]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
f23631e4 | 3 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
990a07ab AC |
4 | 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free |
5 | Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "gdb_string.h" | |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "value.h" | |
29 | #include "gdbcore.h" | |
c906108c SS |
30 | #include "command.h" |
31 | #include "gdbcmd.h" | |
32 | #include "target.h" | |
33 | #include "language.h" | |
34 | #include "scm-lang.h" | |
35 | #include "demangle.h" | |
d16aafd8 | 36 | #include "doublest.h" |
5ae326fa | 37 | #include "gdb_assert.h" |
36160dc4 | 38 | #include "regcache.h" |
fe898f56 | 39 | #include "block.h" |
c906108c SS |
40 | |
41 | /* Prototypes for exported functions. */ | |
42 | ||
a14ed312 | 43 | void _initialize_values (void); |
c906108c SS |
44 | |
45 | /* Prototypes for local functions. */ | |
46 | ||
a14ed312 | 47 | static void show_values (char *, int); |
c906108c | 48 | |
a14ed312 | 49 | static void show_convenience (char *, int); |
c906108c | 50 | |
c906108c SS |
51 | |
52 | /* The value-history records all the values printed | |
53 | by print commands during this session. Each chunk | |
54 | records 60 consecutive values. The first chunk on | |
55 | the chain records the most recent values. | |
56 | The total number of values is in value_history_count. */ | |
57 | ||
58 | #define VALUE_HISTORY_CHUNK 60 | |
59 | ||
60 | struct value_history_chunk | |
c5aa993b JM |
61 | { |
62 | struct value_history_chunk *next; | |
f23631e4 | 63 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 64 | }; |
c906108c SS |
65 | |
66 | /* Chain of chunks now in use. */ | |
67 | ||
68 | static struct value_history_chunk *value_history_chain; | |
69 | ||
70 | static int value_history_count; /* Abs number of last entry stored */ | |
71 | \f | |
72 | /* List of all value objects currently allocated | |
73 | (except for those released by calls to release_value) | |
74 | This is so they can be freed after each command. */ | |
75 | ||
f23631e4 | 76 | static struct value *all_values; |
c906108c SS |
77 | |
78 | /* Allocate a value that has the correct length for type TYPE. */ | |
79 | ||
f23631e4 | 80 | struct value * |
fba45db2 | 81 | allocate_value (struct type *type) |
c906108c | 82 | { |
f23631e4 | 83 | struct value *val; |
c906108c SS |
84 | struct type *atype = check_typedef (type); |
85 | ||
86 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); | |
df407dfe | 87 | val->next = all_values; |
c906108c | 88 | all_values = val; |
df407dfe | 89 | val->type = type; |
4754a64e | 90 | val->enclosing_type = type; |
c906108c SS |
91 | VALUE_LVAL (val) = not_lval; |
92 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 93 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
94 | val->offset = 0; |
95 | val->bitpos = 0; | |
96 | val->bitsize = 0; | |
9ee8fc9d | 97 | VALUE_REGNUM (val) = -1; |
d69fe07e | 98 | val->lazy = 0; |
c906108c | 99 | VALUE_OPTIMIZED_OUT (val) = 0; |
c906108c SS |
100 | VALUE_EMBEDDED_OFFSET (val) = 0; |
101 | VALUE_POINTED_TO_OFFSET (val) = 0; | |
102 | val->modifiable = 1; | |
103 | return val; | |
104 | } | |
105 | ||
106 | /* Allocate a value that has the correct length | |
107 | for COUNT repetitions type TYPE. */ | |
108 | ||
f23631e4 | 109 | struct value * |
fba45db2 | 110 | allocate_repeat_value (struct type *type, int count) |
c906108c | 111 | { |
c5aa993b | 112 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
113 | /* FIXME-type-allocation: need a way to free this type when we are |
114 | done with it. */ | |
115 | struct type *range_type | |
c5aa993b JM |
116 | = create_range_type ((struct type *) NULL, builtin_type_int, |
117 | low_bound, count + low_bound - 1); | |
c906108c SS |
118 | /* FIXME-type-allocation: need a way to free this type when we are |
119 | done with it. */ | |
120 | return allocate_value (create_array_type ((struct type *) NULL, | |
121 | type, range_type)); | |
122 | } | |
123 | ||
df407dfe AC |
124 | /* Accessor methods. */ |
125 | ||
126 | struct type * | |
127 | value_type (struct value *value) | |
128 | { | |
129 | return value->type; | |
130 | } | |
131 | ||
132 | int | |
133 | value_offset (struct value *value) | |
134 | { | |
135 | return value->offset; | |
136 | } | |
137 | ||
138 | int | |
139 | value_bitpos (struct value *value) | |
140 | { | |
141 | return value->bitpos; | |
142 | } | |
143 | ||
144 | int | |
145 | value_bitsize (struct value *value) | |
146 | { | |
147 | return value->bitsize; | |
148 | } | |
149 | ||
990a07ab AC |
150 | bfd_byte * |
151 | value_contents_raw (struct value *value) | |
152 | { | |
153 | return value->aligner.contents + value->embedded_offset; | |
154 | } | |
155 | ||
156 | bfd_byte * | |
157 | value_contents_all_raw (struct value *value) | |
158 | { | |
159 | return value->aligner.contents; | |
160 | } | |
161 | ||
4754a64e AC |
162 | struct type * |
163 | value_enclosing_type (struct value *value) | |
164 | { | |
165 | return value->enclosing_type; | |
166 | } | |
167 | ||
46615f07 AC |
168 | const bfd_byte * |
169 | value_contents_all (struct value *value) | |
170 | { | |
171 | if (value->lazy) | |
172 | value_fetch_lazy (value); | |
173 | return value->aligner.contents; | |
174 | } | |
175 | ||
d69fe07e AC |
176 | int |
177 | value_lazy (struct value *value) | |
178 | { | |
179 | return value->lazy; | |
180 | } | |
181 | ||
990a07ab | 182 | \f |
c906108c SS |
183 | /* Return a mark in the value chain. All values allocated after the |
184 | mark is obtained (except for those released) are subject to being freed | |
185 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 186 | struct value * |
fba45db2 | 187 | value_mark (void) |
c906108c SS |
188 | { |
189 | return all_values; | |
190 | } | |
191 | ||
192 | /* Free all values allocated since MARK was obtained by value_mark | |
193 | (except for those released). */ | |
194 | void | |
f23631e4 | 195 | value_free_to_mark (struct value *mark) |
c906108c | 196 | { |
f23631e4 AC |
197 | struct value *val; |
198 | struct value *next; | |
c906108c SS |
199 | |
200 | for (val = all_values; val && val != mark; val = next) | |
201 | { | |
df407dfe | 202 | next = val->next; |
c906108c SS |
203 | value_free (val); |
204 | } | |
205 | all_values = val; | |
206 | } | |
207 | ||
208 | /* Free all the values that have been allocated (except for those released). | |
209 | Called after each command, successful or not. */ | |
210 | ||
211 | void | |
fba45db2 | 212 | free_all_values (void) |
c906108c | 213 | { |
