | if (step_range_end == 0) |
2285 | { | |
527159b7 | 2286 | if (debug_infrun) |
8a9de0e4 | 2287 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 2288 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
2289 | keep_going (ecs); |
2290 | return; | |
2291 | } | |
c5aa993b | 2292 | |
488f131b | 2293 | /* If stepping through a line, keep going if still within it. |
c906108c | 2294 | |
488f131b JB |
2295 | Note that step_range_end is the address of the first instruction |
2296 | beyond the step range, and NOT the address of the last instruction | |
2297 | within it! */ | |
2298 | if (stop_pc >= step_range_start && stop_pc < step_range_end) | |
2299 | { | |
527159b7 | 2300 | if (debug_infrun) |
8a9de0e4 | 2301 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n", |
527159b7 RC |
2302 | paddr_nz (step_range_start), |
2303 | paddr_nz (step_range_end)); | |
488f131b JB |
2304 | keep_going (ecs); |
2305 | return; | |
2306 | } | |
c5aa993b | 2307 | |
488f131b | 2308 | /* We stepped out of the stepping range. */ |
c906108c | 2309 | |
488f131b JB |
2310 | /* If we are stepping at the source level and entered the runtime |
2311 | loader dynamic symbol resolution code, we keep on single stepping | |
2312 | until we exit the run time loader code and reach the callee's | |
2313 | address. */ | |
2314 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
a77053c2 MK |
2315 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE |
2316 | && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc) | |
2317 | #else | |
2318 | && in_solib_dynsym_resolve_code (stop_pc) | |
2319 | #endif | |
2320 | ) | |
488f131b | 2321 | { |
4c8c40e6 MK |
2322 | CORE_ADDR pc_after_resolver = |
2323 | gdbarch_skip_solib_resolver (current_gdbarch, stop_pc); | |
c906108c | 2324 | |
527159b7 | 2325 | if (debug_infrun) |
8a9de0e4 | 2326 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n"); |
527159b7 | 2327 | |
488f131b JB |
2328 | if (pc_after_resolver) |
2329 | { | |
2330 | /* Set up a step-resume breakpoint at the address | |
2331 | indicated by SKIP_SOLIB_RESOLVER. */ | |
2332 | struct symtab_and_line sr_sal; | |
fe39c653 | 2333 | init_sal (&sr_sal); |
488f131b JB |
2334 | sr_sal.pc = pc_after_resolver; |
2335 | ||
44cbf7b5 | 2336 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c5aa993b | 2337 | } |
c906108c | 2338 | |
488f131b JB |
2339 | keep_going (ecs); |
2340 | return; | |
2341 | } | |
c906108c | 2342 | |
42edda50 AC |
2343 | if (step_range_end != 1 |
2344 | && (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2345 | || step_over_calls == STEP_OVER_ALL) | |
2346 | && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME) | |
488f131b | 2347 | { |
527159b7 | 2348 | if (debug_infrun) |
8a9de0e4 | 2349 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n"); |
42edda50 | 2350 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
2351 | a signal trampoline (either by a signal being delivered or by |
2352 | the signal handler returning). Just single-step until the | |
2353 | inferior leaves the trampoline (either by calling the handler | |
2354 | or returning). */ | |
488f131b JB |
2355 | keep_going (ecs); |
2356 | return; | |
2357 | } | |
c906108c | 2358 | |
8fb3e588 | 2359 | if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id)) |
488f131b JB |
2360 | { |
2361 | /* It's a subroutine call. */ | |
95918acb | 2362 | CORE_ADDR real_stop_pc; |
8fb3e588 | 2363 | |
527159b7 | 2364 | if (debug_infrun) |
8a9de0e4 | 2365 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 2366 | |
95918acb AC |
2367 | if ((step_over_calls == STEP_OVER_NONE) |
2368 | || ((step_range_end == 1) | |
2369 | && in_prologue (prev_pc, ecs->stop_func_start))) | |
2370 | { | |
2371 | /* I presume that step_over_calls is only 0 when we're | |
2372 | supposed to be stepping at the assembly language level | |
2373 | ("stepi"). Just stop. */ | |
2374 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
2375 | thought it was a subroutine call but it was not. Stop as | |
2376 | well. FENN */ | |
2377 | stop_step = 1; | |
2378 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2379 | stop_stepping (ecs); | |
2380 | return; | |
2381 | } | |
8fb3e588 | 2382 | |
8567c30f AC |
2383 | if (step_over_calls == STEP_OVER_ALL) |
2384 | { | |
2385 | /* We're doing a "next", set a breakpoint at callee's return | |
2386 | address (the address at which the caller will | |
2387 | resume). */ | |
44cbf7b5 | 2388 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
8567c30f AC |
2389 | keep_going (ecs); |
2390 | return; | |
2391 | } | |
a53c66de | 2392 | |
95918acb | 2393 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
2394 | calling routine and the real function), locate the real |
2395 | function. That's what tells us (a) whether we want to step | |
2396 | into it at all, and (b) what prologue we want to run to the | |
2397 | end of, if we do step into it. */ | |
95918acb AC |
2398 | real_stop_pc = skip_language_trampoline (stop_pc); |
2399 | if (real_stop_pc == 0) | |
2400 | real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); | |
2401 | if (real_stop_pc != 0) | |
2402 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 2403 | |
a77053c2 MK |
2404 | if ( |
2405 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE | |
2406 | IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start) | |
2407 | #else | |
2408 | in_solib_dynsym_resolve_code (ecs->stop_func_start) | |
2409 | #endif | |
2410 | ) | |
1b2bfbb9 RC |
2411 | { |
2412 | struct symtab_and_line sr_sal; | |
2413 | init_sal (&sr_sal); | |
2414 | sr_sal.pc = ecs->stop_func_start; | |
2415 | ||
44cbf7b5 | 2416 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
8fb3e588 AC |
2417 | keep_going (ecs); |
2418 | return; | |
1b2bfbb9 RC |
2419 | } |
2420 | ||
95918acb | 2421 | /* If we have line number information for the function we are |
8fb3e588 | 2422 | thinking of stepping into, step into it. |
95918acb | 2423 | |
8fb3e588 AC |
2424 | If there are several symtabs at that PC (e.g. with include |
2425 | files), just want to know whether *any* of them have line | |
2426 | numbers. find_pc_line handles this. */ | |
95918acb AC |
2427 | { |
2428 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 2429 | |
95918acb AC |
2430 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2431 | if (tmp_sal.line != 0) | |
2432 | { | |
2433 | step_into_function (ecs); | |
2434 | return; | |
2435 | } | |
2436 | } | |
2437 | ||
2438 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
2439 | set, we stop the step so that the user has a chance to switch |
2440 | in assembly mode. */ | |
95918acb AC |
2441 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug) |
2442 | { | |
2443 | stop_step = 1; | |
2444 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2445 | stop_stepping (ecs); | |
2446 | return; | |
2447 | } | |
2448 | ||
2449 | /* Set a breakpoint at callee's return address (the address at | |
8fb3e588 | 2450 | which the caller will resume). */ |
44cbf7b5 | 2451 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
95918acb | 2452 | keep_going (ecs); |
488f131b | 2453 | return; |
488f131b | 2454 | } |
c906108c | 2455 | |
488f131b JB |
2456 | /* If we're in the return path from a shared library trampoline, |
2457 | we want to proceed through the trampoline when stepping. */ | |
2458 | if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name)) | |
2459 | { | |
488f131b | 2460 | /* Determine where this trampoline returns. */ |
5cf4d23a | 2461 | CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); |
c906108c | 2462 | |
527159b7 | 2463 | if (debug_infrun) |
8a9de0e4 | 2464 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n"); |
527159b7 | 2465 | |
488f131b | 2466 | /* Only proceed through if we know where it's going. */ |
d764a824 | 2467 | if (real_stop_pc) |
488f131b JB |
2468 | { |
2469 | /* And put the step-breakpoint there and go until there. */ | |
2470 | struct symtab_and_line sr_sal; | |
2471 | ||
fe39c653 | 2472 | init_sal (&sr_sal); /* initialize to zeroes */ |
d764a824 | 2473 | sr_sal.pc = real_stop_pc; |
488f131b | 2474 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
44cbf7b5 AC |
2475 | |
2476 | /* Do not specify what the fp should be when we stop since | |
2477 | on some machines the prologue is where the new fp value | |
2478 | is established. */ | |
2479 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); | |
c906108c | 2480 | |
488f131b JB |
2481 | /* Restart without fiddling with the step ranges or |
2482 | other state. */ | |
2483 | keep_going (ecs); | |
2484 | return; | |
2485 | } | |
2486 | } | |
c906108c | 2487 | |
7ed0fe66 DJ |
2488 | ecs->sal = find_pc_line (stop_pc, 0); |
2489 | ||
1b2bfbb9 RC |
2490 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
2491 | the trampoline processing logic, however, there are some trampolines | |
