]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Generic symbol file reading for the GNU debugger, GDB. |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "breakpoint.h" | |
33 | #include "language.h" | |
34 | #include "complaints.h" | |
35 | #include "demangle.h" | |
36 | #include "inferior.h" /* for write_pc */ | |
37 | #include "gdb-stabs.h" | |
38 | #include "obstack.h" | |
39 | ||
40 | #include <assert.h> | |
41 | #include <sys/types.h> | |
42 | #include <fcntl.h> | |
43 | #include "gdb_string.h" | |
44 | #include "gdb_stat.h" | |
45 | #include <ctype.h> | |
46 | #include <time.h> | |
47 | #ifdef HAVE_UNISTD_H | |
48 | #include <unistd.h> | |
49 | #endif | |
50 | ||
51 | #ifndef O_BINARY | |
52 | #define O_BINARY 0 | |
53 | #endif | |
54 | ||
55 | #ifdef HPUXHPPA | |
56 | ||
57 | /* Some HP-UX related globals to clear when a new "main" | |
58 | symbol file is loaded. HP-specific. */ | |
59 | ||
60 | extern int hp_som_som_object_present; | |
61 | extern int hp_cxx_exception_support_initialized; | |
62 | #define RESET_HP_UX_GLOBALS() do {\ | |
63 | hp_som_som_object_present = 0; /* indicates HP-compiled code */ \ | |
64 | hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \ | |
65 | } while (0) | |
66 | #endif | |
67 | ||
68 | int (*ui_load_progress_hook) PARAMS ((char *, unsigned long)); | |
69 | void (*pre_add_symbol_hook) PARAMS ((char *)); | |
70 | void (*post_add_symbol_hook) PARAMS ((void)); | |
71 | ||
72 | /* Global variables owned by this file */ | |
73 | int readnow_symbol_files; /* Read full symbols immediately */ | |
74 | ||
75 | struct complaint oldsyms_complaint = { | |
76 | "Replacing old symbols for `%s'", 0, 0 | |
77 | }; | |
78 | ||
79 | struct complaint empty_symtab_complaint = { | |
80 | "Empty symbol table found for `%s'", 0, 0 | |
81 | }; | |
82 | ||
83 | /* External variables and functions referenced. */ | |
84 | ||
85 | extern int info_verbose; | |
86 | ||
87 | extern void report_transfer_performance PARAMS ((unsigned long, | |
88 | time_t, time_t)); | |
89 | ||
90 | /* Functions this file defines */ | |
91 | ||
92 | #if 0 | |
93 | static int simple_read_overlay_region_table PARAMS ((void)); | |
94 | static void simple_free_overlay_region_table PARAMS ((void)); | |
95 | #endif | |
96 | ||
97 | static void set_initial_language PARAMS ((void)); | |
98 | ||
99 | static void load_command PARAMS ((char *, int)); | |
100 | ||
101 | static void add_symbol_file_command PARAMS ((char *, int)); | |
102 | ||
103 | static void add_shared_symbol_files_command PARAMS ((char *, int)); | |
104 | ||
105 | static void cashier_psymtab PARAMS ((struct partial_symtab *)); | |
106 | ||
107 | static int compare_psymbols PARAMS ((const void *, const void *)); | |
108 | ||
109 | static int compare_symbols PARAMS ((const void *, const void *)); | |
110 | ||
111 | bfd *symfile_bfd_open PARAMS ((char *)); | |
112 | ||
113 | static void find_sym_fns PARAMS ((struct objfile *)); | |
114 | ||
115 | static void decrement_reading_symtab PARAMS ((void *)); | |
116 | ||
117 | static void overlay_invalidate_all PARAMS ((void)); | |
118 | ||
119 | static int overlay_is_mapped PARAMS ((struct obj_section *)); | |
120 | ||
121 | void list_overlays_command PARAMS ((char *, int)); | |
122 | ||
123 | void map_overlay_command PARAMS ((char *, int)); | |
124 | ||
125 | void unmap_overlay_command PARAMS ((char *, int)); | |
126 | ||
127 | static void overlay_auto_command PARAMS ((char *, int)); | |
128 | ||
129 | static void overlay_manual_command PARAMS ((char *, int)); | |
130 | ||
131 | static void overlay_off_command PARAMS ((char *, int)); | |
132 | ||
133 | static void overlay_load_command PARAMS ((char *, int)); | |
134 | ||
135 | static void overlay_command PARAMS ((char *, int)); | |
136 | ||
137 | static void simple_free_overlay_table PARAMS ((void)); | |
138 | ||
139 | static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int)); | |
140 | ||
141 | static int simple_read_overlay_table PARAMS ((void)); | |
142 | ||
143 | static int simple_overlay_update_1 PARAMS ((struct obj_section *)); | |
144 | ||
392a587b JM |
145 | static void add_filename_language PARAMS ((char *ext, enum language lang)); |
146 | ||
147 | static void set_ext_lang_command PARAMS ((char *args, int from_tty)); | |
148 | ||
149 | static void info_ext_lang_command PARAMS ((char *args, int from_tty)); | |
150 | ||
151 | static void init_filename_language_table PARAMS ((void)); | |
152 | ||
c906108c SS |
153 | void _initialize_symfile PARAMS ((void)); |
154 | ||
155 | /* List of all available sym_fns. On gdb startup, each object file reader | |
156 | calls add_symtab_fns() to register information on each format it is | |
157 | prepared to read. */ | |
158 | ||
159 | static struct sym_fns *symtab_fns = NULL; | |
160 | ||
161 | /* Flag for whether user will be reloading symbols multiple times. | |
162 | Defaults to ON for VxWorks, otherwise OFF. */ | |
163 | ||
164 | #ifdef SYMBOL_RELOADING_DEFAULT | |
165 | int symbol_reloading = SYMBOL_RELOADING_DEFAULT; | |
166 | #else | |
167 | int symbol_reloading = 0; | |
168 | #endif | |
169 | ||
170 | /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c), | |
171 | this variable is interpreted as a threshhold. If adding a new | |
172 | library's symbol table to those already known to the debugger would | |
173 | exceed this threshhold, then the shlib's symbols are not added. | |
174 | ||
175 | If non-zero on other platforms, shared library symbols will be added | |
176 | automatically when the inferior is created, new libraries are loaded, | |
177 | or when attaching to the inferior. This is almost always what users | |
178 | will want to have happen; but for very large programs, the startup | |
179 | time will be excessive, and so if this is a problem, the user can | |
180 | clear this flag and then add the shared library symbols as needed. | |
181 | Note that there is a potential for confusion, since if the shared | |
182 | library symbols are not loaded, commands like "info fun" will *not* | |
183 | report all the functions that are actually present. | |
184 | ||
185 | Note that HP-UX interprets this variable to mean, "threshhold size | |
186 | in megabytes, where zero means never add". Other platforms interpret | |
187 | this variable to mean, "always add if non-zero, never add if zero." | |
188 | */ | |
189 | ||
190 | int auto_solib_add = 1; | |
191 | ||
192 | \f | |
193 | /* Since this function is called from within qsort, in an ANSI environment | |
194 | it must conform to the prototype for qsort, which specifies that the | |
195 | comparison function takes two "void *" pointers. */ | |
196 | ||
197 | static int | |
198 | compare_symbols (s1p, s2p) | |
199 | const PTR s1p; | |
200 | const PTR s2p; | |
201 | { | |
202 | register struct symbol **s1, **s2; | |
203 | ||
204 | s1 = (struct symbol **) s1p; | |
205 | s2 = (struct symbol **) s2p; | |
206 | ||
207 | return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2))); | |
208 | } | |
209 | ||
210 | /* | |
211 | ||
212 | LOCAL FUNCTION | |
213 | ||
214 | compare_psymbols -- compare two partial symbols by name | |
215 | ||
216 | DESCRIPTION | |
217 | ||
218 | Given pointers to pointers to two partial symbol table entries, | |
219 | compare them by name and return -N, 0, or +N (ala strcmp). | |
220 | Typically used by sorting routines like qsort(). | |
221 | ||
222 | NOTES | |
223 | ||
224 | Does direct compare of first two characters before punting | |
225 | and passing to strcmp for longer compares. Note that the | |
226 | original version had a bug whereby two null strings or two | |
227 | identically named one character strings would return the | |
228 | comparison of memory following the null byte. | |
229 | ||
230 | */ | |
231 | ||
232 | static int | |
233 | compare_psymbols (s1p, s2p) | |
234 | const PTR s1p; | |
235 | const PTR s2p; | |
236 | { | |
237 | register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p); | |
238 | register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p); | |
239 | ||
240 | if ((st1[0] - st2[0]) || !st1[0]) | |
241 | { | |
242 | return (st1[0] - st2[0]); | |
243 | } | |
244 | else if ((st1[1] - st2[1]) || !st1[1]) | |
245 | { | |
246 | return (st1[1] - st2[1]); | |
247 | } | |
248 | else | |
249 | { | |
250 | /* Note: I replaced the STRCMP line (commented out below) | |
251 | * with a simpler "strcmp()" which compares the 2 strings | |
252 | * from the beginning. (STRCMP is a macro which first compares | |
253 | * the initial characters, then falls back on strcmp). | |
254 | * The reason is that the STRCMP line was tickling a C compiler | |
255 | * bug on HP-UX 10.30, which is avoided with the simpler | |
256 | * code. The performance gain from the more complicated code | |
257 | * is negligible, given that we have already checked the | |
258 | * initial 2 characters above. I reported the compiler bug, | |
259 | * and once it is fixed the original line can be put back. RT | |
260 | */ | |
261 | /* return ( STRCMP (st1 + 2, st2 + 2)); */ | |
262 | return ( strcmp (st1, st2)); | |
263 | } | |
264 | } | |
265 | ||
266 | void | |
267 | sort_pst_symbols (pst) | |
268 | struct partial_symtab *pst; | |
269 | { | |
270 | /* Sort the global list; don't sort the static list */ | |
271 | ||
272 | qsort (pst -> objfile -> global_psymbols.list + pst -> globals_offset, | |
273 | pst -> n_global_syms, sizeof (struct partial_symbol *), | |
274 | compare_psymbols); | |
275 | } | |
276 | ||
277 | /* Call sort_block_syms to sort alphabetically the symbols of one block. */ | |
278 | ||
279 | void | |
280 | sort_block_syms (b) | |
281 | register struct block *b; | |
282 | { | |
283 | qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b), | |
284 | sizeof (struct symbol *), compare_symbols); | |
285 | } | |
286 | ||
287 | /* Call sort_symtab_syms to sort alphabetically | |
288 | the symbols of each block of one symtab. */ | |
289 | ||
290 | void | |
291 | sort_symtab_syms (s) | |
292 | register struct symtab *s; | |
293 | { | |
294 | register struct blockvector *bv; | |
295 | int nbl; | |
296 | int i; | |
297 | register struct block *b; | |
298 | ||
299 | if (s == 0) | |
300 | return; | |
301 | bv = BLOCKVECTOR (s); | |
302 | nbl = BLOCKVECTOR_NBLOCKS (bv); | |
303 | for (i = 0; i < nbl; i++) | |
304 | { | |
305 | b = BLOCKVECTOR_BLOCK (bv, i); | |
306 | if (BLOCK_SHOULD_SORT (b)) | |
307 | sort_block_syms (b); | |
308 | } | |
309 | } | |
310 | ||
311 | /* Make a null terminated copy of the string at PTR with SIZE characters in | |
312 | the obstack pointed to by OBSTACKP . Returns the address of the copy. | |
313 | Note that the string at PTR does not have to be null terminated, I.E. it | |
314 | may be part of a larger string and we are only saving a substring. */ | |
315 | ||
316 | char * | |
317 | obsavestring (ptr, size, obstackp) | |
318 | char *ptr; | |
319 | int size; | |
320 | struct obstack *obstackp; | |
321 | { | |
322 | register char *p = (char *) obstack_alloc (obstackp, size + 1); | |
323 | /* Open-coded memcpy--saves function call time. These strings are usually | |
324 | short. FIXME: Is this really still true with a compiler that can | |
325 | inline memcpy? */ | |
326 | { | |
327 | register char *p1 = ptr; | |
328 | register char *p2 = p; | |
329 | char *end = ptr + size; | |
330 | while (p1 != end) | |
331 | *p2++ = *p1++; | |
332 | } | |
333 | p[size] = 0; | |
334 | return p; | |
335 | } | |
336 | ||
337 | /* Concatenate strings S1, S2 and S3; return the new string. Space is found | |
338 | in the obstack pointed to by OBSTACKP. */ | |
339 | ||
340 | char * | |
341 | obconcat (obstackp, s1, s2, s3) | |
342 | struct obstack *obstackp; | |
343 | const char *s1, *s2, *s3; | |
344 | { | |
345 | register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1; | |
346 | register char *val = (char *) obstack_alloc (obstackp, len); | |
347 | strcpy (val, s1); | |
348 | strcat (val, s2); | |
349 | strcat (val, s3); | |
350 | return val; | |
351 | } | |
352 | ||
353 | /* True if we are nested inside psymtab_to_symtab. */ | |
354 | ||
355 | int currently_reading_symtab = 0; | |
356 | ||
357 | static void | |
358 | decrement_reading_symtab (dummy) | |
359 | void *dummy; | |
360 | { | |
361 | currently_reading_symtab--; | |
362 | } | |
363 | ||
364 | /* Get the symbol table that corresponds to a partial_symtab. | |
365 | This is fast after the first time you do it. In fact, there | |
366 | is an even faster macro PSYMTAB_TO_SYMTAB that does the fast | |
367 | case inline. */ | |
368 | ||
369 | struct symtab * | |
370 | psymtab_to_symtab (pst) | |
371 | register struct partial_symtab *pst; | |
372 | { | |
373 | /* If it's been looked up before, return it. */ | |
374 | if (pst->symtab) | |
375 | return pst->symtab; | |
376 | ||
377 | /* If it has not yet been read in, read it. */ | |
378 | if (!pst->readin) | |
379 | { | |
380 | struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL); | |
381 | currently_reading_symtab++; | |
382 | (*pst->read_symtab) (pst); | |
383 | do_cleanups (back_to); | |
384 | } | |
385 | ||
386 | return pst->symtab; | |
387 | } | |
388 | ||
389 | /* Initialize entry point information for this objfile. */ | |
390 | ||
391 | void | |
392 | init_entry_point_info (objfile) | |
393 | struct objfile *objfile; | |
394 | { | |
395 | /* Save startup file's range of PC addresses to help blockframe.c | |
396 | decide where the bottom of the stack is. */ | |
397 | ||
398 | if (bfd_get_file_flags (objfile -> obfd) & EXEC_P) | |
399 | { | |
400 | /* Executable file -- record its entry point so we'll recognize | |
401 | the startup file because it contains the entry point. */ | |
402 | objfile -> ei.entry_point = bfd_get_start_address (objfile -> obfd); | |
403 | } | |
404 | else | |
405 | { | |
406 | /* Examination of non-executable.o files. Short-circuit this stuff. */ | |
407 | objfile -> ei.entry_point = INVALID_ENTRY_POINT; | |
408 | } | |
409 | objfile -> ei.entry_file_lowpc = INVALID_ENTRY_LOWPC; | |
410 | objfile -> ei.entry_file_highpc = INVALID_ENTRY_HIGHPC; | |
411 | objfile -> ei.entry_func_lowpc = INVALID_ENTRY_LOWPC; | |
412 | objfile -> ei.entry_func_highpc = INVALID_ENTRY_HIGHPC; | |
413 | objfile -> ei.main_func_lowpc = INVALID_ENTRY_LOWPC; | |
414 | objfile -> ei.main_func_highpc = INVALID_ENTRY_HIGHPC; | |