f23631e4 AC |
214 | struct value *val; |
215 | struct value *next; | |
c906108c SS |
216 | |
217 | for (val = all_values; val; val = next) | |
218 | { | |
df407dfe | 219 | next = val->next; |
c906108c SS |
220 | value_free (val); |
221 | } | |
222 | ||
223 | all_values = 0; | |
224 | } | |
225 | ||
226 | /* Remove VAL from the chain all_values | |
227 | so it will not be freed automatically. */ | |
228 | ||
229 | void | |
f23631e4 | 230 | release_value (struct value *val) |
c906108c | 231 | { |
f23631e4 | 232 | struct value *v; |
c906108c SS |
233 | |
234 | if (all_values == val) | |
235 | { | |
236 | all_values = val->next; | |
237 | return; | |
238 | } | |
239 | ||
240 | for (v = all_values; v; v = v->next) | |
241 | { | |
242 | if (v->next == val) | |
243 | { | |
244 | v->next = val->next; | |
245 | break; | |
246 | } | |
247 | } | |
248 | } | |
249 | ||
250 | /* Release all values up to mark */ | |
f23631e4 AC |
251 | struct value * |
252 | value_release_to_mark (struct value *mark) | |
c906108c | 253 | { |
f23631e4 AC |
254 | struct value *val; |
255 | struct value *next; | |
c906108c | 256 | |
df407dfe AC |
257 | for (val = next = all_values; next; next = next->next) |
258 | if (next->next == mark) | |
c906108c | 259 | { |
df407dfe AC |
260 | all_values = next->next; |
261 | next->next = NULL; | |
c906108c SS |
262 | return val; |
263 | } | |
264 | all_values = 0; | |
265 | return val; | |
266 | } | |
267 | ||
268 | /* Return a copy of the value ARG. | |
269 | It contains the same contents, for same memory address, | |
270 | but it's a different block of storage. */ | |
271 | ||
f23631e4 AC |
272 | struct value * |
273 | value_copy (struct value *arg) | |
c906108c | 274 | { |
4754a64e | 275 | struct type *encl_type = value_enclosing_type (arg); |
f23631e4 | 276 | struct value *val = allocate_value (encl_type); |
df407dfe | 277 | val->type = arg->type; |
c906108c SS |
278 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
279 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
df407dfe AC |
280 | val->offset = arg->offset; |
281 | val->bitpos = arg->bitpos; | |
282 | val->bitsize = arg->bitsize; | |
1df6926e | 283 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 284 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 285 | val->lazy = arg->lazy; |
c906108c SS |
286 | VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); |
287 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg); | |
288 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg); | |
c906108c | 289 | val->modifiable = arg->modifiable; |
d69fe07e | 290 | if (!value_lazy (val)) |
c906108c | 291 | { |
990a07ab | 292 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 293 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
294 | |
295 | } | |
296 | return val; | |
297 | } | |
298 | \f | |
299 | /* Access to the value history. */ | |
300 | ||
301 | /* Record a new value in the value history. | |
302 | Returns the absolute history index of the entry. | |
303 | Result of -1 indicates the value was not saved; otherwise it is the | |
304 | value history index of this new item. */ | |
305 | ||
306 | int | |
f23631e4 | 307 | record_latest_value (struct value *val) |
c906108c SS |
308 | { |
309 | int i; | |
310 | ||
311 | /* We don't want this value to have anything to do with the inferior anymore. | |
312 | In particular, "set $1 = 50" should not affect the variable from which | |
313 | the value was taken, and fast watchpoints should be able to assume that | |
314 | a value on the value history never changes. */ | |
d69fe07e | 315 | if (value_lazy (val)) |
c906108c SS |
316 | value_fetch_lazy (val); |
317 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
318 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
319 | but the current contents of that location. c'est la vie... */ | |
320 | val->modifiable = 0; | |
321 | release_value (val); | |
322 | ||
323 | /* Here we treat value_history_count as origin-zero | |
324 | and applying to the value being stored now. */ | |
325 | ||
326 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
327 | if (i == 0) | |
328 | { | |
f23631e4 | 329 | struct value_history_chunk *new |
c5aa993b JM |
330 | = (struct value_history_chunk *) |
331 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
332 | memset (new->values, 0, sizeof new->values); |
333 | new->next = value_history_chain; | |
334 | value_history_chain = new; | |
335 | } | |
336 | ||
337 | value_history_chain->values[i] = val; | |
338 | ||
339 | /* Now we regard value_history_count as origin-one | |
340 | and applying to the value just stored. */ | |
341 | ||
342 | return ++value_history_count; | |
343 | } | |
344 | ||
345 | /* Return a copy of the value in the history with sequence number NUM. */ | |
346 | ||
f23631e4 | 347 | struct value * |
fba45db2 | 348 | access_value_history (int num) |
c906108c | 349 | { |
f23631e4 | 350 | struct value_history_chunk *chunk; |
52f0bd74 AC |
351 | int i; |
352 | int absnum = num; | |
c906108c SS |
353 | |
354 | if (absnum <= 0) | |
355 | absnum += value_history_count; | |
356 | ||
357 | if (absnum <= 0) | |
358 | { | |
359 | if (num == 0) | |
360 | error ("The history is empty."); | |
361 | else if (num == 1) | |
362 | error ("There is only one value in the history."); | |
363 | else | |
364 | error ("History does not go back to $$%d.", -num); | |
365 | } | |
366 | if (absnum > value_history_count) | |
367 | error ("History has not yet reached $%d.", absnum); | |
368 | ||
369 | absnum--; | |
370 | ||
371 | /* Now absnum is always absolute and origin zero. */ | |
372 | ||
373 | chunk = value_history_chain; | |
374 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
375 | i > 0; i--) | |
376 | chunk = chunk->next; | |
377 | ||
378 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
379 | } | |
380 | ||
381 | /* Clear the value history entirely. | |
382 | Must be done when new symbol tables are loaded, | |
383 | because the type pointers become invalid. */ | |
384 | ||
385 | void | |
fba45db2 | 386 | clear_value_history (void) |
c906108c | 387 | { |
f23631e4 | 388 | struct value_history_chunk *next; |
52f0bd74 | 389 | int i; |
f23631e4 | 390 | struct value *val; |
c906108c SS |
391 | |
392 | while (value_history_chain) | |
393 | { | |
394 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
395 | if ((val = value_history_chain->values[i]) != NULL) | |
b8c9b27d | 396 | xfree (val); |
c906108c | 397 | next = value_history_chain->next; |
b8c9b27d | 398 | xfree (value_history_chain); |
c906108c SS |
