]> Git Repo - binutils.git/blame - gdb/symfile.c
gdb/
[binutils.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e 1082 if (objfile->sf == NULL)
8caee43b
PP
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
109f874e 1087
7eedccfa 1088 new_symfile_objfile (objfile, add_flags);
c906108c 1089
06d3b283 1090 observer_notify_new_objfile (objfile);
c906108c 1091
ce7d4522 1092 bfd_cache_close_all ();
c906108c
SS
1093 return (objfile);
1094}
1095
7904e09f 1096
eb4556d7
JB
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
7eedccfa 1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1104 struct section_addr_info *addrs,
7eedccfa 1105 int flags)
eb4556d7 1106{
7eedccfa
PP
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
eb4556d7
JB
1109}
1110
1111
7904e09f
JB
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
7eedccfa
PP
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
7904e09f 1118{
7eedccfa
PP
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
7904e09f
JB
1121}
1122
1123
d7db6da9
FN
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
5417f6dc 1131
1adeb98a
FN
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
d7db6da9
FN
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
7eedccfa
PP
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1143
d7db6da9
FN
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1adeb98a
FN
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
0430b0d6
AS
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
8a3fe4f8 1160 error (_("Not confirmed."));
1adeb98a 1161
d10c338d 1162 free_all_objfiles ();
1adeb98a 1163
d10c338d
DE
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1172}
1173
77069918
JK
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1229
1230 xfree (found);
1231
77069918
JK
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
5b5d99cf
JB
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
5417f6dc 1280
5b5d99cf
JB
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1287
5b5d99cf
JB
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1297
5b5d99cf
JB
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
f1838a98 1306 bfd *abfd;
777ea8f1 1307 gdb_byte buffer[8*1024];
5b5d99cf
JB
1308 int count;
1309
f1838a98
UW
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
5b5d99cf
JB
1316 return 0;
1317
f1838a98 1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
f1838a98 1321 bfd_close (abfd);
5b5d99cf
JB
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1360 xfree (build_id);
77069918
JK
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
1ffa32ee
JK
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
5b5d99cf 1397 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1398 + i
5b5d99cf
JB
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
5417f6dc 1401 + strlen (basename)
5b5d99cf
JB
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1ffa32ee 1412 xfree (canon_name);
5b5d99cf
JB
1413 return xstrdup (debugfile);
1414 }
5417f6dc 1415
5b5d99cf
JB
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1ffa32ee 1426 xfree (canon_name);
5b5d99cf
JB
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
5b5d99cf
JB
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
5b5d99cf
JB
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1ffa32ee 1440 xfree (canon_name);
5b5d99cf
JB
1441 return xstrdup (debugfile);
1442 }
5417f6dc 1443
aa28a74e
DJ
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
aa28a74e
DJ
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1ffa32ee 1460 xfree (canon_name);
aa28a74e
DJ
1461 return xstrdup (debugfile);
1462 }
1463 }
1464
1465 if (canon_name)
1466 xfree (canon_name);
1467
5b5d99cf
JB
1468 xfree (basename);
1469 xfree (dir);
1470 return NULL;
1471}
1472
1473
c906108c
SS
1474/* This is the symbol-file command. Read the file, analyze its
1475 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1476 the command is rather bizarre:
1477
1478 1. The function buildargv implements various quoting conventions
1479 which are undocumented and have little or nothing in common with
1480 the way things are quoted (or not quoted) elsewhere in GDB.
1481
1482 2. Options are used, which are not generally used in GDB (perhaps
1483 "set mapped on", "set readnow on" would be better)
1484
1485 3. The order of options matters, which is contrary to GNU
c906108c
SS
1486 conventions (because it is confusing and inconvenient). */
1487
1488void
fba45db2 1489symbol_file_command (char *args, int from_tty)
c906108c 1490{
c906108c
SS
1491 dont_repeat ();
1492
1493 if (args == NULL)
1494 {
1adeb98a 1495 symbol_file_clear (from_tty);
c906108c
SS
1496 }
1497 else
1498 {
d1a41061 1499 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1500 int flags = OBJF_USERLOADED;
1501 struct cleanup *cleanups;
1502 char *name = NULL;
1503
7a292a7a 1504 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1505 while (*argv != NULL)
1506 {
78a4a9b9
AC
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
8a3fe4f8 1510 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1511 else
1512 {
cb2f3a29 1513 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1514 name = *argv;
78a4a9b9 1515 }
cb2f3a29 1516
c906108c
SS
1517 argv++;
1518 }
1519
1520 if (name == NULL)
cb2f3a29
MK
1521 error (_("no symbol file name was specified"));
1522
c906108c
SS
1523 do_cleanups (cleanups);
1524 }
1525}
1526
1527/* Set the initial language.
1528
cb2f3a29
MK
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
c906108c 1537
8b60591b 1538void
fba45db2 1539set_initial_language (void)
c906108c
SS
1540{
1541 struct partial_symtab *pst;
c5aa993b 1542 enum language lang = language_unknown;
c906108c
SS
1543
1544 pst = find_main_psymtab ();
1545 if (pst != NULL)
1546 {
c5aa993b 1547 if (pst->filename != NULL)
cb2f3a29
MK
1548 lang = deduce_language_from_filename (pst->filename);
1549
c906108c
SS
1550 if (lang == language_unknown)
1551 {
c5aa993b
JM
1552 /* Make C the default language */
1553 lang = language_c;
c906108c 1554 }
cb2f3a29 1555
c906108c 1556 set_language (lang);
cb2f3a29 1557 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1558 }
1559}
1560
cb2f3a29
MK
1561/* Open the file specified by NAME and hand it off to BFD for
1562 preliminary analysis. Return a newly initialized bfd *, which
1563 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1564 absolute). In case of trouble, error() is called. */
c906108c
SS
1565
1566bfd *
fba45db2 1567symfile_bfd_open (char *name)
c906108c
SS
1568{
1569 bfd *sym_bfd;
1570 int desc;
1571 char *absolute_name;
1572
f1838a98
UW
1573 if (remote_filename_p (name))
1574 {
1575 name = xstrdup (name);
1576 sym_bfd = remote_bfd_open (name, gnutarget);
1577 if (!sym_bfd)
1578 {
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't open to read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 if (!bfd_check_format (sym_bfd, bfd_object))
1585 {
1586 bfd_close (sym_bfd);
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 return sym_bfd;
1593 }
1594
cb2f3a29 1595 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1596
1597 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1599 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1600#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1601 if (desc < 0)
1602 {
1603 char *exename = alloca (strlen (name) + 5);
1604 strcat (strcpy (exename, name), ".exe");
014d698b 1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1606 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1607 }
1608#endif
1609 if (desc < 0)
1610 {
b8c9b27d 1611 make_cleanup (xfree, name);
c906108c
SS
1612 perror_with_name (name);
1613 }
cb2f3a29
MK
1614
1615 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1616 bfd. It'll be freed in free_objfile(). */
1617 xfree (name);
1618 name = absolute_name;
c906108c 1619
9f76c2cd 1620 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1621 if (!sym_bfd)
1622 {
1623 close (desc);
b8c9b27d 1624 make_cleanup (xfree, name);
f1838a98 1625 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1626 bfd_errmsg (bfd_get_error ()));
1627 }
549c1eea 1628 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
cb2f3a29
MK
1632 /* FIXME: should be checking for errors from bfd_close (for one
1633 thing, on error it does not free all the storage associated
1634 with the bfd). */
1635 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1636 make_cleanup (xfree, name);
f1838a98 1637 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1638 bfd_errmsg (bfd_get_error ()));
1639 }
cb2f3a29 1640
4f6f9936
JK
1641 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1642 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1643
cb2f3a29 1644 return sym_bfd;
c906108c
SS
1645}
1646
cb2f3a29
MK
1647/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1648 the section was not found. */
1649
0e931cf0
JB
1650int
1651get_section_index (struct objfile *objfile, char *section_name)
1652{
1653 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1654
0e931cf0
JB
1655 if (sect)
1656 return sect->index;
1657 else
1658 return -1;
1659}
1660
cb2f3a29
MK
1661/* Link SF into the global symtab_fns list. Called on startup by the
1662 _initialize routine in each object file format reader, to register
1663 information about each format the the reader is prepared to
1664 handle. */
c906108c
SS
1665
1666void
fba45db2 1667add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1668{
1669 sf->next = symtab_fns;
1670 symtab_fns = sf;
1671}
1672
cb2f3a29
MK
1673/* Initialize OBJFILE to read symbols from its associated BFD. It
1674 either returns or calls error(). The result is an initialized
1675 struct sym_fns in the objfile structure, that contains cached
1676 information about the symbol file. */
c906108c 1677
31d99776
DJ
1678static struct sym_fns *
1679find_sym_fns (bfd *abfd)
c906108c
SS
1680{
1681 struct sym_fns *sf;
31d99776 1682 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1683
75245b24
MS
1684 if (our_flavour == bfd_target_srec_flavour
1685 || our_flavour == bfd_target_ihex_flavour
1686 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1687 return NULL; /* No symbols. */
75245b24 1688
c5aa993b 1689 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1690 if (our_flavour == sf->sym_flavour)
1691 return sf;
cb2f3a29 1692
8a3fe4f8 1693 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1694 bfd_get_target (abfd));
c906108c
SS
1695}
1696\f
cb2f3a29 1697
c906108c
SS
1698/* This function runs the load command of our current target. */
1699
1700static void
fba45db2 1701load_command (char *arg, int from_tty)
c906108c 1702{
4487aabf
PA
1703 /* The user might be reloading because the binary has changed. Take
1704 this opportunity to check. */
1705 reopen_exec_file ();
1706 reread_symbols ();
1707
c906108c 1708 if (arg == NULL)
1986bccd
AS
1709 {
1710 char *parg;
1711 int count = 0;
1712
1713 parg = arg = get_exec_file (1);
1714
1715 /* Count how many \ " ' tab space there are in the name. */
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 parg++;
1719 count++;
1720 }
1721
1722 if (count)
1723 {
1724 /* We need to quote this string so buildargv can pull it apart. */
1725 char *temp = xmalloc (strlen (arg) + count + 1 );
1726 char *ptemp = temp;
1727 char *prev;
1728
1729 make_cleanup (xfree, temp);
1730
1731 prev = parg = arg;
1732 while ((parg = strpbrk (parg, "\\\"'\t ")))
1733 {
1734 strncpy (ptemp, prev, parg - prev);
1735 ptemp += parg - prev;
1736 prev = parg++;
1737 *ptemp++ = '\\';
1738 }
1739 strcpy (ptemp, prev);
1740
1741 arg = temp;
1742 }
1743 }
1744
c906108c 1745 target_load (arg, from_tty);
2889e661
JB
1746
1747 /* After re-loading the executable, we don't really know which
1748 overlays are mapped any more. */
1749 overlay_cache_invalid = 1;
c906108c
SS
1750}
1751
1752/* This version of "load" should be usable for any target. Currently
1753 it is just used for remote targets, not inftarg.c or core files,
1754 on the theory that only in that case is it useful.
