]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Generic symbol file reading for the GNU debugger, GDB. |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. | |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "gdbcore.h" | |
27 | #include "frame.h" | |
28 | #include "target.h" | |
29 | #include "value.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "breakpoint.h" | |
34 | #include "language.h" | |
35 | #include "complaints.h" | |
36 | #include "demangle.h" | |
c5aa993b | 37 | #include "inferior.h" /* for write_pc */ |
c906108c SS |
38 | #include "gdb-stabs.h" |
39 | #include "obstack.h" | |
40 | ||
41 | #include <assert.h> | |
42 | #include <sys/types.h> | |
43 | #include <fcntl.h> | |
44 | #include "gdb_string.h" | |
45 | #include "gdb_stat.h" | |
46 | #include <ctype.h> | |
47 | #include <time.h> | |
48 | #ifdef HAVE_UNISTD_H | |
49 | #include <unistd.h> | |
50 | #endif | |
51 | ||
52 | #ifndef O_BINARY | |
53 | #define O_BINARY 0 | |
54 | #endif | |
55 | ||
56 | #ifdef HPUXHPPA | |
57 | ||
58 | /* Some HP-UX related globals to clear when a new "main" | |
59 | symbol file is loaded. HP-specific. */ | |
60 | ||
61 | extern int hp_som_som_object_present; | |
62 | extern int hp_cxx_exception_support_initialized; | |
63 | #define RESET_HP_UX_GLOBALS() do {\ | |
64 | hp_som_som_object_present = 0; /* indicates HP-compiled code */ \ | |
65 | hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \ | |
66 | } while (0) | |
67 | #endif | |
68 | ||
69 | int (*ui_load_progress_hook) PARAMS ((char *, unsigned long)); | |
70 | void (*pre_add_symbol_hook) PARAMS ((char *)); | |
71 | void (*post_add_symbol_hook) PARAMS ((void)); | |
72 | ||
73 | /* Global variables owned by this file */ | |
c5aa993b | 74 | int readnow_symbol_files; /* Read full symbols immediately */ |
c906108c | 75 | |
c5aa993b JM |
76 | struct complaint oldsyms_complaint = |
77 | { | |
c906108c SS |
78 | "Replacing old symbols for `%s'", 0, 0 |
79 | }; | |
80 | ||
c5aa993b JM |
81 | struct complaint empty_symtab_complaint = |
82 | { | |
c906108c SS |
83 | "Empty symbol table found for `%s'", 0, 0 |
84 | }; | |
85 | ||
86 | /* External variables and functions referenced. */ | |
87 | ||
88 | extern int info_verbose; | |
89 | ||
90 | extern void report_transfer_performance PARAMS ((unsigned long, | |
91 | time_t, time_t)); | |
92 | ||
93 | /* Functions this file defines */ | |
94 | ||
95 | #if 0 | |
96 | static int simple_read_overlay_region_table PARAMS ((void)); | |
97 | static void simple_free_overlay_region_table PARAMS ((void)); | |
98 | #endif | |
99 | ||
100 | static void set_initial_language PARAMS ((void)); | |
101 | ||
102 | static void load_command PARAMS ((char *, int)); | |
103 | ||
104 | static void add_symbol_file_command PARAMS ((char *, int)); | |
105 | ||
106 | static void add_shared_symbol_files_command PARAMS ((char *, int)); | |
107 | ||
108 | static void cashier_psymtab PARAMS ((struct partial_symtab *)); | |
109 | ||
110 | static int compare_psymbols PARAMS ((const void *, const void *)); | |
111 | ||
112 | static int compare_symbols PARAMS ((const void *, const void *)); | |
113 | ||
114 | bfd *symfile_bfd_open PARAMS ((char *)); | |
115 | ||
116 | static void find_sym_fns PARAMS ((struct objfile *)); | |
117 | ||
118 | static void decrement_reading_symtab PARAMS ((void *)); | |
119 | ||
120 | static void overlay_invalidate_all PARAMS ((void)); | |
121 | ||
122 | static int overlay_is_mapped PARAMS ((struct obj_section *)); | |
123 | ||
124 | void list_overlays_command PARAMS ((char *, int)); | |
125 | ||
126 | void map_overlay_command PARAMS ((char *, int)); | |
127 | ||
128 | void unmap_overlay_command PARAMS ((char *, int)); | |
129 | ||
130 | static void overlay_auto_command PARAMS ((char *, int)); | |
131 | ||
132 | static void overlay_manual_command PARAMS ((char *, int)); | |
133 | ||
134 | static void overlay_off_command PARAMS ((char *, int)); | |
135 | ||
136 | static void overlay_load_command PARAMS ((char *, int)); | |
137 | ||
138 | static void overlay_command PARAMS ((char *, int)); | |
139 | ||
140 | static void simple_free_overlay_table PARAMS ((void)); | |
141 | ||
142 | static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int)); | |
143 | ||
144 | static int simple_read_overlay_table PARAMS ((void)); | |
145 | ||
146 | static int simple_overlay_update_1 PARAMS ((struct obj_section *)); | |
147 | ||
392a587b JM |
148 | static void add_filename_language PARAMS ((char *ext, enum language lang)); |
149 | ||
150 | static void set_ext_lang_command PARAMS ((char *args, int from_tty)); | |
151 | ||
152 | static void info_ext_lang_command PARAMS ((char *args, int from_tty)); | |
153 | ||
154 | static void init_filename_language_table PARAMS ((void)); | |
155 | ||
c906108c SS |
156 | void _initialize_symfile PARAMS ((void)); |
157 | ||
158 | /* List of all available sym_fns. On gdb startup, each object file reader | |
159 | calls add_symtab_fns() to register information on each format it is | |
160 | prepared to read. */ | |
161 | ||
162 | static struct sym_fns *symtab_fns = NULL; | |
163 | ||
164 | /* Flag for whether user will be reloading symbols multiple times. | |
165 | Defaults to ON for VxWorks, otherwise OFF. */ | |
166 | ||
167 | #ifdef SYMBOL_RELOADING_DEFAULT | |
168 | int symbol_reloading = SYMBOL_RELOADING_DEFAULT; | |
169 | #else | |
170 | int symbol_reloading = 0; | |
171 | #endif | |
172 | ||
173 | /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c), | |
174 | this variable is interpreted as a threshhold. If adding a new | |
175 | library's symbol table to those already known to the debugger would | |
176 | exceed this threshhold, then the shlib's symbols are not added. | |
177 | ||
178 | If non-zero on other platforms, shared library symbols will be added | |
179 | automatically when the inferior is created, new libraries are loaded, | |
180 | or when attaching to the inferior. This is almost always what users | |
181 | will want to have happen; but for very large programs, the startup | |
182 | time will be excessive, and so if this is a problem, the user can | |
183 | clear this flag and then add the shared library symbols as needed. | |
184 | Note that there is a potential for confusion, since if the shared | |
185 | library symbols are not loaded, commands like "info fun" will *not* | |
186 | report all the functions that are actually present. | |
187 | ||
188 | Note that HP-UX interprets this variable to mean, "threshhold size | |
189 | in megabytes, where zero means never add". Other platforms interpret | |
190 | this variable to mean, "always add if non-zero, never add if zero." | |
c5aa993b | 191 | */ |
c906108c SS |
192 | |
193 | int auto_solib_add = 1; | |
c906108c | 194 | \f |
c5aa993b | 195 | |
c906108c SS |
196 | /* Since this function is called from within qsort, in an ANSI environment |
197 | it must conform to the prototype for qsort, which specifies that the | |
198 | comparison function takes two "void *" pointers. */ | |
199 | ||
200 | static int | |
201 | compare_symbols (s1p, s2p) | |
202 | const PTR s1p; | |
203 | const PTR s2p; | |
204 | { | |
205 | register struct symbol **s1, **s2; | |
206 | ||
207 | s1 = (struct symbol **) s1p; | |
208 | s2 = (struct symbol **) s2p; | |
209 | ||
210 | return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2))); | |
211 | } | |
212 | ||
213 | /* | |
214 | ||
c5aa993b | 215 | LOCAL FUNCTION |
c906108c | 216 | |
c5aa993b | 217 | compare_psymbols -- compare two partial symbols by name |
c906108c | 218 | |
c5aa993b | 219 | DESCRIPTION |
c906108c | 220 | |
c5aa993b JM |
221 | Given pointers to pointers to two partial symbol table entries, |
222 | compare them by name and return -N, 0, or +N (ala strcmp). | |
223 | Typically used by sorting routines like qsort(). | |
c906108c | 224 | |
c5aa993b | 225 | NOTES |
c906108c | 226 | |
c5aa993b JM |
227 | Does direct compare of first two characters before punting |
228 | and passing to strcmp for longer compares. Note that the | |
229 | original version had a bug whereby two null strings or two | |
230 | identically named one character strings would return the | |
231 | comparison of memory following the null byte. | |
c906108c SS |
232 | |
233 | */ | |
234 | ||
235 | static int | |
236 | compare_psymbols (s1p, s2p) | |
237 | const PTR s1p; | |
238 | const PTR s2p; | |
239 | { | |
240 | register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p); | |
241 | register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p); | |
242 | ||
243 | if ((st1[0] - st2[0]) || !st1[0]) | |
244 | { | |
245 | return (st1[0] - st2[0]); | |
246 | } | |
247 | else if ((st1[1] - st2[1]) || !st1[1]) | |
248 | { | |
249 | return (st1[1] - st2[1]); | |
250 | } | |
251 | else | |
252 | { | |
253 | /* Note: I replaced the STRCMP line (commented out below) | |
254 | * with a simpler "strcmp()" which compares the 2 strings | |
255 | * from the beginning. (STRCMP is a macro which first compares | |
256 | * the initial characters, then falls back on strcmp). | |
257 | * The reason is that the STRCMP line was tickling a C compiler | |
258 | * bug on HP-UX 10.30, which is avoided with the simpler | |
259 | * code. The performance gain from the more complicated code | |
260 | * is negligible, given that we have already checked the | |
261 | * initial 2 characters above. I reported the compiler bug, | |
262 | * and once it is fixed the original line can be put back. RT | |
263 | */ | |
264 | /* return ( STRCMP (st1 + 2, st2 + 2)); */ | |
c5aa993b | 265 | return (strcmp (st1, st2)); |
c906108c SS |
266 | } |
267 | } | |
268 | ||
269 | void | |
270 | sort_pst_symbols (pst) | |
271 | struct partial_symtab *pst; | |
272 | { | |
273 | /* Sort the global list; don't sort the static list */ | |
274 | ||
c5aa993b JM |
275 | qsort (pst->objfile->global_psymbols.list + pst->globals_offset, |
276 | pst->n_global_syms, sizeof (struct partial_symbol *), | |
c906108c SS |
277 | compare_psymbols); |
278 | } | |
279 | ||
280 | /* Call sort_block_syms to sort alphabetically the symbols of one block. */ | |
281 | ||
282 | void | |
283 | sort_block_syms (b) | |
284 | register struct block *b; | |
285 | { | |
286 | qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b), | |
287 | sizeof (struct symbol *), compare_symbols); | |
288 | } | |
289 | ||
290 | /* Call sort_symtab_syms to sort alphabetically | |
291 | the symbols of each block of one symtab. */ | |
292 | ||
293 | void | |
294 | sort_symtab_syms (s) | |
295 | register struct symtab *s; | |
296 | { | |
297 | register struct blockvector *bv; | |
298 | int nbl; | |
299 | int i; | |
300 | register struct block *b; | |
301 | ||
302 | if (s == 0) | |
303 | return; | |
304 | bv = BLOCKVECTOR (s); | |
305 | nbl = BLOCKVECTOR_NBLOCKS (bv); | |
306 | for (i = 0; i < nbl; i++) | |
307 | { | |
308 | b = BLOCKVECTOR_BLOCK (bv, i); | |
309 | if (BLOCK_SHOULD_SORT (b)) | |
310 | sort_block_syms (b); | |
311 | } | |
312 | } | |
313 | ||
314 | /* Make a null terminated copy of the string at PTR with SIZE characters in | |
315 | the obstack pointed to by OBSTACKP . Returns the address of the copy. | |
316 | Note that the string at PTR does not have to be null terminated, I.E. it | |
317 | may be part of a larger string and we are only saving a substring. */ | |
318 | ||
319 | char * | |
320 | obsavestring (ptr, size, obstackp) | |
321 | char *ptr; | |
322 | int size; | |
323 | struct obstack *obstackp; | |
324 | { | |
325 | register char *p = (char *) obstack_alloc (obstackp, size + 1); | |
326 | /* Open-coded memcpy--saves function call time. These strings are usually | |
327 | short. FIXME: Is this really still true with a compiler that can | |
328 | inline memcpy? */ | |
329 | { | |
330 | register char *p1 = ptr; | |
331 | register char *p2 = p; | |
332 | char *end = ptr + size; | |
333 | while (p1 != end) | |
334 | *p2++ = *p1++; | |
335 | } | |
336 | p[size] = 0; | |
337 | return p; | |
338 | } | |
339 | ||
340 | /* Concatenate strings S1, S2 and S3; return the new string. Space is found | |
341 | in the obstack pointed to by OBSTACKP. */ | |
342 | ||
343 | char * | |
344 | obconcat (obstackp, s1, s2, s3) | |
345 | struct obstack *obstackp; | |
346 | const char *s1, *s2, *s3; | |
347 | { | |
348 | register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1; | |
349 | register char *val = (char *) obstack_alloc (obstackp, len); | |
350 | strcpy (val, s1); | |
351 | strcat (val, s2); | |
352 | strcat (val, s3); | |
353 | return val; | |
354 | } | |
355 | ||
356 | /* True if we are nested inside psymtab_to_symtab. */ | |
357 | ||
358 | int currently_reading_symtab = 0; | |
359 | ||
360 | static void | |
361 | decrement_reading_symtab (dummy) | |
362 | void *dummy; | |
363 | { | |
364 | currently_reading_symtab--; | |
365 | } | |
366 | ||
367 | /* Get the symbol table that corresponds to a partial_symtab. | |
368 | This is fast after the first time you do it. In fact, there | |
369 | is an even faster macro PSYMTAB_TO_SYMTAB that does the fast | |
370 | case inline. */ | |
371 | ||
372 | struct symtab * | |
373 | psymtab_to_symtab (pst) | |
374 | register struct partial_symtab *pst; | |
375 | { | |
376 | /* If it's been looked up before, return it. */ | |
377 | if (pst->symtab) | |
378 | return pst->symtab; | |
379 | ||
380 | /* If it has not yet been read in, read it. */ | |
381 | if (!pst->readin) | |
c5aa993b | 382 | { |
c906108c SS |
383 | struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL); |
384 | currently_reading_symtab++; | |
385 | (*pst->read_symtab) (pst); | |
386 | do_cleanups (back_to); | |
387 | } | |
388 | ||
389 | return pst->symtab; | |
390 | } | |
391 | ||
392 | /* Initialize entry point information for this objfile. */ | |
393 | ||
394 | void | |
395 | init_entry_point_info (objfile) | |
396 | struct objfile *objfile; | |
397 | { | |
398 | /* Save startup file's range of PC addresses to help blockframe.c | |
399 | decide where the bottom of the stack is. */ | |
400 | ||
c5aa993b | 401 | if (bfd_get_file_flags (objfile->obfd) & EXEC_P) |
c906108c SS |
402 | { |
403 | /* Executable file -- record its entry point so we'll recognize | |
c5aa993b JM |
404 | the startup file because it contains the entry point. */ |
405 | objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); | |
c906108c SS |
406 | } |
407 | else | |
408 | { | |
409 | /* Examination of non-executable.o files. Short-circuit this stuff. */ | |
c5aa993b | 410 | objfile->ei.entry_point = INVALID_ENTRY_POINT; |
c906108c | 411 | } |
c5aa993b JM |
412 | objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC; |
413 | objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC; | |
414 | objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC; | |
415 | objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC; | |
416 | objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC; | |
417 | objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC; | |
c906108c SS |
418 | } |
419 | ||