399 | value_history_chain = next; |
400 | } | |
401 | value_history_count = 0; | |
402 | } | |
403 | ||
404 | static void | |
fba45db2 | 405 | show_values (char *num_exp, int from_tty) |
c906108c | 406 | { |
52f0bd74 | 407 | int i; |
f23631e4 | 408 | struct value *val; |
c906108c SS |
409 | static int num = 1; |
410 | ||
411 | if (num_exp) | |
412 | { | |
c5aa993b JM |
413 | /* "info history +" should print from the stored position. |
414 | "info history <exp>" should print around value number <exp>. */ | |
c906108c | 415 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 416 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
417 | } |
418 | else | |
419 | { | |
420 | /* "info history" means print the last 10 values. */ | |
421 | num = value_history_count - 9; | |
422 | } | |
423 | ||
424 | if (num <= 0) | |
425 | num = 1; | |
426 | ||
427 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
428 | { | |
429 | val = access_value_history (i); | |
430 | printf_filtered ("$%d = ", i); | |
431 | value_print (val, gdb_stdout, 0, Val_pretty_default); | |
432 | printf_filtered ("\n"); | |
433 | } | |
434 | ||
435 | /* The next "info history +" should start after what we just printed. */ | |
436 | num += 10; | |
437 | ||
438 | /* Hitting just return after this command should do the same thing as | |
439 | "info history +". If num_exp is null, this is unnecessary, since | |
440 | "info history +" is not useful after "info history". */ | |
441 | if (from_tty && num_exp) | |
442 | { | |
443 | num_exp[0] = '+'; | |
444 | num_exp[1] = '\0'; | |
445 | } | |
446 | } | |
447 | \f | |
448 | /* Internal variables. These are variables within the debugger | |
449 | that hold values assigned by debugger commands. | |
450 | The user refers to them with a '$' prefix | |
451 | that does not appear in the variable names stored internally. */ | |
452 | ||
453 | static struct internalvar *internalvars; | |
454 | ||
455 | /* Look up an internal variable with name NAME. NAME should not | |
456 | normally include a dollar sign. | |
457 | ||
458 | If the specified internal variable does not exist, | |
459 | one is created, with a void value. */ | |
460 | ||
461 | struct internalvar * | |
fba45db2 | 462 | lookup_internalvar (char *name) |
c906108c | 463 | { |
52f0bd74 | 464 | struct internalvar *var; |
c906108c SS |
465 | |
466 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 467 | if (strcmp (var->name, name) == 0) |
c906108c SS |
468 | return var; |
469 | ||
470 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
471 | var->name = concat (name, NULL); | |
472 | var->value = allocate_value (builtin_type_void); | |
473 | release_value (var->value); | |
474 | var->next = internalvars; | |
475 | internalvars = var; | |
476 | return var; | |
477 | } | |
478 | ||
f23631e4 | 479 | struct value * |
fba45db2 | 480 | value_of_internalvar (struct internalvar *var) |
c906108c | 481 | { |
f23631e4 | 482 | struct value *val; |
c906108c | 483 | |
c906108c | 484 | val = value_copy (var->value); |
d69fe07e | 485 | if (value_lazy (val)) |
c906108c SS |
486 | value_fetch_lazy (val); |
487 | VALUE_LVAL (val) = lval_internalvar; | |
488 | VALUE_INTERNALVAR (val) = var; | |
489 | return val; | |
490 | } | |
491 | ||
492 | void | |
fba45db2 | 493 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 494 | int bitsize, struct value *newval) |
c906108c | 495 | { |
52f0bd74 | 496 | char *addr = VALUE_CONTENTS (var->value) + offset; |
c906108c | 497 | |
c906108c SS |
498 | if (bitsize) |
499 | modify_field (addr, value_as_long (newval), | |
500 | bitpos, bitsize); | |
501 | else | |
df407dfe | 502 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
503 | } |
504 | ||
505 | void | |
f23631e4 | 506 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 507 | { |
f23631e4 | 508 | struct value *newval; |
c906108c | 509 | |
c906108c SS |
510 | newval = value_copy (val); |
511 | newval->modifiable = 1; | |
512 | ||
513 | /* Force the value to be fetched from the target now, to avoid problems | |
514 | later when this internalvar is referenced and the target is gone or | |
515 | has changed. */ | |
d69fe07e | 516 | if (value_lazy (newval)) |
c906108c SS |
517 | value_fetch_lazy (newval); |
518 | ||
519 | /* Begin code which must not call error(). If var->value points to | |
520 | something free'd, an error() obviously leaves a dangling pointer. | |
521 | But we also get a danling pointer if var->value points to | |
522 | something in the value chain (i.e., before release_value is | |
523 | called), because after the error free_all_values will get called before | |
524 | long. */ | |
b8c9b27d | 525 | xfree (var->value); |
c906108c SS |
526 | var->value = newval; |
527 | release_value (newval); | |
528 | /* End code which must not call error(). */ | |
529 | } | |
530 | ||
531 | char * | |
fba45db2 | 532 | internalvar_name (struct internalvar *var) |
c906108c SS |
533 | { |
534 | return var->name; | |
535 | } | |
536 | ||
537 | /* Free all internalvars. Done when new symtabs are loaded, | |
538 | because that makes the values invalid. */ | |
539 | ||
540 | void | |
fba45db2 | 541 | clear_internalvars (void) |
c906108c | 542 | { |
52f0bd74 | 543 | struct internalvar *var; |
c906108c SS |
544 | |
545 | while (internalvars) | |
546 | { | |
547 | var = internalvars; | |
548 | internalvars = var->next; | |
b8c9b27d KB |
549 | xfree (var->name); |
550 | xfree (var->value); | |
551 | xfree (var); | |
c906108c SS |
552 | } |
553 | } | |
554 | ||
555 | static void | |
fba45db2 | 556 | show_convenience (char *ignore, int from_tty) |
c906108c | 557 | { |
52f0bd74 | 558 | struct internalvar *var; |
c906108c SS |
559 | int varseen = 0; |
560 | ||
561 | for (var = internalvars; var; var = var->next) | |
562 | { | |
c906108c SS |
563 | if (!varseen) |
564 | { | |
565 | varseen = 1; | |
566 | } | |
567 | printf_filtered ("$%s = ", var->name); | |
568 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); | |
569 | printf_filtered ("\n"); | |
570 | } | |
571 | if (!varseen) | |
572 | printf_unfiltered ("No debugger convenience variables now defined.\n\ | |
573 | Convenience variables have names starting with \"$\";\n\ | |
574 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
575 | } | |
576 | \f | |
577 | /* Extract a value as a C number (either long or double). | |
578 | Knows how to convert fixed values to double, or | |
579 | floating values to long. | |
580 | Does not deallocate the value. */ | |
581 | ||
582 | LONGEST | |
f23631e4 | 583 | value_as_long (struct value *val) |
c906108c SS |
584 | { |