1755
1756 Avoiding xmodem and the like seems like a win (a) because we don't have
1757 to worry about finding it, and (b) On VMS, fork() is very slow and so
1758 we don't want to run a subprocess. On the other hand, I'm not sure how
1759 performance compares. */
917317f4 1760
917317f4
JM
1761static int validate_download = 0;
1762
e4f9b4d5
MS
1763/* Callback service function for generic_load (bfd_map_over_sections). */
1764
1765static void
1766add_section_size_callback (bfd *abfd, asection *asec, void *data)
1767{
1768 bfd_size_type *sum = data;
1769
2c500098 1770 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1771}
1772
1773/* Opaque data for load_section_callback. */
1774struct load_section_data {
1775 unsigned long load_offset;
a76d924d
DJ
1776 struct load_progress_data *progress_data;
1777 VEC(memory_write_request_s) *requests;
1778};
1779
1780/* Opaque data for load_progress. */
1781struct load_progress_data {
1782 /* Cumulative data. */
e4f9b4d5
MS
1783 unsigned long write_count;
1784 unsigned long data_count;
1785 bfd_size_type total_size;
a76d924d
DJ
1786};
1787
1788/* Opaque data for load_progress for a single section. */
1789struct load_progress_section_data {
1790 struct load_progress_data *cumulative;
cf7a04e8 1791
a76d924d 1792 /* Per-section data. */
cf7a04e8
DJ
1793 const char *section_name;
1794 ULONGEST section_sent;
1795 ULONGEST section_size;
1796 CORE_ADDR lma;
1797 gdb_byte *buffer;
e4f9b4d5
MS
1798};
1799
a76d924d 1800/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1801
1802static void
1803load_progress (ULONGEST bytes, void *untyped_arg)
1804{
a76d924d
DJ
1805 struct load_progress_section_data *args = untyped_arg;
1806 struct load_progress_data *totals;
1807
1808 if (args == NULL)
1809 /* Writing padding data. No easy way to get at the cumulative
1810 stats, so just ignore this. */
1811 return;
1812
1813 totals = args->cumulative;
1814
1815 if (bytes == 0 && args->section_sent == 0)
1816 {
1817 /* The write is just starting. Let the user know we've started
1818 this section. */
5af949e3
UW
1819 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1820 args->section_name, hex_string (args->section_size),
1821 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1822 return;
1823 }
cf7a04e8
DJ
1824
1825 if (validate_download)
1826 {
1827 /* Broken memories and broken monitors manifest themselves here
1828 when bring new computers to life. This doubles already slow
1829 downloads. */
1830 /* NOTE: cagney/1999-10-18: A more efficient implementation
1831 might add a verify_memory() method to the target vector and
1832 then use that. remote.c could implement that method using
1833 the ``qCRC'' packet. */
1834 gdb_byte *check = xmalloc (bytes);
1835 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1836
1837 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1838 error (_("Download verify read failed at %s"),
1839 paddress (target_gdbarch, args->lma));
cf7a04e8 1840 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1841 error (_("Download verify compare failed at %s"),
1842 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1843 do_cleanups (verify_cleanups);
1844 }
a76d924d 1845 totals->data_count += bytes;
cf7a04e8
DJ
1846 args->lma += bytes;
1847 args->buffer += bytes;
a76d924d 1848 totals->write_count += 1;
cf7a04e8
DJ
1849 args->section_sent += bytes;
1850 if (quit_flag
1851 || (deprecated_ui_load_progress_hook != NULL
1852 && deprecated_ui_load_progress_hook (args->section_name,
1853 args->section_sent)))
1854 error (_("Canceled the download"));
1855
1856 if (deprecated_show_load_progress != NULL)
1857 deprecated_show_load_progress (args->section_name,
1858 args->section_sent,
1859 args->section_size,
a76d924d
DJ
1860 totals->data_count,
1861 totals->total_size);
cf7a04e8
DJ
1862}
1863
e4f9b4d5
MS
1864/* Callback service function for generic_load (bfd_map_over_sections). */
1865
1866static void
1867load_section_callback (bfd *abfd, asection *asec, void *data)
1868{
a76d924d 1869 struct memory_write_request *new_request;
e4f9b4d5 1870 struct load_section_data *args = data;
a76d924d 1871 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1872 bfd_size_type size = bfd_get_section_size (asec);
1873 gdb_byte *buffer;
cf7a04e8 1874 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1875
cf7a04e8
DJ
1876 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1877 return;
e4f9b4d5 1878
cf7a04e8
DJ
1879 if (size == 0)
1880 return;
e4f9b4d5 1881
a76d924d
DJ
1882 new_request = VEC_safe_push (memory_write_request_s,
1883 args->requests, NULL);
1884 memset (new_request, 0, sizeof (struct memory_write_request));
1885 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1886 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1887 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1888 new_request->data = xmalloc (size);
1889 new_request->baton = section_data;
cf7a04e8 1890
a76d924d 1891 buffer = new_request->data;
cf7a04e8 1892
a76d924d
DJ
1893 section_data->cumulative = args->progress_data;
1894 section_data->section_name = sect_name;
1895 section_data->section_size = size;
1896 section_data->lma = new_request->begin;
1897 section_data->buffer = buffer;
cf7a04e8
DJ
1898
1899 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1900}
1901
1902/* Clean up an entire memory request vector, including load
1903 data and progress records. */
cf7a04e8 1904
a76d924d
DJ
1905static void
1906clear_memory_write_data (void *arg)
1907{
1908 VEC(memory_write_request_s) **vec_p = arg;
1909 VEC(memory_write_request_s) *vec = *vec_p;
1910 int i;
1911 struct memory_write_request *mr;
cf7a04e8 1912
a76d924d
DJ
1913 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1914 {
1915 xfree (mr->data);
1916 xfree (mr->baton);
1917 }
1918 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1919}
1920
c906108c 1921void
917317f4 1922generic_load (char *args, int from_tty)
c906108c 1923{
c906108c 1924 bfd *loadfile_bfd;
2b71414d 1925 struct timeval start_time, end_time;
917317f4 1926 char *filename;
1986bccd 1927 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1928 struct load_section_data cbdata;
a76d924d
DJ
1929 struct load_progress_data total_progress;
1930
e4f9b4d5 1931 CORE_ADDR entry;
1986bccd 1932 char **argv;
e4f9b4d5 1933
a76d924d
DJ
1934 memset (&cbdata, 0, sizeof (cbdata));
1935 memset (&total_progress, 0, sizeof (total_progress));
1936 cbdata.progress_data = &total_progress;
1937
1938 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1939
d1a41061
PP
1940 if (args == NULL)
1941 error_no_arg (_("file to load"));
1986bccd 1942
d1a41061 1943 argv = gdb_buildargv (args);
1986bccd
AS
1944 make_cleanup_freeargv (argv);
1945
1946 filename = tilde_expand (argv[0]);
1947 make_cleanup (xfree, filename);
1948
1949 if (argv[1] != NULL)
917317f4
JM
1950 {
1951 char *endptr;
ba5f2f8a 1952
1986bccd
AS
1953 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1954
1955 /* If the last word was not a valid number then
1956 treat it as a file name with spaces in. */
1957 if (argv[1] == endptr)
1958 error (_("Invalid download offset:%s."), argv[1]);
1959
1960 if (argv[2] != NULL)
1961 error (_("Too many parameters."));
917317f4 1962 }
c906108c 1963
917317f4 1964 /* Open the file for loading. */
c906108c
SS
1965 loadfile_bfd = bfd_openr (filename, gnutarget);
1966 if (loadfile_bfd == NULL)
1967 {
1968 perror_with_name (filename);
1969 return;
1970 }
917317f4 1971
c906108c
SS
1972 /* FIXME: should be checking for errors from bfd_close (for one thing,
1973 on error it does not free all the storage associated with the
1974 bfd). */
5c65bbb6 1975 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1976
c5aa993b 1977 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1978 {
8a3fe4f8 1979 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1980 bfd_errmsg (bfd_get_error ()));
1981 }
c5aa993b 1982
5417f6dc 1983 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1984 (void *) &total_progress.total_size);
1985
1986 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1987
2b71414d 1988 gettimeofday (&start_time, NULL);
c906108c 1989
a76d924d
DJ
1990 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1991 load_progress) != 0)
1992 error (_("Load failed"));
c906108c 1993
2b71414d 1994 gettimeofday (&end_time, NULL);
ba5f2f8a 1995
e4f9b4d5 1996 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1997 ui_out_text (uiout, "Start address ");
5af949e3 1998 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1999 ui_out_text (uiout, ", load size ");
a76d924d 2000 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2001 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2002 /* We were doing this in remote-mips.c, I suspect it is right
2003 for other targets too. */
fb14de7b 2004 regcache_write_pc (get_current_regcache (), entry);
c906108c 2005
7ca9f392
AC
2006 /* FIXME: are we supposed to call symbol_file_add or not? According
2007 to a comment from remote-mips.c (where a call to symbol_file_add
2008 was commented out), making the call confuses GDB if more than one
2009 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2010 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2011
a76d924d
DJ
2012 print_transfer_performance (gdb_stdout, total_progress.data_count,
2013 total_progress.write_count,
2014 &start_time, &end_time);
c906108c
SS
2015
2016 do_cleanups (old_cleanups);
2017}
2018
2019/* Report how fast the transfer went. */
2020
917317f4
JM
2021/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2022 replaced by print_transfer_performance (with a very different
2023 function signature). */
2024
c906108c 2025void
fba45db2
KB
2026report_transfer_performance (unsigned long data_count, time_t start_time,
2027 time_t end_time)
c906108c 2028{
2b71414d
DJ
2029 struct timeval start, end;
2030
2031 start.tv_sec = start_time;
2032 start.tv_usec = 0;
2033 end.tv_sec = end_time;
2034 end.tv_usec = 0;
2035
2036 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2037}
2038
2039void
d9fcf2fb 2040print_transfer_performance (struct ui_file *stream,
917317f4
JM
2041 unsigned long data_count,
2042 unsigned long write_count,
2b71414d
DJ
2043 const struct timeval *start_time,
2044 const struct timeval *end_time)
917317f4 2045{
9f43d28c 2046 ULONGEST time_count;
2b71414d
DJ
2047
2048 /* Compute the elapsed time in milliseconds, as a tradeoff between
2049 accuracy and overflow. */
2050 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2051 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2052
8b93c638
JM
2053 ui_out_text (uiout, "Transfer rate: ");
2054 if (time_count > 0)
2055 {
9f43d28c
DJ
2056 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2057
2058 if (ui_out_is_mi_like_p (uiout))
2059 {
2060 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2061 ui_out_text (uiout, " bits/sec");
2062 }
2063 else if (rate < 1024)
2064 {
2065 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2066 ui_out_text (uiout, " bytes/sec");
2067 }
2068 else
2069 {
2070 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2071 ui_out_text (uiout, " KB/sec");
2072 }
8b93c638
JM
2073 }
2074 else
2075 {
ba5f2f8a 2076 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2077 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2078 }
2079 if (write_count > 0)
2080 {
2081 ui_out_text (uiout, ", ");
ba5f2f8a 2082 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2083 ui_out_text (uiout, " bytes/write");
2084 }
2085 ui_out_text (uiout, ".\n");
c906108c
SS
2086}
2087
2088/* This function allows the addition of incrementally linked object files.