415 | } | |
416 | ||
417 | /* Get current entry point address. */ | |
418 | ||
419 | CORE_ADDR | |
420 | entry_point_address() | |
421 | { | |
422 | return symfile_objfile ? symfile_objfile->ei.entry_point : 0; | |
423 | } | |
424 | ||
425 | /* Remember the lowest-addressed loadable section we've seen. | |
426 | This function is called via bfd_map_over_sections. | |
427 | ||
428 | In case of equal vmas, the section with the largest size becomes the | |
429 | lowest-addressed loadable section. | |
430 | ||
431 | If the vmas and sizes are equal, the last section is considered the | |
432 | lowest-addressed loadable section. */ | |
433 | ||
434 | void | |
435 | find_lowest_section (abfd, sect, obj) | |
436 | bfd *abfd; | |
437 | asection *sect; | |
438 | PTR obj; | |
439 | { | |
440 | asection **lowest = (asection **)obj; | |
441 | ||
442 | if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD)) | |
443 | return; | |
444 | if (!*lowest) | |
445 | *lowest = sect; /* First loadable section */ | |
446 | else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect)) | |
447 | *lowest = sect; /* A lower loadable section */ | |
448 | else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect) | |
449 | && (bfd_section_size (abfd, (*lowest)) | |
450 | <= bfd_section_size (abfd, sect))) | |
451 | *lowest = sect; | |
452 | } | |
453 | ||
454 | /* Parse the user's idea of an offset for dynamic linking, into our idea | |
455 | of how to represent it for fast symbol reading. This is the default | |
456 | version of the sym_fns.sym_offsets function for symbol readers that | |
457 | don't need to do anything special. It allocates a section_offsets table | |
458 | for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ | |
459 | ||
460 | struct section_offsets * | |
461 | default_symfile_offsets (objfile, addr) | |
462 | struct objfile *objfile; | |
463 | CORE_ADDR addr; | |
464 | { | |
465 | struct section_offsets *section_offsets; | |
466 | int i; | |
467 | ||
468 | objfile->num_sections = SECT_OFF_MAX; | |
469 | section_offsets = (struct section_offsets *) | |
470 | obstack_alloc (&objfile -> psymbol_obstack, SIZEOF_SECTION_OFFSETS); | |
471 | ||
472 | for (i = 0; i < SECT_OFF_MAX; i++) | |
473 | ANOFFSET (section_offsets, i) = addr; | |
474 | ||
475 | return section_offsets; | |
476 | } | |
477 | ||
478 | ||
479 | /* Process a symbol file, as either the main file or as a dynamically | |
480 | loaded file. | |
481 | ||
482 | NAME is the file name (which will be tilde-expanded and made | |
483 | absolute herein) (but we don't free or modify NAME itself). | |
484 | FROM_TTY says how verbose to be. MAINLINE specifies whether this | |
485 | is the main symbol file, or whether it's an extra symbol file such | |
486 | as dynamically loaded code. If !mainline, ADDR is the address | |
487 | where the text segment was loaded. If VERBO, the caller has printed | |
488 | a verbose message about the symbol reading (and complaints can be | |
489 | more terse about it). */ | |
490 | ||
491 | void | |
492 | syms_from_objfile (objfile, addr, mainline, verbo) | |
493 | struct objfile *objfile; | |
494 | CORE_ADDR addr; | |
495 | int mainline; | |
496 | int verbo; | |
497 | { | |
498 | struct section_offsets *section_offsets; | |
499 | asection *lowest_sect; | |
500 | struct cleanup *old_chain; | |
501 | ||
502 | init_entry_point_info (objfile); | |
503 | find_sym_fns (objfile); | |
504 | ||
505 | /* Make sure that partially constructed symbol tables will be cleaned up | |
506 | if an error occurs during symbol reading. */ | |
507 | old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile); | |
508 | ||
509 | if (mainline) | |
510 | { | |
511 | /* We will modify the main symbol table, make sure that all its users | |
512 | will be cleaned up if an error occurs during symbol reading. */ | |
513 | make_cleanup ((make_cleanup_func) clear_symtab_users, 0); | |
514 | ||
515 | /* Since no error yet, throw away the old symbol table. */ | |
516 | ||
517 | if (symfile_objfile != NULL) | |
518 | { | |
519 | free_objfile (symfile_objfile); | |
520 | symfile_objfile = NULL; | |
521 | } | |
522 | ||
523 | /* Currently we keep symbols from the add-symbol-file command. | |
524 | If the user wants to get rid of them, they should do "symbol-file" | |
525 | without arguments first. Not sure this is the best behavior | |
526 | (PR 2207). */ | |
527 | ||
528 | (*objfile -> sf -> sym_new_init) (objfile); | |
529 | } | |
530 | ||
531 | /* Convert addr into an offset rather than an absolute address. | |
532 | We find the lowest address of a loaded segment in the objfile, | |
533 | and assume that <addr> is where that got loaded. Due to historical | |
534 | precedent, we warn if that doesn't happen to be a text segment. */ | |
535 | ||
536 | if (mainline) | |
537 | { | |
538 | addr = 0; /* No offset from objfile addresses. */ | |
539 | } | |
540 | else | |
541 | { | |
542 | lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text"); | |
543 | if (lowest_sect == NULL) | |
544 | bfd_map_over_sections (objfile->obfd, find_lowest_section, | |
545 | (PTR) &lowest_sect); | |
546 | ||
547 | if (lowest_sect == NULL) | |
548 | warning ("no loadable sections found in added symbol-file %s", | |
549 | objfile->name); | |
550 | else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE) | |
551 | == 0) | |
552 | /* FIXME-32x64--assumes bfd_vma fits in long. */ | |
553 | warning ("Lowest section in %s is %s at 0x%lx", | |
554 | objfile->name, | |
555 | bfd_section_name (objfile->obfd, lowest_sect), | |
556 | (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect)); | |
557 | ||
558 | if (lowest_sect) | |
559 | addr -= bfd_section_vma (objfile->obfd, lowest_sect); | |
560 | } | |
561 | ||
562 | /* Initialize symbol reading routines for this objfile, allow complaints to | |
563 | appear for this new file, and record how verbose to be, then do the | |
564 | initial symbol reading for this file. */ | |
565 | ||
566 | (*objfile -> sf -> sym_init) (objfile); | |
567 | clear_complaints (1, verbo); | |
568 | ||
569 | section_offsets = (*objfile -> sf -> sym_offsets) (objfile, addr); | |
570 | objfile->section_offsets = section_offsets; | |
571 | ||
572 | #ifndef IBM6000_TARGET | |
573 | /* This is a SVR4/SunOS specific hack, I think. In any event, it | |
574 | screws RS/6000. sym_offsets should be doing this sort of thing, | |
575 | because it knows the mapping between bfd sections and | |
576 | section_offsets. */ | |
577 | /* This is a hack. As far as I can tell, section offsets are not | |
578 | target dependent. They are all set to addr with a couple of | |
579 | exceptions. The exceptions are sysvr4 shared libraries, whose | |
580 | offsets are kept in solib structures anyway and rs6000 xcoff | |
581 | which handles shared libraries in a completely unique way. | |
582 | ||
583 | Section offsets are built similarly, except that they are built | |
584 | by adding addr in all cases because there is no clear mapping | |
585 | from section_offsets into actual sections. Note that solib.c | |
586 | has a different algorythm for finding section offsets. | |
587 | ||
588 | These should probably all be collapsed into some target | |
589 | independent form of shared library support. FIXME. */ | |
590 | ||
591 | if (addr) | |
592 | { | |
593 | struct obj_section *s; | |
594 | ||
595 | for (s = objfile->sections; s < objfile->sections_end; ++s) | |
596 | { | |
597 | s->addr -= s->offset; | |
598 | s->addr += addr; | |
599 | s->endaddr -= s->offset; | |
600 | s->endaddr += addr; | |
601 | s->offset += addr; | |
602 | } | |
603 | } | |
604 | #endif /* not IBM6000_TARGET */ | |
605 | ||
606 | (*objfile -> sf -> sym_read) (objfile, section_offsets, mainline); | |
607 | ||
608 | if (!have_partial_symbols () && !have_full_symbols ()) | |
609 | { | |
610 | wrap_here (""); | |
611 | printf_filtered ("(no debugging symbols found)..."); | |
612 | wrap_here (""); | |
613 | } | |
614 | ||
615 | /* Don't allow char * to have a typename (else would get caddr_t). | |
616 | Ditto void *. FIXME: Check whether this is now done by all the | |
617 | symbol readers themselves (many of them now do), and if so remove | |
618 | it from here. */ | |
619 | ||
620 | TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0; | |
621 | TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0; | |
622 | ||
623 | /* Mark the objfile has having had initial symbol read attempted. Note | |
624 | that this does not mean we found any symbols... */ | |
625 | ||
626 | objfile -> flags |= OBJF_SYMS; | |
627 | ||
628 | /* Discard cleanups as symbol reading was successful. */ | |
629 | ||
630 | discard_cleanups (old_chain); | |
631 | ||
632 | /* Call this after reading in a new symbol table to give target dependant code | |
633 | a crack at the new symbols. For instance, this could be used to update the | |
634 | values of target-specific symbols GDB needs to keep track of (such as | |
635 | _sigtramp, or whatever). */ | |
636 | ||
637 | TARGET_SYMFILE_POSTREAD (objfile); | |
638 | } | |
639 | ||
640 | /* Perform required actions after either reading in the initial | |
641 | symbols for a new objfile, or mapping in the symbols from a reusable | |
642 | objfile. */ | |
643 | ||
644 | void | |
645 | new_symfile_objfile (objfile, mainline, verbo) | |
646 | struct objfile *objfile; | |
647 | int mainline; | |
648 | int verbo; | |
649 | { | |
650 | ||
651 | /* If this is the main symbol file we have to clean up all users of the | |
652 | old main symbol file. Otherwise it is sufficient to fixup all the | |
653 | breakpoints that may have been redefined by this symbol file. */ | |
654 | if (mainline) | |
655 | { | |
656 | /* OK, make it the "real" symbol file. */ | |
657 | symfile_objfile = objfile; | |
658 | ||
659 | clear_symtab_users (); | |
660 | } | |
661 | else | |
662 | { | |
663 | breakpoint_re_set (); | |
664 | } | |
665 | ||
666 | /* We're done reading the symbol file; finish off complaints. */ | |
667 | clear_complaints (0, verbo); | |
668 | } | |
669 | ||
670 | /* Process a symbol file, as either the main file or as a dynamically | |
671 | loaded file. | |
672 | ||
673 | NAME is the file name (which will be tilde-expanded and made | |
674 | absolute herein) (but we don't free or modify NAME itself). | |
675 | FROM_TTY says how verbose to be. MAINLINE specifies whether this | |
676 | is the main symbol file, or whether it's an extra symbol file such | |
677 | as dynamically loaded code. If !mainline, ADDR is the address | |
678 | where the text segment was loaded. | |
679 | ||
680 | USER_LOADED is TRUE if the add-symbol-file command was how this | |
681 | symbol file came to be processed. | |
682 | ||
683 | IS_SOLIB is TRUE if this symbol file represents a solib, as discovered | |
684 | by the target's implementation of the solib package. | |
685 | ||
686 | Upon success, returns a pointer to the objfile that was added. | |
687 | Upon failure, jumps back to command level (never returns). */ | |
688 | ||
689 | struct objfile * | |
690 | symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib) | |
691 | char *name; | |
692 | int from_tty; | |
693 | CORE_ADDR addr; | |
694 | int mainline; | |
695 | int mapped; | |
696 | int readnow; | |
697 | int user_loaded; | |
698 | int is_solib; | |
699 | { | |
700 | struct objfile *objfile; | |
701 | struct partial_symtab *psymtab; | |
702 | bfd *abfd; | |
703 | ||
704 | /* Open a bfd for the file, and give user a chance to burp if we'd be | |
705 | interactively wiping out any existing symbols. */ | |
706 | ||
707 | abfd = symfile_bfd_open (name); | |
708 | ||
709 | if ((have_full_symbols () || have_partial_symbols ()) | |
710 | && mainline | |
711 | && from_tty | |
712 | && !query ("Load new symbol table from \"%s\"? ", name)) | |
713 | error ("Not confirmed."); | |
714 | ||
715 | objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib); | |
716 | ||
717 | /* If the objfile uses a mapped symbol file, and we have a psymtab for | |
718 | it, then skip reading any symbols at this time. */ | |
719 | ||
720 | if ((objfile -> flags & OBJF_MAPPED) && (objfile -> flags & OBJF_SYMS)) | |
721 | { | |
722 | /* We mapped in an existing symbol table file that already has had | |
723 | initial symbol reading performed, so we can skip that part. Notify | |
724 | the user that instead of reading the symbols, they have been mapped. | |
725 | */ | |
726 | if (from_tty || info_verbose) | |
727 | { | |
728 | printf_filtered ("Mapped symbols for %s...", name); | |
729 | wrap_here (""); | |
730 | gdb_flush (gdb_stdout); | |
731 | } | |
732 | init_entry_point_info (objfile); | |
733 | find_sym_fns (objfile); | |
734 | } | |
735 | else | |
736 | { | |
737 | /* We either created a new mapped symbol table, mapped an existing | |
738 | symbol table file which has not had initial symbol reading | |
739 | performed, or need to read an unmapped symbol table. */ | |
740 | if (from_tty || info_verbose) | |
741 | { | |
742 | if (pre_add_symbol_hook) | |
743 | pre_add_symbol_hook (name); | |
744 | else | |
745 | { | |
746 | printf_filtered ("Reading symbols from %s...", name); | |
747 | wrap_here (""); | |
748 | gdb_flush (gdb_stdout); | |
749 | } | |
750 | } | |
751 | syms_from_objfile (objfile, addr, mainline, from_tty); | |
752 | } | |
753 | ||
754 | /* We now have at least a partial symbol table. Check to see if the | |
755 | user requested that all symbols be read on initial access via either | |
756 | the gdb startup command line or on a per symbol file basis. Expand | |
757 | all partial symbol tables for this objfile if so. */ | |
758 | ||
759 | if (readnow || readnow_symbol_files) | |
760 | { | |
761 | if (from_tty || info_verbose) | |
762 | { | |
763 | printf_filtered ("expanding to full symbols..."); | |
764 | wrap_here (""); | |
765 | gdb_flush (gdb_stdout); | |
766 | } | |
767 | ||
768 | for (psymtab = objfile -> psymtabs; | |
769 | psymtab != NULL; | |
770 | psymtab = psymtab -> next) | |
771 | { | |
772 | psymtab_to_symtab (psymtab); | |
773 | } | |
774 | } | |
775 | ||
776 | if (from_tty || info_verbose) | |
777 | { | |
778 | if (post_add_symbol_hook) | |
779 | post_add_symbol_hook (); | |
780 | else | |
781 | { | |
782 | printf_filtered ("done.\n"); | |
783 | gdb_flush (gdb_stdout); | |