585 | /* This coerces arrays and functions, which is necessary (e.g. | |
586 | in disassemble_command). It also dereferences references, which | |
587 | I suspect is the most logical thing to do. */ | |
994b9211 | 588 | val = coerce_array (val); |
df407dfe | 589 | return unpack_long (value_type (val), VALUE_CONTENTS (val)); |
c906108c SS |
590 | } |
591 | ||
592 | DOUBLEST | |
f23631e4 | 593 | value_as_double (struct value *val) |
c906108c SS |
594 | { |
595 | DOUBLEST foo; | |
596 | int inv; | |
c5aa993b | 597 | |
df407dfe | 598 | foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv); |
c906108c SS |
599 | if (inv) |
600 | error ("Invalid floating value found in program."); | |
601 | return foo; | |
602 | } | |
4478b372 JB |
603 | /* Extract a value as a C pointer. Does not deallocate the value. |
604 | Note that val's type may not actually be a pointer; value_as_long | |
605 | handles all the cases. */ | |
c906108c | 606 | CORE_ADDR |
f23631e4 | 607 | value_as_address (struct value *val) |
c906108c SS |
608 | { |
609 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
610 | whether we want this to be true eventually. */ | |
611 | #if 0 | |
612 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
613 | non-address (e.g. argument to "signal", "info break", etc.), or | |
614 | for pointers to char, in which the low bits *are* significant. */ | |
c5aa993b | 615 | return ADDR_BITS_REMOVE (value_as_long (val)); |
c906108c | 616 | #else |
f312f057 JB |
617 | |
618 | /* There are several targets (IA-64, PowerPC, and others) which | |
619 | don't represent pointers to functions as simply the address of | |
620 | the function's entry point. For example, on the IA-64, a | |
621 | function pointer points to a two-word descriptor, generated by | |
622 | the linker, which contains the function's entry point, and the | |
623 | value the IA-64 "global pointer" register should have --- to | |
624 | support position-independent code. The linker generates | |
625 | descriptors only for those functions whose addresses are taken. | |
626 | ||
627 | On such targets, it's difficult for GDB to convert an arbitrary | |
628 | function address into a function pointer; it has to either find | |
629 | an existing descriptor for that function, or call malloc and | |
630 | build its own. On some targets, it is impossible for GDB to | |
631 | build a descriptor at all: the descriptor must contain a jump | |
632 | instruction; data memory cannot be executed; and code memory | |
633 | cannot be modified. | |
634 | ||
635 | Upon entry to this function, if VAL is a value of type `function' | |
636 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
637 | VALUE_ADDRESS (val) is the address of the function. This is what | |
638 | you'll get if you evaluate an expression like `main'. The call | |
639 | to COERCE_ARRAY below actually does all the usual unary | |
640 | conversions, which includes converting values of type `function' | |
641 | to `pointer to function'. This is the challenging conversion | |
642 | discussed above. Then, `unpack_long' will convert that pointer | |
643 | back into an address. | |
644 | ||
645 | So, suppose the user types `disassemble foo' on an architecture | |
646 | with a strange function pointer representation, on which GDB | |
647 | cannot build its own descriptors, and suppose further that `foo' | |
648 | has no linker-built descriptor. The address->pointer conversion | |
649 | will signal an error and prevent the command from running, even | |
650 | though the next step would have been to convert the pointer | |
651 | directly back into the same address. | |
652 | ||
653 | The following shortcut avoids this whole mess. If VAL is a | |
654 | function, just return its address directly. */ | |
df407dfe AC |
655 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
656 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
657 | return VALUE_ADDRESS (val); |
658 | ||
994b9211 | 659 | val = coerce_array (val); |
fc0c74b1 AC |
660 | |
661 | /* Some architectures (e.g. Harvard), map instruction and data | |
662 | addresses onto a single large unified address space. For | |
663 | instance: An architecture may consider a large integer in the | |
664 | range 0x10000000 .. 0x1000ffff to already represent a data | |
665 | addresses (hence not need a pointer to address conversion) while | |
666 | a small integer would still need to be converted integer to | |
667 | pointer to address. Just assume such architectures handle all | |
668 | integer conversions in a single function. */ | |
669 | ||
670 | /* JimB writes: | |
671 | ||
672 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
673 | must admonish GDB hackers to make sure its behavior matches the | |
674 | compiler's, whenever possible. | |
675 | ||
676 | In general, I think GDB should evaluate expressions the same way | |
677 | the compiler does. When the user copies an expression out of | |
678 | their source code and hands it to a `print' command, they should | |
679 | get the same value the compiler would have computed. Any | |
680 | deviation from this rule can cause major confusion and annoyance, | |
681 | and needs to be justified carefully. In other words, GDB doesn't | |
682 | really have the freedom to do these conversions in clever and | |
683 | useful ways. | |
684 | ||
685 | AndrewC pointed out that users aren't complaining about how GDB | |
686 | casts integers to pointers; they are complaining that they can't | |
687 | take an address from a disassembly listing and give it to `x/i'. | |
688 | This is certainly important. | |
689 | ||
79dd2d24 | 690 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
691 | makes it possible for GDB to "get it right" in all circumstances |
692 | --- the target has complete control over how things get done, so | |
693 | people can Do The Right Thing for their target without breaking | |
694 | anyone else. The standard doesn't specify how integers get | |
695 | converted to pointers; usually, the ABI doesn't either, but | |
696 | ABI-specific code is a more reasonable place to handle it. */ | |
697 | ||
df407dfe AC |
698 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
699 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
700 | && gdbarch_integer_to_address_p (current_gdbarch)) |
701 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
702 | VALUE_CONTENTS (val)); | |
fc0c74b1 | 703 | |
df407dfe | 704 | return unpack_long (value_type (val), VALUE_CONTENTS (val)); |
c906108c SS |
705 | #endif |
706 | } | |
707 | \f | |