2089 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2090/* Note: ezannoni 2000-04-13 This function/command used to have a
2091 special case syntax for the rombug target (Rombug is the boot
2092 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2093 rombug case, the user doesn't need to supply a text address,
2094 instead a call to target_link() (in target.c) would supply the
2095 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2096
c906108c 2097static void
fba45db2 2098add_symbol_file_command (char *args, int from_tty)
c906108c 2099{
5af949e3 2100 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2101 char *filename = NULL;
2df3850c 2102 int flags = OBJF_USERLOADED;
c906108c 2103 char *arg;
2acceee2 2104 int expecting_option = 0;
db162d44 2105 int section_index = 0;
2acceee2
JM
2106 int argcnt = 0;
2107 int sec_num = 0;
2108 int i;
db162d44
EZ
2109 int expecting_sec_name = 0;
2110 int expecting_sec_addr = 0;
5b96932b 2111 char **argv;
db162d44 2112
a39a16c4 2113 struct sect_opt
2acceee2 2114 {
2acceee2
JM
2115 char *name;
2116 char *value;
a39a16c4 2117 };
db162d44 2118
a39a16c4
MM
2119 struct section_addr_info *section_addrs;
2120 struct sect_opt *sect_opts = NULL;
2121 size_t num_sect_opts = 0;
3017564a 2122 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2123
a39a16c4 2124 num_sect_opts = 16;
5417f6dc 2125 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2126 * sizeof (struct sect_opt));
2127
c906108c
SS
2128 dont_repeat ();
2129
2130 if (args == NULL)
8a3fe4f8 2131 error (_("add-symbol-file takes a file name and an address"));
c906108c 2132
d1a41061 2133 argv = gdb_buildargv (args);
5b96932b 2134 make_cleanup_freeargv (argv);
db162d44 2135
5b96932b
AS
2136 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2137 {
2138 /* Process the argument. */
db162d44 2139 if (argcnt == 0)
c906108c 2140 {
db162d44
EZ
2141 /* The first argument is the file name. */
2142 filename = tilde_expand (arg);
3017564a 2143 make_cleanup (xfree, filename);
c906108c 2144 }
db162d44 2145 else
7a78ae4e
ND
2146 if (argcnt == 1)
2147 {
2148 /* The second argument is always the text address at which
2149 to load the program. */
2150 sect_opts[section_index].name = ".text";
2151 sect_opts[section_index].value = arg;
f414f22f 2152 if (++section_index >= num_sect_opts)
a39a16c4
MM
2153 {
2154 num_sect_opts *= 2;
5417f6dc 2155 sect_opts = ((struct sect_opt *)
a39a16c4 2156 xrealloc (sect_opts,
5417f6dc 2157 num_sect_opts
a39a16c4
MM
2158 * sizeof (struct sect_opt)));
2159 }
7a78ae4e
ND
2160 }
2161 else
2162 {
2163 /* It's an option (starting with '-') or it's an argument
2164 to an option */
2165
2166 if (*arg == '-')
2167 {
78a4a9b9
AC
2168 if (strcmp (arg, "-readnow") == 0)
2169 flags |= OBJF_READNOW;
2170 else if (strcmp (arg, "-s") == 0)
2171 {
2172 expecting_sec_name = 1;
2173 expecting_sec_addr = 1;
2174 }
7a78ae4e
ND
2175 }
2176 else
2177 {
2178 if (expecting_sec_name)
db162d44 2179 {
7a78ae4e
ND
2180 sect_opts[section_index].name = arg;
2181 expecting_sec_name = 0;
db162d44
EZ
2182 }
2183 else
7a78ae4e
ND
2184 if (expecting_sec_addr)
2185 {
2186 sect_opts[section_index].value = arg;
2187 expecting_sec_addr = 0;
f414f22f 2188 if (++section_index >= num_sect_opts)
a39a16c4
MM
2189 {
2190 num_sect_opts *= 2;
5417f6dc 2191 sect_opts = ((struct sect_opt *)
a39a16c4 2192 xrealloc (sect_opts,
5417f6dc 2193 num_sect_opts
a39a16c4
MM
2194 * sizeof (struct sect_opt)));
2195 }
7a78ae4e
ND
2196 }
2197 else
8a3fe4f8 2198 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2199 }
2200 }
c906108c 2201 }
c906108c 2202
927890d0
JB
2203 /* This command takes at least two arguments. The first one is a
2204 filename, and the second is the address where this file has been
2205 loaded. Abort now if this address hasn't been provided by the
2206 user. */
2207 if (section_index < 1)
2208 error (_("The address where %s has been loaded is missing"), filename);
2209
db162d44
EZ
2210 /* Print the prompt for the query below. And save the arguments into
2211 a sect_addr_info structure to be passed around to other
2212 functions. We have to split this up into separate print
bb599908 2213 statements because hex_string returns a local static
db162d44 2214 string. */
5417f6dc 2215
a3f17187 2216 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2217 section_addrs = alloc_section_addr_info (section_index);
2218 make_cleanup (xfree, section_addrs);
db162d44 2219 for (i = 0; i < section_index; i++)
c906108c 2220 {
db162d44
EZ
2221 CORE_ADDR addr;
2222 char *val = sect_opts[i].value;
2223 char *sec = sect_opts[i].name;
5417f6dc 2224
ae822768 2225 addr = parse_and_eval_address (val);
db162d44 2226
db162d44
EZ
2227 /* Here we store the section offsets in the order they were
2228 entered on the command line. */
a39a16c4
MM
2229 section_addrs->other[sec_num].name = sec;
2230 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2231 printf_unfiltered ("\t%s_addr = %s\n", sec,
2232 paddress (gdbarch, addr));
db162d44
EZ
2233 sec_num++;
2234
5417f6dc 2235 /* The object's sections are initialized when a
db162d44 2236 call is made to build_objfile_section_table (objfile).
5417f6dc 2237 This happens in reread_symbols.
db162d44
EZ
2238 At this point, we don't know what file type this is,
2239 so we can't determine what section names are valid. */
2acceee2 2240 }
db162d44 2241
2acceee2 2242 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2243 error (_("Not confirmed."));
c906108c 2244
7eedccfa
PP
2245 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2246 section_addrs, flags);
c906108c
SS
2247
2248 /* Getting new symbols may change our opinion about what is
2249 frameless. */
2250 reinit_frame_cache ();
db162d44 2251 do_cleanups (my_cleanups);
c906108c
SS
2252}
2253\f
70992597 2254
c906108c
SS
2255/* Re-read symbols if a symbol-file has changed. */
2256void
fba45db2 2257reread_symbols (void)
c906108c
SS
2258{
2259 struct objfile *objfile;
2260 long new_modtime;
2261 int reread_one = 0;
2262 struct stat new_statbuf;
2263 int res;
2264
2265 /* With the addition of shared libraries, this should be modified,
2266 the load time should be saved in the partial symbol tables, since
2267 different tables may come from different source files. FIXME.
2268 This routine should then walk down each partial symbol table
2269 and see if the symbol table that it originates from has been changed */
2270
c5aa993b
JM
2271 for (objfile = object_files; objfile; objfile = objfile->next)
2272 {
2273 if (objfile->obfd)
2274 {
52d16ba8 2275#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2276 /* If this object is from a shared library, then you should
2277 stat on the library name, not member name. */
c906108c 2278
c5aa993b
JM
2279 if (objfile->obfd->my_archive)
2280 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2281 else
c906108c 2282#endif
c5aa993b
JM
2283 res = stat (objfile->name, &new_statbuf);
2284 if (res != 0)
c906108c 2285 {
c5aa993b 2286 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2287 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2288 objfile->name);
2289 continue;
c906108c 2290 }
c5aa993b
JM
2291 new_modtime = new_statbuf.st_mtime;
2292 if (new_modtime != objfile->mtime)
c906108c 2293 {
c5aa993b
JM
2294 struct cleanup *old_cleanups;
2295 struct section_offsets *offsets;
2296 int num_offsets;
c5aa993b
JM
2297 char *obfd_filename;
2298
a3f17187 2299 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2300 objfile->name);
2301
2302 /* There are various functions like symbol_file_add,
2303 symfile_bfd_open, syms_from_objfile, etc., which might
2304 appear to do what we want. But they have various other
2305 effects which we *don't* want. So we just do stuff
2306 ourselves. We don't worry about mapped files (for one thing,
2307 any mapped file will be out of date). */
2308
2309 /* If we get an error, blow away this objfile (not sure if
2310 that is the correct response for things like shared
2311 libraries). */
74b7792f 2312 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2313 /* We need to do this whenever any symbols go away. */
74b7792f 2314 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2315
b2de52bb
JK
2316 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2317 bfd_get_filename (exec_bfd)) == 0)
2318 {
2319 /* Reload EXEC_BFD without asking anything. */
2320
2321 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2322 }
2323
c5aa993b
JM
2324 /* Clean up any state BFD has sitting around. We don't need
2325 to close the descriptor but BFD lacks a way of closing the
2326 BFD without closing the descriptor. */
2327 obfd_filename = bfd_get_filename (objfile->obfd);
2328 if (!bfd_close (objfile->obfd))
8a3fe4f8 2329 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2330 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2331 if (remote_filename_p (obfd_filename))
2332 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2333 else
2334 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2335 if (objfile->obfd == NULL)
8a3fe4f8 2336 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2337 /* bfd_openr sets cacheable to true, which is what we want. */
2338 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2339 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2340 bfd_errmsg (bfd_get_error ()));
2341
2342 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2343 objfile_obstack. */
c5aa993b 2344 num_offsets = objfile->num_sections;
5417f6dc 2345 offsets = ((struct section_offsets *)
a39a16c4 2346 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2347 memcpy (offsets, objfile->section_offsets,
a39a16c4 2348 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2349
ae5a43e0
DJ
2350 /* Remove any references to this objfile in the global
2351 value lists. */
2352 preserve_values (objfile);
2353
c5aa993b
JM
2354 /* Nuke all the state that we will re-read. Much of the following
2355 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2356 other parts of GDB that there is nothing currently there.
2357
2358 Try to keep the freeing order compatible with free_objfile. */
2359
2360 if (objfile->sf != NULL)
2361 {
2362 (*objfile->sf->sym_finish) (objfile);
2363 }
2364
2365 clear_objfile_data (objfile);
c5aa993b
JM
2366
2367 /* FIXME: Do we have to free a whole linked list, or is this
2368 enough? */
2369 if (objfile->global_psymbols.list)
2dc74dc1 2370 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2371 memset (&objfile->global_psymbols, 0,
2372 sizeof (objfile->global_psymbols));
2373 if (objfile->static_psymbols.list)
2dc74dc1 2374 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2375 memset (&objfile->static_psymbols, 0,
2376 sizeof (objfile->static_psymbols));
2377
2378 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2379 bcache_xfree (objfile->psymbol_cache);
2380 objfile->psymbol_cache = bcache_xmalloc ();
2381 bcache_xfree (objfile->macro_cache);
2382 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2383 if (objfile->demangled_names_hash != NULL)
2384 {
2385 htab_delete (objfile->demangled_names_hash);
2386 objfile->demangled_names_hash = NULL;
2387 }
b99607ea 2388 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2389 objfile->sections = NULL;
2390 objfile->symtabs = NULL;
2391 objfile->psymtabs = NULL;
930123b7 2392 objfile->psymtabs_addrmap = NULL;
c5aa993b 2393 objfile->free_psymtabs = NULL;
a1b8c067 2394 objfile->cp_namespace_symtab = NULL;
c5aa993b 2395 objfile->msymbols = NULL;
0a6ddd08 2396 objfile->deprecated_sym_private = NULL;
c5aa993b 2397 objfile->minimal_symbol_count = 0;
0a83117a
MS
2398 memset (&objfile->msymbol_hash, 0,
2399 sizeof (objfile->msymbol_hash));
2400 memset (&objfile->msymbol_demangled_hash, 0,
2401 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2402
af5f3db6
AC
2403 objfile->psymbol_cache = bcache_xmalloc ();
2404 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2405 /* obstack_init also initializes the obstack so it is
2406 empty. We could use obstack_specify_allocation but
2407 gdb_obstack.h specifies the alloc/dealloc
2408 functions. */
2409 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2410 if (build_objfile_section_table (objfile))
2411 {
8a3fe4f8 2412 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2413 objfile->name, bfd_errmsg (bfd_get_error ()));
2414 }
15831452 2415 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2416
2417 /* We use the same section offsets as from last time. I'm not
2418 sure whether that is always correct for shared libraries. */
2419 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2420 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2421 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2422 memcpy (objfile->section_offsets, offsets,
a39a16c4 2423 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2424 objfile->num_sections = num_offsets;
2425
2426 /* What the hell is sym_new_init for, anyway? The concept of
2427 distinguishing between the main file and additional files
2428 in this way seems rather dubious. */
2429 if (objfile == symfile_objfile)
2430 {
2431 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2432 }
2433
2434 (*objfile->sf->sym_init) (objfile);
b9caf505 2435 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2436 /* The "mainline" parameter is a hideous hack; I think leaving it
2437 zero is OK since dbxread.c also does what it needs to do if
2438 objfile->global_psymbols.size is 0. */
96baa820 2439 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2440 if (!have_partial_symbols () && !have_full_symbols ())
2441 {
2442 wrap_here ("");
a3f17187 2443 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2444 wrap_here ("");
2445 }
c5aa993b
JM
2446
2447 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2448 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2449
c5aa993b
JM
2450 /* Getting new symbols may change our opinion about what is
2451 frameless. */
c906108c 2452
c5aa993b 2453 reinit_frame_cache ();
c906108c 2454
c5aa993b
JM
2455 /* Discard cleanups as symbol reading was successful. */
2456 discard_cleanups (old_cleanups);
c906108c 2457
c5aa993b
JM
2458 /* If the mtime has changed between the time we set new_modtime
2459 and now, we *want* this to be out of date, so don't call stat
2460 again now. */
2461 objfile->mtime = new_modtime;
2462 reread_one = 1;
5b5d99cf 2463 reread_separate_symbols (objfile);
6528a9ea 2464 init_entry_point_info (objfile);
c5aa993b 2465 }
c906108c
SS
2466 }
2467 }
c906108c
SS
2468
2469 if (reread_one)
ea53e89f
JB
2470 {
2471 clear_symtab_users ();
2472 /* At least one objfile has changed, so we can consider that
2473 the executable we're debugging has changed too. */
781b42b0 2474 observer_notify_executable_changed ();
bb272892
PP
2475
2476 /* Notify objfiles that we've modified objfile sections. */
2477 objfiles_changed ();
ea53e89f 2478 }
c906108c 2479}
5b5d99cf
JB
2480
2481
2482/* Handle separate debug info for OBJFILE, which has just been
2483 re-read:
2484 - If we had separate debug info before, but now we don't, get rid
2485 of the separated objfile.