420 | /* Get current entry point address. */ | |
421 | ||
422 | CORE_ADDR | |
c5aa993b | 423 | entry_point_address () |
c906108c SS |
424 | { |
425 | return symfile_objfile ? symfile_objfile->ei.entry_point : 0; | |
426 | } | |
427 | ||
428 | /* Remember the lowest-addressed loadable section we've seen. | |
429 | This function is called via bfd_map_over_sections. | |
430 | ||
431 | In case of equal vmas, the section with the largest size becomes the | |
432 | lowest-addressed loadable section. | |
433 | ||
434 | If the vmas and sizes are equal, the last section is considered the | |
435 | lowest-addressed loadable section. */ | |
436 | ||
437 | void | |
438 | find_lowest_section (abfd, sect, obj) | |
439 | bfd *abfd; | |
440 | asection *sect; | |
441 | PTR obj; | |
442 | { | |
c5aa993b | 443 | asection **lowest = (asection **) obj; |
c906108c SS |
444 | |
445 | if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD)) | |
446 | return; | |
447 | if (!*lowest) | |
448 | *lowest = sect; /* First loadable section */ | |
449 | else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect)) | |
450 | *lowest = sect; /* A lower loadable section */ | |
451 | else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect) | |
452 | && (bfd_section_size (abfd, (*lowest)) | |
453 | <= bfd_section_size (abfd, sect))) | |
454 | *lowest = sect; | |
455 | } | |
456 | ||
457 | /* Parse the user's idea of an offset for dynamic linking, into our idea | |
458 | of how to represent it for fast symbol reading. This is the default | |
459 | version of the sym_fns.sym_offsets function for symbol readers that | |
460 | don't need to do anything special. It allocates a section_offsets table | |
461 | for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ | |
462 | ||
463 | struct section_offsets * | |
464 | default_symfile_offsets (objfile, addr) | |
465 | struct objfile *objfile; | |
466 | CORE_ADDR addr; | |
467 | { | |
468 | struct section_offsets *section_offsets; | |
469 | int i; | |
470 | ||
471 | objfile->num_sections = SECT_OFF_MAX; | |
472 | section_offsets = (struct section_offsets *) | |
c5aa993b | 473 | obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS); |
5a2468f5 | 474 | memset (section_offsets, 0, SIZEOF_SECTION_OFFSETS); |
c906108c SS |
475 | |
476 | for (i = 0; i < SECT_OFF_MAX; i++) | |
477 | ANOFFSET (section_offsets, i) = addr; | |
c5aa993b | 478 | |
c906108c SS |
479 | return section_offsets; |
480 | } | |
481 | ||
482 | ||
483 | /* Process a symbol file, as either the main file or as a dynamically | |
484 | loaded file. | |
485 | ||
96baa820 JM |
486 | OBJFILE is where the symbols are to be read from. |
487 | ||
488 | ADDR is the address where the text segment was loaded, unless the | |
489 | objfile is the main symbol file, in which case it is zero. | |
490 | ||
491 | MAINLINE is nonzero if this is the main symbol file, or zero if | |
492 | it's an extra symbol file such as dynamically loaded code. | |
493 | ||
494 | VERBO is nonzero if the caller has printed a verbose message about | |
495 | the symbol reading (and complaints can be more terse about it). */ | |
c906108c SS |
496 | |
497 | void | |
498 | syms_from_objfile (objfile, addr, mainline, verbo) | |
499 | struct objfile *objfile; | |
500 | CORE_ADDR addr; | |
501 | int mainline; | |
502 | int verbo; | |
503 | { | |
504 | struct section_offsets *section_offsets; | |
505 | asection *lowest_sect; | |
506 | struct cleanup *old_chain; | |
507 | ||
508 | init_entry_point_info (objfile); | |
509 | find_sym_fns (objfile); | |
510 | ||
511 | /* Make sure that partially constructed symbol tables will be cleaned up | |
512 | if an error occurs during symbol reading. */ | |
513 | old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile); | |
514 | ||
c5aa993b | 515 | if (mainline) |
c906108c SS |
516 | { |
517 | /* We will modify the main symbol table, make sure that all its users | |
c5aa993b | 518 | will be cleaned up if an error occurs during symbol reading. */ |
c906108c SS |
519 | make_cleanup ((make_cleanup_func) clear_symtab_users, 0); |
520 | ||
521 | /* Since no error yet, throw away the old symbol table. */ | |
522 | ||
523 | if (symfile_objfile != NULL) | |
524 | { | |
525 | free_objfile (symfile_objfile); | |
526 | symfile_objfile = NULL; | |
527 | } | |
528 | ||
529 | /* Currently we keep symbols from the add-symbol-file command. | |
c5aa993b JM |
530 | If the user wants to get rid of them, they should do "symbol-file" |
531 | without arguments first. Not sure this is the best behavior | |
532 | (PR 2207). */ | |
c906108c | 533 | |
c5aa993b | 534 | (*objfile->sf->sym_new_init) (objfile); |
c906108c SS |
535 | } |
536 | ||
537 | /* Convert addr into an offset rather than an absolute address. | |
538 | We find the lowest address of a loaded segment in the objfile, | |
539 | and assume that <addr> is where that got loaded. Due to historical | |
540 | precedent, we warn if that doesn't happen to be a text segment. */ | |
541 | ||
542 | if (mainline) | |
543 | { | |
c5aa993b | 544 | addr = 0; /* No offset from objfile addresses. */ |
c906108c SS |
545 | } |
546 | else | |
547 | { | |
548 | lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text"); | |
549 | if (lowest_sect == NULL) | |
550 | bfd_map_over_sections (objfile->obfd, find_lowest_section, | |
96baa820 | 551 | (PTR) &lowest_sect); |
c906108c SS |
552 | |
553 | if (lowest_sect == NULL) | |
554 | warning ("no loadable sections found in added symbol-file %s", | |
555 | objfile->name); | |
556 | else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE) | |
557 | == 0) | |
558 | /* FIXME-32x64--assumes bfd_vma fits in long. */ | |
559 | warning ("Lowest section in %s is %s at 0x%lx", | |
560 | objfile->name, | |
561 | bfd_section_name (objfile->obfd, lowest_sect), | |
96baa820 | 562 | (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect)); |
c906108c SS |
563 | |
564 | if (lowest_sect) | |
565 | addr -= bfd_section_vma (objfile->obfd, lowest_sect); | |
566 | } | |
567 | ||
568 | /* Initialize symbol reading routines for this objfile, allow complaints to | |
569 | appear for this new file, and record how verbose to be, then do the | |
570 | initial symbol reading for this file. */ | |
571 | ||
c5aa993b | 572 | (*objfile->sf->sym_init) (objfile); |
c906108c SS |
573 | clear_complaints (1, verbo); |
574 | ||
c5aa993b | 575 | section_offsets = (*objfile->sf->sym_offsets) (objfile, addr); |
c906108c SS |
576 | objfile->section_offsets = section_offsets; |
577 | ||
578 | #ifndef IBM6000_TARGET | |
579 | /* This is a SVR4/SunOS specific hack, I think. In any event, it | |
580 | screws RS/6000. sym_offsets should be doing this sort of thing, | |
581 | because it knows the mapping between bfd sections and | |
582 | section_offsets. */ | |
583 | /* This is a hack. As far as I can tell, section offsets are not | |
584 | target dependent. They are all set to addr with a couple of | |
585 | exceptions. The exceptions are sysvr4 shared libraries, whose | |
586 | offsets are kept in solib structures anyway and rs6000 xcoff | |
587 | which handles shared libraries in a completely unique way. | |
588 | ||
589 | Section offsets are built similarly, except that they are built | |
590 | by adding addr in all cases because there is no clear mapping | |
591 | from section_offsets into actual sections. Note that solib.c | |
96baa820 | 592 | has a different algorithm for finding section offsets. |
c906108c SS |
593 | |
594 | These should probably all be collapsed into some target | |
595 | independent form of shared library support. FIXME. */ | |
596 | ||
597 | if (addr) | |
598 | { | |
599 | struct obj_section *s; | |
600 | ||
96baa820 | 601 | ALL_OBJFILE_OSECTIONS (objfile, s) |
c906108c SS |
602 | { |
603 | s->addr -= s->offset; | |
604 | s->addr += addr; | |
605 | s->endaddr -= s->offset; | |
606 | s->endaddr += addr; | |
607 | s->offset += addr; | |
608 | } | |
609 | } | |
610 | #endif /* not IBM6000_TARGET */ | |
611 | ||
96baa820 | 612 | (*objfile->sf->sym_read) (objfile, mainline); |
c906108c SS |
613 | |
614 | if (!have_partial_symbols () && !have_full_symbols ()) | |
615 | { | |
616 | wrap_here (""); | |
617 | printf_filtered ("(no debugging symbols found)..."); | |
618 | wrap_here (""); | |
619 | } | |
620 | ||
621 | /* Don't allow char * to have a typename (else would get caddr_t). | |
622 | Ditto void *. FIXME: Check whether this is now done by all the | |
623 | symbol readers themselves (many of them now do), and if so remove | |
624 | it from here. */ | |
625 | ||
626 | TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0; | |
627 | TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0; | |
628 | ||
629 | /* Mark the objfile has having had initial symbol read attempted. Note | |
630 | that this does not mean we found any symbols... */ | |
631 | ||
c5aa993b | 632 | objfile->flags |= OBJF_SYMS; |
c906108c SS |
633 | |
634 | /* Discard cleanups as symbol reading was successful. */ | |
635 | ||
636 | discard_cleanups (old_chain); | |
637 | ||
96baa820 JM |
638 | /* Call this after reading in a new symbol table to give target |
639 | dependant code a crack at the new symbols. For instance, this | |
640 | could be used to update the values of target-specific symbols GDB | |
641 | needs to keep track of (such as _sigtramp, or whatever). */ | |
c906108c SS |
642 | |
643 | TARGET_SYMFILE_POSTREAD (objfile); | |
644 | } | |
645 | ||
646 | /* Perform required actions after either reading in the initial | |
647 | symbols for a new objfile, or mapping in the symbols from a reusable | |
648 | objfile. */ | |
c5aa993b | 649 | |
c906108c SS |
650 | void |
651 | new_symfile_objfile (objfile, mainline, verbo) | |
652 | struct objfile *objfile; | |
653 | int mainline; | |
654 | int verbo; | |
655 | { | |
656 | ||
657 | /* If this is the main symbol file we have to clean up all users of the | |
658 | old main symbol file. Otherwise it is sufficient to fixup all the | |
659 | breakpoints that may have been redefined by this symbol file. */ | |
660 | if (mainline) | |
661 | { | |
662 | /* OK, make it the "real" symbol file. */ | |
663 | symfile_objfile = objfile; | |
664 | ||
665 | clear_symtab_users (); | |
666 | } | |
667 | else | |
668 | { | |
669 | breakpoint_re_set (); | |
670 | } | |
671 | ||
672 | /* We're done reading the symbol file; finish off complaints. */ | |
673 | clear_complaints (0, verbo); | |
674 | } | |
675 | ||
676 | /* Process a symbol file, as either the main file or as a dynamically | |
677 | loaded file. | |
678 | ||
679 | NAME is the file name (which will be tilde-expanded and made | |
680 | absolute herein) (but we don't free or modify NAME itself). | |
681 | FROM_TTY says how verbose to be. MAINLINE specifies whether this | |
682 | is the main symbol file, or whether it's an extra symbol file such | |
683 | as dynamically loaded code. If !mainline, ADDR is the address | |
684 | where the text segment was loaded. | |
685 | ||
686 | USER_LOADED is TRUE if the add-symbol-file command was how this | |
687 | symbol file came to be processed. | |
688 | ||
689 | IS_SOLIB is TRUE if this symbol file represents a solib, as discovered | |
690 | by the target's implementation of the solib package. | |
691 | ||
692 | Upon success, returns a pointer to the objfile that was added. | |
693 | Upon failure, jumps back to command level (never returns). */ | |
694 | ||
695 | struct objfile * | |
696 | symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib) | |
697 | char *name; | |
698 | int from_tty; | |
699 | CORE_ADDR addr; | |
700 | int mainline; | |
701 | int mapped; | |
702 | int readnow; | |
c5aa993b JM |
703 | int user_loaded; |
704 | int is_solib; | |
c906108c SS |
705 | { |
706 | struct objfile *objfile; | |
707 | struct partial_symtab *psymtab; | |
708 | bfd *abfd; | |
709 | ||
710 | /* Open a bfd for the file, and give user a chance to burp if we'd be | |
711 | interactively wiping out any existing symbols. */ | |
712 | ||
713 | abfd = symfile_bfd_open (name); | |
714 | ||
715 | if ((have_full_symbols () || have_partial_symbols ()) | |
716 | && mainline | |
717 | && from_tty | |
718 | && !query ("Load new symbol table from \"%s\"? ", name)) | |
c5aa993b | 719 | error ("Not confirmed."); |
c906108c SS |
720 | |
721 | objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib); | |
722 | ||
723 | /* If the objfile uses a mapped symbol file, and we have a psymtab for | |
724 | it, then skip reading any symbols at this time. */ | |
725 | ||
c5aa993b | 726 | if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS)) |
c906108c SS |
727 | { |
728 | /* We mapped in an existing symbol table file that already has had | |
c5aa993b JM |
729 | initial symbol reading performed, so we can skip that part. Notify |
730 | the user that instead of reading the symbols, they have been mapped. | |
731 | */ | |
c906108c SS |
732 | if (from_tty || info_verbose) |
733 | { | |
734 | printf_filtered ("Mapped symbols for %s...", name); | |
735 | wrap_here (""); | |
736 | gdb_flush (gdb_stdout); | |
737 | } | |
738 | init_entry_point_info (objfile); | |
739 | find_sym_fns (objfile); | |
740 | } | |
741 | else | |
742 | { | |
743 | /* We either created a new mapped symbol table, mapped an existing | |
c5aa993b JM |
744 | symbol table file which has not had initial symbol reading |
745 | performed, or need to read an unmapped symbol table. */ | |
c906108c SS |
746 | if (from_tty || info_verbose) |
747 | { | |
748 | if (pre_add_symbol_hook) | |
749 | pre_add_symbol_hook (name); | |
750 | else | |
751 | { | |
752 | printf_filtered ("Reading symbols from %s...", name); | |
753 | wrap_here (""); | |
754 | gdb_flush (gdb_stdout); | |
755 | } | |
756 | } | |
757 | syms_from_objfile (objfile, addr, mainline, from_tty); | |
758 | } | |
759 | ||
760 | /* We now have at least a partial symbol table. Check to see if the | |
761 | user requested that all symbols be read on initial access via either | |
762 | the gdb startup command line or on a per symbol file basis. Expand | |
763 | all partial symbol tables for this objfile if so. */ | |
764 | ||
765 | if (readnow || readnow_symbol_files) | |
766 | { | |
767 | if (from_tty || info_verbose) | |
768 | { | |
769 | printf_filtered ("expanding to full symbols..."); | |
770 | wrap_here (""); | |
771 | gdb_flush (gdb_stdout); | |
772 | } | |
773 | ||
c5aa993b | 774 | for (psymtab = objfile->psymtabs; |
c906108c | 775 | psymtab != NULL; |
c5aa993b | 776 | psymtab = psymtab->next) |
c906108c SS |
777 | { |
778 | psymtab_to_symtab (psymtab); | |
779 | } | |
780 | } | |
781 | ||
782 | if (from_tty || info_verbose) | |
783 | { | |
784 | if (post_add_symbol_hook) | |
c5aa993b | 785 | post_add_symbol_hook (); |
c906108c | 786 | else |
c5aa993b JM |
787 | { |
788 | printf_filtered ("done.\n"); | |
789 | gdb_flush (gdb_stdout); | |
790 | } | |
c906108c SS |
791 | } |
792 | ||
793 | new_symfile_objfile (objfile, mainline, from_tty); | |
794 | ||
795 | target_new_objfile (objfile); | |
796 | ||