708 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
709 | as a long, or as a double, assuming the raw data is described | |
710 | by type TYPE. Knows how to convert different sizes of values | |
711 | and can convert between fixed and floating point. We don't assume | |
712 | any alignment for the raw data. Return value is in host byte order. | |
713 | ||
714 | If you want functions and arrays to be coerced to pointers, and | |
715 | references to be dereferenced, call value_as_long() instead. | |
716 | ||
717 | C++: It is assumed that the front-end has taken care of | |
718 | all matters concerning pointers to members. A pointer | |
719 | to member which reaches here is considered to be equivalent | |
720 | to an INT (or some size). After all, it is only an offset. */ | |
721 | ||
722 | LONGEST | |
66140c26 | 723 | unpack_long (struct type *type, const char *valaddr) |
c906108c | 724 | { |
52f0bd74 AC |
725 | enum type_code code = TYPE_CODE (type); |
726 | int len = TYPE_LENGTH (type); | |
727 | int nosign = TYPE_UNSIGNED (type); | |
c906108c SS |
728 | |
729 | if (current_language->la_language == language_scm | |
730 | && is_scmvalue_type (type)) | |
731 | return scm_unpack (type, valaddr, TYPE_CODE_INT); | |
732 | ||
733 | switch (code) | |
734 | { | |
735 | case TYPE_CODE_TYPEDEF: | |
736 | return unpack_long (check_typedef (type), valaddr); | |
737 | case TYPE_CODE_ENUM: | |
738 | case TYPE_CODE_BOOL: | |
739 | case TYPE_CODE_INT: | |
740 | case TYPE_CODE_CHAR: | |
741 | case TYPE_CODE_RANGE: | |
742 | if (nosign) | |
743 | return extract_unsigned_integer (valaddr, len); | |
744 | else | |
745 | return extract_signed_integer (valaddr, len); | |
746 | ||
747 | case TYPE_CODE_FLT: | |
96d2f608 | 748 | return extract_typed_floating (valaddr, type); |
c906108c SS |
749 | |
750 | case TYPE_CODE_PTR: | |
751 | case TYPE_CODE_REF: | |
752 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 753 | whether we want this to be true eventually. */ |
4478b372 | 754 | return extract_typed_address (valaddr, type); |
c906108c SS |
755 | |
756 | case TYPE_CODE_MEMBER: | |
757 | error ("not implemented: member types in unpack_long"); | |
758 | ||
759 | default: | |
760 | error ("Value can't be converted to integer."); | |
761 | } | |
c5aa993b | 762 | return 0; /* Placate lint. */ |
c906108c SS |
763 | } |
764 | ||
765 | /* Return a double value from the specified type and address. | |
766 | INVP points to an int which is set to 0 for valid value, | |
767 | 1 for invalid value (bad float format). In either case, | |
768 | the returned double is OK to use. Argument is in target | |
769 | format, result is in host format. */ | |
770 | ||
771 | DOUBLEST | |
66140c26 | 772 | unpack_double (struct type *type, const char *valaddr, int *invp) |
c906108c SS |
773 | { |
774 | enum type_code code; | |
775 | int len; | |
776 | int nosign; | |
777 | ||
778 | *invp = 0; /* Assume valid. */ | |
779 | CHECK_TYPEDEF (type); | |
780 | code = TYPE_CODE (type); | |
781 | len = TYPE_LENGTH (type); | |
782 | nosign = TYPE_UNSIGNED (type); | |
783 | if (code == TYPE_CODE_FLT) | |
784 | { | |
75bc7ddf AC |
785 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
786 | floating-point value was valid (using the macro | |
787 | INVALID_FLOAT). That test/macro have been removed. | |
788 | ||
789 | It turns out that only the VAX defined this macro and then | |
790 | only in a non-portable way. Fixing the portability problem | |
791 | wouldn't help since the VAX floating-point code is also badly | |
792 | bit-rotten. The target needs to add definitions for the | |
793 | methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these | |
794 | exactly describe the target floating-point format. The | |
795 | problem here is that the corresponding floatformat_vax_f and | |
796 | floatformat_vax_d values these methods should be set to are | |
797 | also not defined either. Oops! | |
798 | ||
799 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
800 | definitions and the new cases for floatformat_is_valid (). */ |
801 | ||
802 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
803 | { | |
804 | *invp = 1; | |
805 | return 0.0; | |
806 | } | |
807 | ||
96d2f608 | 808 | return extract_typed_floating (valaddr, type); |
c906108c SS |
809 | } |
810 | else if (nosign) | |
811 | { | |
812 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 813 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
814 | } |
815 | else | |
816 | { | |
817 | /* Signed -- we are OK with unpack_long. */ | |
818 | return unpack_long (type, valaddr); | |
819 | } | |
820 | } | |
821 | ||
822 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
823 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
824 | We don't assume any alignment for the raw data. Return value is in | |
825 | host byte order. | |
826 | ||
827 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 828 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
829 | |
830 | C++: It is assumed that the front-end has taken care of | |
831 | all matters concerning pointers to members. A pointer | |
832 | to member which reaches here is considered to be equivalent | |
833 | to an INT (or some size). After all, it is only an offset. */ | |
834 | ||
835 | CORE_ADDR | |
66140c26 | 836 | unpack_pointer (struct type *type, const char *valaddr) |
c906108c SS |
837 | { |
838 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
839 | whether we want this to be true eventually. */ | |
840 | return unpack_long (type, valaddr); | |
841 | } | |
4478b372 | 842 | |
c906108c | 843 | \f |
2c2738a0 DC |
844 | /* Get the value of the FIELDN'th field (which must be static) of |
845 | TYPE. Return NULL if the field doesn't exist or has been | |
846 | optimized out. */ | |
c906108c | 847 | |
f23631e4 | 848 | struct value * |
fba45db2 | 849 | value_static_field (struct type *type, int fieldno) |
c906108c | 850 | { |
948e66d9 DJ |
851 | struct value *retval; |
852 | ||
c906108c SS |
853 | if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) |
854 | { | |
948e66d9 | 855 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 856 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
857 | } |
858 | else | |
859 | { | |
860 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
176620f1 | 861 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL); |
948e66d9 | 862 | if (sym == NULL) |
c906108c SS |
863 | { |
864 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
865 | as non-debuggable symbols */ |
866 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
867 | if (!msym) |