2486 - If we didn't have separated debug info before, but now we do,
2487 read in the new separated debug info file.
2488 - If the debug link points to a different file, toss the old one
2489 and read the new one.
2490 This function does *not* handle the case where objfile is still
2491 using the same separate debug info file, but that file's timestamp
2492 has changed. That case should be handled by the loop in
2493 reread_symbols already. */
2494static void
2495reread_separate_symbols (struct objfile *objfile)
2496{
2497 char *debug_file;
2498 unsigned long crc32;
2499
2500 /* Does the updated objfile's debug info live in a
2501 separate file? */
2502 debug_file = find_separate_debug_file (objfile);
2503
2504 if (objfile->separate_debug_objfile)
2505 {
2506 /* There are two cases where we need to get rid of
2507 the old separated debug info objfile:
2508 - if the new primary objfile doesn't have
2509 separated debug info, or
2510 - if the new primary objfile has separate debug
2511 info, but it's under a different filename.
5417f6dc 2512
5b5d99cf
JB
2513 If the old and new objfiles both have separate
2514 debug info, under the same filename, then we're
2515 okay --- if the separated file's contents have
2516 changed, we will have caught that when we
2517 visited it in this function's outermost
2518 loop. */
2519 if (! debug_file
2520 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2521 free_objfile (objfile->separate_debug_objfile);
2522 }
2523
2524 /* If the new objfile has separate debug info, and we
2525 haven't loaded it already, do so now. */
2526 if (debug_file
2527 && ! objfile->separate_debug_objfile)
2528 {
2529 /* Use the same section offset table as objfile itself.
2530 Preserve the flags from objfile that make sense. */
2531 objfile->separate_debug_objfile
2532 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2533 (symfile_bfd_open (debug_file),
7eedccfa 2534 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2535 0, /* No addr table. */
2536 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2537 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2538 | OBJF_USERLOADED)));
2539 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2540 = objfile;
2541 }
73780b3c
MS
2542 if (debug_file)
2543 xfree (debug_file);
5b5d99cf
JB
2544}
2545
2546
c906108c
SS
2547\f
2548
c5aa993b
JM
2549
2550typedef struct
2551{
2552 char *ext;
c906108c 2553 enum language lang;
c5aa993b
JM
2554}
2555filename_language;
c906108c 2556
c5aa993b 2557static filename_language *filename_language_table;
c906108c
SS
2558static int fl_table_size, fl_table_next;
2559
2560static void
fba45db2 2561add_filename_language (char *ext, enum language lang)
c906108c
SS
2562{
2563 if (fl_table_next >= fl_table_size)
2564 {
2565 fl_table_size += 10;
5417f6dc 2566 filename_language_table =
25bf3106
PM
2567 xrealloc (filename_language_table,
2568 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2569 }
2570
4fcf66da 2571 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2572 filename_language_table[fl_table_next].lang = lang;
2573 fl_table_next++;
2574}
2575
2576static char *ext_args;
920d2a44
AC
2577static void
2578show_ext_args (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2580{
2581 fprintf_filtered (file, _("\
2582Mapping between filename extension and source language is \"%s\".\n"),
2583 value);
2584}
c906108c
SS
2585
2586static void
26c41df3 2587set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2588{
2589 int i;
2590 char *cp = ext_args;
2591 enum language lang;
2592
2593 /* First arg is filename extension, starting with '.' */
2594 if (*cp != '.')
8a3fe4f8 2595 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2596
2597 /* Find end of first arg. */
c5aa993b 2598 while (*cp && !isspace (*cp))
c906108c
SS
2599 cp++;
2600
2601 if (*cp == '\0')
8a3fe4f8 2602 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2603 ext_args);
2604
2605 /* Null-terminate first arg */
c5aa993b 2606 *cp++ = '\0';
c906108c
SS
2607
2608 /* Find beginning of second arg, which should be a source language. */
2609 while (*cp && isspace (*cp))
2610 cp++;
2611
2612 if (*cp == '\0')
8a3fe4f8 2613 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2614 ext_args);
2615
2616 /* Lookup the language from among those we know. */
2617 lang = language_enum (cp);
2618
2619 /* Now lookup the filename extension: do we already know it? */
2620 for (i = 0; i < fl_table_next; i++)
2621 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2622 break;
2623
2624 if (i >= fl_table_next)
2625 {
2626 /* new file extension */
2627 add_filename_language (ext_args, lang);
2628 }
2629 else
2630 {
2631 /* redefining a previously known filename extension */
2632
2633 /* if (from_tty) */
2634 /* query ("Really make files of type %s '%s'?", */
2635 /* ext_args, language_str (lang)); */
2636
b8c9b27d 2637 xfree (filename_language_table[i].ext);
4fcf66da 2638 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2639 filename_language_table[i].lang = lang;
2640 }
2641}
2642
2643static void
fba45db2 2644info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2645{
2646 int i;
2647
a3f17187 2648 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2649 printf_filtered ("\n\n");
2650 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2651 printf_filtered ("\t%s\t- %s\n",
2652 filename_language_table[i].ext,
c906108c
SS
2653 language_str (filename_language_table[i].lang));
2654}
2655
2656static void
fba45db2 2657init_filename_language_table (void)
c906108c
SS
2658{
2659 if (fl_table_size == 0) /* protect against repetition */
2660 {
2661 fl_table_size = 20;
2662 fl_table_next = 0;
c5aa993b 2663 filename_language_table =
c906108c 2664 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2665 add_filename_language (".c", language_c);
2666 add_filename_language (".C", language_cplus);
2667 add_filename_language (".cc", language_cplus);
2668 add_filename_language (".cp", language_cplus);
2669 add_filename_language (".cpp", language_cplus);
2670 add_filename_language (".cxx", language_cplus);
2671 add_filename_language (".c++", language_cplus);
2672 add_filename_language (".java", language_java);
c906108c 2673 add_filename_language (".class", language_java);
da2cf7e0 2674 add_filename_language (".m", language_objc);
c5aa993b
JM
2675 add_filename_language (".f", language_fortran);
2676 add_filename_language (".F", language_fortran);
2677 add_filename_language (".s", language_asm);
aa707ed0 2678 add_filename_language (".sx", language_asm);
c5aa993b 2679 add_filename_language (".S", language_asm);
c6fd39cd
PM
2680 add_filename_language (".pas", language_pascal);
2681 add_filename_language (".p", language_pascal);
2682 add_filename_language (".pp", language_pascal);
963a6417
PH
2683 add_filename_language (".adb", language_ada);
2684 add_filename_language (".ads", language_ada);
2685 add_filename_language (".a", language_ada);
2686 add_filename_language (".ada", language_ada);
c906108c
SS
2687 }
2688}
2689
2690enum language
fba45db2 2691deduce_language_from_filename (char *filename)
c906108c
SS
2692{
2693 int i;
2694 char *cp;
2695
2696 if (filename != NULL)
2697 if ((cp = strrchr (filename, '.')) != NULL)
2698 for (i = 0; i < fl_table_next; i++)
2699 if (strcmp (cp, filename_language_table[i].ext) == 0)
2700 return filename_language_table[i].lang;
2701
2702 return language_unknown;
2703}
2704\f
2705/* allocate_symtab:
2706
2707 Allocate and partly initialize a new symbol table. Return a pointer
2708 to it. error() if no space.
2709
2710 Caller must set these fields:
c5aa993b
JM
2711 LINETABLE(symtab)
2712 symtab->blockvector
2713 symtab->dirname
2714 symtab->free_code
2715 symtab->free_ptr
2716 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2717 */
2718
2719struct symtab *
fba45db2 2720allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2721{
52f0bd74 2722 struct symtab *symtab;
c906108c
SS
2723
2724 symtab = (struct symtab *)
4a146b47 2725 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2726 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2727 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2728 &objfile->objfile_obstack);
c5aa993b
JM
2729 symtab->fullname = NULL;
2730 symtab->language = deduce_language_from_filename (filename);
2731 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2732 &objfile->objfile_obstack);
c906108c
SS
2733
2734 /* Hook it to the objfile it comes from */
2735
c5aa993b
JM
2736 symtab->objfile = objfile;
2737 symtab->next = objfile->symtabs;
2738 objfile->symtabs = symtab;
c906108c 2739
c906108c
SS
2740 return (symtab);
2741}
2742
2743struct partial_symtab *
fba45db2 2744allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2745{
2746 struct partial_symtab *psymtab;
2747
c5aa993b 2748 if (objfile->free_psymtabs)
c906108c 2749 {
c5aa993b
JM
2750 psymtab = objfile->free_psymtabs;
2751 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2752 }
2753 else
2754 psymtab = (struct partial_symtab *)
8b92e4d5 2755 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2756 sizeof (struct partial_symtab));
2757
2758 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2759 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2760 &objfile->objfile_obstack);
c5aa993b 2761 psymtab->symtab = NULL;
c906108c
SS
2762
2763 /* Prepend it to the psymtab list for the objfile it belongs to.
2764 Psymtabs are searched in most recent inserted -> least recent
2765 inserted order. */
2766
c5aa993b
JM
2767 psymtab->objfile = objfile;
2768 psymtab->next = objfile->psymtabs;
2769 objfile->psymtabs = psymtab;
c906108c
SS
2770#if 0
2771 {
2772 struct partial_symtab **prev_pst;
c5aa993b
JM
2773 psymtab->objfile = objfile;
2774 psymtab->next = NULL;
2775 prev_pst = &(objfile->psymtabs);
c906108c 2776 while ((*prev_pst) != NULL)
c5aa993b 2777 prev_pst = &((*prev_pst)->next);
c906108c 2778 (*prev_pst) = psymtab;
c5aa993b 2779 }
c906108c 2780#endif
c5aa993b 2781
c906108c
SS
2782 return (psymtab);
2783}
2784
2785void
fba45db2 2786discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2787{
2788 struct partial_symtab **prev_pst;
2789
2790 /* From dbxread.c:
2791 Empty psymtabs happen as a result of header files which don't
2792 have any symbols in them. There can be a lot of them. But this
2793 check is wrong, in that a psymtab with N_SLINE entries but
2794 nothing else is not empty, but we don't realize that. Fixing
2795 that without slowing things down might be tricky. */
2796
2797 /* First, snip it out of the psymtab chain */
2798
2799 prev_pst = &(pst->objfile->psymtabs);
2800 while ((*prev_pst) != pst)
2801 prev_pst = &((*prev_pst)->next);
2802 (*prev_pst) = pst->next;
2803
2804 /* Next, put it on a free list for recycling */
2805
2806 pst->next = pst->objfile->free_psymtabs;
2807 pst->objfile->free_psymtabs = pst;
2808}
c906108c 2809\f
c5aa993b 2810
c906108c
SS
2811/* Reset all data structures in gdb which may contain references to symbol
2812 table data. */
2813
2814void
fba45db2 2815clear_symtab_users (void)
c906108c
SS
2816{
2817 /* Someday, we should do better than this, by only blowing away
2818 the things that really need to be blown. */
c0501be5
DJ
2819
2820 /* Clear the "current" symtab first, because it is no longer valid.
