]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
0fb0cc75 JB |
4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
5 | 2009 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
c906108c SS |
28 | #include "command.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "language.h" | |
c906108c | 32 | #include "demangle.h" |
d16aafd8 | 33 | #include "doublest.h" |
5ae326fa | 34 | #include "gdb_assert.h" |
36160dc4 | 35 | #include "regcache.h" |
fe898f56 | 36 | #include "block.h" |
27bc4d80 | 37 | #include "dfp.h" |
bccdca4a | 38 | #include "objfiles.h" |
79a45b7d | 39 | #include "valprint.h" |
bc3b79fd | 40 | #include "cli/cli-decode.h" |
c906108c | 41 | |
a08702d6 TJB |
42 | #include "python/python.h" |
43 | ||
c906108c SS |
44 | /* Prototypes for exported functions. */ |
45 | ||
a14ed312 | 46 | void _initialize_values (void); |
c906108c | 47 | |
bc3b79fd TJB |
48 | /* Definition of a user function. */ |
49 | struct internal_function | |
50 | { | |
51 | /* The name of the function. It is a bit odd to have this in the | |
52 | function itself -- the user might use a differently-named | |
53 | convenience variable to hold the function. */ | |
54 | char *name; | |
55 | ||
56 | /* The handler. */ | |
57 | internal_function_fn handler; | |
58 | ||
59 | /* User data for the handler. */ | |
60 | void *cookie; | |
61 | }; | |
62 | ||
63 | static struct cmd_list_element *functionlist; | |
64 | ||
91294c83 AC |
65 | struct value |
66 | { | |
67 | /* Type of value; either not an lval, or one of the various | |
68 | different possible kinds of lval. */ | |
69 | enum lval_type lval; | |
70 | ||
71 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
72 | int modifiable; | |
73 | ||
74 | /* Location of value (if lval). */ | |
75 | union | |
76 | { | |
77 | /* If lval == lval_memory, this is the address in the inferior. | |
78 | If lval == lval_register, this is the byte offset into the | |
79 | registers structure. */ | |
80 | CORE_ADDR address; | |
81 | ||
82 | /* Pointer to internal variable. */ | |
83 | struct internalvar *internalvar; | |
5f5233d4 PA |
84 | |
85 | /* If lval == lval_computed, this is a set of function pointers | |
86 | to use to access and describe the value, and a closure pointer | |
87 | for them to use. */ | |
88 | struct | |
89 | { | |
90 | struct lval_funcs *funcs; /* Functions to call. */ | |
91 | void *closure; /* Closure for those functions to use. */ | |
92 | } computed; | |
91294c83 AC |
93 | } location; |
94 | ||
95 | /* Describes offset of a value within lval of a structure in bytes. | |
96 | If lval == lval_memory, this is an offset to the address. If | |
97 | lval == lval_register, this is a further offset from | |
98 | location.address within the registers structure. Note also the | |
99 | member embedded_offset below. */ | |
100 | int offset; | |
101 | ||
102 | /* Only used for bitfields; number of bits contained in them. */ | |
103 | int bitsize; | |
104 | ||
105 | /* Only used for bitfields; position of start of field. For | |
32c9a795 MD |
106 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
107 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ | |
91294c83 AC |
108 | int bitpos; |
109 | ||
110 | /* Frame register value is relative to. This will be described in | |
111 | the lval enum above as "lval_register". */ | |
112 | struct frame_id frame_id; | |
113 | ||
114 | /* Type of the value. */ | |
115 | struct type *type; | |
116 | ||
117 | /* If a value represents a C++ object, then the `type' field gives | |
118 | the object's compile-time type. If the object actually belongs | |
119 | to some class derived from `type', perhaps with other base | |
120 | classes and additional members, then `type' is just a subobject | |
121 | of the real thing, and the full object is probably larger than | |
122 | `type' would suggest. | |
123 | ||
124 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
125 | can actually determine the object's run-time type by looking at | |
126 | the run-time type information in the vtable. When this | |
127 | information is available, we may elect to read in the entire | |
128 | object, for several reasons: | |
129 | ||
130 | - When printing the value, the user would probably rather see the | |
131 | full object, not just the limited portion apparent from the | |
132 | compile-time type. | |
133 | ||
134 | - If `type' has virtual base classes, then even printing `type' | |
135 | alone may require reaching outside the `type' portion of the | |
136 | object to wherever the virtual base class has been stored. | |
137 | ||
138 | When we store the entire object, `enclosing_type' is the run-time | |
139 | type -- the complete object -- and `embedded_offset' is the | |
140 | offset of `type' within that larger type, in bytes. The | |
141 | value_contents() macro takes `embedded_offset' into account, so | |
142 | most GDB code continues to see the `type' portion of the value, | |
143 | just as the inferior would. | |
144 | ||
145 | If `type' is a pointer to an object, then `enclosing_type' is a | |
146 | pointer to the object's run-time type, and `pointed_to_offset' is | |
147 | the offset in bytes from the full object to the pointed-to object | |
148 | -- that is, the value `embedded_offset' would have if we followed | |
149 | the pointer and fetched the complete object. (I don't really see | |
150 | the point. Why not just determine the run-time type when you | |
151 | indirect, and avoid the special case? The contents don't matter | |
152 | until you indirect anyway.) | |
153 | ||
154 | If we're not doing anything fancy, `enclosing_type' is equal to | |
155 | `type', and `embedded_offset' is zero, so everything works | |
156 | normally. */ | |
157 | struct type *enclosing_type; | |
158 | int embedded_offset; | |
159 | int pointed_to_offset; | |
160 | ||
161 | /* Values are stored in a chain, so that they can be deleted easily | |
162 | over calls to the inferior. Values assigned to internal | |
a08702d6 TJB |
163 | variables, put into the value history or exposed to Python are |
164 | taken off this list. */ | |
91294c83 AC |
165 | struct value *next; |
166 | ||
167 | /* Register number if the value is from a register. */ | |
168 | short regnum; | |
169 | ||
170 | /* If zero, contents of this value are in the contents field. If | |
9214ee5f DJ |
171 | nonzero, contents are in inferior. If the lval field is lval_memory, |
172 | the contents are in inferior memory at location.address plus offset. | |
173 | The lval field may also be lval_register. | |
91294c83 AC |
174 | |
175 | WARNING: This field is used by the code which handles watchpoints | |
176 | (see breakpoint.c) to decide whether a particular value can be | |
177 | watched by hardware watchpoints. If the lazy flag is set for | |
178 | some member of a value chain, it is assumed that this member of | |
179 | the chain doesn't need to be watched as part of watching the | |
180 | value itself. This is how GDB avoids watching the entire struct | |
181 | or array when the user wants to watch a single struct member or | |
182 | array element. If you ever change the way lazy flag is set and | |
183 | reset, be sure to consider this use as well! */ | |
184 | char lazy; | |
185 | ||
186 | /* If nonzero, this is the value of a variable which does not | |
187 | actually exist in the program. */ | |
188 | char optimized_out; | |
189 | ||
42be36b3 CT |
190 | /* If value is a variable, is it initialized or not. */ |
191 | int initialized; | |
192 | ||
3e3d7139 JG |
193 | /* Actual contents of the value. Target byte-order. NULL or not |
194 | valid if lazy is nonzero. */ | |
195 | gdb_byte *contents; | |
91294c83 AC |
196 | }; |
197 | ||
c906108c SS |
198 | /* Prototypes for local functions. */ |
199 | ||
a14ed312 | 200 | static void show_values (char *, int); |
c906108c | 201 | |
a14ed312 | 202 | static void show_convenience (char *, int); |
c906108c | 203 | |
c906108c SS |
204 | |
205 | /* The value-history records all the values printed | |
206 | by print commands during this session. Each chunk | |
207 | records 60 consecutive values. The first chunk on | |
208 | the chain records the most recent values. | |
209 | The total number of values is in value_history_count. */ | |
210 | ||
211 | #define VALUE_HISTORY_CHUNK 60 | |
212 | ||
213 | struct value_history_chunk | |
c5aa993b JM |
214 | { |
215 | struct value_history_chunk *next; | |
f23631e4 | 216 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 217 | }; |
c906108c SS |
218 | |
219 | /* Chain of chunks now in use. */ | |
220 | ||
221 | static struct value_history_chunk *value_history_chain; | |
222 | ||
223 | static int value_history_count; /* Abs number of last entry stored */ | |
bc3b79fd TJB |
224 | |
225 | /* The type of internal functions. */ | |
226 | ||
227 | static struct type *internal_fn_type; | |
c906108c SS |
228 | \f |
229 | /* List of all value objects currently allocated | |
230 | (except for those released by calls to release_value) | |
231 | This is so they can be freed after each command. */ | |
232 | ||
f23631e4 | 233 | static struct value *all_values; |
c906108c | 234 | |
3e3d7139 JG |
235 | /* Allocate a lazy value for type TYPE. Its actual content is |
236 | "lazily" allocated too: the content field of the return value is | |
237 | NULL; it will be allocated when it is fetched from the target. */ | |
c906108c | 238 | |
f23631e4 | 239 | struct value * |
3e3d7139 | 240 | allocate_value_lazy (struct type *type) |
c906108c | 241 | { |
f23631e4 | 242 | struct value *val; |
c906108c SS |
243 | struct type *atype = check_typedef (type); |
244 | ||
3e3d7139 JG |
245 | val = (struct value *) xzalloc (sizeof (struct value)); |
246 | val->contents = NULL; | |
df407dfe | 247 | val->next = all_values; |
c906108c | 248 | all_values = val; |
df407dfe | 249 | val->type = type; |
4754a64e | 250 | val->enclosing_type = type; |
c906108c SS |