2492 | that have no names, so we should do trampoline handling first. */ | |
2493 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
7ed0fe66 DJ |
2494 | && ecs->stop_func_name == NULL |
2495 | && ecs->sal.line == 0) | |
1b2bfbb9 | 2496 | { |
527159b7 | 2497 | if (debug_infrun) |
8a9de0e4 | 2498 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n"); |
527159b7 | 2499 | |
1b2bfbb9 | 2500 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
2501 | undebuggable function (where there is no debugging information |
2502 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
2503 | inferior stopped). Since we want to skip this kind of code, |
2504 | we keep going until the inferior returns from this | |
2505 | function. */ | |
2506 | if (step_stop_if_no_debug) | |
2507 | { | |
2508 | /* If we have no line number and the step-stop-if-no-debug | |
2509 | is set, we stop the step so that the user has a chance to | |
2510 | switch in assembly mode. */ | |
2511 | stop_step = 1; | |
2512 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2513 | stop_stepping (ecs); | |
2514 | return; | |
2515 | } | |
2516 | else | |
2517 | { | |
2518 | /* Set a breakpoint at callee's return address (the address | |
2519 | at which the caller will resume). */ | |
44cbf7b5 | 2520 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
1b2bfbb9 RC |
2521 | keep_going (ecs); |
2522 | return; | |
2523 | } | |
2524 | } | |
2525 | ||
2526 | if (step_range_end == 1) | |
2527 | { | |
2528 | /* It is stepi or nexti. We always want to stop stepping after | |
2529 | one instruction. */ | |
527159b7 | 2530 | if (debug_infrun) |
8a9de0e4 | 2531 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
1b2bfbb9 RC |
2532 | stop_step = 1; |
2533 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2534 | stop_stepping (ecs); | |
2535 | return; | |
2536 | } | |
2537 | ||
488f131b JB |
2538 | if (ecs->sal.line == 0) |
2539 | { | |
2540 | /* We have no line number information. That means to stop | |
2541 | stepping (does this always happen right after one instruction, | |
2542 | when we do "s" in a function with no line numbers, | |
2543 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 2544 | if (debug_infrun) |
8a9de0e4 | 2545 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
488f131b JB |
2546 | stop_step = 1; |
2547 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2548 | stop_stepping (ecs); | |
2549 | return; | |
2550 | } | |
c906108c | 2551 | |
488f131b JB |
2552 | if ((stop_pc == ecs->sal.pc) |
2553 | && (ecs->current_line != ecs->sal.line | |
2554 | || ecs->current_symtab != ecs->sal.symtab)) | |
2555 | { | |
2556 | /* We are at the start of a different line. So stop. Note that | |
2557 | we don't stop if we step into the middle of a different line. | |
2558 | That is said to make things like for (;;) statements work | |
2559 | better. */ | |
527159b7 | 2560 | if (debug_infrun) |
8a9de0e4 | 2561 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n"); |
488f131b JB |
2562 | stop_step = 1; |
2563 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2564 | stop_stepping (ecs); | |
2565 | return; | |
2566 | } | |
c906108c | 2567 | |
488f131b | 2568 | /* We aren't done stepping. |
c906108c | 2569 | |
488f131b JB |
2570 | Optimize by setting the stepping range to the line. |
2571 | (We might not be in the original line, but if we entered a | |
2572 | new line in mid-statement, we continue stepping. This makes | |
2573 | things like for(;;) statements work better.) */ | |
c906108c | 2574 | |
488f131b | 2575 | if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end) |
c5aa993b | 2576 | { |
488f131b JB |
2577 | /* If this is the last line of the function, don't keep stepping |
2578 | (it would probably step us out of the function). | |
2579 | This is particularly necessary for a one-line function, | |
2580 | in which after skipping the prologue we better stop even though | |
2581 | we will be in mid-line. */ | |
527159b7 | 2582 | if (debug_infrun) |
8a9de0e4 | 2583 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n"); |
488f131b JB |
2584 | stop_step = 1; |
2585 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2586 | stop_stepping (ecs); | |
2587 | return; | |
c5aa993b | 2588 | } |
488f131b JB |
2589 | step_range_start = ecs->sal.pc; |
2590 | step_range_end = ecs->sal.end; | |
aa0cd9c1 | 2591 | step_frame_id = get_frame_id (get_current_frame ()); |
488f131b JB |
2592 | ecs->current_line = ecs->sal.line; |
2593 | ecs->current_symtab = ecs->sal.symtab; | |
2594 | ||
aa0cd9c1 AC |
2595 | /* In the case where we just stepped out of a function into the |
2596 | middle of a line of the caller, continue stepping, but | |
2597 | step_frame_id must be modified to current frame */ | |
65815ea1 AC |
2598 | #if 0 |
2599 | /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too | |
2600 | generous. It will trigger on things like a step into a frameless | |
2601 | stackless leaf function. I think the logic should instead look | |
2602 | at the unwound frame ID has that should give a more robust | |
2603 | indication of what happened. */ | |
8fb3e588 AC |
2604 | if (step - ID == current - ID) |
2605 | still stepping in same function; | |
2606 | else if (step - ID == unwind (current - ID)) | |
2607 | stepped into a function; | |
2608 | else | |
2609 | stepped out of a function; | |
2610 | /* Of course this assumes that the frame ID unwind code is robust | |
2611 | and we're willing to introduce frame unwind logic into this | |
2612 | function. Fortunately, those days are nearly upon us. */ | |
65815ea1 | 2613 | #endif |
488f131b | 2614 | { |
aa0cd9c1 AC |
2615 | struct frame_id current_frame = get_frame_id (get_current_frame ()); |
2616 | if (!(frame_id_inner (current_frame, step_frame_id))) | |
2617 | step_frame_id = current_frame; | |
488f131b | 2618 | } |
c906108c | 2619 | |
527159b7 | 2620 | if (debug_infrun) |
8a9de0e4 | 2621 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 2622 | keep_going (ecs); |
104c1213 JM |
2623 | } |
2624 | ||
2625 | /* Are we in the middle of stepping? */ | |
2626 | ||
2627 | static int | |
2628 | currently_stepping (struct execution_control_state *ecs) | |
2629 | { | |
d303a6c7 | 2630 | return ((!ecs->handling_longjmp |
104c1213 JM |
2631 | && ((step_range_end && step_resume_breakpoint == NULL) |
2632 | || trap_expected)) | |
2633 | || ecs->stepping_through_solib_after_catch | |
2634 | || bpstat_should_step ()); | |
2635 | } | |
c906108c | 2636 | |
c2c6d25f JM |
2637 | /* Subroutine call with source code we should not step over. Do step |
2638 | to the first line of code in it. */ | |
2639 | ||
2640 | static void | |
2641 | step_into_function (struct execution_control_state *ecs) | |
2642 | { | |
2643 | struct symtab *s; | |
2644 | struct symtab_and_line sr_sal; | |
2645 | ||
2646 | s = find_pc_symtab (stop_pc); | |
2647 | if (s && s->language != language_asm) | |
2648 | ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start); | |
2649 | ||
2650 | ecs->sal = find_pc_line (ecs->stop_func_start, 0); | |
2651 | /* Use the step_resume_break to step until the end of the prologue, | |
2652 | even if that involves jumps (as it seems to on the vax under | |
2653 | 4.2). */ | |
2654 | /* If the prologue ends in the middle of a source line, continue to | |
2655 | the end of that source line (if it is still within the function). | |
2656 | Otherwise, just go to end of prologue. */ | |
c2c6d25f JM |
2657 | if (ecs->sal.end |
2658 | && ecs->sal.pc != ecs->stop_func_start | |
2659 | && ecs->sal.end < ecs->stop_func_end) | |
2660 | ecs->stop_func_start = ecs->sal.end; | |
c2c6d25f | 2661 | |
2dbd5e30 KB |
2662 | /* Architectures which require breakpoint adjustment might not be able |
2663 | to place a breakpoint at the computed address. If so, the test | |
2664 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
2665 | ecs->stop_func_start to an address at which a breakpoint may be | |
2666 | legitimately placed. | |
8fb3e588 | 2667 | |
2dbd5e30 KB |
2668 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
2669 | made, GDB will enter an infinite loop when stepping through | |
2670 | optimized code consisting of VLIW instructions which contain | |
2671 | subinstructions corresponding to different source lines. On | |
2672 | FR-V, it's not permitted to place a breakpoint on any but the | |
2673 | first subinstruction of a VLIW instruction. When a breakpoint is | |
2674 | set, GDB will adjust the breakpoint address to the beginning of | |
2675 | the VLIW instruction. Thus, we need to make the corresponding | |
2676 | adjustment here when computing the stop address. */ | |
8fb3e588 | 2677 | |
2dbd5e30 KB |
2678 | if (gdbarch_adjust_breakpoint_address_p (current_gdbarch)) |
2679 | { | |
2680 | ecs->stop_func_start | |
2681 | = gdbarch_adjust_breakpoint_address (current_gdbarch, | |
8fb3e588 | 2682 | ecs->stop_func_start); |