2821 breakpoint_re_set may try to access the current symtab. */
2822 clear_current_source_symtab_and_line ();
2823
c906108c 2824 clear_displays ();
c906108c
SS
2825 breakpoint_re_set ();
2826 set_default_breakpoint (0, 0, 0, 0);
c906108c 2827 clear_pc_function_cache ();
06d3b283 2828 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2829
2830 /* Clear globals which might have pointed into a removed objfile.
2831 FIXME: It's not clear which of these are supposed to persist
2832 between expressions and which ought to be reset each time. */
2833 expression_context_block = NULL;
2834 innermost_block = NULL;
8756216b
DP
2835
2836 /* Varobj may refer to old symbols, perform a cleanup. */
2837 varobj_invalidate ();
2838
c906108c
SS
2839}
2840
74b7792f
AC
2841static void
2842clear_symtab_users_cleanup (void *ignore)
2843{
2844 clear_symtab_users ();
2845}
2846
c906108c
SS
2847/* clear_symtab_users_once:
2848
2849 This function is run after symbol reading, or from a cleanup.
2850 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2851 has been blown away, but the other GDB data structures that may
c906108c
SS
2852 reference it have not yet been cleared or re-directed. (The old
2853 symtab was zapped, and the cleanup queued, in free_named_symtab()
2854 below.)
2855
2856 This function can be queued N times as a cleanup, or called
2857 directly; it will do all the work the first time, and then will be a
2858 no-op until the next time it is queued. This works by bumping a
2859 counter at queueing time. Much later when the cleanup is run, or at
2860 the end of symbol processing (in case the cleanup is discarded), if
2861 the queued count is greater than the "done-count", we do the work
2862 and set the done-count to the queued count. If the queued count is
2863 less than or equal to the done-count, we just ignore the call. This
2864 is needed because reading a single .o file will often replace many
2865 symtabs (one per .h file, for example), and we don't want to reset
2866 the breakpoints N times in the user's face.
2867
2868 The reason we both queue a cleanup, and call it directly after symbol
2869 reading, is because the cleanup protects us in case of errors, but is
2870 discarded if symbol reading is successful. */
2871
2872#if 0
2873/* FIXME: As free_named_symtabs is currently a big noop this function
2874 is no longer needed. */
a14ed312 2875static void clear_symtab_users_once (void);
c906108c
SS
2876
2877static int clear_symtab_users_queued;
2878static int clear_symtab_users_done;
2879
2880static void
fba45db2 2881clear_symtab_users_once (void)
c906108c
SS
2882{
2883 /* Enforce once-per-`do_cleanups'-semantics */
2884 if (clear_symtab_users_queued <= clear_symtab_users_done)
2885 return;
2886 clear_symtab_users_done = clear_symtab_users_queued;
2887
2888 clear_symtab_users ();
2889}
2890#endif
2891
2892/* Delete the specified psymtab, and any others that reference it. */
2893
2894static void
fba45db2 2895cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2896{
2897 struct partial_symtab *ps, *pprev = NULL;
2898 int i;
2899
2900 /* Find its previous psymtab in the chain */
c5aa993b
JM
2901 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2902 {
2903 if (ps == pst)
2904 break;
2905 pprev = ps;
2906 }
c906108c 2907
c5aa993b
JM
2908 if (ps)
2909 {
2910 /* Unhook it from the chain. */
2911 if (ps == pst->objfile->psymtabs)
2912 pst->objfile->psymtabs = ps->next;
2913 else
2914 pprev->next = ps->next;
2915
2916 /* FIXME, we can't conveniently deallocate the entries in the
2917 partial_symbol lists (global_psymbols/static_psymbols) that
2918 this psymtab points to. These just take up space until all
2919 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2920 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2921
2922 /* We need to cashier any psymtab that has this one as a dependency... */
2923 again:
2924 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2925 {
2926 for (i = 0; i < ps->number_of_dependencies; i++)
2927 {
2928 if (ps->dependencies[i] == pst)
2929 {
2930 cashier_psymtab (ps);
2931 goto again; /* Must restart, chain has been munged. */
2932 }
2933 }
c906108c 2934 }
c906108c 2935 }
c906108c
SS
2936}
2937
2938/* If a symtab or psymtab for filename NAME is found, free it along
2939 with any dependent breakpoints, displays, etc.
2940 Used when loading new versions of object modules with the "add-file"
2941 command. This is only called on the top-level symtab or psymtab's name;
2942 it is not called for subsidiary files such as .h files.
2943
2944 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2945 FIXME. The return value appears to never be used.
c906108c
SS
2946
2947 FIXME. I think this is not the best way to do this. We should
2948 work on being gentler to the environment while still cleaning up
2949 all stray pointers into the freed symtab. */
2950
2951int
fba45db2 2952free_named_symtabs (char *name)
c906108c
SS
2953{
2954#if 0
2955 /* FIXME: With the new method of each objfile having it's own
2956 psymtab list, this function needs serious rethinking. In particular,
2957 why was it ever necessary to toss psymtabs with specific compilation
2958 unit filenames, as opposed to all psymtabs from a particular symbol
2959 file? -- fnf
2960 Well, the answer is that some systems permit reloading of particular
2961 compilation units. We want to blow away any old info about these
2962 compilation units, regardless of which objfiles they arrived in. --gnu. */
2963
52f0bd74
AC
2964 struct symtab *s;
2965 struct symtab *prev;
2966 struct partial_symtab *ps;
c906108c
SS
2967 struct blockvector *bv;
2968 int blewit = 0;
2969
2970 /* We only wack things if the symbol-reload switch is set. */
2971 if (!symbol_reloading)
2972 return 0;
2973
2974 /* Some symbol formats have trouble providing file names... */
2975 if (name == 0 || *name == '\0')
2976 return 0;
2977
2978 /* Look for a psymtab with the specified name. */
2979
2980again2:
c5aa993b
JM
2981 for (ps = partial_symtab_list; ps; ps = ps->next)
2982 {
6314a349 2983 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2984 {
2985 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2986 goto again2; /* Must restart, chain has been munged */
2987 }
c906108c 2988 }
c906108c
SS
2989
2990 /* Look for a symtab with the specified name. */
2991
2992 for (s = symtab_list; s; s = s->next)
2993 {
6314a349 2994 if (strcmp (name, s->filename) == 0)
c906108c
SS
2995 break;
2996 prev = s;
2997 }
2998
2999 if (s)
3000 {
3001 if (s == symtab_list)
3002 symtab_list = s->next;
3003 else
3004 prev->next = s->next;
3005
3006 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3007 or not they depend on the symtab being freed. This should be
3008 changed so that only those data structures affected are deleted. */
c906108c
SS
3009
3010 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3011 This test is necessary due to a bug in "dbxread.c" that
3012 causes empty symtabs to be created for N_SO symbols that
3013 contain the pathname of the object file. (This problem
3014 has been fixed in GDB 3.9x). */
c906108c
SS
3015
3016 bv = BLOCKVECTOR (s);
3017 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3018 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3019 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3020 {
e2e0b3e5 3021 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3022 name);
c906108c
SS
3023 clear_symtab_users_queued++;
3024 make_cleanup (clear_symtab_users_once, 0);
3025 blewit = 1;
c5aa993b
JM
3026 }
3027 else
e2e0b3e5
AC
3028 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3029 name);
c906108c
SS
3030
3031 free_symtab (s);
3032 }
3033 else
3034 {
3035 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3036 even though no symtab was found, since the file might have
3037 been compiled without debugging, and hence not be associated
3038 with a symtab. In order to handle this correctly, we would need
3039 to keep a list of text address ranges for undebuggable files.
3040 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3041 ;
3042 }
3043
3044 /* FIXME, what about the minimal symbol table? */
3045 return blewit;
3046#else
3047 return (0);
3048#endif
3049}
3050\f
3051/* Allocate and partially fill a partial symtab. It will be
3052 completely filled at the end of the symbol list.
3053
d4f3574e 3054 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3055
3056struct partial_symtab *
fba45db2
KB
3057start_psymtab_common (struct objfile *objfile,
3058 struct section_offsets *section_offsets, char *filename,
3059 CORE_ADDR textlow, struct partial_symbol **global_syms,
3060 struct partial_symbol **static_syms)
c906108c
SS
3061{
3062 struct partial_symtab *psymtab;
3063
3064 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3065 psymtab->section_offsets = section_offsets;
3066 psymtab->textlow = textlow;
3067 psymtab->texthigh = psymtab->textlow; /* default */
3068 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3069 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3070 return (psymtab);
3071}
3072\f
2e618c13
AR
3073/* Helper function, initialises partial symbol structure and stashes
3074 it into objfile's bcache. Note that our caching mechanism will
3075 use all fields of struct partial_symbol to determine hash value of the
3076 structure. In other words, having two symbols with the same name but
3077 different domain (or address) is possible and correct. */
3078
11d31d94 3079static const struct partial_symbol *
2e618c13
AR
3080add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3081 enum address_class class,
3082 long val, /* Value as a long */
3083 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3084 enum language language, struct objfile *objfile,
3085 int *added)
3086{
3087 char *buf = name;
3088 /* psymbol is static so that there will be no uninitialized gaps in the
3089 structure which might contain random data, causing cache misses in
3090 bcache. */
3091 static struct partial_symbol psymbol;
3092
3093 if (name[namelength] != '\0')
3094 {
3095 buf = alloca (namelength + 1);
3096 /* Create local copy of the partial symbol */
3097 memcpy (buf, name, namelength);
3098 buf[namelength] = '\0';
3099 }
3100 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3101 if (val != 0)
3102 {
3103 SYMBOL_VALUE (&psymbol) = val;
3104 }
3105 else
3106 {
3107 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3108 }
3109 SYMBOL_SECTION (&psymbol) = 0;
3110 SYMBOL_LANGUAGE (&psymbol) = language;
3111 PSYMBOL_DOMAIN (&psymbol) = domain;
3112 PSYMBOL_CLASS (&psymbol) = class;
3113
3114 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3115
3116 /* Stash the partial symbol away in the cache */
11d31d94
TT
3117 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3118 objfile->psymbol_cache, added);
2e618c13
AR
3119}
3120
3121/* Helper function, adds partial symbol to the given partial symbol
3122 list. */
3123
3124static void
3125append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3126 const struct partial_symbol *psym,
2e618c13
AR
3127 struct objfile *objfile)
3128{
3129 if (list->next >= list->list + list->size)
3130 extend_psymbol_list (list, objfile);
11d31d94 3131 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3132 OBJSTAT (objfile, n_psyms++);
3133}
3134
c906108c 3135/* Add a symbol with a long value to a psymtab.
5417f6dc 3136 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3137 Return the partial symbol that has been added. */
3138
3139/* NOTE: carlton/2003-09-11: The reason why we return the partial
3140 symbol is so that callers can get access to the symbol's demangled
3141 name, which they don't have any cheap way to determine otherwise.
3142 (Currenly, dwarf2read.c is the only file who uses that information,
3143 though it's possible that other readers might in the future.)