251 | VALUE_LVAL (val) = not_lval; |
252 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 253 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
254 | val->offset = 0; |
255 | val->bitpos = 0; | |
256 | val->bitsize = 0; | |
9ee8fc9d | 257 | VALUE_REGNUM (val) = -1; |
3e3d7139 | 258 | val->lazy = 1; |
feb13ab0 | 259 | val->optimized_out = 0; |
13c3b5f5 | 260 | val->embedded_offset = 0; |
b44d461b | 261 | val->pointed_to_offset = 0; |
c906108c | 262 | val->modifiable = 1; |
42be36b3 | 263 | val->initialized = 1; /* Default to initialized. */ |
c906108c SS |
264 | return val; |
265 | } | |
266 | ||
3e3d7139 JG |
267 | /* Allocate the contents of VAL if it has not been allocated yet. */ |
268 | ||
269 | void | |
270 | allocate_value_contents (struct value *val) | |
271 | { | |
272 | if (!val->contents) | |
273 | val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); | |
274 | } | |
275 | ||
276 | /* Allocate a value and its contents for type TYPE. */ | |
277 | ||
278 | struct value * | |
279 | allocate_value (struct type *type) | |
280 | { | |
281 | struct value *val = allocate_value_lazy (type); | |
282 | allocate_value_contents (val); | |
283 | val->lazy = 0; | |
284 | return val; | |
285 | } | |
286 | ||
c906108c | 287 | /* Allocate a value that has the correct length |
938f5214 | 288 | for COUNT repetitions of type TYPE. */ |
c906108c | 289 | |
f23631e4 | 290 | struct value * |
fba45db2 | 291 | allocate_repeat_value (struct type *type, int count) |
c906108c | 292 | { |
c5aa993b | 293 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
294 | /* FIXME-type-allocation: need a way to free this type when we are |
295 | done with it. */ | |
296 | struct type *range_type | |
6d84d3d8 | 297 | = create_range_type ((struct type *) NULL, builtin_type_int32, |
c5aa993b | 298 | low_bound, count + low_bound - 1); |
c906108c SS |
299 | /* FIXME-type-allocation: need a way to free this type when we are |
300 | done with it. */ | |
301 | return allocate_value (create_array_type ((struct type *) NULL, | |
302 | type, range_type)); | |
303 | } | |
304 | ||
a08702d6 TJB |
305 | /* Needed if another module needs to maintain its on list of values. */ |
306 | void | |
307 | value_prepend_to_list (struct value **head, struct value *val) | |
308 | { | |
309 | val->next = *head; | |
310 | *head = val; | |
311 | } | |
312 | ||
313 | /* Needed if another module needs to maintain its on list of values. */ | |
314 | void | |
315 | value_remove_from_list (struct value **head, struct value *val) | |
316 | { | |
317 | struct value *prev; | |
318 | ||
319 | if (*head == val) | |
320 | *head = (*head)->next; | |
321 | else | |
322 | for (prev = *head; prev->next; prev = prev->next) | |
323 | if (prev->next == val) | |
324 | { | |
325 | prev->next = val->next; | |
326 | break; | |
327 | } | |
328 | } | |
329 | ||
5f5233d4 PA |
330 | struct value * |
331 | allocate_computed_value (struct type *type, | |
332 | struct lval_funcs *funcs, | |
333 | void *closure) | |
334 | { | |
335 | struct value *v = allocate_value (type); | |
336 | VALUE_LVAL (v) = lval_computed; | |
337 | v->location.computed.funcs = funcs; | |
338 | v->location.computed.closure = closure; | |
339 | set_value_lazy (v, 1); | |
340 | ||
341 | return v; | |
342 | } | |
343 | ||
df407dfe AC |
344 | /* Accessor methods. */ |
345 | ||
17cf0ecd AC |
346 | struct value * |
347 | value_next (struct value *value) | |
348 | { | |
349 | return value->next; | |
350 | } | |
351 | ||
df407dfe AC |
352 | struct type * |
353 | value_type (struct value *value) | |
354 | { | |
355 | return value->type; | |
356 | } | |
04624583 AC |
357 | void |
358 | deprecated_set_value_type (struct value *value, struct type *type) | |
359 | { | |
360 | value->type = type; | |
361 | } | |
df407dfe AC |
362 | |
363 | int | |
364 | value_offset (struct value *value) | |
365 | { | |
366 | return value->offset; | |
367 | } | |
f5cf64a7 AC |
368 | void |
369 | set_value_offset (struct value *value, int offset) | |
370 | { | |
371 | value->offset = offset; | |
372 | } | |
df407dfe AC |
373 | |
374 | int | |
375 | value_bitpos (struct value *value) | |
376 | { | |
377 | return value->bitpos; | |
378 | } | |
9bbda503 AC |
379 | void |
380 | set_value_bitpos (struct value *value, int bit) | |
381 | { | |
382 | value->bitpos = bit; | |
383 | } | |
df407dfe AC |
384 | |
385 | int | |
386 | value_bitsize (struct value *value) | |
387 | { | |
388 | return value->bitsize; | |
389 | } | |
9bbda503 AC |
390 | void |
391 | set_value_bitsize (struct value *value, int bit) | |
392 | { | |
393 | value->bitsize = bit; | |
394 | } | |
df407dfe | 395 | |
fc1a4b47 | 396 | gdb_byte * |
990a07ab AC |
397 | value_contents_raw (struct value *value) |
398 | { | |
3e3d7139 JG |
399 | allocate_value_contents (value); |
400 | return value->contents + value->embedded_offset; | |
990a07ab AC |
401 | } |
402 | ||
fc1a4b47 | 403 | gdb_byte * |
990a07ab AC |
404 | value_contents_all_raw (struct value *value) |
405 | { | |
3e3d7139 JG |
406 | allocate_value_contents (value); |
407 | return value->contents; | |
990a07ab AC |
408 | } |
409 | ||
4754a64e AC |
410 | struct type * |
411 | value_enclosing_type (struct value *value) | |
412 | { | |
413 | return value->enclosing_type; | |
414 | } | |
415 | ||
fc1a4b47 | 416 | const gdb_byte * |
46615f07 AC |
417 | value_contents_all (struct value *value) |
418 | { | |
419 | if (value->lazy) | |
420 | value_fetch_lazy (value); | |
3e3d7139 | 421 | return value->contents; |
46615f07 AC |
422 | } |
423 | ||
d69fe07e AC |
424 | int |
425 | value_lazy (struct value *value) | |
426 | { | |
427 | return value->lazy; | |
428 | } | |
429 | ||
dfa52d88 AC |
430 | void |
431 | set_value_lazy (struct value *value, int val) | |
432 | { | |
433 | value->lazy = val; | |
434 | } | |
435 | ||
fc1a4b47 | 436 | const gdb_byte * |
0fd88904 AC |
437 | value_contents (struct value *value) |
438 | { | |
439 | return value_contents_writeable (value); | |
440 | } | |
441 | ||
fc1a4b47 | 442 | gdb_byte * |
0fd88904 AC |
443 | value_contents_writeable (struct value *value) |
444 | { | |
445 | if (value->lazy) | |
446 | value_fetch_lazy (value); | |
fc0c53a0 | 447 | return value_contents_raw (value); |
0fd88904 AC |
448 | } |
449 | ||
a6c442d8 MK |
450 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
451 | this function is different from value_equal; in C the operator == | |
452 | can return 0 even if the two values being compared are equal. */ | |
453 | ||
454 | int | |
455 | value_contents_equal (struct value *val1, struct value *val2) | |
456 | { | |
457 | struct type *type1; | |
458 | struct type *type2; | |
459 | int len; | |
460 | ||
461 | type1 = check_typedef (value_type (val1)); | |
462 | type2 = check_typedef (value_type (val2)); | |
463 | len = TYPE_LENGTH (type1); | |
464 | if (len != TYPE_LENGTH (type2)) | |
465 | return 0; | |
466 | ||
467 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
468 | } | |
469 | ||
feb13ab0 AC |
470 | int |
471 | value_optimized_out (struct value *value) | |
472 | { | |
473 | return value->optimized_out; | |
474 | } | |
475 | ||
476 | void | |
477 | set_value_optimized_out (struct value *value, int val) | |
478 | { | |
479 | value->optimized_out = val; | |
480 | } | |
13c3b5f5 AC |
481 | |
482 | int | |
483 | value_embedded_offset (struct value *value) | |
484 | { | |
485 | return value->embedded_offset; | |
486 | } | |
487 | ||
488 | void | |
489 | set_value_embedded_offset (struct value *value, int val) | |
490 | { | |
491 | value->embedded_offset = val; | |
492 | } | |
b44d461b AC |
493 | |
494 | int | |
495 | value_pointed_to_offset (struct value *value) | |
496 | { | |
497 | return value->pointed_to_offset; | |
498 | } | |
499 | ||
500 | void | |
501 | set_value_pointed_to_offset (struct value *value, int val) | |
502 | { | |
503 | value->pointed_to_offset = val; | |
504 | } | |
13bb5560 | 505 | |
5f5233d4 PA |
506 | struct lval_funcs * |
507 | value_computed_funcs (struct value *v) | |
508 | { | |
509 | gdb_assert (VALUE_LVAL (v) == lval_computed); | |
510 | ||
511 | return v->location.computed.funcs; | |
512 | } | |
513 | ||
514 | void * | |
515 | value_computed_closure (struct value *v) | |
516 | { | |
517 | gdb_assert (VALUE_LVAL (v) == lval_computed); | |
518 | ||
519 | return v->location.computed.closure; | |
520 | } | |
521 | ||
13bb5560 AC |
522 | enum lval_type * |
523 | deprecated_value_lval_hack (struct value *value) | |
524 | { | |
525 | return &value->lval; | |
526 | } | |
527 | ||
528 | CORE_ADDR * | |
529 | deprecated_value_address_hack (struct value *value) | |
530 | { | |
531 | return &value->location.address; | |
532 | } | |
533 | ||
534 | struct internalvar ** | |
535 | deprecated_value_internalvar_hack (struct value *value) | |
536 | { | |
537 | return &value->location.internalvar; | |
538 | } | |
539 | ||
540 | struct frame_id * | |
541 | deprecated_value_frame_id_hack (struct value *value) | |
542 | { | |
543 | return &value->frame_id; | |
544 | } | |
545 | ||
546 | short * | |
547 | deprecated_value_regnum_hack (struct value *value) | |
548 | { | |
549 | return &value->regnum; | |
550 | } | |
88e3b34b AC |
551 | |
552 | int | |
553 | deprecated_value_modifiable (struct value *value) | |
554 | { | |
555 | return value->modifiable; | |
556 | } | |
557 | void | |
558 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
559 | { | |
560 | value->modifiable = modifiable; | |
561 | } | |
990a07ab | 562 | \f |
c906108c SS |
563 | /* Return a mark in the value chain. All values allocated after the |
564 | mark is obtained (except for those released) are subject to being freed | |
565 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 566 | struct value * |
fba45db2 | 567 | value_mark (void) |
c906108c SS |
568 | { |
569 | return all_values; | |
570 | } | |
571 | ||
3e3d7139 JG |
572 | void |
573 | value_free (struct value *val) | |
574 | { | |
575 | if (val) | |