2dbd5e30 KB |
2683 | } |
2684 | ||
c2c6d25f JM |
2685 | if (ecs->stop_func_start == stop_pc) |
2686 | { | |
2687 | /* We are already there: stop now. */ | |
2688 | stop_step = 1; | |
488f131b | 2689 | print_stop_reason (END_STEPPING_RANGE, 0); |
c2c6d25f JM |
2690 | stop_stepping (ecs); |
2691 | return; | |
2692 | } | |
2693 | else | |
2694 | { | |
2695 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 2696 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
2697 | sr_sal.pc = ecs->stop_func_start; |
2698 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
44cbf7b5 | 2699 | |
c2c6d25f | 2700 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
2701 | some machines the prologue is where the new fp value is |
2702 | established. */ | |
44cbf7b5 | 2703 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c2c6d25f JM |
2704 | |
2705 | /* And make sure stepping stops right away then. */ | |
2706 | step_range_end = step_range_start; | |
2707 | } | |
2708 | keep_going (ecs); | |
2709 | } | |
d4f3574e | 2710 | |
44cbf7b5 AC |
2711 | /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID. |
2712 | This is used to both functions and to skip over code. */ | |
2713 | ||
2714 | static void | |
2715 | insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
2716 | struct frame_id sr_id) | |
2717 | { | |
2718 | /* There should never be more than one step-resume breakpoint per | |
2719 | thread, so we should never be setting a new | |
2720 | step_resume_breakpoint when one is already active. */ | |
2721 | gdb_assert (step_resume_breakpoint == NULL); | |
2722 | step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, | |
2723 | bp_step_resume); | |
2724 | if (breakpoints_inserted) | |
2725 | insert_breakpoints (); | |
2726 | } | |
2727 | ||
7ce450bd AC |
2728 | /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used |
2729 | to skip a function (next, skip-no-debug) or signal. It's assumed | |
2730 | that the function/signal handler being skipped eventually returns | |
2731 | to the breakpoint inserted at RETURN_FRAME.pc. | |
2732 | ||
2733 | For the skip-function case, the function may have been reached by | |
2734 | either single stepping a call / return / signal-return instruction, | |
2735 | or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs | |
2736 | to the skip-function's caller. | |
2737 | ||
2738 | For the signals case, this is called with the interrupted | |
2739 | function's frame. The signal handler, when it returns, will resume | |
2740 | the interrupted function at RETURN_FRAME.pc. */ | |
d303a6c7 AC |
2741 | |
2742 | static void | |
44cbf7b5 | 2743 | insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
2744 | { |
2745 | struct symtab_and_line sr_sal; | |
2746 | ||
d303a6c7 AC |
2747 | init_sal (&sr_sal); /* initialize to zeros */ |
2748 | ||
7ce450bd | 2749 | sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame)); |
d303a6c7 AC |
2750 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
2751 | ||
44cbf7b5 | 2752 | insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame)); |
d303a6c7 AC |
2753 | } |
2754 | ||
104c1213 JM |
2755 | static void |
2756 | stop_stepping (struct execution_control_state *ecs) | |
2757 | { | |
527159b7 | 2758 | if (debug_infrun) |
8a9de0e4 | 2759 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); |
527159b7 | 2760 | |
cd0fc7c3 SS |
2761 | /* Let callers know we don't want to wait for the inferior anymore. */ |
2762 | ecs->wait_some_more = 0; | |
2763 | } | |
2764 | ||
d4f3574e SS |
2765 | /* This function handles various cases where we need to continue |
2766 | waiting for the inferior. */ | |
2767 | /* (Used to be the keep_going: label in the old wait_for_inferior) */ | |
2768 | ||
2769 | static void | |
2770 | keep_going (struct execution_control_state *ecs) | |
2771 | { | |
d4f3574e | 2772 | /* Save the pc before execution, to compare with pc after stop. */ |
488f131b | 2773 | prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ |
d4f3574e | 2774 | |
d4f3574e SS |
2775 | /* If we did not do break;, it means we should keep running the |
2776 | inferior and not return to debugger. */ | |
2777 | ||
2778 | if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) | |
2779 | { | |
2780 | /* We took a signal (which we are supposed to pass through to | |
488f131b JB |
2781 | the inferior, else we'd have done a break above) and we |
2782 | haven't yet gotten our trap. Simply continue. */ | |
d4f3574e SS |
2783 | resume (currently_stepping (ecs), stop_signal); |
2784 | } | |
2785 | else | |
2786 | { | |
2787 | /* Either the trap was not expected, but we are continuing | |
488f131b JB |
2788 | anyway (the user asked that this signal be passed to the |
2789 | child) | |
2790 | -- or -- | |
2791 | The signal was SIGTRAP, e.g. it was our signal, but we | |
2792 | decided we should resume from it. | |
d4f3574e | 2793 | |
68f53502 | 2794 | We're going to run this baby now! */ |
d4f3574e | 2795 | |
68f53502 | 2796 | if (!breakpoints_inserted && !ecs->another_trap) |
d4f3574e SS |
2797 | { |
2798 | breakpoints_failed = insert_breakpoints (); | |
2799 | if (breakpoints_failed) | |
2800 | { | |
2801 | stop_stepping (ecs); | |
2802 | return; | |
2803 | } | |
2804 | breakpoints_inserted = 1; | |
2805 | } | |
2806 | ||
2807 | trap_expected = ecs->another_trap; | |
2808 | ||
2809 | /* Do not deliver SIGNAL_TRAP (except when the user explicitly | |
488f131b JB |
2810 | specifies that such a signal should be delivered to the |
2811 | target program). | |
2812 | ||
2813 | Typically, this would occure when a user is debugging a | |
2814 | target monitor on a simulator: the target monitor sets a | |
2815 | breakpoint; the simulator encounters this break-point and | |
2816 | halts the simulation handing control to GDB; GDB, noteing | |
2817 | that the break-point isn't valid, returns control back to the | |
2818 | simulator; the simulator then delivers the hardware | |
2819 | equivalent of a SIGNAL_TRAP to the program being debugged. */ | |
2820 | ||
2821 | if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal]) | |
d4f3574e SS |
2822 | stop_signal = TARGET_SIGNAL_0; |
2823 | ||
d4f3574e SS |
2824 | |
2825 | resume (currently_stepping (ecs), stop_signal); | |
2826 | } | |
2827 | ||
488f131b | 2828 | prepare_to_wait (ecs); |
d4f3574e SS |
2829 | } |
2830 | ||
104c1213 JM |
2831 | /* This function normally comes after a resume, before |
2832 | handle_inferior_event exits. It takes care of any last bits of | |
2833 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 2834 | |
104c1213 JM |
2835 | static void |
2836 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 2837 | { |
527159b7 | 2838 | if (debug_infrun) |
8a9de0e4 | 2839 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 JM |
2840 | if (ecs->infwait_state == infwait_normal_state) |
2841 | { | |
2842 | overlay_cache_invalid = 1; | |
2843 | ||
2844 | /* We have to invalidate the registers BEFORE calling | |
488f131b JB |
2845 | target_wait because they can be loaded from the target while |
2846 | in target_wait. This makes remote debugging a bit more | |
2847 | efficient for those targets that provide critical registers | |
2848 | as part of their normal status mechanism. */ | |
104c1213 JM |
2849 | |
2850 | registers_changed (); | |
39f77062 | 2851 | ecs->waiton_ptid = pid_to_ptid (-1); |
104c1213 JM |
2852 | ecs->wp = &(ecs->ws); |
2853 | } | |
2854 | /* This is the old end of the while loop. Let everybody know we | |
2855 | want to wait for the inferior some more and get called again | |
2856 | soon. */ | |
2857 | ecs->wait_some_more = 1; | |
c906108c | 2858 | } |
11cf8741 JM |
2859 | |
2860 | /* Print why the inferior has stopped. We always print something when | |
2861 | the inferior exits, or receives a signal. The rest of the cases are | |
2862 | dealt with later on in normal_stop() and print_it_typical(). Ideally | |
2863 | there should be a call to this function from handle_inferior_event() | |
2864 | each time stop_stepping() is called.*/ | |
2865 | static void | |
2866 | print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) | |
2867 | { | |
2868 | switch (stop_reason) | |
2869 | { | |
2870 | case STOP_UNKNOWN: | |
2871 | /* We don't deal with these cases from handle_inferior_event() | |
2872 | yet. */ | |
2873 | break; | |
2874 | case END_STEPPING_RANGE: | |
2875 | /* We are done with a step/next/si/ni command. */ | |
2876 | /* For now print nothing. */ | |
fb40c209 | 2877 | /* Print a message only if not in the middle of doing a "step n" |
488f131b | 2878 | operation for n > 1 */ |
fb40c209 | 2879 | if (!step_multi || !stop_step) |
9dc5e2a9 | 2880 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2881 | ui_out_field_string |
2882 | (uiout, "reason", | |
2883 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
11cf8741 JM |
2884 | break; |