3144 Elena wasn't thrilled about that, and I don't blame her, but we
3145 couldn't come up with a better way to get that information. If
3146 it's needed in other situations, we could consider breaking up
3147 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3148 cache. */
3149
3150const struct partial_symbol *
176620f1 3151add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3152 enum address_class class,
2e618c13
AR
3153 struct psymbol_allocation_list *list,
3154 long val, /* Value as a long */
fba45db2
KB
3155 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3156 enum language language, struct objfile *objfile)
c906108c 3157{
11d31d94 3158 const struct partial_symbol *psym;
2de7ced7 3159
2e618c13 3160 int added;
c906108c
SS
3161
3162 /* Stash the partial symbol away in the cache */
2e618c13
AR
3163 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3164 val, coreaddr, language, objfile, &added);
c906108c 3165
2e618c13
AR
3166 /* Do not duplicate global partial symbols. */
3167 if (list == &objfile->global_psymbols
3168 && !added)
3169 return psym;
5c4e30ca 3170
2e618c13
AR
3171 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3172 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3173 return psym;
c906108c
SS
3174}
3175
c906108c
SS
3176/* Initialize storage for partial symbols. */
3177
3178void
fba45db2 3179init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3180{
3181 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3182
3183 if (objfile->global_psymbols.list)
c906108c 3184 {
2dc74dc1 3185 xfree (objfile->global_psymbols.list);
c906108c 3186 }
c5aa993b 3187 if (objfile->static_psymbols.list)
c906108c 3188 {
2dc74dc1 3189 xfree (objfile->static_psymbols.list);
c906108c 3190 }
c5aa993b 3191
c906108c
SS
3192 /* Current best guess is that approximately a twentieth
3193 of the total symbols (in a debugging file) are global or static
3194 oriented symbols */
c906108c 3195
c5aa993b
JM
3196 objfile->global_psymbols.size = total_symbols / 10;
3197 objfile->static_psymbols.size = total_symbols / 10;
3198
3199 if (objfile->global_psymbols.size > 0)
c906108c 3200 {
c5aa993b
JM
3201 objfile->global_psymbols.next =
3202 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3203 xmalloc ((objfile->global_psymbols.size
3204 * sizeof (struct partial_symbol *)));
c906108c 3205 }
c5aa993b 3206 if (objfile->static_psymbols.size > 0)
c906108c 3207 {
c5aa993b
JM
3208 objfile->static_psymbols.next =
3209 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3210 xmalloc ((objfile->static_psymbols.size
3211 * sizeof (struct partial_symbol *)));
c906108c
SS
3212 }
3213}
3214
3215/* OVERLAYS:
3216 The following code implements an abstraction for debugging overlay sections.
3217
3218 The target model is as follows:
3219 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3220 same VMA, each with its own unique LMA (or load address).
c906108c 3221 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3222 sections, one by one, from the load address into the VMA address.
5417f6dc 3223 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3224 sections should be considered to be mapped from the VMA to the LMA.
3225 This information is used for symbol lookup, and memory read/write.
5417f6dc 3226 For instance, if a section has been mapped then its contents
c5aa993b 3227 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3228
3229 Two levels of debugger support for overlays are available. One is
3230 "manual", in which the debugger relies on the user to tell it which
3231 overlays are currently mapped. This level of support is
3232 implemented entirely in the core debugger, and the information about
3233 whether a section is mapped is kept in the objfile->obj_section table.
3234
3235 The second level of support is "automatic", and is only available if
3236 the target-specific code provides functionality to read the target's
3237 overlay mapping table, and translate its contents for the debugger
3238 (by updating the mapped state information in the obj_section tables).
3239
3240 The interface is as follows:
c5aa993b
JM
3241 User commands:
3242 overlay map <name> -- tell gdb to consider this section mapped
3243 overlay unmap <name> -- tell gdb to consider this section unmapped
3244 overlay list -- list the sections that GDB thinks are mapped
3245 overlay read-target -- get the target's state of what's mapped
3246 overlay off/manual/auto -- set overlay debugging state
3247 Functional interface:
3248 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3249 section, return that section.
5417f6dc 3250 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3251 the pc, either in its VMA or its LMA
714835d5 3252 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3253 section_is_overlay(sect): true if section's VMA != LMA
3254 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3255 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3256 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3257 overlay_mapped_address(...): map an address from section's LMA to VMA
3258 overlay_unmapped_address(...): map an address from section's VMA to LMA
3259 symbol_overlayed_address(...): Return a "current" address for symbol:
3260 either in VMA or LMA depending on whether
3261 the symbol's section is currently mapped
c906108c
SS
3262 */
3263
3264/* Overlay debugging state: */
3265
d874f1e2 3266enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3267int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3268
c906108c 3269/* Function: section_is_overlay (SECTION)
5417f6dc 3270 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3271 SECTION is loaded at an address different from where it will "run". */
3272
3273int
714835d5 3274section_is_overlay (struct obj_section *section)
c906108c 3275{
714835d5
UW
3276 if (overlay_debugging && section)
3277 {
3278 bfd *abfd = section->objfile->obfd;
3279 asection *bfd_section = section->the_bfd_section;
3280
3281 if (bfd_section_lma (abfd, bfd_section) != 0
3282 && bfd_section_lma (abfd, bfd_section)
3283 != bfd_section_vma (abfd, bfd_section))
3284 return 1;
3285 }
c906108c
SS
3286
3287 return 0;
3288}
3289
3290/* Function: overlay_invalidate_all (void)
3291 Invalidate the mapped state of all overlay sections (mark it as stale). */
3292
3293static void
fba45db2 3294overlay_invalidate_all (void)
c906108c 3295{
c5aa993b 3296 struct objfile *objfile;
c906108c
SS
3297 struct obj_section *sect;
3298
3299 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3300 if (section_is_overlay (sect))
3301 sect->ovly_mapped = -1;
c906108c
SS
3302}
3303
714835d5 3304/* Function: section_is_mapped (SECTION)
5417f6dc 3305 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3306
3307 Access to the ovly_mapped flag is restricted to this function, so
3308 that we can do automatic update. If the global flag
3309 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3310 overlay_invalidate_all. If the mapped state of the particular
3311 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3312
714835d5
UW
3313int
3314section_is_mapped (struct obj_section *osect)
c906108c 3315{
9216df95
UW
3316 struct gdbarch *gdbarch;
3317
714835d5 3318 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3319 return 0;
3320
c5aa993b 3321 switch (overlay_debugging)
c906108c
SS
3322 {
3323 default:
d874f1e2 3324 case ovly_off:
c5aa993b 3325 return 0; /* overlay debugging off */
d874f1e2 3326 case ovly_auto: /* overlay debugging automatic */
1c772458 3327 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3328 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3329 gdbarch = get_objfile_arch (osect->objfile);
3330 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3331 {
3332 if (overlay_cache_invalid)
3333 {
3334 overlay_invalidate_all ();
3335 overlay_cache_invalid = 0;
3336 }
3337 if (osect->ovly_mapped == -1)
9216df95 3338 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3339 }
3340 /* fall thru to manual case */
d874f1e2 3341 case ovly_on: /* overlay debugging manual */
c906108c
SS
3342 return osect->ovly_mapped == 1;
3343 }
3344}
3345
c906108c
SS
3346/* Function: pc_in_unmapped_range
3347 If PC falls into the lma range of SECTION, return true, else false. */
3348
3349CORE_ADDR
714835d5 3350pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3351{
714835d5
UW
3352 if (section_is_overlay (section))
3353 {
3354 bfd *abfd = section->objfile->obfd;
3355 asection *bfd_section = section->the_bfd_section;
fbd35540 3356
714835d5
UW
3357 /* We assume the LMA is relocated by the same offset as the VMA. */
3358 bfd_vma size = bfd_get_section_size (bfd_section);
3359 CORE_ADDR offset = obj_section_offset (section);
3360
3361 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3362 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3363 return 1;
3364 }
c906108c 3365
c906108c
SS
3366 return 0;
3367}
3368
3369/* Function: pc_in_mapped_range
3370 If PC falls into the vma range of SECTION, return true, else false. */
3371
3372CORE_ADDR
714835d5 3373pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3374{
714835d5
UW
3375 if (section_is_overlay (section))
3376 {
3377 if (obj_section_addr (section) <= pc
3378 && pc < obj_section_endaddr (section))
3379 return 1;
3380 }
c906108c 3381
c906108c
SS
3382 return 0;
3383}
3384
9ec8e6a0
JB
3385
3386/* Return true if the mapped ranges of sections A and B overlap, false
3387 otherwise. */
b9362cc7 3388static int
714835d5 3389sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3390{
714835d5
UW
3391 CORE_ADDR a_start = obj_section_addr (a);
3392 CORE_ADDR a_end = obj_section_endaddr (a);
3393 CORE_ADDR b_start = obj_section_addr (b);
3394 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3395
3396 return (a_start < b_end && b_start < a_end);
3397}
3398
c906108c
SS
3399/* Function: overlay_unmapped_address (PC, SECTION)
3400 Returns the address corresponding to PC in the unmapped (load) range.
3401 May be the same as PC. */
3402
3403CORE_ADDR
714835d5 3404overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3405{
714835d5
UW
3406 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3407 {
3408 bfd *abfd = section->objfile->obfd;
3409 asection *bfd_section = section->the_bfd_section;
fbd35540 3410
714835d5
UW
3411 return pc + bfd_section_lma (abfd, bfd_section)
3412 - bfd_section_vma (abfd, bfd_section);
3413 }
c906108c
SS
3414
3415 return pc;
3416}
3417
3418/* Function: overlay_mapped_address (PC, SECTION)
3419 Returns the address corresponding to PC in the mapped (runtime) range.
3420 May be the same as PC. */
3421
3422CORE_ADDR
714835d5 3423overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3424{
714835d5
UW
3425 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3426 {
3427 bfd *abfd = section->objfile->obfd;
3428 asection *bfd_section = section->the_bfd_section;
fbd35540 3429
714835d5
UW
3430 return pc + bfd_section_vma (abfd, bfd_section)
3431 - bfd_section_lma (abfd, bfd_section);
3432 }
c906108c
SS
3433
3434 return pc;
3435}
3436
3437
5417f6dc 3438/* Function: symbol_overlayed_address
c906108c
SS
3439 Return one of two addresses (relative to the VMA or to the LMA),
3440 depending on whether the section is mapped or not. */
3441
c5aa993b 3442CORE_ADDR
714835d5 3443symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3444{
3445 if (overlay_debugging)
3446 {
3447 /* If the symbol has no section, just return its regular address. */
3448 if (section == 0)
3449 return address;
3450 /* If the symbol's section is not an overlay, just return its address */
3451 if (!section_is_overlay (section))
3452 return address;
3453 /* If the symbol's section is mapped, just return its address */
3454 if (section_is_mapped (section))
3455 return address;
3456 /*
3457 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3458 * then return its LOADED address rather than its vma address!!