784 | } | |
785 | } | |
786 | ||
787 | new_symfile_objfile (objfile, mainline, from_tty); | |
788 | ||
789 | target_new_objfile (objfile); | |
790 | ||
791 | return (objfile); | |
792 | } | |
793 | ||
794 | /* This is the symbol-file command. Read the file, analyze its | |
795 | symbols, and add a struct symtab to a symtab list. The syntax of | |
796 | the command is rather bizarre--(1) buildargv implements various | |
797 | quoting conventions which are undocumented and have little or | |
798 | nothing in common with the way things are quoted (or not quoted) | |
799 | elsewhere in GDB, (2) options are used, which are not generally | |
800 | used in GDB (perhaps "set mapped on", "set readnow on" would be | |
801 | better), (3) the order of options matters, which is contrary to GNU | |
802 | conventions (because it is confusing and inconvenient). */ | |
803 | ||
804 | void | |
805 | symbol_file_command (args, from_tty) | |
806 | char *args; | |
807 | int from_tty; | |
808 | { | |
809 | char **argv; | |
810 | char *name = NULL; | |
811 | CORE_ADDR text_relocation = 0; /* text_relocation */ | |
812 | struct cleanup *cleanups; | |
813 | int mapped = 0; | |
814 | int readnow = 0; | |
815 | ||
816 | dont_repeat (); | |
817 | ||
818 | if (args == NULL) | |
819 | { | |
820 | if ((have_full_symbols () || have_partial_symbols ()) | |
821 | && from_tty | |
822 | && !query ("Discard symbol table from `%s'? ", | |
823 | symfile_objfile -> name)) | |
824 | error ("Not confirmed."); | |
825 | free_all_objfiles (); | |
826 | ||
827 | /* solib descriptors may have handles to objfiles. Since their | |
828 | storage has just been released, we'd better wipe the solib | |
829 | descriptors as well. | |
830 | */ | |
831 | #if defined(SOLIB_RESTART) | |
832 | SOLIB_RESTART (); | |
833 | #endif | |
834 | ||
835 | symfile_objfile = NULL; | |
836 | if (from_tty) | |
837 | { | |
838 | printf_unfiltered ("No symbol file now.\n"); | |
839 | } | |
840 | #ifdef HPUXHPPA | |
841 | RESET_HP_UX_GLOBALS (); | |
842 | #endif | |
843 | } | |
844 | else | |
845 | { | |
846 | if ((argv = buildargv (args)) == NULL) | |
847 | { | |
848 | nomem (0); | |
849 | } | |
7a292a7a | 850 | cleanups = make_cleanup_freeargv (argv); |
c906108c SS |
851 | while (*argv != NULL) |
852 | { | |
853 | if (STREQ (*argv, "-mapped")) | |
854 | { | |
855 | mapped = 1; | |
856 | } | |
857 | else if (STREQ (*argv, "-readnow")) | |
858 | { | |
859 | readnow = 1; | |
860 | } | |
861 | else if (**argv == '-') | |
862 | { | |
863 | error ("unknown option `%s'", *argv); | |
864 | } | |
865 | else | |
866 | { | |
867 | char *p; | |
868 | ||
869 | name = *argv; | |
870 | ||
871 | /* this is for rombug remote only, to get the text relocation by | |
872 | using link command */ | |
873 | p = strrchr(name, '/'); | |
874 | if (p != NULL) p++; | |
875 | else p = name; | |
876 | ||
877 | target_link(p, &text_relocation); | |
878 | ||
879 | if (text_relocation == (CORE_ADDR)0) | |
880 | return; | |
881 | else if (text_relocation == (CORE_ADDR)-1) | |
882 | { | |
883 | symbol_file_add (name, from_tty, (CORE_ADDR)0, | |
884 | 1, mapped, readnow, 1, 0); | |
885 | #ifdef HPUXHPPA | |
886 | RESET_HP_UX_GLOBALS (); | |
887 | #endif | |
888 | } | |
889 | else | |
890 | symbol_file_add (name, from_tty, (CORE_ADDR)text_relocation, | |
891 | 0, mapped, readnow, 1, 0); | |
892 | ||
893 | /* Getting new symbols may change our opinion about what is | |
894 | frameless. */ | |
895 | reinit_frame_cache (); | |
896 | ||
897 | set_initial_language (); | |
898 | } | |
899 | argv++; | |
900 | } | |
901 | ||
902 | if (name == NULL) | |
903 | { | |
904 | error ("no symbol file name was specified"); | |
905 | } | |
906 | TUIDO(((TuiOpaqueFuncPtr)tuiDisplayMainFunction)); | |
907 | do_cleanups (cleanups); | |
908 | } | |
909 | } | |
910 | ||
911 | /* Set the initial language. | |
912 | ||
913 | A better solution would be to record the language in the psymtab when reading | |
914 | partial symbols, and then use it (if known) to set the language. This would | |
915 | be a win for formats that encode the language in an easily discoverable place, | |
916 | such as DWARF. For stabs, we can jump through hoops looking for specially | |
917 | named symbols or try to intuit the language from the specific type of stabs | |
918 | we find, but we can't do that until later when we read in full symbols. | |
919 | FIXME. */ | |
920 | ||
921 | static void | |
922 | set_initial_language () | |
923 | { | |
924 | struct partial_symtab *pst; | |
925 | enum language lang = language_unknown; | |
926 | ||
927 | pst = find_main_psymtab (); | |
928 | if (pst != NULL) | |
929 | { | |
930 | if (pst -> filename != NULL) | |
931 | { | |
932 | lang = deduce_language_from_filename (pst -> filename); | |
933 | } | |
934 | if (lang == language_unknown) | |
935 | { | |
936 | /* Make C the default language */ | |
937 | lang = language_c; | |
938 | } | |
939 | set_language (lang); | |
940 | expected_language = current_language; /* Don't warn the user */ | |
941 | } | |
942 | } | |
943 | ||
944 | /* Open file specified by NAME and hand it off to BFD for preliminary | |
945 | analysis. Result is a newly initialized bfd *, which includes a newly | |
946 | malloc'd` copy of NAME (tilde-expanded and made absolute). | |
947 | In case of trouble, error() is called. */ | |
948 | ||
949 | bfd * | |
950 | symfile_bfd_open (name) | |
951 | char *name; | |
952 | { | |
953 | bfd *sym_bfd; | |
954 | int desc; | |
955 | char *absolute_name; | |
956 | ||
957 | ||
958 | ||
959 | name = tilde_expand (name); /* Returns 1st new malloc'd copy */ | |
960 | ||
961 | /* Look down path for it, allocate 2nd new malloc'd copy. */ | |
962 | desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name); | |
963 | #if defined(__GO32__) || defined(_WIN32) | |
964 | if (desc < 0) | |
965 | { | |
966 | char *exename = alloca (strlen (name) + 5); | |
967 | strcat (strcpy (exename, name), ".exe"); | |
968 | desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY, | |
969 | 0, &absolute_name); | |
970 | } | |
971 | #endif | |
972 | if (desc < 0) | |
973 | { | |
974 | make_cleanup (free, name); | |
975 | perror_with_name (name); | |
976 | } | |
977 | free (name); /* Free 1st new malloc'd copy */ | |
978 | name = absolute_name; /* Keep 2nd malloc'd copy in bfd */ | |
979 | /* It'll be freed in free_objfile(). */ | |
980 | ||
981 | sym_bfd = bfd_fdopenr (name, gnutarget, desc); | |
982 | if (!sym_bfd) | |
983 | { | |
984 | close (desc); | |
985 | make_cleanup (free, name); | |
986 | error ("\"%s\": can't open to read symbols: %s.", name, | |
987 | bfd_errmsg (bfd_get_error ())); | |
988 | } | |
989 | sym_bfd->cacheable = true; | |
990 | ||
991 | if (!bfd_check_format (sym_bfd, bfd_object)) | |
992 | { | |
993 | /* FIXME: should be checking for errors from bfd_close (for one thing, | |
994 | on error it does not free all the storage associated with the | |
995 | bfd). */ | |
996 | bfd_close (sym_bfd); /* This also closes desc */ | |
997 | make_cleanup (free, name); | |
998 | error ("\"%s\": can't read symbols: %s.", name, | |
999 | bfd_errmsg (bfd_get_error ())); | |
1000 | } | |
1001 | return (sym_bfd); | |
1002 | } | |
1003 | ||
1004 | /* Link a new symtab_fns into the global symtab_fns list. Called on gdb | |
1005 | startup by the _initialize routine in each object file format reader, | |
1006 | to register information about each format the the reader is prepared | |
1007 | to handle. */ | |
1008 | ||
1009 | void | |
1010 | add_symtab_fns (sf) | |
1011 | struct sym_fns *sf; | |
1012 | { | |
1013 | sf->next = symtab_fns; | |
1014 | symtab_fns = sf; | |
1015 | } | |
1016 | ||
1017 | ||
1018 | /* Initialize to read symbols from the symbol file sym_bfd. It either | |
1019 | returns or calls error(). The result is an initialized struct sym_fns | |
1020 | in the objfile structure, that contains cached information about the | |
1021 | symbol file. */ | |
1022 | ||
1023 | static void | |
1024 | find_sym_fns (objfile) | |
1025 | struct objfile *objfile; | |
1026 | { | |
1027 | struct sym_fns *sf; | |
1028 | enum bfd_flavour our_flavour = bfd_get_flavour (objfile -> obfd); | |
1029 | char *our_target = bfd_get_target (objfile -> obfd); | |
1030 | ||
1031 | /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */ | |
1032 | if (STREQ (our_target, "aixcoff-rs6000") || | |
1033 | STREQ (our_target, "xcoff-powermac")) | |
1034 | our_flavour = (enum bfd_flavour)-1; | |
1035 | ||
1036 | /* Special kludge for apollo. See dstread.c. */ | |
1037 | if (STREQN (our_target, "apollo", 6)) | |
1038 | our_flavour = (enum bfd_flavour)-2; | |
1039 | ||
1040 | for (sf = symtab_fns; sf != NULL; sf = sf -> next) | |
1041 | { | |
1042 | if (our_flavour == sf -> sym_flavour) | |
1043 | { | |
1044 | objfile -> sf = sf; | |
1045 | return; | |
1046 | } | |
1047 | } | |
1048 | error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.", | |
1049 | bfd_get_target (objfile -> obfd)); | |
1050 | } | |
1051 | \f | |
1052 | /* This function runs the load command of our current target. */ | |
1053 | ||
1054 | static void | |
1055 | load_command (arg, from_tty) | |
1056 | char *arg; | |
1057 | int from_tty; | |
1058 | { | |
1059 | if (arg == NULL) | |
1060 | arg = get_exec_file (1); | |
1061 | target_load (arg, from_tty); | |
1062 | } | |
1063 | ||
1064 | /* This version of "load" should be usable for any target. Currently | |
1065 | it is just used for remote targets, not inftarg.c or core files, | |
1066 | on the theory that only in that case is it useful. | |
1067 | ||
1068 | Avoiding xmodem and the like seems like a win (a) because we don't have | |
1069 | to worry about finding it, and (b) On VMS, fork() is very slow and so | |
1070 | we don't want to run a subprocess. On the other hand, I'm not sure how | |
1071 | performance compares. */ | |
1072 | #define GENERIC_LOAD_CHUNK 256 | |
1073 | #define VALIDATE_DOWNLOAD 0 | |
1074 | void | |
1075 | generic_load (filename, from_tty) | |
1076 | char *filename; | |
1077 | int from_tty; | |
1078 | { | |
1079 | struct cleanup *old_cleanups; | |
1080 | asection *s; | |
1081 | bfd *loadfile_bfd; | |
1082 | time_t start_time, end_time; /* Start and end times of download */ | |
1083 | unsigned long data_count = 0; /* Number of bytes transferred to memory */ | |
1084 | int n; | |
1085 | unsigned long load_offset = 0; /* offset to add to vma for each section */ | |
1086 | char buf[GENERIC_LOAD_CHUNK+8]; | |
1087 | #if VALIDATE_DOWNLOAD | |
1088 | char verify_buffer[GENERIC_LOAD_CHUNK+8] ; | |
1089 | #endif | |
1090 | ||
1091 | /* enable user to specify address for downloading as 2nd arg to load */ | |
1092 | n = sscanf(filename, "%s 0x%lx", buf, &load_offset); | |
1093 | if (n > 1 ) | |
1094 | filename = buf; | |
1095 | else | |
1096 | load_offset = 0; | |
1097 | ||
1098 | loadfile_bfd = bfd_openr (filename, gnutarget); | |
1099 | if (loadfile_bfd == NULL) | |
1100 | { | |
1101 | perror_with_name (filename); | |
1102 | return; | |
1103 | } | |
1104 | /* FIXME: should be checking for errors from bfd_close (for one thing, | |
1105 | on error it does not free all the storage associated with the | |
1106 | bfd). */ | |
1107 | old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd); | |
1108 | ||
1109 | if (!bfd_check_format (loadfile_bfd, bfd_object)) | |
1110 | { | |
1111 | error ("\"%s\" is not an object file: %s", filename, | |
1112 | bfd_errmsg (bfd_get_error ())); | |
1113 | } | |
1114 | ||
1115 | start_time = time (NULL); | |
1116 | ||
1117 | for (s = loadfile_bfd->sections; s; s = s->next) | |
1118 | { | |
1119 | if (s->flags & SEC_LOAD) | |
1120 | { | |
1121 | bfd_size_type size; | |
1122 | ||
1123 | size = bfd_get_section_size_before_reloc (s); | |
1124 | if (size > 0) | |
1125 | { | |
1126 | char *buffer; | |
1127 | struct cleanup *old_chain; | |
1128 | bfd_vma lma; | |
1129 | unsigned long l = size ; | |
1130 | int err; | |
1131 | char *sect; | |
1132 | unsigned long sent; | |
1133 | unsigned long len; | |
1134 | ||
1135 | l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l ; | |
1136 | ||
1137 | buffer = xmalloc (size); | |
1138 | old_chain = make_cleanup (free, buffer); | |
1139 | ||
1140 | lma = s->lma; | |
1141 | lma += load_offset; | |
1142 | ||
1143 | /* Is this really necessary? I guess it gives the user something | |
1144 | to look at during a long download. */ | |
1145 | printf_filtered ("Loading section %s, size 0x%lx lma ", | |
1146 | bfd_get_section_name (loadfile_bfd, s), | |
1147 | (unsigned long) size); | |
1148 | print_address_numeric (lma, 1, gdb_stdout); | |
1149 | printf_filtered ("\n"); | |
1150 | ||
1151 | bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size); | |
1152 | ||
1153 | sect = (char *) bfd_get_section_name (loadfile_bfd, s); | |
1154 | sent = 0; | |
1155 | do | |
1156 | { | |
1157 | len = (size - sent) < l ? (size - sent) : l; | |
1158 | sent += len; | |
1159 | err = target_write_memory (lma, buffer, len); | |
1160 | if (ui_load_progress_hook) | |
1161 | if (ui_load_progress_hook (sect, sent)) | |
1162 | error ("Canceled the download"); | |
1163 | #if VALIDATE_DOWNLOAD | |
1164 | /* Broken memories and broken monitors manifest themselves | |
1165 | here when bring new computers to life. | |
1166 | This doubles already slow downloads. | |
1167 | */ | |
1168 | if (err) break ; | |
1169 | { | |
1170 | target_read_memory(lma,verify_buffer,len) ; | |
1171 | if (0 != bcmp(buffer,verify_buffer,len)) | |
1172 | error("Download verify failed at %08x", | |
1173 | (unsigned long)lma) ; | |
1174 | } | |
1175 | ||
1176 | #endif | |
1177 | data_count += len ; | |
1178 | lma += len; | |
1179 | buffer += len; | |
1180 | } /* od */ | |
1181 | while (err == 0 && sent < size); | |
1182 | ||
1183 | if (err != 0) | |
1184 | error ("Memory access error while loading section %s.", | |
1185 | bfd_get_section_name (loadfile_bfd, s)); | |
1186 | ||
1187 | do_cleanups (old_chain); | |
1188 | } | |
1189 | } | |
1190 | } | |
1191 | ||
1192 | end_time = time (NULL); | |
1193 | { | |
1194 | unsigned long entry ; | |
1195 | entry = bfd_get_start_address(loadfile_bfd) ; | |
1196 | printf_filtered ("Start address 0x%lx , load size %d\n", entry,data_count); | |
1197 | /* We were doing this in remote-mips.c, I suspect it is right | |
1198 | for other targets too. */ | |