5f5233d4 PA |
576 | { |
577 | if (VALUE_LVAL (val) == lval_computed) | |
578 | { | |
579 | struct lval_funcs *funcs = val->location.computed.funcs; | |
580 | ||
581 | if (funcs->free_closure) | |
582 | funcs->free_closure (val); | |
583 | } | |
584 | ||
585 | xfree (val->contents); | |
586 | } | |
3e3d7139 JG |
587 | xfree (val); |
588 | } | |
589 | ||
c906108c SS |
590 | /* Free all values allocated since MARK was obtained by value_mark |
591 | (except for those released). */ | |
592 | void | |
f23631e4 | 593 | value_free_to_mark (struct value *mark) |
c906108c | 594 | { |
f23631e4 AC |
595 | struct value *val; |
596 | struct value *next; | |
c906108c SS |
597 | |
598 | for (val = all_values; val && val != mark; val = next) | |
599 | { | |
df407dfe | 600 | next = val->next; |
c906108c SS |
601 | value_free (val); |
602 | } | |
603 | all_values = val; | |
604 | } | |
605 | ||
606 | /* Free all the values that have been allocated (except for those released). | |
607 | Called after each command, successful or not. */ | |
608 | ||
609 | void | |
fba45db2 | 610 | free_all_values (void) |
c906108c | 611 | { |
f23631e4 AC |
612 | struct value *val; |
613 | struct value *next; | |
c906108c SS |
614 | |
615 | for (val = all_values; val; val = next) | |
616 | { | |
df407dfe | 617 | next = val->next; |
c906108c SS |
618 | value_free (val); |
619 | } | |
620 | ||
621 | all_values = 0; | |
622 | } | |
623 | ||
624 | /* Remove VAL from the chain all_values | |
625 | so it will not be freed automatically. */ | |
626 | ||
627 | void | |
f23631e4 | 628 | release_value (struct value *val) |
c906108c | 629 | { |
f23631e4 | 630 | struct value *v; |
c906108c SS |
631 | |
632 | if (all_values == val) | |
633 | { | |
634 | all_values = val->next; | |
635 | return; | |
636 | } | |
637 | ||
638 | for (v = all_values; v; v = v->next) | |
639 | { | |
640 | if (v->next == val) | |
641 | { | |
642 | v->next = val->next; | |
643 | break; | |
644 | } | |
645 | } | |
646 | } | |
647 | ||
648 | /* Release all values up to mark */ | |
f23631e4 AC |
649 | struct value * |
650 | value_release_to_mark (struct value *mark) | |
c906108c | 651 | { |
f23631e4 AC |
652 | struct value *val; |
653 | struct value *next; | |
c906108c | 654 | |
df407dfe AC |
655 | for (val = next = all_values; next; next = next->next) |
656 | if (next->next == mark) | |
c906108c | 657 | { |
df407dfe AC |
658 | all_values = next->next; |
659 | next->next = NULL; | |
c906108c SS |
660 | return val; |
661 | } | |
662 | all_values = 0; | |
663 | return val; | |
664 | } | |
665 | ||
666 | /* Return a copy of the value ARG. | |
667 | It contains the same contents, for same memory address, | |
668 | but it's a different block of storage. */ | |
669 | ||
f23631e4 AC |
670 | struct value * |
671 | value_copy (struct value *arg) | |
c906108c | 672 | { |
4754a64e | 673 | struct type *encl_type = value_enclosing_type (arg); |
3e3d7139 JG |
674 | struct value *val; |
675 | ||
676 | if (value_lazy (arg)) | |
677 | val = allocate_value_lazy (encl_type); | |
678 | else | |
679 | val = allocate_value (encl_type); | |
df407dfe | 680 | val->type = arg->type; |
c906108c | 681 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 682 | val->location = arg->location; |
df407dfe AC |
683 | val->offset = arg->offset; |
684 | val->bitpos = arg->bitpos; | |
685 | val->bitsize = arg->bitsize; | |
1df6926e | 686 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 687 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 688 | val->lazy = arg->lazy; |
feb13ab0 | 689 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 690 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 691 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 692 | val->modifiable = arg->modifiable; |
d69fe07e | 693 | if (!value_lazy (val)) |
c906108c | 694 | { |
990a07ab | 695 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 696 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
697 | |
698 | } | |
5f5233d4 PA |
699 | if (VALUE_LVAL (val) == lval_computed) |
700 | { | |
701 | struct lval_funcs *funcs = val->location.computed.funcs; | |
702 | ||
703 | if (funcs->copy_closure) | |
704 | val->location.computed.closure = funcs->copy_closure (val); | |
705 | } | |
c906108c SS |
706 | return val; |
707 | } | |
74bcbdf3 PA |
708 | |
709 | void | |
710 | set_value_component_location (struct value *component, struct value *whole) | |
711 | { | |
712 | if (VALUE_LVAL (whole) == lval_internalvar) | |
713 | VALUE_LVAL (component) = lval_internalvar_component; | |
714 | else | |
715 | VALUE_LVAL (component) = VALUE_LVAL (whole); | |
5f5233d4 | 716 | |
74bcbdf3 | 717 | component->location = whole->location; |
5f5233d4 PA |
718 | if (VALUE_LVAL (whole) == lval_computed) |
719 | { | |
720 | struct lval_funcs *funcs = whole->location.computed.funcs; | |
721 | ||
722 | if (funcs->copy_closure) | |
723 | component->location.computed.closure = funcs->copy_closure (whole); | |
724 | } | |
74bcbdf3 PA |
725 | } |
726 | ||
c906108c SS |
727 | \f |
728 | /* Access to the value history. */ | |
729 | ||
730 | /* Record a new value in the value history. | |
731 | Returns the absolute history index of the entry. | |
732 | Result of -1 indicates the value was not saved; otherwise it is the | |
733 | value history index of this new item. */ | |
734 | ||
735 | int | |
f23631e4 | 736 | record_latest_value (struct value *val) |
c906108c SS |
737 | { |
738 | int i; | |
739 | ||
740 | /* We don't want this value to have anything to do with the inferior anymore. | |
741 | In particular, "set $1 = 50" should not affect the variable from which | |
742 | the value was taken, and fast watchpoints should be able to assume that | |
743 | a value on the value history never changes. */ | |
d69fe07e | 744 | if (value_lazy (val)) |
c906108c SS |
745 | value_fetch_lazy (val); |
746 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
747 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
748 | but the current contents of that location. c'est la vie... */ | |
749 | val->modifiable = 0; | |
750 | release_value (val); | |
751 | ||
752 | /* Here we treat value_history_count as origin-zero | |
753 | and applying to the value being stored now. */ | |
754 | ||
755 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
756 | if (i == 0) | |
757 | { | |
f23631e4 | 758 | struct value_history_chunk *new |
c5aa993b JM |
759 | = (struct value_history_chunk *) |
760 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
761 | memset (new->values, 0, sizeof new->values); |
762 | new->next = value_history_chain; | |
763 | value_history_chain = new; | |
764 | } | |
765 | ||
766 | value_history_chain->values[i] = val; | |
767 | ||
768 | /* Now we regard value_history_count as origin-one | |
769 | and applying to the value just stored. */ | |
770 | ||
771 | return ++value_history_count; | |
772 | } | |
773 | ||
774 | /* Return a copy of the value in the history with sequence number NUM. */ | |
775 | ||
f23631e4 | 776 | struct value * |
fba45db2 | 777 | access_value_history (int num) |
c906108c | 778 | { |
f23631e4 | 779 | struct value_history_chunk *chunk; |
52f0bd74 AC |
780 | int i; |
781 | int absnum = num; | |
c906108c SS |
782 | |
783 | if (absnum <= 0) | |
784 | absnum += value_history_count; | |
785 | ||
786 | if (absnum <= 0) | |
787 | { | |
788 | if (num == 0) | |
8a3fe4f8 | 789 | error (_("The history is empty.")); |
c906108c | 790 | else if (num == 1) |
8a3fe4f8 | 791 | error (_("There is only one value in the history.")); |
c906108c | 792 | else |
8a3fe4f8 | 793 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
794 | } |
795 | if (absnum > value_history_count) | |
8a3fe4f8 | 796 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
797 | |
798 | absnum--; | |
799 | ||
800 | /* Now absnum is always absolute and origin zero. */ | |
801 | ||
802 | chunk = value_history_chain; | |
803 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
804 | i > 0; i--) | |
805 | chunk = chunk->next; | |
806 | ||
807 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
808 | } | |
809 | ||
c906108c | 810 | static void |
fba45db2 | 811 | show_values (char *num_exp, int from_tty) |
c906108c | 812 | { |
52f0bd74 | 813 | int i; |
f23631e4 | 814 | struct value *val; |
c906108c SS |
815 | static int num = 1; |
816 | ||
817 | if (num_exp) | |
818 | { | |
f132ba9d TJB |
819 | /* "show values +" should print from the stored position. |
820 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 821 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 822 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
823 | } |
824 | else | |
825 | { | |
f132ba9d | 826 | /* "show values" means print the last 10 values. */ |
c906108c SS |
827 | num = value_history_count - 9; |
828 | } | |
829 | ||
830 | if (num <= 0) | |
831 | num = 1; | |
832 | ||
833 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
834 | { | |
79a45b7d | 835 | struct value_print_options opts; |
c906108c | 836 | val = access_value_history (i); |
a3f17187 | 837 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
838 | get_user_print_options (&opts); |
839 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 840 | printf_filtered (("\n")); |
c906108c SS |
841 | } |
842 | ||
f132ba9d | 843 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
844 | num += 10; |
845 | ||
846 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
847 | "show values +". If num_exp is null, this is unnecessary, since |
848 | "show values +" is not useful after "show values". */ | |
c906108c SS |
849 | if (from_tty && num_exp) |
850 | { | |
851 | num_exp[0] = '+'; | |
852 | num_exp[1] = '\0'; | |
853 | } | |
854 | } | |
855 | \f | |
856 | /* Internal variables. These are variables within the debugger | |
857 | that hold values assigned by debugger commands. | |
858 | The user refers to them with a '$' prefix | |
859 | that does not appear in the variable names stored internally. */ | |