3459 */
3460 return overlay_unmapped_address (address, section);
3461 }
3462 return address;
3463}
3464
5417f6dc 3465/* Function: find_pc_overlay (PC)
c906108c
SS
3466 Return the best-match overlay section for PC:
3467 If PC matches a mapped overlay section's VMA, return that section.
3468 Else if PC matches an unmapped section's VMA, return that section.
3469 Else if PC matches an unmapped section's LMA, return that section. */
3470
714835d5 3471struct obj_section *
fba45db2 3472find_pc_overlay (CORE_ADDR pc)
c906108c 3473{
c5aa993b 3474 struct objfile *objfile;
c906108c
SS
3475 struct obj_section *osect, *best_match = NULL;
3476
3477 if (overlay_debugging)
3478 ALL_OBJSECTIONS (objfile, osect)
714835d5 3479 if (section_is_overlay (osect))
c5aa993b 3480 {
714835d5 3481 if (pc_in_mapped_range (pc, osect))
c5aa993b 3482 {
714835d5
UW
3483 if (section_is_mapped (osect))
3484 return osect;
c5aa993b
JM
3485 else
3486 best_match = osect;
3487 }
714835d5 3488 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3489 best_match = osect;
3490 }
714835d5 3491 return best_match;
c906108c
SS
3492}
3493
3494/* Function: find_pc_mapped_section (PC)
5417f6dc 3495 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3496 currently marked as MAPPED, return that section. Else return NULL. */
3497
714835d5 3498struct obj_section *
fba45db2 3499find_pc_mapped_section (CORE_ADDR pc)
c906108c 3500{
c5aa993b 3501 struct objfile *objfile;
c906108c
SS
3502 struct obj_section *osect;
3503
3504 if (overlay_debugging)
3505 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3506 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3507 return osect;
c906108c
SS
3508
3509 return NULL;
3510}
3511
3512/* Function: list_overlays_command
3513 Print a list of mapped sections and their PC ranges */
3514
3515void
fba45db2 3516list_overlays_command (char *args, int from_tty)
c906108c 3517{
c5aa993b
JM
3518 int nmapped = 0;
3519 struct objfile *objfile;
c906108c
SS
3520 struct obj_section *osect;
3521
3522 if (overlay_debugging)
3523 ALL_OBJSECTIONS (objfile, osect)
714835d5 3524 if (section_is_mapped (osect))
c5aa993b 3525 {
5af949e3 3526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3527 const char *name;
3528 bfd_vma lma, vma;
3529 int size;
3530
3531 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3532 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3533 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3534 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3535
3536 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3537 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3538 puts_filtered (" - ");
5af949e3 3539 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3540 printf_filtered (", mapped at ");
5af949e3 3541 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3542 puts_filtered (" - ");
5af949e3 3543 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3544 puts_filtered ("\n");
3545
3546 nmapped++;
3547 }
c906108c 3548 if (nmapped == 0)
a3f17187 3549 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3550}
3551
3552/* Function: map_overlay_command
3553 Mark the named section as mapped (ie. residing at its VMA address). */
3554
3555void
fba45db2 3556map_overlay_command (char *args, int from_tty)
c906108c 3557{
c5aa993b
JM
3558 struct objfile *objfile, *objfile2;
3559 struct obj_section *sec, *sec2;
c906108c
SS
3560
3561 if (!overlay_debugging)
8a3fe4f8 3562 error (_("\
515ad16c 3563Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3564the 'overlay manual' command."));
c906108c
SS
3565
3566 if (args == 0 || *args == 0)
8a3fe4f8 3567 error (_("Argument required: name of an overlay section"));
c906108c
SS
3568
3569 /* First, find a section matching the user supplied argument */
3570 ALL_OBJSECTIONS (objfile, sec)
3571 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3572 {
3573 /* Now, check to see if the section is an overlay. */
714835d5 3574 if (!section_is_overlay (sec))
c5aa993b
JM
3575 continue; /* not an overlay section */
3576
3577 /* Mark the overlay as "mapped" */
3578 sec->ovly_mapped = 1;
3579
3580 /* Next, make a pass and unmap any sections that are
3581 overlapped by this new section: */
3582 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3583 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3584 {
3585 if (info_verbose)
a3f17187 3586 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3587 bfd_section_name (objfile->obfd,
3588 sec2->the_bfd_section));
3589 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3590 }
3591 return;
3592 }
8a3fe4f8 3593 error (_("No overlay section called %s"), args);
c906108c
SS
3594}
3595
3596/* Function: unmap_overlay_command
5417f6dc 3597 Mark the overlay section as unmapped
c906108c
SS
3598 (ie. resident in its LMA address range, rather than the VMA range). */
3599
3600void
fba45db2 3601unmap_overlay_command (char *args, int from_tty)
c906108c 3602{
c5aa993b 3603 struct objfile *objfile;
c906108c
SS
3604 struct obj_section *sec;
3605
3606 if (!overlay_debugging)
8a3fe4f8 3607 error (_("\
515ad16c 3608Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3609the 'overlay manual' command."));
c906108c
SS
3610
3611 if (args == 0 || *args == 0)
8a3fe4f8 3612 error (_("Argument required: name of an overlay section"));
c906108c
SS
3613
3614 /* First, find a section matching the user supplied argument */
3615 ALL_OBJSECTIONS (objfile, sec)
3616 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3617 {
3618 if (!sec->ovly_mapped)
8a3fe4f8 3619 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3620 sec->ovly_mapped = 0;
3621 return;
3622 }
8a3fe4f8 3623 error (_("No overlay section called %s"), args);
c906108c
SS
3624}
3625
3626/* Function: overlay_auto_command
3627 A utility command to turn on overlay debugging.
3628 Possibly this should be done via a set/show command. */
3629
3630static void
fba45db2 3631overlay_auto_command (char *args, int from_tty)
c906108c 3632{
d874f1e2 3633 overlay_debugging = ovly_auto;
1900040c 3634 enable_overlay_breakpoints ();
c906108c 3635 if (info_verbose)
a3f17187 3636 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3637}
3638
3639/* Function: overlay_manual_command
3640 A utility command to turn on overlay debugging.
3641 Possibly this should be done via a set/show command. */
3642
3643static void
fba45db2 3644overlay_manual_command (char *args, int from_tty)
c906108c 3645{
d874f1e2 3646 overlay_debugging = ovly_on;
1900040c 3647 disable_overlay_breakpoints ();
c906108c 3648 if (info_verbose)
a3f17187 3649 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3650}
3651
3652/* Function: overlay_off_command
3653 A utility command to turn on overlay debugging.
3654 Possibly this should be done via a set/show command. */
3655
3656static void
fba45db2 3657overlay_off_command (char *args, int from_tty)
c906108c 3658{
d874f1e2 3659 overlay_debugging = ovly_off;
1900040c 3660 disable_overlay_breakpoints ();
c906108c 3661 if (info_verbose)
a3f17187 3662 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3663}
3664
3665static void
fba45db2 3666overlay_load_command (char *args, int from_tty)
c906108c 3667{
e17c207e
UW
3668 struct gdbarch *gdbarch = get_current_arch ();
3669
3670 if (gdbarch_overlay_update_p (gdbarch))
3671 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3672 else
8a3fe4f8 3673 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3674}
3675
3676/* Function: overlay_command
3677 A place-holder for a mis-typed command */
3678
3679/* Command list chain containing all defined "overlay" subcommands. */
3680struct cmd_list_element *overlaylist;
3681
3682static void
fba45db2 3683overlay_command (char *args, int from_tty)
c906108c 3684{
c5aa993b 3685 printf_unfiltered
c906108c
SS
3686 ("\"overlay\" must be followed by the name of an overlay command.\n");
3687 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3688}
3689
3690
3691/* Target Overlays for the "Simplest" overlay manager:
3692
5417f6dc
RM
3693 This is GDB's default target overlay layer. It works with the
3694 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3695 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3696 so targets that use a different runtime overlay manager can
c906108c
SS
3697 substitute their own overlay_update function and take over the
3698 function pointer.
3699
3700 The overlay_update function pokes around in the target's data structures
3701 to see what overlays are mapped, and updates GDB's overlay mapping with
3702 this information.
3703
3704 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3705 unsigned _novlys; /# number of overlay sections #/
3706 unsigned _ovly_table[_novlys][4] = {
3707 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3708 {..., ..., ..., ...},
3709 }
3710 unsigned _novly_regions; /# number of overlay regions #/
3711 unsigned _ovly_region_table[_novly_regions][3] = {
3712 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3713 {..., ..., ...},
3714 }
c906108c
SS
3715 These functions will attempt to update GDB's mappedness state in the
3716 symbol section table, based on the target's mappedness state.
3717
3718 To do this, we keep a cached copy of the target's _ovly_table, and
3719 attempt to detect when the cached copy is invalidated. The main
3720 entry point is "simple_overlay_update(SECT), which looks up SECT in
3721 the cached table and re-reads only the entry for that section from
3722 the target (whenever possible).
3723 */
3724
3725/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3726static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3727#if 0
c5aa993b 3728static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3729#endif
c5aa993b 3730static unsigned cache_novlys = 0;
c906108c 3731#if 0
c5aa993b 3732static unsigned cache_novly_regions = 0;
c906108c
SS
3733#endif
3734static CORE_ADDR cache_ovly_table_base = 0;
3735#if 0
3736static CORE_ADDR cache_ovly_region_table_base = 0;
3737#endif
c5aa993b
JM
3738enum ovly_index
3739 {
3740 VMA, SIZE, LMA, MAPPED
3741 };
c906108c
SS
3742
3743/* Throw away the cached copy of _ovly_table */
3744static void
fba45db2 3745simple_free_overlay_table (void)
c906108c
SS
3746{
3747 if (cache_ovly_table)
b8c9b27d 3748 xfree (cache_ovly_table);
c5aa993b 3749 cache_novlys = 0;
c906108c
SS
3750 cache_ovly_table = NULL;
3751 cache_ovly_table_base = 0;
3752}
3753
3754#if 0
3755/* Throw away the cached copy of _ovly_region_table */
3756static void
fba45db2 3757simple_free_overlay_region_table (void)
c906108c
SS
3758{
3759 if (cache_ovly_region_table)
b8c9b27d 3760 xfree (cache_ovly_region_table);
c5aa993b 3761 cache_novly_regions = 0;
c906108c
SS
3762 cache_ovly_region_table = NULL;
3763 cache_ovly_region_table_base = 0;
3764}
3765#endif
3766
9216df95 3767/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3768 Convert to host order. int LEN is number of ints */
3769static void
9216df95 3770read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3771 int len, int size, enum bfd_endian byte_order)
c906108c 3772{
34c0bd93 3773 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3774 gdb_byte *buf = alloca (len * size);
c5aa993b 3775 int i;
c906108c 3776
9216df95 3777 read_memory (memaddr, buf, len * size);
c906108c 3778 for (i = 0; i < len; i++)
e17a4113 3779 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3780}
3781
3782/* Find and grab a copy of the target _ovly_table
3783 (and _novlys, which is needed for the table's size) */
c5aa993b 3784static int
fba45db2 3785simple_read_overlay_table (void)
c906108c 3786{
0d43edd1 3787 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3788 struct gdbarch *gdbarch;
3789 int word_size;
e17a4113 3790 enum bfd_endian byte_order;
c906108c
SS
3791
3792 simple_free_overlay_table ();
9b27852e 3793 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3794 if (! novlys_msym)
c906108c 3795 {
8a3fe4f8 3796 error (_("Error reading inferior's overlay table: "
0d43edd1 3797 "couldn't find `_novlys' variable\n"
8a3fe4f8 3798 "in inferior. Use `overlay manual' mode."));
0d43edd1 3799 return 0;
c906108c 3800 }
0d43edd1 3801
9b27852e 3802 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3803 if (! ovly_table_msym)
3804 {
8a3fe4f8 3805 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3806 "`_ovly_table' array\n"
8a3fe4f8 3807 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3808 return 0;
3809 }
3810
9216df95
UW
3811 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3812 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3813 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3814
e17a4113
UW
3815 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3816 4, byte_order);
0d43edd1
JB
3817 cache_ovly_table
3818 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3819 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3820 read_target_long_array (cache_ovly_table_base,
777ea8f1 3821 (unsigned int *) cache_ovly_table,
e17a4113 3822 cache_novlys * 4, word_size, byte_order);
0d43edd1 3823
c5aa993b 3824 return 1; /* SUCCESS */
c906108c
SS
3825}
3826
3827#if 0
3828/* Find and grab a copy of the target _ovly_region_table
3829 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3830static int
fba45db2 3831simple_read_overlay_region_table (void)
c906108c
SS
3832{
3833 struct minimal_symbol *msym;
e17a4113
UW
3834 struct gdbarch *gdbarch;
3835 int word_size;
3836 enum bfd_endian byte_order;
c906108c
SS
3837
3838 simple_free_overlay_region_table ();
9b27852e 3839 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3840 if (msym == NULL)
c5aa993b 3841 return 0; /* failure */
e17a4113
UW
3842
3843 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3844 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3845 byte_order = gdbarch_byte_order (gdbarch);
3846
3847 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3848 4, byte_order);
3849
c906108c
SS
3850 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3851 if (cache_ovly_region_table != NULL)
3852 {
9b27852e 3853 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3854 if (msym != NULL)
3855 {
3856 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3857 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3858 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3859 cache_novly_regions * 3,
3860 word_size, byte_order);
c906108c 3861 }
c5aa993b
JM
3862 else
3863 return 0; /* failure */
c906108c 3864 }
c5aa993b
JM
3865 else
3866 return 0; /* failure */
3867 return 1; /* SUCCESS */
c906108c
SS
3868}
3869#endif
3870
5417f6dc 3871/* Function: simple_overlay_update_1
c906108c
SS
3872 A helper function for simple_overlay_update. Assuming a cached copy
3873 of _ovly_table exists, look through it to find an entry whose vma,
3874 lma and size match those of OSECT. Re-read the entry and make sure
3875 it still matches OSECT (else the table may no longer be valid).