868 | return NULL; | |
869 | else | |
c5aa993b | 870 | { |
948e66d9 | 871 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 872 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
873 | } |
874 | } | |
875 | else | |
876 | { | |
948e66d9 DJ |
877 | /* SYM should never have a SYMBOL_CLASS which will require |
878 | read_var_value to use the FRAME parameter. */ | |
879 | if (symbol_read_needs_frame (sym)) | |
880 | warning ("static field's value depends on the current " | |
881 | "frame - bad debug info?"); | |
882 | retval = read_var_value (sym, NULL); | |
2b127877 | 883 | } |
948e66d9 DJ |
884 | if (retval && VALUE_LVAL (retval) == lval_memory) |
885 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
886 | VALUE_ADDRESS (retval)); | |
c906108c | 887 | } |
948e66d9 | 888 | return retval; |
c906108c SS |
889 | } |
890 | ||
2b127877 DB |
891 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
892 | You have to be careful here, since the size of the data area for the value | |
893 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
894 | than the old enclosing type, you have to allocate more space for the data. | |
895 | The return value is a pointer to the new version of this value structure. */ | |
896 | ||
f23631e4 AC |
897 | struct value * |
898 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 899 | { |
4754a64e | 900 | if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val))) |
2b127877 | 901 | { |
4754a64e | 902 | val->enclosing_type = new_encl_type; |
2b127877 DB |
903 | return val; |
904 | } | |
905 | else | |
906 | { | |
f23631e4 AC |
907 | struct value *new_val; |
908 | struct value *prev; | |
2b127877 | 909 | |
f23631e4 | 910 | new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); |
cc303028 | 911 | |
4754a64e | 912 | new_val->enclosing_type = new_encl_type; |
cc303028 | 913 | |
2b127877 DB |
914 | /* We have to make sure this ends up in the same place in the value |
915 | chain as the original copy, so it's clean-up behavior is the same. | |
916 | If the value has been released, this is a waste of time, but there | |
917 | is no way to tell that in advance, so... */ | |
918 | ||
919 | if (val != all_values) | |
920 | { | |
921 | for (prev = all_values; prev != NULL; prev = prev->next) | |
922 | { | |
923 | if (prev->next == val) | |
924 | { | |
925 | prev->next = new_val; | |
926 | break; | |
927 | } | |
928 | } | |
929 | } | |
930 | ||
931 | return new_val; | |
932 | } | |
933 | } | |
934 | ||
c906108c SS |
935 | /* Given a value ARG1 (offset by OFFSET bytes) |
936 | of a struct or union type ARG_TYPE, | |
937 | extract and return the value of one of its (non-static) fields. | |
938 | FIELDNO says which field. */ | |
939 | ||
f23631e4 AC |
940 | struct value * |
941 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 942 | int fieldno, struct type *arg_type) |
c906108c | 943 | { |
f23631e4 | 944 | struct value *v; |
52f0bd74 | 945 | struct type *type; |
c906108c SS |
946 | |
947 | CHECK_TYPEDEF (arg_type); | |
948 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
949 | ||
950 | /* Handle packed fields */ | |
951 | ||
952 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
953 | { | |
954 | v = value_from_longest (type, | |
955 | unpack_field_as_long (arg_type, | |
956 | VALUE_CONTENTS (arg1) | |
c5aa993b | 957 | + offset, |
c906108c | 958 | fieldno)); |
df407dfe AC |
959 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
960 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
961 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 962 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
963 | } |
964 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
965 | { | |
966 | /* This field is actually a base subobject, so preserve the | |
967 | entire object's contents for later references to virtual | |
968 | bases, etc. */ | |
4754a64e | 969 | v = allocate_value (value_enclosing_type (arg1)); |
df407dfe | 970 | v->type = type; |
d69fe07e | 971 | if (value_lazy (arg1)) |
c906108c SS |
972 | VALUE_LAZY (v) = 1; |
973 | else | |
990a07ab | 974 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), |
4754a64e | 975 | TYPE_LENGTH (value_enclosing_type (arg1))); |
df407dfe | 976 | v->offset = value_offset (arg1); |
c906108c | 977 | VALUE_EMBEDDED_OFFSET (v) |
c5aa993b JM |
978 | = offset + |
979 | VALUE_EMBEDDED_OFFSET (arg1) + | |
980 | TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
c906108c SS |
981 | } |
982 | else | |
983 | { | |
984 | /* Plain old data member */ | |
985 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
986 | v = allocate_value (type); | |
d69fe07e | 987 | if (value_lazy (arg1)) |
c906108c SS |
988 | VALUE_LAZY (v) = 1; |
989 | else | |
990a07ab AC |
990 | memcpy (value_contents_raw (v), |
991 | value_contents_raw (arg1) + offset, | |
c906108c | 992 | TYPE_LENGTH (type)); |
df407dfe AC |
993 | v->offset = (value_offset (arg1) + offset |
994 | + VALUE_EMBEDDED_OFFSET (arg1)); | |
c906108c SS |
995 | } |
996 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
997 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
998 | VALUE_LVAL (v) = lval_internalvar_component; | |
999 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
9ee8fc9d | 1000 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1001 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c | 1002 | /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset |
c5aa993b | 1003 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */ |
c906108c SS |
1004 | return v; |
1005 | } | |
1006 | ||
1007 | /* Given a value ARG1 of a struct or union type, | |
1008 | extract and return the value of one of its (non-static) fields. | |
1009 | FIELDNO says which field. */ | |
1010 | ||
f23631e4 | 1011 | struct value * |
aa1ee363 | 1012 | value_field (struct value *arg1, int fieldno) |
c906108c | 1013 | { |
df407dfe | 1014 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1015 | } |
1016 | ||
1017 | /* Return a non-virtual function as a value. | |
1018 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1019 | J is an index into F which provides the desired method. |
1020 | ||
1021 | We only use the symbol for its address, so be happy with either a | |
1022 | full symbol or a minimal symbol. | |
1023 | */ | |
c906108c | 1024 | |
f23631e4 AC |
1025 | struct value * |
1026 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1027 | int offset) |
c906108c | 1028 | { |
f23631e4 | 1029 | struct value *v; |
52f0bd74 | 1030 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1031 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1032 | struct symbol *sym; |