860 | ||
861 | static struct internalvar *internalvars; | |
862 | ||
53e5f3cf AS |
863 | /* If the variable does not already exist create it and give it the value given. |
864 | If no value is given then the default is zero. */ | |
865 | static void | |
866 | init_if_undefined_command (char* args, int from_tty) | |
867 | { | |
868 | struct internalvar* intvar; | |
869 | ||
870 | /* Parse the expression - this is taken from set_command(). */ | |
871 | struct expression *expr = parse_expression (args); | |
872 | register struct cleanup *old_chain = | |
873 | make_cleanup (free_current_contents, &expr); | |
874 | ||
875 | /* Validate the expression. | |
876 | Was the expression an assignment? | |
877 | Or even an expression at all? */ | |
878 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
879 | error (_("Init-if-undefined requires an assignment expression.")); | |
880 | ||
881 | /* Extract the variable from the parsed expression. | |
882 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
883 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
884 | error (_("The first parameter to init-if-undefined should be a GDB variable.")); | |
885 | intvar = expr->elts[2].internalvar; | |
886 | ||
887 | /* Only evaluate the expression if the lvalue is void. | |
888 | This may still fail if the expresssion is invalid. */ | |
889 | if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID) | |
890 | evaluate_expression (expr); | |
891 | ||
892 | do_cleanups (old_chain); | |
893 | } | |
894 | ||
895 | ||
c906108c SS |
896 | /* Look up an internal variable with name NAME. NAME should not |
897 | normally include a dollar sign. | |
898 | ||
899 | If the specified internal variable does not exist, | |
c4a3d09a | 900 | the return value is NULL. */ |
c906108c SS |
901 | |
902 | struct internalvar * | |
bc3b79fd | 903 | lookup_only_internalvar (const char *name) |
c906108c | 904 | { |
52f0bd74 | 905 | struct internalvar *var; |
c906108c SS |
906 | |
907 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 908 | if (strcmp (var->name, name) == 0) |
c906108c SS |
909 | return var; |
910 | ||
c4a3d09a MF |
911 | return NULL; |
912 | } | |
913 | ||
914 | ||
915 | /* Create an internal variable with name NAME and with a void value. | |
916 | NAME should not normally include a dollar sign. */ | |
917 | ||
918 | struct internalvar * | |
bc3b79fd | 919 | create_internalvar (const char *name) |
c4a3d09a MF |
920 | { |
921 | struct internalvar *var; | |
c906108c | 922 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 923 | var->name = concat (name, (char *)NULL); |
c906108c | 924 | var->value = allocate_value (builtin_type_void); |
0d20ae72 | 925 | var->endian = gdbarch_byte_order (current_gdbarch); |
4aa995e1 | 926 | var->make_value = NULL; |
bc3b79fd | 927 | var->canonical = 0; |
c906108c SS |
928 | release_value (var->value); |
929 | var->next = internalvars; | |
930 | internalvars = var; | |
931 | return var; | |
932 | } | |
933 | ||
4aa995e1 PA |
934 | /* Create an internal variable with name NAME and register FUN as the |
935 | function that value_of_internalvar uses to create a value whenever | |
936 | this variable is referenced. NAME should not normally include a | |
937 | dollar sign. */ | |
938 | ||
939 | struct internalvar * | |
940 | create_internalvar_type_lazy (char *name, internalvar_make_value fun) | |
941 | { | |
942 | struct internalvar *var; | |
943 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
944 | var->name = concat (name, (char *)NULL); | |
945 | var->value = NULL; | |
946 | var->make_value = fun; | |
947 | var->endian = gdbarch_byte_order (current_gdbarch); | |
948 | var->next = internalvars; | |
949 | internalvars = var; | |
950 | return var; | |
951 | } | |
c4a3d09a MF |
952 | |
953 | /* Look up an internal variable with name NAME. NAME should not | |
954 | normally include a dollar sign. | |
955 | ||
956 | If the specified internal variable does not exist, | |
957 | one is created, with a void value. */ | |
958 | ||
959 | struct internalvar * | |
bc3b79fd | 960 | lookup_internalvar (const char *name) |
c4a3d09a MF |
961 | { |
962 | struct internalvar *var; | |
963 | ||
964 | var = lookup_only_internalvar (name); | |
965 | if (var) | |
966 | return var; | |
967 | ||
968 | return create_internalvar (name); | |
969 | } | |
970 | ||
f23631e4 | 971 | struct value * |
fba45db2 | 972 | value_of_internalvar (struct internalvar *var) |
c906108c | 973 | { |
f23631e4 | 974 | struct value *val; |
d3c139e9 AS |
975 | int i, j; |
976 | gdb_byte temp; | |
c906108c | 977 | |
4aa995e1 PA |
978 | if (var->make_value != NULL) |
979 | val = (*var->make_value) (var); | |
5f5233d4 PA |
980 | else |
981 | { | |
4aa995e1 PA |
982 | val = value_copy (var->value); |
983 | if (value_lazy (val)) | |
984 | value_fetch_lazy (val); | |
985 | ||
986 | /* If the variable's value is a computed lvalue, we want | |
987 | references to it to produce another computed lvalue, where | |
988 | referencces and assignments actually operate through the | |
989 | computed value's functions. | |
990 | ||
991 | This means that internal variables with computed values | |
992 | behave a little differently from other internal variables: | |
993 | assignments to them don't just replace the previous value | |
994 | altogether. At the moment, this seems like the behavior we | |
995 | want. */ | |
996 | if (var->value->lval == lval_computed) | |
997 | VALUE_LVAL (val) = lval_computed; | |
998 | else | |
999 | { | |
1000 | VALUE_LVAL (val) = lval_internalvar; | |
1001 | VALUE_INTERNALVAR (val) = var; | |
1002 | } | |
5f5233d4 | 1003 | } |
d3c139e9 AS |
1004 | |
1005 | /* Values are always stored in the target's byte order. When connected to a | |
1006 | target this will most likely always be correct, so there's normally no | |
1007 | need to worry about it. | |
1008 | ||
1009 | However, internal variables can be set up before the target endian is | |
1010 | known and so may become out of date. Fix it up before anybody sees. | |
1011 | ||
1012 | Internal variables usually hold simple scalar values, and we can | |
1013 | correct those. More complex values (e.g. structures and floating | |
1014 | point types) are left alone, because they would be too complicated | |
1015 | to correct. */ | |
1016 | ||
0d20ae72 | 1017 | if (var->endian != gdbarch_byte_order (current_gdbarch)) |
d3c139e9 AS |
1018 | { |
1019 | gdb_byte *array = value_contents_raw (val); | |
1020 | struct type *type = check_typedef (value_enclosing_type (val)); | |
1021 | switch (TYPE_CODE (type)) | |
1022 | { | |
1023 | case TYPE_CODE_INT: | |
1024 | case TYPE_CODE_PTR: | |
1025 | /* Reverse the bytes. */ | |
1026 | for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--) | |
1027 | { | |
1028 | temp = array[j]; | |
1029 | array[j] = array[i]; | |
1030 | array[i] = temp; | |
1031 | } | |
1032 | break; | |
1033 | } | |
1034 | } | |
1035 | ||
c906108c SS |
1036 | return val; |
1037 | } | |
1038 | ||
1039 | void | |
fba45db2 | 1040 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 1041 | int bitsize, struct value *newval) |
c906108c | 1042 | { |
fc1a4b47 | 1043 | gdb_byte *addr = value_contents_writeable (var->value) + offset; |
c906108c | 1044 | |
c906108c SS |
1045 | if (bitsize) |
1046 | modify_field (addr, value_as_long (newval), | |
1047 | bitpos, bitsize); | |
1048 | else | |
0fd88904 | 1049 | memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
1050 | } |
1051 | ||
1052 | void | |
f23631e4 | 1053 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 1054 | { |
f23631e4 | 1055 | struct value *newval; |
c906108c | 1056 | |
bc3b79fd TJB |
1057 | if (var->canonical) |
1058 | error (_("Cannot overwrite convenience function %s"), var->name); | |
1059 | ||
c906108c SS |
1060 | newval = value_copy (val); |
1061 | newval->modifiable = 1; | |
1062 | ||
1063 | /* Force the value to be fetched from the target now, to avoid problems | |
1064 | later when this internalvar is referenced and the target is gone or | |
1065 | has changed. */ | |
d69fe07e | 1066 | if (value_lazy (newval)) |
c906108c SS |
1067 | value_fetch_lazy (newval); |
1068 | ||
1069 | /* Begin code which must not call error(). If var->value points to | |
1070 | something free'd, an error() obviously leaves a dangling pointer. | |
bc3b79fd | 1071 | But we also get a dangling pointer if var->value points to |
c906108c SS |
1072 | something in the value chain (i.e., before release_value is |
1073 | called), because after the error free_all_values will get called before | |
1074 | long. */ | |
170ce852 | 1075 | value_free (var->value); |
c906108c | 1076 | var->value = newval; |
0d20ae72 | 1077 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
1078 | release_value (newval); |
1079 | /* End code which must not call error(). */ | |
1080 | } | |
1081 | ||
1082 | char * | |
fba45db2 | 1083 | internalvar_name (struct internalvar *var) |
c906108c SS |
1084 | { |
1085 | return var->name; | |
1086 | } | |
1087 | ||
bc3b79fd TJB |
1088 | static struct value * |
1089 | value_create_internal_function (const char *name, | |
1090 | internal_function_fn handler, | |
1091 | void *cookie) | |
1092 | { | |
1093 | struct value *result = allocate_value (internal_fn_type); | |
1094 | gdb_byte *addr = value_contents_writeable (result); | |
1095 | struct internal_function **fnp = (struct internal_function **) addr; | |
1096 | struct internal_function *ifn = XNEW (struct internal_function); | |
1097 | ifn->name = xstrdup (name); | |
1098 | ifn->handler = handler; | |
1099 | ifn->cookie = cookie; | |
1100 | *fnp = ifn; | |
1101 | return result; | |
1102 | } | |
1103 | ||
1104 | char * | |
1105 | value_internal_function_name (struct value *val) | |
1106 | { | |
1107 | gdb_byte *addr = value_contents_writeable (val); | |
1108 | struct internal_function *ifn = * (struct internal_function **) addr; | |