2885 | case BREAKPOINT_HIT: | |
2886 | /* We found a breakpoint. */ | |
2887 | /* For now print nothing. */ | |
2888 | break; | |
2889 | case SIGNAL_EXITED: | |
2890 | /* The inferior was terminated by a signal. */ | |
8b93c638 | 2891 | annotate_signalled (); |
9dc5e2a9 | 2892 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2893 | ui_out_field_string |
2894 | (uiout, "reason", | |
2895 | async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
8b93c638 JM |
2896 | ui_out_text (uiout, "\nProgram terminated with signal "); |
2897 | annotate_signal_name (); | |
488f131b JB |
2898 | ui_out_field_string (uiout, "signal-name", |
2899 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2900 | annotate_signal_name_end (); |
2901 | ui_out_text (uiout, ", "); | |
2902 | annotate_signal_string (); | |
488f131b JB |
2903 | ui_out_field_string (uiout, "signal-meaning", |
2904 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2905 | annotate_signal_string_end (); |
2906 | ui_out_text (uiout, ".\n"); | |
2907 | ui_out_text (uiout, "The program no longer exists.\n"); | |
11cf8741 JM |
2908 | break; |
2909 | case EXITED: | |
2910 | /* The inferior program is finished. */ | |
8b93c638 JM |
2911 | annotate_exited (stop_info); |
2912 | if (stop_info) | |
2913 | { | |
9dc5e2a9 | 2914 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2915 | ui_out_field_string (uiout, "reason", |
2916 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
8b93c638 | 2917 | ui_out_text (uiout, "\nProgram exited with code "); |
488f131b JB |
2918 | ui_out_field_fmt (uiout, "exit-code", "0%o", |
2919 | (unsigned int) stop_info); | |
8b93c638 JM |
2920 | ui_out_text (uiout, ".\n"); |
2921 | } | |
2922 | else | |
2923 | { | |
9dc5e2a9 | 2924 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2925 | ui_out_field_string |
2926 | (uiout, "reason", | |
2927 | async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
8b93c638 JM |
2928 | ui_out_text (uiout, "\nProgram exited normally.\n"); |
2929 | } | |
11cf8741 JM |
2930 | break; |
2931 | case SIGNAL_RECEIVED: | |
2932 | /* Signal received. The signal table tells us to print about | |
2933 | it. */ | |
8b93c638 JM |
2934 | annotate_signal (); |
2935 | ui_out_text (uiout, "\nProgram received signal "); | |
2936 | annotate_signal_name (); | |
84c6c83c | 2937 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2938 | ui_out_field_string |
2939 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b JB |
2940 | ui_out_field_string (uiout, "signal-name", |
2941 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2942 | annotate_signal_name_end (); |
2943 | ui_out_text (uiout, ", "); | |
2944 | annotate_signal_string (); | |
488f131b JB |
2945 | ui_out_field_string (uiout, "signal-meaning", |
2946 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2947 | annotate_signal_string_end (); |
2948 | ui_out_text (uiout, ".\n"); | |
11cf8741 JM |
2949 | break; |
2950 | default: | |
8e65ff28 | 2951 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 2952 | _("print_stop_reason: unrecognized enum value")); |
11cf8741 JM |
2953 | break; |
2954 | } | |
2955 | } | |
c906108c | 2956 | \f |
43ff13b4 | 2957 | |
c906108c SS |
2958 | /* Here to return control to GDB when the inferior stops for real. |
2959 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
2960 | ||
2961 | STOP_PRINT_FRAME nonzero means print the executing frame | |
2962 | (pc, function, args, file, line number and line text). | |
2963 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
2964 | attempting to insert breakpoints. */ | |
2965 | ||
2966 | void | |
96baa820 | 2967 | normal_stop (void) |
c906108c | 2968 | { |
73b65bb0 DJ |
2969 | struct target_waitstatus last; |
2970 | ptid_t last_ptid; | |
2971 | ||
2972 | get_last_target_status (&last_ptid, &last); | |
2973 | ||
c906108c SS |
2974 | /* As with the notification of thread events, we want to delay |
2975 | notifying the user that we've switched thread context until | |
2976 | the inferior actually stops. | |
2977 | ||
73b65bb0 DJ |
2978 | There's no point in saying anything if the inferior has exited. |
2979 | Note that SIGNALLED here means "exited with a signal", not | |
2980 | "received a signal". */ | |
488f131b | 2981 | if (!ptid_equal (previous_inferior_ptid, inferior_ptid) |
73b65bb0 DJ |
2982 | && target_has_execution |
2983 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
2984 | && last.kind != TARGET_WAITKIND_EXITED) | |
c906108c SS |
2985 | { |
2986 | target_terminal_ours_for_output (); | |
a3f17187 | 2987 | printf_filtered (_("[Switching to %s]\n"), |
39f77062 KB |
2988 | target_pid_or_tid_to_str (inferior_ptid)); |
2989 | previous_inferior_ptid = inferior_ptid; | |
c906108c | 2990 | } |
c906108c | 2991 | |
4fa8626c | 2992 | /* NOTE drow/2004-01-17: Is this still necessary? */ |
c906108c SS |
2993 | /* Make sure that the current_frame's pc is correct. This |
2994 | is a correction for setting up the frame info before doing | |
2995 | DECR_PC_AFTER_BREAK */ | |
b87efeee AC |
2996 | if (target_has_execution) |
2997 | /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to | |
2998 | DECR_PC_AFTER_BREAK, the program counter can change. Ask the | |
2999 | frame code to check for this and sort out any resultant mess. | |
3000 | DECR_PC_AFTER_BREAK needs to just go away. */ | |
2f107107 | 3001 | deprecated_update_frame_pc_hack (get_current_frame (), read_pc ()); |
c906108c | 3002 | |
c906108c SS |
3003 | if (target_has_execution && breakpoints_inserted) |
3004 | { | |
3005 | if (remove_breakpoints ()) | |
3006 | { | |
3007 | target_terminal_ours_for_output (); | |
a3f17187 AC |
3008 | printf_filtered (_("\ |
3009 | Cannot remove breakpoints because program is no longer writable.\n\ | |
3010 | It might be running in another process.\n\ | |
3011 | Further execution is probably impossible.\n")); | |
c906108c SS |
3012 | } |
3013 | } | |
3014 | breakpoints_inserted = 0; | |
3015 | ||
3016 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
3017 | Delete any breakpoint that is to be deleted at the next stop. */ | |
3018 | ||
3019 | breakpoint_auto_delete (stop_bpstat); | |
3020 | ||
3021 | /* If an auto-display called a function and that got a signal, | |
3022 | delete that auto-display to avoid an infinite recursion. */ | |
3023 | ||
3024 | if (stopped_by_random_signal) | |
3025 | disable_current_display (); | |
3026 | ||
3027 | /* Don't print a message if in the middle of doing a "step n" | |
3028 | operation for n > 1 */ | |
3029 | if (step_multi && stop_step) | |
3030 | goto done; | |
3031 | ||
3032 | target_terminal_ours (); | |
3033 | ||
5913bcb0 AC |
3034 | /* Look up the hook_stop and run it (CLI internally handles problem |
3035 | of stop_command's pre-hook not existing). */ | |
3036 | if (stop_command) | |
3037 | catch_errors (hook_stop_stub, stop_command, | |
3038 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
c906108c SS |
3039 | |
3040 | if (!target_has_stack) | |
3041 | { | |
3042 | ||
3043 | goto done; | |
3044 | } | |
3045 | ||
3046 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
3047 | and current location is based on that. | |
3048 | Don't do this on return from a stack dummy routine, | |
3049 | or if the program has exited. */ | |
3050 | ||
3051 | if (!stop_stack_dummy) | |
3052 | { | |
0f7d239c | 3053 | select_frame (get_current_frame ()); |
c906108c SS |
3054 | |
3055 | /* Print current location without a level number, if | |
c5aa993b JM |
3056 | we have changed functions or hit a breakpoint. |
3057 | Print source line if we have one. | |
3058 | bpstat_print() contains the logic deciding in detail | |
3059 | what to print, based on the event(s) that just occurred. */ | |
c906108c | 3060 | |
6e7f8b9c | 3061 | if (stop_print_frame && deprecated_selected_frame) |
c906108c SS |
3062 | { |
3063 | int bpstat_ret; | |
3064 | int source_flag; | |
917317f4 | 3065 | int do_frame_printing = 1; |
c906108c SS |
3066 | |
3067 | bpstat_ret = bpstat_print (stop_bpstat); | |
917317f4 JM |
3068 | switch (bpstat_ret) |
3069 | { | |
3070 | case PRINT_UNKNOWN: | |
aa0cd9c1 | 3071 | /* FIXME: cagney/2002-12-01: Given that a frame ID does |
8fb3e588 AC |
3072 | (or should) carry around the function and does (or |
3073 | should) use that when doing a frame comparison. */ | |
917317f4 | 3074 | if (stop_step |
aa0cd9c1 AC |
3075 | && frame_id_eq (step_frame_id, |
3076 | get_frame_id (get_current_frame ())) | |
917317f4 | 3077 | && step_start_function == find_pc_function (stop_pc)) |
488f131b | 3078 | source_flag = SRC_LINE; /* finished step, just print source line */ |
917317f4 | 3079 | else |
488f131b | 3080 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3081 | break; |
3082 | case PRINT_SRC_AND_LOC: | |
488f131b | 3083 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3084 | break; |
3085 | case PRINT_SRC_ONLY: | |