0478d61c | 1033 | struct minimal_symbol *msym; |
c906108c | 1034 | |
176620f1 | 1035 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL); |
5ae326fa | 1036 | if (sym != NULL) |
0478d61c | 1037 | { |
5ae326fa AC |
1038 | msym = NULL; |
1039 | } | |
1040 | else | |
1041 | { | |
1042 | gdb_assert (sym == NULL); | |
0478d61c | 1043 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1044 | if (msym == NULL) |
1045 | return NULL; | |
0478d61c FF |
1046 | } |
1047 | ||
c906108c | 1048 | v = allocate_value (ftype); |
0478d61c FF |
1049 | if (sym) |
1050 | { | |
1051 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1052 | } | |
1053 | else | |
1054 | { | |
1055 | VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym); | |
1056 | } | |
c906108c SS |
1057 | |
1058 | if (arg1p) | |
c5aa993b | 1059 | { |
df407dfe | 1060 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1061 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1062 | value_addr (*arg1p))); | |
1063 | ||
070ad9f0 | 1064 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1065 | VALUE_OFFSET (*arg1p) += offset; |
1066 | */ | |
c906108c SS |
1067 | } |
1068 | ||
1069 | return v; | |
1070 | } | |
1071 | ||
c906108c SS |
1072 | \f |
1073 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1074 | VALADDR. | |
1075 | ||
1076 | Extracting bits depends on endianness of the machine. Compute the | |
1077 | number of least significant bits to discard. For big endian machines, | |
1078 | we compute the total number of bits in the anonymous object, subtract | |
1079 | off the bit count from the MSB of the object to the MSB of the | |
1080 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1081 | count. For little endian machines, the discard count is simply the | |
1082 | number of bits from the LSB of the anonymous object to the LSB of the | |
1083 | bitfield. | |
1084 | ||
1085 | If the field is signed, we also do sign extension. */ | |
1086 | ||
1087 | LONGEST | |
66140c26 | 1088 | unpack_field_as_long (struct type *type, const char *valaddr, int fieldno) |
c906108c SS |
1089 | { |
1090 | ULONGEST val; | |
1091 | ULONGEST valmask; | |
1092 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1093 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1094 | int lsbcount; | |
1095 | struct type *field_type; | |
1096 | ||
1097 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1098 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1099 | CHECK_TYPEDEF (field_type); | |
1100 | ||
1101 | /* Extract bits. See comment above. */ | |
1102 | ||
1103 | if (BITS_BIG_ENDIAN) | |
1104 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); | |
1105 | else | |
1106 | lsbcount = (bitpos % 8); | |
1107 | val >>= lsbcount; | |
1108 | ||
1109 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1110 | If the field is signed, and is negative, then sign extend. */ | |
1111 | ||
1112 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1113 | { | |
1114 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1115 | val &= valmask; | |
1116 | if (!TYPE_UNSIGNED (field_type)) | |
1117 | { | |
1118 | if (val & (valmask ^ (valmask >> 1))) | |
1119 | { | |
1120 | val |= ~valmask; | |
1121 | } | |
1122 | } | |
1123 | } | |
1124 | return (val); | |
1125 | } | |
1126 | ||
1127 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1128 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1129 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1130 | indicate which bits (in target bit order) comprise the bitfield. |
1131 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1132 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1133 | |
1134 | void | |
fba45db2 | 1135 | modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1136 | { |
f4e88c8e PH |
1137 | ULONGEST oword; |
1138 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1139 | |
1140 | /* If a negative fieldval fits in the field in question, chop | |
1141 | off the sign extension bits. */ | |
f4e88c8e PH |
1142 | if ((~fieldval & ~(mask >> 1)) == 0) |
1143 | fieldval &= mask; | |
c906108c SS |
1144 | |
1145 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1146 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1147 | { |
1148 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1149 | we don't have a sprintf_longest. */ |
c906108c SS |
1150 | warning ("Value does not fit in %d bits.", bitsize); |
1151 | ||
1152 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1153 | fieldval &= mask; |
c906108c SS |
1154 | } |
1155 | ||
f4e88c8e | 1156 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1157 | |
1158 | /* Shifting for bit field depends on endianness of the target machine. */ | |
1159 | if (BITS_BIG_ENDIAN) | |
1160 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; | |
1161 | ||
f4e88c8e | 1162 | oword &= ~(mask << bitpos); |
c906108c SS |
1163 | oword |= fieldval << bitpos; |
1164 | ||
f4e88c8e | 1165 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1166 | } |
1167 | \f | |
1168 | /* Convert C numbers into newly allocated values */ | |
1169 | ||
f23631e4 | 1170 | struct value * |
aa1ee363 | 1171 | value_from_longest (struct type *type, LONGEST num) |
c906108c | 1172 | { |
f23631e4 | 1173 | struct value *val = allocate_value (type); |
52f0bd74 AC |
1174 | enum type_code code; |
1175 | int len; | |
c5aa993b | 1176 | retry: |
c906108c SS |
1177 | code = TYPE_CODE (type); |
1178 | len = TYPE_LENGTH (type); | |
1179 | ||
1180 | switch (code) | |
1181 | { | |
1182 | case TYPE_CODE_TYPEDEF: | |
1183 | type = check_typedef (type); | |
1184 | goto retry; | |
1185 | case TYPE_CODE_INT: | |
1186 | case TYPE_CODE_CHAR: | |
1187 | case TYPE_CODE_ENUM: | |
1188 | case TYPE_CODE_BOOL: | |
1189 | case TYPE_CODE_RANGE: | |
990a07ab | 1190 | store_signed_integer (value_contents_raw (val), len, num); |
c906108c | 1191 | break; |
c5aa993b | 1192 | |
c906108c SS |
1193 | case TYPE_CODE_REF: |
1194 | case TYPE_CODE_PTR: | |
990a07ab | 1195 | store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num); |
c906108c | 1196 | break; |
c5aa993b | 1197 | |
c906108c SS |
1198 | default: |
1199 | error ("Unexpected type (%d) encountered for integer constant.", code); | |
1200 | } | |
1201 | return val; | |
1202 | } | |
1203 | ||
4478b372 JB |
1204 | |
1205 | /* Create a value representing a pointer of type TYPE to the address | |
1206 | ADDR. */ | |
f23631e4 | 1207 | struct value * |
4478b372 JB |
1208 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1209 | { | |
f23631e4 | 1210 | struct value *val = allocate_value (type); |