797 | return (objfile); | |
798 | } | |
799 | ||
800 | /* This is the symbol-file command. Read the file, analyze its | |
801 | symbols, and add a struct symtab to a symtab list. The syntax of | |
802 | the command is rather bizarre--(1) buildargv implements various | |
803 | quoting conventions which are undocumented and have little or | |
804 | nothing in common with the way things are quoted (or not quoted) | |
805 | elsewhere in GDB, (2) options are used, which are not generally | |
806 | used in GDB (perhaps "set mapped on", "set readnow on" would be | |
807 | better), (3) the order of options matters, which is contrary to GNU | |
808 | conventions (because it is confusing and inconvenient). */ | |
809 | ||
810 | void | |
811 | symbol_file_command (args, from_tty) | |
812 | char *args; | |
813 | int from_tty; | |
814 | { | |
815 | char **argv; | |
816 | char *name = NULL; | |
c5aa993b | 817 | CORE_ADDR text_relocation = 0; /* text_relocation */ |
c906108c SS |
818 | struct cleanup *cleanups; |
819 | int mapped = 0; | |
820 | int readnow = 0; | |
821 | ||
822 | dont_repeat (); | |
823 | ||
824 | if (args == NULL) | |
825 | { | |
826 | if ((have_full_symbols () || have_partial_symbols ()) | |
827 | && from_tty | |
828 | && !query ("Discard symbol table from `%s'? ", | |
c5aa993b | 829 | symfile_objfile->name)) |
c906108c SS |
830 | error ("Not confirmed."); |
831 | free_all_objfiles (); | |
832 | ||
833 | /* solib descriptors may have handles to objfiles. Since their | |
834 | storage has just been released, we'd better wipe the solib | |
835 | descriptors as well. | |
c5aa993b | 836 | */ |
c906108c SS |
837 | #if defined(SOLIB_RESTART) |
838 | SOLIB_RESTART (); | |
839 | #endif | |
840 | ||
841 | symfile_objfile = NULL; | |
842 | if (from_tty) | |
843 | { | |
844 | printf_unfiltered ("No symbol file now.\n"); | |
845 | } | |
846 | #ifdef HPUXHPPA | |
847 | RESET_HP_UX_GLOBALS (); | |
848 | #endif | |
849 | } | |
850 | else | |
851 | { | |
852 | if ((argv = buildargv (args)) == NULL) | |
853 | { | |
854 | nomem (0); | |
855 | } | |
7a292a7a | 856 | cleanups = make_cleanup_freeargv (argv); |
c906108c SS |
857 | while (*argv != NULL) |
858 | { | |
859 | if (STREQ (*argv, "-mapped")) | |
860 | { | |
861 | mapped = 1; | |
862 | } | |
863 | else if (STREQ (*argv, "-readnow")) | |
864 | { | |
865 | readnow = 1; | |
866 | } | |
867 | else if (**argv == '-') | |
868 | { | |
869 | error ("unknown option `%s'", *argv); | |
870 | } | |
871 | else | |
872 | { | |
c5aa993b | 873 | char *p; |
c906108c | 874 | |
c5aa993b | 875 | name = *argv; |
c906108c | 876 | |
c5aa993b JM |
877 | /* this is for rombug remote only, to get the text relocation by |
878 | using link command */ | |
879 | p = strrchr (name, '/'); | |
880 | if (p != NULL) | |
881 | p++; | |
882 | else | |
883 | p = name; | |
c906108c | 884 | |
c5aa993b | 885 | target_link (p, &text_relocation); |
c906108c | 886 | |
c5aa993b JM |
887 | if (text_relocation == (CORE_ADDR) 0) |
888 | return; | |
a0b3c4fd | 889 | else if (text_relocation == (CORE_ADDR) -1) |
c5aa993b JM |
890 | { |
891 | symbol_file_add (name, from_tty, (CORE_ADDR) 0, | |
892 | 1, mapped, readnow, 1, 0); | |
c906108c | 893 | #ifdef HPUXHPPA |
c5aa993b | 894 | RESET_HP_UX_GLOBALS (); |
c906108c | 895 | #endif |
c5aa993b JM |
896 | } |
897 | else | |
898 | symbol_file_add (name, from_tty, (CORE_ADDR) text_relocation, | |
c906108c SS |
899 | 0, mapped, readnow, 1, 0); |
900 | ||
901 | /* Getting new symbols may change our opinion about what is | |
c5aa993b | 902 | frameless. */ |
c906108c SS |
903 | reinit_frame_cache (); |
904 | ||
c5aa993b | 905 | set_initial_language (); |
c906108c SS |
906 | } |
907 | argv++; | |
908 | } | |
909 | ||
910 | if (name == NULL) | |
911 | { | |
912 | error ("no symbol file name was specified"); | |
913 | } | |
c5aa993b | 914 | TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction)); |
c906108c SS |
915 | do_cleanups (cleanups); |
916 | } | |
917 | } | |
918 | ||
919 | /* Set the initial language. | |
920 | ||
921 | A better solution would be to record the language in the psymtab when reading | |
922 | partial symbols, and then use it (if known) to set the language. This would | |
923 | be a win for formats that encode the language in an easily discoverable place, | |
924 | such as DWARF. For stabs, we can jump through hoops looking for specially | |
925 | named symbols or try to intuit the language from the specific type of stabs | |
926 | we find, but we can't do that until later when we read in full symbols. | |
927 | FIXME. */ | |
928 | ||
929 | static void | |
930 | set_initial_language () | |
931 | { | |
932 | struct partial_symtab *pst; | |
c5aa993b | 933 | enum language lang = language_unknown; |
c906108c SS |
934 | |
935 | pst = find_main_psymtab (); | |
936 | if (pst != NULL) | |
937 | { | |
c5aa993b | 938 | if (pst->filename != NULL) |
c906108c | 939 | { |
c5aa993b JM |
940 | lang = deduce_language_from_filename (pst->filename); |
941 | } | |
c906108c SS |
942 | if (lang == language_unknown) |
943 | { | |
c5aa993b JM |
944 | /* Make C the default language */ |
945 | lang = language_c; | |
c906108c SS |
946 | } |
947 | set_language (lang); | |
948 | expected_language = current_language; /* Don't warn the user */ | |
949 | } | |
950 | } | |
951 | ||
952 | /* Open file specified by NAME and hand it off to BFD for preliminary | |
953 | analysis. Result is a newly initialized bfd *, which includes a newly | |
954 | malloc'd` copy of NAME (tilde-expanded and made absolute). | |
955 | In case of trouble, error() is called. */ | |
956 | ||
957 | bfd * | |
958 | symfile_bfd_open (name) | |
959 | char *name; | |
960 | { | |
961 | bfd *sym_bfd; | |
962 | int desc; | |
963 | char *absolute_name; | |
964 | ||
965 | ||
966 | ||
967 | name = tilde_expand (name); /* Returns 1st new malloc'd copy */ | |
968 | ||
969 | /* Look down path for it, allocate 2nd new malloc'd copy. */ | |
970 | desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name); | |
971 | #if defined(__GO32__) || defined(_WIN32) | |
972 | if (desc < 0) | |
973 | { | |
974 | char *exename = alloca (strlen (name) + 5); | |
975 | strcat (strcpy (exename, name), ".exe"); | |
976 | desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY, | |
c5aa993b | 977 | 0, &absolute_name); |
c906108c SS |
978 | } |
979 | #endif | |
980 | if (desc < 0) | |
981 | { | |
982 | make_cleanup (free, name); | |
983 | perror_with_name (name); | |
984 | } | |
985 | free (name); /* Free 1st new malloc'd copy */ | |
986 | name = absolute_name; /* Keep 2nd malloc'd copy in bfd */ | |
c5aa993b | 987 | /* It'll be freed in free_objfile(). */ |
c906108c SS |
988 | |
989 | sym_bfd = bfd_fdopenr (name, gnutarget, desc); | |
990 | if (!sym_bfd) | |
991 | { | |
992 | close (desc); | |
993 | make_cleanup (free, name); | |
994 | error ("\"%s\": can't open to read symbols: %s.", name, | |
995 | bfd_errmsg (bfd_get_error ())); | |
996 | } | |
997 | sym_bfd->cacheable = true; | |
998 | ||
999 | if (!bfd_check_format (sym_bfd, bfd_object)) | |
1000 | { | |
1001 | /* FIXME: should be checking for errors from bfd_close (for one thing, | |
c5aa993b JM |
1002 | on error it does not free all the storage associated with the |
1003 | bfd). */ | |
c906108c SS |
1004 | bfd_close (sym_bfd); /* This also closes desc */ |
1005 | make_cleanup (free, name); | |
1006 | error ("\"%s\": can't read symbols: %s.", name, | |
1007 | bfd_errmsg (bfd_get_error ())); | |
1008 | } | |
1009 | return (sym_bfd); | |
1010 | } | |
1011 | ||
1012 | /* Link a new symtab_fns into the global symtab_fns list. Called on gdb | |
1013 | startup by the _initialize routine in each object file format reader, | |
1014 | to register information about each format the the reader is prepared | |
1015 | to handle. */ | |
1016 | ||
1017 | void | |
1018 | add_symtab_fns (sf) | |
1019 | struct sym_fns *sf; | |
1020 | { | |
1021 | sf->next = symtab_fns; | |
1022 | symtab_fns = sf; | |
1023 | } | |
1024 | ||
1025 | ||
1026 | /* Initialize to read symbols from the symbol file sym_bfd. It either | |
1027 | returns or calls error(). The result is an initialized struct sym_fns | |
1028 | in the objfile structure, that contains cached information about the | |
1029 | symbol file. */ | |
1030 | ||
1031 | static void | |
1032 | find_sym_fns (objfile) | |
1033 | struct objfile *objfile; | |
1034 | { | |
1035 | struct sym_fns *sf; | |
c5aa993b JM |
1036 | enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd); |
1037 | char *our_target = bfd_get_target (objfile->obfd); | |
c906108c SS |
1038 | |
1039 | /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */ | |
1040 | if (STREQ (our_target, "aixcoff-rs6000") || | |
1041 | STREQ (our_target, "xcoff-powermac")) | |
c5aa993b | 1042 | our_flavour = (enum bfd_flavour) -1; |
c906108c SS |
1043 | |
1044 | /* Special kludge for apollo. See dstread.c. */ | |
1045 | if (STREQN (our_target, "apollo", 6)) | |
c5aa993b | 1046 | our_flavour = (enum bfd_flavour) -2; |
c906108c | 1047 | |
c5aa993b | 1048 | for (sf = symtab_fns; sf != NULL; sf = sf->next) |
c906108c | 1049 | { |
c5aa993b | 1050 | if (our_flavour == sf->sym_flavour) |
c906108c | 1051 | { |
c5aa993b | 1052 | objfile->sf = sf; |
c906108c SS |
1053 | return; |
1054 | } | |
1055 | } | |
1056 | error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.", | |
c5aa993b | 1057 | bfd_get_target (objfile->obfd)); |
c906108c SS |
1058 | } |
1059 | \f | |
1060 | /* This function runs the load command of our current target. */ | |
1061 | ||
1062 | static void | |
1063 | load_command (arg, from_tty) | |
1064 | char *arg; | |
1065 | int from_tty; | |
1066 | { | |
1067 | if (arg == NULL) | |
1068 | arg = get_exec_file (1); | |
1069 | target_load (arg, from_tty); | |
1070 | } | |
1071 | ||
1072 | /* This version of "load" should be usable for any target. Currently | |
1073 | it is just used for remote targets, not inftarg.c or core files, | |
1074 | on the theory that only in that case is it useful. | |
1075 | ||
1076 | Avoiding xmodem and the like seems like a win (a) because we don't have | |
1077 | to worry about finding it, and (b) On VMS, fork() is very slow and so | |
1078 | we don't want to run a subprocess. On the other hand, I'm not sure how | |
1079 | performance compares. */ | |
1080 | #define GENERIC_LOAD_CHUNK 256 | |
1081 | #define VALIDATE_DOWNLOAD 0 | |
1082 | void | |
1083 | generic_load (filename, from_tty) | |
c5aa993b JM |
1084 | char *filename; |
1085 | int from_tty; | |
c906108c SS |
1086 | { |
1087 | struct cleanup *old_cleanups; | |
1088 | asection *s; | |
1089 | bfd *loadfile_bfd; | |
1090 | time_t start_time, end_time; /* Start and end times of download */ | |
1091 | unsigned long data_count = 0; /* Number of bytes transferred to memory */ | |
c5aa993b JM |
1092 | int n; |
1093 | unsigned long load_offset = 0; /* offset to add to vma for each section */ | |
1094 | char buf[GENERIC_LOAD_CHUNK + 8]; | |
1095 | #if VALIDATE_DOWNLOAD | |
1096 | char verify_buffer[GENERIC_LOAD_CHUNK + 8]; | |
1097 | #endif | |
c906108c SS |
1098 | |
1099 | /* enable user to specify address for downloading as 2nd arg to load */ | |
c5aa993b JM |
1100 | n = sscanf (filename, "%s 0x%lx", buf, &load_offset); |
1101 | if (n > 1) | |
c906108c SS |
1102 | filename = buf; |
1103 | else | |
1104 | load_offset = 0; | |
1105 | ||
1106 | loadfile_bfd = bfd_openr (filename, gnutarget); | |
1107 | if (loadfile_bfd == NULL) | |
1108 | { | |
1109 | perror_with_name (filename); | |
1110 | return; | |
1111 | } | |
1112 | /* FIXME: should be checking for errors from bfd_close (for one thing, | |
1113 | on error it does not free all the storage associated with the | |
1114 | bfd). */ | |
1115 | old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd); | |
1116 | ||
c5aa993b | 1117 | if (!bfd_check_format (loadfile_bfd, bfd_object)) |
c906108c SS |
1118 | { |
1119 | error ("\"%s\" is not an object file: %s", filename, | |
1120 | bfd_errmsg (bfd_get_error ())); | |
1121 | } | |
c5aa993b | 1122 | |
c906108c SS |
1123 | start_time = time (NULL); |
1124 | ||
c5aa993b JM |
1125 | for (s = loadfile_bfd->sections; s; s = s->next) |
1126 | { | |
1127 | if (s->flags & SEC_LOAD) | |
1128 | { | |
1129 | bfd_size_type size; | |
1130 | ||
1131 | size = bfd_get_section_size_before_reloc (s); | |
1132 | if (size > 0) | |
1133 | { | |
1134 | char *buffer; | |
1135 | struct cleanup *old_chain; | |
1136 | bfd_vma lma; | |
1137 | unsigned long l = size; | |
1138 | int err; | |
1139 | char *sect; | |
1140 | unsigned long sent; | |
1141 | unsigned long len; | |
1142 | ||
1143 | l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l; | |
1144 | ||
1145 | buffer = xmalloc (size); | |
1146 | old_chain = make_cleanup (free, buffer); | |
1147 | ||
1148 | lma = s->lma; | |
1149 | lma += load_offset; | |
1150 | ||
1151 | /* Is this really necessary? I guess it gives the user something | |
1152 | to look at during a long download. */ | |
1153 | printf_filtered ("Loading section %s, size 0x%lx lma ", | |
1154 | bfd_get_section_name (loadfile_bfd, s), | |
1155 | (unsigned long) size); | |
1156 | print_address_numeric (lma, 1, gdb_stdout); | |
1157 | printf_filtered ("\n"); | |
1158 | ||
1159 | bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size); | |
1160 | ||
1161 | sect = (char *) bfd_get_section_name (loadfile_bfd, s); | |
1162 | sent = 0; | |
1163 | do | |
1164 | { | |
1165 | len = (size - sent) < l ? (size - sent) : l; | |
1166 | sent += len; | |
1167 | err = target_write_memory (lma, buffer, len); | |
1168 | if (ui_load_progress_hook) | |
1169 | if (ui_load_progress_hook (sect, sent)) | |
c906108c SS |
1170 | error ("Canceled the download"); |
1171 | #if VALIDATE_DOWNLOAD | |
1172 | /* Broken memories and broken monitors manifest themselves | |
1173 | here when bring new computers to life. | |
1174 | This doubles already slow downloads. | |
c5aa993b JM |
1175 | */ |
1176 | if (err) | |
1177 | break; | |
c906108c | 1178 | { |
c5aa993b JM |
1179 | target_read_memory (lma, verify_buffer, len); |
1180 | if (0 != bcmp (buffer, verify_buffer, len)) | |
1181 | error ("Download verify failed at %08x", | |
1182 | (unsigned long) lma); | |
c906108c SS |
1183 | } |
1184 | ||
1185 | #endif | |
c5aa993b JM |
1186 | data_count += len; |
1187 | lma += len; | |
1188 | buffer += len; | |
1189 | } /* od */ | |
1190 | while (err == 0 && sent < size); | |
1191 | ||
1192 | if (err != 0) | |
1193 | error ("Memory access error while loading section %s.", | |
1194 | bfd_get_section_name (loadfile_bfd, s)); | |
c906108c | 1195 | |
c5aa993b JM |
1196 | do_cleanups (old_chain); |
1197 | } | |
1198 | } | |
c906108c SS |
1199 | } |
1200 | ||
1201 | end_time = time (NULL); | |
1202 | { | |
c5aa993b JM |
1203 | unsigned long entry; |
1204 | entry = bfd_get_start_address (loadfile_bfd); | |
1205 | printf_filtered ("Start address 0x%lx , load size %d\n", entry, data_count); | |
c906108c SS |
1206 | /* We were doing this in remote-mips.c, I suspect it is right |