c5394b80 | 3086 | source_flag = SRC_LINE; |
917317f4 JM |
3087 | break; |
3088 | case PRINT_NOTHING: | |
488f131b | 3089 | source_flag = SRC_LINE; /* something bogus */ |
917317f4 JM |
3090 | do_frame_printing = 0; |
3091 | break; | |
3092 | default: | |
e2e0b3e5 | 3093 | internal_error (__FILE__, __LINE__, _("Unknown value.")); |
917317f4 | 3094 | } |
fb40c209 | 3095 | /* For mi, have the same behavior every time we stop: |
488f131b | 3096 | print everything but the source line. */ |
9dc5e2a9 | 3097 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 3098 | source_flag = LOC_AND_ADDRESS; |
c906108c | 3099 | |
9dc5e2a9 | 3100 | if (ui_out_is_mi_like_p (uiout)) |
39f77062 | 3101 | ui_out_field_int (uiout, "thread-id", |
488f131b | 3102 | pid_to_thread_id (inferior_ptid)); |
c906108c SS |
3103 | /* The behavior of this routine with respect to the source |
3104 | flag is: | |
c5394b80 JM |
3105 | SRC_LINE: Print only source line |
3106 | LOCATION: Print only location | |
3107 | SRC_AND_LOC: Print location and source line */ | |
917317f4 | 3108 | if (do_frame_printing) |
b04f3ab4 | 3109 | print_stack_frame (get_selected_frame (NULL), 0, source_flag); |
c906108c SS |
3110 | |
3111 | /* Display the auto-display expressions. */ | |
3112 | do_displays (); | |
3113 | } | |
3114 | } | |
3115 | ||
3116 | /* Save the function value return registers, if we care. | |
3117 | We might be about to restore their previous contents. */ | |
3118 | if (proceed_to_finish) | |
72cec141 AC |
3119 | /* NB: The copy goes through to the target picking up the value of |
3120 | all the registers. */ | |
3121 | regcache_cpy (stop_registers, current_regcache); | |
c906108c SS |
3122 | |
3123 | if (stop_stack_dummy) | |
3124 | { | |
dbe9fe58 AC |
3125 | /* Pop the empty frame that contains the stack dummy. POP_FRAME |
3126 | ends with a setting of the current frame, so we can use that | |
3127 | next. */ | |
3128 | frame_pop (get_current_frame ()); | |
c906108c | 3129 | /* Set stop_pc to what it was before we called the function. |
c5aa993b JM |
3130 | Can't rely on restore_inferior_status because that only gets |
3131 | called if we don't stop in the called function. */ | |
c906108c | 3132 | stop_pc = read_pc (); |
0f7d239c | 3133 | select_frame (get_current_frame ()); |
c906108c SS |
3134 | } |
3135 | ||
c906108c SS |
3136 | done: |
3137 | annotate_stopped (); | |
7a464420 | 3138 | observer_notify_normal_stop (stop_bpstat); |
c906108c SS |
3139 | } |
3140 | ||
3141 | static int | |
96baa820 | 3142 | hook_stop_stub (void *cmd) |
c906108c | 3143 | { |
5913bcb0 | 3144 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
3145 | return (0); |
3146 | } | |
3147 | \f | |
c5aa993b | 3148 | int |
96baa820 | 3149 | signal_stop_state (int signo) |
c906108c SS |
3150 | { |
3151 | return signal_stop[signo]; | |
3152 | } | |
3153 | ||
c5aa993b | 3154 | int |
96baa820 | 3155 | signal_print_state (int signo) |
c906108c SS |
3156 | { |
3157 | return signal_print[signo]; | |
3158 | } | |
3159 | ||
c5aa993b | 3160 | int |
96baa820 | 3161 | signal_pass_state (int signo) |
c906108c SS |
3162 | { |
3163 | return signal_program[signo]; | |
3164 | } | |
3165 | ||
488f131b | 3166 | int |
7bda5e4a | 3167 | signal_stop_update (int signo, int state) |
d4f3574e SS |
3168 | { |
3169 | int ret = signal_stop[signo]; | |
3170 | signal_stop[signo] = state; | |
3171 | return ret; | |
3172 | } | |
3173 | ||
488f131b | 3174 | int |
7bda5e4a | 3175 | signal_print_update (int signo, int state) |
d4f3574e SS |
3176 | { |
3177 | int ret = signal_print[signo]; | |
3178 | signal_print[signo] = state; | |
3179 | return ret; | |
3180 | } | |
3181 | ||
488f131b | 3182 | int |
7bda5e4a | 3183 | signal_pass_update (int signo, int state) |
d4f3574e SS |
3184 | { |
3185 | int ret = signal_program[signo]; | |
3186 | signal_program[signo] = state; | |
3187 | return ret; | |
3188 | } | |
3189 | ||
c906108c | 3190 | static void |
96baa820 | 3191 | sig_print_header (void) |
c906108c | 3192 | { |
a3f17187 AC |
3193 | printf_filtered (_("\ |
3194 | Signal Stop\tPrint\tPass to program\tDescription\n")); | |
c906108c SS |
3195 | } |
3196 | ||
3197 | static void | |
96baa820 | 3198 | sig_print_info (enum target_signal oursig) |
c906108c SS |
3199 | { |
3200 | char *name = target_signal_to_name (oursig); | |
3201 | int name_padding = 13 - strlen (name); | |
96baa820 | 3202 | |
c906108c SS |
3203 | if (name_padding <= 0) |
3204 | name_padding = 0; | |
3205 | ||
3206 | printf_filtered ("%s", name); | |
488f131b | 3207 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
3208 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
3209 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
3210 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
3211 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
3212 | } | |
3213 | ||
3214 | /* Specify how various signals in the inferior should be handled. */ | |
3215 | ||
3216 | static void | |
96baa820 | 3217 | handle_command (char *args, int from_tty) |
c906108c SS |
3218 | { |
3219 | char **argv; | |
3220 | int digits, wordlen; | |
3221 | int sigfirst, signum, siglast; | |
3222 | enum target_signal oursig; | |
3223 | int allsigs; | |
3224 | int nsigs; | |
3225 | unsigned char *sigs; | |
3226 | struct cleanup *old_chain; | |
3227 | ||
3228 | if (args == NULL) | |
3229 | { | |
e2e0b3e5 | 3230 | error_no_arg (_("signal to handle")); |
c906108c SS |
3231 | } |
3232 | ||
3233 | /* Allocate and zero an array of flags for which signals to handle. */ | |
3234 | ||
3235 | nsigs = (int) TARGET_SIGNAL_LAST; | |
3236 | sigs = (unsigned char *) alloca (nsigs); | |
3237 | memset (sigs, 0, nsigs); | |
3238 | ||
3239 | /* Break the command line up into args. */ | |
3240 | ||
3241 | argv = buildargv (args); | |
3242 | if (argv == NULL) | |
3243 | { | |
3244 | nomem (0); | |
3245 | } | |
7a292a7a | 3246 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3247 | |
3248 | /* Walk through the args, looking for signal oursigs, signal names, and | |
3249 | actions. Signal numbers and signal names may be interspersed with | |
3250 | actions, with the actions being performed for all signals cumulatively | |
3251 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
3252 | ||
3253 | while (*argv != NULL) | |
3254 | { | |
3255 | wordlen = strlen (*argv); | |
3256 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
3257 | {; | |
3258 | } | |
3259 | allsigs = 0; | |
3260 | sigfirst = siglast = -1; | |
3261 | ||
3262 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
3263 | { | |
3264 | /* Apply action to all signals except those used by the | |
3265 | debugger. Silently skip those. */ | |
3266 | allsigs = 1; | |
3267 | sigfirst = 0; | |
3268 | siglast = nsigs - 1; | |
3269 | } | |
3270 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
3271 | { | |
3272 | SET_SIGS (nsigs, sigs, signal_stop); | |
3273 | SET_SIGS (nsigs, sigs, signal_print); | |
3274 | } | |
3275 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
3276 | { | |
3277 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3278 | } | |
3279 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
3280 | { | |
3281 | SET_SIGS (nsigs, sigs, signal_print); | |
3282 | } | |
3283 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
3284 | { | |
3285 | SET_SIGS (nsigs, sigs, signal_program); | |
3286 | } | |
3287 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
3288 | { | |
3289 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3290 | } | |
3291 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
3292 | { | |
3293 | SET_SIGS (nsigs, sigs, signal_program); | |
3294 | } | |
3295 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
3296 | { | |
3297 | UNSET_SIGS (nsigs, sigs, signal_print); | |
3298 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3299 | } | |
3300 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
3301 | { | |
3302 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3303 | } | |
3304 | else if (digits > 0) | |
3305 | { | |
3306 | /* It is numeric. The numeric signal refers to our own | |
3307 | internal signal numbering from target.h, not to host/target | |
3308 | signal number. This is a feature; users really should be | |
3309 | using symbolic names anyway, and the common ones like | |
3310 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
3311 | ||
3312 | sigfirst = siglast = (int) | |
3313 | target_signal_from_command (atoi (*argv)); | |
3314 | if ((*argv)[digits] == '-') | |
3315 | { | |
3316 | siglast = (int) | |
3317 | target_signal_from_command (atoi ((*argv) + digits + 1)); | |
3318 | } | |
3319 | if (sigfirst > siglast) | |
3320 | { | |
3321 | /* Bet he didn't figure we'd think of this case... */ | |
3322 | signum = sigfirst; | |
3323 | sigfirst = siglast; | |
3324 | siglast = signum; | |
3325 | } | |
3326 | } | |
3327 | else | |
3328 | { | |