1199 | write_pc (entry); | |
1200 | } | |
1201 | ||
1202 | /* FIXME: are we supposed to call symbol_file_add or not? According to | |
1203 | a comment from remote-mips.c (where a call to symbol_file_add was | |
1204 | commented out), making the call confuses GDB if more than one file is | |
1205 | loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c | |
1206 | does. */ | |
1207 | ||
1208 | report_transfer_performance (data_count, start_time, end_time); | |
1209 | ||
1210 | do_cleanups (old_cleanups); | |
1211 | } | |
1212 | ||
1213 | /* Report how fast the transfer went. */ | |
1214 | ||
1215 | void | |
1216 | report_transfer_performance (data_count, start_time, end_time) | |
1217 | unsigned long data_count; | |
1218 | time_t start_time, end_time; | |
1219 | { | |
1220 | printf_filtered ("Transfer rate: "); | |
1221 | if (end_time != start_time) | |
1222 | printf_filtered ("%d bits/sec", | |
1223 | (data_count * 8) / (end_time - start_time)); | |
1224 | else | |
1225 | printf_filtered ("%d bits in <1 sec", (data_count * 8)); | |
1226 | printf_filtered (".\n"); | |
1227 | } | |
1228 | ||
1229 | /* This function allows the addition of incrementally linked object files. | |
1230 | It does not modify any state in the target, only in the debugger. */ | |
1231 | ||
1232 | /* ARGSUSED */ | |
1233 | static void | |
1234 | add_symbol_file_command (args, from_tty) | |
1235 | char *args; | |
1236 | int from_tty; | |
1237 | { | |
1238 | char *name = NULL; | |
1239 | CORE_ADDR text_addr; | |
1240 | char *arg; | |
1241 | int readnow = 0; | |
1242 | int mapped = 0; | |
1243 | ||
1244 | dont_repeat (); | |
1245 | ||
1246 | if (args == NULL) | |
1247 | { | |
1248 | error ("add-symbol-file takes a file name and an address"); | |
1249 | } | |
1250 | ||
1251 | /* Make a copy of the string that we can safely write into. */ | |
1252 | ||
1253 | args = strdup (args); | |
1254 | make_cleanup (free, args); | |
1255 | ||
1256 | /* Pick off any -option args and the file name. */ | |
1257 | ||
1258 | while ((*args != '\000') && (name == NULL)) | |
1259 | { | |
1260 | while (isspace (*args)) {args++;} | |
1261 | arg = args; | |
1262 | while ((*args != '\000') && !isspace (*args)) {args++;} | |
1263 | if (*args != '\000') | |
1264 | { | |
1265 | *args++ = '\000'; | |
1266 | } | |
1267 | if (*arg != '-') | |
1268 | { | |
1269 | name = arg; | |
1270 | } | |
1271 | else if (STREQ (arg, "-mapped")) | |
1272 | { | |
1273 | mapped = 1; | |
1274 | } | |
1275 | else if (STREQ (arg, "-readnow")) | |
1276 | { | |
1277 | readnow = 1; | |
1278 | } | |
1279 | else | |
1280 | { | |
1281 | error ("unknown option `%s'", arg); | |
1282 | } | |
1283 | } | |
1284 | ||
1285 | /* After picking off any options and the file name, args should be | |
1286 | left pointing at the remainder of the command line, which should | |
1287 | be the address expression to evaluate. */ | |
1288 | ||
1289 | if (name == NULL) | |
1290 | { | |
1291 | error ("add-symbol-file takes a file name"); | |
1292 | } | |
1293 | name = tilde_expand (name); | |
1294 | make_cleanup (free, name); | |
1295 | ||
1296 | if (*args != '\000') | |
1297 | { | |
1298 | text_addr = parse_and_eval_address (args); | |
1299 | } | |
1300 | else | |
1301 | { | |
1302 | target_link(name, &text_addr); | |
1303 | if (text_addr == (CORE_ADDR)-1) | |
1304 | error("Don't know how to get text start location for this file"); | |
1305 | } | |
1306 | ||
1307 | /* FIXME-32x64: Assumes text_addr fits in a long. */ | |
1308 | if ((from_tty) | |
1309 | && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n", | |
1310 | name, local_hex_string ((unsigned long)text_addr)))) | |
1311 | error ("Not confirmed."); | |
1312 | ||
1313 | symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow, | |
1314 | 1, /* user_loaded */ | |
1315 | 0); /* We'll guess it's ! is_solib */ | |
1316 | ||
1317 | /* Getting new symbols may change our opinion about what is | |
1318 | frameless. */ | |
1319 | reinit_frame_cache (); | |
1320 | } | |
1321 | \f | |
1322 | static void | |
1323 | add_shared_symbol_files_command (args, from_tty) | |
1324 | char *args; | |
1325 | int from_tty; | |
1326 | { | |
1327 | #ifdef ADD_SHARED_SYMBOL_FILES | |
1328 | ADD_SHARED_SYMBOL_FILES (args, from_tty); | |
1329 | #else | |
1330 | error ("This command is not available in this configuration of GDB."); | |
1331 | #endif | |
1332 | } | |
1333 | \f | |
1334 | /* Re-read symbols if a symbol-file has changed. */ | |
1335 | void | |
1336 | reread_symbols () | |
1337 | { | |
1338 | struct objfile *objfile; | |
1339 | long new_modtime; | |
1340 | int reread_one = 0; | |
1341 | struct stat new_statbuf; | |
1342 | int res; | |
1343 | ||
1344 | /* With the addition of shared libraries, this should be modified, | |
1345 | the load time should be saved in the partial symbol tables, since | |
1346 | different tables may come from different source files. FIXME. | |
1347 | This routine should then walk down each partial symbol table | |
1348 | and see if the symbol table that it originates from has been changed */ | |
1349 | ||
1350 | for (objfile = object_files; objfile; objfile = objfile->next) { | |
1351 | if (objfile->obfd) { | |
1352 | #ifdef IBM6000_TARGET | |
1353 | /* If this object is from a shared library, then you should | |
1354 | stat on the library name, not member name. */ | |
1355 | ||
1356 | if (objfile->obfd->my_archive) | |
1357 | res = stat (objfile->obfd->my_archive->filename, &new_statbuf); | |
1358 | else | |
1359 | #endif | |
1360 | res = stat (objfile->name, &new_statbuf); | |
1361 | if (res != 0) { | |
1362 | /* FIXME, should use print_sys_errmsg but it's not filtered. */ | |
1363 | printf_filtered ("`%s' has disappeared; keeping its symbols.\n", | |
1364 | objfile->name); | |
1365 | continue; | |
1366 | } | |
1367 | new_modtime = new_statbuf.st_mtime; | |
1368 | if (new_modtime != objfile->mtime) | |
1369 | { | |
1370 | struct cleanup *old_cleanups; | |
1371 | struct section_offsets *offsets; | |
1372 | int num_offsets; | |
1373 | int section_offsets_size; | |
1374 | char *obfd_filename; | |
1375 | ||
1376 | printf_filtered ("`%s' has changed; re-reading symbols.\n", | |
1377 | objfile->name); | |
1378 | ||
1379 | /* There are various functions like symbol_file_add, | |
1380 | symfile_bfd_open, syms_from_objfile, etc., which might | |
1381 | appear to do what we want. But they have various other | |
1382 | effects which we *don't* want. So we just do stuff | |
1383 | ourselves. We don't worry about mapped files (for one thing, | |
1384 | any mapped file will be out of date). */ | |
1385 | ||
1386 | /* If we get an error, blow away this objfile (not sure if | |
1387 | that is the correct response for things like shared | |
1388 | libraries). */ | |
1389 | old_cleanups = make_cleanup ((make_cleanup_func) free_objfile, | |
1390 | objfile); | |
1391 | /* We need to do this whenever any symbols go away. */ | |
1392 | make_cleanup ((make_cleanup_func) clear_symtab_users, 0); | |
1393 | ||
1394 | /* Clean up any state BFD has sitting around. We don't need | |
1395 | to close the descriptor but BFD lacks a way of closing the | |
1396 | BFD without closing the descriptor. */ | |
1397 | obfd_filename = bfd_get_filename (objfile->obfd); | |
1398 | if (!bfd_close (objfile->obfd)) | |
1399 | error ("Can't close BFD for %s: %s", objfile->name, | |
1400 | bfd_errmsg (bfd_get_error ())); | |
1401 | objfile->obfd = bfd_openr (obfd_filename, gnutarget); | |
1402 | if (objfile->obfd == NULL) | |
1403 | error ("Can't open %s to read symbols.", objfile->name); | |
1404 | /* bfd_openr sets cacheable to true, which is what we want. */ | |
1405 | if (!bfd_check_format (objfile->obfd, bfd_object)) | |
1406 | error ("Can't read symbols from %s: %s.", objfile->name, | |
1407 | bfd_errmsg (bfd_get_error ())); | |
1408 | ||
1409 | /* Save the offsets, we will nuke them with the rest of the | |
1410 | psymbol_obstack. */ | |
1411 | num_offsets = objfile->num_sections; | |
1412 | section_offsets_size = | |
1413 | sizeof (struct section_offsets) | |
1414 | + sizeof (objfile->section_offsets->offsets) * num_offsets; | |
1415 | offsets = (struct section_offsets *) alloca (section_offsets_size); | |
1416 | memcpy (offsets, objfile->section_offsets, section_offsets_size); | |
1417 | ||
1418 | /* Nuke all the state that we will re-read. Much of the following | |
1419 | code which sets things to NULL really is necessary to tell | |
1420 | other parts of GDB that there is nothing currently there. */ | |
1421 | ||
1422 | /* FIXME: Do we have to free a whole linked list, or is this | |
1423 | enough? */ | |
1424 | if (objfile->global_psymbols.list) | |
1425 | mfree (objfile->md, objfile->global_psymbols.list); | |
1426 | memset (&objfile -> global_psymbols, 0, | |
1427 | sizeof (objfile -> global_psymbols)); | |
1428 | if (objfile->static_psymbols.list) | |
1429 | mfree (objfile->md, objfile->static_psymbols.list); | |
1430 | memset (&objfile -> static_psymbols, 0, | |
1431 | sizeof (objfile -> static_psymbols)); | |
1432 | ||
1433 | /* Free the obstacks for non-reusable objfiles */ | |
1434 | obstack_free (&objfile -> psymbol_cache.cache, 0); | |
1435 | memset (&objfile -> psymbol_cache, 0, | |
1436 | sizeof (objfile -> psymbol_cache)); | |
1437 | obstack_free (&objfile -> psymbol_obstack, 0); | |
1438 | obstack_free (&objfile -> symbol_obstack, 0); | |
1439 | obstack_free (&objfile -> type_obstack, 0); | |
1440 | objfile->sections = NULL; | |
1441 | objfile->symtabs = NULL; | |
1442 | objfile->psymtabs = NULL; | |
1443 | objfile->free_psymtabs = NULL; | |
1444 | objfile->msymbols = NULL; | |
1445 | objfile->minimal_symbol_count= 0; | |
1446 | objfile->fundamental_types = NULL; | |
1447 | if (objfile -> sf != NULL) | |
1448 | { | |
1449 | (*objfile -> sf -> sym_finish) (objfile); | |
1450 | } | |
1451 | ||
1452 | /* We never make this a mapped file. */ | |
1453 | objfile -> md = NULL; | |
1454 | /* obstack_specify_allocation also initializes the obstack so | |
1455 | it is empty. */ | |
1456 | obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0, | |
1457 | xmalloc, free); | |
1458 | obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, | |
1459 | xmalloc, free); | |
1460 | obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, | |
1461 | xmalloc, free); | |
1462 | obstack_specify_allocation (&objfile -> type_obstack, 0, 0, | |
1463 | xmalloc, free); | |
1464 | if (build_objfile_section_table (objfile)) | |
1465 | { | |
1466 | error ("Can't find the file sections in `%s': %s", | |
1467 | objfile -> name, bfd_errmsg (bfd_get_error ())); | |
1468 | } | |
1469 | ||
1470 | /* We use the same section offsets as from last time. I'm not | |
1471 | sure whether that is always correct for shared libraries. */ | |
1472 | objfile->section_offsets = (struct section_offsets *) | |
1473 | obstack_alloc (&objfile -> psymbol_obstack, section_offsets_size); | |
1474 | memcpy (objfile->section_offsets, offsets, section_offsets_size); | |
1475 | objfile->num_sections = num_offsets; | |
1476 | ||
1477 | /* What the hell is sym_new_init for, anyway? The concept of | |
1478 | distinguishing between the main file and additional files | |
1479 | in this way seems rather dubious. */ | |
1480 | if (objfile == symfile_objfile) | |
1481 | { | |
1482 | (*objfile->sf->sym_new_init) (objfile); | |
1483 | #ifdef HPUXHPPA | |
1484 | RESET_HP_UX_GLOBALS (); | |
1485 | #endif | |
1486 | } | |
1487 | ||
1488 | (*objfile->sf->sym_init) (objfile); | |
1489 | clear_complaints (1, 1); | |
1490 | /* The "mainline" parameter is a hideous hack; I think leaving it | |
1491 | zero is OK since dbxread.c also does what it needs to do if | |
1492 | objfile->global_psymbols.size is 0. */ | |
1493 | (*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0); | |
1494 | if (!have_partial_symbols () && !have_full_symbols ()) | |
1495 | { | |
1496 | wrap_here (""); | |
1497 | printf_filtered ("(no debugging symbols found)\n"); | |
1498 | wrap_here (""); | |
1499 | } | |
1500 | objfile -> flags |= OBJF_SYMS; | |
1501 | ||
1502 | /* We're done reading the symbol file; finish off complaints. */ | |
1503 | clear_complaints (0, 1); | |
1504 | ||
1505 | /* Getting new symbols may change our opinion about what is | |
1506 | frameless. */ | |
1507 | ||
1508 | reinit_frame_cache (); | |
1509 | ||
1510 | /* Discard cleanups as symbol reading was successful. */ | |
1511 | discard_cleanups (old_cleanups); | |
1512 | ||
1513 | /* If the mtime has changed between the time we set new_modtime | |
1514 | and now, we *want* this to be out of date, so don't call stat | |
1515 | again now. */ | |
1516 | objfile->mtime = new_modtime; | |
1517 | reread_one = 1; | |
1518 | ||
1519 | /* Call this after reading in a new symbol table to give target | |
1520 | dependant code a crack at the new symbols. For instance, this | |
1521 | could be used to update the values of target-specific symbols GDB | |
1522 | needs to keep track of (such as _sigtramp, or whatever). */ | |
1523 | ||
1524 | TARGET_SYMFILE_POSTREAD (objfile); | |
1525 | } | |
1526 | } | |
1527 | } | |
1528 | ||
1529 | if (reread_one) | |
1530 | clear_symtab_users (); | |
1531 | } | |
1532 | ||
1533 | \f | |
1534 | ||
1535 | typedef struct { | |
1536 | char *ext; | |
1537 | enum language lang; | |
1538 | } filename_language; | |
1539 | ||
1540 | static filename_language * filename_language_table; | |
1541 | static int fl_table_size, fl_table_next; | |
1542 | ||
1543 | static void | |
1544 | add_filename_language (ext, lang) | |
1545 | char *ext; | |
1546 | enum language lang; | |
1547 | { | |
1548 | if (fl_table_next >= fl_table_size) | |
1549 | { | |
1550 | fl_table_size += 10; | |
1551 | filename_language_table = realloc (filename_language_table, | |
1552 | fl_table_size); | |
1553 | } | |
1554 | ||
1555 | filename_language_table[fl_table_next].ext = strsave (ext); | |
1556 | filename_language_table[fl_table_next].lang = lang; | |
1557 | fl_table_next++; | |
1558 | } | |
1559 | ||
1560 | static char *ext_args; | |
1561 | ||
1562 | static void | |
1563 | set_ext_lang_command (args, from_tty) | |
1564 | char *args; | |
1565 | int from_tty; | |
1566 | { | |
1567 | int i; | |
1568 | char *cp = ext_args; | |
1569 | enum language lang; | |
1570 | ||
1571 | /* First arg is filename extension, starting with '.' */ | |