1207 | for other targets too. */ | |
1208 | write_pc (entry); | |
1209 | } | |
1210 | ||
1211 | /* FIXME: are we supposed to call symbol_file_add or not? According to | |
1212 | a comment from remote-mips.c (where a call to symbol_file_add was | |
1213 | commented out), making the call confuses GDB if more than one file is | |
1214 | loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c | |
1215 | does. */ | |
1216 | ||
1217 | report_transfer_performance (data_count, start_time, end_time); | |
1218 | ||
1219 | do_cleanups (old_cleanups); | |
1220 | } | |
1221 | ||
1222 | /* Report how fast the transfer went. */ | |
1223 | ||
1224 | void | |
1225 | report_transfer_performance (data_count, start_time, end_time) | |
c5aa993b JM |
1226 | unsigned long data_count; |
1227 | time_t start_time, end_time; | |
c906108c SS |
1228 | { |
1229 | printf_filtered ("Transfer rate: "); | |
1230 | if (end_time != start_time) | |
1231 | printf_filtered ("%d bits/sec", | |
1232 | (data_count * 8) / (end_time - start_time)); | |
1233 | else | |
1234 | printf_filtered ("%d bits in <1 sec", (data_count * 8)); | |
1235 | printf_filtered (".\n"); | |
1236 | } | |
1237 | ||
1238 | /* This function allows the addition of incrementally linked object files. | |
1239 | It does not modify any state in the target, only in the debugger. */ | |
1240 | ||
1241 | /* ARGSUSED */ | |
1242 | static void | |
1243 | add_symbol_file_command (args, from_tty) | |
1244 | char *args; | |
1245 | int from_tty; | |
1246 | { | |
1247 | char *name = NULL; | |
1248 | CORE_ADDR text_addr; | |
1249 | char *arg; | |
1250 | int readnow = 0; | |
1251 | int mapped = 0; | |
c5aa993b | 1252 | |
c906108c SS |
1253 | dont_repeat (); |
1254 | ||
1255 | if (args == NULL) | |
1256 | { | |
1257 | error ("add-symbol-file takes a file name and an address"); | |
1258 | } | |
1259 | ||
1260 | /* Make a copy of the string that we can safely write into. */ | |
1261 | ||
1262 | args = strdup (args); | |
1263 | make_cleanup (free, args); | |
1264 | ||
1265 | /* Pick off any -option args and the file name. */ | |
1266 | ||
1267 | while ((*args != '\000') && (name == NULL)) | |
1268 | { | |
c5aa993b JM |
1269 | while (isspace (*args)) |
1270 | { | |
1271 | args++; | |
1272 | } | |
c906108c | 1273 | arg = args; |
c5aa993b JM |
1274 | while ((*args != '\000') && !isspace (*args)) |
1275 | { | |
1276 | args++; | |
1277 | } | |
c906108c SS |
1278 | if (*args != '\000') |
1279 | { | |
1280 | *args++ = '\000'; | |
1281 | } | |
1282 | if (*arg != '-') | |
1283 | { | |
1284 | name = arg; | |
1285 | } | |
1286 | else if (STREQ (arg, "-mapped")) | |
1287 | { | |
1288 | mapped = 1; | |
1289 | } | |
1290 | else if (STREQ (arg, "-readnow")) | |
1291 | { | |
1292 | readnow = 1; | |
1293 | } | |
1294 | else | |
1295 | { | |
1296 | error ("unknown option `%s'", arg); | |
1297 | } | |
1298 | } | |
1299 | ||
1300 | /* After picking off any options and the file name, args should be | |
1301 | left pointing at the remainder of the command line, which should | |
1302 | be the address expression to evaluate. */ | |
1303 | ||
1304 | if (name == NULL) | |
1305 | { | |
1306 | error ("add-symbol-file takes a file name"); | |
1307 | } | |
1308 | name = tilde_expand (name); | |
1309 | make_cleanup (free, name); | |
1310 | ||
1311 | if (*args != '\000') | |
1312 | { | |
1313 | text_addr = parse_and_eval_address (args); | |
1314 | } | |
1315 | else | |
1316 | { | |
c5aa993b | 1317 | target_link (name, &text_addr); |
a0b3c4fd | 1318 | if (text_addr == (CORE_ADDR) -1) |
c5aa993b | 1319 | error ("Don't know how to get text start location for this file"); |
c906108c SS |
1320 | } |
1321 | ||
1322 | /* FIXME-32x64: Assumes text_addr fits in a long. */ | |
1323 | if ((from_tty) | |
1324 | && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n", | |
c5aa993b | 1325 | name, local_hex_string ((unsigned long) text_addr)))) |
c906108c SS |
1326 | error ("Not confirmed."); |
1327 | ||
1328 | symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow, | |
c5aa993b JM |
1329 | 1, /* user_loaded */ |
1330 | 0); /* We'll guess it's ! is_solib */ | |
c906108c SS |
1331 | |
1332 | /* Getting new symbols may change our opinion about what is | |
1333 | frameless. */ | |
1334 | reinit_frame_cache (); | |
1335 | } | |
1336 | \f | |
1337 | static void | |
c5aa993b | 1338 | add_shared_symbol_files_command (args, from_tty) |
c906108c SS |
1339 | char *args; |
1340 | int from_tty; | |
1341 | { | |
1342 | #ifdef ADD_SHARED_SYMBOL_FILES | |
1343 | ADD_SHARED_SYMBOL_FILES (args, from_tty); | |
1344 | #else | |
1345 | error ("This command is not available in this configuration of GDB."); | |
c5aa993b | 1346 | #endif |
c906108c SS |
1347 | } |
1348 | \f | |
1349 | /* Re-read symbols if a symbol-file has changed. */ | |
1350 | void | |
1351 | reread_symbols () | |
1352 | { | |
1353 | struct objfile *objfile; | |
1354 | long new_modtime; | |
1355 | int reread_one = 0; | |
1356 | struct stat new_statbuf; | |
1357 | int res; | |
1358 | ||
1359 | /* With the addition of shared libraries, this should be modified, | |
1360 | the load time should be saved in the partial symbol tables, since | |
1361 | different tables may come from different source files. FIXME. | |
1362 | This routine should then walk down each partial symbol table | |
1363 | and see if the symbol table that it originates from has been changed */ | |
1364 | ||
c5aa993b JM |
1365 | for (objfile = object_files; objfile; objfile = objfile->next) |
1366 | { | |
1367 | if (objfile->obfd) | |
1368 | { | |
c906108c | 1369 | #ifdef IBM6000_TARGET |
c5aa993b JM |
1370 | /* If this object is from a shared library, then you should |
1371 | stat on the library name, not member name. */ | |
c906108c | 1372 | |
c5aa993b JM |
1373 | if (objfile->obfd->my_archive) |
1374 | res = stat (objfile->obfd->my_archive->filename, &new_statbuf); | |
1375 | else | |
c906108c | 1376 | #endif |
c5aa993b JM |
1377 | res = stat (objfile->name, &new_statbuf); |
1378 | if (res != 0) | |
c906108c | 1379 | { |
c5aa993b JM |
1380 | /* FIXME, should use print_sys_errmsg but it's not filtered. */ |
1381 | printf_filtered ("`%s' has disappeared; keeping its symbols.\n", | |
1382 | objfile->name); | |
1383 | continue; | |
c906108c | 1384 | } |
c5aa993b JM |
1385 | new_modtime = new_statbuf.st_mtime; |
1386 | if (new_modtime != objfile->mtime) | |
c906108c | 1387 | { |
c5aa993b JM |
1388 | struct cleanup *old_cleanups; |
1389 | struct section_offsets *offsets; | |
1390 | int num_offsets; | |
1391 | int section_offsets_size; | |
1392 | char *obfd_filename; | |
1393 | ||
1394 | printf_filtered ("`%s' has changed; re-reading symbols.\n", | |
1395 | objfile->name); | |
1396 | ||
1397 | /* There are various functions like symbol_file_add, | |
1398 | symfile_bfd_open, syms_from_objfile, etc., which might | |
1399 | appear to do what we want. But they have various other | |
1400 | effects which we *don't* want. So we just do stuff | |
1401 | ourselves. We don't worry about mapped files (for one thing, | |
1402 | any mapped file will be out of date). */ | |
1403 | ||
1404 | /* If we get an error, blow away this objfile (not sure if | |
1405 | that is the correct response for things like shared | |
1406 | libraries). */ | |
1407 | old_cleanups = make_cleanup ((make_cleanup_func) free_objfile, | |
1408 | objfile); | |
1409 | /* We need to do this whenever any symbols go away. */ | |
1410 | make_cleanup ((make_cleanup_func) clear_symtab_users, 0); | |
1411 | ||
1412 | /* Clean up any state BFD has sitting around. We don't need | |
1413 | to close the descriptor but BFD lacks a way of closing the | |
1414 | BFD without closing the descriptor. */ | |
1415 | obfd_filename = bfd_get_filename (objfile->obfd); | |
1416 | if (!bfd_close (objfile->obfd)) | |
1417 | error ("Can't close BFD for %s: %s", objfile->name, | |
1418 | bfd_errmsg (bfd_get_error ())); | |
1419 | objfile->obfd = bfd_openr (obfd_filename, gnutarget); | |
1420 | if (objfile->obfd == NULL) | |
1421 | error ("Can't open %s to read symbols.", objfile->name); | |
1422 | /* bfd_openr sets cacheable to true, which is what we want. */ | |
1423 | if (!bfd_check_format (objfile->obfd, bfd_object)) | |
1424 | error ("Can't read symbols from %s: %s.", objfile->name, | |
1425 | bfd_errmsg (bfd_get_error ())); | |
1426 | ||
1427 | /* Save the offsets, we will nuke them with the rest of the | |
1428 | psymbol_obstack. */ | |
1429 | num_offsets = objfile->num_sections; | |
1430 | section_offsets_size = | |
1431 | sizeof (struct section_offsets) | |
1432 | + sizeof (objfile->section_offsets->offsets) * num_offsets; | |
1433 | offsets = (struct section_offsets *) alloca (section_offsets_size); | |
1434 | memcpy (offsets, objfile->section_offsets, section_offsets_size); | |
1435 | ||
1436 | /* Nuke all the state that we will re-read. Much of the following | |
1437 | code which sets things to NULL really is necessary to tell | |
1438 | other parts of GDB that there is nothing currently there. */ | |
1439 | ||
1440 | /* FIXME: Do we have to free a whole linked list, or is this | |
1441 | enough? */ | |
1442 | if (objfile->global_psymbols.list) | |
1443 | mfree (objfile->md, objfile->global_psymbols.list); | |
1444 | memset (&objfile->global_psymbols, 0, | |
1445 | sizeof (objfile->global_psymbols)); | |
1446 | if (objfile->static_psymbols.list) | |
1447 | mfree (objfile->md, objfile->static_psymbols.list); | |
1448 | memset (&objfile->static_psymbols, 0, | |
1449 | sizeof (objfile->static_psymbols)); | |
1450 | ||
1451 | /* Free the obstacks for non-reusable objfiles */ | |
1452 | obstack_free (&objfile->psymbol_cache.cache, 0); | |
1453 | memset (&objfile->psymbol_cache, 0, | |
1454 | sizeof (objfile->psymbol_cache)); | |
1455 | obstack_free (&objfile->psymbol_obstack, 0); | |
1456 | obstack_free (&objfile->symbol_obstack, 0); | |
1457 | obstack_free (&objfile->type_obstack, 0); | |
1458 | objfile->sections = NULL; | |
1459 | objfile->symtabs = NULL; | |
1460 | objfile->psymtabs = NULL; | |
1461 | objfile->free_psymtabs = NULL; | |
1462 | objfile->msymbols = NULL; | |
1463 | objfile->minimal_symbol_count = 0; | |
1464 | objfile->fundamental_types = NULL; | |
1465 | if (objfile->sf != NULL) | |
1466 | { | |
1467 | (*objfile->sf->sym_finish) (objfile); | |
1468 | } | |
1469 | ||
1470 | /* We never make this a mapped file. */ | |
1471 | objfile->md = NULL; | |
1472 | /* obstack_specify_allocation also initializes the obstack so | |
1473 | it is empty. */ | |
1474 | obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0, | |
1475 | xmalloc, free); | |
1476 | obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, | |
1477 | xmalloc, free); | |
1478 | obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, | |
1479 | xmalloc, free); | |
1480 | obstack_specify_allocation (&objfile->type_obstack, 0, 0, | |
1481 | xmalloc, free); | |
1482 | if (build_objfile_section_table (objfile)) | |
1483 | { | |
1484 | error ("Can't find the file sections in `%s': %s", | |
1485 | objfile->name, bfd_errmsg (bfd_get_error ())); | |
1486 | } | |
1487 | ||
1488 | /* We use the same section offsets as from last time. I'm not | |
1489 | sure whether that is always correct for shared libraries. */ | |
1490 | objfile->section_offsets = (struct section_offsets *) | |
1491 | obstack_alloc (&objfile->psymbol_obstack, section_offsets_size); | |
1492 | memcpy (objfile->section_offsets, offsets, section_offsets_size); | |
1493 | objfile->num_sections = num_offsets; | |
1494 | ||
1495 | /* What the hell is sym_new_init for, anyway? The concept of | |
1496 | distinguishing between the main file and additional files | |
1497 | in this way seems rather dubious. */ | |
1498 | if (objfile == symfile_objfile) | |
1499 | { | |
1500 | (*objfile->sf->sym_new_init) (objfile); | |
c906108c | 1501 | #ifdef HPUXHPPA |
c5aa993b | 1502 | RESET_HP_UX_GLOBALS (); |
c906108c | 1503 | #endif |
c5aa993b JM |
1504 | } |
1505 | ||
1506 | (*objfile->sf->sym_init) (objfile); | |
1507 | clear_complaints (1, 1); | |
1508 | /* The "mainline" parameter is a hideous hack; I think leaving it | |
1509 | zero is OK since dbxread.c also does what it needs to do if | |
1510 | objfile->global_psymbols.size is 0. */ | |
96baa820 | 1511 | (*objfile->sf->sym_read) (objfile, 0); |
c5aa993b JM |
1512 | if (!have_partial_symbols () && !have_full_symbols ()) |
1513 | { | |
1514 | wrap_here (""); | |
1515 | printf_filtered ("(no debugging symbols found)\n"); | |
1516 | wrap_here (""); | |
1517 | } | |
1518 | objfile->flags |= OBJF_SYMS; | |
1519 | ||
1520 | /* We're done reading the symbol file; finish off complaints. */ | |
1521 | clear_complaints (0, 1); | |
c906108c | 1522 | |
c5aa993b JM |
1523 | /* Getting new symbols may change our opinion about what is |
1524 | frameless. */ | |
c906108c | 1525 | |
c5aa993b | 1526 | reinit_frame_cache (); |
c906108c | 1527 | |
c5aa993b JM |
1528 | /* Discard cleanups as symbol reading was successful. */ |
1529 | discard_cleanups (old_cleanups); | |
c906108c | 1530 | |
c5aa993b JM |
1531 | /* If the mtime has changed between the time we set new_modtime |
1532 | and now, we *want* this to be out of date, so don't call stat | |
1533 | again now. */ | |
1534 | objfile->mtime = new_modtime; | |
1535 | reread_one = 1; | |
c906108c | 1536 | |
c5aa993b JM |
1537 | /* Call this after reading in a new symbol table to give target |
1538 | dependant code a crack at the new symbols. For instance, this | |
1539 | could be used to update the values of target-specific symbols GDB | |
1540 | needs to keep track of (such as _sigtramp, or whatever). */ | |
c906108c | 1541 | |
c5aa993b JM |
1542 | TARGET_SYMFILE_POSTREAD (objfile); |
1543 | } | |
c906108c SS |
1544 | } |
1545 | } | |
c906108c SS |
1546 | |
1547 | if (reread_one) | |
1548 | clear_symtab_users (); | |
1549 | } | |
c906108c SS |
1550 | \f |
1551 | ||
c5aa993b JM |
1552 | |
1553 | typedef struct | |
1554 | { | |
1555 | char *ext; | |
c906108c | 1556 | enum language lang; |
c5aa993b JM |
1557 | } |
1558 | filename_language; | |
c906108c | 1559 | |
c5aa993b | 1560 | static filename_language *filename_language_table; |
c906108c SS |
1561 | static int fl_table_size, fl_table_next; |
1562 | ||
1563 | static void | |
1564 | add_filename_language (ext, lang) | |
c5aa993b | 1565 | char *ext; |
c906108c SS |
1566 | enum language lang; |
1567 | { | |
1568 | if (fl_table_next >= fl_table_size) | |
1569 | { | |
1570 | fl_table_size += 10; | |
c5aa993b | 1571 | filename_language_table = realloc (filename_language_table, |
c906108c SS |
1572 | fl_table_size); |
1573 | } | |
1574 | ||
c5aa993b | 1575 | filename_language_table[fl_table_next].ext = strsave (ext); |
c906108c SS |
1576 | filename_language_table[fl_table_next].lang = lang; |
1577 | fl_table_next++; | |
1578 | } | |
1579 | ||
1580 | static char *ext_args; | |
1581 | ||
1582 | static void | |
1583 | set_ext_lang_command (args, from_tty) | |
1584 | char *args; | |
1585 | int from_tty; | |
1586 | { | |
1587 | int i; | |
1588 | char *cp = ext_args; | |