1109 | return ifn->name; | |
1110 | } | |
1111 | ||
1112 | struct value * | |
1113 | call_internal_function (struct value *func, int argc, struct value **argv) | |
1114 | { | |
1115 | gdb_byte *addr = value_contents_writeable (func); | |
1116 | struct internal_function *ifn = * (struct internal_function **) addr; | |
1117 | return (*ifn->handler) (ifn->cookie, argc, argv); | |
1118 | } | |
1119 | ||
1120 | /* The 'function' command. This does nothing -- it is just a | |
1121 | placeholder to let "help function NAME" work. This is also used as | |
1122 | the implementation of the sub-command that is created when | |
1123 | registering an internal function. */ | |
1124 | static void | |
1125 | function_command (char *command, int from_tty) | |
1126 | { | |
1127 | /* Do nothing. */ | |
1128 | } | |
1129 | ||
1130 | /* Clean up if an internal function's command is destroyed. */ | |
1131 | static void | |
1132 | function_destroyer (struct cmd_list_element *self, void *ignore) | |
1133 | { | |
1134 | xfree (self->name); | |
1135 | xfree (self->doc); | |
1136 | } | |
1137 | ||
1138 | /* Add a new internal function. NAME is the name of the function; DOC | |
1139 | is a documentation string describing the function. HANDLER is | |
1140 | called when the function is invoked. COOKIE is an arbitrary | |
1141 | pointer which is passed to HANDLER and is intended for "user | |
1142 | data". */ | |
1143 | void | |
1144 | add_internal_function (const char *name, const char *doc, | |
1145 | internal_function_fn handler, void *cookie) | |
1146 | { | |
1147 | struct cmd_list_element *cmd; | |
1148 | struct internalvar *var = lookup_internalvar (name); | |
1149 | struct value *fnval = value_create_internal_function (name, handler, cookie); | |
1150 | set_internalvar (var, fnval); | |
1151 | var->canonical = 1; | |
1152 | ||
1153 | cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, | |
1154 | &functionlist); | |
1155 | cmd->destroyer = function_destroyer; | |
1156 | } | |
1157 | ||
ae5a43e0 DJ |
1158 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
1159 | prevent cycles / duplicates. */ | |
1160 | ||
1161 | static void | |
1162 | preserve_one_value (struct value *value, struct objfile *objfile, | |
1163 | htab_t copied_types) | |
1164 | { | |
1165 | if (TYPE_OBJFILE (value->type) == objfile) | |
1166 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
1167 | ||
1168 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
1169 | value->enclosing_type = copy_type_recursive (objfile, | |
1170 | value->enclosing_type, | |
1171 | copied_types); | |
1172 | } | |
1173 | ||
1174 | /* Update the internal variables and value history when OBJFILE is | |
1175 | discarded; we must copy the types out of the objfile. New global types | |
1176 | will be created for every convenience variable which currently points to | |
1177 | this objfile's types, and the convenience variables will be adjusted to | |
1178 | use the new global types. */ | |
c906108c SS |
1179 | |
1180 | void | |
ae5a43e0 | 1181 | preserve_values (struct objfile *objfile) |
c906108c | 1182 | { |
ae5a43e0 DJ |
1183 | htab_t copied_types; |
1184 | struct value_history_chunk *cur; | |
52f0bd74 | 1185 | struct internalvar *var; |
a08702d6 | 1186 | struct value *val; |
ae5a43e0 | 1187 | int i; |
c906108c | 1188 | |
ae5a43e0 DJ |
1189 | /* Create the hash table. We allocate on the objfile's obstack, since |
1190 | it is soon to be deleted. */ | |
1191 | copied_types = create_copied_types_hash (objfile); | |
1192 | ||
1193 | for (cur = value_history_chain; cur; cur = cur->next) | |
1194 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
1195 | if (cur->values[i]) | |
1196 | preserve_one_value (cur->values[i], objfile, copied_types); | |
1197 | ||
1198 | for (var = internalvars; var; var = var->next) | |
4aa995e1 PA |
1199 | if (var->value) |
1200 | preserve_one_value (var->value, objfile, copied_types); | |
ae5a43e0 | 1201 | |
a08702d6 TJB |
1202 | for (val = values_in_python; val; val = val->next) |
1203 | preserve_one_value (val, objfile, copied_types); | |
1204 | ||
ae5a43e0 | 1205 | htab_delete (copied_types); |
c906108c SS |
1206 | } |
1207 | ||
1208 | static void | |
fba45db2 | 1209 | show_convenience (char *ignore, int from_tty) |
c906108c | 1210 | { |
52f0bd74 | 1211 | struct internalvar *var; |
c906108c | 1212 | int varseen = 0; |
79a45b7d | 1213 | struct value_print_options opts; |
c906108c | 1214 | |
79a45b7d | 1215 | get_user_print_options (&opts); |
c906108c SS |
1216 | for (var = internalvars; var; var = var->next) |
1217 | { | |
c906108c SS |
1218 | if (!varseen) |
1219 | { | |
1220 | varseen = 1; | |
1221 | } | |
a3f17187 | 1222 | printf_filtered (("$%s = "), var->name); |
d3c139e9 | 1223 | value_print (value_of_internalvar (var), gdb_stdout, |
79a45b7d | 1224 | &opts); |
a3f17187 | 1225 | printf_filtered (("\n")); |
c906108c SS |
1226 | } |
1227 | if (!varseen) | |
a3f17187 AC |
1228 | printf_unfiltered (_("\ |
1229 | No debugger convenience variables now defined.\n\ | |
c906108c | 1230 | Convenience variables have names starting with \"$\";\n\ |
a3f17187 | 1231 | use \"set\" as in \"set $foo = 5\" to define them.\n")); |
c906108c SS |
1232 | } |
1233 | \f | |
1234 | /* Extract a value as a C number (either long or double). | |
1235 | Knows how to convert fixed values to double, or | |
1236 | floating values to long. | |
1237 | Does not deallocate the value. */ | |
1238 | ||
1239 | LONGEST | |
f23631e4 | 1240 | value_as_long (struct value *val) |
c906108c SS |
1241 | { |
1242 | /* This coerces arrays and functions, which is necessary (e.g. | |
1243 | in disassemble_command). It also dereferences references, which | |
1244 | I suspect is the most logical thing to do. */ | |
994b9211 | 1245 | val = coerce_array (val); |
0fd88904 | 1246 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1247 | } |
1248 | ||
1249 | DOUBLEST | |
f23631e4 | 1250 | value_as_double (struct value *val) |
c906108c SS |
1251 | { |
1252 | DOUBLEST foo; | |
1253 | int inv; | |
c5aa993b | 1254 | |
0fd88904 | 1255 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 1256 | if (inv) |
8a3fe4f8 | 1257 | error (_("Invalid floating value found in program.")); |
c906108c SS |
1258 | return foo; |
1259 | } | |
4ef30785 | 1260 | |
4478b372 JB |
1261 | /* Extract a value as a C pointer. Does not deallocate the value. |
1262 | Note that val's type may not actually be a pointer; value_as_long | |
1263 | handles all the cases. */ | |
c906108c | 1264 | CORE_ADDR |
f23631e4 | 1265 | value_as_address (struct value *val) |
c906108c SS |
1266 | { |
1267 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1268 | whether we want this to be true eventually. */ | |
1269 | #if 0 | |
bf6ae464 | 1270 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
1271 | non-address (e.g. argument to "signal", "info break", etc.), or |
1272 | for pointers to char, in which the low bits *are* significant. */ | |
bf6ae464 | 1273 | return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val)); |
c906108c | 1274 | #else |
f312f057 JB |
1275 | |
1276 | /* There are several targets (IA-64, PowerPC, and others) which | |
1277 | don't represent pointers to functions as simply the address of | |
1278 | the function's entry point. For example, on the IA-64, a | |
1279 | function pointer points to a two-word descriptor, generated by | |
1280 | the linker, which contains the function's entry point, and the | |
1281 | value the IA-64 "global pointer" register should have --- to | |
1282 | support position-independent code. The linker generates | |
1283 | descriptors only for those functions whose addresses are taken. | |
1284 | ||
1285 | On such targets, it's difficult for GDB to convert an arbitrary | |
1286 | function address into a function pointer; it has to either find | |
1287 | an existing descriptor for that function, or call malloc and | |
1288 | build its own. On some targets, it is impossible for GDB to | |
1289 | build a descriptor at all: the descriptor must contain a jump | |
1290 | instruction; data memory cannot be executed; and code memory | |
1291 | cannot be modified. | |
1292 | ||
1293 | Upon entry to this function, if VAL is a value of type `function' | |
1294 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
1295 | VALUE_ADDRESS (val) is the address of the function. This is what | |
1296 | you'll get if you evaluate an expression like `main'. The call | |
1297 | to COERCE_ARRAY below actually does all the usual unary | |
1298 | conversions, which includes converting values of type `function' | |
1299 | to `pointer to function'. This is the challenging conversion | |
1300 | discussed above. Then, `unpack_long' will convert that pointer | |
1301 | back into an address. | |
1302 | ||
1303 | So, suppose the user types `disassemble foo' on an architecture | |
1304 | with a strange function pointer representation, on which GDB | |
1305 | cannot build its own descriptors, and suppose further that `foo' | |
1306 | has no linker-built descriptor. The address->pointer conversion | |
1307 | will signal an error and prevent the command from running, even | |
1308 | though the next step would have been to convert the pointer | |
1309 | directly back into the same address. | |
1310 | ||
1311 | The following shortcut avoids this whole mess. If VAL is a | |
1312 | function, just return its address directly. */ | |
df407dfe AC |
1313 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
1314 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
1315 | return VALUE_ADDRESS (val); |
1316 | ||
994b9211 | 1317 | val = coerce_array (val); |
fc0c74b1 AC |
1318 | |
1319 | /* Some architectures (e.g. Harvard), map instruction and data | |
1320 | addresses onto a single large unified address space. For | |
1321 | instance: An architecture may consider a large integer in the | |
1322 | range 0x10000000 .. 0x1000ffff to already represent a data | |