1572 | if (*cp != '.') | |
1573 | error ("'%s': Filename extension must begin with '.'", ext_args); | |
1574 | ||
1575 | /* Find end of first arg. */ | |
1576 | while (*cp && !isspace (*cp)) | |
1577 | cp++; | |
1578 | ||
1579 | if (*cp == '\0') | |
1580 | error ("'%s': two arguments required -- filename extension and language", | |
1581 | ext_args); | |
1582 | ||
1583 | /* Null-terminate first arg */ | |
1584 | *cp++ = '\0'; | |
1585 | ||
1586 | /* Find beginning of second arg, which should be a source language. */ | |
1587 | while (*cp && isspace (*cp)) | |
1588 | cp++; | |
1589 | ||
1590 | if (*cp == '\0') | |
1591 | error ("'%s': two arguments required -- filename extension and language", | |
1592 | ext_args); | |
1593 | ||
1594 | /* Lookup the language from among those we know. */ | |
1595 | lang = language_enum (cp); | |
1596 | ||
1597 | /* Now lookup the filename extension: do we already know it? */ | |
1598 | for (i = 0; i < fl_table_next; i++) | |
1599 | if (0 == strcmp (ext_args, filename_language_table[i].ext)) | |
1600 | break; | |
1601 | ||
1602 | if (i >= fl_table_next) | |
1603 | { | |
1604 | /* new file extension */ | |
1605 | add_filename_language (ext_args, lang); | |
1606 | } | |
1607 | else | |
1608 | { | |
1609 | /* redefining a previously known filename extension */ | |
1610 | ||
1611 | /* if (from_tty) */ | |
1612 | /* query ("Really make files of type %s '%s'?", */ | |
1613 | /* ext_args, language_str (lang)); */ | |
1614 | ||
1615 | free (filename_language_table[i].ext); | |
1616 | filename_language_table[i].ext = strsave (ext_args); | |
1617 | filename_language_table[i].lang = lang; | |
1618 | } | |
1619 | } | |
1620 | ||
1621 | static void | |
1622 | info_ext_lang_command (args, from_tty) | |
1623 | char *args; | |
1624 | int from_tty; | |
1625 | { | |
1626 | int i; | |
1627 | ||
1628 | printf_filtered ("Filename extensions and the languages they represent:"); | |
1629 | printf_filtered ("\n\n"); | |
1630 | for (i = 0; i < fl_table_next; i++) | |
1631 | printf_filtered ("\t%s\t- %s\n", | |
1632 | filename_language_table[i].ext, | |
1633 | language_str (filename_language_table[i].lang)); | |
1634 | } | |
1635 | ||
1636 | static void | |
1637 | init_filename_language_table () | |
1638 | { | |
1639 | if (fl_table_size == 0) /* protect against repetition */ | |
1640 | { | |
1641 | fl_table_size = 20; | |
1642 | fl_table_next = 0; | |
1643 | filename_language_table = | |
1644 | xmalloc (fl_table_size * sizeof (*filename_language_table)); | |
1645 | add_filename_language (".c", language_c); | |
1646 | add_filename_language (".C", language_cplus); | |
1647 | add_filename_language (".cc", language_cplus); | |
1648 | add_filename_language (".cp", language_cplus); | |
1649 | add_filename_language (".cpp", language_cplus); | |
1650 | add_filename_language (".cxx", language_cplus); | |
1651 | add_filename_language (".c++", language_cplus); | |
1652 | add_filename_language (".java", language_java); | |
1653 | add_filename_language (".class", language_java); | |
1654 | add_filename_language (".ch", language_chill); | |
1655 | add_filename_language (".c186", language_chill); | |
1656 | add_filename_language (".c286", language_chill); | |
1657 | add_filename_language (".f", language_fortran); | |
1658 | add_filename_language (".F", language_fortran); | |
1659 | add_filename_language (".s", language_asm); | |
1660 | add_filename_language (".S", language_asm); | |
1661 | } | |
1662 | } | |
1663 | ||
1664 | enum language | |
1665 | deduce_language_from_filename (filename) | |
1666 | char *filename; | |
1667 | { | |
1668 | int i; | |
1669 | char *cp; | |
1670 | ||
1671 | if (filename != NULL) | |
1672 | if ((cp = strrchr (filename, '.')) != NULL) | |
1673 | for (i = 0; i < fl_table_next; i++) | |
1674 | if (strcmp (cp, filename_language_table[i].ext) == 0) | |
1675 | return filename_language_table[i].lang; | |
1676 | ||
1677 | return language_unknown; | |
1678 | } | |
1679 | \f | |
1680 | /* allocate_symtab: | |
1681 | ||
1682 | Allocate and partly initialize a new symbol table. Return a pointer | |
1683 | to it. error() if no space. | |
1684 | ||
1685 | Caller must set these fields: | |
1686 | LINETABLE(symtab) | |
1687 | symtab->blockvector | |
1688 | symtab->dirname | |
1689 | symtab->free_code | |
1690 | symtab->free_ptr | |
1691 | possibly free_named_symtabs (symtab->filename); | |
1692 | */ | |
1693 | ||
1694 | struct symtab * | |
1695 | allocate_symtab (filename, objfile) | |
1696 | char *filename; | |
1697 | struct objfile *objfile; | |
1698 | { | |
1699 | register struct symtab *symtab; | |
1700 | ||
1701 | symtab = (struct symtab *) | |
1702 | obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symtab)); | |
1703 | memset (symtab, 0, sizeof (*symtab)); | |
1704 | symtab -> filename = obsavestring (filename, strlen (filename), | |
1705 | &objfile -> symbol_obstack); | |
1706 | symtab -> fullname = NULL; | |
1707 | symtab -> language = deduce_language_from_filename (filename); | |
1708 | symtab -> debugformat = obsavestring ("unknown", 7, | |
1709 | &objfile -> symbol_obstack); | |
1710 | ||
1711 | /* Hook it to the objfile it comes from */ | |
1712 | ||
1713 | symtab -> objfile = objfile; | |
1714 | symtab -> next = objfile -> symtabs; | |
1715 | objfile -> symtabs = symtab; | |
1716 | ||
1717 | /* FIXME: This should go away. It is only defined for the Z8000, | |
1718 | and the Z8000 definition of this macro doesn't have anything to | |
1719 | do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just | |
1720 | here for convenience. */ | |
1721 | #ifdef INIT_EXTRA_SYMTAB_INFO | |
1722 | INIT_EXTRA_SYMTAB_INFO (symtab); | |
1723 | #endif | |
1724 | ||
1725 | return (symtab); | |
1726 | } | |
1727 | ||
1728 | struct partial_symtab * | |
1729 | allocate_psymtab (filename, objfile) | |
1730 | char *filename; | |
1731 | struct objfile *objfile; | |
1732 | { | |
1733 | struct partial_symtab *psymtab; | |
1734 | ||
1735 | if (objfile -> free_psymtabs) | |
1736 | { | |
1737 | psymtab = objfile -> free_psymtabs; | |
1738 | objfile -> free_psymtabs = psymtab -> next; | |
1739 | } | |
1740 | else | |
1741 | psymtab = (struct partial_symtab *) | |
1742 | obstack_alloc (&objfile -> psymbol_obstack, | |
1743 | sizeof (struct partial_symtab)); | |
1744 | ||
1745 | memset (psymtab, 0, sizeof (struct partial_symtab)); | |
1746 | psymtab -> filename = obsavestring (filename, strlen (filename), | |
1747 | &objfile -> psymbol_obstack); | |
1748 | psymtab -> symtab = NULL; | |
1749 | ||
1750 | /* Prepend it to the psymtab list for the objfile it belongs to. | |
1751 | Psymtabs are searched in most recent inserted -> least recent | |
1752 | inserted order. */ | |
1753 | ||
1754 | psymtab -> objfile = objfile; | |
1755 | psymtab -> next = objfile -> psymtabs; | |
1756 | objfile -> psymtabs = psymtab; | |
1757 | #if 0 | |
1758 | { | |
1759 | struct partial_symtab **prev_pst; | |
1760 | psymtab -> objfile = objfile; | |
1761 | psymtab -> next = NULL; | |
1762 | prev_pst = &(objfile -> psymtabs); | |
1763 | while ((*prev_pst) != NULL) | |
1764 | prev_pst = &((*prev_pst) -> next); | |
1765 | (*prev_pst) = psymtab; | |
1766 | } | |
1767 | #endif | |
1768 | ||
1769 | return (psymtab); | |
1770 | } | |
1771 | ||
1772 | void | |
1773 | discard_psymtab (pst) | |
1774 | struct partial_symtab *pst; | |
1775 | { | |
1776 | struct partial_symtab **prev_pst; | |
1777 | ||
1778 | /* From dbxread.c: | |
1779 | Empty psymtabs happen as a result of header files which don't | |
1780 | have any symbols in them. There can be a lot of them. But this | |
1781 | check is wrong, in that a psymtab with N_SLINE entries but | |
1782 | nothing else is not empty, but we don't realize that. Fixing | |
1783 | that without slowing things down might be tricky. */ | |
1784 | ||
1785 | /* First, snip it out of the psymtab chain */ | |
1786 | ||
1787 | prev_pst = &(pst->objfile->psymtabs); | |
1788 | while ((*prev_pst) != pst) | |
1789 | prev_pst = &((*prev_pst)->next); | |
1790 | (*prev_pst) = pst->next; | |
1791 | ||
1792 | /* Next, put it on a free list for recycling */ | |
1793 | ||
1794 | pst->next = pst->objfile->free_psymtabs; | |
1795 | pst->objfile->free_psymtabs = pst; | |
1796 | } | |
1797 | ||
1798 | \f | |
1799 | /* Reset all data structures in gdb which may contain references to symbol | |
1800 | table data. */ | |
1801 | ||
1802 | void | |
1803 | clear_symtab_users () | |
1804 | { | |
1805 | /* Someday, we should do better than this, by only blowing away | |
1806 | the things that really need to be blown. */ | |
1807 | clear_value_history (); | |
1808 | clear_displays (); | |
1809 | clear_internalvars (); | |
1810 | breakpoint_re_set (); | |
1811 | set_default_breakpoint (0, 0, 0, 0); | |
1812 | current_source_symtab = 0; | |
1813 | current_source_line = 0; | |
1814 | clear_pc_function_cache (); | |
1815 | target_new_objfile (NULL); | |
1816 | } | |
1817 | ||
1818 | /* clear_symtab_users_once: | |
1819 | ||
1820 | This function is run after symbol reading, or from a cleanup. | |
1821 | If an old symbol table was obsoleted, the old symbol table | |
1822 | has been blown away, but the other GDB data structures that may | |
1823 | reference it have not yet been cleared or re-directed. (The old | |
1824 | symtab was zapped, and the cleanup queued, in free_named_symtab() | |
1825 | below.) | |
1826 | ||
1827 | This function can be queued N times as a cleanup, or called | |
1828 | directly; it will do all the work the first time, and then will be a | |
1829 | no-op until the next time it is queued. This works by bumping a | |
1830 | counter at queueing time. Much later when the cleanup is run, or at | |
1831 | the end of symbol processing (in case the cleanup is discarded), if | |
1832 | the queued count is greater than the "done-count", we do the work | |
1833 | and set the done-count to the queued count. If the queued count is | |
1834 | less than or equal to the done-count, we just ignore the call. This | |
1835 | is needed because reading a single .o file will often replace many | |
1836 | symtabs (one per .h file, for example), and we don't want to reset | |
1837 | the breakpoints N times in the user's face. | |
1838 | ||
1839 | The reason we both queue a cleanup, and call it directly after symbol | |
1840 | reading, is because the cleanup protects us in case of errors, but is | |
1841 | discarded if symbol reading is successful. */ | |
1842 | ||
1843 | #if 0 | |
1844 | /* FIXME: As free_named_symtabs is currently a big noop this function | |
1845 | is no longer needed. */ | |
1846 | static void | |
1847 | clear_symtab_users_once PARAMS ((void)); | |
1848 | ||
1849 | static int clear_symtab_users_queued; | |
1850 | static int clear_symtab_users_done; | |
1851 | ||
1852 | static void | |
1853 | clear_symtab_users_once () | |
1854 | { | |
1855 | /* Enforce once-per-`do_cleanups'-semantics */ | |
1856 | if (clear_symtab_users_queued <= clear_symtab_users_done) | |
1857 | return; | |
1858 | clear_symtab_users_done = clear_symtab_users_queued; | |
1859 | ||
1860 | clear_symtab_users (); | |
1861 | } | |
1862 | #endif | |
1863 | ||
1864 | /* Delete the specified psymtab, and any others that reference it. */ | |
1865 | ||
1866 | static void | |
1867 | cashier_psymtab (pst) | |
1868 | struct partial_symtab *pst; | |
1869 | { | |
1870 | struct partial_symtab *ps, *pprev = NULL; | |
1871 | int i; | |
1872 | ||
1873 | /* Find its previous psymtab in the chain */ | |
1874 | for (ps = pst->objfile->psymtabs; ps; ps = ps->next) { | |
1875 | if (ps == pst) | |
1876 | break; | |
1877 | pprev = ps; | |
1878 | } | |
1879 | ||
1880 | if (ps) { | |
1881 | /* Unhook it from the chain. */ | |
1882 | if (ps == pst->objfile->psymtabs) | |
1883 | pst->objfile->psymtabs = ps->next; | |
1884 | else | |
1885 | pprev->next = ps->next; | |
1886 | ||
1887 | /* FIXME, we can't conveniently deallocate the entries in the | |
1888 | partial_symbol lists (global_psymbols/static_psymbols) that | |
1889 | this psymtab points to. These just take up space until all | |
1890 | the psymtabs are reclaimed. Ditto the dependencies list and | |
1891 | filename, which are all in the psymbol_obstack. */ | |
1892 | ||
1893 | /* We need to cashier any psymtab that has this one as a dependency... */ | |
1894 | again: | |
1895 | for (ps = pst->objfile->psymtabs; ps; ps = ps->next) { | |
1896 | for (i = 0; i < ps->number_of_dependencies; i++) { | |
1897 | if (ps->dependencies[i] == pst) { | |
1898 | cashier_psymtab (ps); | |
1899 | goto again; /* Must restart, chain has been munged. */ | |
1900 | } | |
1901 | } | |
1902 | } | |
1903 | } | |
1904 | } | |
1905 | ||
1906 | /* If a symtab or psymtab for filename NAME is found, free it along | |
1907 | with any dependent breakpoints, displays, etc. | |
1908 | Used when loading new versions of object modules with the "add-file" | |
1909 | command. This is only called on the top-level symtab or psymtab's name; | |
1910 | it is not called for subsidiary files such as .h files. | |
1911 | ||
1912 | Return value is 1 if we blew away the environment, 0 if not. | |
1913 | FIXME. The return valu appears to never be used. | |
1914 | ||
1915 | FIXME. I think this is not the best way to do this. We should | |
1916 | work on being gentler to the environment while still cleaning up | |
1917 | all stray pointers into the freed symtab. */ | |
1918 | ||
1919 | int | |
1920 | free_named_symtabs (name) | |
1921 | char *name; | |
1922 | { | |
1923 | #if 0 | |
1924 | /* FIXME: With the new method of each objfile having it's own | |
1925 | psymtab list, this function needs serious rethinking. In particular, | |
1926 | why was it ever necessary to toss psymtabs with specific compilation | |
1927 | unit filenames, as opposed to all psymtabs from a particular symbol | |
1928 | file? -- fnf | |
1929 | Well, the answer is that some systems permit reloading of particular | |
1930 | compilation units. We want to blow away any old info about these | |
1931 | compilation units, regardless of which objfiles they arrived in. --gnu. */ | |
1932 | ||
1933 | register struct symtab *s; | |
1934 | register struct symtab *prev; | |
1935 | register struct partial_symtab *ps; | |
1936 | struct blockvector *bv; | |
1937 | int blewit = 0; | |
1938 | ||
1939 | /* We only wack things if the symbol-reload switch is set. */ | |