1589 | enum language lang; | |
1590 | ||
1591 | /* First arg is filename extension, starting with '.' */ | |
1592 | if (*cp != '.') | |
1593 | error ("'%s': Filename extension must begin with '.'", ext_args); | |
1594 | ||
1595 | /* Find end of first arg. */ | |
c5aa993b | 1596 | while (*cp && !isspace (*cp)) |
c906108c SS |
1597 | cp++; |
1598 | ||
1599 | if (*cp == '\0') | |
1600 | error ("'%s': two arguments required -- filename extension and language", | |
1601 | ext_args); | |
1602 | ||
1603 | /* Null-terminate first arg */ | |
c5aa993b | 1604 | *cp++ = '\0'; |
c906108c SS |
1605 | |
1606 | /* Find beginning of second arg, which should be a source language. */ | |
1607 | while (*cp && isspace (*cp)) | |
1608 | cp++; | |
1609 | ||
1610 | if (*cp == '\0') | |
1611 | error ("'%s': two arguments required -- filename extension and language", | |
1612 | ext_args); | |
1613 | ||
1614 | /* Lookup the language from among those we know. */ | |
1615 | lang = language_enum (cp); | |
1616 | ||
1617 | /* Now lookup the filename extension: do we already know it? */ | |
1618 | for (i = 0; i < fl_table_next; i++) | |
1619 | if (0 == strcmp (ext_args, filename_language_table[i].ext)) | |
1620 | break; | |
1621 | ||
1622 | if (i >= fl_table_next) | |
1623 | { | |
1624 | /* new file extension */ | |
1625 | add_filename_language (ext_args, lang); | |
1626 | } | |
1627 | else | |
1628 | { | |
1629 | /* redefining a previously known filename extension */ | |
1630 | ||
1631 | /* if (from_tty) */ | |
1632 | /* query ("Really make files of type %s '%s'?", */ | |
1633 | /* ext_args, language_str (lang)); */ | |
1634 | ||
1635 | free (filename_language_table[i].ext); | |
c5aa993b | 1636 | filename_language_table[i].ext = strsave (ext_args); |
c906108c SS |
1637 | filename_language_table[i].lang = lang; |
1638 | } | |
1639 | } | |
1640 | ||
1641 | static void | |
1642 | info_ext_lang_command (args, from_tty) | |
1643 | char *args; | |
c5aa993b | 1644 | int from_tty; |
c906108c SS |
1645 | { |
1646 | int i; | |
1647 | ||
1648 | printf_filtered ("Filename extensions and the languages they represent:"); | |
1649 | printf_filtered ("\n\n"); | |
1650 | for (i = 0; i < fl_table_next; i++) | |
c5aa993b JM |
1651 | printf_filtered ("\t%s\t- %s\n", |
1652 | filename_language_table[i].ext, | |
c906108c SS |
1653 | language_str (filename_language_table[i].lang)); |
1654 | } | |
1655 | ||
1656 | static void | |
1657 | init_filename_language_table () | |
1658 | { | |
1659 | if (fl_table_size == 0) /* protect against repetition */ | |
1660 | { | |
1661 | fl_table_size = 20; | |
1662 | fl_table_next = 0; | |
c5aa993b | 1663 | filename_language_table = |
c906108c | 1664 | xmalloc (fl_table_size * sizeof (*filename_language_table)); |
c5aa993b JM |
1665 | add_filename_language (".c", language_c); |
1666 | add_filename_language (".C", language_cplus); | |
1667 | add_filename_language (".cc", language_cplus); | |
1668 | add_filename_language (".cp", language_cplus); | |
1669 | add_filename_language (".cpp", language_cplus); | |
1670 | add_filename_language (".cxx", language_cplus); | |
1671 | add_filename_language (".c++", language_cplus); | |
1672 | add_filename_language (".java", language_java); | |
c906108c | 1673 | add_filename_language (".class", language_java); |
c5aa993b JM |
1674 | add_filename_language (".ch", language_chill); |
1675 | add_filename_language (".c186", language_chill); | |
1676 | add_filename_language (".c286", language_chill); | |
1677 | add_filename_language (".f", language_fortran); | |
1678 | add_filename_language (".F", language_fortran); | |
1679 | add_filename_language (".s", language_asm); | |
1680 | add_filename_language (".S", language_asm); | |
c906108c SS |
1681 | } |
1682 | } | |
1683 | ||
1684 | enum language | |
1685 | deduce_language_from_filename (filename) | |
1686 | char *filename; | |
1687 | { | |
1688 | int i; | |
1689 | char *cp; | |
1690 | ||
1691 | if (filename != NULL) | |
1692 | if ((cp = strrchr (filename, '.')) != NULL) | |
1693 | for (i = 0; i < fl_table_next; i++) | |
1694 | if (strcmp (cp, filename_language_table[i].ext) == 0) | |
1695 | return filename_language_table[i].lang; | |
1696 | ||
1697 | return language_unknown; | |
1698 | } | |
1699 | \f | |
1700 | /* allocate_symtab: | |
1701 | ||
1702 | Allocate and partly initialize a new symbol table. Return a pointer | |
1703 | to it. error() if no space. | |
1704 | ||
1705 | Caller must set these fields: | |
c5aa993b JM |
1706 | LINETABLE(symtab) |
1707 | symtab->blockvector | |
1708 | symtab->dirname | |
1709 | symtab->free_code | |
1710 | symtab->free_ptr | |
1711 | possibly free_named_symtabs (symtab->filename); | |
c906108c SS |
1712 | */ |
1713 | ||
1714 | struct symtab * | |
1715 | allocate_symtab (filename, objfile) | |
1716 | char *filename; | |
1717 | struct objfile *objfile; | |
1718 | { | |
1719 | register struct symtab *symtab; | |
1720 | ||
1721 | symtab = (struct symtab *) | |
c5aa993b | 1722 | obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab)); |
c906108c | 1723 | memset (symtab, 0, sizeof (*symtab)); |
c5aa993b JM |
1724 | symtab->filename = obsavestring (filename, strlen (filename), |
1725 | &objfile->symbol_obstack); | |
1726 | symtab->fullname = NULL; | |
1727 | symtab->language = deduce_language_from_filename (filename); | |
1728 | symtab->debugformat = obsavestring ("unknown", 7, | |
1729 | &objfile->symbol_obstack); | |
c906108c SS |
1730 | |
1731 | /* Hook it to the objfile it comes from */ | |
1732 | ||
c5aa993b JM |
1733 | symtab->objfile = objfile; |
1734 | symtab->next = objfile->symtabs; | |
1735 | objfile->symtabs = symtab; | |
c906108c SS |
1736 | |
1737 | /* FIXME: This should go away. It is only defined for the Z8000, | |
1738 | and the Z8000 definition of this macro doesn't have anything to | |
1739 | do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just | |
1740 | here for convenience. */ | |
1741 | #ifdef INIT_EXTRA_SYMTAB_INFO | |
1742 | INIT_EXTRA_SYMTAB_INFO (symtab); | |
1743 | #endif | |
1744 | ||
1745 | return (symtab); | |
1746 | } | |
1747 | ||
1748 | struct partial_symtab * | |
1749 | allocate_psymtab (filename, objfile) | |
1750 | char *filename; | |
1751 | struct objfile *objfile; | |
1752 | { | |
1753 | struct partial_symtab *psymtab; | |
1754 | ||
c5aa993b | 1755 | if (objfile->free_psymtabs) |
c906108c | 1756 | { |
c5aa993b JM |
1757 | psymtab = objfile->free_psymtabs; |
1758 | objfile->free_psymtabs = psymtab->next; | |
c906108c SS |
1759 | } |
1760 | else | |
1761 | psymtab = (struct partial_symtab *) | |
c5aa993b | 1762 | obstack_alloc (&objfile->psymbol_obstack, |
c906108c SS |
1763 | sizeof (struct partial_symtab)); |
1764 | ||
1765 | memset (psymtab, 0, sizeof (struct partial_symtab)); | |
c5aa993b JM |
1766 | psymtab->filename = obsavestring (filename, strlen (filename), |
1767 | &objfile->psymbol_obstack); | |
1768 | psymtab->symtab = NULL; | |
c906108c SS |
1769 | |
1770 | /* Prepend it to the psymtab list for the objfile it belongs to. | |
1771 | Psymtabs are searched in most recent inserted -> least recent | |
1772 | inserted order. */ | |
1773 | ||
c5aa993b JM |
1774 | psymtab->objfile = objfile; |
1775 | psymtab->next = objfile->psymtabs; | |
1776 | objfile->psymtabs = psymtab; | |
c906108c SS |
1777 | #if 0 |
1778 | { | |
1779 | struct partial_symtab **prev_pst; | |
c5aa993b JM |
1780 | psymtab->objfile = objfile; |
1781 | psymtab->next = NULL; | |
1782 | prev_pst = &(objfile->psymtabs); | |
c906108c | 1783 | while ((*prev_pst) != NULL) |
c5aa993b | 1784 | prev_pst = &((*prev_pst)->next); |
c906108c | 1785 | (*prev_pst) = psymtab; |
c5aa993b | 1786 | } |
c906108c | 1787 | #endif |
c5aa993b | 1788 | |
c906108c SS |
1789 | return (psymtab); |
1790 | } | |
1791 | ||
1792 | void | |
1793 | discard_psymtab (pst) | |
1794 | struct partial_symtab *pst; | |
1795 | { | |
1796 | struct partial_symtab **prev_pst; | |
1797 | ||
1798 | /* From dbxread.c: | |
1799 | Empty psymtabs happen as a result of header files which don't | |
1800 | have any symbols in them. There can be a lot of them. But this | |
1801 | check is wrong, in that a psymtab with N_SLINE entries but | |
1802 | nothing else is not empty, but we don't realize that. Fixing | |
1803 | that without slowing things down might be tricky. */ | |
1804 | ||
1805 | /* First, snip it out of the psymtab chain */ | |
1806 | ||
1807 | prev_pst = &(pst->objfile->psymtabs); | |
1808 | while ((*prev_pst) != pst) | |
1809 | prev_pst = &((*prev_pst)->next); | |
1810 | (*prev_pst) = pst->next; | |
1811 | ||
1812 | /* Next, put it on a free list for recycling */ | |
1813 | ||
1814 | pst->next = pst->objfile->free_psymtabs; | |
1815 | pst->objfile->free_psymtabs = pst; | |
1816 | } | |
c906108c | 1817 | \f |
c5aa993b | 1818 | |
c906108c SS |
1819 | /* Reset all data structures in gdb which may contain references to symbol |
1820 | table data. */ | |
1821 | ||
1822 | void | |
1823 | clear_symtab_users () | |
1824 | { | |
1825 | /* Someday, we should do better than this, by only blowing away | |
1826 | the things that really need to be blown. */ | |
1827 | clear_value_history (); | |
1828 | clear_displays (); | |
1829 | clear_internalvars (); | |
1830 | breakpoint_re_set (); | |
1831 | set_default_breakpoint (0, 0, 0, 0); | |
1832 | current_source_symtab = 0; | |
1833 | current_source_line = 0; | |
1834 | clear_pc_function_cache (); | |
1835 | target_new_objfile (NULL); | |
1836 | } | |
1837 | ||
1838 | /* clear_symtab_users_once: | |
1839 | ||
1840 | This function is run after symbol reading, or from a cleanup. | |
1841 | If an old symbol table was obsoleted, the old symbol table | |
1842 | has been blown away, but the other GDB data structures that may | |
1843 | reference it have not yet been cleared or re-directed. (The old | |
1844 | symtab was zapped, and the cleanup queued, in free_named_symtab() | |
1845 | below.) | |
1846 | ||
1847 | This function can be queued N times as a cleanup, or called | |
1848 | directly; it will do all the work the first time, and then will be a | |
1849 | no-op until the next time it is queued. This works by bumping a | |
1850 | counter at queueing time. Much later when the cleanup is run, or at | |
1851 | the end of symbol processing (in case the cleanup is discarded), if | |
1852 | the queued count is greater than the "done-count", we do the work | |
1853 | and set the done-count to the queued count. If the queued count is | |
1854 | less than or equal to the done-count, we just ignore the call. This | |
1855 | is needed because reading a single .o file will often replace many | |
1856 | symtabs (one per .h file, for example), and we don't want to reset | |
1857 | the breakpoints N times in the user's face. | |
1858 | ||
1859 | The reason we both queue a cleanup, and call it directly after symbol | |
1860 | reading, is because the cleanup protects us in case of errors, but is | |
1861 | discarded if symbol reading is successful. */ | |
1862 | ||
1863 | #if 0 | |
1864 | /* FIXME: As free_named_symtabs is currently a big noop this function | |
1865 | is no longer needed. */ | |
1866 | static void | |
1867 | clear_symtab_users_once PARAMS ((void)); | |
1868 | ||
1869 | static int clear_symtab_users_queued; | |
1870 | static int clear_symtab_users_done; | |
1871 | ||
1872 | static void | |
1873 | clear_symtab_users_once () | |
1874 | { | |
1875 | /* Enforce once-per-`do_cleanups'-semantics */ | |
1876 | if (clear_symtab_users_queued <= clear_symtab_users_done) | |
1877 | return; | |
1878 | clear_symtab_users_done = clear_symtab_users_queued; | |
1879 | ||
1880 | clear_symtab_users (); | |
1881 | } | |
1882 | #endif | |
1883 | ||
1884 | /* Delete the specified psymtab, and any others that reference it. */ | |
1885 | ||
1886 | static void | |
1887 | cashier_psymtab (pst) | |
1888 | struct partial_symtab *pst; | |
1889 | { | |
1890 | struct partial_symtab *ps, *pprev = NULL; | |
1891 | int i; | |
1892 | ||
1893 | /* Find its previous psymtab in the chain */ | |
c5aa993b JM |
1894 | for (ps = pst->objfile->psymtabs; ps; ps = ps->next) |
1895 | { | |
1896 | if (ps == pst) | |
1897 | break; | |
1898 | pprev = ps; | |
1899 | } | |
c906108c | 1900 | |
c5aa993b JM |
1901 | if (ps) |
1902 | { | |
1903 | /* Unhook it from the chain. */ | |
1904 | if (ps == pst->objfile->psymtabs) | |
1905 | pst->objfile->psymtabs = ps->next; | |
1906 | else | |
1907 | pprev->next = ps->next; | |
1908 | ||
1909 | /* FIXME, we can't conveniently deallocate the entries in the | |
1910 | partial_symbol lists (global_psymbols/static_psymbols) that | |
1911 | this psymtab points to. These just take up space until all | |
1912 | the psymtabs are reclaimed. Ditto the dependencies list and | |
1913 | filename, which are all in the psymbol_obstack. */ | |
1914 | ||
1915 | /* We need to cashier any psymtab that has this one as a dependency... */ | |
1916 | again: | |
1917 | for (ps = pst->objfile->psymtabs; ps; ps = ps->next) | |
1918 | { | |
1919 | for (i = 0; i < ps->number_of_dependencies; i++) | |
1920 | { | |
1921 | if (ps->dependencies[i] == pst) | |
1922 | { | |
1923 | cashier_psymtab (ps); | |
1924 | goto again; /* Must restart, chain has been munged. */ | |
1925 | } | |
1926 | } | |
c906108c | 1927 | } |
c906108c | 1928 | } |
c906108c SS |
1929 | } |
1930 | ||
1931 | /* If a symtab or psymtab for filename NAME is found, free it along | |
1932 | with any dependent breakpoints, displays, etc. | |
1933 | Used when loading new versions of object modules with the "add-file" | |
1934 | command. This is only called on the top-level symtab or psymtab's name; | |
1935 | it is not called for subsidiary files such as .h files. | |
1936 | ||
1937 | Return value is 1 if we blew away the environment, 0 if not. | |
1938 | FIXME. The return valu appears to never be used. | |
1939 | ||
1940 | FIXME. I think this is not the best way to do this. We should | |
1941 | work on being gentler to the environment while still cleaning up | |
1942 | all stray pointers into the freed symtab. */ | |
1943 | ||
1944 | int | |
1945 | free_named_symtabs (name) | |
1946 | char *name; | |
1947 | { | |
1948 | #if 0 | |
1949 | /* FIXME: With the new method of each objfile having it's own | |
1950 | psymtab list, this function needs serious rethinking. In particular, | |
1951 | why was it ever necessary to toss psymtabs with specific compilation | |
1952 | unit filenames, as opposed to all psymtabs from a particular symbol | |
1953 | file? -- fnf | |
1954 | Well, the answer is that some systems permit reloading of particular | |
1955 | compilation units. We want to blow away any old info about these | |
1956 | compilation units, regardless of which objfiles they arrived in. --gnu. */ | |
1957 | ||
1958 | register struct symtab *s; | |
1959 | register struct symtab *prev; | |
1960 | register struct partial_symtab *ps; | |
1961 | struct blockvector *bv; | |
1962 | int blewit = 0; | |
1963 | ||
1964 | /* We only wack things if the symbol-reload switch is set. */ | |