1323 | addresses (hence not need a pointer to address conversion) while | |
1324 | a small integer would still need to be converted integer to | |
1325 | pointer to address. Just assume such architectures handle all | |
1326 | integer conversions in a single function. */ | |
1327 | ||
1328 | /* JimB writes: | |
1329 | ||
1330 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
1331 | must admonish GDB hackers to make sure its behavior matches the | |
1332 | compiler's, whenever possible. | |
1333 | ||
1334 | In general, I think GDB should evaluate expressions the same way | |
1335 | the compiler does. When the user copies an expression out of | |
1336 | their source code and hands it to a `print' command, they should | |
1337 | get the same value the compiler would have computed. Any | |
1338 | deviation from this rule can cause major confusion and annoyance, | |
1339 | and needs to be justified carefully. In other words, GDB doesn't | |
1340 | really have the freedom to do these conversions in clever and | |
1341 | useful ways. | |
1342 | ||
1343 | AndrewC pointed out that users aren't complaining about how GDB | |
1344 | casts integers to pointers; they are complaining that they can't | |
1345 | take an address from a disassembly listing and give it to `x/i'. | |
1346 | This is certainly important. | |
1347 | ||
79dd2d24 | 1348 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
1349 | makes it possible for GDB to "get it right" in all circumstances |
1350 | --- the target has complete control over how things get done, so | |
1351 | people can Do The Right Thing for their target without breaking | |
1352 | anyone else. The standard doesn't specify how integers get | |
1353 | converted to pointers; usually, the ABI doesn't either, but | |
1354 | ABI-specific code is a more reasonable place to handle it. */ | |
1355 | ||
df407dfe AC |
1356 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
1357 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
1358 | && gdbarch_integer_to_address_p (current_gdbarch)) |
1359 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
0fd88904 | 1360 | value_contents (val)); |
fc0c74b1 | 1361 | |
0fd88904 | 1362 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1363 | #endif |
1364 | } | |
1365 | \f | |
1366 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1367 | as a long, or as a double, assuming the raw data is described | |
1368 | by type TYPE. Knows how to convert different sizes of values | |
1369 | and can convert between fixed and floating point. We don't assume | |
1370 | any alignment for the raw data. Return value is in host byte order. | |
1371 | ||
1372 | If you want functions and arrays to be coerced to pointers, and | |
1373 | references to be dereferenced, call value_as_long() instead. | |
1374 | ||
1375 | C++: It is assumed that the front-end has taken care of | |
1376 | all matters concerning pointers to members. A pointer | |
1377 | to member which reaches here is considered to be equivalent | |
1378 | to an INT (or some size). After all, it is only an offset. */ | |
1379 | ||
1380 | LONGEST | |
fc1a4b47 | 1381 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 1382 | { |
52f0bd74 AC |
1383 | enum type_code code = TYPE_CODE (type); |
1384 | int len = TYPE_LENGTH (type); | |
1385 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 1386 | |
c906108c SS |
1387 | switch (code) |
1388 | { | |
1389 | case TYPE_CODE_TYPEDEF: | |
1390 | return unpack_long (check_typedef (type), valaddr); | |
1391 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1392 | case TYPE_CODE_FLAGS: |
c906108c SS |
1393 | case TYPE_CODE_BOOL: |
1394 | case TYPE_CODE_INT: | |
1395 | case TYPE_CODE_CHAR: | |
1396 | case TYPE_CODE_RANGE: | |
0d5de010 | 1397 | case TYPE_CODE_MEMBERPTR: |
c906108c SS |
1398 | if (nosign) |
1399 | return extract_unsigned_integer (valaddr, len); | |
1400 | else | |
1401 | return extract_signed_integer (valaddr, len); | |
1402 | ||
1403 | case TYPE_CODE_FLT: | |
96d2f608 | 1404 | return extract_typed_floating (valaddr, type); |
c906108c | 1405 | |
4ef30785 TJB |
1406 | case TYPE_CODE_DECFLOAT: |
1407 | /* libdecnumber has a function to convert from decimal to integer, but | |
1408 | it doesn't work when the decimal number has a fractional part. */ | |
ba759613 | 1409 | return decimal_to_doublest (valaddr, len); |
4ef30785 | 1410 | |
c906108c SS |
1411 | case TYPE_CODE_PTR: |
1412 | case TYPE_CODE_REF: | |
1413 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 1414 | whether we want this to be true eventually. */ |
4478b372 | 1415 | return extract_typed_address (valaddr, type); |
c906108c | 1416 | |
c906108c | 1417 | default: |
8a3fe4f8 | 1418 | error (_("Value can't be converted to integer.")); |
c906108c | 1419 | } |
c5aa993b | 1420 | return 0; /* Placate lint. */ |
c906108c SS |
1421 | } |
1422 | ||
1423 | /* Return a double value from the specified type and address. | |
1424 | INVP points to an int which is set to 0 for valid value, | |
1425 | 1 for invalid value (bad float format). In either case, | |
1426 | the returned double is OK to use. Argument is in target | |
1427 | format, result is in host format. */ | |
1428 | ||
1429 | DOUBLEST | |
fc1a4b47 | 1430 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c SS |
1431 | { |
1432 | enum type_code code; | |
1433 | int len; | |
1434 | int nosign; | |
1435 | ||
1436 | *invp = 0; /* Assume valid. */ | |
1437 | CHECK_TYPEDEF (type); | |
1438 | code = TYPE_CODE (type); | |
1439 | len = TYPE_LENGTH (type); | |
1440 | nosign = TYPE_UNSIGNED (type); | |
1441 | if (code == TYPE_CODE_FLT) | |
1442 | { | |
75bc7ddf AC |
1443 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
1444 | floating-point value was valid (using the macro | |
1445 | INVALID_FLOAT). That test/macro have been removed. | |
1446 | ||
1447 | It turns out that only the VAX defined this macro and then | |
1448 | only in a non-portable way. Fixing the portability problem | |
1449 | wouldn't help since the VAX floating-point code is also badly | |
1450 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 1451 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
1452 | exactly describe the target floating-point format. The |
1453 | problem here is that the corresponding floatformat_vax_f and | |
1454 | floatformat_vax_d values these methods should be set to are | |
1455 | also not defined either. Oops! | |
1456 | ||
1457 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
1458 | definitions and the new cases for floatformat_is_valid (). */ |
1459 | ||
1460 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
1461 | { | |
1462 | *invp = 1; | |
1463 | return 0.0; | |
1464 | } | |
1465 | ||
96d2f608 | 1466 | return extract_typed_floating (valaddr, type); |
c906108c | 1467 | } |
4ef30785 | 1468 | else if (code == TYPE_CODE_DECFLOAT) |
ba759613 | 1469 | return decimal_to_doublest (valaddr, len); |
c906108c SS |
1470 | else if (nosign) |
1471 | { | |
1472 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 1473 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
1474 | } |
1475 | else | |
1476 | { | |
1477 | /* Signed -- we are OK with unpack_long. */ | |
1478 | return unpack_long (type, valaddr); | |
1479 | } | |
1480 | } | |
1481 | ||
1482 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1483 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
1484 | We don't assume any alignment for the raw data. Return value is in | |
1485 | host byte order. | |
1486 | ||
1487 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 1488 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
1489 | |
1490 | C++: It is assumed that the front-end has taken care of | |
1491 | all matters concerning pointers to members. A pointer | |
1492 | to member which reaches here is considered to be equivalent | |
1493 | to an INT (or some size). After all, it is only an offset. */ | |
1494 | ||
1495 | CORE_ADDR | |
fc1a4b47 | 1496 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
1497 | { |
1498 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1499 | whether we want this to be true eventually. */ | |
1500 | return unpack_long (type, valaddr); | |
1501 | } | |
4478b372 | 1502 | |
c906108c | 1503 | \f |
2c2738a0 DC |
1504 | /* Get the value of the FIELDN'th field (which must be static) of |
1505 | TYPE. Return NULL if the field doesn't exist or has been | |
1506 | optimized out. */ | |
c906108c | 1507 | |
f23631e4 | 1508 | struct value * |
fba45db2 | 1509 | value_static_field (struct type *type, int fieldno) |
c906108c | 1510 | { |
948e66d9 DJ |
1511 | struct value *retval; |
1512 | ||
d6a843b5 | 1513 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) |
c906108c | 1514 | { |
948e66d9 | 1515 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1516 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
1517 | } |
1518 | else | |
1519 | { | |
1520 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
2570f2b7 | 1521 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
948e66d9 | 1522 | if (sym == NULL) |
c906108c SS |
1523 | { |
1524 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
1525 | as non-debuggable symbols */ |
1526 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
1527 | if (!msym) |
1528 | return NULL; | |
1529 | else | |
c5aa993b | 1530 | { |
948e66d9 | 1531 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1532 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
1533 | } |
1534 | } | |
1535 | else | |
1536 | { | |
948e66d9 DJ |
1537 | /* SYM should never have a SYMBOL_CLASS which will require |
1538 | read_var_value to use the FRAME parameter. */ | |
1539 | if (symbol_read_needs_frame (sym)) | |
8a3fe4f8 AC |
1540 | warning (_("static field's value depends on the current " |
1541 | "frame - bad debug info?")); | |
948e66d9 | 1542 | retval = read_var_value (sym, NULL); |
2b127877 | 1543 | } |
948e66d9 DJ |