990a07ab | 1211 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1212 | return val; |
1213 | } | |
1214 | ||
1215 | ||
0f71a2f6 | 1216 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1217 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1218 | This is analogous to value_from_longest, which also does not |
1219 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1220 | ||
f23631e4 | 1221 | struct value * |
fba45db2 | 1222 | value_from_string (char *ptr) |
0f71a2f6 | 1223 | { |
f23631e4 | 1224 | struct value *val; |
c5aa993b | 1225 | int len = strlen (ptr); |
0f71a2f6 | 1226 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1227 | struct type *string_char_type; |
1228 | struct type *rangetype; | |
1229 | struct type *stringtype; | |
1230 | ||
1231 | rangetype = create_range_type ((struct type *) NULL, | |
1232 | builtin_type_int, | |
1233 | lowbound, len + lowbound - 1); | |
1234 | string_char_type = language_string_char_type (current_language, | |
1235 | current_gdbarch); | |
1236 | stringtype = create_array_type ((struct type *) NULL, | |
1237 | string_char_type, | |
1238 | rangetype); | |
0f71a2f6 | 1239 | val = allocate_value (stringtype); |
990a07ab | 1240 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1241 | return val; |
1242 | } | |
1243 | ||
f23631e4 | 1244 | struct value * |
fba45db2 | 1245 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1246 | { |
f23631e4 | 1247 | struct value *val = allocate_value (type); |
c906108c | 1248 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1249 | enum type_code code = TYPE_CODE (base_type); |
1250 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1251 | |
1252 | if (code == TYPE_CODE_FLT) | |
1253 | { | |
990a07ab | 1254 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1255 | } |
1256 | else | |
1257 | error ("Unexpected type encountered for floating constant."); | |
1258 | ||
1259 | return val; | |
1260 | } | |
994b9211 AC |
1261 | |
1262 | struct value * | |
1263 | coerce_ref (struct value *arg) | |
1264 | { | |
df407dfe | 1265 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1266 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1267 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1268 | unpack_pointer (value_type (arg), |
994b9211 AC |
1269 | VALUE_CONTENTS (arg))); |
1270 | return arg; | |
1271 | } | |
1272 | ||
1273 | struct value * | |
1274 | coerce_array (struct value *arg) | |
1275 | { | |
1276 | arg = coerce_ref (arg); | |
1277 | if (current_language->c_style_arrays | |
df407dfe | 1278 | && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY) |
994b9211 | 1279 | arg = value_coerce_array (arg); |
df407dfe | 1280 | if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC) |
994b9211 AC |
1281 | arg = value_coerce_function (arg); |
1282 | return arg; | |
1283 | } | |
1284 | ||
1285 | struct value * | |
1286 | coerce_number (struct value *arg) | |
1287 | { | |
1288 | arg = coerce_array (arg); | |
1289 | arg = coerce_enum (arg); | |
1290 | return arg; | |
1291 | } | |
1292 | ||
1293 | struct value * | |
1294 | coerce_enum (struct value *arg) | |
1295 | { | |
df407dfe | 1296 | if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM) |
994b9211 AC |
1297 | arg = value_cast (builtin_type_unsigned_int, arg); |
1298 | return arg; | |
1299 | } | |
c906108c | 1300 | \f |
c906108c | 1301 | |
74055713 AC |
1302 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
1303 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE | |
1304 | is the type (which is known to be struct, union or array). | |
c906108c SS |
1305 | |
1306 | On most machines, the struct convention is used unless we are | |
1307 | using gcc and the type is of a special size. */ | |
1308 | /* As of about 31 Mar 93, GCC was changed to be compatible with the | |
1309 | native compiler. GCC 2.3.3 was the last release that did it the | |
1310 | old way. Since gcc2_compiled was not changed, we have no | |
1311 | way to correctly win in all cases, so we just do the right thing | |
1312 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1313 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1314 | would cause more chaos than dealing with some struct returns being | |
1315 | handled wrong. */ | |
bc87dfa0 AC |
1316 | /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is |
1317 | dead. */ | |
c906108c SS |
1318 | |
1319 | int | |
fba45db2 | 1320 | generic_use_struct_convention (int gcc_p, struct type *value_type) |
c5aa993b | 1321 | { |
bc87dfa0 AC |
1322 | return !(TYPE_LENGTH (value_type) == 1 |
1323 | || TYPE_LENGTH (value_type) == 2 | |
1324 | || TYPE_LENGTH (value_type) == 4 | |
1325 | || TYPE_LENGTH (value_type) == 8); | |
c906108c SS |
1326 | } |
1327 | ||
48436ce6 AC |
1328 | /* Return true if the function returning the specified type is using |
1329 | the convention of returning structures in memory (passing in the | |
1330 | address as a hidden first parameter). GCC_P is nonzero if compiled | |
c906108c SS |
1331 | with GCC. */ |
1332 | ||
1333 | int | |
48436ce6 | 1334 | using_struct_return (struct type *value_type, int gcc_p) |
c906108c | 1335 | { |
52f0bd74 | 1336 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1337 | |
1338 | if (code == TYPE_CODE_ERROR) | |
1339 | error ("Function return type unknown."); | |
1340 | ||
667e784f AC |
1341 | if (code == TYPE_CODE_VOID) |
1342 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1343 | code in "print_return_value". */ |
667e784f AC |
1344 | return 0; |
1345 | ||
92ad9cd9 AC |
1346 | /* Probe the architecture for the return-value convention. */ |
1347 | return (gdbarch_return_value (current_gdbarch, value_type, | |
1348 | NULL, NULL, NULL) | |
31db7b6c | 1349 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
1350 | } |
1351 | ||
c906108c | 1352 | void |
fba45db2 | 1353 | _initialize_values (void) |
c906108c SS |
1354 | { |
1355 | add_cmd ("convenience", no_class, show_convenience, | |
c5aa993b | 1356 | "Debugger convenience (\"$foo\") variables.\n\ |
c906108c SS |
1357 | These variables are created when you assign them values;\n\ |
1358 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1359 | A few convenience variables are given values automatically:\n\ | |
1360 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1361 | \"$__\" holds the contents of the last address examined with \"x\".", | |
1362 | &showlist); | |
1363 | ||
1364 | add_cmd ("values", no_class, show_values, | |
1365 | "Elements of value history around item number IDX (or last ten).", | |
1366 | &showlist); | |
1367 | } |