1965 | if (!symbol_reloading) | |
1966 | return 0; | |
1967 | ||
1968 | /* Some symbol formats have trouble providing file names... */ | |
1969 | if (name == 0 || *name == '\0') | |
1970 | return 0; | |
1971 | ||
1972 | /* Look for a psymtab with the specified name. */ | |
1973 | ||
1974 | again2: | |
c5aa993b JM |
1975 | for (ps = partial_symtab_list; ps; ps = ps->next) |
1976 | { | |
1977 | if (STREQ (name, ps->filename)) | |
1978 | { | |
1979 | cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ | |
1980 | goto again2; /* Must restart, chain has been munged */ | |
1981 | } | |
c906108c | 1982 | } |
c906108c SS |
1983 | |
1984 | /* Look for a symtab with the specified name. */ | |
1985 | ||
1986 | for (s = symtab_list; s; s = s->next) | |
1987 | { | |
1988 | if (STREQ (name, s->filename)) | |
1989 | break; | |
1990 | prev = s; | |
1991 | } | |
1992 | ||
1993 | if (s) | |
1994 | { | |
1995 | if (s == symtab_list) | |
1996 | symtab_list = s->next; | |
1997 | else | |
1998 | prev->next = s->next; | |
1999 | ||
2000 | /* For now, queue a delete for all breakpoints, displays, etc., whether | |
c5aa993b JM |
2001 | or not they depend on the symtab being freed. This should be |
2002 | changed so that only those data structures affected are deleted. */ | |
c906108c SS |
2003 | |
2004 | /* But don't delete anything if the symtab is empty. | |
c5aa993b JM |
2005 | This test is necessary due to a bug in "dbxread.c" that |
2006 | causes empty symtabs to be created for N_SO symbols that | |
2007 | contain the pathname of the object file. (This problem | |
2008 | has been fixed in GDB 3.9x). */ | |
c906108c SS |
2009 | |
2010 | bv = BLOCKVECTOR (s); | |
2011 | if (BLOCKVECTOR_NBLOCKS (bv) > 2 | |
2012 | || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) | |
2013 | || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) | |
2014 | { | |
2015 | complain (&oldsyms_complaint, name); | |
2016 | ||
2017 | clear_symtab_users_queued++; | |
2018 | make_cleanup (clear_symtab_users_once, 0); | |
2019 | blewit = 1; | |
c5aa993b JM |
2020 | } |
2021 | else | |
2022 | { | |
c906108c SS |
2023 | complain (&empty_symtab_complaint, name); |
2024 | } | |
2025 | ||
2026 | free_symtab (s); | |
2027 | } | |
2028 | else | |
2029 | { | |
2030 | /* It is still possible that some breakpoints will be affected | |
c5aa993b JM |
2031 | even though no symtab was found, since the file might have |
2032 | been compiled without debugging, and hence not be associated | |
2033 | with a symtab. In order to handle this correctly, we would need | |
2034 | to keep a list of text address ranges for undebuggable files. | |
2035 | For now, we do nothing, since this is a fairly obscure case. */ | |
c906108c SS |
2036 | ; |
2037 | } | |
2038 | ||
2039 | /* FIXME, what about the minimal symbol table? */ | |
2040 | return blewit; | |
2041 | #else | |
2042 | return (0); | |
2043 | #endif | |
2044 | } | |
2045 | \f | |
2046 | /* Allocate and partially fill a partial symtab. It will be | |
2047 | completely filled at the end of the symbol list. | |
2048 | ||
2049 | SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR | |
2050 | is the address relative to which its symbols are (incremental) or 0 | |
2051 | (normal). */ | |
2052 | ||
2053 | ||
2054 | struct partial_symtab * | |
2055 | start_psymtab_common (objfile, section_offsets, | |
2056 | filename, textlow, global_syms, static_syms) | |
2057 | struct objfile *objfile; | |
2058 | struct section_offsets *section_offsets; | |
2059 | char *filename; | |
2060 | CORE_ADDR textlow; | |
2061 | struct partial_symbol **global_syms; | |
2062 | struct partial_symbol **static_syms; | |
2063 | { | |
2064 | struct partial_symtab *psymtab; | |
2065 | ||
2066 | psymtab = allocate_psymtab (filename, objfile); | |
c5aa993b JM |
2067 | psymtab->section_offsets = section_offsets; |
2068 | psymtab->textlow = textlow; | |
2069 | psymtab->texthigh = psymtab->textlow; /* default */ | |
2070 | psymtab->globals_offset = global_syms - objfile->global_psymbols.list; | |
2071 | psymtab->statics_offset = static_syms - objfile->static_psymbols.list; | |
c906108c SS |
2072 | return (psymtab); |
2073 | } | |
2074 | \f | |
2075 | /* Add a symbol with a long value to a psymtab. | |
2076 | Since one arg is a struct, we pass in a ptr and deref it (sigh). */ | |
2077 | ||
2078 | void | |
2079 | add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr, | |
2080 | language, objfile) | |
2081 | char *name; | |
2082 | int namelength; | |
2083 | namespace_enum namespace; | |
2084 | enum address_class class; | |
2085 | struct psymbol_allocation_list *list; | |
c5aa993b JM |
2086 | long val; /* Value as a long */ |
2087 | CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ | |
c906108c SS |
2088 | enum language language; |
2089 | struct objfile *objfile; | |
2090 | { | |
2091 | register struct partial_symbol *psym; | |
2092 | char *buf = alloca (namelength + 1); | |
2093 | /* psymbol is static so that there will be no uninitialized gaps in the | |
2094 | structure which might contain random data, causing cache misses in | |
2095 | bcache. */ | |
2096 | static struct partial_symbol psymbol; | |
2097 | ||
2098 | /* Create local copy of the partial symbol */ | |
2099 | memcpy (buf, name, namelength); | |
2100 | buf[namelength] = '\0'; | |
2101 | SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); | |
2102 | /* val and coreaddr are mutually exclusive, one of them *will* be zero */ | |
2103 | if (val != 0) | |
2104 | { | |
2105 | SYMBOL_VALUE (&psymbol) = val; | |
2106 | } | |
2107 | else | |
2108 | { | |
2109 | SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; | |
2110 | } | |
2111 | SYMBOL_SECTION (&psymbol) = 0; | |
2112 | SYMBOL_LANGUAGE (&psymbol) = language; | |
2113 | PSYMBOL_NAMESPACE (&psymbol) = namespace; | |
2114 | PSYMBOL_CLASS (&psymbol) = class; | |
2115 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); | |
2116 | ||
2117 | /* Stash the partial symbol away in the cache */ | |
2118 | psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); | |
2119 | ||
2120 | /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ | |
2121 | if (list->next >= list->list + list->size) | |
2122 | { | |
2123 | extend_psymbol_list (list, objfile); | |
2124 | } | |
2125 | *list->next++ = psym; | |
2126 | OBJSTAT (objfile, n_psyms++); | |
2127 | } | |
2128 | ||
2129 | /* Add a symbol with a long value to a psymtab. This differs from | |
2130 | * add_psymbol_to_list above in taking both a mangled and a demangled | |
2131 | * name. */ | |
2132 | ||
2133 | void | |
2134 | add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength, | |
c5aa993b | 2135 | namespace, class, list, val, coreaddr, language, objfile) |
c906108c SS |
2136 | char *name; |
2137 | int namelength; | |
2138 | char *dem_name; | |
2139 | int dem_namelength; | |
2140 | namespace_enum namespace; | |
2141 | enum address_class class; | |
2142 | struct psymbol_allocation_list *list; | |
c5aa993b JM |
2143 | long val; /* Value as a long */ |
2144 | CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ | |
c906108c SS |
2145 | enum language language; |
2146 | struct objfile *objfile; | |
2147 | { | |
2148 | register struct partial_symbol *psym; | |
2149 | char *buf = alloca (namelength + 1); | |
2150 | /* psymbol is static so that there will be no uninitialized gaps in the | |
2151 | structure which might contain random data, causing cache misses in | |
2152 | bcache. */ | |
2153 | static struct partial_symbol psymbol; | |
2154 | ||
2155 | /* Create local copy of the partial symbol */ | |
2156 | ||
2157 | memcpy (buf, name, namelength); | |
2158 | buf[namelength] = '\0'; | |
2159 | SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); | |
2160 | ||
2161 | buf = alloca (dem_namelength + 1); | |
2162 | memcpy (buf, dem_name, dem_namelength); | |
2163 | buf[dem_namelength] = '\0'; | |
c5aa993b | 2164 | |
c906108c SS |
2165 | switch (language) |
2166 | { | |
c5aa993b JM |
2167 | case language_c: |
2168 | case language_cplus: | |
2169 | SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) = | |
2170 | bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); | |
2171 | break; | |
2172 | case language_chill: | |
2173 | SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = | |
2174 | bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); | |
2175 | ||
c906108c SS |
2176 | /* FIXME What should be done for the default case? Ignoring for now. */ |
2177 | } | |
2178 | ||
2179 | /* val and coreaddr are mutually exclusive, one of them *will* be zero */ | |
2180 | if (val != 0) | |
2181 | { | |
2182 | SYMBOL_VALUE (&psymbol) = val; | |
2183 | } | |
2184 | else | |
2185 | { | |
2186 | SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; | |
2187 | } | |
2188 | SYMBOL_SECTION (&psymbol) = 0; | |
2189 | SYMBOL_LANGUAGE (&psymbol) = language; | |
2190 | PSYMBOL_NAMESPACE (&psymbol) = namespace; | |
2191 | PSYMBOL_CLASS (&psymbol) = class; | |
2192 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); | |
2193 | ||
2194 | /* Stash the partial symbol away in the cache */ | |
2195 | psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); | |
2196 | ||
2197 | /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ | |
2198 | if (list->next >= list->list + list->size) | |
2199 | { | |
2200 | extend_psymbol_list (list, objfile); | |
2201 | } | |
2202 | *list->next++ = psym; | |
2203 | OBJSTAT (objfile, n_psyms++); | |
2204 | } | |
2205 | ||
2206 | /* Initialize storage for partial symbols. */ | |
2207 | ||
2208 | void | |
2209 | init_psymbol_list (objfile, total_symbols) | |
2210 | struct objfile *objfile; | |
2211 | int total_symbols; | |
2212 | { | |
2213 | /* Free any previously allocated psymbol lists. */ | |
c5aa993b JM |
2214 | |
2215 | if (objfile->global_psymbols.list) | |
c906108c | 2216 | { |
c5aa993b | 2217 | mfree (objfile->md, (PTR) objfile->global_psymbols.list); |
c906108c | 2218 | } |
c5aa993b | 2219 | if (objfile->static_psymbols.list) |
c906108c | 2220 | { |
c5aa993b | 2221 | mfree (objfile->md, (PTR) objfile->static_psymbols.list); |
c906108c | 2222 | } |
c5aa993b | 2223 | |
c906108c SS |
2224 | /* Current best guess is that approximately a twentieth |
2225 | of the total symbols (in a debugging file) are global or static | |
2226 | oriented symbols */ | |
c906108c | 2227 | |
c5aa993b JM |
2228 | objfile->global_psymbols.size = total_symbols / 10; |
2229 | objfile->static_psymbols.size = total_symbols / 10; | |
2230 | ||
2231 | if (objfile->global_psymbols.size > 0) | |
c906108c | 2232 | { |
c5aa993b JM |
2233 | objfile->global_psymbols.next = |
2234 | objfile->global_psymbols.list = (struct partial_symbol **) | |
2235 | xmmalloc (objfile->md, (objfile->global_psymbols.size | |
2236 | * sizeof (struct partial_symbol *))); | |
c906108c | 2237 | } |
c5aa993b | 2238 | if (objfile->static_psymbols.size > 0) |
c906108c | 2239 | { |
c5aa993b JM |
2240 | objfile->static_psymbols.next = |
2241 | objfile->static_psymbols.list = (struct partial_symbol **) | |
2242 | xmmalloc (objfile->md, (objfile->static_psymbols.size | |
2243 | * sizeof (struct partial_symbol *))); | |
c906108c SS |
2244 | } |
2245 | } | |
2246 | ||
2247 | /* OVERLAYS: | |
2248 | The following code implements an abstraction for debugging overlay sections. | |
2249 | ||
2250 | The target model is as follows: | |
2251 | 1) The gnu linker will permit multiple sections to be mapped into the | |
c5aa993b | 2252 | same VMA, each with its own unique LMA (or load address). |
c906108c | 2253 | 2) It is assumed that some runtime mechanism exists for mapping the |
c5aa993b | 2254 | sections, one by one, from the load address into the VMA address. |
c906108c | 2255 | 3) This code provides a mechanism for gdb to keep track of which |
c5aa993b JM |
2256 | sections should be considered to be mapped from the VMA to the LMA. |
2257 | This information is used for symbol lookup, and memory read/write. | |
2258 | For instance, if a section has been mapped then its contents | |
2259 | should be read from the VMA, otherwise from the LMA. | |
c906108c SS |
2260 | |
2261 | Two levels of debugger support for overlays are available. One is | |
2262 | "manual", in which the debugger relies on the user to tell it which | |
2263 | overlays are currently mapped. This level of support is | |
2264 | implemented entirely in the core debugger, and the information about | |
2265 | whether a section is mapped is kept in the objfile->obj_section table. | |
2266 | ||
2267 | The second level of support is "automatic", and is only available if | |
2268 | the target-specific code provides functionality to read the target's | |
2269 | overlay mapping table, and translate its contents for the debugger | |
2270 | (by updating the mapped state information in the obj_section tables). | |
2271 | ||
2272 | The interface is as follows: | |
c5aa993b JM |
2273 | User commands: |
2274 | overlay map <name> -- tell gdb to consider this section mapped | |
2275 | overlay unmap <name> -- tell gdb to consider this section unmapped | |
2276 | overlay list -- list the sections that GDB thinks are mapped | |
2277 | overlay read-target -- get the target's state of what's mapped | |
2278 | overlay off/manual/auto -- set overlay debugging state | |
2279 | Functional interface: | |
2280 | find_pc_mapped_section(pc): if the pc is in the range of a mapped | |
2281 | section, return that section. | |
2282 | find_pc_overlay(pc): find any overlay section that contains | |
2283 | the pc, either in its VMA or its LMA | |
2284 | overlay_is_mapped(sect): true if overlay is marked as mapped | |
2285 | section_is_overlay(sect): true if section's VMA != LMA | |
2286 | pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA | |
2287 | pc_in_unmapped_range(...): true if pc belongs to section's LMA | |
2288 | overlay_mapped_address(...): map an address from section's LMA to VMA | |
2289 | overlay_unmapped_address(...): map an address from section's VMA to LMA | |
2290 | symbol_overlayed_address(...): Return a "current" address for symbol: | |
2291 | either in VMA or LMA depending on whether | |
2292 | the symbol's section is currently mapped | |
c906108c SS |
2293 | */ |
2294 | ||
2295 | /* Overlay debugging state: */ | |
2296 | ||
2297 | int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */ | |
2298 | int overlay_cache_invalid = 0; /* True if need to refresh mapped state */ | |
2299 | ||
2300 | /* Target vector for refreshing overlay mapped state */ | |
2301 | static void simple_overlay_update PARAMS ((struct obj_section *)); | |
c5aa993b JM |
2302 | void (*target_overlay_update) PARAMS ((struct obj_section *)) |
2303 | = simple_overlay_update; | |
c906108c SS |
2304 | |
2305 | /* Function: section_is_overlay (SECTION) | |
2306 | Returns true if SECTION has VMA not equal to LMA, ie. | |
2307 | SECTION is loaded at an address different from where it will "run". */ | |
2308 | ||
2309 | int | |
2310 | section_is_overlay (section) | |
2311 | asection *section; | |
2312 | { | |