1940 | if (!symbol_reloading) | |
1941 | return 0; | |
1942 | ||
1943 | /* Some symbol formats have trouble providing file names... */ | |
1944 | if (name == 0 || *name == '\0') | |
1945 | return 0; | |
1946 | ||
1947 | /* Look for a psymtab with the specified name. */ | |
1948 | ||
1949 | again2: | |
1950 | for (ps = partial_symtab_list; ps; ps = ps->next) { | |
1951 | if (STREQ (name, ps->filename)) { | |
1952 | cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ | |
1953 | goto again2; /* Must restart, chain has been munged */ | |
1954 | } | |
1955 | } | |
1956 | ||
1957 | /* Look for a symtab with the specified name. */ | |
1958 | ||
1959 | for (s = symtab_list; s; s = s->next) | |
1960 | { | |
1961 | if (STREQ (name, s->filename)) | |
1962 | break; | |
1963 | prev = s; | |
1964 | } | |
1965 | ||
1966 | if (s) | |
1967 | { | |
1968 | if (s == symtab_list) | |
1969 | symtab_list = s->next; | |
1970 | else | |
1971 | prev->next = s->next; | |
1972 | ||
1973 | /* For now, queue a delete for all breakpoints, displays, etc., whether | |
1974 | or not they depend on the symtab being freed. This should be | |
1975 | changed so that only those data structures affected are deleted. */ | |
1976 | ||
1977 | /* But don't delete anything if the symtab is empty. | |
1978 | This test is necessary due to a bug in "dbxread.c" that | |
1979 | causes empty symtabs to be created for N_SO symbols that | |
1980 | contain the pathname of the object file. (This problem | |
1981 | has been fixed in GDB 3.9x). */ | |
1982 | ||
1983 | bv = BLOCKVECTOR (s); | |
1984 | if (BLOCKVECTOR_NBLOCKS (bv) > 2 | |
1985 | || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) | |
1986 | || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) | |
1987 | { | |
1988 | complain (&oldsyms_complaint, name); | |
1989 | ||
1990 | clear_symtab_users_queued++; | |
1991 | make_cleanup (clear_symtab_users_once, 0); | |
1992 | blewit = 1; | |
1993 | } else { | |
1994 | complain (&empty_symtab_complaint, name); | |
1995 | } | |
1996 | ||
1997 | free_symtab (s); | |
1998 | } | |
1999 | else | |
2000 | { | |
2001 | /* It is still possible that some breakpoints will be affected | |
2002 | even though no symtab was found, since the file might have | |
2003 | been compiled without debugging, and hence not be associated | |
2004 | with a symtab. In order to handle this correctly, we would need | |
2005 | to keep a list of text address ranges for undebuggable files. | |
2006 | For now, we do nothing, since this is a fairly obscure case. */ | |
2007 | ; | |
2008 | } | |
2009 | ||
2010 | /* FIXME, what about the minimal symbol table? */ | |
2011 | return blewit; | |
2012 | #else | |
2013 | return (0); | |
2014 | #endif | |
2015 | } | |
2016 | \f | |
2017 | /* Allocate and partially fill a partial symtab. It will be | |
2018 | completely filled at the end of the symbol list. | |
2019 | ||
2020 | SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR | |
2021 | is the address relative to which its symbols are (incremental) or 0 | |
2022 | (normal). */ | |
2023 | ||
2024 | ||
2025 | struct partial_symtab * | |
2026 | start_psymtab_common (objfile, section_offsets, | |
2027 | filename, textlow, global_syms, static_syms) | |
2028 | struct objfile *objfile; | |
2029 | struct section_offsets *section_offsets; | |
2030 | char *filename; | |
2031 | CORE_ADDR textlow; | |
2032 | struct partial_symbol **global_syms; | |
2033 | struct partial_symbol **static_syms; | |
2034 | { | |
2035 | struct partial_symtab *psymtab; | |
2036 | ||
2037 | psymtab = allocate_psymtab (filename, objfile); | |
2038 | psymtab -> section_offsets = section_offsets; | |
2039 | psymtab -> textlow = textlow; | |
2040 | psymtab -> texthigh = psymtab -> textlow; /* default */ | |
2041 | psymtab -> globals_offset = global_syms - objfile -> global_psymbols.list; | |
2042 | psymtab -> statics_offset = static_syms - objfile -> static_psymbols.list; | |
2043 | return (psymtab); | |
2044 | } | |
2045 | \f | |
2046 | /* Add a symbol with a long value to a psymtab. | |
2047 | Since one arg is a struct, we pass in a ptr and deref it (sigh). */ | |
2048 | ||
2049 | void | |
2050 | add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr, | |
2051 | language, objfile) | |
2052 | char *name; | |
2053 | int namelength; | |
2054 | namespace_enum namespace; | |
2055 | enum address_class class; | |
2056 | struct psymbol_allocation_list *list; | |
2057 | long val; /* Value as a long */ | |
2058 | CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ | |
2059 | enum language language; | |
2060 | struct objfile *objfile; | |
2061 | { | |
2062 | register struct partial_symbol *psym; | |
2063 | char *buf = alloca (namelength + 1); | |
2064 | /* psymbol is static so that there will be no uninitialized gaps in the | |
2065 | structure which might contain random data, causing cache misses in | |
2066 | bcache. */ | |
2067 | static struct partial_symbol psymbol; | |
2068 | ||
2069 | /* Create local copy of the partial symbol */ | |
2070 | memcpy (buf, name, namelength); | |
2071 | buf[namelength] = '\0'; | |
2072 | SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); | |
2073 | /* val and coreaddr are mutually exclusive, one of them *will* be zero */ | |
2074 | if (val != 0) | |
2075 | { | |
2076 | SYMBOL_VALUE (&psymbol) = val; | |
2077 | } | |
2078 | else | |
2079 | { | |
2080 | SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; | |
2081 | } | |
2082 | SYMBOL_SECTION (&psymbol) = 0; | |
2083 | SYMBOL_LANGUAGE (&psymbol) = language; | |
2084 | PSYMBOL_NAMESPACE (&psymbol) = namespace; | |
2085 | PSYMBOL_CLASS (&psymbol) = class; | |
2086 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); | |
2087 | ||
2088 | /* Stash the partial symbol away in the cache */ | |
2089 | psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); | |
2090 | ||
2091 | /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ | |
2092 | if (list->next >= list->list + list->size) | |
2093 | { | |
2094 | extend_psymbol_list (list, objfile); | |
2095 | } | |
2096 | *list->next++ = psym; | |
2097 | OBJSTAT (objfile, n_psyms++); | |
2098 | } | |
2099 | ||
2100 | /* Add a symbol with a long value to a psymtab. This differs from | |
2101 | * add_psymbol_to_list above in taking both a mangled and a demangled | |
2102 | * name. */ | |
2103 | ||
2104 | void | |
2105 | add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength, | |
2106 | namespace, class, list, val, coreaddr, language, objfile) | |
2107 | char *name; | |
2108 | int namelength; | |
2109 | char *dem_name; | |
2110 | int dem_namelength; | |
2111 | namespace_enum namespace; | |
2112 | enum address_class class; | |
2113 | struct psymbol_allocation_list *list; | |
2114 | long val; /* Value as a long */ | |
2115 | CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ | |
2116 | enum language language; | |
2117 | struct objfile *objfile; | |
2118 | { | |
2119 | register struct partial_symbol *psym; | |
2120 | char *buf = alloca (namelength + 1); | |
2121 | /* psymbol is static so that there will be no uninitialized gaps in the | |
2122 | structure which might contain random data, causing cache misses in | |
2123 | bcache. */ | |
2124 | static struct partial_symbol psymbol; | |
2125 | ||
2126 | /* Create local copy of the partial symbol */ | |
2127 | ||
2128 | memcpy (buf, name, namelength); | |
2129 | buf[namelength] = '\0'; | |
2130 | SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); | |
2131 | ||
2132 | buf = alloca (dem_namelength + 1); | |
2133 | memcpy (buf, dem_name, dem_namelength); | |
2134 | buf[dem_namelength] = '\0'; | |
2135 | ||
2136 | switch (language) | |
2137 | { | |
2138 | case language_c: | |
2139 | case language_cplus: | |
2140 | SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) = | |
2141 | bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); | |
2142 | break; | |
2143 | case language_chill: | |
2144 | SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = | |
2145 | bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); | |
2146 | ||
2147 | /* FIXME What should be done for the default case? Ignoring for now. */ | |
2148 | } | |
2149 | ||
2150 | /* val and coreaddr are mutually exclusive, one of them *will* be zero */ | |
2151 | if (val != 0) | |
2152 | { | |
2153 | SYMBOL_VALUE (&psymbol) = val; | |
2154 | } | |
2155 | else | |
2156 | { | |
2157 | SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; | |
2158 | } | |
2159 | SYMBOL_SECTION (&psymbol) = 0; | |
2160 | SYMBOL_LANGUAGE (&psymbol) = language; | |
2161 | PSYMBOL_NAMESPACE (&psymbol) = namespace; | |
2162 | PSYMBOL_CLASS (&psymbol) = class; | |
2163 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); | |
2164 | ||
2165 | /* Stash the partial symbol away in the cache */ | |
2166 | psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); | |
2167 | ||
2168 | /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ | |
2169 | if (list->next >= list->list + list->size) | |
2170 | { | |
2171 | extend_psymbol_list (list, objfile); | |
2172 | } | |
2173 | *list->next++ = psym; | |
2174 | OBJSTAT (objfile, n_psyms++); | |
2175 | } | |
2176 | ||
2177 | /* Initialize storage for partial symbols. */ | |
2178 | ||
2179 | void | |
2180 | init_psymbol_list (objfile, total_symbols) | |
2181 | struct objfile *objfile; | |
2182 | int total_symbols; | |
2183 | { | |
2184 | /* Free any previously allocated psymbol lists. */ | |
2185 | ||
2186 | if (objfile -> global_psymbols.list) | |
2187 | { | |
2188 | mfree (objfile -> md, (PTR)objfile -> global_psymbols.list); | |
2189 | } | |
2190 | if (objfile -> static_psymbols.list) | |
2191 | { | |
2192 | mfree (objfile -> md, (PTR)objfile -> static_psymbols.list); | |
2193 | } | |
2194 | ||
2195 | /* Current best guess is that approximately a twentieth | |
2196 | of the total symbols (in a debugging file) are global or static | |
2197 | oriented symbols */ | |
2198 | ||
2199 | objfile -> global_psymbols.size = total_symbols / 10; | |
2200 | objfile -> static_psymbols.size = total_symbols / 10; | |
2201 | ||
2202 | if (objfile -> global_psymbols.size > 0) | |
2203 | { | |
2204 | objfile -> global_psymbols.next = | |
2205 | objfile -> global_psymbols.list = (struct partial_symbol **) | |
2206 | xmmalloc (objfile -> md, (objfile -> global_psymbols.size | |
2207 | * sizeof (struct partial_symbol *))); | |
2208 | } | |
2209 | if (objfile -> static_psymbols.size > 0) | |
2210 | { | |
2211 | objfile -> static_psymbols.next = | |
2212 | objfile -> static_psymbols.list = (struct partial_symbol **) | |
2213 | xmmalloc (objfile -> md, (objfile -> static_psymbols.size | |
2214 | * sizeof (struct partial_symbol *))); | |
2215 | } | |
2216 | } | |
2217 | ||
2218 | /* OVERLAYS: | |
2219 | The following code implements an abstraction for debugging overlay sections. | |
2220 | ||
2221 | The target model is as follows: | |
2222 | 1) The gnu linker will permit multiple sections to be mapped into the | |
2223 | same VMA, each with its own unique LMA (or load address). | |
2224 | 2) It is assumed that some runtime mechanism exists for mapping the | |
2225 | sections, one by one, from the load address into the VMA address. | |
2226 | 3) This code provides a mechanism for gdb to keep track of which | |
2227 | sections should be considered to be mapped from the VMA to the LMA. | |
2228 | This information is used for symbol lookup, and memory read/write. | |
2229 | For instance, if a section has been mapped then its contents | |
2230 | should be read from the VMA, otherwise from the LMA. | |
2231 | ||
2232 | Two levels of debugger support for overlays are available. One is | |
2233 | "manual", in which the debugger relies on the user to tell it which | |
2234 | overlays are currently mapped. This level of support is | |
2235 | implemented entirely in the core debugger, and the information about | |
2236 | whether a section is mapped is kept in the objfile->obj_section table. | |
2237 | ||
2238 | The second level of support is "automatic", and is only available if | |
2239 | the target-specific code provides functionality to read the target's | |
2240 | overlay mapping table, and translate its contents for the debugger | |
2241 | (by updating the mapped state information in the obj_section tables). | |
2242 | ||
2243 | The interface is as follows: | |
2244 | User commands: | |
2245 | overlay map <name> -- tell gdb to consider this section mapped | |
2246 | overlay unmap <name> -- tell gdb to consider this section unmapped | |
2247 | overlay list -- list the sections that GDB thinks are mapped | |
2248 | overlay read-target -- get the target's state of what's mapped | |
2249 | overlay off/manual/auto -- set overlay debugging state | |
2250 | Functional interface: | |
2251 | find_pc_mapped_section(pc): if the pc is in the range of a mapped | |
2252 | section, return that section. | |
2253 | find_pc_overlay(pc): find any overlay section that contains | |
2254 | the pc, either in its VMA or its LMA | |
2255 | overlay_is_mapped(sect): true if overlay is marked as mapped | |
2256 | section_is_overlay(sect): true if section's VMA != LMA | |
2257 | pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA | |
2258 | pc_in_unmapped_range(...): true if pc belongs to section's LMA | |
2259 | overlay_mapped_address(...): map an address from section's LMA to VMA | |
2260 | overlay_unmapped_address(...): map an address from section's VMA to LMA | |
2261 | symbol_overlayed_address(...): Return a "current" address for symbol: | |
2262 | either in VMA or LMA depending on whether | |
2263 | the symbol's section is currently mapped | |
2264 | */ | |
2265 | ||
2266 | /* Overlay debugging state: */ | |
2267 | ||
2268 | int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */ | |
2269 | int overlay_cache_invalid = 0; /* True if need to refresh mapped state */ | |
2270 | ||
2271 | /* Target vector for refreshing overlay mapped state */ | |
2272 | static void simple_overlay_update PARAMS ((struct obj_section *)); | |
2273 | void (*target_overlay_update) PARAMS ((struct obj_section *)) | |
2274 | = simple_overlay_update; | |
2275 | ||
2276 | /* Function: section_is_overlay (SECTION) | |
2277 | Returns true if SECTION has VMA not equal to LMA, ie. | |