3329 | oursig = target_signal_from_name (*argv); | |
3330 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
3331 | { | |
3332 | sigfirst = siglast = (int) oursig; | |
3333 | } | |
3334 | else | |
3335 | { | |
3336 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 3337 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
3338 | } |
3339 | } | |
3340 | ||
3341 | /* If any signal numbers or symbol names were found, set flags for | |
c5aa993b | 3342 | which signals to apply actions to. */ |
c906108c SS |
3343 | |
3344 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
3345 | { | |
3346 | switch ((enum target_signal) signum) | |
3347 | { | |
3348 | case TARGET_SIGNAL_TRAP: | |
3349 | case TARGET_SIGNAL_INT: | |
3350 | if (!allsigs && !sigs[signum]) | |
3351 | { | |
3352 | if (query ("%s is used by the debugger.\n\ | |
488f131b | 3353 | Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum))) |
c906108c SS |
3354 | { |
3355 | sigs[signum] = 1; | |
3356 | } | |
3357 | else | |
3358 | { | |
a3f17187 | 3359 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
3360 | gdb_flush (gdb_stdout); |
3361 | } | |
3362 | } | |
3363 | break; | |
3364 | case TARGET_SIGNAL_0: | |
3365 | case TARGET_SIGNAL_DEFAULT: | |
3366 | case TARGET_SIGNAL_UNKNOWN: | |
3367 | /* Make sure that "all" doesn't print these. */ | |
3368 | break; | |
3369 | default: | |
3370 | sigs[signum] = 1; | |
3371 | break; | |
3372 | } | |
3373 | } | |
3374 | ||
3375 | argv++; | |
3376 | } | |
3377 | ||
39f77062 | 3378 | target_notice_signals (inferior_ptid); |
c906108c SS |
3379 | |
3380 | if (from_tty) | |
3381 | { | |
3382 | /* Show the results. */ | |
3383 | sig_print_header (); | |
3384 | for (signum = 0; signum < nsigs; signum++) | |
3385 | { | |
3386 | if (sigs[signum]) | |
3387 | { | |
3388 | sig_print_info (signum); | |
3389 | } | |
3390 | } | |
3391 | } | |
3392 | ||
3393 | do_cleanups (old_chain); | |
3394 | } | |
3395 | ||
3396 | static void | |
96baa820 | 3397 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
3398 | { |
3399 | char **argv; | |
3400 | struct cleanup *old_chain; | |
3401 | ||
3402 | /* Break the command line up into args. */ | |
3403 | ||
3404 | argv = buildargv (args); | |
3405 | if (argv == NULL) | |
3406 | { | |
3407 | nomem (0); | |
3408 | } | |
7a292a7a | 3409 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3410 | if (argv[1] != (char *) NULL) |
3411 | { | |
3412 | char *argBuf; | |
3413 | int bufLen; | |
3414 | ||
3415 | bufLen = strlen (argv[0]) + 20; | |
3416 | argBuf = (char *) xmalloc (bufLen); | |
3417 | if (argBuf) | |
3418 | { | |
3419 | int validFlag = 1; | |
3420 | enum target_signal oursig; | |
3421 | ||
3422 | oursig = target_signal_from_name (argv[0]); | |
3423 | memset (argBuf, 0, bufLen); | |
3424 | if (strcmp (argv[1], "Q") == 0) | |
3425 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3426 | else | |
3427 | { | |
3428 | if (strcmp (argv[1], "s") == 0) | |
3429 | { | |
3430 | if (!signal_stop[oursig]) | |
3431 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
3432 | else | |
3433 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
3434 | } | |
3435 | else if (strcmp (argv[1], "i") == 0) | |
3436 | { | |
3437 | if (!signal_program[oursig]) | |
3438 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
3439 | else | |
3440 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
3441 | } | |
3442 | else if (strcmp (argv[1], "r") == 0) | |
3443 | { | |
3444 | if (!signal_print[oursig]) | |
3445 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
3446 | else | |
3447 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3448 | } | |
3449 | else | |
3450 | validFlag = 0; | |
3451 | } | |
3452 | if (validFlag) | |
3453 | handle_command (argBuf, from_tty); | |
3454 | else | |
a3f17187 | 3455 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 3456 | if (argBuf) |
b8c9b27d | 3457 | xfree (argBuf); |
c906108c SS |
3458 | } |
3459 | } | |
3460 | do_cleanups (old_chain); | |
3461 | } | |
3462 | ||
3463 | /* Print current contents of the tables set by the handle command. | |
3464 | It is possible we should just be printing signals actually used | |
3465 | by the current target (but for things to work right when switching | |
3466 | targets, all signals should be in the signal tables). */ | |
3467 | ||
3468 | static void | |
96baa820 | 3469 | signals_info (char *signum_exp, int from_tty) |
c906108c SS |
3470 | { |
3471 | enum target_signal oursig; | |
3472 | sig_print_header (); | |
3473 | ||
3474 | if (signum_exp) | |
3475 | { | |
3476 | /* First see if this is a symbol name. */ | |
3477 | oursig = target_signal_from_name (signum_exp); | |
3478 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
3479 | { | |
3480 | /* No, try numeric. */ | |
3481 | oursig = | |
bb518678 | 3482 | target_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
3483 | } |
3484 | sig_print_info (oursig); | |
3485 | return; | |
3486 | } | |
3487 | ||
3488 | printf_filtered ("\n"); | |
3489 | /* These ugly casts brought to you by the native VAX compiler. */ | |
3490 | for (oursig = TARGET_SIGNAL_FIRST; | |
3491 | (int) oursig < (int) TARGET_SIGNAL_LAST; | |
3492 | oursig = (enum target_signal) ((int) oursig + 1)) | |
3493 | { | |
3494 | QUIT; | |
3495 | ||
3496 | if (oursig != TARGET_SIGNAL_UNKNOWN | |
488f131b | 3497 | && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) |
c906108c SS |
3498 | sig_print_info (oursig); |
3499 | } | |
3500 | ||
a3f17187 | 3501 | printf_filtered (_("\nUse the \"handle\" command to change these tables.\n")); |
c906108c SS |
3502 | } |
3503 | \f | |
7a292a7a SS |
3504 | struct inferior_status |
3505 | { | |
3506 | enum target_signal stop_signal; | |
3507 | CORE_ADDR stop_pc; | |
3508 | bpstat stop_bpstat; | |
3509 | int stop_step; | |
3510 | int stop_stack_dummy; | |
3511 | int stopped_by_random_signal; | |
3512 | int trap_expected; | |
3513 | CORE_ADDR step_range_start; | |
3514 | CORE_ADDR step_range_end; | |
aa0cd9c1 | 3515 | struct frame_id step_frame_id; |
5fbbeb29 | 3516 | enum step_over_calls_kind step_over_calls; |
7a292a7a SS |
3517 | CORE_ADDR step_resume_break_address; |
3518 | int stop_after_trap; | |
c0236d92 | 3519 | int stop_soon; |
72cec141 | 3520 | struct regcache *stop_registers; |
7a292a7a SS |
3521 | |
3522 | /* These are here because if call_function_by_hand has written some | |
3523 | registers and then decides to call error(), we better not have changed | |
3524 | any registers. */ | |
72cec141 | 3525 | struct regcache *registers; |
7a292a7a | 3526 | |
101dcfbe AC |
3527 | /* A frame unique identifier. */ |
3528 | struct frame_id selected_frame_id; | |
3529 | ||
7a292a7a SS |
3530 | int breakpoint_proceeded; |
3531 | int restore_stack_info; | |
3532 | int proceed_to_finish; | |
3533 | }; | |
3534 | ||
7a292a7a | 3535 | void |
96baa820 JM |
3536 | write_inferior_status_register (struct inferior_status *inf_status, int regno, |
3537 | LONGEST val) | |
7a292a7a | 3538 | { |
3acba339 | 3539 | int size = register_size (current_gdbarch, regno); |
7a292a7a SS |
3540 | void *buf = alloca (size); |
3541 | store_signed_integer (buf, size, val); | |
0818c12a | 3542 | regcache_raw_write (inf_status->registers, regno, buf); |
7a292a7a SS |
3543 | } |
3544 | ||
c906108c SS |
3545 | /* Save all of the information associated with the inferior<==>gdb |
3546 | connection. INF_STATUS is a pointer to a "struct inferior_status" | |
3547 | (defined in inferior.h). */ | |
3548 | ||
7a292a7a | 3549 | struct inferior_status * |
96baa820 | 3550 | save_inferior_status (int restore_stack_info) |
c906108c | 3551 | { |
72cec141 | 3552 | struct inferior_status *inf_status = XMALLOC (struct inferior_status); |
7a292a7a | 3553 | |
c906108c SS |
3554 | inf_status->stop_signal = stop_signal; |
3555 | inf_status->stop_pc = stop_pc; | |
3556 | inf_status->stop_step = stop_step; | |
3557 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
3558 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
3559 | inf_status->trap_expected = trap_expected; | |
3560 | inf_status->step_range_start = step_range_start; | |
3561 | inf_status->step_range_end = step_range_end; | |
aa0cd9c1 | 3562 | inf_status->step_frame_id = step_frame_id; |
c906108c SS |
3563 | inf_status->step_over_calls = step_over_calls; |
3564 | inf_status->stop_after_trap = stop_after_trap; | |
c0236d92 | 3565 | inf_status->stop_soon = stop_soon; |
c906108c SS |
3566 | /* Save original bpstat chain here; replace it with copy of chain. |
3567 | If caller's caller is walking the chain, they'll be happier if we | |
7a292a7a SS |
3568 | hand them back the original chain when restore_inferior_status is |
3569 | called. */ | |
c906108c SS |
3570 | inf_status->stop_bpstat = stop_bpstat; |
3571 | stop_bpstat = bpstat_copy (stop_bpstat); | |
3572 | inf_status->breakpoint_proceeded = breakpoint_proceeded; | |