2313 | if (overlay_debugging) | |
2314 | if (section && section->lma != 0 && | |
2315 | section->vma != section->lma) | |
2316 | return 1; | |
2317 | ||
2318 | return 0; | |
2319 | } | |
2320 | ||
2321 | /* Function: overlay_invalidate_all (void) | |
2322 | Invalidate the mapped state of all overlay sections (mark it as stale). */ | |
2323 | ||
2324 | static void | |
2325 | overlay_invalidate_all () | |
2326 | { | |
c5aa993b | 2327 | struct objfile *objfile; |
c906108c SS |
2328 | struct obj_section *sect; |
2329 | ||
2330 | ALL_OBJSECTIONS (objfile, sect) | |
2331 | if (section_is_overlay (sect->the_bfd_section)) | |
c5aa993b | 2332 | sect->ovly_mapped = -1; |
c906108c SS |
2333 | } |
2334 | ||
2335 | /* Function: overlay_is_mapped (SECTION) | |
2336 | Returns true if section is an overlay, and is currently mapped. | |
2337 | Private: public access is thru function section_is_mapped. | |
2338 | ||
2339 | Access to the ovly_mapped flag is restricted to this function, so | |
2340 | that we can do automatic update. If the global flag | |
2341 | OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call | |
2342 | overlay_invalidate_all. If the mapped state of the particular | |
2343 | section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ | |
2344 | ||
c5aa993b | 2345 | static int |
c906108c SS |
2346 | overlay_is_mapped (osect) |
2347 | struct obj_section *osect; | |
2348 | { | |
2349 | if (osect == 0 || !section_is_overlay (osect->the_bfd_section)) | |
2350 | return 0; | |
2351 | ||
c5aa993b | 2352 | switch (overlay_debugging) |
c906108c SS |
2353 | { |
2354 | default: | |
c5aa993b JM |
2355 | case 0: |
2356 | return 0; /* overlay debugging off */ | |
c906108c SS |
2357 | case -1: /* overlay debugging automatic */ |
2358 | /* Unles there is a target_overlay_update function, | |
c5aa993b | 2359 | there's really nothing useful to do here (can't really go auto) */ |
c906108c SS |
2360 | if (target_overlay_update) |
2361 | { | |
2362 | if (overlay_cache_invalid) | |
2363 | { | |
2364 | overlay_invalidate_all (); | |
2365 | overlay_cache_invalid = 0; | |
2366 | } | |
2367 | if (osect->ovly_mapped == -1) | |
2368 | (*target_overlay_update) (osect); | |
2369 | } | |
2370 | /* fall thru to manual case */ | |
2371 | case 1: /* overlay debugging manual */ | |
2372 | return osect->ovly_mapped == 1; | |
2373 | } | |
2374 | } | |
2375 | ||
2376 | /* Function: section_is_mapped | |
2377 | Returns true if section is an overlay, and is currently mapped. */ | |
2378 | ||
2379 | int | |
2380 | section_is_mapped (section) | |
2381 | asection *section; | |
2382 | { | |
c5aa993b | 2383 | struct objfile *objfile; |
c906108c SS |
2384 | struct obj_section *osect; |
2385 | ||
2386 | if (overlay_debugging) | |
2387 | if (section && section_is_overlay (section)) | |
2388 | ALL_OBJSECTIONS (objfile, osect) | |
2389 | if (osect->the_bfd_section == section) | |
c5aa993b | 2390 | return overlay_is_mapped (osect); |
c906108c SS |
2391 | |
2392 | return 0; | |
2393 | } | |
2394 | ||
2395 | /* Function: pc_in_unmapped_range | |
2396 | If PC falls into the lma range of SECTION, return true, else false. */ | |
2397 | ||
2398 | CORE_ADDR | |
2399 | pc_in_unmapped_range (pc, section) | |
2400 | CORE_ADDR pc; | |
2401 | asection *section; | |
2402 | { | |
2403 | int size; | |
2404 | ||
2405 | if (overlay_debugging) | |
2406 | if (section && section_is_overlay (section)) | |
2407 | { | |
2408 | size = bfd_get_section_size_before_reloc (section); | |
2409 | if (section->lma <= pc && pc < section->lma + size) | |
2410 | return 1; | |
2411 | } | |
2412 | return 0; | |
2413 | } | |
2414 | ||
2415 | /* Function: pc_in_mapped_range | |
2416 | If PC falls into the vma range of SECTION, return true, else false. */ | |
2417 | ||
2418 | CORE_ADDR | |
2419 | pc_in_mapped_range (pc, section) | |
2420 | CORE_ADDR pc; | |
2421 | asection *section; | |
2422 | { | |
2423 | int size; | |
2424 | ||
2425 | if (overlay_debugging) | |
2426 | if (section && section_is_overlay (section)) | |
2427 | { | |
2428 | size = bfd_get_section_size_before_reloc (section); | |
2429 | if (section->vma <= pc && pc < section->vma + size) | |
2430 | return 1; | |
2431 | } | |
2432 | return 0; | |
2433 | } | |
2434 | ||
2435 | /* Function: overlay_unmapped_address (PC, SECTION) | |
2436 | Returns the address corresponding to PC in the unmapped (load) range. | |
2437 | May be the same as PC. */ | |
2438 | ||
2439 | CORE_ADDR | |
2440 | overlay_unmapped_address (pc, section) | |
2441 | CORE_ADDR pc; | |
2442 | asection *section; | |
2443 | { | |
2444 | if (overlay_debugging) | |
2445 | if (section && section_is_overlay (section) && | |
2446 | pc_in_mapped_range (pc, section)) | |
2447 | return pc + section->lma - section->vma; | |
2448 | ||
2449 | return pc; | |
2450 | } | |
2451 | ||
2452 | /* Function: overlay_mapped_address (PC, SECTION) | |
2453 | Returns the address corresponding to PC in the mapped (runtime) range. | |
2454 | May be the same as PC. */ | |
2455 | ||
2456 | CORE_ADDR | |
2457 | overlay_mapped_address (pc, section) | |
2458 | CORE_ADDR pc; | |
2459 | asection *section; | |
2460 | { | |
2461 | if (overlay_debugging) | |
2462 | if (section && section_is_overlay (section) && | |
2463 | pc_in_unmapped_range (pc, section)) | |
2464 | return pc + section->vma - section->lma; | |
2465 | ||
2466 | return pc; | |
2467 | } | |
2468 | ||
2469 | ||
2470 | /* Function: symbol_overlayed_address | |
2471 | Return one of two addresses (relative to the VMA or to the LMA), | |
2472 | depending on whether the section is mapped or not. */ | |
2473 | ||
c5aa993b | 2474 | CORE_ADDR |
c906108c SS |
2475 | symbol_overlayed_address (address, section) |
2476 | CORE_ADDR address; | |
2477 | asection *section; | |
2478 | { | |
2479 | if (overlay_debugging) | |
2480 | { | |
2481 | /* If the symbol has no section, just return its regular address. */ | |
2482 | if (section == 0) | |
2483 | return address; | |
2484 | /* If the symbol's section is not an overlay, just return its address */ | |
2485 | if (!section_is_overlay (section)) | |
2486 | return address; | |
2487 | /* If the symbol's section is mapped, just return its address */ | |
2488 | if (section_is_mapped (section)) | |
2489 | return address; | |
2490 | /* | |
2491 | * HOWEVER: if the symbol is in an overlay section which is NOT mapped, | |
2492 | * then return its LOADED address rather than its vma address!! | |
2493 | */ | |
2494 | return overlay_unmapped_address (address, section); | |
2495 | } | |
2496 | return address; | |
2497 | } | |
2498 | ||
2499 | /* Function: find_pc_overlay (PC) | |
2500 | Return the best-match overlay section for PC: | |
2501 | If PC matches a mapped overlay section's VMA, return that section. | |
2502 | Else if PC matches an unmapped section's VMA, return that section. | |
2503 | Else if PC matches an unmapped section's LMA, return that section. */ | |
2504 | ||
2505 | asection * | |
2506 | find_pc_overlay (pc) | |
2507 | CORE_ADDR pc; | |
2508 | { | |
c5aa993b | 2509 | struct objfile *objfile; |
c906108c SS |
2510 | struct obj_section *osect, *best_match = NULL; |
2511 | ||
2512 | if (overlay_debugging) | |
2513 | ALL_OBJSECTIONS (objfile, osect) | |
2514 | if (section_is_overlay (osect->the_bfd_section)) | |
c5aa993b JM |
2515 | { |
2516 | if (pc_in_mapped_range (pc, osect->the_bfd_section)) | |
2517 | { | |
2518 | if (overlay_is_mapped (osect)) | |
2519 | return osect->the_bfd_section; | |
2520 | else | |
2521 | best_match = osect; | |
2522 | } | |
2523 | else if (pc_in_unmapped_range (pc, osect->the_bfd_section)) | |
2524 | best_match = osect; | |
2525 | } | |
c906108c SS |
2526 | return best_match ? best_match->the_bfd_section : NULL; |
2527 | } | |
2528 | ||
2529 | /* Function: find_pc_mapped_section (PC) | |
2530 | If PC falls into the VMA address range of an overlay section that is | |
2531 | currently marked as MAPPED, return that section. Else return NULL. */ | |
2532 | ||
2533 | asection * | |
2534 | find_pc_mapped_section (pc) | |
2535 | CORE_ADDR pc; | |
2536 | { | |
c5aa993b | 2537 | struct objfile *objfile; |
c906108c SS |
2538 | struct obj_section *osect; |
2539 | ||
2540 | if (overlay_debugging) | |
2541 | ALL_OBJSECTIONS (objfile, osect) | |
2542 | if (pc_in_mapped_range (pc, osect->the_bfd_section) && | |
2543 | overlay_is_mapped (osect)) | |
c5aa993b | 2544 | return osect->the_bfd_section; |
c906108c SS |
2545 | |
2546 | return NULL; | |
2547 | } | |
2548 | ||
2549 | /* Function: list_overlays_command | |
2550 | Print a list of mapped sections and their PC ranges */ | |
2551 | ||
2552 | void | |
2553 | list_overlays_command (args, from_tty) | |
2554 | char *args; | |
2555 | int from_tty; | |
2556 | { | |
c5aa993b JM |
2557 | int nmapped = 0; |
2558 | struct objfile *objfile; | |
c906108c SS |
2559 | struct obj_section *osect; |
2560 | ||
2561 | if (overlay_debugging) | |
2562 | ALL_OBJSECTIONS (objfile, osect) | |
2563 | if (overlay_is_mapped (osect)) | |
c5aa993b JM |
2564 | { |
2565 | const char *name; | |
2566 | bfd_vma lma, vma; | |
2567 | int size; | |
2568 | ||
2569 | vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section); | |
2570 | lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section); | |
2571 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2572 | name = bfd_section_name (objfile->obfd, osect->the_bfd_section); | |
2573 | ||
2574 | printf_filtered ("Section %s, loaded at ", name); | |
2575 | print_address_numeric (lma, 1, gdb_stdout); | |
2576 | puts_filtered (" - "); | |
2577 | print_address_numeric (lma + size, 1, gdb_stdout); | |
2578 | printf_filtered (", mapped at "); | |
2579 | print_address_numeric (vma, 1, gdb_stdout); | |
2580 | puts_filtered (" - "); | |
2581 | print_address_numeric (vma + size, 1, gdb_stdout); | |
2582 | puts_filtered ("\n"); | |
2583 | ||
2584 | nmapped++; | |
2585 | } | |
c906108c SS |
2586 | if (nmapped == 0) |
2587 | printf_filtered ("No sections are mapped.\n"); | |
2588 | } | |
2589 | ||
2590 | /* Function: map_overlay_command | |
2591 | Mark the named section as mapped (ie. residing at its VMA address). */ | |
2592 | ||
2593 | void | |
2594 | map_overlay_command (args, from_tty) | |
2595 | char *args; | |
c5aa993b | 2596 | int from_tty; |
c906108c | 2597 | { |
c5aa993b JM |
2598 | struct objfile *objfile, *objfile2; |
2599 | struct obj_section *sec, *sec2; | |
2600 | asection *bfdsec; | |
c906108c SS |
2601 | |
2602 | if (!overlay_debugging) | |
2603 | error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); | |
2604 | ||
2605 | if (args == 0 || *args == 0) | |
2606 | error ("Argument required: name of an overlay section"); | |
2607 | ||
2608 | /* First, find a section matching the user supplied argument */ | |
2609 | ALL_OBJSECTIONS (objfile, sec) | |
2610 | if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) | |
c5aa993b JM |
2611 | { |
2612 | /* Now, check to see if the section is an overlay. */ | |
2613 | bfdsec = sec->the_bfd_section; | |
2614 | if (!section_is_overlay (bfdsec)) | |
2615 | continue; /* not an overlay section */ | |
2616 | ||
2617 | /* Mark the overlay as "mapped" */ | |
2618 | sec->ovly_mapped = 1; | |
2619 | ||
2620 | /* Next, make a pass and unmap any sections that are | |
2621 | overlapped by this new section: */ | |
2622 | ALL_OBJSECTIONS (objfile2, sec2) | |
2623 | if (sec2->ovly_mapped && | |
2624 | sec != sec2 && | |
2625 | sec->the_bfd_section != sec2->the_bfd_section && | |
2626 | (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) || | |
2627 | pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section))) | |
2628 | { | |
2629 | if (info_verbose) | |
2630 | printf_filtered ("Note: section %s unmapped by overlap\n", | |
2631 | bfd_section_name (objfile->obfd, | |
2632 | sec2->the_bfd_section)); | |
2633 | sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */ | |
2634 | } | |
2635 | return; | |
2636 | } | |
c906108c SS |
2637 | error ("No overlay section called %s", args); |
2638 | } | |
2639 | ||
2640 | /* Function: unmap_overlay_command | |
2641 | Mark the overlay section as unmapped | |
2642 | (ie. resident in its LMA address range, rather than the VMA range). */ | |
2643 | ||
2644 | void | |
2645 | unmap_overlay_command (args, from_tty) | |
2646 | char *args; | |
c5aa993b | 2647 | int from_tty; |
c906108c | 2648 | { |
c5aa993b | 2649 | struct objfile *objfile; |
c906108c SS |
2650 | struct obj_section *sec; |
2651 | ||
2652 | if (!overlay_debugging) | |
2653 | error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); | |
2654 | ||
2655 | if (args == 0 || *args == 0) | |
2656 | error ("Argument required: name of an overlay section"); | |
2657 | ||
2658 | /* First, find a section matching the user supplied argument */ | |
2659 | ALL_OBJSECTIONS (objfile, sec) | |
2660 | if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) | |
c5aa993b JM |
2661 | { |
2662 | if (!sec->ovly_mapped) | |
2663 | error ("Section %s is not mapped", args); | |
2664 | sec->ovly_mapped = 0; | |
2665 | return; | |
2666 | } | |
c906108c SS |
2667 | error ("No overlay section called %s", args); |
2668 | } | |
2669 | ||
2670 | /* Function: overlay_auto_command | |
2671 | A utility command to turn on overlay debugging. | |
2672 | Possibly this should be done via a set/show command. */ | |
2673 | ||
2674 | static void | |
2675 | overlay_auto_command (args, from_tty) | |
2676 | char *args; | |
c5aa993b | 2677 | int from_tty; |
c906108c SS |
2678 | { |
2679 | overlay_debugging = -1; | |
2680 | if (info_verbose) | |
2681 | printf_filtered ("Automatic overlay debugging enabled."); | |
2682 | } | |
2683 | ||
2684 | /* Function: overlay_manual_command | |
2685 | A utility command to turn on overlay debugging. | |
2686 | Possibly this should be done via a set/show command. */ | |
2687 | ||
2688 | static void | |
2689 | overlay_manual_command (args, from_tty) | |
2690 | char *args; | |
c5aa993b | 2691 | int from_tty; |
c906108c SS |
2692 | { |
2693 | overlay_debugging = 1; | |
2694 | if (info_verbose) | |
2695 | printf_filtered ("Overlay debugging enabled."); | |
2696 | } | |
2697 | ||
2698 | /* Function: overlay_off_command | |
2699 | A utility command to turn on overlay debugging. | |
2700 | Possibly this should be done via a set/show command. */ | |
2701 | ||
2702 | static void | |
2703 | overlay_off_command (args, from_tty) | |
2704 | char *args; | |
c5aa993b | 2705 | int from_tty; |
c906108c | 2706 | { |
c5aa993b | 2707 | overlay_debugging = 0; |
c906108c SS |
2708 | if (info_verbose) |
2709 | printf_filtered ("Overlay debugging disabled."); | |
2710 | } | |
2711 | ||
2712 | static void | |
2713 | overlay_load_command (args, from_tty) | |
2714 | char *args; | |
c5aa993b | 2715 | int from_tty; |
c906108c SS |
2716 | { |
2717 | if (target_overlay_update) | |
2718 | (*target_overlay_update) (NULL); | |
2719 | else | |
2720 | error ("This target does not know how to read its overlay state."); | |
2721 | } | |
2722 | ||
2723 | /* Function: overlay_command | |
2724 | A place-holder for a mis-typed command */ | |