3876 Set OSECT's mapped state to match the entry. Return: 1 for
3877 success, 0 for failure. */
3878
3879static int
fba45db2 3880simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3881{
3882 int i, size;
fbd35540
MS
3883 bfd *obfd = osect->objfile->obfd;
3884 asection *bsect = osect->the_bfd_section;
9216df95
UW
3885 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3886 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3888
2c500098 3889 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3890 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3891 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3892 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3893 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3894 {
9216df95
UW
3895 read_target_long_array (cache_ovly_table_base + i * word_size,
3896 (unsigned int *) cache_ovly_table[i],
e17a4113 3897 4, word_size, byte_order);
fbd35540
MS
3898 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3899 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3900 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3901 {
3902 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3903 return 1;
3904 }
fbd35540 3905 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3906 return 0;
3907 }
3908 return 0;
3909}
3910
3911/* Function: simple_overlay_update
5417f6dc
RM
3912 If OSECT is NULL, then update all sections' mapped state
3913 (after re-reading the entire target _ovly_table).
3914 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3915 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3916 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3917 re-read the entire cache, and go ahead and update all sections. */
3918
1c772458 3919void
fba45db2 3920simple_overlay_update (struct obj_section *osect)
c906108c 3921{
c5aa993b 3922 struct objfile *objfile;
c906108c
SS
3923
3924 /* Were we given an osect to look up? NULL means do all of them. */
3925 if (osect)
3926 /* Have we got a cached copy of the target's overlay table? */
3927 if (cache_ovly_table != NULL)
3928 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3929 if (cache_ovly_table_base ==
9b27852e 3930 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3931 /* Then go ahead and try to look up this single section in the cache */
3932 if (simple_overlay_update_1 (osect))
3933 /* Found it! We're done. */
3934 return;
3935
3936 /* Cached table no good: need to read the entire table anew.
3937 Or else we want all the sections, in which case it's actually
3938 more efficient to read the whole table in one block anyway. */
3939
0d43edd1
JB
3940 if (! simple_read_overlay_table ())
3941 return;
3942
c906108c
SS
3943 /* Now may as well update all sections, even if only one was requested. */
3944 ALL_OBJSECTIONS (objfile, osect)
714835d5 3945 if (section_is_overlay (osect))
c5aa993b
JM
3946 {
3947 int i, size;
fbd35540
MS
3948 bfd *obfd = osect->objfile->obfd;
3949 asection *bsect = osect->the_bfd_section;
c5aa993b 3950
2c500098 3951 size = bfd_get_section_size (bsect);
c5aa993b 3952 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3953 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3954 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3955 /* && cache_ovly_table[i][SIZE] == size */ )
3956 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3957 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3958 break; /* finished with inner for loop: break out */
3959 }
3960 }
c906108c
SS
3961}
3962
086df311
DJ
3963/* Set the output sections and output offsets for section SECTP in
3964 ABFD. The relocation code in BFD will read these offsets, so we
3965 need to be sure they're initialized. We map each section to itself,
3966 with no offset; this means that SECTP->vma will be honored. */
3967
3968static void
3969symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3970{
3971 sectp->output_section = sectp;
3972 sectp->output_offset = 0;
3973}
3974
3975/* Relocate the contents of a debug section SECTP in ABFD. The
3976 contents are stored in BUF if it is non-NULL, or returned in a
3977 malloc'd buffer otherwise.
3978
3979 For some platforms and debug info formats, shared libraries contain
3980 relocations against the debug sections (particularly for DWARF-2;
3981 one affected platform is PowerPC GNU/Linux, although it depends on
3982 the version of the linker in use). Also, ELF object files naturally
3983 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3984 the relocations in order to get the locations of symbols correct.
3985 Another example that may require relocation processing, is the
3986 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3987 debug section. */
086df311
DJ
3988
3989bfd_byte *
3990symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3991{
065a2c74 3992 /* We're only interested in sections with relocation
086df311
DJ
3993 information. */
3994 if ((sectp->flags & SEC_RELOC) == 0)
3995 return NULL;
086df311
DJ
3996
3997 /* We will handle section offsets properly elsewhere, so relocate as if
3998 all sections begin at 0. */
3999 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4000
97606a13 4001 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 4002}
c906108c 4003
31d99776
DJ
4004struct symfile_segment_data *
4005get_symfile_segment_data (bfd *abfd)
4006{
4007 struct sym_fns *sf = find_sym_fns (abfd);
4008
4009 if (sf == NULL)
4010 return NULL;
4011
4012 return sf->sym_segments (abfd);
4013}
4014
4015void
4016free_symfile_segment_data (struct symfile_segment_data *data)
4017{
4018 xfree (data->segment_bases);
4019 xfree (data->segment_sizes);
4020 xfree (data->segment_info);
4021 xfree (data);
4022}
4023
28c32713
JB
4024
4025/* Given:
4026 - DATA, containing segment addresses from the object file ABFD, and
4027 the mapping from ABFD's sections onto the segments that own them,
4028 and
4029 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4030 segment addresses reported by the target,
4031 store the appropriate offsets for each section in OFFSETS.
4032
4033 If there are fewer entries in SEGMENT_BASES than there are segments
4034 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4035
8d385431
DJ
4036 If there are more entries, then ignore the extra. The target may
4037 not be able to distinguish between an empty data segment and a
4038 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4039int
4040symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4041 struct section_offsets *offsets,
4042 int num_segment_bases,
4043 const CORE_ADDR *segment_bases)
4044{
4045 int i;
4046 asection *sect;
4047
28c32713
JB
4048 /* It doesn't make sense to call this function unless you have some
4049 segment base addresses. */
4050 gdb_assert (segment_bases > 0);
4051
31d99776
DJ
4052 /* If we do not have segment mappings for the object file, we
4053 can not relocate it by segments. */
4054 gdb_assert (data != NULL);
4055 gdb_assert (data->num_segments > 0);
4056
31d99776
DJ
4057 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4058 {
31d99776
DJ
4059 int which = data->segment_info[i];
4060
28c32713
JB
4061 gdb_assert (0 <= which && which <= data->num_segments);
4062
4063 /* Don't bother computing offsets for sections that aren't
4064 loaded as part of any segment. */
4065 if (! which)
4066 continue;
4067
4068 /* Use the last SEGMENT_BASES entry as the address of any extra
4069 segments mentioned in DATA->segment_info. */
31d99776 4070 if (which > num_segment_bases)
28c32713 4071 which = num_segment_bases;
31d99776 4072
28c32713
JB
4073 offsets->offsets[i] = (segment_bases[which - 1]
4074 - data->segment_bases[which - 1]);
31d99776
DJ
4075 }
4076
4077 return 1;
4078}
4079
4080static void
4081symfile_find_segment_sections (struct objfile *objfile)
4082{
4083 bfd *abfd = objfile->obfd;
4084 int i;
4085 asection *sect;
4086 struct symfile_segment_data *data;
4087
4088 data = get_symfile_segment_data (objfile->obfd);
4089 if (data == NULL)
4090 return;
4091
4092 if (data->num_segments != 1 && data->num_segments != 2)
4093 {
4094 free_symfile_segment_data (data);
4095 return;
4096 }
4097
4098 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4099 {
4100 CORE_ADDR vma;
4101 int which = data->segment_info[i];
4102
4103 if (which == 1)
4104 {
4105 if (objfile->sect_index_text == -1)
4106 objfile->sect_index_text = sect->index;
4107
4108 if (objfile->sect_index_rodata == -1)
4109 objfile->sect_index_rodata = sect->index;
4110 }
4111 else if (which == 2)
4112 {
4113 if (objfile->sect_index_data == -1)
4114 objfile->sect_index_data = sect->index;
4115
4116 if (objfile->sect_index_bss == -1)
4117 objfile->sect_index_bss = sect->index;
4118 }
4119 }
4120
4121 free_symfile_segment_data (data);
4122}
4123
c906108c 4124void
fba45db2 4125_initialize_symfile (void)
c906108c
SS
4126{
4127 struct cmd_list_element *c;
c5aa993b 4128
1a966eab
AC
4129 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4130Load symbol table from executable file FILE.\n\
c906108c 4131The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4132to execute."), &cmdlist);
5ba2abeb 4133 set_cmd_completer (c, filename_completer);
c906108c 4134
1a966eab 4135 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4136Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4137Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4138ADDR is the starting address of the file's text.\n\
db162d44
EZ
4139The optional arguments are section-name section-address pairs and\n\
4140should be specified if the data and bss segments are not contiguous\n\
1a966eab 4141with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4142 &cmdlist);
5ba2abeb 4143 set_cmd_completer (c, filename_completer);
c906108c 4144
1a966eab
AC
4145 c = add_cmd ("load", class_files, load_command, _("\
4146Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4147for access from GDB.\n\
4148A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4149 set_cmd_completer (c, filename_completer);
c906108c 4150
5bf193a2
AC
4151 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4152 &symbol_reloading, _("\
4153Set dynamic symbol table reloading multiple times in one run."), _("\
4154Show dynamic symbol table reloading multiple times in one run."), NULL,
4155 NULL,
920d2a44 4156 show_symbol_reloading,
5bf193a2 4157 &setlist, &showlist);
c906108c 4158
c5aa993b 4159 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4160 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4161 "overlay ", 0, &cmdlist);
4162
4163 add_com_alias ("ovly", "overlay", class_alias, 1);
4164 add_com_alias ("ov", "overlay", class_alias, 1);
4165
c5aa993b 4166 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4167 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4168
c5aa993b 4169 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4170 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4171
c5aa993b 4172 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4173 _("List mappings of overlay sections."), &overlaylist);
c906108c 4174
c5aa993b 4175 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4176 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4177 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4178 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4179 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4180 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4181 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4182 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4183
4184 /* Filename extension to source language lookup table: */
4185 init_filename_language_table ();
26c41df3
AC
4186 add_setshow_string_noescape_cmd ("extension-language", class_files,
4187 &ext_args, _("\
4188Set mapping between filename extension and source language."), _("\
4189Show mapping between filename extension and source language."), _("\
4190Usage: set extension-language .foo bar"),
4191 set_ext_lang_command,
920d2a44 4192 show_ext_args,
26c41df3 4193 &setlist, &showlist);
c906108c 4194
c5aa993b 4195 add_info ("extensions", info_ext_lang_command,
1bedd215 4196 _("All filename extensions associated with a source language."));
917317f4 4197
525226b5
AC
4198 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4199 &debug_file_directory, _("\
4200Set the directory where separate debug symbols are searched for."), _("\
4201Show the directory where separate debug symbols are searched for."), _("\
4202Separate debug symbols are first searched for in the same\n\
4203directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4204and lastly at the path of the directory of the binary with\n\
4205the global debug-file directory prepended."),
4206 NULL,
920d2a44 4207 show_debug_file_directory,
525226b5 4208 &setlist, &showlist);
bf250677
DE
4209
4210 add_setshow_boolean_cmd ("symbol-loading", no_class,
4211 &print_symbol_loading, _("\
4212Set printing of symbol loading messages."), _("\
4213Show printing of symbol loading messages."), NULL,
4214 NULL,
4215 NULL,
4216 &setprintlist, &showprintlist);
c906108c 4217}
This page took 2.772657 seconds and 4 git commands to generate.