2278 | SECTION is loaded at an address different from where it will "run". */ | |
2279 | ||
2280 | int | |
2281 | section_is_overlay (section) | |
2282 | asection *section; | |
2283 | { | |
2284 | if (overlay_debugging) | |
2285 | if (section && section->lma != 0 && | |
2286 | section->vma != section->lma) | |
2287 | return 1; | |
2288 | ||
2289 | return 0; | |
2290 | } | |
2291 | ||
2292 | /* Function: overlay_invalidate_all (void) | |
2293 | Invalidate the mapped state of all overlay sections (mark it as stale). */ | |
2294 | ||
2295 | static void | |
2296 | overlay_invalidate_all () | |
2297 | { | |
2298 | struct objfile *objfile; | |
2299 | struct obj_section *sect; | |
2300 | ||
2301 | ALL_OBJSECTIONS (objfile, sect) | |
2302 | if (section_is_overlay (sect->the_bfd_section)) | |
2303 | sect->ovly_mapped = -1; | |
2304 | } | |
2305 | ||
2306 | /* Function: overlay_is_mapped (SECTION) | |
2307 | Returns true if section is an overlay, and is currently mapped. | |
2308 | Private: public access is thru function section_is_mapped. | |
2309 | ||
2310 | Access to the ovly_mapped flag is restricted to this function, so | |
2311 | that we can do automatic update. If the global flag | |
2312 | OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call | |
2313 | overlay_invalidate_all. If the mapped state of the particular | |
2314 | section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ | |
2315 | ||
2316 | static int | |
2317 | overlay_is_mapped (osect) | |
2318 | struct obj_section *osect; | |
2319 | { | |
2320 | if (osect == 0 || !section_is_overlay (osect->the_bfd_section)) | |
2321 | return 0; | |
2322 | ||
2323 | switch (overlay_debugging) | |
2324 | { | |
2325 | default: | |
2326 | case 0: return 0; /* overlay debugging off */ | |
2327 | case -1: /* overlay debugging automatic */ | |
2328 | /* Unles there is a target_overlay_update function, | |
2329 | there's really nothing useful to do here (can't really go auto) */ | |
2330 | if (target_overlay_update) | |
2331 | { | |
2332 | if (overlay_cache_invalid) | |
2333 | { | |
2334 | overlay_invalidate_all (); | |
2335 | overlay_cache_invalid = 0; | |
2336 | } | |
2337 | if (osect->ovly_mapped == -1) | |
2338 | (*target_overlay_update) (osect); | |
2339 | } | |
2340 | /* fall thru to manual case */ | |
2341 | case 1: /* overlay debugging manual */ | |
2342 | return osect->ovly_mapped == 1; | |
2343 | } | |
2344 | } | |
2345 | ||
2346 | /* Function: section_is_mapped | |
2347 | Returns true if section is an overlay, and is currently mapped. */ | |
2348 | ||
2349 | int | |
2350 | section_is_mapped (section) | |
2351 | asection *section; | |
2352 | { | |
2353 | struct objfile *objfile; | |
2354 | struct obj_section *osect; | |
2355 | ||
2356 | if (overlay_debugging) | |
2357 | if (section && section_is_overlay (section)) | |
2358 | ALL_OBJSECTIONS (objfile, osect) | |
2359 | if (osect->the_bfd_section == section) | |
2360 | return overlay_is_mapped (osect); | |
2361 | ||
2362 | return 0; | |
2363 | } | |
2364 | ||
2365 | /* Function: pc_in_unmapped_range | |
2366 | If PC falls into the lma range of SECTION, return true, else false. */ | |
2367 | ||
2368 | CORE_ADDR | |
2369 | pc_in_unmapped_range (pc, section) | |
2370 | CORE_ADDR pc; | |
2371 | asection *section; | |
2372 | { | |
2373 | int size; | |
2374 | ||
2375 | if (overlay_debugging) | |
2376 | if (section && section_is_overlay (section)) | |
2377 | { | |
2378 | size = bfd_get_section_size_before_reloc (section); | |
2379 | if (section->lma <= pc && pc < section->lma + size) | |
2380 | return 1; | |
2381 | } | |
2382 | return 0; | |
2383 | } | |
2384 | ||
2385 | /* Function: pc_in_mapped_range | |
2386 | If PC falls into the vma range of SECTION, return true, else false. */ | |
2387 | ||
2388 | CORE_ADDR | |
2389 | pc_in_mapped_range (pc, section) | |
2390 | CORE_ADDR pc; | |
2391 | asection *section; | |
2392 | { | |
2393 | int size; | |
2394 | ||
2395 | if (overlay_debugging) | |
2396 | if (section && section_is_overlay (section)) | |
2397 | { | |
2398 | size = bfd_get_section_size_before_reloc (section); | |
2399 | if (section->vma <= pc && pc < section->vma + size) | |
2400 | return 1; | |
2401 | } | |
2402 | return 0; | |
2403 | } | |
2404 | ||
2405 | /* Function: overlay_unmapped_address (PC, SECTION) | |
2406 | Returns the address corresponding to PC in the unmapped (load) range. | |
2407 | May be the same as PC. */ | |
2408 | ||
2409 | CORE_ADDR | |
2410 | overlay_unmapped_address (pc, section) | |
2411 | CORE_ADDR pc; | |
2412 | asection *section; | |
2413 | { | |
2414 | if (overlay_debugging) | |
2415 | if (section && section_is_overlay (section) && | |
2416 | pc_in_mapped_range (pc, section)) | |
2417 | return pc + section->lma - section->vma; | |
2418 | ||
2419 | return pc; | |
2420 | } | |
2421 | ||
2422 | /* Function: overlay_mapped_address (PC, SECTION) | |
2423 | Returns the address corresponding to PC in the mapped (runtime) range. | |
2424 | May be the same as PC. */ | |
2425 | ||
2426 | CORE_ADDR | |
2427 | overlay_mapped_address (pc, section) | |
2428 | CORE_ADDR pc; | |
2429 | asection *section; | |
2430 | { | |
2431 | if (overlay_debugging) | |
2432 | if (section && section_is_overlay (section) && | |
2433 | pc_in_unmapped_range (pc, section)) | |
2434 | return pc + section->vma - section->lma; | |
2435 | ||
2436 | return pc; | |
2437 | } | |
2438 | ||
2439 | ||
2440 | /* Function: symbol_overlayed_address | |
2441 | Return one of two addresses (relative to the VMA or to the LMA), | |
2442 | depending on whether the section is mapped or not. */ | |
2443 | ||
2444 | CORE_ADDR | |
2445 | symbol_overlayed_address (address, section) | |
2446 | CORE_ADDR address; | |
2447 | asection *section; | |
2448 | { | |
2449 | if (overlay_debugging) | |
2450 | { | |
2451 | /* If the symbol has no section, just return its regular address. */ | |
2452 | if (section == 0) | |
2453 | return address; | |
2454 | /* If the symbol's section is not an overlay, just return its address */ | |
2455 | if (!section_is_overlay (section)) | |
2456 | return address; | |
2457 | /* If the symbol's section is mapped, just return its address */ | |
2458 | if (section_is_mapped (section)) | |
2459 | return address; | |
2460 | /* | |
2461 | * HOWEVER: if the symbol is in an overlay section which is NOT mapped, | |
2462 | * then return its LOADED address rather than its vma address!! | |
2463 | */ | |
2464 | return overlay_unmapped_address (address, section); | |
2465 | } | |
2466 | return address; | |
2467 | } | |
2468 | ||
2469 | /* Function: find_pc_overlay (PC) | |
2470 | Return the best-match overlay section for PC: | |
2471 | If PC matches a mapped overlay section's VMA, return that section. | |
2472 | Else if PC matches an unmapped section's VMA, return that section. | |
2473 | Else if PC matches an unmapped section's LMA, return that section. */ | |
2474 | ||
2475 | asection * | |
2476 | find_pc_overlay (pc) | |
2477 | CORE_ADDR pc; | |
2478 | { | |
2479 | struct objfile *objfile; | |
2480 | struct obj_section *osect, *best_match = NULL; | |
2481 | ||
2482 | if (overlay_debugging) | |
2483 | ALL_OBJSECTIONS (objfile, osect) | |
2484 | if (section_is_overlay (osect->the_bfd_section)) | |
2485 | { | |
2486 | if (pc_in_mapped_range (pc, osect->the_bfd_section)) | |
2487 | { | |
2488 | if (overlay_is_mapped (osect)) | |
2489 | return osect->the_bfd_section; | |
2490 | else | |
2491 | best_match = osect; | |
2492 | } | |
2493 | else if (pc_in_unmapped_range (pc, osect->the_bfd_section)) | |
2494 | best_match = osect; | |
2495 | } | |
2496 | return best_match ? best_match->the_bfd_section : NULL; | |
2497 | } | |
2498 | ||
2499 | /* Function: find_pc_mapped_section (PC) | |
2500 | If PC falls into the VMA address range of an overlay section that is | |
2501 | currently marked as MAPPED, return that section. Else return NULL. */ | |
2502 | ||
2503 | asection * | |
2504 | find_pc_mapped_section (pc) | |
2505 | CORE_ADDR pc; | |
2506 | { | |
2507 | struct objfile *objfile; | |
2508 | struct obj_section *osect; | |
2509 | ||
2510 | if (overlay_debugging) | |
2511 | ALL_OBJSECTIONS (objfile, osect) | |
2512 | if (pc_in_mapped_range (pc, osect->the_bfd_section) && | |
2513 | overlay_is_mapped (osect)) | |
2514 | return osect->the_bfd_section; | |
2515 | ||
2516 | return NULL; | |
2517 | } | |
2518 | ||
2519 | /* Function: list_overlays_command | |
2520 | Print a list of mapped sections and their PC ranges */ | |
2521 | ||
2522 | void | |
2523 | list_overlays_command (args, from_tty) | |
2524 | char *args; | |
2525 | int from_tty; | |
2526 | { | |
2527 | int nmapped = 0; | |
2528 | struct objfile *objfile; | |
2529 | struct obj_section *osect; | |
2530 | ||
2531 | if (overlay_debugging) | |
2532 | ALL_OBJSECTIONS (objfile, osect) | |
2533 | if (overlay_is_mapped (osect)) | |
2534 | { | |
2535 | const char *name; | |
2536 | bfd_vma lma, vma; | |
2537 | int size; | |
2538 | ||
2539 | vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section); | |
2540 | lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section); | |
2541 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2542 | name = bfd_section_name (objfile->obfd, osect->the_bfd_section); | |
2543 | ||
2544 | printf_filtered ("Section %s, loaded at ", name); | |
2545 | print_address_numeric (lma, 1, gdb_stdout); | |
2546 | puts_filtered (" - "); | |
2547 | print_address_numeric (lma + size, 1, gdb_stdout); | |
2548 | printf_filtered (", mapped at "); | |
2549 | print_address_numeric (vma, 1, gdb_stdout); | |
2550 | puts_filtered (" - "); | |
2551 | print_address_numeric (vma + size, 1, gdb_stdout); | |
2552 | puts_filtered ("\n"); | |
2553 | ||
2554 | nmapped ++; | |
2555 | } | |
2556 | if (nmapped == 0) | |
2557 | printf_filtered ("No sections are mapped.\n"); | |
2558 | } | |
2559 | ||
2560 | /* Function: map_overlay_command | |
2561 | Mark the named section as mapped (ie. residing at its VMA address). */ | |
2562 | ||
2563 | void | |
2564 | map_overlay_command (args, from_tty) | |
2565 | char *args; | |
2566 | int from_tty; | |
2567 | { | |
2568 | struct objfile *objfile, *objfile2; | |
2569 | struct obj_section *sec, *sec2; | |
2570 | asection *bfdsec; | |
2571 | ||
2572 | if (!overlay_debugging) | |
2573 | error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); | |
2574 | ||
2575 | if (args == 0 || *args == 0) | |
2576 | error ("Argument required: name of an overlay section"); | |
2577 | ||
2578 | /* First, find a section matching the user supplied argument */ | |
2579 | ALL_OBJSECTIONS (objfile, sec) | |
2580 | if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) | |
2581 | { | |
2582 | /* Now, check to see if the section is an overlay. */ | |
2583 | bfdsec = sec->the_bfd_section; | |
2584 | if (!section_is_overlay (bfdsec)) | |
2585 | continue; /* not an overlay section */ | |
2586 | ||
2587 | /* Mark the overlay as "mapped" */ | |
2588 | sec->ovly_mapped = 1; | |
2589 | ||
2590 | /* Next, make a pass and unmap any sections that are | |
2591 | overlapped by this new section: */ | |
2592 | ALL_OBJSECTIONS (objfile2, sec2) | |
2593 | if (sec2->ovly_mapped && | |
2594 | sec != sec2 && | |
2595 | sec->the_bfd_section != sec2->the_bfd_section && | |
2596 | (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) || | |
2597 | pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section))) | |
2598 | { | |
2599 | if (info_verbose) | |
2600 | printf_filtered ("Note: section %s unmapped by overlap\n", | |
2601 | bfd_section_name (objfile->obfd, | |
2602 | sec2->the_bfd_section)); | |
2603 | sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */ | |
2604 | } | |
2605 | return; | |
2606 | } | |
2607 | error ("No overlay section called %s", args); | |
2608 | } | |
2609 | ||
2610 | /* Function: unmap_overlay_command | |
2611 | Mark the overlay section as unmapped | |
2612 | (ie. resident in its LMA address range, rather than the VMA range). */ | |
2613 | ||
2614 | void | |
2615 | unmap_overlay_command (args, from_tty) | |
2616 | char *args; | |
2617 | int from_tty; | |
2618 | { | |
2619 | struct objfile *objfile; | |
2620 | struct obj_section *sec; | |
2621 | ||
2622 | if (!overlay_debugging) | |
2623 | error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); | |
2624 | ||
2625 | if (args == 0 || *args == 0) | |
2626 | error ("Argument required: name of an overlay section"); | |
2627 | ||
2628 | /* First, find a section matching the user supplied argument */ | |
2629 | ALL_OBJSECTIONS (objfile, sec) | |
2630 | if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) | |
2631 | { | |
2632 | if (!sec->ovly_mapped) | |
2633 | error ("Section %s is not mapped", args); | |
2634 | sec->ovly_mapped = 0; | |
2635 | return; | |
2636 | } | |
2637 | error ("No overlay section called %s", args); | |
2638 | } | |
2639 | ||
2640 | /* Function: overlay_auto_command | |
2641 | A utility command to turn on overlay debugging. | |
2642 | Possibly this should be done via a set/show command. */ | |
2643 | ||
2644 | static void | |
2645 | overlay_auto_command (args, from_tty) | |
2646 | char *args; | |
2647 | int from_tty; | |
2648 | { | |
2649 | overlay_debugging = -1; | |
2650 | if (info_verbose) | |
2651 | printf_filtered ("Automatic overlay debugging enabled."); | |
2652 | } | |
2653 | ||
2654 | /* Function: overlay_manual_command | |
2655 | A utility command to turn on overlay debugging. | |
2656 | Possibly this should be done via a set/show command. */ | |
2657 | ||
2658 | static void | |
2659 | overlay_manual_command (args, from_tty) | |
2660 | char *args; | |
2661 | int from_tty; | |
2662 | { | |
2663 | overlay_debugging = 1; | |
2664 | if (info_verbose) | |
2665 | printf_filtered ("Overlay debugging enabled."); | |
2666 | } | |
2667 | ||
2668 | /* Function: overlay_off_command | |
2669 | A utility command to turn on overlay debugging. | |
2670 | Possibly this should be done via a set/show command. */ | |
2671 | ||
2672 | static void | |
2673 | overlay_off_command (args, from_tty) | |
2674 | char *args; | |
2675 | int from_tty; | |
2676 | { | |
2677 | overlay_debugging = 0; | |
2678 | if (info_verbose) | |
2679 | printf_filtered ("Overlay debugging disabled."); | |
2680 | } | |
2681 | ||
2682 | static void | |
2683 | overlay_load_command (args, from_tty) | |
2684 | char *args; | |
2685 | int from_tty; | |
2686 | { | |