2725 | ||
2726 | /* Command list chain containing all defined "overlay" subcommands. */ | |
2727 | struct cmd_list_element *overlaylist; | |
2728 | ||
2729 | static void | |
2730 | overlay_command (args, from_tty) | |
2731 | char *args; | |
2732 | int from_tty; | |
2733 | { | |
c5aa993b | 2734 | printf_unfiltered |
c906108c SS |
2735 | ("\"overlay\" must be followed by the name of an overlay command.\n"); |
2736 | help_list (overlaylist, "overlay ", -1, gdb_stdout); | |
2737 | } | |
2738 | ||
2739 | ||
2740 | /* Target Overlays for the "Simplest" overlay manager: | |
2741 | ||
2742 | This is GDB's default target overlay layer. It works with the | |
2743 | minimal overlay manager supplied as an example by Cygnus. The | |
2744 | entry point is via a function pointer "target_overlay_update", | |
2745 | so targets that use a different runtime overlay manager can | |
2746 | substitute their own overlay_update function and take over the | |
2747 | function pointer. | |
2748 | ||
2749 | The overlay_update function pokes around in the target's data structures | |
2750 | to see what overlays are mapped, and updates GDB's overlay mapping with | |
2751 | this information. | |
2752 | ||
2753 | In this simple implementation, the target data structures are as follows: | |
c5aa993b JM |
2754 | unsigned _novlys; /# number of overlay sections #/ |
2755 | unsigned _ovly_table[_novlys][4] = { | |
2756 | {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/ | |
2757 | {..., ..., ..., ...}, | |
2758 | } | |
2759 | unsigned _novly_regions; /# number of overlay regions #/ | |
2760 | unsigned _ovly_region_table[_novly_regions][3] = { | |
2761 | {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ | |
2762 | {..., ..., ...}, | |
2763 | } | |
c906108c SS |
2764 | These functions will attempt to update GDB's mappedness state in the |
2765 | symbol section table, based on the target's mappedness state. | |
2766 | ||
2767 | To do this, we keep a cached copy of the target's _ovly_table, and | |
2768 | attempt to detect when the cached copy is invalidated. The main | |
2769 | entry point is "simple_overlay_update(SECT), which looks up SECT in | |
2770 | the cached table and re-reads only the entry for that section from | |
2771 | the target (whenever possible). | |
2772 | */ | |
2773 | ||
2774 | /* Cached, dynamically allocated copies of the target data structures: */ | |
c5aa993b | 2775 | static unsigned (*cache_ovly_table)[4] = 0; |
c906108c | 2776 | #if 0 |
c5aa993b | 2777 | static unsigned (*cache_ovly_region_table)[3] = 0; |
c906108c | 2778 | #endif |
c5aa993b | 2779 | static unsigned cache_novlys = 0; |
c906108c | 2780 | #if 0 |
c5aa993b | 2781 | static unsigned cache_novly_regions = 0; |
c906108c SS |
2782 | #endif |
2783 | static CORE_ADDR cache_ovly_table_base = 0; | |
2784 | #if 0 | |
2785 | static CORE_ADDR cache_ovly_region_table_base = 0; | |
2786 | #endif | |
c5aa993b JM |
2787 | enum ovly_index |
2788 | { | |
2789 | VMA, SIZE, LMA, MAPPED | |
2790 | }; | |
c906108c SS |
2791 | #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT) |
2792 | ||
2793 | /* Throw away the cached copy of _ovly_table */ | |
2794 | static void | |
2795 | simple_free_overlay_table () | |
2796 | { | |
2797 | if (cache_ovly_table) | |
c5aa993b JM |
2798 | free (cache_ovly_table); |
2799 | cache_novlys = 0; | |
c906108c SS |
2800 | cache_ovly_table = NULL; |
2801 | cache_ovly_table_base = 0; | |
2802 | } | |
2803 | ||
2804 | #if 0 | |
2805 | /* Throw away the cached copy of _ovly_region_table */ | |
2806 | static void | |
2807 | simple_free_overlay_region_table () | |
2808 | { | |
2809 | if (cache_ovly_region_table) | |
c5aa993b JM |
2810 | free (cache_ovly_region_table); |
2811 | cache_novly_regions = 0; | |
c906108c SS |
2812 | cache_ovly_region_table = NULL; |
2813 | cache_ovly_region_table_base = 0; | |
2814 | } | |
2815 | #endif | |
2816 | ||
2817 | /* Read an array of ints from the target into a local buffer. | |
2818 | Convert to host order. int LEN is number of ints */ | |
2819 | static void | |
2820 | read_target_long_array (memaddr, myaddr, len) | |
c5aa993b | 2821 | CORE_ADDR memaddr; |
c906108c | 2822 | unsigned int *myaddr; |
c5aa993b | 2823 | int len; |
c906108c SS |
2824 | { |
2825 | char *buf = alloca (len * TARGET_LONG_BYTES); | |
c5aa993b | 2826 | int i; |
c906108c SS |
2827 | |
2828 | read_memory (memaddr, buf, len * TARGET_LONG_BYTES); | |
2829 | for (i = 0; i < len; i++) | |
c5aa993b | 2830 | myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf, |
c906108c SS |
2831 | TARGET_LONG_BYTES); |
2832 | } | |
2833 | ||
2834 | /* Find and grab a copy of the target _ovly_table | |
2835 | (and _novlys, which is needed for the table's size) */ | |
c5aa993b | 2836 | static int |
c906108c SS |
2837 | simple_read_overlay_table () |
2838 | { | |
2839 | struct minimal_symbol *msym; | |
2840 | ||
2841 | simple_free_overlay_table (); | |
2842 | msym = lookup_minimal_symbol ("_novlys", 0, 0); | |
2843 | if (msym != NULL) | |
2844 | cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); | |
c5aa993b JM |
2845 | else |
2846 | return 0; /* failure */ | |
2847 | cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table)); | |
c906108c SS |
2848 | if (cache_ovly_table != NULL) |
2849 | { | |
2850 | msym = lookup_minimal_symbol ("_ovly_table", 0, 0); | |
2851 | if (msym != NULL) | |
2852 | { | |
2853 | cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym); | |
c5aa993b JM |
2854 | read_target_long_array (cache_ovly_table_base, |
2855 | (int *) cache_ovly_table, | |
c906108c SS |
2856 | cache_novlys * 4); |
2857 | } | |
c5aa993b JM |
2858 | else |
2859 | return 0; /* failure */ | |
c906108c | 2860 | } |
c5aa993b JM |
2861 | else |
2862 | return 0; /* failure */ | |
2863 | return 1; /* SUCCESS */ | |
c906108c SS |
2864 | } |
2865 | ||
2866 | #if 0 | |
2867 | /* Find and grab a copy of the target _ovly_region_table | |
2868 | (and _novly_regions, which is needed for the table's size) */ | |
c5aa993b | 2869 | static int |
c906108c SS |
2870 | simple_read_overlay_region_table () |
2871 | { | |
2872 | struct minimal_symbol *msym; | |
2873 | ||
2874 | simple_free_overlay_region_table (); | |
2875 | msym = lookup_minimal_symbol ("_novly_regions", 0, 0); | |
2876 | if (msym != NULL) | |
2877 | cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); | |
c5aa993b JM |
2878 | else |
2879 | return 0; /* failure */ | |
c906108c SS |
2880 | cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12); |
2881 | if (cache_ovly_region_table != NULL) | |
2882 | { | |
2883 | msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0); | |
2884 | if (msym != NULL) | |
2885 | { | |
2886 | cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym); | |
c5aa993b JM |
2887 | read_target_long_array (cache_ovly_region_table_base, |
2888 | (int *) cache_ovly_region_table, | |
c906108c SS |
2889 | cache_novly_regions * 3); |
2890 | } | |
c5aa993b JM |
2891 | else |
2892 | return 0; /* failure */ | |
c906108c | 2893 | } |
c5aa993b JM |
2894 | else |
2895 | return 0; /* failure */ | |
2896 | return 1; /* SUCCESS */ | |
c906108c SS |
2897 | } |
2898 | #endif | |
2899 | ||
2900 | /* Function: simple_overlay_update_1 | |
2901 | A helper function for simple_overlay_update. Assuming a cached copy | |
2902 | of _ovly_table exists, look through it to find an entry whose vma, | |
2903 | lma and size match those of OSECT. Re-read the entry and make sure | |
2904 | it still matches OSECT (else the table may no longer be valid). | |
2905 | Set OSECT's mapped state to match the entry. Return: 1 for | |
2906 | success, 0 for failure. */ | |
2907 | ||
2908 | static int | |
2909 | simple_overlay_update_1 (osect) | |
2910 | struct obj_section *osect; | |
2911 | { | |
2912 | int i, size; | |
2913 | ||
2914 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2915 | for (i = 0; i < cache_novlys; i++) | |
c5aa993b JM |
2916 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && |
2917 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2918 | cache_ovly_table[i][SIZE] == size */ ) | |
c906108c SS |
2919 | { |
2920 | read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES, | |
2921 | (int *) cache_ovly_table[i], 4); | |
c5aa993b JM |
2922 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && |
2923 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2924 | cache_ovly_table[i][SIZE] == size */ ) | |
c906108c SS |
2925 | { |
2926 | osect->ovly_mapped = cache_ovly_table[i][MAPPED]; | |
2927 | return 1; | |
2928 | } | |
c5aa993b | 2929 | else /* Warning! Warning! Target's ovly table has changed! */ |
c906108c SS |
2930 | return 0; |
2931 | } | |
2932 | return 0; | |
2933 | } | |
2934 | ||
2935 | /* Function: simple_overlay_update | |
2936 | If OSECT is NULL, then update all sections' mapped state | |
2937 | (after re-reading the entire target _ovly_table). | |
2938 | If OSECT is non-NULL, then try to find a matching entry in the | |
2939 | cached ovly_table and update only OSECT's mapped state. | |
2940 | If a cached entry can't be found or the cache isn't valid, then | |
2941 | re-read the entire cache, and go ahead and update all sections. */ | |
2942 | ||
2943 | static void | |
2944 | simple_overlay_update (osect) | |
2945 | struct obj_section *osect; | |
2946 | { | |
c5aa993b | 2947 | struct objfile *objfile; |
c906108c SS |
2948 | |
2949 | /* Were we given an osect to look up? NULL means do all of them. */ | |
2950 | if (osect) | |
2951 | /* Have we got a cached copy of the target's overlay table? */ | |
2952 | if (cache_ovly_table != NULL) | |
2953 | /* Does its cached location match what's currently in the symtab? */ | |
c5aa993b | 2954 | if (cache_ovly_table_base == |
c906108c SS |
2955 | SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0))) |
2956 | /* Then go ahead and try to look up this single section in the cache */ | |
2957 | if (simple_overlay_update_1 (osect)) | |
2958 | /* Found it! We're done. */ | |
2959 | return; | |
2960 | ||
2961 | /* Cached table no good: need to read the entire table anew. | |
2962 | Or else we want all the sections, in which case it's actually | |
2963 | more efficient to read the whole table in one block anyway. */ | |
2964 | ||
2965 | if (simple_read_overlay_table () == 0) /* read failed? No table? */ | |
2966 | { | |
2967 | warning ("Failed to read the target overlay mapping table."); | |
2968 | return; | |
2969 | } | |
2970 | /* Now may as well update all sections, even if only one was requested. */ | |
2971 | ALL_OBJSECTIONS (objfile, osect) | |
2972 | if (section_is_overlay (osect->the_bfd_section)) | |
c5aa993b JM |
2973 | { |
2974 | int i, size; | |
2975 | ||
2976 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2977 | for (i = 0; i < cache_novlys; i++) | |
2978 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && | |
2979 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2980 | cache_ovly_table[i][SIZE] == size */ ) | |
2981 | { /* obj_section matches i'th entry in ovly_table */ | |
2982 | osect->ovly_mapped = cache_ovly_table[i][MAPPED]; | |
2983 | break; /* finished with inner for loop: break out */ | |
2984 | } | |
2985 | } | |
c906108c SS |
2986 | } |
2987 | ||
2988 | ||
2989 | void | |
2990 | _initialize_symfile () | |
2991 | { | |
2992 | struct cmd_list_element *c; | |
c5aa993b | 2993 | |
c906108c | 2994 | c = add_cmd ("symbol-file", class_files, symbol_file_command, |
c5aa993b | 2995 | "Load symbol table from executable file FILE.\n\ |
c906108c SS |
2996 | The `file' command can also load symbol tables, as well as setting the file\n\ |
2997 | to execute.", &cmdlist); | |
2998 | c->completer = filename_completer; | |
2999 | ||
3000 | c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, | |
c5aa993b | 3001 | "Usage: add-symbol-file FILE ADDR\n\ |
c906108c SS |
3002 | Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\ |
3003 | ADDR is the starting address of the file's text.", | |
3004 | &cmdlist); | |
3005 | c->completer = filename_completer; | |
3006 | ||
3007 | c = add_cmd ("add-shared-symbol-files", class_files, | |
3008 | add_shared_symbol_files_command, | |
3009 | "Load the symbols from shared objects in the dynamic linker's link map.", | |
c5aa993b | 3010 | &cmdlist); |
c906108c SS |
3011 | c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1, |
3012 | &cmdlist); | |
3013 | ||
3014 | c = add_cmd ("load", class_files, load_command, | |
c5aa993b | 3015 | "Dynamically load FILE into the running program, and record its symbols\n\ |
c906108c SS |
3016 | for access from GDB.", &cmdlist); |
3017 | c->completer = filename_completer; | |
3018 | ||
3019 | add_show_from_set | |
3020 | (add_set_cmd ("symbol-reloading", class_support, var_boolean, | |
c5aa993b JM |
3021 | (char *) &symbol_reloading, |
3022 | "Set dynamic symbol table reloading multiple times in one run.", | |
c906108c SS |
3023 | &setlist), |
3024 | &showlist); | |
3025 | ||
c5aa993b JM |
3026 | add_prefix_cmd ("overlay", class_support, overlay_command, |
3027 | "Commands for debugging overlays.", &overlaylist, | |
c906108c SS |
3028 | "overlay ", 0, &cmdlist); |
3029 | ||
3030 | add_com_alias ("ovly", "overlay", class_alias, 1); | |
3031 | add_com_alias ("ov", "overlay", class_alias, 1); | |
3032 | ||
c5aa993b | 3033 | add_cmd ("map-overlay", class_support, map_overlay_command, |
c906108c SS |
3034 | "Assert that an overlay section is mapped.", &overlaylist); |
3035 | ||
c5aa993b | 3036 | add_cmd ("unmap-overlay", class_support, unmap_overlay_command, |
c906108c SS |
3037 | "Assert that an overlay section is unmapped.", &overlaylist); |
3038 | ||
c5aa993b | 3039 | add_cmd ("list-overlays", class_support, list_overlays_command, |
c906108c SS |
3040 | "List mappings of overlay sections.", &overlaylist); |
3041 | ||
c5aa993b | 3042 | add_cmd ("manual", class_support, overlay_manual_command, |
c906108c | 3043 | "Enable overlay debugging.", &overlaylist); |
c5aa993b | 3044 | add_cmd ("off", class_support, overlay_off_command, |
c906108c | 3045 | "Disable overlay debugging.", &overlaylist); |
c5aa993b | 3046 | add_cmd ("auto", class_support, overlay_auto_command, |
c906108c | 3047 | "Enable automatic overlay debugging.", &overlaylist); |
c5aa993b | 3048 | add_cmd ("load-target", class_support, overlay_load_command, |
c906108c SS |
3049 | "Read the overlay mapping state from the target.", &overlaylist); |
3050 | ||
3051 | /* Filename extension to source language lookup table: */ | |
3052 | init_filename_language_table (); | |
3053 | c = add_set_cmd ("extension-language", class_files, var_string_noescape, | |
c5aa993b | 3054 | (char *) &ext_args, |
c906108c SS |
3055 | "Set mapping between filename extension and source language.\n\ |
3056 | Usage: set extension-language .foo bar", | |
c5aa993b | 3057 | &setlist); |
c906108c SS |
3058 | c->function.cfunc = set_ext_lang_command; |
3059 | ||
c5aa993b | 3060 | add_info ("extensions", info_ext_lang_command, |
c906108c SS |
3061 | "All filename extensions associated with a source language."); |
3062 | } |