1544 | if (retval && VALUE_LVAL (retval) == lval_memory) |
1545 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
1546 | VALUE_ADDRESS (retval)); | |
c906108c | 1547 | } |
948e66d9 | 1548 | return retval; |
c906108c SS |
1549 | } |
1550 | ||
2b127877 DB |
1551 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
1552 | You have to be careful here, since the size of the data area for the value | |
1553 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
1554 | than the old enclosing type, you have to allocate more space for the data. | |
1555 | The return value is a pointer to the new version of this value structure. */ | |
1556 | ||
f23631e4 AC |
1557 | struct value * |
1558 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 1559 | { |
3e3d7139 JG |
1560 | if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) |
1561 | val->contents = | |
1562 | (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); | |
1563 | ||
1564 | val->enclosing_type = new_encl_type; | |
1565 | return val; | |
2b127877 DB |
1566 | } |
1567 | ||
c906108c SS |
1568 | /* Given a value ARG1 (offset by OFFSET bytes) |
1569 | of a struct or union type ARG_TYPE, | |
1570 | extract and return the value of one of its (non-static) fields. | |
1571 | FIELDNO says which field. */ | |
1572 | ||
f23631e4 AC |
1573 | struct value * |
1574 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 1575 | int fieldno, struct type *arg_type) |
c906108c | 1576 | { |
f23631e4 | 1577 | struct value *v; |
52f0bd74 | 1578 | struct type *type; |
c906108c SS |
1579 | |
1580 | CHECK_TYPEDEF (arg_type); | |
1581 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
1582 | ||
1583 | /* Handle packed fields */ | |
1584 | ||
1585 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
1586 | { | |
1587 | v = value_from_longest (type, | |
1588 | unpack_field_as_long (arg_type, | |
0fd88904 | 1589 | value_contents (arg1) |
c5aa993b | 1590 | + offset, |
c906108c | 1591 | fieldno)); |
df407dfe AC |
1592 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
1593 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
1594 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 1595 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
1596 | } |
1597 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
1598 | { | |
1599 | /* This field is actually a base subobject, so preserve the | |
1600 | entire object's contents for later references to virtual | |
1601 | bases, etc. */ | |
a4e2ee12 DJ |
1602 | |
1603 | /* Lazy register values with offsets are not supported. */ | |
1604 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1605 | value_fetch_lazy (arg1); | |
1606 | ||
1607 | if (value_lazy (arg1)) | |
3e3d7139 | 1608 | v = allocate_value_lazy (value_enclosing_type (arg1)); |
c906108c | 1609 | else |
3e3d7139 JG |
1610 | { |
1611 | v = allocate_value (value_enclosing_type (arg1)); | |
1612 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), | |
1613 | TYPE_LENGTH (value_enclosing_type (arg1))); | |
1614 | } | |
1615 | v->type = type; | |
df407dfe | 1616 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
1617 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
1618 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
1619 | } |
1620 | else | |
1621 | { | |
1622 | /* Plain old data member */ | |
1623 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
a4e2ee12 DJ |
1624 | |
1625 | /* Lazy register values with offsets are not supported. */ | |
1626 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1627 | value_fetch_lazy (arg1); | |
1628 | ||
1629 | if (value_lazy (arg1)) | |
3e3d7139 | 1630 | v = allocate_value_lazy (type); |
c906108c | 1631 | else |
3e3d7139 JG |
1632 | { |
1633 | v = allocate_value (type); | |
1634 | memcpy (value_contents_raw (v), | |
1635 | value_contents_raw (arg1) + offset, | |
1636 | TYPE_LENGTH (type)); | |
1637 | } | |
df407dfe | 1638 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 1639 | + value_embedded_offset (arg1)); |
c906108c | 1640 | } |
74bcbdf3 | 1641 | set_value_component_location (v, arg1); |
9ee8fc9d | 1642 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1643 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
1644 | return v; |
1645 | } | |
1646 | ||
1647 | /* Given a value ARG1 of a struct or union type, | |
1648 | extract and return the value of one of its (non-static) fields. | |
1649 | FIELDNO says which field. */ | |
1650 | ||
f23631e4 | 1651 | struct value * |
aa1ee363 | 1652 | value_field (struct value *arg1, int fieldno) |
c906108c | 1653 | { |
df407dfe | 1654 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1655 | } |
1656 | ||
1657 | /* Return a non-virtual function as a value. | |
1658 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1659 | J is an index into F which provides the desired method. |
1660 | ||
1661 | We only use the symbol for its address, so be happy with either a | |
1662 | full symbol or a minimal symbol. | |
1663 | */ | |
c906108c | 1664 | |
f23631e4 AC |
1665 | struct value * |
1666 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1667 | int offset) |
c906108c | 1668 | { |
f23631e4 | 1669 | struct value *v; |
52f0bd74 | 1670 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1671 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1672 | struct symbol *sym; |
0478d61c | 1673 | struct minimal_symbol *msym; |
c906108c | 1674 | |
2570f2b7 | 1675 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); |
5ae326fa | 1676 | if (sym != NULL) |
0478d61c | 1677 | { |
5ae326fa AC |
1678 | msym = NULL; |
1679 | } | |
1680 | else | |
1681 | { | |
1682 | gdb_assert (sym == NULL); | |
0478d61c | 1683 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1684 | if (msym == NULL) |
1685 | return NULL; | |
0478d61c FF |
1686 | } |
1687 | ||
c906108c | 1688 | v = allocate_value (ftype); |
0478d61c FF |
1689 | if (sym) |
1690 | { | |
1691 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1692 | } | |
1693 | else | |
1694 | { | |
bccdca4a UW |
1695 | /* The minimal symbol might point to a function descriptor; |
1696 | resolve it to the actual code address instead. */ | |
1697 | struct objfile *objfile = msymbol_objfile (msym); | |
1698 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
1699 | ||
1700 | VALUE_ADDRESS (v) | |
1701 | = gdbarch_convert_from_func_ptr_addr | |
1702 | (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target); | |
0478d61c | 1703 | } |
c906108c SS |
1704 | |
1705 | if (arg1p) | |
c5aa993b | 1706 | { |
df407dfe | 1707 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1708 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1709 | value_addr (*arg1p))); | |
1710 | ||
070ad9f0 | 1711 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1712 | VALUE_OFFSET (*arg1p) += offset; |
1713 | */ | |
c906108c SS |
1714 | } |
1715 | ||
1716 | return v; | |
1717 | } | |
1718 | ||
c906108c SS |
1719 | \f |
1720 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1721 | VALADDR. | |
1722 | ||
1723 | Extracting bits depends on endianness of the machine. Compute the | |
1724 | number of least significant bits to discard. For big endian machines, | |
1725 | we compute the total number of bits in the anonymous object, subtract | |
1726 | off the bit count from the MSB of the object to the MSB of the | |
1727 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1728 | count. For little endian machines, the discard count is simply the | |
1729 | number of bits from the LSB of the anonymous object to the LSB of the | |
1730 | bitfield. | |
1731 | ||
1732 | If the field is signed, we also do sign extension. */ | |
1733 | ||
1734 | LONGEST | |
fc1a4b47 | 1735 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) |
c906108c SS |
1736 | { |
1737 | ULONGEST val; | |
1738 | ULONGEST valmask; | |
1739 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1740 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1741 | int lsbcount; | |
1742 | struct type *field_type; | |
1743 | ||
1744 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1745 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1746 | CHECK_TYPEDEF (field_type); | |
1747 | ||
1748 | /* Extract bits. See comment above. */ | |
1749 | ||
32c9a795 | 1750 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1751 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
1752 | else | |
1753 | lsbcount = (bitpos % 8); | |
1754 | val >>= lsbcount; | |
1755 | ||
1756 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1757 | If the field is signed, and is negative, then sign extend. */ | |
1758 | ||
1759 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1760 | { | |
1761 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1762 | val &= valmask; | |
1763 | if (!TYPE_UNSIGNED (field_type)) | |
1764 | { | |
1765 | if (val & (valmask ^ (valmask >> 1))) | |
1766 | { | |
1767 | val |= ~valmask; | |
1768 | } | |
1769 | } | |
1770 | } | |
1771 | return (val); | |
1772 | } | |
1773 | ||
1774 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1775 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1776 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1777 | indicate which bits (in target bit order) comprise the bitfield. |
1778 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1779 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1780 | |
1781 | void | |
fc1a4b47 | 1782 | modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1783 | { |
f4e88c8e PH |
1784 | ULONGEST oword; |
1785 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1786 | |
1787 | /* If a negative fieldval fits in the field in question, chop | |
1788 | off the sign extension bits. */ | |
f4e88c8e PH |
1789 | if ((~fieldval & ~(mask >> 1)) == 0) |
1790 | fieldval &= mask; | |
c906108c SS |
1791 | |
1792 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1793 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1794 | { |