3573 | inf_status->restore_stack_info = restore_stack_info; | |
3574 | inf_status->proceed_to_finish = proceed_to_finish; | |
c5aa993b | 3575 | |
72cec141 | 3576 | inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers); |
c906108c | 3577 | |
72cec141 | 3578 | inf_status->registers = regcache_dup (current_regcache); |
c906108c | 3579 | |
7a424e99 | 3580 | inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame); |
7a292a7a | 3581 | return inf_status; |
c906108c SS |
3582 | } |
3583 | ||
c906108c | 3584 | static int |
96baa820 | 3585 | restore_selected_frame (void *args) |
c906108c | 3586 | { |
488f131b | 3587 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 3588 | struct frame_info *frame; |
c906108c | 3589 | |
101dcfbe | 3590 | frame = frame_find_by_id (*fid); |
c906108c | 3591 | |
aa0cd9c1 AC |
3592 | /* If inf_status->selected_frame_id is NULL, there was no previously |
3593 | selected frame. */ | |
101dcfbe | 3594 | if (frame == NULL) |
c906108c | 3595 | { |
8a3fe4f8 | 3596 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
3597 | return 0; |
3598 | } | |
3599 | ||
0f7d239c | 3600 | select_frame (frame); |
c906108c SS |
3601 | |
3602 | return (1); | |
3603 | } | |
3604 | ||
3605 | void | |
96baa820 | 3606 | restore_inferior_status (struct inferior_status *inf_status) |
c906108c SS |
3607 | { |
3608 | stop_signal = inf_status->stop_signal; | |
3609 | stop_pc = inf_status->stop_pc; | |
3610 | stop_step = inf_status->stop_step; | |
3611 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
3612 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
3613 | trap_expected = inf_status->trap_expected; | |
3614 | step_range_start = inf_status->step_range_start; | |
3615 | step_range_end = inf_status->step_range_end; | |
aa0cd9c1 | 3616 | step_frame_id = inf_status->step_frame_id; |
c906108c SS |
3617 | step_over_calls = inf_status->step_over_calls; |
3618 | stop_after_trap = inf_status->stop_after_trap; | |
c0236d92 | 3619 | stop_soon = inf_status->stop_soon; |
c906108c SS |
3620 | bpstat_clear (&stop_bpstat); |
3621 | stop_bpstat = inf_status->stop_bpstat; | |
3622 | breakpoint_proceeded = inf_status->breakpoint_proceeded; | |
3623 | proceed_to_finish = inf_status->proceed_to_finish; | |
3624 | ||
72cec141 AC |
3625 | /* FIXME: Is the restore of stop_registers always needed. */ |
3626 | regcache_xfree (stop_registers); | |
3627 | stop_registers = inf_status->stop_registers; | |
c906108c SS |
3628 | |
3629 | /* The inferior can be gone if the user types "print exit(0)" | |
3630 | (and perhaps other times). */ | |
3631 | if (target_has_execution) | |
72cec141 AC |
3632 | /* NB: The register write goes through to the target. */ |
3633 | regcache_cpy (current_regcache, inf_status->registers); | |
3634 | regcache_xfree (inf_status->registers); | |
c906108c | 3635 | |
c906108c SS |
3636 | /* FIXME: If we are being called after stopping in a function which |
3637 | is called from gdb, we should not be trying to restore the | |
3638 | selected frame; it just prints a spurious error message (The | |
3639 | message is useful, however, in detecting bugs in gdb (like if gdb | |
3640 | clobbers the stack)). In fact, should we be restoring the | |
3641 | inferior status at all in that case? . */ | |
3642 | ||
3643 | if (target_has_stack && inf_status->restore_stack_info) | |
3644 | { | |
c906108c | 3645 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
3646 | walking the stack might encounter a garbage pointer and |
3647 | error() trying to dereference it. */ | |
488f131b JB |
3648 | if (catch_errors |
3649 | (restore_selected_frame, &inf_status->selected_frame_id, | |
3650 | "Unable to restore previously selected frame:\n", | |
3651 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
3652 | /* Error in restoring the selected frame. Select the innermost |
3653 | frame. */ | |
0f7d239c | 3654 | select_frame (get_current_frame ()); |
c906108c SS |
3655 | |
3656 | } | |
c906108c | 3657 | |
72cec141 | 3658 | xfree (inf_status); |
7a292a7a | 3659 | } |
c906108c | 3660 | |
74b7792f AC |
3661 | static void |
3662 | do_restore_inferior_status_cleanup (void *sts) | |
3663 | { | |
3664 | restore_inferior_status (sts); | |
3665 | } | |
3666 | ||
3667 | struct cleanup * | |
3668 | make_cleanup_restore_inferior_status (struct inferior_status *inf_status) | |
3669 | { | |
3670 | return make_cleanup (do_restore_inferior_status_cleanup, inf_status); | |
3671 | } | |
3672 | ||
c906108c | 3673 | void |
96baa820 | 3674 | discard_inferior_status (struct inferior_status *inf_status) |
7a292a7a SS |
3675 | { |
3676 | /* See save_inferior_status for info on stop_bpstat. */ | |
3677 | bpstat_clear (&inf_status->stop_bpstat); | |
72cec141 AC |
3678 | regcache_xfree (inf_status->registers); |
3679 | regcache_xfree (inf_status->stop_registers); | |
3680 | xfree (inf_status); | |
7a292a7a SS |
3681 | } |
3682 | ||
47932f85 DJ |
3683 | int |
3684 | inferior_has_forked (int pid, int *child_pid) | |
3685 | { | |
3686 | struct target_waitstatus last; | |
3687 | ptid_t last_ptid; | |
3688 | ||
3689 | get_last_target_status (&last_ptid, &last); | |
3690 | ||
3691 | if (last.kind != TARGET_WAITKIND_FORKED) | |
3692 | return 0; | |
3693 | ||
3694 | if (ptid_get_pid (last_ptid) != pid) | |
3695 | return 0; | |
3696 | ||
3697 | *child_pid = last.value.related_pid; | |
3698 | return 1; | |
3699 | } | |
3700 | ||
3701 | int | |
3702 | inferior_has_vforked (int pid, int *child_pid) | |
3703 | { | |
3704 | struct target_waitstatus last; | |
3705 | ptid_t last_ptid; | |
3706 | ||
3707 | get_last_target_status (&last_ptid, &last); | |
3708 | ||
3709 | if (last.kind != TARGET_WAITKIND_VFORKED) | |
3710 | return 0; | |
3711 | ||
3712 | if (ptid_get_pid (last_ptid) != pid) | |
3713 | return 0; | |
3714 | ||
3715 | *child_pid = last.value.related_pid; | |
3716 | return 1; | |
3717 | } | |
3718 | ||
3719 | int | |
3720 | inferior_has_execd (int pid, char **execd_pathname) | |
3721 | { | |
3722 | struct target_waitstatus last; | |
3723 | ptid_t last_ptid; | |
3724 | ||
3725 | get_last_target_status (&last_ptid, &last); | |
3726 | ||
3727 | if (last.kind != TARGET_WAITKIND_EXECD) | |
3728 | return 0; | |
3729 | ||
3730 | if (ptid_get_pid (last_ptid) != pid) | |
3731 | return 0; | |
3732 | ||
3733 | *execd_pathname = xstrdup (last.value.execd_pathname); | |
3734 | return 1; | |
3735 | } | |
3736 | ||
ca6724c1 KB |
3737 | /* Oft used ptids */ |
3738 | ptid_t null_ptid; | |
3739 | ptid_t minus_one_ptid; | |
3740 | ||
3741 | /* Create a ptid given the necessary PID, LWP, and TID components. */ | |
488f131b | 3742 | |
ca6724c1 KB |
3743 | ptid_t |
3744 | ptid_build (int pid, long lwp, long tid) | |
3745 | { | |
3746 | ptid_t ptid; | |
3747 | ||
3748 | ptid.pid = pid; | |
3749 | ptid.lwp = lwp; | |
3750 | ptid.tid = tid; | |
3751 | return ptid; | |
3752 | } | |
3753 | ||
3754 | /* Create a ptid from just a pid. */ | |
3755 | ||
3756 | ptid_t | |
3757 | pid_to_ptid (int pid) | |
3758 | { | |
3759 | return ptid_build (pid, 0, 0); | |
3760 | } | |
3761 | ||
3762 | /* Fetch the pid (process id) component from a ptid. */ | |
3763 | ||
3764 | int | |
3765 | ptid_get_pid (ptid_t ptid) | |
3766 | { | |
3767 | return ptid.pid; | |
3768 | } | |
3769 | ||
3770 | /* Fetch the lwp (lightweight process) component from a ptid. */ | |
3771 | ||
3772 | long | |
3773 | ptid_get_lwp (ptid_t ptid) | |
3774 | { | |
3775 | return ptid.lwp; | |
3776 | } | |
3777 | ||
3778 | /* Fetch the tid (thread id) component from a ptid. */ | |
3779 | ||
3780 | long | |
3781 | ptid_get_tid (ptid_t ptid) | |
3782 | { | |
3783 | return ptid.tid; | |
3784 | } | |
3785 | ||
3786 | /* ptid_equal() is used to test equality of two ptids. */ | |
3787 | ||
3788 | int | |
3789 | ptid_equal (ptid_t ptid1, ptid_t ptid2) | |
3790 | { | |
3791 | return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp | |
488f131b | 3792 | && ptid1.tid == ptid2.tid); |
ca6724c1 KB |
3793 | } |
3794 | ||
3795 | /* restore_inferior_ptid() will be used by the cleanup machinery | |
3796 | to restore the inferior_ptid value saved in a call to | |
3797 | save_inferior_ptid(). */ | |
ce696e05 KB |
3798 | |
3799 | static void | |
3800 | restore_inferior_ptid (void *arg) | |
3801 | { | |
3802 | ptid_t *saved_ptid_ptr = arg; | |
3803 | inferior_ptid = *saved_ptid_ptr; | |
3804 | xfree (arg); | |
3805 | } | |
3806 | ||
3807 | /* Save the value of inferior_ptid so that it may be restored by a | |
3808 | later call to do_cleanups(). Returns the struct cleanup pointer | |
3809 | needed for later doing the cleanup. */ | |
3810 | ||
3811 | struct cleanup * | |
3812 | save_inferior_ptid (void) | |
3813 | { | |
3814 | ptid_t *saved_ptid_ptr; | |
3815 | ||
3816 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
3817 | *saved_ptid_ptr = inferior_ptid; | |
3818 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
3819 | } | |