2687 | if (target_overlay_update) | |
2688 | (*target_overlay_update) (NULL); | |
2689 | else | |
2690 | error ("This target does not know how to read its overlay state."); | |
2691 | } | |
2692 | ||
2693 | /* Function: overlay_command | |
2694 | A place-holder for a mis-typed command */ | |
2695 | ||
2696 | /* Command list chain containing all defined "overlay" subcommands. */ | |
2697 | struct cmd_list_element *overlaylist; | |
2698 | ||
2699 | static void | |
2700 | overlay_command (args, from_tty) | |
2701 | char *args; | |
2702 | int from_tty; | |
2703 | { | |
2704 | printf_unfiltered | |
2705 | ("\"overlay\" must be followed by the name of an overlay command.\n"); | |
2706 | help_list (overlaylist, "overlay ", -1, gdb_stdout); | |
2707 | } | |
2708 | ||
2709 | ||
2710 | /* Target Overlays for the "Simplest" overlay manager: | |
2711 | ||
2712 | This is GDB's default target overlay layer. It works with the | |
2713 | minimal overlay manager supplied as an example by Cygnus. The | |
2714 | entry point is via a function pointer "target_overlay_update", | |
2715 | so targets that use a different runtime overlay manager can | |
2716 | substitute their own overlay_update function and take over the | |
2717 | function pointer. | |
2718 | ||
2719 | The overlay_update function pokes around in the target's data structures | |
2720 | to see what overlays are mapped, and updates GDB's overlay mapping with | |
2721 | this information. | |
2722 | ||
2723 | In this simple implementation, the target data structures are as follows: | |
2724 | unsigned _novlys; /# number of overlay sections #/ | |
2725 | unsigned _ovly_table[_novlys][4] = { | |
2726 | {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/ | |
2727 | {..., ..., ..., ...}, | |
2728 | } | |
2729 | unsigned _novly_regions; /# number of overlay regions #/ | |
2730 | unsigned _ovly_region_table[_novly_regions][3] = { | |
2731 | {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ | |
2732 | {..., ..., ...}, | |
2733 | } | |
2734 | These functions will attempt to update GDB's mappedness state in the | |
2735 | symbol section table, based on the target's mappedness state. | |
2736 | ||
2737 | To do this, we keep a cached copy of the target's _ovly_table, and | |
2738 | attempt to detect when the cached copy is invalidated. The main | |
2739 | entry point is "simple_overlay_update(SECT), which looks up SECT in | |
2740 | the cached table and re-reads only the entry for that section from | |
2741 | the target (whenever possible). | |
2742 | */ | |
2743 | ||
2744 | /* Cached, dynamically allocated copies of the target data structures: */ | |
2745 | static unsigned (*cache_ovly_table)[4] = 0; | |
2746 | #if 0 | |
2747 | static unsigned (*cache_ovly_region_table)[3] = 0; | |
2748 | #endif | |
2749 | static unsigned cache_novlys = 0; | |
2750 | #if 0 | |
2751 | static unsigned cache_novly_regions = 0; | |
2752 | #endif | |
2753 | static CORE_ADDR cache_ovly_table_base = 0; | |
2754 | #if 0 | |
2755 | static CORE_ADDR cache_ovly_region_table_base = 0; | |
2756 | #endif | |
2757 | enum ovly_index { VMA, SIZE, LMA, MAPPED}; | |
2758 | #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT) | |
2759 | ||
2760 | /* Throw away the cached copy of _ovly_table */ | |
2761 | static void | |
2762 | simple_free_overlay_table () | |
2763 | { | |
2764 | if (cache_ovly_table) | |
2765 | free(cache_ovly_table); | |
2766 | cache_novlys = 0; | |
2767 | cache_ovly_table = NULL; | |
2768 | cache_ovly_table_base = 0; | |
2769 | } | |
2770 | ||
2771 | #if 0 | |
2772 | /* Throw away the cached copy of _ovly_region_table */ | |
2773 | static void | |
2774 | simple_free_overlay_region_table () | |
2775 | { | |
2776 | if (cache_ovly_region_table) | |
2777 | free(cache_ovly_region_table); | |
2778 | cache_novly_regions = 0; | |
2779 | cache_ovly_region_table = NULL; | |
2780 | cache_ovly_region_table_base = 0; | |
2781 | } | |
2782 | #endif | |
2783 | ||
2784 | /* Read an array of ints from the target into a local buffer. | |
2785 | Convert to host order. int LEN is number of ints */ | |
2786 | static void | |
2787 | read_target_long_array (memaddr, myaddr, len) | |
2788 | CORE_ADDR memaddr; | |
2789 | unsigned int *myaddr; | |
2790 | int len; | |
2791 | { | |
2792 | char *buf = alloca (len * TARGET_LONG_BYTES); | |
2793 | int i; | |
2794 | ||
2795 | read_memory (memaddr, buf, len * TARGET_LONG_BYTES); | |
2796 | for (i = 0; i < len; i++) | |
2797 | myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf, | |
2798 | TARGET_LONG_BYTES); | |
2799 | } | |
2800 | ||
2801 | /* Find and grab a copy of the target _ovly_table | |
2802 | (and _novlys, which is needed for the table's size) */ | |
2803 | static int | |
2804 | simple_read_overlay_table () | |
2805 | { | |
2806 | struct minimal_symbol *msym; | |
2807 | ||
2808 | simple_free_overlay_table (); | |
2809 | msym = lookup_minimal_symbol ("_novlys", 0, 0); | |
2810 | if (msym != NULL) | |
2811 | cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); | |
2812 | else | |
2813 | return 0; /* failure */ | |
2814 | cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof(*cache_ovly_table)); | |
2815 | if (cache_ovly_table != NULL) | |
2816 | { | |
2817 | msym = lookup_minimal_symbol ("_ovly_table", 0, 0); | |
2818 | if (msym != NULL) | |
2819 | { | |
2820 | cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym); | |
2821 | read_target_long_array (cache_ovly_table_base, | |
2822 | (int *) cache_ovly_table, | |
2823 | cache_novlys * 4); | |
2824 | } | |
2825 | else | |
2826 | return 0; /* failure */ | |
2827 | } | |
2828 | else | |
2829 | return 0; /* failure */ | |
2830 | return 1; /* SUCCESS */ | |
2831 | } | |
2832 | ||
2833 | #if 0 | |
2834 | /* Find and grab a copy of the target _ovly_region_table | |
2835 | (and _novly_regions, which is needed for the table's size) */ | |
2836 | static int | |
2837 | simple_read_overlay_region_table () | |
2838 | { | |
2839 | struct minimal_symbol *msym; | |
2840 | ||
2841 | simple_free_overlay_region_table (); | |
2842 | msym = lookup_minimal_symbol ("_novly_regions", 0, 0); | |
2843 | if (msym != NULL) | |
2844 | cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); | |
2845 | else | |
2846 | return 0; /* failure */ | |
2847 | cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12); | |
2848 | if (cache_ovly_region_table != NULL) | |
2849 | { | |
2850 | msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0); | |
2851 | if (msym != NULL) | |
2852 | { | |
2853 | cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym); | |
2854 | read_target_long_array (cache_ovly_region_table_base, | |
2855 | (int *) cache_ovly_region_table, | |
2856 | cache_novly_regions * 3); | |
2857 | } | |
2858 | else | |
2859 | return 0; /* failure */ | |
2860 | } | |
2861 | else | |
2862 | return 0; /* failure */ | |
2863 | return 1; /* SUCCESS */ | |
2864 | } | |
2865 | #endif | |
2866 | ||
2867 | /* Function: simple_overlay_update_1 | |
2868 | A helper function for simple_overlay_update. Assuming a cached copy | |
2869 | of _ovly_table exists, look through it to find an entry whose vma, | |
2870 | lma and size match those of OSECT. Re-read the entry and make sure | |
2871 | it still matches OSECT (else the table may no longer be valid). | |
2872 | Set OSECT's mapped state to match the entry. Return: 1 for | |
2873 | success, 0 for failure. */ | |
2874 | ||
2875 | static int | |
2876 | simple_overlay_update_1 (osect) | |
2877 | struct obj_section *osect; | |
2878 | { | |
2879 | int i, size; | |
2880 | ||
2881 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2882 | for (i = 0; i < cache_novlys; i++) | |
2883 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && | |
2884 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2885 | cache_ovly_table[i][SIZE] == size */) | |
2886 | { | |
2887 | read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES, | |
2888 | (int *) cache_ovly_table[i], 4); | |
2889 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && | |
2890 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2891 | cache_ovly_table[i][SIZE] == size */) | |
2892 | { | |
2893 | osect->ovly_mapped = cache_ovly_table[i][MAPPED]; | |
2894 | return 1; | |
2895 | } | |
2896 | else /* Warning! Warning! Target's ovly table has changed! */ | |
2897 | return 0; | |
2898 | } | |
2899 | return 0; | |
2900 | } | |
2901 | ||
2902 | /* Function: simple_overlay_update | |
2903 | If OSECT is NULL, then update all sections' mapped state | |
2904 | (after re-reading the entire target _ovly_table). | |
2905 | If OSECT is non-NULL, then try to find a matching entry in the | |
2906 | cached ovly_table and update only OSECT's mapped state. | |
2907 | If a cached entry can't be found or the cache isn't valid, then | |
2908 | re-read the entire cache, and go ahead and update all sections. */ | |
2909 | ||
2910 | static void | |
2911 | simple_overlay_update (osect) | |
2912 | struct obj_section *osect; | |
2913 | { | |
2914 | struct objfile *objfile; | |
2915 | ||
2916 | /* Were we given an osect to look up? NULL means do all of them. */ | |
2917 | if (osect) | |
2918 | /* Have we got a cached copy of the target's overlay table? */ | |
2919 | if (cache_ovly_table != NULL) | |
2920 | /* Does its cached location match what's currently in the symtab? */ | |
2921 | if (cache_ovly_table_base == | |
2922 | SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0))) | |
2923 | /* Then go ahead and try to look up this single section in the cache */ | |
2924 | if (simple_overlay_update_1 (osect)) | |
2925 | /* Found it! We're done. */ | |
2926 | return; | |
2927 | ||
2928 | /* Cached table no good: need to read the entire table anew. | |
2929 | Or else we want all the sections, in which case it's actually | |
2930 | more efficient to read the whole table in one block anyway. */ | |
2931 | ||
2932 | if (simple_read_overlay_table () == 0) /* read failed? No table? */ | |
2933 | { | |
2934 | warning ("Failed to read the target overlay mapping table."); | |
2935 | return; | |
2936 | } | |
2937 | /* Now may as well update all sections, even if only one was requested. */ | |
2938 | ALL_OBJSECTIONS (objfile, osect) | |
2939 | if (section_is_overlay (osect->the_bfd_section)) | |
2940 | { | |
2941 | int i, size; | |
2942 | ||
2943 | size = bfd_get_section_size_before_reloc (osect->the_bfd_section); | |
2944 | for (i = 0; i < cache_novlys; i++) | |
2945 | if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && | |
2946 | cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && | |
2947 | cache_ovly_table[i][SIZE] == size */) | |
2948 | { /* obj_section matches i'th entry in ovly_table */ | |
2949 | osect->ovly_mapped = cache_ovly_table[i][MAPPED]; | |
2950 | break; /* finished with inner for loop: break out */ | |
2951 | } | |
2952 | } | |
2953 | } | |
2954 | ||
2955 | ||
2956 | void | |
2957 | _initialize_symfile () | |
2958 | { | |
2959 | struct cmd_list_element *c; | |
2960 | ||
2961 | c = add_cmd ("symbol-file", class_files, symbol_file_command, | |
2962 | "Load symbol table from executable file FILE.\n\ | |
2963 | The `file' command can also load symbol tables, as well as setting the file\n\ | |
2964 | to execute.", &cmdlist); | |
2965 | c->completer = filename_completer; | |
2966 | ||
2967 | c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, | |
2968 | "Usage: add-symbol-file FILE ADDR\n\ | |
2969 | Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\ | |
2970 | ADDR is the starting address of the file's text.", | |
2971 | &cmdlist); | |
2972 | c->completer = filename_completer; | |
2973 | ||
2974 | c = add_cmd ("add-shared-symbol-files", class_files, | |
2975 | add_shared_symbol_files_command, | |
2976 | "Load the symbols from shared objects in the dynamic linker's link map.", | |
2977 | &cmdlist); | |
2978 | c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1, | |
2979 | &cmdlist); | |
2980 | ||
2981 | c = add_cmd ("load", class_files, load_command, | |
2982 | "Dynamically load FILE into the running program, and record its symbols\n\ | |
2983 | for access from GDB.", &cmdlist); | |
2984 | c->completer = filename_completer; | |
2985 | ||
2986 | add_show_from_set | |
2987 | (add_set_cmd ("symbol-reloading", class_support, var_boolean, | |
2988 | (char *)&symbol_reloading, | |
2989 | "Set dynamic symbol table reloading multiple times in one run.", | |
2990 | &setlist), | |
2991 | &showlist); | |
2992 | ||
2993 | add_prefix_cmd ("overlay", class_support, overlay_command, | |
2994 | "Commands for debugging overlays.", &overlaylist, | |
2995 | "overlay ", 0, &cmdlist); | |
2996 | ||
2997 | add_com_alias ("ovly", "overlay", class_alias, 1); | |
2998 | add_com_alias ("ov", "overlay", class_alias, 1); | |
2999 | ||
3000 | add_cmd ("map-overlay", class_support, map_overlay_command, | |
3001 | "Assert that an overlay section is mapped.", &overlaylist); | |
3002 | ||
3003 | add_cmd ("unmap-overlay", class_support, unmap_overlay_command, | |
3004 | "Assert that an overlay section is unmapped.", &overlaylist); | |
3005 | ||
3006 | add_cmd ("list-overlays", class_support, list_overlays_command, | |
3007 | "List mappings of overlay sections.", &overlaylist); | |
3008 | ||
3009 | add_cmd ("manual", class_support, overlay_manual_command, | |
3010 | "Enable overlay debugging.", &overlaylist); | |
3011 | add_cmd ("off", class_support, overlay_off_command, | |
3012 | "Disable overlay debugging.", &overlaylist); | |
3013 | add_cmd ("auto", class_support, overlay_auto_command, | |
3014 | "Enable automatic overlay debugging.", &overlaylist); | |
3015 | add_cmd ("load-target", class_support, overlay_load_command, | |
3016 | "Read the overlay mapping state from the target.", &overlaylist); | |
3017 | ||
3018 | /* Filename extension to source language lookup table: */ | |
3019 | init_filename_language_table (); | |
3020 | c = add_set_cmd ("extension-language", class_files, var_string_noescape, | |
3021 | (char *) &ext_args, | |
3022 | "Set mapping between filename extension and source language.\n\ | |
3023 | Usage: set extension-language .foo bar", | |
3024 | &setlist); | |
3025 | c->function.cfunc = set_ext_lang_command; | |
3026 | ||
3027 | add_info ("extensions", info_ext_lang_command, | |
3028 | "All filename extensions associated with a source language."); | |
3029 | } |