1795 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1796 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 1797 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
1798 | |
1799 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1800 | fieldval &= mask; |
c906108c SS |
1801 | } |
1802 | ||
f4e88c8e | 1803 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1804 | |
1805 | /* Shifting for bit field depends on endianness of the target machine. */ | |
32c9a795 | 1806 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1807 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1808 | ||
f4e88c8e | 1809 | oword &= ~(mask << bitpos); |
c906108c SS |
1810 | oword |= fieldval << bitpos; |
1811 | ||
f4e88c8e | 1812 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1813 | } |
1814 | \f | |
14d06750 | 1815 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 1816 | |
14d06750 DJ |
1817 | void |
1818 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 1819 | { |
52f0bd74 | 1820 | int len; |
14d06750 DJ |
1821 | |
1822 | type = check_typedef (type); | |
c906108c SS |
1823 | len = TYPE_LENGTH (type); |
1824 | ||
14d06750 | 1825 | switch (TYPE_CODE (type)) |
c906108c | 1826 | { |
c906108c SS |
1827 | case TYPE_CODE_INT: |
1828 | case TYPE_CODE_CHAR: | |
1829 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1830 | case TYPE_CODE_FLAGS: |
c906108c SS |
1831 | case TYPE_CODE_BOOL: |
1832 | case TYPE_CODE_RANGE: | |
0d5de010 | 1833 | case TYPE_CODE_MEMBERPTR: |
14d06750 | 1834 | store_signed_integer (buf, len, num); |
c906108c | 1835 | break; |
c5aa993b | 1836 | |
c906108c SS |
1837 | case TYPE_CODE_REF: |
1838 | case TYPE_CODE_PTR: | |
14d06750 | 1839 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 1840 | break; |
c5aa993b | 1841 | |
c906108c | 1842 | default: |
14d06750 DJ |
1843 | error (_("Unexpected type (%d) encountered for integer constant."), |
1844 | TYPE_CODE (type)); | |
c906108c | 1845 | } |
14d06750 DJ |
1846 | } |
1847 | ||
1848 | ||
1849 | /* Convert C numbers into newly allocated values. */ | |
1850 | ||
1851 | struct value * | |
1852 | value_from_longest (struct type *type, LONGEST num) | |
1853 | { | |
1854 | struct value *val = allocate_value (type); | |
1855 | ||
1856 | pack_long (value_contents_raw (val), type, num); | |
1857 | ||
c906108c SS |
1858 | return val; |
1859 | } | |
1860 | ||
4478b372 JB |
1861 | |
1862 | /* Create a value representing a pointer of type TYPE to the address | |
1863 | ADDR. */ | |
f23631e4 | 1864 | struct value * |
4478b372 JB |
1865 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1866 | { | |
f23631e4 | 1867 | struct value *val = allocate_value (type); |
990a07ab | 1868 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1869 | return val; |
1870 | } | |
1871 | ||
1872 | ||
0f71a2f6 | 1873 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1874 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1875 | This is analogous to value_from_longest, which also does not |
1876 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1877 | ||
f23631e4 | 1878 | struct value * |
fba45db2 | 1879 | value_from_string (char *ptr) |
0f71a2f6 | 1880 | { |
f23631e4 | 1881 | struct value *val; |
c5aa993b | 1882 | int len = strlen (ptr); |
0f71a2f6 | 1883 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1884 | struct type *string_char_type; |
1885 | struct type *rangetype; | |
1886 | struct type *stringtype; | |
1887 | ||
1888 | rangetype = create_range_type ((struct type *) NULL, | |
6d84d3d8 | 1889 | builtin_type_int32, |
f290d38e AC |
1890 | lowbound, len + lowbound - 1); |
1891 | string_char_type = language_string_char_type (current_language, | |
1892 | current_gdbarch); | |
1893 | stringtype = create_array_type ((struct type *) NULL, | |
1894 | string_char_type, | |
1895 | rangetype); | |
0f71a2f6 | 1896 | val = allocate_value (stringtype); |
990a07ab | 1897 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1898 | return val; |
1899 | } | |
1900 | ||
8acb6b92 TT |
1901 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
1902 | is non-null, and whose memory address (in the inferior) is | |
1903 | ADDRESS. */ | |
1904 | ||
1905 | struct value * | |
1906 | value_from_contents_and_address (struct type *type, | |
1907 | const gdb_byte *valaddr, | |
1908 | CORE_ADDR address) | |
1909 | { | |
1910 | struct value *v = allocate_value (type); | |
1911 | if (valaddr == NULL) | |
1912 | set_value_lazy (v, 1); | |
1913 | else | |
1914 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); | |
1915 | VALUE_ADDRESS (v) = address; | |
33d502b4 | 1916 | VALUE_LVAL (v) = lval_memory; |
8acb6b92 TT |
1917 | return v; |
1918 | } | |
1919 | ||
f23631e4 | 1920 | struct value * |
fba45db2 | 1921 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1922 | { |
f23631e4 | 1923 | struct value *val = allocate_value (type); |
c906108c | 1924 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1925 | enum type_code code = TYPE_CODE (base_type); |
1926 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1927 | |
1928 | if (code == TYPE_CODE_FLT) | |
1929 | { | |
990a07ab | 1930 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1931 | } |
1932 | else | |
8a3fe4f8 | 1933 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
1934 | |
1935 | return val; | |
1936 | } | |
994b9211 | 1937 | |
27bc4d80 | 1938 | struct value * |
4ef30785 | 1939 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
1940 | { |
1941 | struct value *val = allocate_value (type); | |
27bc4d80 | 1942 | |
4ef30785 | 1943 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 | 1944 | |
27bc4d80 TJB |
1945 | return val; |
1946 | } | |
1947 | ||
994b9211 AC |
1948 | struct value * |
1949 | coerce_ref (struct value *arg) | |
1950 | { | |
df407dfe | 1951 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1952 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1953 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1954 | unpack_pointer (value_type (arg), |
0fd88904 | 1955 | value_contents (arg))); |
994b9211 AC |
1956 | return arg; |
1957 | } | |
1958 | ||
1959 | struct value * | |
1960 | coerce_array (struct value *arg) | |
1961 | { | |
f3134b88 TT |
1962 | struct type *type; |
1963 | ||
994b9211 | 1964 | arg = coerce_ref (arg); |
f3134b88 TT |
1965 | type = check_typedef (value_type (arg)); |
1966 | ||
1967 | switch (TYPE_CODE (type)) | |
1968 | { | |
1969 | case TYPE_CODE_ARRAY: | |
1970 | if (current_language->c_style_arrays) | |
1971 | arg = value_coerce_array (arg); | |
1972 | break; | |
1973 | case TYPE_CODE_FUNC: | |
1974 | arg = value_coerce_function (arg); | |
1975 | break; | |
1976 | } | |
994b9211 AC |
1977 | return arg; |
1978 | } | |
c906108c | 1979 | \f |
c906108c | 1980 | |
48436ce6 AC |
1981 | /* Return true if the function returning the specified type is using |
1982 | the convention of returning structures in memory (passing in the | |
82585c72 | 1983 | address as a hidden first parameter). */ |
c906108c SS |
1984 | |
1985 | int | |
c055b101 | 1986 | using_struct_return (struct type *func_type, struct type *value_type) |
c906108c | 1987 | { |
52f0bd74 | 1988 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1989 | |
1990 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 1991 | error (_("Function return type unknown.")); |
c906108c | 1992 | |
667e784f AC |
1993 | if (code == TYPE_CODE_VOID) |
1994 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1995 | code in "print_return_value". */ |
667e784f AC |
1996 | return 0; |
1997 | ||
92ad9cd9 | 1998 | /* Probe the architecture for the return-value convention. */ |
c055b101 | 1999 | return (gdbarch_return_value (current_gdbarch, func_type, value_type, |
92ad9cd9 | 2000 | NULL, NULL, NULL) |
31db7b6c | 2001 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
2002 | } |
2003 | ||
42be36b3 CT |
2004 | /* Set the initialized field in a value struct. */ |
2005 | ||
2006 | void | |
2007 | set_value_initialized (struct value *val, int status) | |
2008 | { | |
2009 | val->initialized = status; | |
2010 | } | |
2011 | ||
2012 | /* Return the initialized field in a value struct. */ | |
2013 | ||
2014 | int | |
2015 | value_initialized (struct value *val) | |
2016 | { | |
2017 | return val->initialized; | |
2018 | } | |
2019 | ||
c906108c | 2020 | void |
fba45db2 | 2021 | _initialize_values (void) |
c906108c | 2022 | { |
1a966eab AC |
2023 | add_cmd ("convenience", no_class, show_convenience, _("\ |
2024 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 2025 | These variables are created when you assign them values;\n\ |
1a966eab AC |
2026 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
2027 | \n\ | |
c906108c SS |
2028 | A few convenience variables are given values automatically:\n\ |
2029 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 2030 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
2031 | &showlist); |
2032 | ||
2033 | add_cmd ("values", no_class, show_values, | |
1a966eab | 2034 | _("Elements of value history around item number IDX (or last ten)."), |
c906108c | 2035 | &showlist); |
53e5f3cf AS |
2036 | |
2037 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
2038 | Initialize a convenience variable if necessary.\n\ | |
2039 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
2040 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
2041 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
2042 | VARIABLE is already initialized.")); | |
bc3b79fd TJB |
2043 | |
2044 | add_prefix_cmd ("function", no_class, function_command, _("\ | |
2045 | Placeholder command for showing help on convenience functions."), | |
2046 | &functionlist, "function ", 0, &cmdlist); | |
2047 | ||
2048 | internal_fn_type = alloc_type (NULL); | |
2049 | TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION; | |
2050 | TYPE_LENGTH (internal_fn_type) = sizeof (struct internal_function *); | |
2051 | TYPE_NAME (internal_fn_type) = "<internal function>"; | |
c906108c | 2052 | } |