c5aa993b | 3820 | \f |
488f131b | 3821 | |
7a292a7a | 3822 | static void |
96baa820 | 3823 | build_infrun (void) |
7a292a7a | 3824 | { |
72cec141 | 3825 | stop_registers = regcache_xmalloc (current_gdbarch); |
7a292a7a | 3826 | } |
c906108c | 3827 | |
c906108c | 3828 | void |
96baa820 | 3829 | _initialize_infrun (void) |
c906108c | 3830 | { |
52f0bd74 AC |
3831 | int i; |
3832 | int numsigs; | |
c906108c SS |
3833 | struct cmd_list_element *c; |
3834 | ||
046a4708 AC |
3835 | DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers); |
3836 | deprecated_register_gdbarch_swap (NULL, 0, build_infrun); | |
0f71a2f6 | 3837 | |
1bedd215 AC |
3838 | add_info ("signals", signals_info, _("\ |
3839 | What debugger does when program gets various signals.\n\ | |
3840 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
3841 | add_info_alias ("handle", "signals", 0); |
3842 | ||
1bedd215 AC |
3843 | add_com ("handle", class_run, handle_command, _("\ |
3844 | Specify how to handle a signal.\n\ | |
c906108c SS |
3845 | Args are signals and actions to apply to those signals.\n\ |
3846 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3847 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3848 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3849 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3850 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3851 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ | |
c906108c SS |
3852 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
3853 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3854 | Print means print a message if this signal happens.\n\ | |
3855 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3856 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3857 | Pass and Stop may be combined.")); |
c906108c SS |
3858 | if (xdb_commands) |
3859 | { | |
1bedd215 AC |
3860 | add_com ("lz", class_info, signals_info, _("\ |
3861 | What debugger does when program gets various signals.\n\ | |
3862 | Specify a signal as argument to print info on that signal only.")); | |
3863 | add_com ("z", class_run, xdb_handle_command, _("\ | |
3864 | Specify how to handle a signal.\n\ | |
c906108c SS |
3865 | Args are signals and actions to apply to those signals.\n\ |
3866 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3867 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3868 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3869 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3870 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3871 | Recognized actions include \"s\" (toggles between stop and nostop), \n\ | |
c906108c SS |
3872 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
3873 | nopass), \"Q\" (noprint)\n\ | |
3874 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3875 | Print means print a message if this signal happens.\n\ | |
3876 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3877 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3878 | Pass and Stop may be combined.")); |
c906108c SS |
3879 | } |
3880 | ||
3881 | if (!dbx_commands) | |
1a966eab AC |
3882 | stop_command = add_cmd ("stop", class_obscure, |
3883 | not_just_help_class_command, _("\ | |
3884 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 3885 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 3886 | of the program stops."), &cmdlist); |
c906108c | 3887 | |
85c07804 AC |
3888 | add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
3889 | Set inferior debugging."), _("\ | |
3890 | Show inferior debugging."), _("\ | |
3891 | When non-zero, inferior specific debugging is enabled."), | |
3892 | NULL, | |
920d2a44 | 3893 | show_debug_infrun, |
85c07804 | 3894 | &setdebuglist, &showdebuglist); |
527159b7 | 3895 | |
c906108c | 3896 | numsigs = (int) TARGET_SIGNAL_LAST; |
488f131b | 3897 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
3898 | signal_print = (unsigned char *) |
3899 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
3900 | signal_program = (unsigned char *) | |
3901 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
3902 | for (i = 0; i < numsigs; i++) | |
3903 | { | |
3904 | signal_stop[i] = 1; | |
3905 | signal_print[i] = 1; | |
3906 | signal_program[i] = 1; | |
3907 | } | |
3908 | ||
3909 | /* Signals caused by debugger's own actions | |
3910 | should not be given to the program afterwards. */ | |
3911 | signal_program[TARGET_SIGNAL_TRAP] = 0; | |
3912 | signal_program[TARGET_SIGNAL_INT] = 0; | |
3913 | ||
3914 | /* Signals that are not errors should not normally enter the debugger. */ | |
3915 | signal_stop[TARGET_SIGNAL_ALRM] = 0; | |
3916 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
3917 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
3918 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
3919 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
3920 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
3921 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
3922 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
3923 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
3924 | signal_print[TARGET_SIGNAL_IO] = 0; | |
3925 | signal_stop[TARGET_SIGNAL_POLL] = 0; | |
3926 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
3927 | signal_stop[TARGET_SIGNAL_URG] = 0; | |
3928 | signal_print[TARGET_SIGNAL_URG] = 0; | |
3929 | signal_stop[TARGET_SIGNAL_WINCH] = 0; | |
3930 | signal_print[TARGET_SIGNAL_WINCH] = 0; | |
3931 | ||
cd0fc7c3 SS |
3932 | /* These signals are used internally by user-level thread |
3933 | implementations. (See signal(5) on Solaris.) Like the above | |
3934 | signals, a healthy program receives and handles them as part of | |
3935 | its normal operation. */ | |
3936 | signal_stop[TARGET_SIGNAL_LWP] = 0; | |
3937 | signal_print[TARGET_SIGNAL_LWP] = 0; | |
3938 | signal_stop[TARGET_SIGNAL_WAITING] = 0; | |
3939 | signal_print[TARGET_SIGNAL_WAITING] = 0; | |
3940 | signal_stop[TARGET_SIGNAL_CANCEL] = 0; | |
3941 | signal_print[TARGET_SIGNAL_CANCEL] = 0; | |
3942 | ||
85c07804 AC |
3943 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
3944 | &stop_on_solib_events, _("\ | |
3945 | Set stopping for shared library events."), _("\ | |
3946 | Show stopping for shared library events."), _("\ | |
c906108c SS |
3947 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
3948 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 AC |
3949 | to the user would be loading/unloading of a new library."), |
3950 | NULL, | |
920d2a44 | 3951 | show_stop_on_solib_events, |
85c07804 | 3952 | &setlist, &showlist); |
c906108c | 3953 | |
7ab04401 AC |
3954 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
3955 | follow_fork_mode_kind_names, | |
3956 | &follow_fork_mode_string, _("\ | |
3957 | Set debugger response to a program call of fork or vfork."), _("\ | |
3958 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
3959 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
3960 | parent - the original process is debugged after a fork\n\ | |
3961 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 3962 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
3963 | By default, the debugger will follow the parent process."), |
3964 | NULL, | |
920d2a44 | 3965 | show_follow_fork_mode_string, |
7ab04401 AC |
3966 | &setlist, &showlist); |
3967 | ||
3968 | add_setshow_enum_cmd ("scheduler-locking", class_run, | |
3969 | scheduler_enums, &scheduler_mode, _("\ | |
3970 | Set mode for locking scheduler during execution."), _("\ | |
3971 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
3972 | off == no locking (threads may preempt at any time)\n\ |
3973 | on == full locking (no thread except the current thread may run)\n\ | |
3974 | step == scheduler locked during every single-step operation.\n\ | |
3975 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
3976 | Other threads may run while stepping over a function call ('next')."), |
3977 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 3978 | show_scheduler_mode, |
7ab04401 | 3979 | &setlist, &showlist); |
5fbbeb29 | 3980 | |
5bf193a2 AC |
3981 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
3982 | Set mode of the step operation."), _("\ | |
3983 | Show mode of the step operation."), _("\ | |
3984 | When set, doing a step over a function without debug line information\n\ | |
3985 | will stop at the first instruction of that function. Otherwise, the\n\ | |
3986 | function is skipped and the step command stops at a different source line."), | |
3987 | NULL, | |
920d2a44 | 3988 | show_step_stop_if_no_debug, |
5bf193a2 | 3989 | &setlist, &showlist); |
ca6724c1 KB |
3990 | |
3991 | /* ptid initializations */ | |
3992 | null_ptid = ptid_build (0, 0, 0); | |
3993 | minus_one_ptid = ptid_build (-1, 0, 0); | |
3994 | inferior_ptid = null_ptid; | |
3995 | target_last_wait_ptid = minus_one_ptid; | |
c906108c | 3996 | } |